NASA Astrophysics Data System (ADS)
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos
2012-03-01
In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.
Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson
2012-01-01
Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632
Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson
2012-01-01
Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.
Morello, Luca; Raga, Roberto; Sgarbossa, Paolo; Rosson, Egle; Cossu, Raffaello
2018-05-01
The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
Characterization of urban solid waste in Chihuahua, Mexico.
Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc
2008-12-01
The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.
Alibardi, Luca; Cossu, Raffaello
2015-02-01
The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.
Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan
2016-10-01
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.
Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site
NASA Astrophysics Data System (ADS)
Kanmani, S.; Gandhimathi, R.
2013-03-01
The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.
Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan
2018-01-01
This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neufeld, R. D.; Bern, J.; Erdogan, H.
1979-11-15
Activities are underway to investigate basic phenomena that would assist demonstration and commercial sized coal conversion facilities in the environmentally acceptable disposal of process solid waste residuals. The approach taken is to consider only those residuals coming from the conversion technology itself, i.e. from gasification, liquefaction, and hot-clean-up steps as well as residuals from the wastewater treatment train. Residuals from the coal mining and coal grinding steps will not be considered in detail since those materials are being handled in some manner in the private sector. Laboratory evalations have been conducted on solid waste samples of fly ash from anmore » existing Capman gasifier. ASTM-A and EPA-EP leaching procedures have been completed on sieved size fractions of the above wastes. Data indicate that smaller size fractions pose greater contamination potential than do larger size particles with a transition zone occurring at particle sizes of about 0.05 inches in diameter. Ames testing of such residuals is reported. Similar studies are under way with samples of H-Coal solid waste residuals.« less
Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M
2016-07-01
This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A
2017-06-01
The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona
Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less
Report: new guidelines for characterization of municipal solid waste: the Portuguese case.
da Graça Madeira Martinho, Maria; Silveira, Ana Isabel; Fernandes Duarte Branco, Elsa Maria
2008-10-01
This report proposes a new set of guidelines for the characterization of municipal solid waste. It is based on an analysis of reference methodologies, used internationally, and a case study of Valorsul (a company that handles recovery and treatment of solid waste in the North Lisbon Metropolitan Area). In particular, the suggested guidelines present a new definition of the waste to be analysed, change the sampling unit and establish statistical standards for the results obtained. In these new guidelines, the sampling level is the waste collection vehicle and contamination and moisture are taken into consideration. Finally, focus is on the quality of the resulting data, which is essential for comparability of data between countries. These new guidelines may also be applicable outside Portugal because the methodology includes, besides municipal mixed waste, separately collected fractions of municipal waste. They are a response to the need for information concerning Portugal (e.g. Eurostat or OECD inquiries) and follow European Union municipal solid waste management policies (e.g. packaging waste recovery and recycling targets and the reduction of biodegradable waste going to landfill).
Methane yield in source-sorted organic fraction of municipal solid waste.
Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour
2007-01-01
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.
Determination of as-discarded methane potential in residential and commercial municipal solid waste.
Chickering, Giles W; Krause, Max J; Townsend, Timothy G
2018-06-01
Methane generation potential, L 0 , is a primary parameter of the first-order decay (FOD) model used for prediction and regulation of landfill gas (LFG) generation in municipal solid waste (MSW) landfills. The current US EPA AP-42 default value for L 0 , which has been in place for almost 20 years, is 100 m 3 CH 4 /Mg MSW as-discarded. Recent research suggests the yield of landfilled waste could be less than 60 m 3 CH 4 /Mg MSW. This study aimed to measure the L 0 of present-day residential and commercial as-discarded MSW. In doing so, 39 waste collection vehicles were sorted for composition before samples of each biodegradable fraction were analyzed for methane generation potential. Methane yields were determined for over 450 samples of 14 different biodegradable MSW fractions, later to be combined with moisture content and volatile solids data to calculate L 0 values for each waste load. An average value of 80 m 3 CH 4 /Mg MSW was determined for all samples with 95% of values in the interval 74-86 m 3 CH 4 /Mg MSW as-discarded. While no statistically significant difference was observed, commercial MSW yields (mean 85, median 88 m 3 CH 4 /Mg MSW) showed a higher average L 0 than residential MSW (mean 75, median 71 m 3 CH 4 /Mg MSW). Many methane potential values for individual fractions described in previous work were found within the range of values determined by BMP in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gidarakos, E; Havas, G; Ntzamilis, P
2006-01-01
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.
Forecasting municipal solid waste generation using prognostic tools and regression analysis.
Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria
2016-11-01
For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garcés, Diego; Díaz, Eva; Sastre, Herminio; Ordóñez, Salvador; González-LaFuente, José Manuel
2016-01-01
Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg(-1) and 42 MJ kg(-1). One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg(-1), followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer-Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John
In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less
Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale
Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; ...
2015-06-26
In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less
Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco
2008-01-01
Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.
De la Cruz, Florentino B; Chanton, Jeffrey P; Barlaz, Morton A
2013-10-01
Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6±18.0% (average±standard deviation), while the average carbon storage factor was 0.09±0.06g biogenic-C stored per g dry sample or 0.66±0.16g biogenic-C stored per g biogenic C. Published by Elsevier Ltd.
Saha, J K; Panwar, N R; Coumar, M Vassanda
2013-11-01
The present study compares the distribution and nature of heavy metals in composts from 12 cities of India, prepared from different types of processed urban solid wastes, namely mixed wastes (MWC), partially segregated wastes (PSWC), and segregated bio-wastes (BWC). Compost samples were physically fractionated by wet sieving, followed by extraction of heavy metals by dilute HCl and NaOH. Bigger particles (>0.5 mm) constituted the major fraction in all three types of composts and had a relatively lower concentration of organic matter and heavy metals, the effect being more pronounced in MWC and PSWC in which a significant portion of the heavy metals was distributed in finer size fractions. Cd, Ni, Pb, and Zn were extracted to a greater extent by acid than by alkali, the difference being greater in MWC, which contained a higher amount of mineral matter. In contrast, Cu and Cr were extracted to a greater extent by dilute alkali, particularly from BWC containing a higher amount of organic matter. Water-soluble heavy metals were generally related to the water-soluble C or total C content as well as to pH, rather than to their total contents. This study concludes that wet sieving with dilute acid can effectively reduce heavy metal load in MWC and PSWC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gidarakos, E.; Havas, G.; Ntzamilis, P.
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less
To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
Sormunen, Laura Annika; Rantsi, Riina
2015-11-01
For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.
Factors determining waste generation in Spanish towns and cities.
Prades, Miriam; Gallardo, Antonio; Ibàñez, Maria Victoria
2015-01-01
This paper analyzes the generation and composition of municipal solid waste in Spanish towns and cities with more than 5000 inhabitants, which altogether account for 87% of the Spanish population. To do so, the total composition and generation of municipal solid waste fractions were obtained from 135 towns and cities. Homogeneity tests revealed heterogeneity in the proportions of municipal solid waste fractions from one city to another. Statistical analyses identified significant differences in the generation of glass in cities of different sizes and in the generation of all fractions depending on the hydrographic area. Finally, linear regression models and residuals analysis were applied to analyze the effect of different demographic, geographic, and socioeconomic variables on the generation of waste fractions. The conclusions show that more densely populated towns, a hydrographic area, and cities with over 50,000 inhabitants have higher waste generation rates, while certain socioeconomic variables (people/car) decrease that generation. Other socioeconomic variables (foreigners and unemployment) show a positive and null influence on that waste generation, respectively.
Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M
2013-12-01
For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical Characterization of an Envelope B/D Sample from Hanford Tank 241-AZ-102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.S.
2000-08-23
A sample from Hanford waste tank 241-AZ-102 was received at the Savannah River Technology Center (SRTC) and chemically characterized. The sample containing supernate and a small amount of sludge solids was analyzed as-received. The filtered supernatant liquid, the total dried solids of the sample, and the washed insoluble solids obtained from filtration of the sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results were more than one method of determination was employed and formore » species present in low concentrations. The actinides isotopes, plutonium, americium, and curium, present analytical challenges due to the low concentration of these species and the potential for introduction of small amounts of contamination during sampling handling resulting in large uncertainties. A direct comparison to previous analyses of material from tank 241-AZ-102 showed good agreement with the filtered supernatant liquid. However, the comparison of solids data showed poor agreement. The poor agreement shown between the current results for the solids samples and previous analyses most likely results from the uncertainties associated with obtaining small solids samples from a large non-homogenized waste tank.« less
Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity
NASA Astrophysics Data System (ADS)
Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz
2017-04-01
Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.
Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
Fellner, Johann; Rechberger, Helmut
2009-05-01
In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC.
The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery...
Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E
2015-07-07
The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.
Characterization of selected municipal solid waste components to estimate their biodegradability.
Bayard, R; Benbelkacem, H; Gourdon, R; Buffière, P
2018-06-15
Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less
Electricity production from municipal solid waste in Brazil.
Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-07-01
Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.
Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas
2015-11-01
The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can constitute an attractive option of the waste management system, when physical-mechanical devices are not available or could not be implemented in old MSWI systems. The suggested procedure may lead to the improvement of recovery efficiency up to 83% for CRM and 94% for other valuable metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Factors affecting the shear strength behavior of municipal solid wastes.
Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz
2017-11-01
In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of the solid-phase partitioning of sulfur is frequently an important analytical component of risk assessments at hazardous waste sites because minerals containing reduced-sulfur can significantly affect the transport and fate of organic and inorganic contaminants in na...
Aluminium alloys in municipal solid waste incineration bottom ash.
Hu, Yanjun; Rem, Peter
2009-05-01
With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.
Safar, Korai M; Bux, Mahar R; Aslam, Uqaili M; Ahmed, Memon S; Ahmed, Lashari I
2016-04-01
Non-renewable energy sources have remained the choice of the world for centuries. Rapid growth in population and industrialisation have caused their shortage and environmental degradation by using them. Thus, at the present rate of consumption, they will not last very long. In this prospective, this study has been conducted. The estimation of energy in terms of biogas and heat from various organic fractions of municipal solid waste is presented and discussed. The results show that organic fractions of municipal solid waste possess methane potential in the range of 3%-22% and their heat capacity ranges from 3007 to 20,099 kJ kg(-1) Also, theoretical biogas potential of different individual fruit as well as vegetable components and mixed food waste are analysed and estimated in the range of 608-1244 m(3) t(-1) Further, the share of bioenergy from municipal solid waste in the total primary energy supply in Pakistan has been estimated to be 1.82%. About 8.43% of present energy demand of the country could be met from municipal solid waste. The study leads us to the conclusion that the share of imported energy (i.e. 0.1% of total energy supply) and reduction in the amount of energy from fossil fuels can be achieved by adopting a waste-to-energy system in the country. © The Author(s) 2016.
Jefimova, J; Irha, N; Mägi, R; Kirso, U
2012-10-01
The solid-phase microextraction (SPME) method was developed to determine PAH free dissolved concentration (C(free)) in field leachates from hazardous waste disposal. SPME technique, involving a 100-μm polydimethylsiloxane (PDMS) fiber coupled to GC-MS was optimized for determination of C(free). The following PAH were found in bioavailable form: acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, with C(free) varying between 2.38 and 62.35 ng/L. Conventional solvent extraction was used for measurement of total concentration (C(total)) in the same samples, and ranging from 1.26 to 77.56 μg/L. Determining C(free) of the hydrophobic toxic pollutants could give useful information for risk assessment of the hazardous waste.
Comparative analysis of hazardous household waste in two Mexican regions.
Delgado, Otoniel Buenrostro; Ojeda-Benítez, Sara; Márquez-Benavides, Liliana
2007-01-01
Household hazardous waste (HHW) generation in two Mexican regions was examined, a northern region (bordering with the USA) and a central region. The aim of this work was to determine the dynamics of solid waste generation and to be able to compare the results of both regions, regarding consumption patterns and solid waste generation rates. In the northern region, household solid waste was analysed quantitatively. In order to perform this analysis, the population was categorized into three socioeconomic strata (lower, middle, upper). Waste characterization revealed the presence of products that give origin to household hazardous waste. In the northern region (Mexicali city), household hazardous waste comprised 3.7% of municipal solid waste, the largest categories in this fraction were home care products (29.2%), cleaning products (19.5%) and batteries and electronic equipment (15.7%). In the central region, HHW comprised 1.03% of municipal solid waste; the main categories in this fraction were represented by cleaning products (39%), self care products (27.3%), and insecticides (14.4%). In Mexicali, the socioeconomic study demonstrated that the production of HHW is independent of the income level. Furthermore, the composition of the solid waste stream in both regions suggested the influence of another set of variables such as local climate, migration patterns and marketing coverage. Further research is needed in order to establish the effect of low quantities of HHW upon the environment and public health.
Edjabou, Maklawe Essonanawe; Martín-Fernández, Josep Antoni; Scheutz, Charlotte; Astrup, Thomas Fruergaard
2017-11-01
Data for fractional solid waste composition provide relative magnitudes of individual waste fractions, the percentages of which always sum to 100, thereby connecting them intrinsically. Due to this sum constraint, waste composition data represent closed data, and their interpretation and analysis require statistical methods, other than classical statistics that are suitable only for non-constrained data such as absolute values. However, the closed characteristics of waste composition data are often ignored when analysed. The results of this study showed, for example, that unavoidable animal-derived food waste amounted to 2.21±3.12% with a confidence interval of (-4.03; 8.45), which highlights the problem of the biased negative proportions. A Pearson's correlation test, applied to waste fraction generation (kg mass), indicated a positive correlation between avoidable vegetable food waste and plastic packaging. However, correlation tests applied to waste fraction compositions (percentage values) showed a negative association in this regard, thus demonstrating that statistical analyses applied to compositional waste fraction data, without addressing the closed characteristics of these data, have the potential to generate spurious or misleading results. Therefore, ¨compositional data should be transformed adequately prior to any statistical analysis, such as computing mean, standard deviation and correlation coefficients. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horttanainen, M., E-mail: mika.horttanainen@lut.fi; Teirasvuo, N.; Kapustina, V.
Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energymore » share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.« less
Voběrková, Stanislava; Vaverková, Magdalena D; Burešová, Alena; Adamcová, Dana; Vršanská, Martina; Kynický, Jindřich; Brtnický, Martin; Adam, Vojtěch
2017-03-01
An investigation was carried out on the effect of inoculation methods on the compost of an organic fraction of municipal solid waste. Three types of white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor and Fomes fomentarius), and a consortium of these fungi, were used. The study assessed their influence on microbial enzymatic activities and the quality of the finished compost. It was found that the addition of white-rot fungi to municipal solid waste (after 37days of composting) could be a useful strategy for enhancing the properties of the final compost product. In comparison with the control sample (compost without inoculation), it accelerates degradation of solid waste as indicated by changes in C/N, electrical conductivity and pH. However, the effectiveness of waste degradation and compost maturation depends on the type of microorganism used for inoculation. The presence of inoculants, such as Trametes versicolor and Fomes fomentarius, led to a higher degrading ratio and a better degree of maturity. This resulted in an increase of enzymatic activities (especially dehydrogenase and protease) and a germination index in comparison with inoculation using Phanerochaete chrysosporium or a consortium of fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method for removing hydrocarbon contaminants from solid materials
Bala, Gregory A.; Thomas, Charles P.
1995-01-01
A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).
Method for removing hydrocarbon contaminants from solid materials
Bala, G.A.; Thomas, C.P.
1995-10-03
A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.
Apparatus for removing hydrocarbon contaminants from solid materials
Bala, G.A.; Thomas, C.P.
1996-02-13
A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.
Apparatus for removing hydrocarbon contaminants from solid materials
Bala, Gregory A.; Thomas, Charles P.
1996-01-01
A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).
Arukwe, Augustine; Eggen, Trine; Möder, Monika
2012-11-01
In developing countries, there are needs for scientific basis to sensitize communities on the problems arising from improper solid waste deposition and the acute and long-term consequences for areas receiving immobilized pollutants. In Nigeria, as in many other African countries, solid waste disposal by way of open dumping has been the only management option for such wastes. Herein, we have highlighted the challenges of solid waste deposit and management in developing countries, focusing on contaminants of emerging concern and leaching into the environment. We have analyzed sediments and run-off water samples from a solid waste dumping site in Owerri, Nigeria for organic load and compared these with data from representative world cities. Learning from previous incidents, we intend to introduce some perspective for awareness of contaminants of emerging concerns such as those with potential endocrine disrupting activities in wildlife and humans. Qualitative and quantitative data obtained by gas chromatography and mass spectrometric analysis (GC-MS) provide an overview on lipophilic and semi-polar substances released from solid waste, accumulated in sediments and transported via leachates. The chromatograms of the full scan analyses of the sediment extracts clearly point to contamination related to heavy oil. The homologous series of n-alkanes with chain lengths ranging between C16 and C30, as well as detected polyaromatic hydrocarbon (PAH) compounds such as anthracene, phenanthrene, fluoranthene and pyrene support the assumption that diesel fuel or high boiling fractions of oil are deposited on the site. Targeted quantitative analysis for selected compounds showed high concentration of substances typically released from man-made products such as plastics, textiles, household and consumer products. Phthalate, an integral component of plastic products, was the dominant compound group in all sediment samples and run-off water samples. Technical nonylphenols (mixture of isomers), metabolites of non-ionic surfactants (nonylphenol-polyethoxylates), UV-filter compound ethyl methoxy cinnamate (EHMC) and bisphenol A (BPA) were particularly determined in the sediment samples at high μg/kg dry weight concentration. Measuring contaminants in such areas will help in increasing governmental, societal and industrial awareness on the extent and seriousness of the contamination both at waste disposal sites and surrounding terrestrial and aquatic environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Majhi, Bijoy Kumar; Jash, Tushar
2016-12-01
Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m 3 kg -1 VS, at OLR of 1.11-1.585kgm -3 d -1 , were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Raclavská, Helena; Corsaro, Agnieszka; Hlavsová, Adéla; Juchelková, Dagmar; Zajonc, Ondřej
2015-03-01
The investigation of the effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste is essential. This is important owing to: (i) the increasing amount of metals in the solid product of pyrolysis beyond the normalised level; (ii) the effect of moisture on the overall cost of pyrolysis process; and (iii) the utilisation of pyrolysis products. Seven metals were selected for evaluation: arsenic, cadmium, chromium, mercury, nickel, lead, and vanadium. Pyrolysis experiments were conducted in a steel retort at 650 °C. The municipal solid waste samples with moisture contents of 0, 30, and 65 wt% were investigated. The relative enrichment index and release of heavy metals were evaluated individually for liquid and solid fractions. A consistent trend was observed for the majority of metals investigated. Reductions of relative enrichment index and release, i.e. an increase of volatility, were observed for arsenic, chromium, cadmium, nickel, and vanadium, with an increase of municipal solid waste moisture. Whereas divergent results were obtained for lead and mercury. The effect of moisture on the relative enrichment index and release was greater at 65 wt% moisture than at 30 wt% for lead, and more remarkable at 30 wt% than at 65 wt% for mercury. © The Author(s) 2015.
Use of Fenton reaction for the treatment of leachate from composting of different wastes.
Trujillo, Daniel; Font, Xavier; Sánchez, Antoni
2006-11-02
The oxidation of leachate coming from the composting of two organic wastes (wastewater sludge and organic fraction of municipal solid wastes) using the Fenton's reagent was studied using different ratios [Fe(2+)]/[COD](0) and maintaining a ratio [H(2)O(2)]/[COD](0) equal to 1. The optimal conditions for Fenton reaction were found at a ratio [Fe(2+)]/[COD](0) equal to 0.1. Both leachates were significantly oxidized under these conditions in terms of COD removal (77 and 75% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively) and BOD(5) removal (90 and 98% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively). Fenton's reagent was found to oxidize preferably biodegradable organic matter of leachate. In consequence, a decrease in the biodegradability of leachates was observed after Fenton treatment for both leachates. Nevertheless, Fenton reaction proved to be a feasible technique for the oxidation of the leachate under study, and it can be considered a suitable treatment for this type of wastewaters.
Estimating Residual Solids Volume In Underground Storage Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.
2014-01-08
The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less
Model calibration and validation for OFMSW and sewage sludge co-digestion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it
2011-12-15
Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less
Prays, Nadia; Kaupenjohann, Martin
2016-01-01
Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59–62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered. PMID:27116355
Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H
2016-10-01
Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trends in the management of residual municipal solid waste.
Rada, E C; Istrate, I A; Ragazzi, M
2009-06-01
In agreement with European Union directives, the integrated management of municipal solid waste must be developed ensuring a balanced relationship between the streams of selective collection and the one regarding the residual waste. A theoretical scenario is made where the residual municipal solid waste is composed only of non-recyclable fractions. An important aspect concerns the role of the organic fraction as selective collection can significantly decrease its content in the residual waste. This paper focuses on the planning, design and management consequences of this unsteady scenario. The treatments that are considered are: combustion, gasification, pyrolysis, integrated thermal plants, aerobic mechanical-biological treatments, anaerobic mechanical-biological treatments and other types of treatment. The considerations are based on the experience of the authors not only in terms of development of research but also in terms of transfer of the research results to the real scale, and knowledge of the state-of-the-art of the sector.
Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.
Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P
2014-06-01
In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.
Gravitational sedimentation of flocculated waste activated sludge.
Chu, C P; Lee, D J; Tay, J H
2003-01-01
The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.
Nair, Arjun; Sartaj, Majid; Kennedy, Kevin; Coelho, Nuno M G
2014-10-01
Leachate recirculation has a profound advantage on biodegradation of the organic fraction of municipal solid waste in landfills. Mature leachate from older sections of landfills (>10 years) and young leachate were blended and added to organic fraction of municipal solid waste in a series of biomethane potential assay experiments with different mixing ratios of mature and young leachate and their effect on biogas production was monitored. The improvement in biogas production was in the range of 19%-41% depending on the ratio of mixing old and new leachate. The results are conclusive that the biogas generation could be improved by blending the old and new leachate in a bioreactor landfill system as compared with a conventional system employed in bioreactor landfills today for recirculating the same age leachate. © The Author(s) 2014.
Measuring Water in Bioreactor Landfills
NASA Astrophysics Data System (ADS)
Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.
2004-12-01
Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water was 29%, while the moisture content, the mass of water divided by total wet mass of solid waste, was 28%. Near the sloped sides of the landfill, PTT results indicated that only 7.1% of the pore space was filled with water, while the moisture content was estimated to be 6.9%. These measurements are in close agreement with gravimetric measurements made on solid waste samples collected after each PTT: moisture content of 27% in the center of the landfill and only 6% near the edge of the landfill. We discuss these measurements in detail, the limitations of the PTT method for landfills, and operational guidelines for achieving unbiased measurements of moisture content in landfills using the PTT method.
Hartmann, H; Ahring, B K
2006-01-01
Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics such as composition of biodegradable fractions, C:N ratio and particle size is described. Generally, source sorting of OFMSW and a high content of food waste leads to higher biogas yields than the use of mechanically sorted OFMSW. Thermophilic processes are more efficient than mesophilic processes in terms of higher biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS x m(-3) d(-1). High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS x m(-3)d(-1) are applied. Multi-stage systems show in some investigations a higher reduction of recalcitrant organic matter compared to single-stage systems, but they are seldom applied in full-scale. An extended cost-benefit calculation shows that the highest overall benefit of the process is achieved at an OLR that is lower and a hydraulic retention time (HRT) that is longer than those values of OLR and HRT, at which the highest biogas production is achieved.
Solid waste characterization in Ketao, a rural town in Togo, West Africa.
Edjabou, Maklawe Essonanawe; Møller, Jacob; Christensen, Thomas H
2012-07-01
In Africa the majority of solid waste data is for big cities. Small and rural towns are generally neglected and waste data from these areas are often unavailable, which makes planning a proper solid waste management difficult. This paper presents the results from two waste characterization projects conducted in Kétao, a rural town in Togo during the rainy season and the dry season in 2010. The seasonal variation has a significant impact on the waste stream. The household waste generation rate was estimated at 0.22 kg person(-1) day(-1) in the dry season and 0.42 in the rainy season. Likewise, the waste moisture content was 4% in the dry season while it was 33-63% in the rainy season. The waste consisted mainly of soil and dirt characterized as 'other' (41%), vegetables and putrescibles (38%) and plastic (11%). In addition to these fractions, considerable amounts of material are either recycled or reused locally and do not enter the waste stream. The study suggests that additional recycling is not feasible, but further examination of the degradability of the organic fraction is needed in order to assess whether the residual waste should be composed or landfilled.
Recycling paper-pulp waste liquors
NASA Technical Reports Server (NTRS)
Sarbolouki, M. N.
1981-01-01
Papermills in U.S. annually produce 3 million tons of sulfite waste liquor solids; other fractions of waste liquor are monomeric sugars and lignosulfonates in solution. Recovery of lignosulfonates involves precipitation and cross-linking of sulfonates to form useful solid ion-exchange resin. Contamination of sugars recovered from liquor is avoided by first converting them to ethanol, then removing ethanol by distillation.
Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua
2017-11-01
In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6 t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3 t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.
Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel
2014-10-01
Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.
NASA Astrophysics Data System (ADS)
Khair, H.; Putri, C. N.; Dalimunthe, R. A.; Matsumoto, T.
2018-02-01
Municipal solid waste (MSW) management is still an issue in many cities in Indonesia including Medan. Understanding the waste generation, its characteristic and communities involvement could provide effective solid waste management. This research compares waste generation from people who live in the city center and suburban area. The research also examines the willingness and participation of community about environmental aspect, especially solid waste management. The method of waste generation used Indonesian Nasional Standard 19-3964-1994. The city center generates 0.295 kg/person/day of solid waste and 0.180 kg/person/day for suburbs. The result showed that there are the common amount of waste compositions between the city center and suburban area. The majority waste composition was an organic fraction. Questionnaires were distributed to examine the community awareness. The descriptive statistic used to analyze the data. The result showed that people living in the city center are slightly higher in community awareness than in the suburb. This paper highlights that area of living could give some effect to solid waste generation, waste composition and rate of awareness.
Rheological characterisation of biologically treated and non-treated putrescible food waste.
Baroutian, Saeid; Munir, M T; Sun, Jiyang; Eshtiaghi, Nicky; Young, Brent R
2018-01-01
Food waste is gaining increasing attention worldwide due to growing concerns over its environmental and economic costs. Understanding the rheological behaviour of food waste is critical for effective processing so rheological measurements were carried out for different food waste compositions at 25, 35 and 45 °C. Food waste samples of various origins (carbohydrates, vegetables & fruits, and meat), anaerobically digested and diluted samples were used in this study. The results showed that food waste exhibits shear-thinning flow behaviour and viscosity of food waste is a function of temperature and composition. The composition of food waste affected the flow properties. Viscosity decreased at a given temperature as the proportion of carbohydrate increased. This may be due to the high water content of vegetable & fruits as the total solids fraction is likely to be a key controlling factor of the rheology. The Herschel-Bulkley model was used successfully to model food waste flow behaviour. Also, a higher strain was needed to break down the structure of the food waste as digestion time increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej
2018-01-01
One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.
SLFP: a stochastic linear fractional programming approach for sustainable waste management.
Zhu, H; Huang, G H
2011-12-01
A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.
2004-01-01
Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.
NASA Technical Reports Server (NTRS)
Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.
2004-01-01
Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.
Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A
2004-01-01
Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.
Fate of organic carbon from different waste materials in cropland soils
NASA Astrophysics Data System (ADS)
Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid
2015-04-01
Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found to be concentrated in the clay fractions, but interestingly we were able to show this also for the oPOM small. Proteins and peptides, as indicated by the broad resonance between 30 and 55 ppm, clearly point to the presence of microbial products and residues in this fraction.
Fractions and biodegradability of dissolved organic matter derived from different composts.
Wei, Zimin; Zhang, Xu; Wei, Yuquan; Wen, Xin; Shi, Jianhong; Wu, Junqiu; Zhao, Yue; Xi, Beidou
2014-06-01
An experiment was conducted to determine the fractions of molecular weights (MW) and the biodegradability of dissolved organic matter (DOM) in mature composts derived from dairy cattle manure (DCM), kitchen waste (KW), cabbage waste (CW), tomato stem waste (TSW), municipal solid waste (MSW), green waste (GW), chicken manure (CM), sludge (S), and mushroom culture waste (MCW). There were distinct differences in the concentration and MW fractions of DOM, and the two measures were correlated. Fraction MW>5kDa was the major component of DOM in all mature composts. Determined 5day biochemical oxygen demand (BOD5) of DOM was correlated to the concentration of DOM and all MW fractions except MW>5kDa, indicating that the biodegradability of DOM was a function of the content and proportion of fraction MW<5kDa. This study suggests that the amount and distribution of low MW fractions affect DOM biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schievano, Andrea; D'Imporzano, Giuliana; Malagutti, Luca; Fragali, Emilio; Ruboni, Gabriella; Adani, Fabrizio
2010-07-01
High-solids anaerobic digestion (HSAD) processes, when applied to different types of organic fractions of municipal solid waste (OFMSW), may easily be subjected to inhibition due to organic overloading. In this study, a new approach for predicting these phenomena was proposed based on the estimation of the putrescibility (oxygen consumption in 20 h biodegradation, OD(20)) of the organic mixtures undergoing the HSAD process. Different wastes exhibiting different putrescibility were subjected to lab-scale batch-HSAD. Measuring the organic loading (OL) as volatile solids (VS) was found unsuitable for predicting overload inhibition, because similar VS contents corresponded to both inhibited and successful trials. Instead, the OL calculated as OD(20) was a very good indicator of the inhibiting conditions (inhibition started for OD(20)>17-18 g O(2)kg(-1)). This new method of predicting inhibition in the HSAD process of diverse OFMSW may be useful for developing a correct approach to the technology in very different contexts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Sethi, Sapna; Kothiyal, N C; Nema, Arvind K
2012-07-01
Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-11-01
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.
Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John
2016-09-01
Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahriari, Haleh, E-mail: haleh.shahriari@gmail.com; Warith, Mostafa; Hamoda, Mohamed
2012-01-15
Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobicmore » digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.« less
Chemical Characterization of an Envelope A Sample from Hanford Tank 241-AN-103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.S.
2000-08-23
A whole tank composite sample from Hanford waste tank 241-AN-103 was received at the Savannah River Technology Center (SRTC) and chemically characterized. Prior to characterization the sample was diluted to {approximately}5 M sodium concentration. The filtered supernatant liquid, the total dried solids of the diluted sample, and the washed insoluble solids obtained from filtration of the diluted sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results where more than one method of determination wasmore » employed and for species present in low concentrations. A direct comparison to previous analyses of material from tank 241-AN-103 was not possible due to unavailability of data for diluted samples of tank 241-AN-103 whole tank composites. However, the analytical data for other types of samples from 241-AN-103 we re mathematically diluted and compare reasonably with the current results. Although the segments of the core samples used to prepare the sample received at SRTC were combined in an attempt to produce a whole tank composite, determination of how well the results of the current analysis represent the actual composition of the Hanford waste tank 241-AN-103 remains problematic due to the small sample size and the large size of the non-homogenized waste tank.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com; Madhu, G., E-mail: profmadhugopal@gmail.com; Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com
2015-02-15
Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration ofmore » 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.« less
Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I
2015-10-01
Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
40 CFR 63.4710 - What notifications must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
40 CFR 63.4710 - What notifications must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
40 CFR 63.4710 - What notifications must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
Cuetos, María José; Gómez, Xiomar; Otero, Marta; Morán, Antonio
2010-07-01
In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.
Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds.
Fernández-Bolaños, Juan; Rodríguez, Guillermo; Gómez, Esther; Guillén, Rafael; Jiménez, Ana; Heredia, Antonia; Rodríguez, Rocío
2004-09-22
A process for the value addition of solid waste from two-phase olive oil extraction or "alperujo" that includes a hydrothermal treatment has been suggested. In this treatment an autohydrolysis process occurs and the solid olive byproduct is partially solubilized. From this water-soluble fraction can be obtained besides the antioxidant hydroxytyrosol several other compounds of high added value. In this paper three different samples of alperujo were characterized and subjected to a hydrothermal treatment with and without acid catalyst. The main soluble compounds after the hydrolysis were represented by monosaccharides xylose, arabinose, and glucose; oligosaccharides, mannitol and products of sugar destruction. Oligosaccharides were separated by size exclusion chromatography. It was possible to get highly purified mannitol by applying a simple purification method.
Modules for estimating solid waste from fossil-fuel technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.
1980-10-01
Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less
Karagiannidis, A; Perkoulidis, G
2009-04-01
This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.
Pendyala, Brahmaiah; Chaganti, Subba Rao; Lalman, Jerald A; Heath, Daniel D
2016-03-01
The objective of this study was to establish the impact of different steam exploded organic fractions in municipal solid waste (MSW) on electricity production using microbial fuel cells (MFCs). In particular, the influence of individual steam exploded liquefied waste components (food waste (FW), paper-cardboard waste (PCW) and garden waste (GW)) and their blends on chemical oxygen demand (COD) removal, columbic efficiency (CE) and microbial diversity was examined using a mixture design. Maximum power densities from 0.56 to 0.83 W m(-2) were observed for MFCs fed with different feedstocks. The maximum COD removed and minimum CE were observed for a GW feed. However, a reverse trend (minimum COD removed and maximum CE) was observed for the FW feed. A maximum COD removal (78%) accompanied with a maximum CE (24%) was observed for a combined feed of FW, PCW plus GW in a 1:1:1 ratio. Lactate, the major byproduct detected, was unutilized by the anodic biofilm community. The organic fraction of municipal solid waste (OFMSW) could serve as a potential feedstock for electricity generation in MFCs; however, elevated protein levels will lead to reduced COD removal. The microbial communities in cultures fed FW and PCW was highly diversified; however, the communities in cultures fed FW or a feed mixture containing high FW levels were similar and dominated by Bacteroidetes and β-proteobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Size charge fractionation of metals in municipal solid waste landfill leachate.
Oygard, Joar Karsten; Gjengedal, Elin; Røyset, Oddvar
2007-01-01
Municipal solid waste landfill leachates from 9 Norwegian sites were size charge fractionated in the field, to obtain three fractions: particulate and colloidal matter >0.45microm, free anions/non-labile complexes <0.45microm and free cations/labile complexes <0.45microm. The fractionation showed that Cd and Zn, and especially Cu and Pb, were present to a large degree (63-98%) as particulate and colloidal matter >0.45microm. Cr, Co and Ni were on the contrary present mostly as non-labile complexes (69-79%) <0.45microm. The major cations Ca, Mg, K, and Mn were present mainly as free cations/labile complexes <0.45microm, while As and Mo were present to a large degree (70-90%) as free anions/non-labile complexes <0.45microm. Aluminium was present mainly as particulate and colloidal matter >0.45microm. The particulate and colloidal matter >0.45microm was mainly inorganic; indicating that the metals present in this fraction were bound as inorganic compounds. The fractionation gives important information on the mobility and potential bioavailability of the metals investigated, in contrast to the total metal concentrations usually reported. To study possible changes in respective metal species in leachate in aerated sedimentation tanks, freshly sampled leachate was stored for 48h, and subsequently fractionated. This showed that the free heavy metals are partly immobilized during storage of leachate with oxygen available. The largest effects were found for Cd and Zn. The proportion of As and Cr present as particulate matter or colloids >0.45microm also increased.
Municipal solid waste management in Tehran: Changes during the last 5 years.
Malmir, Tahereh; Tojo, Yasumasa
2016-05-01
The situation of waste management in Tehran was a typical example of it in developing countries. The amount of municipal solid waste has been increasing and the city has depended on landfill for municipal solid waste management. However, in recent years, various measures have been taken by the city, such as collecting recyclables at the source and increasing the capacity of waste-processing facilities. As a result, significant changes in the waste stream are starting to occur. This study investigated the nature of, and reasons for, the marked changes in the waste stream from 2008 to 2012 by analysing the municipal solid waste statistics published by the Tehran Waste Management Organization in 2013 and survey data on the physical composition of the municipal solid waste. The following trends were identified: Although the generation of municipal solid waste increased by 10% during the 5-year period, the amount of waste directly disposed of to landfill halved and resource recovery almost doubled. An increase in the capacity of a waste-processing facility contributed significantly to these changes. The biodegradable fraction going to landfill was estimated by using the quantity and the composition of each input to the landfill. The estimated result in 2012 decreased to 49% of its value in 2008. © The Author(s) 2016.
Possibilities of municipal solid waste incinerator fly ash utilisation.
Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon
2015-08-01
Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.
Komilis, Dimitrios; Bandi, Dimitra; Kakaronis, Georgios; Zouppouris, Georgios
2011-06-01
The objective of this work was to investigate the potential transfer of 9 heavy metals from spent household batteries (zinc-carbon and alkaline-manganese batteries) to the organic fraction of municipal solid wastes during active composting. Six runs were performed including one control and 2 replications. Eleven types of alkaline and non-alkaline batteries were added at 3 different levels to the organic fraction of municipal solid wastes, namely at percentages equal to 0.98% w/w (low), 5.2% w/w (medium) and 10.6% w/w (high). Experiments were performed in 230 l insulated plastic aerobic bioreactors under a dynamic air flow regime for up to 60 days. Iron, copper and nickel masses contained in the organic fraction of the wastes were found significantly higher in the high level runs compared to the corresponding masses in the control. No metal transfer was obtained in the low and medium level runs. Metal mass balance closures ranged from 51% to 176%. Metals' concentrations in the leachates were below 10 mg l⁻¹ for most metals, except iron, while an increasing concentration trend versus time was measured in the leachates of the high level runs. In all cases, the contents of 5 regulated heavy metals in all end products were below the Hellenic limits. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T
2015-02-01
The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mu'min, Gea Fardias; Prawisudha, Pandji; Zaini, Ilman Nuran; Aziz, Muhammad; Pasek, Ari Darmawan
2017-09-01
This study employs wet torrefaction process (also known as hydrothermal) at low temperature. This process simultaneously acts as waste processing and separation of mixed waste, for subsequent utilization as an alternative fuel. The process is also applied for the delamination and separation of non-recyclable laminated aluminum waste into separable aluminum and plastic. A 2.5-L reactor was used to examine the wet torrefaction process at temperatures below 200°C. It was observed that the processed mixed waste was converted into two different products: a mushy organic part and a bulky plastic part. Using mechanical separation, the two products can be separated into a granular organic product and a plastic bulk for further treatment. TGA analysis showed that no changes in the plastic composition and no intrusion from plastic fraction to the organic fraction. It can be proclaimed that both fractions have been completely separated by wet torrefaction. The separated plastic fraction product obtained from the wet torrefaction treatment also contained relatively high calorific value (approximately 44MJ/kg), therefore, justifying its use as an alternative fuel. The non-recyclable plastic fraction of laminated aluminum was observed to be delaminated and separated from its aluminum counterpart at a temperature of 170°C using an additional acetic acid concentration of 3%, leaving less than 25% of the plastic content in the aluminum part. Plastic products from both samples had high calorific values of more than 30MJ/kg, which is sufficient to be converted and used as a fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 63.3510 - What notifications must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
40 CFR 63.3510 - What notifications must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
40 CFR 63.3510 - What notifications must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
40 CFR 63.3510 - What notifications must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating and for one thinner. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating... density is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
Anaerobic digestion as a waste disposal option for American Samoa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C
1993-01-01
Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.
Effects of Moisture Content in Solid Waste Landfills
2000-03-01
C02 + CH4 + NH3 + H2S + Heat The biological conversion of the organic fraction of the solid waste during anaerobic transformation is thought to occur...of placement (Blight, 1995: 11). In dry climates, the field capacity of the waste may never be naturally reached. Conversely , in a wet climate, the...detected in the cellulase activity (Barlaz and others, 1990: 570). Protease, amylase, and cellulase are the enzymes that degrade proteins, starches, and
USDA-ARS?s Scientific Manuscript database
In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...
Bioenergy Potential from Food Waste in California.
Breunig, Hanna M; Jin, Ling; Robinson, Alastair; Scown, Corinne D
2017-02-07
Food waste makes up approximately 15% of municipal solid waste generated in the United States, and 95% of food waste is ultimately landfilled. Its bioavailable carbon and nutrient content makes it a major contributor to landfill methane emissions, but also presents an important opportunity for energy recovery. This paper presents the first detailed analysis of monthly food waste generation in California at a county level, and its potential contribution to the state's energy production. Scenarios that rely on excess capacity at existing anaerobic digester (AD) and solid biomass combustion facilities, and alternatives that allow for new facility construction, are developed and modeled. Potential monthly electricity generation from the conversion of gross food waste using a combination of AD and combustion varies from 420 to 700 MW, averaging 530 MW. At least 66% of gross high moisture solids and 23% of gross low moisture solids can be treated using existing county infrastructure, and this fraction increases to 99% of high moisture solids and 55% of low moisture solids if waste can be shipped anywhere within the state. Biogas flaring practices at AD facilities can reduce potential energy production by 10 to 40%.
Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.; Adams, M.
2007-01-01
We report results from sequential extraction experiments and the quantitative mineralogy for samples of stream sediments and mine wastes collected from metal mines. Samples were from the Elizabeth, Ely Copper, and Pike Hill Copper mines in Vermont, the Callahan Mine in Maine, and the Martha Mine in New Zealand. The extraction technique targeted the following operationally defined fractions and solid-phase forms: (1) soluble, adsorbed, and exchangeable fractions; (2) carbonates; (3) organic material; (4) amorphous iron- and aluminum-hydroxides and crystalline manganese-oxides; (5) crystalline iron-oxides; (6) sulfides and selenides; and (7) residual material. For most elements, the sum of an element from all extractions steps correlated well with the original unleached concentration. Also, the quantitative mineralogy of the original material compared to that of the residues from two extraction steps gave insight into the effectiveness of reagents at dissolving targeted phases. The data are presented here with minimal interpretation or discussion and further analyses and interpretation will be presented elsewhere.
Calabrò, Paolo S; Mancini, Giuseppe
2012-05-01
The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW.
Rivetti, Claudia; Gómez-Canela, Cristian; Lacorte, Silvia; Díez, Sergi; Lázaro, Wilkinson L; Barata, Carlos
2015-04-01
Identifying chemicals causing adverse effects in organisms present in water remains a challenge in environmental risk assessment. This study aimed to assess and identify toxic compounds bound to suspended solids re-suspended during a prolonged period of flushing flows in the lower part of Ebro River (NE, Spain). This area is contaminated with high amounts of organochlorine and mercury sediment wastes. Chemical characterization of suspended material was performed by solid phase extraction using a battery of non-polar and polar solvents and analyzed by GC-MS/MS and LC-MS/MS. Mercury content was also determined for all sites. Post-exposure feeding rates of Daphnia magna were used to assess toxic effects of whole and filtered water samples and of re-constituted laboratory water with re-suspended solid fractions. Organochlorine and mercury residues in the water samples increased from upstream to downstream locations. Conversely, toxic effects were greater at the upstream site than downstream of the superfund Flix reservoir. A further analysis of the suspended solid fraction identified a toxic component eluted within the 80:20 methanol:water fraction. Characterization of that toxic component fraction by LC-MS/MS identified the phytotoxin anatoxin-a, whose residue levels were correlated with observed feeding inhibition responses. Further feeding inhibition assays conducted in the lab using anatoxin-a produced from Planktothrix agardhii, a filamentous cyanobacteria, confirmed field results. This study provides evidence that in real field situation measured contaminant residues do not always agree with toxic effects. Copyright © 2015 Elsevier B.V. All rights reserved.
Onargan, T; Kucuk, K; Polat, M
2003-01-01
Izmir is a large metropolitan city with a population of 3,114,860. The city consists of 27 townships, each township has a population of not less than 10,000 inhabitants. The two major solid waste disposal sites are in the townships of Uzundere and Harmandali. The amount of solid waste that is disposed at each of these sites is about 800 and 1800 t/day, respectively. In Uzundere, compost is produced from the organic fraction of urban solid wastes while the residual material is deposited at a disposal site with a remaining capacity of 700,000 m(3) as of 2001. Gas monitoring and measurements were carried out at the disposal site in Uzundere. For this purpose, nine sampling wells were drilled on selected locations. Each well was furnished with perforated metal pipes suitable for gas monitoring and measurements. The following gases were monitored: O(2), CH(4), CO, CO(2), and H(2)S. The most important finding was that the concentrations of CH(4) in the wells ranged from 7 to 57%. Dilution of the CH(4) by O(2) down to the LEL levels (5-15%) is always possible and poses a continuing risk at the site. Furthermore, the levels of O(2) require that access to the site be limited to only authorized personnel.
Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Khan, Jamaluddin
2015-04-01
The effect of various bulking waste such as wood shaving, agricultural and yard trimming waste combined with organic fraction of municipal solid waste (OFMSW) composting was investigated through assessing their influence on microbial enzymatic activities and quality of finished compost. All three piles of OFMSW with different bulking waste were inoculated with microbial consortium. The results revealed that OFMSW combined with wood shaving and microbial consortium (Phanerochaete chrysosporium, Trichoderma viride and Pseudomonas aeruginosa) were helpful tool to facilitate the enzymatic activity and shortened composting period within 4 weeks. Maximum enzymatic activity were observed in pile 1 and 3 during the first 3 weeks, while in pile 2 relatively very low. But phosphatase activity was relatively higher in all piles until the end of the process. Maturity parameters of compost quality also favored the pile 1 as the best formulation for OFMSW composting. Copyright © 2015 Elsevier Ltd. All rights reserved.
The potential of household solid waste reduction in Sukomanunggal District, Surabaya
NASA Astrophysics Data System (ADS)
Warmadewanthi, I. D. A. A.; Kurniawati, S.
2018-01-01
The rapid population growth affects the amount of waste generated. Sukomanunggal Subdistrict is the densest area in West Surabaya which has a population of 100,602 inhabitants with a total area of 11.2 km2. The population growth significantly affects the problem of limited land for landfill facilities (final processing sites). According to the prevailing regulations, solid waste management solutions include the solid waste reduction and management. This study aims to determine the potential reduction of household solid waste at the sources. Household solid waste samplings were performed for eight consecutive days. The samples were then analyzed to obtain the generation rate, density, and composition so that the household solid waste reduction potential for the next 20 years could be devised. Results of the analysis showed that the value of waste is 0.27 kg/person/day, while the total household solid waste generation amounted to 27,162.58 kg/day or 187.70 m3/day. Concerning the technical aspects, the current solid waste reduction in Sukomanunggal Subdistrict has reached 2.1% through the application of waste bank, composting, and scavenging activities at the dumping sites by the garbage collectors. In the year of 2036, the potential reduction of household solid waste in Sukomanunggal Subdistrict has been estimated to reach 28.0%.
USDA-ARS?s Scientific Manuscript database
A pilot-scale (1800'kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organi...
Quantification of chemical contaminants in the paper and board fractions of municipal solid waste.
Pivnenko, K; Olsson, M E; Götze, R; Eriksson, E; Astrup, T F
2016-05-01
Chemicals are used in materials as additives in order to improve the performance of the material or the production process itself. The presence of these chemicals in recyclable waste materials may potentially affect the recyclability of the materials. The addition of chemicals may vary depending on the production technology or the potential end-use of the material. Paper has been previously shown to potentially contain a large variety of chemicals. Quantitative data on the presence of chemicals in paper are necessary for appropriate waste paper management, including the recycling and re-processing of paper. However, a lack of quantitative data on the presence of chemicals in paper is evident in the literature. The aim of the present work is to quantify the presence of selected chemicals in waste paper derived from households. Samples of paper and board were collected from Danish households, including both residual and source-segregated materials, which were disposed of (e.g., through incineration) and recycled, respectively. The concentration of selected chemicals was quantified for all of the samples. The quantified chemicals included mineral oil hydrocarbons, phthalates, phenols, polychlorinated biphenyls, and selected toxic metals (Cd, Co, Cr, Cu, Ni, and Pb). The results suggest large variations in the concentration of chemicals depending on the waste paper fraction analysed. Research on the fate of chemicals in waste recycling and potential problem mitigation measures should be focused on in further studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed
2013-01-03
This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.
Di Maria, Francesco; Gigliotti, Giovanni; Sordi, Alessio; Micale, Caterina; Zadra, Claudia; Massaccesi, Luisa
2013-08-01
An experimental apparatus was constructed to perform hybrid solid anaerobic digestion batch processing of the organic fraction of municipal solid waste. The preliminary process was carried out with a high total solids concentration of about 33% w w(-1) and with an initial organic load of about 340 kg VS kg(-1). The fresh organic fraction to inoculum ratio used to enhance the anaerobic process start-up was 0.910 kg VS kg VS(-1). The process was conducted by spreading the percolate on top of the mixture. The percolate was stored in a separate section of the apparatus with a mean hydraulic retention time of about 1 day. During the process, acetate, butyrate and propionate in the percolate reached concentrations ranging from 3000 to 11 000 mg L(-1). In spite of these high concentrations, the biomethane produced from both the solid and the percolate was quite high, at about 210 NL kg VS(-1). The digestate obtained at the end of the run showed rather good features for being classified as an organic fertilizer according to Italian law. However, a residual phytotoxicity level was detected by a standardized test showing a germination index of about 50%.
Washing of waste prior to landfilling.
Cossu, Raffaello; Lai, Tiziana
2012-05-01
The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.
Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi
2012-01-01
The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800 tons with per capita solid waste generation rate of 0.609 kg person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36 ton year(-1)) in 1999 to 7.22% (10, 165 ton year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.
Chang, Ni-Bin; Davila, Eric
2008-01-01
The Lower Rio Grande Valley (LRGV or Valley) in Texas, facing the big waste management challenge along the US-Mexico border today, is at the crossroads as a result of the rapid population growth, the scarcity of landfill space, the bi-nation's trade impacts, and the illusive goal of environmental sustainability. This paper offers a unique municipal solid waste investigation with regard to both physical and chemical characteristics leading to illuminate the necessary management policies with greater regional relevancy. With multiple sampling campaigns conducted during the spring of 2005, this study holistically summarizes the composition of solid waste, the statistical distribution patterns of key recyclable items, and the heating value in an uncertain environment. Research findings indicate that high fractions of plastics and paper in the waste stream imply a strong potential for energy recovery. Incineration options are thus bolstered by mildly high heating values across 10 cities in this region, which may lead to save land resources required for final disposal and increase electricity generation in the long run. Additional regression analyses further identify the correlation between recyclable items and heating value, which show that current recycling programs permit no obvious negative impacts on the incineration option. Final statistical hypothesis tests for both the Brownsville-Harlingen-San Benito and the McAllen-Edinburg-Mission metropolitan regions help foster consistent management strategies across the Valley regardless of the trivial differences of waste characteristics in between.
Fdez-Güelfo, L A; Alvarez-Gallego, C; Sales, D; García, L I Romero
2012-03-01
The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55°C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y(pMAX) and θ(MIN)) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (μ(max)) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d(-1) (K=1.391 d(-1); Y(pMAX)=1.167 L CH(4)/gDOC(c); θ(MIN)=7.924 days) vs. 0.135 d(-1) (K=1.282 d(-1); Y(pMAX)=1.150 L CH(4)/gDOC(c); θ(MIN)=9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bioenergy Potential from Food Waste in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breunig, Hanna M.; Jin, Ling; Robinson, Alastair
This paper presents the first detailed analysis of monthly food waste generation in California at a county level, and its potential contribution to the state's energy production. Scenarios that rely on excess capacity at existing anaerobic digester (AD) and solid biomass combustion facilities, and alternatives that allow for new facility construction, are developed and modeled. Potential monthly electricity generation from the conversion of gross food waste using a combination of AD and combustion varies from 420 to 700 MW, averaging 530 MW. At least 66% of gross high moisture solids and 23% of gross low moisture solids can be treatedmore » using existing county infrastructure, and this fraction increases to 99% of high moisture solids and 55% of low moisture solids if waste can be shipped anywhere within the state. Biogas flaring practices at AD facilities can reduce potential energy production by 10 to 40%.« less
Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China
Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.
2008-01-01
The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.
Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing
2015-01-01
Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of <2mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles. Zn-Cu, Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products. Copyright © 2014. Published by Elsevier B.V.
Sheets, Johnathon P; Yang, Liangcheng; Ge, Xumeng; Wang, Zhiwu; Li, Yebo
2015-10-01
Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes.
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel
2015-01-01
A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 gVS/Ld. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Turrión, María-Belén; Bueis, Teresa; Lafuente, Francisco; López, Olga; San José, Esther; Eleftheriadis, Alexandros; Mulas, Rafael
2018-06-12
The main aim of this research was to assess the effects of municipal solid waste compost (MSWC) addition to a burnt and unburnt calcareous soil, on the distribution of soil P forms in particle-size and extractable fractions. Three MSWC doses (1, 2 and 4% w/w) were added to burnt and unburnt soil samples and were incubated for 92 days at 29 °C and 75% of field capacity moisture. A particle-size fractionation followed by a sequential P extraction procedure was carried out. The burnt soil showed significantly lower concentrations of organic P forms (P org ) and significantly higher concentrations of stable P forms than the unburnt soil. Besides, in both burnt and unburnt soils, most P-forms presented higher concentrations in the clay fractions than in the sand and silt fractions, possibly due to the different proportions of microbial synthesized and plant-derived substances in the different particle-size fractions. Finer fractions of MSWC showed higher total P and P org concentrations than coarser fractions. Our results showed that the highest dose of MSWC was the most effective one for the rehabilitation of the burnt soil. MSWC amendment also caused an increase in soil P availability in the unburnt soil which initially contained relatively low levels of P. During the incubation process, a high proportion of organic P contained in the MSWC was mineralized into inorganic P forms. These forms were precipitated with Ca cations which are very abundant in these calcareous soils, significantly increasing the P fraction extracted by HCl in both amended soils. Hence, adding compost to the soil involved an increase in the available P reservoir in the long term. The combination of particle-size fractionation, chemical sequential extraction and incubation experiments can be a valuable tool for splitting soil phosphorus into different fractions regarding their availability in relation to short and long-term transformations in soil. Copyright © 2017 Elsevier B.V. All rights reserved.
Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Fernández-Giménez, E; Álvarez-Requena, C; Muñagorri-Mañueco, F; Ortiz-Villalobos, G
2016-09-01
In the last years, biological treatment plants for the previously separated organic fraction from municipal solid wastes (OFMSW) have gained importance. In these processes a liquid effluent (liquid fraction from the digestate and leachate from composting piles), which has to be treated previously to its discharge, is produced. In this paper, the characteristics of the mixed liquor from two full-scale membrane bioreactors treating the effluents of two OFMSW treatment plants have been evaluated in view to study their influence on membrane fouling in terms of filterability. For that, the mixed liquor samples have been ultrafiltrated in an UF laboratory plant. Besides, the effect of the influent characteristics to MBRs and the values of the chemical and physical parameters of the mixed liquors on the filterability have been studied. Results showed that the filterability of the mixed liquor was strongly influenced by the soluble microbial products in the mixed liquors and the influent characteristics to MBR. Permeate flux of MBR mixed liquor treating the most polluted wastewater was considerable the lowest (around 20 L/m(2) h for some samples), what was explained by viscosity and soluble microbial products concentration higher than those measured in other MBR mixed liquor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A
2013-03-01
Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fongsatitkul, Prayoon; Elefsiniotis, Panagiotis; Wareham, David G
2010-09-01
This paper describes how the degradation of the organic fraction of municipal solid waste (OFMSW) is affected through codigestion with varying amounts of return activated sludge (RAS). Solid waste that had its inorganic fraction selectively removed was mixed with RAS in ratios of 100% OFMSW, 50% OFMSW/50% RAS, and 25% OFMSW/75% RAS. The total solids (TS) concentration was held at 8% and three anaerobic digester systems treating the mixtures were held (for the first run) at a total hydraulic retention time (HRT) of 28 days. Increasing amounts of RAS did not however improve the mixture's digestability, as indicated by little change and/or a drop in the main performance indices [including percentage volatile solids (VS) removal and specific gas production]. The optimum ratio in this research therefore appeared to be 100% OFMSW with an associated 85.1 ± 0.6% VS removal and 0.72 ± 0.01 L total gas g(- 1) VS. In the second run, the effect of increasing percentage of TS (8, 12% and 15%) at a system HRT of 28 days was observed to yield no improvement in the main performance indices (i.e. percentage VS removal and specific gas production). Finally, during the third run, variations in the total system HRT were investigated at an 8% TS, again using 100% OFMSW. Of the HRTs explored (23, 28 and 33 days), the longest HRT yielded the best performance overall, particularly in terms of specific gas production (0.77 ± 0.01 L total gas g(-1) VS).
2013-01-01
This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502
A comparison of landfill leachates based on waste composition.
Moody, Chris M; Townsend, Timothy G
2017-05-01
Samples of leachate were collected from fourteen landfills in the state of Florida, United States that contained primarily putrescible waste (municipal solid waste, MSW, and yard waste), MSW incinerator (MSWI) ash, or a combination of both. Assessment of leachates included trace metals, anions, and nutrients in order to create a mass balance of total dissolved solids (TDS). As expected from previously literature, MSW leached a complex matrix of contaminants while MSWI ash leachate TDS was more than 98% metallic salts. The pH of the MSWI ash leachate samples was slightly acidic or neutral in character, which is contradictory to the results commonly reported in the literature. The cause of this is hypothesized to be a short-circuiting of rainfall in the landfill due to low hydraulic conductivities reported in ash landfills. The difference in pH likely contributed to the findings with respect to MSWI ash-characteristic trace metals in leachates such as aluminum. The authors have concluded that the research findings in this study are an indication of the differences between laboratory leachate quality studies and the conditions encountered in the field. In addition, a characterization of organic matter using qualitative and quantitative analyses determined that COD is not an accurate indicator of organic matter in leachates from landfills with a significant fraction of MSWI ash. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J
2012-01-01
In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Energy Research Institute, University of Leeds, Leeds LS2 9JT; Wu, Chunfei, E-mail: c.wu@leeds.ac.uk
2015-02-15
Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. Themore » results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.« less
Variable-Volume Flushing (V-VF) device for water conservation in toilets
NASA Technical Reports Server (NTRS)
Jasper, Louis J., Jr.
1993-01-01
Thirty five percent of residential indoor water used is flushed down the toilet. Five out of six flushes are for liquid waste only, which requires only a fraction of the water needed for solid waste. Designers of current low-flush toilets (3.5-gal. flush) and ultra-low-flush toilets (1.5-gal. flush) did not consider the vastly reduced amount of water needed to flush liquid waste versus solid waste. Consequently, these toilets are less practical than desired and can be improved upon for water conservation. This paper describes a variable-volume flushing (V-VF) device that is more reliable than the currently used flushing devices (it will not leak), is simple, more economical, and more water conserving (allowing one to choose the amount of water to use for flushing solid and liquid waste).
Gunaseelan, Victor Nallathambi
2016-03-01
In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.
Refuse derived fuel potential in DKI Jakarta
NASA Astrophysics Data System (ADS)
Widyatmoko, H.
2018-01-01
Combustible waste fractions of municipal solid waste (MSW) which can not be easily separated or sorted, reused or recycled, may have a high calorifiv value (CV) that can be used in a fuel for energy recovery. The objective of this study was to explore the Refuse Derived Fuel (RDF) potential of municipal solid waste from DKI Jakarta to produce electricity and to promote it to be socially and politically acceptable. For this purpose, 24 sampels of RDF were taken from Bantargebang, cabonized, molded and pressed to be briquette. All samples were analized for moisture, ash, and calorific value in the physical and chemistry Laboratory of ITB Bandung. The analysis of calorific value (CV) shows the CV difference of 1815.8 cal/g between the briquettes (8051.25 cal/g) and the RDF (9867.12 cal/g. The total waste DKI which can be used as briquettes 5253 ton / day or equivalent with 49154115 kWh / day. If the efficiency of electricity production from RDF was 25%, then Jakarta is able to generate electricity from RDF of 12288529 kWh / day or as much as energy needed by 573,480 middle-class households with energy needs of 642.84 kWh/month.
Maalouf, Amani; El-Fadel, Mutasem
2017-11-01
In this study, the carbon footprint of introducing a food waste disposer (FWD) policy was examined in the context of its implications on solid waste and wastewater management with economic assessment of environmental externalities emphasizing potential carbon credit and increased sludge generation. For this purpose, a model adopting a life cycle inventory approach was developed to integrate solid waste and wastewater management processes under a single framework and test scenarios for a waste with high organic food content typical of developing economies. For such a waste composition, the results show that a FWD policy can reduce emissions by nearly ∼42% depending on market penetration, fraction of food waste ground, as well as solid waste and wastewater management schemes, including potential energy recovery. In comparison to baseline, equivalent economic gains can reach ∼28% when environmental externalities including sludge management and emissions variations are considered. The sensitivity analyses on processes with a wide range in costs showed an equivalent economic impact thus emphasizing the viability of a FWD policy although the variation in the cost of sludge management exhibited a significant impact on savings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ji, Shoukun; Zhang, Hongtao; Yan, Hui; Azarfar, Arash; Shi, Haitao; Alugongo, Gibson; Li, Shengli; Cao, Zhijun; Wang, Yajing
2017-01-01
Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established. To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet (HFD) or a high energy diet (HED) were collected via rumen fistulas. Rumen digesta was then squeezed through four layers of cheesecloth to separate liquid and solid fractions. The bacterial profiles of rumen original digesta, liquid and solid fractions were analyzed with High-throughput sequencing technique. Rumen bacterial diversity was mainly affected by diet and individual cow ( P > 0.05) rather than rumen fraction. Bias distributed bacteria were observed in solid and liquid fractions of rumen content using Venn diagram and LEfSe analysis. Fifteen out of 16 detected biomarkers (using LEfSe analysis) were found in liquid fraction, and these 15 biomarkers contributed the most to the bacterial differences among rumen content fractions. Similar results were found when using samples of original rumen digesta, rumen liquid or solid fractions to assess diversity of rumen bacteria; however, more attention should be draw onto bias distributed bacteria in different ruminal fractions, especially when liquid fraction has been used as a representative sample for rumen bacterial study.
La Marca, Floriana; Moroni, Monica; Cherubini, Lorenzo; Lupo, Emanuela; Cenedese, Antonio
2012-07-01
The recovery of high-quality plastic materials is becoming an increasingly challenging issue for the recycling sector. Technologies for plastic recycling have to guarantee high-quality secondary raw material, complying with specific standards, for use in industrial applications. The variability in waste plastics does not always correspond to evident differences in physical characteristics, making traditional methodologies ineffective for plastic separation. The Multidune separator is a hydraulic channel allowing the sorting of solid particles on the basis of differential transport mechanisms by generating particular fluid dynamic conditions due to its geometric configuration and operational settings. In this paper, the fluid dynamic conditions were investigated by an image analysis technique, allowing the reconstruction of velocity fields generated inside the Multidune, considering two different geometric configurations of the device, Configuration A and Configuration B. Furthermore, tests on mono- and bi-material samples were completed with varying operational conditions under both configurations. In both series of experiments, the bi-material samples were composed of differing proportions (85% vs. 15%) to simulate real conditions in an industrial plant for the purifying of a useful fraction from a contaminating fraction. The separation results were evaluated in terms of grade and recovery of the useful fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.
Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T
2014-04-15
The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.
APPLICATION ANALYSIS REPORT: THE DEHYDRO-TECH CORPORATION CARVER-GREENFIELD PROCESS
This report evaluates the Dehydro-Tech Corporation's Carver-Greenfield (C-G) Process and focuses on the technology’s ability to separate waste mixtures into their constituent solid, organic, and water fractions while producing a solid residual that meets applicable disposal requi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOCmore » and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program.« less
Characterization of undissolved solids from the dissolution of North Anna reactor fuel
Rudisill, Tracy S.; Olson, L. C.; DiPrete, D. P.
2017-06-16
Here, samples of undissolved solids (UDS) from the dissolution of North Anna reactor fuel were characterized to investigate the effects of using air or oxygen as the oxidant during tritium removal. The UDS composition data also support the development of a waste form for disposal. There was no discernible effect of the oxidant used during the tritium removal process or the size fraction on the UDS composition. Scanning electron microscopy (SEM) and energy dispersive (x-ray) spectroscopy were used to estimate the oxygen content of the UDS and it was found to be potentially significant, on the order of 30% bymore » mass and 80% by atom.« less
Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin
2016-02-15
Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.
Microbial diversity and dynamics during methane production from municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu
2013-10-15
Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less
Raclavská, Helena; Corsaro, Agnieszka; Hartmann-Koval, Silvie; Juchelková, Dagmar
2017-12-01
The management of an increasing amount of municipal waste via incineration has been gaining traction. Fly ash as a by-product of incineration of municipal solid waste is considered a hazardous waste due to the elevated content of various elements. The enrichment and distribution of 24 elements in fly ash from three wastes incinerators were evaluated. Two coarse (>100 μm and <100 μm) and five sub-sieve (12-16, 16-23, 23-34, 34-49, and 49-100 μm) particle size fractions separated on a cyclosizer system were analyzed. An enhancement in the enrichment factor was observed in all samples for the majority of elements in >100 μm range compared with <100 μm range. The enrichment factor of individual elements varied considerably within the samples as well as the sub-sieve particle size ranges. These variations were attributed primarily to: (i) the vaporization and condensation mechanisms, (ii) the different design of incineration plants, (iii) incineration properties, (iv) the type of material being incinerated, and (v) the affinity of elements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pecorini, Isabella; Baldi, Francesco; Carnevale, Ennio Antonio; Corti, Andrea
2016-10-01
The aim of this research was to enhance the anaerobic biodegradability and methane production of two synthetic Organic Fractions of Municipal Solid Waste with different lignocellulosic contents by assessing microwave and autoclave pre-treatments. Biochemical Methane Potential assays were performed for 21days. Changes in the soluble fractions of the organic matter (measured by soluble chemical oxygen demand, carbohydrates and proteins), the first order hydrolysis constant kh and the cumulated methane production at 21days were used to evaluate the efficiency of microwaving and autoclaving pretreatments on substrates solubilization and anaerobic digestion. Microwave treatment led to a methane production increase of 8.5% for both the tested organic fractions while autoclave treatment had an increase ranging from 1.0% to 4.4%. Results showed an increase of the soluble fraction after pre-treatments for both the synthetic organic fractions. Soluble chemical oxygen demand observed significant increases for pretreated substrates (up to 219.8%). In this regard, the mediocre results of methane's production led to the conclusion that autoclaving and microwaving resulted in the hydrolysis of a significant fraction of non-biodegradable organic substances recalcitrant to anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Giuliana, D'Imporzano; Fabrizio, Adani
2007-02-01
This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.
Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng
2017-06-01
Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec
2014-10-01
This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.
Micronutrient dynamics after thermal pretreatment of olive mill solid waste.
Almansa, Ana R; Rodriguez-Galan, Monica; Borja, Rafael; Fermoso, Fernando G
2015-09-01
This study investigated metal dynamics, and their bioavailability, before and after thermal pretreatment of olive mill solid waste (OMSW), using a sequential metal extraction scheme. The 11.5% increase of cobalt in the most available fraction after the pretreatment coupled to the increase of methane production rate have been a good indicator that the OMSW anaerobic digestion might be metal limited due to the lack of cobalt. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system.
Yu, Liang; Zhao, Quanbao; Ma, Jingwei; Frear, Craig; Chen, Shulin
2012-11-01
This study established a comprehensive model to configure a new two-stage high solid anaerobic digester (HSAD) system designed for highly degradable organic fraction of municipal solid wastes (OFMSW). The HSAD reactor as the first stage was naturally separated into two zones due to biogas floatation and low specific gravity of solid waste. The solid waste was retained in the upper zone while only the liquid leachate resided in the lower zone of the HSAD reactor. Continuous stirred-tank reactor (CSTR) and advective-diffusive reactor (ADR) models were constructed in series to describe the whole system. Anaerobic digestion model No. 1 (ADM1) was used as reaction kinetics and incorporated into each reactor module. Compared with the experimental data, the simulation results indicated that the model was able to well predict the pH, volatile fatty acid (VFA) and biogas production. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of biodrying process on municipal solid waste properties.
Tambone, F; Scaglia, B; Scotti, S; Adani, F
2011-08-01
In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Flyhammar, P; Bendz, D
2006-09-01
The objective of this study was to analyze the accumulated effects of leaching in two test roads were municipal solid waste incineration (MSWI) bottom ash and aggregate from a railway embankment, respectively, were used as subbase aggregates. Solid samples from the subbase and the subgrade were collected in trenches, which were excavated perpendicular to the road extension. The samples were analyzed with respect to pH, water content, electrical conductivity and extractable fractions of macro and trace constituents. To conclude, spatial distribution patterns of different constituents in subbase and subgrade layers confirms the existence of two major transport processes in a road with permeable shoulders: diffusion underneath surface asphalt layers driven by a concentration gradient directed horizontally towards the shoulder of the road where the dissolved elements are carried away by advection.
PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEDESCHI AR
This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technologymore » summary, reported in RPP-RPT-37740.« less
Saqib, Naeem; Bäckström, Mattias
2014-12-01
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Determination of fossil carbon content in Swedish waste fuel by four different methods.
Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko
2013-10-01
This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chefetz, B.; Yona Chen; Hadar, Y.
Composting of municipal solid waste (MSW) was studied in an attempt to elaborate transformations of organic matter (OM) during the process and define parameters for the degree of maturity of the product. Composting was performed in 1-m{sup 3} plastic boxes and the following parameters were measured in 13 samples during 132 d of composting: temperature, C/N ratio, ash content, humic substance contents, and fractions (humic acid, fulvic acid, and nonbumic fraction-HA, FA and NHF, respectively). Spectroscopic methods (CPMAS {sup 13}C-NMR, DRIFT) were used to study the chemical composition of the OM. A bioassay based on growth of cucumber (Cucumis satifusmore » L. cv. Dlila) plants was correlated to other parameters. The C/N ratio and ash content showed a typical high rate of change during the first 60 d and reached a plateau thereafter. The HA content increased to a maximum at 112 d, corresponding to the highest plant dry weight and highest 1650/1560 (cm{sup {minus}1}/cm{sup {minus}1}) peak ratios calculated from DRIFT spectra. {sup 13}C-NMR and DRIFT spectra of samples taken from the composting MSW during the process showed that the residual OM contained an increasing level of aromatic structures. Plant-growth bioassay, HA content, and the DRIFT spectra indicated that MSW compost described in this study, stabilized and achieved maturity after about 110 d. 31 refs., 8 figs., 2 tabs.« less
Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis.
Zhou, Hui; Long, YanQiu; Meng, AiHong; Li, QingHai; Zhang, YanGuo
2015-04-01
The interactions of nine typical municipal solid waste (MSW) fractions during pyrolysis were investigated using the thermogravimetric analyzer (TGA). To compare the mixture results with the calculation results of superposition of single fractions quantitatively, TG overlap ratio was introduced. There were strong interactions between orange peel and rice (overlap ratio 0.9736), and rice and poplar wood (overlap ratio 0.9774). The interactions of mixture experiments postponed the peak and lowered the peak value. Intense interactions between PVC and rice, poplar wood, tissue paper, wool, terylene, and rubber powder during co-pyrolysis were observed, and the pyrolysis at low temperature was usually promoted. The residue yield was increased when PVC was blended with rice, poplar wood, tissue paper, or rubber powder; while the residue yield was decreased when PVC was blended with wool. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cada, G.F.
H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less
Conversion of coal-fired bottom ash to fuel and construction materials.
Koca, Huseyin; Aksoy, Derya Oz; Ucar, Reyhan; Koca, Sabiha
2017-07-01
In this study, solid wastes taken from Seyitomer coal-fired power plant bottom ashes were subjected to experimental research to obtain a carbon-rich fraction. The possible recycling opportunities of remaining inorganic fraction in the cement and concrete industry was also investigated. Flotation technique was used to separate unburned carbon from inorganic bottom ashes. Collector type, collector, dispersant and frother amounts, and pulp density are the most important variables in the flotation technique. A number of flotation collectors were tested in the experiments including new era flotation reactives. Optimum collector, dispersant and frother dosages as well as optimum pulp density were also determined. After experimental work, an inorganic fraction was obtained, which included 5.41% unburned carbon with 81.56% weight yield. These properties meets the industrial specifications for the cement and concrete industry. The carbon content of the concentrate fraction, obtained in the same experiment, was enhanced to 49.82%. This fraction accounts for 18.44% of the total amount and can be mixed to the power plant fuel. Therefore total amount of the solid waste can possibly be recycled according to experimental results.
Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E
2017-08-01
Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs <80mmol), volatile solids removal (78%-81% vs 54%-64%) and COD removal efficiencies (∼80% vs 20%-30%) were all significantly higher in reactors amended with GAC or carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.
Edelmann, W; Baier, U; Engeli, H
2005-01-01
In order to obtain more detailed information for better decision making in future biogenic waste treatment, different processes to treat biogenic wastes in plants with a treatment capacity of 10,000 tons of organic household wastes per year as well as agricultural codigestion plants were compared by life cycle assessments (LCA). With the tool EcoIndicator, anaerobic digestion is shown to be advantageous as compared to composting, incineration or a combination of digestion and composting, mainly because of a better energy balance. The management of the liquid manure in agricultural codigestion of organic solid wastes causes increased gaseous emissions, which have negative effects on the LCA, however. It is recommended to cover the slurry pit and to use an improved manure management in order to compensate for the additional gaseous emissions. In the LCAs, the quality of the digester output could only be taken into account to a small extent; the reasons are discussed.
Seklaoui, M'hamed; Boutaleb, Abdelhak; Benali, Hanafi; Alligui, Fadila; Prochaska, Walter
2016-11-01
To date, there have been few detailed studies regarding the impact of mining and metallogenic activities on solid fractions in the Azzaba mercurial district (northeast Algeria) despite its importance and global similarity with large Hg mines. To assess the degree, distribution, and sources of pollution, a physical inventory of apparent pollution was developed, and several samples of mining waste, process waste, sediment, and soil were collected on regional and local scales to determine the concentration of Hg and other metals according to their existing mineralogical association. Several physico-chemical parameters that are known to influence the pollution distribution are realized. The extremely high concentrations of all metals exceed all norms and predominantly characterize the metallurgic and mining areas; the metal concentrations significantly decrease at significant low distances from these sources. The geo-accumulation index, which is the most realistic assessment method, demonstrates that soils and sediments near waste dumps and abandoned Hg mines are extremely polluted by all analyzed metals. The pollution by these metals decreases significantly with distance, which indicates a limited dispersion. The results of a clustering analysis and an integrated pollution index suggest that waste dumps, which are composed of calcine and condensation wastes, are the main source of pollution. Correlations and principal component analysis reveal the important role of hosting carbonate rocks in limiting pollution and differentiating calcine wastes from condensation waste, which has an extremely high Hg concentration (˃1 %).
Modular life cycle assessment of municipal solid waste management.
Haupt, M; Kägi, T; Hellweg, S
2018-05-31
Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se
Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less
Ahmed, M T; Abdel Hadi el-S; el-Samahy, S; Youssof, K
2000-12-30
The influence of fuel type used to bake bread on the spectrum and concentrations of some polycyclic aromatic hydrocarbons and heavy metals in baked bread was assessed. Bread samples were collected from different bakeries operated by either electricity, solar, mazot or solid waste and their residue content of PAHs and heavy metals was assessed. The total concentration of PAHs detected in mazot, solar, solid waste and electricity operated bakeries had an average of 320.6, 158.4, 317.3 and 25.5 microgkg(-1), respectively. Samples collected from mazot, solar and solid waste operated bakeries have had a wide spectrum of PAHs, in comparison to that detected in bread samples collected from electricity operated bakeries. Lead had the highest concentrations in the four groups of bread samples, followed by nickel, while the concentrations of zinc and cadmium were the least. The concentration of lead detected in bread samples produced from mazot, solar, solid waste and electricity fueled bakeries were 1375.5, 1114, 1234, and 257.3 microgkg(-1), respectively. Estimated daily intake of PAHs based on bread consumption were 48.2, 28.5, 80. 1, and 4.8 microg per person per day for bread produced in bakeries using mazot, solar, solid waste and electricity, respectively. Meanwhile, the estimated daily intake of benzo (a) pyrene were 3.69, 2.65, 8.1, and 0.81 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The daily intake of lead, based on bread consumption was 291, 200.5, 222, and 46.31 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The present work has indicated the comparatively high level of daily intake of benzo (a) pyrene and lead in comparison to levels reported from many other countries and those recommended by international regulatory bodies. It is probable that residues detected in bread samples are partially cereal-borne but there is strong evidence that the process of baking and the gases emitted are responsible for most of the contamination load.
Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte
2016-04-01
This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pretreatment of Hanford medium-curie wastes by fractional crystallization.
Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W
2008-07-01
Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.
Development of municipal solid waste classification in Korea based on fossil carbon fraction.
Lee, Jeongwoo; Kang, Seongmin; Kim, Seungjin; Kim, Ki-Hyun; Jeon, Eui-Chan
2015-10-01
Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study. Fossil carbon fraction (FCF) differs depending on the characteristics of waste in each country; and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration.
40 CFR 258.53 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...
40 CFR 258.53 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...
Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murto, Marika, E-mail: marika.murto@biotek.lu.se; Björnsson, Lovisa, E-mail: lovisa.bjornsson@miljo.lth.se; Environmental and Energy Systems Studies, Lund University, P.O. Box 118, SE-221 00 Lund
2013-05-15
Highlights: ► A novel approach for biogas production from a waste fraction that today is incinerated. ► Biogas production is possible in spite of the impurities of the waste. ► Tracer studies are applied in a novel way. ► Structural material is needed to improve the flow pattern of the waste. ► We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a drymore » fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.« less
Zhang, Y; Banks, C J
2013-02-01
Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous 'wet' and 'dry' digesters at organic loading rate (OLR) up to 6kg volatile solids (VS) m(-3)day(-1). The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the 'dry' digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In 'wet' digestion a fine particle size led to severe foaming and the process could not be operated above 5kgVSm(-3)day(-1). Although the trial was not designed as a direct comparison between 'wet' and 'dry' digestion, the specific biogas yield of the 'dry' digesters was 90% of that produced by 'wet' digesters fed on the same waste at the same OLR. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David
2012-11-01
According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.
André, L; Pauss, A; Ribeiro, T
2017-03-01
The chemical oxygen demand (COD) is an essential parameter in waste management, particularly when monitoring wet anaerobic digestion processes. An adapted method to determine COD was developed for solid waste (total solids >15%). This method used commercial COD tubes and did not require sample dilution. A homemade plastic weighing support was used to transfer the solid sample into COD tubes. Potassium hydrogen phthalate and glucose used as standards showed an excellent repeatability. A small underestimation of the theoretical COD value (standard values around 5% lower than theoretical values) was also observed, mainly due to the intrinsic COD of the weighing support and to measurement uncertainties. The adapted COD method was tested using various solid wastes in the range of 1-8 mg COD , determining the COD of dried and ground cellulose, cattle manure, straw and a mixed-substrate sample. This new adapted method could be used to monitor and design dry anaerobic digestion processes.
Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allegrini, Elisa, E-mail: elia@env.dtu.dk; Maresca, Alberto; Olsson, Mikael Emil
2014-09-15
Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based onmore » a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements.« less
Gioannis, G De; Muntoni, A; Cappai, G; Milia, S
2009-03-01
Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy.
Hla, San Shwe; Roberts, Daniel
2015-07-01
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.
2000-10-17
Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.
Emerging contaminants at a closed and an operating landfill in Oklahoma
Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.
2012-01-01
Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.
Okkenhaug, G; Almås, Å R; Morin, N; Hale, S E; Arp, H P H
2015-11-01
The environmental behaviour of antimony (Sb) is gathering attention due to its increasingly extensive use in various products, particularly in plastics. Because of this it may be expected that plastic waste is an emission source for Sb in the environment. This study presents a comprehensive field investigation of Sb concentrations in diverse types of waste from waste handling facilities in Norway. The wastes included waste electrical and electronic equipment (WEEE), glass, vehicle fluff, combustibles, bottom ash, fly ash and digested sludge. The highest solid Sb concentrations were found in WEEE and vehicle plastic (from 1238 to 1715 mg kg(-1)) and vehicle fluff (from 34 to 4565 mg kg(-1)). The type of acid used to digest the diverse solid waste materials was also tested. It was found that HNO3:HCl extraction gave substantially lower, non-quantitative yields compared to HNO3:HF. The highest water-leachable concentration for wastes when mixed with water at a 1 : 10 ratio were observed for plastic (from 0.6 to 2.0 mg kg(-1)) and bottom ash (from 0.4 to 0.8 mg kg(-1)). For all of the considered waste fractions, Sb(v) was the dominant species in the leachates, even though Sb(iii) as Sb2O3 is mainly used in plastics and other products, indicating rapid oxidation in water. This study also presents for the first time a comparison of Sb concentrations in leachate at waste handling facilities using both active grab samples and DGT passive samples. Grab samples target the total suspended Sb, whereas DGT targets the sum of free- and other chemically labile species. The grab sample concentrations (from 0.5 to 50 μg L(-1)) were lower than the predicted no-effect concentration (PNEC) of 113 μg L(-1). The DGT concentrations were substantially lower (from 0.05 to 9.93 μg L(-1)) than the grab samples, indicating much of the Sb is present in a non-available colloidal form. In addition, air samples were taken from the chimney and areas within combustible waste incinerators, as well as from the vent of WEEE sorting facility. The WEEE vent had the highest Sb concentration (from <100 to 2200 ng m(-3)), which were orders of magnitude higher than the air surrounding the combustible shredder (from 25 to 217 ng m(-3)), and the incinerator chimney (from <30 to 100 ng m(-3)). From these results, it seems evident that Sb from waste is not an environmental concern in Norway, and that Sb is mostly readily recovered from plastic and bottom ash.
Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C.J.; Nagle, N.J.; Kay, B.D.
1995-12-31
Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residuesmore » increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.« less
Saad, Walid; Slika, Wael; Mawla, Zara; Saad, George
2017-12-01
Recently, there has been a growing interest in identifying suitable routes for the disposal of pharmaceutical wastes. This study investigates the potential of matrix materials composed of recycled polyethylene/polypropylene reclaimed from municipal solid wastes at immobilizing pharmaceutical solid wastes. Diclofenac (DF) drug product was embedded in boards of recycled plastic material, and leaching in water was assessed at various temperatures. DF concentrations were determined by high-performance liquid chromatography and revealed a maximum leachable fraction of 4% under accelerated conditions of 70°C, and less than 0.3% following 39 days of exposure at 20°C. The Ensemble Kalman Filter was employed to characterize the leaching behavior of DF. The filter verified the occurrence of leaching through diffusion, and was successful in predicting the leaching behavior of DF at 50°C and 70°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es; Alvarez-Gallego, C.; Sales, D.
2012-03-15
Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71more » g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.« less
Influence of feedstock on the copper removal capacity of waste-derived biochars.
Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe
2016-07-01
Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-03-31
certainly remain comingled with other solid waste. For example, some bases provided containers for segregation of recyclables including plastic and...prevalent types of solid waste are food (19.1% by average sample weight), wood (18.9%), and plastics (16.0%) based on analysis of bases in...within the interval shown. Food and wood wastes are the largest components of the average waste stream (both at ~19% by weight), followed by plastic
De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F
2018-06-01
In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Waste valorization by biotechnological conversion into added value products.
Liguori, Rossana; Amore, Antonella; Faraco, Vincenza
2013-07-01
Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.
Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.
2010-01-01
During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated SSL. Uranium waste dump sites with elevated leachate and total digestible concentrations may need to be further investigated to determine the most appropriate remediation method.
The potential of biogas production from municipal solid waste in a tropical climate.
Getahun, Tadesse; Gebrehiwot, Mulat; Ambelu, Argaw; Van Gerven, Tom; Van der Bruggen, Bart
2014-07-01
The objective of this study was to estimate the potential of organic municipal solid waste generated in an urban setting in a tropical climate to produce biogas. Five different categories of wastes were considered: fruit waste, food waste, yard waste, paper waste, and mixed waste. These fractions were assessed for their efficiency for biogas production in a laboratory-scale batch digester for a total period of 8 weeks at a temperature of 15-30 °C. During this period, fruit waste, food waste, yard waste, paper waste, and mixed waste were observed to produce 0.15, 0.17, 0.10, 0.08, and 0.15 m(3) of biogas per kilogram of volatile solids, respectively. The biogas produced and caloric value of each feedstock was in the range of 1.25 × 10(-3) m(3) (17 kWh)/cap/day (paper waste) to 15 × 10(-3) m(3) (170 kWh)/cap/day (mixed waste). Paper waste produced the least (<1×10(-3)(<17.8 kWh)/cap/day), and mixed waste produced the highest methane yield (10 × 10(-3) m(3) (178 kWh)/cap/day). Thus, mixed waste was found to be more efficient than other feedstocks for biogas and methane production; this was mainly related to the better C/N ratio in mixed waste. Taking the total waste production in Jimma into account, the total mixed organic solid waste could produce 865 × 10(3) m(3) (5.4 m(3)/capita) of biogas or 537 × 10(3) m(3) (3.4 m(3)/capita) of methane per year. The total caloric value of methane production potential from mixed organic municipal solid waste was many times higher than the total energy requirement of the area.
NASA Astrophysics Data System (ADS)
de Faria, Bruna Fernanda; Moreira, Silvana
2011-12-01
The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.
Rachiotis, George; Tsovili, Eva; Papagiannis, Dimitrios; Markaki, Adelais; Hadjichristodoulou, Christos
2016-12-01
Municipal solid waste collectors are reportedly at risk for Hepatitis A virus infection (HAV) as an occupational hazard. We aimed to investigate the prevalence and possible risk factors of HAV infection among solid waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted. Fifty (n=50) waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of workers not exposed to solid waste (n=83). Municipal solid waste collectors recorded a higher, but not statistically significant, prevalence of anti-HAV(+) in comparison to subjects without occupational exposure to waste (40% vs 34% respectively p=0,4). No significant associations were found between inappropriate work practices and anti- HAV (+). Education was the only factor independently associated with the risk of HAV infection. This study did not corroborate previous reports of an increased prevalence of Hepatitis A Virus infection among municipal solid waste collectors.
Streibel, T; Nordsieck, H; Neuer-Etscheidt, K; Schnelle-Kreis, J; Zimmermann, R
2007-04-01
On-line detectable indicator parameters in the flue gas of municipal solid waste incinerators (MSWI) such as chlorinated benzenes (PCBz) are well known surrogate compounds for gas-phase PCDD/PCDF concentration. In the here presented work derivation of indicators is broadened to the detection of fly and boiler ash fractions with increased PCDD/PCDF content. Subsequently these fractions could be subject to further treatment such as recirculation in the combustion chamber to destroy their PCDD/PCDF and other organic pollutants' content. Aim of this work was to detect suitable on-line detectable indicator parameters in the gas phase, which are well correlated to PCDD/PCDF concentration in the solid residues. For this, solid residues and gas-phase samples were taken at three MSWI plants in Bavaria. Analysis of the ash content from different plants yielded a broad variation range of PCDD/PCDF concentrations especially after disturbed combustion conditions. Even during normal operation conditions significantly increased PCDD/PCDF concentrations may occur after unanticipated disturbances. Statistical evaluation of gas phase and ash measurements was carried out by means of principal component analysis, uni- and multivariate correlation analysis. Surprisingly, well known indicators for gas-phase PCDD/PCDF concentration such as polychlorinated benzenes and phenols proved to be insufficiently correlated to PCDD/PCDF content of the solid residues. Moreover, no single parameter alone was found appropriate to describe the PCDD/PCDF content of fly and boiler ashes. On the other hand, multivariate fitting of three or four parameters yielded convenient correlation coefficients of at least r=0.8 for every investigated case. Thereby, comprehension of plant operation parameters such as temperatures and air flow alongside concentrations of inorganic compounds in the gas phase (HCl, CO, SO2, NOx) gave the best results. However, the suitable set of parameters suited best for estimation of PCDD/PCDF concentration in solid residues has to be derived anew for each individual plant and type of ash.
Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals
Francis, A.J.; Dodge, C.J.; Gillow, J.B.
1991-09-10
A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.
Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals
Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.
1991-01-01
A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.
Life cycle assessment of a household solid waste source separation programme: a Swedish case study.
Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik
2011-10-01
The environmental impact of an extended property close source-separation system for solid household waste (i.e., a systems for collection of recyclables from domestic properties) is investigated in a residential area in southern Sweden. Since 2001, households have been able to source-separate waste into six fractions of dry recyclables and food waste sorting. The current system was evaluated using the EASEWASTE life cycle assessment tool. Current status is compared with an ideal scenario in which households display perfect source-separation behaviour and a scenario without any material recycling. Results show that current recycling provides substantial environmental benefits compared to a non-recycling alternative. The environmental benefit varies greatly between recyclable fractions, and the recyclables currently most frequently source-separated by households are often not the most beneficial from an environmental perspective. With optimal source-separation of all recyclables, the current net contribution to global warming could be changed to a net-avoidance while current avoidance of nutrient enrichment, acidification and photochemical ozone formation could be doubled. Sensitivity analyses show that the type of energy substituted by incineration of non-recycled waste, as well as energy used in recycling processes and in the production of materials substituted by waste recycling, is of high relevance for the attained results.
Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan
2016-10-01
In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content were calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.
40 CFR 257.23 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally...
40 CFR 257.23 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally...
Characterization of household waste in Greenland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisted, Rasmus, E-mail: raei@env.dtu.dk; Christensen, Thomas H.
2011-07-15
The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important materialmore » fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.« less
40 CFR 63.4910 - What notifications must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...
40 CFR 63.4910 - What notifications must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...
40 CFR 63.4910 - What notifications must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...
40 CFR Table Hh-4 to Subpart Hh of... - Landfill Methane Oxidation Fractions
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas sent off-site). If a single monitoring location is used to monitor volumetric flow and CH4... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Landfill Methane Oxidation Fractions... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt...
PERMEABILITY PROPERTIES OF FLY ASH FORM FURNACE SORBENT INJECTION PROCESS
The paper discusses tests of the applicability of furnace sorbent injection (FSI) waste solids for use as synthetic waste landfill liners by measuring the mechanical strength and permeability of moisture-cured samples. SI waste solids were received from the EPA-sponsored demonstr...
Characteristics of the organic fraction of municipal solid waste and methane production: A review.
Campuzano, Rosalinda; González-Martínez, Simón
2016-08-01
Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed. Copyright © 2016. Published by Elsevier Ltd.
Investigation of Tank 241-AN-101 Floating Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, Douglas P.; Meznarich, H. K.
Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less
Waste-to-Chemicals for a Circular Economy: The Case of Urea Production (Waste-to-Urea).
Antonetti, Elena; Iaquaniello, Gaetano; Salladini, Annarita; Spadaccini, Luca; Perathoner, Siglinda; Centi, Gabriele
2017-03-09
The economics and environmental impact of a new technology for the production of urea from municipal solid waste, particularly the residue-derived fuel (RdF) fraction, is analyzed. Estimates indicate a cost of production of approximately €135 per ton of urea (internal rate of return more than 10 %) and savings of approximately 0.113 tons of CH 4 and approximately 0.78 tons of CO 2 per ton of urea produced. Thus, the results show that this waste-to-urea (WtU) technology is both economically valuable and environmentally advantageous (in terms of saving resources and limiting carbon footprint) for the production of chemicals from municipal solid waste in comparison with both the production of urea with conventional technology (starting from natural gas) and the use of RdF to produce electrical energy (waste-to-energy). A further benefit is the lower environmental impact of the solid residue produced from RdF conversion. The further benefit of this technology is the possibility to realize distributed fertilizer production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manfredi, Simone; Tonini, Davide; Christensen, Thomas H
2010-03-01
A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination. Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; -31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; -53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their compositionmore » was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.« less
Chanakya, H N; Sharma, Isha; Ramachandra, T V
2009-04-01
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1991-01-01
The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.
Pokhrel, S P; Milke, M W; Bello-Mendoza, R; Buitrón, G; Thiele, J
2018-06-01
Waste activated sludge (WAS) can become an important source of phosphorus (P). P speciation was examined under anaerobic conditions, with different pH (4, 6 and 8) and temperatures (10, 20 and 35 °C). Aqueous P was measured and an extraction protocol was used to find three solid phosphorus fractions. A pH of 4 and a temperature of 35 °C gave a maximum of 51% of total P solubilized in 22 days with 50% of total P solubilized in 7 days. Batch tests indicate that little pH depression is needed to release non-apatite inorganic P (including microbial polyphosphate), while a pH of 4 rather than 6 will release more apatite inorganic P, and that organic P is relatively more difficult to release from WAS. Fractionation analysis of P in WAS can aid in design of more efficient methods for P recovery from WAS. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch; Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net; Ashadi, Henki, E-mail: henki@eng.ui.ac.id
2012-11-15
Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environmentmore » is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This module explains each waste exclusion and its scope, so one can apply this knowledge in determining wheather a given waste is or is not regulated under RCRA Subtitle C. It cites the regulatory section for exclusions and identifies materials that are not solid wastes and solid wastes that are not hazardous wastes. It locates the manufacturing process unit exclusion and identifies the sample and treatability study exclusions and their applicability. It outlines and specifies the conditions for meeting the exclusions for household wastes and mixtures of domestic sewage.
Solid waste recycling in Rajshahi city of Bangladesh.
Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul
2012-11-01
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.
Athanasiou, C J; Tsalkidis, D A; Kalogirou, E; Voudrias, E A
2015-06-01
The present work conducts a preliminary techno-economic feasibility study for a single municipal solid waste mass burning to an electricity plant for the total municipal solid waste potential of the Region of Eastern Macedonia - Thrace, in Greece. For a certain applied and highly efficient technology and an installed capacity of 400,000 t of municipal solid waste per year, the available electrical power to grid would be approximately 260 GWh per year (overall plant efficiency 20.5% of the lower heating value). The investment for such a plant was estimated at €200m. Taking into account that 37.9% of the municipal solid waste lower heating value can be attributed to their renewable fractions, and Greek Law 3851/2010, which transposes Directive 2009/28/EC for Renewable Energy Sources, the price of the generated electricity was calculated at €53.19/MWhe. Under these conditions, the economic feasibility of such an investment depends crucially on the imposed gate fees. Thus, in the gate fee range of 50-110 € t(-1), the internal rate of return increases from 5% to above 15%, whereas the corresponding pay-out time periods decrease from 11 to about 4 years. © The Author(s) 2015.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-08-01
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana
Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi
2016-01-01
The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas. PMID:27807453
Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana.
Boateng, Simon; Amoako, Prince; Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi
2016-01-01
The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas.
Anaerobic digestion potential of urban organic waste: a case study in Malmö.
Davidsson, Asa; Jansen, Jes la Cour; Appelqvist, Björn; Gruvberger, Christopher; Hallmer, Martin
2007-04-01
A study of existing organic waste types in Malmö, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.
Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro
2015-02-09
The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.
Rodgers, Kiri J.; Hursthouse, Andrew; Cuthbert, Simon
2015-01-01
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes. PMID:26393631
Rodgers, Kiri J; Hursthouse, Andrew; Cuthbert, Simon
2015-09-18
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes.
40 CFR 63.4710 - What notifications must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
...). You do not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating... and the mass of organic HAP contained in the waste materials for which you are claiming an allowance...
Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia).
Djebbi, Chaima; Chaabani, Fredj; Font, Oriol; Queralt, Ignasi; Querol, Xavier
2017-10-01
The present study focuses on the eolian dispersion and dust deposition, of major and trace elements in soils in a semi-arid climate, around an old fluorite (CaF 2 ) and barite (BaSO 4 ) mine, located in Hammam Zriba in Northern Tunisia. Ore deposits from this site contain a high amount of metal sulphides constituting heavy metal pollution in the surrounding environment. Samples of waste from the surface of mine tailings and agricultural topsoil samples in the vicinity of the mine were collected. The soil samples and a control sample from unpolluted area, were taken in the direction of prevailing northwest and west winds. Chemical analysis of these solids was performed using both X-ray fluorescence and X-ray diffraction. To determine the transfer from mine wastes to the soils, soluble fraction was performed by inductively coupled plasma and ionic chromatography. The fine grained size fraction of the un-restored tailings, still contained significant levels of barium, strontium, sulphur, fluorine, zinc and lead with mean percentages (wt%) of 30 (calculated as BaO), 13 (as SrO), 10 (as SO 3 ), 4 (F), 2 (Zn) and 1.2 (Pb). Also, high concentrations of cadmium (Cd), arsenic (As) and mercury (Hg) were found with an averages of 36, 24 and 1.2mgkg -1 , respectively. As a result of the eolian erosion of the tailings and their subsequent wind transport, the concentrations of Ba, Sr, S, F, Zn and Pb were extremely high in the soils near to the tailings dumps, with 5%, 4%, 7%, 1%, 0.8% and 0.2%, respectively. Concentration of major pollutants decreases with distance, but they were high even in the farthest samples. Same spatial distribution was observed for Cd, As and Hg. While, the other elements follow different spatial patterns. The leaching test revealed that most elements in the mining wastes, except for the anions, had a low solubility despite their high bulk concentrations. According the 2003/33/CE Decision Threshold, some of these tailings samples were considered as hazardous. Furthermore, other waste samples, considered non hazardous, were not inert. In contrast, the SO 4 2- , Ba, Pb and Sb leachable contents measured in most of the soil samples were relatively high, exceeding the inert threshold for landfill disposal of wastes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric
2015-04-01
Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature. We made corrections according to the temperature profile and to volumetric water contents obtained previously on undisturbed samples. Corrected values tended to be superimposed on those obtained in the field. Then, we calculated the water content of the different reworked waste samples using the correlation between volumetric water content correlation and electrical resistivity and we compared this value to the one measured at the laboratory. Both values were correlated satisfactorily. In conclusion, we show that bulk electrical resistivity measurements are very promising to quantify water content in landfills if temperature can be estimated independently. In future applications, electrical resistivity tomography coupled with distributed temperature sensing could give important estimates of water content of the waste and thus helping in dealing with problematics such as boosting biodegradation and stabilization of the waste, reducing risks of soil and aquifers pollution, landfill mining, and controlled production of methane.
Ibáñez-Forés, Valeria; Bovea, María D; Coutinho-Nóbrega, Claudia; de Medeiros-García, Hozana R; Barreto-Lins, Raissa
2018-02-01
The aim of this study is to analyse the evolution of the municipal solid waste management system of João Pessoa (Brazil), which was one of the Brazilian pioneers cities in implementing door-to-door selective collection programmes, in order to analyse the effect of policy decisions adopted in last decade with regard to selective collection. To do it, this study focuses on analysing the evolution, from 2005 to 2015, of the environmental performance of the municipal solid waste management (MSWM) system implemented in different sorting units with selective collection programmes by applying the Life Cycle Assessment (LCA) methodology and using as a starting point data collected directly from the different stakeholders involved in the MSWM system. This article presents the temporal evolution of environmental indicators measuring the environmental performance of the MSWM system implemented in João Pessoa by sorting unit, for each stage of the life cycle of the waste (collection, classification, intermediate transports, recycling and landfilling), for each waste fraction and for each collection method (selective collection or mixed collection), with the aim of identifying the key aspects with the greatest environmental impact and their causes. Results show on one hand, that environmental behaviour of waste management in a door-to-door selective collection programme significantly improves the behaviour of the overall waste management system. Consequently, the potential to reduce the existing environmental impact based on citizens' increased participation in selective collection is evidenced, so the implementation of awareness-raising campaigns should be one of the main issues of the next policies on solid waste. On the other hand, increasing the amount of recyclable wastes collected selectively, implementing alternative methods for valorising the organic fraction (compost/biomethanization) and improving the efficiency of the transportation stage by means of optimizing vehicles or routes, are essential actions to reduce the overall net environmental impact generated by the MSWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental evidence of colloids and nanoparticles presence from 25 waste leachates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennebert, Pierre, E-mail: pierre.hennebert@ineris.fr; Avellan, Astrid; Yan, Junfang
Highlights: • This work is the first assessment of colloids in waste leachates. • Analytical methods are proposed and discussed. • All the waste have at least one element in colloidal form, and some elements are always colloidal. • Man-made nanoparticles are observed. • It can change the interpretation of leachate elemental concentration. - Abstract: The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used tomore » easily detect colloids potentially released by waste. Precautions against CO{sub 2} capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l{sup −1}. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l{sup −1}. In particular, the colloidal forms of Zn were always by far more concentrated than its dissolved form. The TEM–EDS method showed various particles, including manufactured nanoparticles (organic polymer, TiO{sub 2}, particles with Sr, La, Ce, Nd). All the waste had at least one element detected as colloidal. The solid waste leachates contained significant amount of colloids different in elemental composition from natural ones. The majority of the elements were in colloidal form for wastes of packaging (3), a steel slag, a sludge from hydrometallurgy, composts (2), a dredged sediment (#18), an As contaminated soil and two active landfill leachates. These results showed that cascade filtration and ICP elemental analysis seems valid methods in this field, and that electronic microscopy with elemental detection allows to identify particles. Particles can be formed from dissolved elements during TEM sample preparation and cross-checking with MF and UF composition by ICP is useful. The colloidal fraction of leachate of waste seems to be a significant source term, and should be taken into account in studies of emission and transfer of contaminants in the environment. Standardized cross-filtration method could be amended for the presence of colloids in waste leachates.« less
Gallardo, A; Carlos, M; Colomer, F J; Edo-Alcón, N
2018-01-01
There are several factors which have an influence in the selective collection of the municipal waste. To define a selective collection system, the waste generation pattern should be firstly determined and these factors should be analyzed in depth. This paper tries to analyze the economic income level and the seasonal variation on the collection and the purity of light-packaging waste to determine actions to improve the waste management plan of a town. In the first stage of the work, waste samples of the light-packaging containers were collected in two zones of the town with different economic characteristics in different seasons during one year. In the second stage, the samples were characterized to analyze the composition and purity of the waste. They were firstly separated into four fractions: metals; plastic; beverage cartons; and misplaced materials. The misplaced fraction was in its turn separated into cardboard, rubber and leather, inert waste, organic matter, paper, hazardous waste, clothes and shoes, glass and others. The plastic fraction was separated into five types of plastics and the metal fraction into three. In the third stage, the data have been analyzed and conclusions have been extracted. The main result is that the quality of the light-packaging fraction collected in these zones during both seasons were similar. This methodology can be extrapolated to towns with similar characteristics. It will be useful when implementing a system to collect the waste selectively and to develop actions to achieve a good participation in the selective collection of the waste.
Paladino, O; Massabò, M
2017-10-01
The aim of the present paper is to show how an approach based on human health risk analysis can be used as a decisional tool for the evaluation of impacts on population and for deciding between different waste treatment processes. The situation in which the increasing production of solid wastes cannot be confined in the old existing Municipal Solid Waste landfill (settled in Genoa, Liguria Region, Italy) is used as a case study. Risk assessment for human health due to air, surface water, groundwater and soil contamination is performed in different scenarios for the old landfill and compared with alternative Waste-to-Energy management solutions that consider thermal treatment by gasification of the total waste or gasification of the dry fraction coupled with anaerobic digestion of the wet fraction, plus biogas combustion with or without sludge and bottom ash/slag disposal in the old landfill. Hazard Index (HI) and Cancer Risk (CR) in case of operating landfill and under the suspected situation of failure of the sealing system, were respectively 1.15 and 1.1∗10 -7 . Unacceptable HI were found due to groundwater contamination, while HI due to river pollution was slightly under the threshold. Vegetables ingestion was the most important pathway and ammonia the most responsible of toxic adverse effects. Fish ingestion and dermal contact with contaminated water were found to be the most important exposure pathways for carcinogenic risk, due mainly to BTEX. HI and CR in the supposed scenario of total waste gasification were respectively 9.4∗10 -1 and 1.1∗10 -5 while they were respectively 3.2∗10 -1 and 6∗10 -6 in case of gasification of the dry fraction. CR in both scenarios was over the threshold mainly due to dioxins, where milk and meat ingestion were found to be the highest risk pathways. Inhalation resulted as the highest not-carcinogenic risk exposure pathway, mainly due to NOx. Decision making was made by weighing up the different scenarios, and results suggested to definitively close the landfill and to eliminate gasification of the total waste as a possible waste treatment process. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, Tracy S.; Olson, L. C.; DiPrete, D. P.
Here, samples of undissolved solids (UDS) from the dissolution of North Anna reactor fuel were characterized to investigate the effects of using air or oxygen as the oxidant during tritium removal. The UDS composition data also support the development of a waste form for disposal. There was no discernible effect of the oxidant used during the tritium removal process or the size fraction on the UDS composition. Scanning electron microscopy (SEM) and energy dispersive (x-ray) spectroscopy were used to estimate the oxygen content of the UDS and it was found to be potentially significant, on the order of 30% bymore » mass and 80% by atom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tongan; Chun, Jaehun; Dixon, Derek R.
During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Part, Florian; Zecha, Gudrun; Causon, Tim
Highlights: • First review on detection of nanomaterials in complex waste samples. • Focus on nanoparticles in solid, liquid and gaseous waste samples. • Summary of current applicable methods for nanowaste detection and characterisation. • Limitations and challenges of characterisation of nanoparticles in waste. - Abstract: Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generatedmore » when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while micro- and ultrafiltration can be used to enrich nanoparticulate species. Imaging techniques combined with X-ray-based methods are powerful tools for determining particle size, morphology and screening elemental composition. However, quantification of nanowaste is currently hampered due to the problem to differentiate engineered from naturally-occurring nanoparticles. A promising approach to face these challenges in nanowaste characterisation might be the application of nanotracers with unique optical properties, elemental or isotopic fingerprints. At present, there is also a need to develop and standardise analytical protocols regarding nanowaste sampling, separation and quantification. In general, more experimental studies are needed to examine the fate and transport of ENMs in waste streams and to deduce transfer coefficients, respectively to develop reliable material flow models.« less
Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households.
Murto, Marika; Björnsson, Lovisa; Rosqvist, Håkan; Bohn, Irene
2013-05-01
At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a dry fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m3/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane. Copyright © 2013 Elsevier Ltd. All rights reserved.
The effect of mixing ratio variation of sludge and organic solid waste on biodrying process
NASA Astrophysics Data System (ADS)
Nasution, A. C.; Kristanto, G. A.
2018-01-01
In this study, organic waste was co-biodried with sludge cake to determine which mixing ratio gave the best result. The organic waste was consisted of dried leaves and green leaves, while the sludge cake was obtained from a waste water treatment plant in Bekasi. The experiment was performed on 3 lab-scale reactors with same specifications. After 21 days of experiment, it was found that the reactor with the lowest mixing fraction of sludge (5:1) has the best temperature profile and highest moisture content depletion compared with others. Initial moisture content and initial volatile solid content of this reactor’s feedstock was 52.25% and 82.4% respectively. The airflow rate was 10 lpm. After biodrying was done, the final moisture content of the feedstock from Reactor C was 22.0% and the final volatile solid content was 75.9%.The final calorific value after biodrying process was 3179,28kcal/kg.
Leite, Paulina; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel
2016-08-01
Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigation of Municipal Solid Waste to Alcohol Conversion for Army Use
1992-03-01
fuel ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...of the cellulosic fraction to produce fermentable sugars. The first process, developed by the Tennessee Valley Authority (TVA), employs a single
Fate of bromine in pyrolysis of printed circuit board wastes.
Chien, Y C; Wang, H P; Lin, K S; Huang, Y J; Yang, Y W
2000-02-01
Behavior of Br in pyrolysis of the printed circuit board waste with valuable copper and oil recycling has been studied in the present work. Experimentally, pyrolysis of the printed circuit board waste generated approximately 40.6% of oils, 24.9% of noncondensible gases and 34.5% of solid residues that enriched in copper (90-95%). The cuts of the oils produced from pyrolysis of the printed circuit board waste into weighted boiling fraction were primarily light naphtha and heavy gas oil. Approximately 72.3% of total Br in the printed circuit board waste were found in product gas mainly as HBr and bromobenzene. However, by extended X-ray absorption fine structural (EXAFS) spectroscopy, Cu-O and Cu-(O)-Cu species with bond distance of 1.87 and 2.95 A, respectively, were observed in the solid residues. Essentially, no Cu-Br species was found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, J.D.; Hecklinger, R.S.
1995-11-01
This paper by Roger S. Hecklinger is a good contribution to the understanding of municipal solid waste combustion. The traditional test methods used on residue testing were summarized in a clear manner. Mr. Hecklinger describes sampling problems using coal and coke ash testing methods, which are similar to those experienced in testing the solid waste itself for its fuel content. The author gives several comments regarding the importance of the sampling program. This article also contains the original author`s reply to the comments and questions.
Solid-shape energy fuels from recyclable municipal solid waste and plastics
NASA Astrophysics Data System (ADS)
Gug, Jeongin
Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.
Combining sieving and washing, a way to treat MSWI boiler fly ash.
De Boom, Aurore; Degrez, Marc
2015-05-01
Municipal Solid Waste Incineration (MSWI) fly ashes contain some compounds that could be extracted and valorised. A process based on wet sieving and washing steps has been developed aiming to reach this objective. Such unique combination in MSWI fly ash treatment led to a non-hazardous fraction from incineration fly ashes. More specifically, MSWI Boiler Fly Ash (BFA) was separately sampled and treated. The BFA finer particles (13wt%) were found to be more contaminated in Pb and Zn than the coarser fractions. After three washing steps, the coarser fractions presented leaching concentrations acceptable to landfill for non-hazardous materials so that an eventual subsequent valorisation may be foreseen. At the contrary, too much Pb leached from the finest particles and this fraction should be further treated. Wet sieving and washing permit thus to reduce the leachability of MSWI BFA and to concentrate the Pb and Zn contamination in a small (in particle size and volume) fraction. Such combination would therefore constitute a straightforward and efficient basis to valorise coarse particles from MSWI fly ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Haynes, R J; Belyaeva, O N; Zhou, Y-F
2015-01-01
In order to better characterize mechanically shredded municipal green waste used for composting, five samples from different origins were separated into seven particle size fractions (>20mm, 10-20mm, 5-10mm, 2-5mm, 1-2mm, 0.5-1.0mm and <0.5mm diameter) and analyzed for organic C and nutrient content. With decreasing particle size there was a decrease in organic C content and an increase in macronutrient, micronutrient and ash content. This reflected a concentration of lignified woody material in the larger particle fractions and of green stems and leaves and soil in the smaller particle sizes. The accumulation of nutrients in the smaller sized fractions means the practice of using large particle sizes for green fuel and/or mulch does not greatly affect nutrient cycling via green waste composting. During a 100-day incubation experiment, using different particle size fractions of green waste, there was a marked increase in both cumulative CO2 evolution and mineral N accumulation with decreasing particle size. Results suggested that during composting of bulk green waste (with a high initial C/N ratio such as 50:1), mineral N accumulates because decomposition and net N immobilization in larger particles is slow while net N mineralization proceeds rapidly in the smaller (<1mm dia.) fractions. Initially, mineral N accumulated in green waste as NH4(+)-N, but over time, nitrification proceeded resulting in accumulation of NO3(-)-N. It was concluded that the nutrient content, N mineralization potential and decomposition rate of green waste differs greatly among particle size fractions and that chemical analysis of particle size fractions provides important additional information over that of a bulk sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of landfill treatment approaches for stabilization of municipal solid waste.
Bolyard, Stephanie C; Reinhart, Debra R
2016-09-01
This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing
2010-07-01
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2x after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Di Maria, Francesco; Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno
2013-12-01
The mechanically sorted dry fraction (MSDF) and Fines (<20mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20mm particle size fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis of the contaminants released from municipal solid waste landfill site: A case study.
Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S
2017-02-15
Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes. Copyright © 2016 Elsevier B.V. All rights reserved.
Distribution and availability of trace elements in municipal solid waste composts.
Paradelo, Remigio; Villada, Antía; Devesa-Rey, Rosa; Moldes, Ana Belén; Domínguez, Marta; Patiño, Jacobo; Barral, María Teresa
2011-01-01
Trace element contamination is one of the main problems linked to the quality of compost, especially when it is produced from urban wastes, which can lead to high levels of some potentially toxic elements such as Cu, Pb or Zn. In this work, the distribution and bioavailability of five elements (Cu, Zn, Pb, Cr and Ni) were studied in five Spanish composts obtained from different feedstocks (municipal solid waste, garden trimmings, sewage sludge and mixed manure). The five composts showed high total concentrations of these elements, which in some cases limited their commercialization due to legal imperatives. First, a physical fractionation of the composts was performed, and the five elements were determined in each size fraction. Their availability was assessed by several methods of extraction (water, CaCl(2)-DTPA, the PBET extract, the TCLP extract, and sodium pyrophosphate), and their chemical distribution was assessed using the BCR sequential extraction procedure. The results showed that the finer fractions were enriched with the elements studied, and that Cu, Pb and Zn were the most potentially problematic ones, due to both their high total concentrations and availability. The partition into the BCR fractions was different for each element, but the differences between composts were scarce. Pb was evenly distributed among the four fractions defined in the BCR (soluble, oxidizable, reducible and residual); Cu was mainly found in the oxidizable fraction, linked to organic matter, and Zn was mainly associated to the reducible fraction (iron oxides), while Ni and Cr were mainly present almost exclusively in the residual fraction. It was not possible to establish a univocal relation between trace elements availability and their BCR fractionation. Given the differences existing for the availability and distribution of these elements, which not always were related to their total concentrations, we think that legal limits should consider availability, in order to achieve a more realistic assessment of the risks linked to compost use.
Need for improvements in physical pretreatment of source-separated household food waste.
Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J
2013-03-01
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
Castaldi, Paola; Garau, Giovanni; Melis, Pietro
2008-01-01
In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process.
Haight, M
2005-01-01
Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.
A procedure to estimate proximate analysis of mixed organic wastes.
Zaher, U; Buffiere, P; Steyer, J P; Chen, S
2009-04-01
In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.
40 CFR 80.1454 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or heating oil without further blending, in the designated form. (6) Copies of registration documents...-fossil fraction of fuel made from separated municipal solid waste. (iv) Such other records as may be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... manure management processes; CO 2 from fermentation during ethanol production or other industrial fermentation processes; CO 2 from combustion of the biological fraction of municipal solid waste or biosolids...
Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue
2018-04-26
This study investigated the performance of co-biodrying sewage sludge and organic fraction of municipal solid waste (OFMSW) at different proportions. Cornstalk was added at 15% (of total wet weight) as the bulking agent. Results show that increasing OFMSW percentage promoted the biodegradation of organic matter, thus enhancing the temperature integration value and water removal to above 75% during sludge and OFMSW co-biodrying. In particular, adding more OFMSW accelerated the biodegradation of soluble carbohydrates, lignins, lipids, and amylums, resulting in more organic loss and thus lower biodrying index (3.3-3.7 for 55-85% OFMSW). Water balance calculation indicated that evaporation was the main mechanism for water removal. Heat used for water evaporation was 37.7-48.6% of total heat consumption during co-biodrying. Our results suggest that sludge and OFMSW should be mixed equally for their efficient co-biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.
Waste management in primary healthcare centres of Iran.
Mesdaghinia, Alireza; Naddafi, Kazem; Mahvi, Amir Hossein; Saeedi, Reza
2009-06-01
The waste management practices in primary healthcare centres of Iran were investigated in the present study. A total of 120 primary healthcare centres located across the country were selected using the cluster sampling method and the current situation of healthcare waste management was determined through field investigation. The quantities of solid waste and wastewater generation per outpatient were found to be 60 g outpatient(-1) day(-1) and 26 L outpatient(-1) day(-1), respectively. In all of the facilities, sharp objects were separated almost completely, but separation of other types of hazardous healthcare solid waste was only done in 25% of the centres. The separated hazardous solid waste materials were treated by incineration, temporary incineration and open burning methods in 32.5, 8.3 and 42.5% of the healthcare centres, respectively. In 16.7% of the centres the hazardous solid wastes were disposed of without any treatment. These results indicate that the management of waste materials in primary healthcare centres in Iran faced some problems. Staff training and awareness, separation of healthcare solid waste, establishment of the autoclave method for healthcare solid waste treatment and construction of septic tanks and disinfection units in the centres that were without access to a sewer system are the major measures that are suggested for improvement of the waste management practices.
Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye
2015-06-01
Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H2. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15USD/m(3)(effluent). With a VFA minimum selling price of 330 USD/tCOD, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H2. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wignarajah, K.; Fisher, John W.; Pisharody, Suresh A.
2003-01-01
The nutritional requirements of humans and astronauts are well defined and show consistency, but the same cannot be said of human wastes. Nutrients taken up by humans can be considered to fall into two major categories - organic and inorganic fractions. Carbon, hydrogen, oxygen, nitrogen and sulfur are elements that are associated with the organic fraction. These elements are taken up in large amounts by humans and when metabolized released in wastes often in gaseous forms or as water. On the other hand, a large number of the elements are simply exchanged and can be accounted for in the liquid and solid wastes of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g P, S and Cl), 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult human, these elements should not normally accumulate in humans, but will be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is fundamental to understanding (a) how these elements can be recovered for reuse in space habitats, and (b) to developing the processors for waste management. The current literature is exhaustive but sometimes also conflicting. We have used the existing knowledge of nutrition and waste from medical literature and NASA documentation to develop a consensus to typify and chemically characterize the various human wastes. The partitioning of these elements has been developed into a functional model.
Investigations of biological processes in Austrian MBT plants.
Tintner, J; Smidt, E; Böhm, K; Binner, E
2010-10-01
Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment. (c) 2010 Elsevier Ltd. All rights reserved.
Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing
2014-05-06
Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (<2 μm) and coarse fractions (>2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of particle sizes, from nanometer range to micrometer range. Many aggregated particles were observed, demonstrating that ENO, bulk-derived nano-objects and combustion-generated nano-objects can form aggregates in the incineration process.
Malek, Ammar; Hachemi, Messaoud; Didier, Villemin
2009-10-15
Herein, we describe an original novel method which allows the decontamination of the chromium-containing leather wastes to simplify the recovery of its considerable protein fractions. Organic salts and acids such as potassium oxalate, potassium tartrate, acetic and citric acids were tested for their efficiency to separate the chromium from the leather waste. Our investigation is based on the research of the total reversibility of the tanning process, in order to decontaminate the waste without its previous degradation or digestion. The effect of several influential parameters on the treatment process was also studied. Therefore, the action of chemical agents used in decontamination process seems very interesting. The optimal yield of chromium extraction about 95% is obtained. The aim of the present study is to define a preliminary processing of solid leather waste with two main impacts: Removing with reusing chromium in the tanning process with simple, ecological and economic treatment process and potential valorization of the organic matrix of waste decontaminated.
Microwave assisted pyrolysis of halogenated plastics recovered from waste computers.
Rosi, Luca; Bartoli, Mattia; Frediani, Marco
2018-03-01
Microwave Assisted Pyrolysis (MAP) of the plastic fraction of Waste from Electric and Electronic Equipment (WEEE) from end-life computers was run with different absorbers and set-ups in a multimode batch reactor. A large amount of various different liquid fractions (up to 76.6wt%) were formed together with a remarkable reduction of the solid residue (up to 14.2wt%). The liquid fractions were characterized using the following different techniques: FT-IR ATR, 1 H NMR and a quantitative GC-MS analysis. The liquid fractions showed low density and viscosity, together with a high concentration of useful chemicals such as styrene (up to 117.7mg/mL), xylenes (up to 25.6mg/mL for p-xylene) whereas halogenated compounds were absent or present in a very low amounts. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca; Colturato, L.F.; Font, X.
2010-10-15
Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSWmore » under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.« less
Martín-González, L; Colturato, L F; Font, X; Vicent, T
2010-10-01
Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.
Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J
2015-01-01
Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg; Astrup, Thomas Fruergaard
2014-02-01
A dedicated sampling and measurement method was developed for long-term measurements of biogenic and fossil-derived CO(2) from thermal waste-to-energy processes. Based on long-term sampling of CO(2) and (14)C determination, plant-specific emission factors can be determined more accurately, and the annual emission of fossil CO(2) from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO(2) emitted were observed, not only over time, but also between plants. From the results of monthly samples at one plant, the annual mean fraction of biogenic CO(2) was found to be 69% of the total annual CO(2) emissions. From weekly samples, taken every 3 months at the five plants, significant seasonal variations in biogenic CO(2) emissions were observed (between 56% and 71% biogenic CO(2)). These variations confirmed that biomass fractions in the waste can vary considerably, not only from day to day but also from month to month. An uncertainty budget for the measurement method itself showed that the expanded uncertainty of the method was ± 4.0 pmC (95 % confidence interval) at 62 pmC. The long-term sampling method was found to be useful for waste incinerators for determination of annual fossil and biogenic CO(2) emissions with relatively low uncertainty.
Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayono, Satoto E.; Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe; Winter, Josef, E-mail: josef.winter@iba.uka.d
2010-10-15
A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated atmore » an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.« less
Ozone disintegration of excess biomass and application to nitrogen removal.
Park, Ki Young; Lee, Jae Woo; Ahn, Kyu-Hong; Maeng, Sung Kyu; Hwang, Jong Hyuk; Song, Kyung-Guen
2004-01-01
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.
In situ distributions and characteristics of heavy metals in full-scale landfill layers.
He, Pin-Jing; Xiao, Zheng; Shao, Li-Ming; Yu, Ji-Yu; Lee, Duu-Jong
2006-10-11
The leachate from methanogenic landfill normally contains low concentrations of heavy metals. Little samples had ever been collected from the full-scale landfill piles owing to technical difficulty for well drilling. We drilled two wells in Hangzhou Tianziling landfill, 20 m and 32 m in depth each, and collected solid samples of waste age of 1-4 years from both wells. The total amounts, the sequentially extracted amounts, and the chemical binding forms of heavy metals of the samples collected at different depths were measured. With the correlation between leachate production amount and the yearly rainfall amount, the leached ratio of the heavy metals were estimated only 0.13%, 1.8%, 0.15%, and 0.19% of Cu, Cd, Pb, and Zn, respectively. The heavy metals amounts in the main compositions of MSW, like glass, food waste, paper, coal cinders, were measured using fresh MSW samples. Afterward, the contents of heavy metals initially landfilled were estimated. A positive correlation was noted between the measured and the estimated initial contents of heavy metals, indicating that the low migration of heavy metals in landfill layers. However, among the metals investigated, Zn has shown better mobility inside landfill layers. Acid volatile sulfide (AVS) and the simultaneously extracted metals (SEM) were measured for all collected samples with optimal reaction conditions identified to yield nearly perfect sulfide recovery as follows: 100 g wet samples, 80 mL min(-1) N(2) flow rate, reaction time of 150 min. The SEM/AVS ratios ranged 25-45, indicating that the AVS was insufficient to immobilize the SEM. Sequential extraction using six-fraction scheme revealed that the sum of exchangeable and the avid soluble fractions of heavy metals follow: Zn>Cd>Cu, Ni, Pb>Cr. The insoluble fraction of heavy metals in MSW was high, for instance, over 80% for Cr and Pb high insoluble fractions of heavy metals in the landfilled MSW and the sorption capability of the methanogenic landfill layers should be responsible to the low concentrations of heavy metals found in leachate.
Bastida, Felipe; Kandeler, Ellen; Hernández, Teresa; García, Carlos
2008-05-01
Microbial ecology is the key to understanding the function of soil biota for organic matter cycling after a single amendment of organic waste in semiarid soils. Therefore, in this paper, the long-term effect (17 years) of adding different doses of a solid municipal waste to an arid soil on humus-enzyme complexes, a very stable and long-lasting fraction of soil enzymes, as well as on microbial and plant abundance, was studied. Humic substances were extracted by 0.1 M pH 7 sodium pyrophosphate from soil samples collected in experimental plots amended with different doses of a solid municipal waste (0, 65, 130, 195, and 260 t/ha) 17 years before. The activity of different hydrolases related with the C (beta-glucosidase), N (urease), and P (alkaline phosphatase) cycles and with the formation of humic substances (o-diphenol oxidase) were determined in this extract. The density and diversity of plant cover in the plots, as well as the fungal and bacterial biomass (by analyzing phopholipid fatty acids) were also determined. In general, the amended plots showed greater humic substance-related enzymatic activity than the unamended plots. This activity increased with the dose but only up to a certain level, above which it leveled off or even diminished. Plant diversity and cover density followed the same trend. Fungal and bacterial biomass also benefited in a dose-dependent manner. Different signature molecules representing gram+ and gram- bacteria, and those corresponding to monounsaturated and saturated fatty acids showed a similar behavior. The results demonstrate that organic amendment had a noticeable long-term effect on the vegetal development, humic substances-related enzyme activity and on the development of bacteria and fungi in semiarid conditions.
Agar, David A; Kwapinska, Marzena; Leahy, James J
2018-02-26
Sludge from municipal wastewater treatment plants and organic fines from mechanical sorting of municipal solid waste (MSW) are two common widespread waste streams that are becoming increasingly difficult to utilise. Changing perceptions of risk in food production has limited the appeal of sludge use on agricultural land, and outlets via landfilling are diminishing rapidly. These factors have led to interest in thermal conversion technologies whose aim is to recover energy and nutrients from waste while reducing health and environmental risks associated with material re-use. Pyrolysis yields three output products: solid char, liquid oils and gas. Their relative distribution depends on process parameters which can be somewhat optimised depending on the end use of product. The potential of pyrolysis for the conversion of wastewater sludge (SS) and organic fines of MSW (OF) to a combustion gas and a carbon-rich char has been investigated. Pyrolysis of SS and OF was done using a laboratory fixed-bed reactor. Herein, the physical characterisation of the reactor is described, and results on pyrolysis yields are presented. Feedstock and chars have been characterised using standard laboratory methods, and the composition of pyrolysis gases was analysed using micro gas chromatography. Product distribution (char/liquid/gas) from the pyrolysis of sewage sludge and composted MSW fines at 700°C for 10 min were 45/26/29 and 53/14/33%, respectively. The combustible fractions of pyrolysis gases range from 36 to 54% for SS feedstock and 62 to 72% from OF. The corresponding lower heating value range of sampled gases were 11.8-19.1 and 18.2-21.0 MJ m -3 , respectively.
40 CFR 80.1454 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... blending, in the designated form. (6) Copies of registration documents required under § 80.1450, including...-fossil fraction of fuel made from separated municipal solid waste. (iv) Such other records as may be...
40 CFR 80.1454 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... blending, in the designated form. (6) Copies of registration documents required under § 80.1450, including...-fossil fraction of fuel made from separated municipal solid waste. (iv) Such other records as may be...
40 CFR 80.1454 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... blending, in the designated form. (6) Copies of registration documents required under § 80.1450, including...-fossil fraction of fuel made from separated municipal solid waste. (iv) Such other records as may be...
40 CFR 80.1454 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... blending, in the designated form. (6) Copies of registration documents required under § 80.1450, including...-fossil fraction of fuel made from separated municipal solid waste. (iv) Such other records as may be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... treatment, or manure management processes; CO 2 from fermentation during ethanol production or other industrial fermentation processes; CO 2 from combustion of the biological fraction of municipal solid waste...
K West Basin Sand Filter Backwash Sample Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, Sandra K.; Smoot, Margaret R.; Coffey, Deborah S.
A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will bemore » used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO 3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present in the insoluble solids; less than 1% of other gamma-emitters (i.e., 137Cs, 154/155Eu, and 241Am) were present in the insoluble solids. Aliquots of the acid digestate were analyzed directly using gamma energy analysis (GEA) and after separations for 238Pu, 239+240Pu, 237Np, and 241Am radioisotopes using alpha energy analysis (AEA). The 90Sr was measured by liquid scintillation counting (LSC) on the Sr-separated fraction. The plutonium isotopic distribution of the acid digestate was analyzed following Pu separations by thermal ionization mass spectrometry (TIMS). A table summarizes the results for the primary and duplicate samples. The 239+240Pu concentration (µCi/g dry) relative to 90Sr and to 137Cs concentrations (µCi/g dry) was examined. The K West Basin sludge has a 239+240Pu/ 90Sr ranging from 0.1 to 1.2 and the 239+240Pu/ 137Cs ratio ranging from 0.10 to 0.47. In contrast, the sand filter backwash solids 239+240Pu/ 90Sr ratio was 10.6 and the 239+240Pu/ 137Cs ratio was 2.0. The ratio differences indicate a relative enhancement of the Pu concentration in the sand filter solids relative to the 137Cs and 90Sr sludge concentrations currently in the K West Basin. A dose-to-curie radioisotope evaluation of the sand filter waste form may need to consider this dissimilarity.« less
Removal of batteries from solid waste using trommel separation.
Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G
2005-01-01
This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.
Urban solid waste generation and disposal in Mexico: a case study.
Buenrostro, O; Bocco, G; Bernache, G
2001-04-01
The adequate management of municipal solid waste in developing countries is difficult because of the scarcity of studies about their composition. This paper analyses the composition of urban solid waste (USW) in the city of Morelia, Michoacán, Mexico. Residential and non-residential waste sources were sampled, and a structured interview was made to evaluate the socioeconomic characteristics of the studied area. Also, to determine the seasonal patterns of solid waste generation and the efficiency level of the collection service, quantification of solid waste deposited in the dumping ground was measured. Our results show that the recorded amount of SW deposited in the municipal dumping-ground is less than the estimated amount of SW generated; for this reason, the former amount is not recommended as an unbiased indicator for planning public waste collection services. It is essential that dumping-grounds are permanently monitored and that the incoming waste be weighed in order to have a more efficient record of USW deposited in the dumping-ground per day; these data are fundamental for developing adequate managing strategies.
DWPF DECON FRIT SUPERNATE ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D.; Crawford, C.
2010-09-22
The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. This report contains the results of the supernate analyses, while the solids (sump and slurry) results will be reported in a supplemental report. The analytical data from the decon frit supernate indicate that all ofmore » the radionuclide, organic, and inorganic concentrations met the limits in Revision 4 of the Effluent Treatment Plant (ETP) Waste Acceptance Criteria (WAC) with the exception of boron. The ETP WAC limit for boron is 15.0 mg/L while the average measured concentration (based on quadruplicate analysis) was 15.5 mg/L. The measured concentrations of Li, Na, and Si were also relatively high in the supernate analysis. These results are consistent with the relatively high measured value of B given the compositional make-up of Frit 418. Given these results, it was speculated that either (a) Frit 418 was dissolving into the supernate or aqueous fraction and/or (b) fine frit particulates were carried forward to the analytical instrument based on the sampling procedure used (i.e., the supernate samples were not filtered - only settled with the liquid fraction being transferred with a pipette). To address this issue, a filtered supernate sample (using a 0.45 um filter) was prepared and submitted for analysis. The results of the filtered sample were consistent with 'unfiltered or settled' sample - relatively high values of B, Li, Na, and Si were found. This suggests that Frit 418 is dissolving in the liquid phase which could be enhanced by the high surface area of the frit fines or particulates in suspension. Based on the results of this study, it is recommended that DWPF re-evaluate the technical basis for the B WAC limit (the only component that exceeds the ETP WAC limit from the supernate analyses) or assess if a waiver or exception can be obtained for exceeding this limit. Given the possible dissolution of B, Li, Na, and Si into the supernate (due to dissolution of frit), DWPF may need to assess if the release of these frit components into the supernate are a concern for the disposal options being considered. It should be noted that the results of this study may not be representative of future decon frit solutions or sump/slurry solids samples. Therefore, future DWPF decisions regarding the possible disposal pathways for either the aqueous or solid portions of the Decon Frit system need to factor in the potential differences. More specifically, introduction of a different frit or changes to other DWPF flowsheet unit operations (e.g., different sludge batch or coupling with other process streams) may impact not only the results but also the conclusions regarding acceptability with respect to the ETF WAC limits.« less
Pontoni, Ludovico; Panico, Antonio; Matanò, Alessia; van Hullebusch, Eric D; Fabbricino, Massimiliano; Esposito, Giovanni; Pirozzi, Francesco
2017-12-06
A novel modification of the sample preparation procedure for the Folin-Ciocalteu colorimetric assay for the determination of total phenolic compounds in natural solid and semisolid organic materials (e.g., foods, organic solid waste, soils, plant tissues, agricultural residues, manure) is proposed. In this method, the sample is prepared by adding sodium sulfate as a solid diluting agent before homogenization. The method allows for the determination of total phenols (TP) in samples with high solids contents, and it provides good accuracy and reproducibility. Additionally, this method permits analyses of significant amounts of sample, which reduces problems related to heterogeneity. We applied this method to phenols-rich lignocellulosic and humic-like solids and semisolid samples, including rice straw (RS), peat-rich soil (PS), and food waste (FW). The TP concentrations measured with the solid dilution (SD) preparation were substantially higher (increases of 41.4%, 15.5%, and 59.4% in RS, PS and FW, respectively) than those obtained with the traditional method (solids suspended in water). These results showed that the traditional method underestimates the phenolic contents in the studied solids.
Public concerns and behaviours towards solid waste management in Italy.
Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F
2010-12-01
A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.
1QCY17 Saltstone waste characterization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F. C.
2017-07-25
In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, “Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements” and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.
Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry
2012-01-01
During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.
Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H
2012-05-01
Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
Getahun, T; Mengistie, E; Haddis, A; Wasie, F; Alemayehu, E; Dadi, D; Van Gerven, T; Van der Bruggen, B
2012-10-01
As one of cities in the developing countries, a rapid population growth and industrial activities pose many environmental challenges for Jimma city, Ethiopia. One aspect of urban growth posing a threat on sustainable development is poor solid waste management, which results in environmental pollution. The purpose of this study is to evaluate the quantity, composition, sources of waste generated, their current disposal practices, and to recommend appropriate management technologies. The total waste generated daily in Jimma city was ca. 88,000 kg, and the average per capita generation rate was 0.55 ± 0.17 kg/capita/day. Eighty-seven percent of the waste was produced by households and 13% by institutions, and a negligible fraction (0.1%) was generated by street sweepings. During the rainy season, 40% more waste was generated than in the dry season because of the increased availability of agricultural food product. Further analysis showed that biodegradable organic waste constitutes 54% by weight with an average moisture content of 60% that falls within the required limits for composting. The nonbiodegradable components constitute 46% of which 30% of it was nonrecyclable material. Only 25% of the community uses municipal containers for disposal at the selected landfill site. Fifty-one percent of the households disposed their waste in individually chosen spots, whereas 22% burned their waste. Finally 2% of households use private waste collectors. The socioeconomic analysis showed that higher family income and educational status is associated more with private or municipal waste collection and less with the application of backyard or open dumping. These insights into generated waste and management practice in Jimma city allow making suggestions for improved collection, treatment, and disposal methods. A primary conclusion is that the biodegradable waste is a major fraction having suitable properties for recycling. As such an economic benefit can be obtained from this waste while avoiding the need for disposal.
Weidemann, E; Allegrini, E; Fruergaard Astrup, T; Hulgaard, T; Riber, C; Jansson, S
2016-03-01
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD/F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - <0.09 mm, 0.09-0.355 mm, and >0.355 mm - and analysed for PCDD/F. The coarse fraction (>0.355 mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5 kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered a wide size range (0.09-0.355 mm) and possibly a low toxicity fraction could be identified by splitting this fraction into more narrow size ranges. The ashes exhibited uniform PCDD/F homologue patterns which suggests a stable and continuous generation of PCDD/F. Copyright © 2016 Elsevier Ltd. All rights reserved.
Di Maria, Francesco; Micale, Caterina; Morettini, Emanuela
2016-07-01
The contribution of the N2O and CH4 emissions generated during pre-collection of the organic fraction of municipal solid waste was investigated for an existing Italian collection district in a life cycle perspective. This district consisted of about 24,000 inhabitants generating 35.6Mg/day of municipal solid waste, of which 7.27Mg/day was the organic fraction. Different source segregation intensities and collection frequencies (day(-1)) were analyzed. The amount of the organic fraction not segregated at source was assumed to be collected commingled with the residual waste. The main findings showed that the lower was the collection frequency, the lower was the fuel consumption of the collection vehicles. For a source segregation intensity of 0%, the amount of fuel consumed ranged from 3.92L to 1.73L for each Mg of organic fraction as the collection frequency was decreased from 1day(-1) to 14day(-1), respectively. The maximum fuel consumption for the collection of 1Mg of organic fraction for a source segregation intensity of 50% was from 8.6L/Mg to 2.07L/Mg for a collection frequency of 1day(-1) and 14day(-1), respectively. On the other hand the lower was the collection frequency, the higher was the amount of greenhouse gas generated during the pre-collection phase. The life cycle analysis showed that these emissions could affect the global warming potential of the scenarios analyzed up to 40%, exceeding the reduction of the emissions due to lower fuel consumption. In any case, as already reported by other authors, the uncertainty analysis confirmed the higher value for the uncertainty associated to the emissions from biological processes compared to those generated by industrial and combustion ones. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimation of marginal costs at existing waste treatment facilities.
Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F
2016-04-01
This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solid-waste contract-negotiation handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Protection Agency has estimated that the United States generated 164 million tons of municipal solid waste in 1986, and that the amount is increasing at a rate of more than 1 percent annually. Landfills are reaching capacity and closing. The cost of disposing of waste is growing and local officials are concerned about how they will meet the challenge of managing solid waste. This handbook is designed to help local officials develop contracts with private companies and other governmental units that will protect the interests of the citizens in their communities. This handbook is based on information andmore » analysis derived from a questionnaire survey of 160 local governments located in EPA Region X, plus selected other states; review and analysis of sample provisions from actual solid waste contracts and agreements; follow-up interviews with solid waste managers in several of the states and with responding local governments; and a review of the literature as well as state federal statutes and regulations.« less
Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland
2015-11-01
Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.
Hydrothermal carbonization of food waste for nutrient recovery and reuse.
Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D
2017-11-01
Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard
2014-09-01
Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan
2015-09-01
Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This paper reviews recent developments in catalytic and non-catalytic degradation of waste plastics into fuels. Thermal degradation decomposes plastic into three fractions: gas, crude oil, and solid residue. Crude oil from non-catalytic pyrolysis is usually composed of higher boiling point hydrocarb...
Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers
Ncube, Esper Jacobeth; Voyi, Kuku
2017-01-01
Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 103 cfu/m3) and fungi (12.8 × 103 cfu/m3), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job. PMID:28167969
Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers.
Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku
2017-01-01
Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 10 3 cfu/m 3 ) and fungi (12.8 × 10 3 cfu/m 3 ), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, Bruna Fernanda de; Moreira, Silvana
The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate themore » content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.« less
Quantification and classification of ship scraping waste at Alang-Sosiya, India.
Srinivasa Reddy, M; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ghosh, P K
2003-12-01
Alang-Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10x10(6)+/-7.82x10(5) LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m(2) compared to Alang 10.19 kg/m(2). The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m(2); whereas, non-combustible waste is 1.933 kg/m(2). There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).
Gallardo-Lara, Francisco; Azcón, Mariano; Polo, Alfredo
2006-01-01
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.
Validation of Microtox as a first screening tool for waste classification.
Weltens, R; Deprez, K; Michiels, L
2014-12-01
The Waste Framework Directive (WFD; 2008/98/EG) describes how waste materials are to be classified as hazardous or not. For complex waste materials chemical analyses are often not conclusive and the WFD provides the possibility to assess the hazardous properties by testing on the waste materials directly. As a methodology WFD refers to the protocols described in the CLP regulation (regulation on Classification, Labeling and Packaging of chemicals) but the toxicity tests on mammals are not acceptable for waste materials. The DISCRISET project was initiated to investigate the suitability of alternative toxicity tests that are already in use in pharmaceutical applications, for the toxicological hazard assessment of complex waste materials. Results indicated that Microtox was a good candidate as a first screening test in a tiered approached hazard assessment. This is now further validated in the present study. The toxic responses measured in Microtox were compared to biological responses in other bioassays for both organic and inorganic fractions of the wastes. Both fractions contribute to the toxic load of waste samples. Results show that the Microtox test is indeed a good and practical screening tool for the organic fraction. A screening threshold (ST) of 5 geq/l as the EC50 value in Microtox is proposed as this ST allows to recognize highly toxic samples in the screening test. The data presented here show that the Microtox toxicity response at this ST is not only predictive for acute toxicity in other organisms but also for sub lethal toxic effects of the organic fraction. This limit value has to be further validated. For the inorganic fraction no specific biotest can be recommended as a screening test, but the use of direct toxicity assessment is also preferable for this fraction as metal speciation is an important issue to define the toxic load of elutriate fractions. A battery of 3 tests (Microtox, Daphnia and Algae) for direct toxicity assessment of this fraction is recommended in literature, but including tests for mechanistic toxicity might be useful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report
Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...
NASA Technical Reports Server (NTRS)
Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John W.
2003-01-01
The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is important in understanding (a) developing waste separation technologies, (b) decision-making on how these elements can be recovered for reuse in space habitats, and (c) to developing the processors for waste management. Though considerable literature exists on these elements, there is a lack of understanding and often conflicting data. Two major reasons for these problems include the lack of controlled experimental protocols and the inherently large variations between human subjects (Parker and Gallagher, 1988). We have used the existing knowledge of human nutrition and waste from the available literature and NASA documentation to build towards a consensus to typify and chemically characterize the various human wastes. It is our belief, that this could be a building block towards integrating a human life support and waste processing in a closed system.
Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad
2016-10-01
In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iáñez-Rodríguez, Irene; Martín-Lara, María Ángeles; Blázquez, Gabriel; Pérez, Antonio; Calero, Mónica
2017-11-01
This work investigated the possibility of using a greenhouse crop waste as a fuel, since it is an abundant residue in the Mediterranean area of Spain. The residue is mainly composed by biomass with a little quantity of plastic. The physical and chemical characteristics of the biomass were determined by elemental analysis, proximate analysis, FT-IR, FE-SEM and thermogravimetry. Additionally, a torrefaction process was carried out as a pre-treatment to improve the energy properties of the biomass material. The optimal conditions (time and temperature) of torrefaction were found to be 263°C and 15min using the gain and loss method. Further studies were carried out with the sample prepared with the nearest conditions to the optimal in order to determine the effect of the plastic fraction in the characteristics and torrefaction process of the waste studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR Appendix I to Part 261 - Representative Sampling Methods
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Representative Sampling Methods I Appendix I to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...—Representative Sampling Methods The methods and equipment used for sampling waste materials will vary with the...
Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M
2012-03-01
In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu
Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW)more » is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.« less
Quality assessment of compost prepared with municipal solid waste
NASA Astrophysics Data System (ADS)
Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.
2017-11-01
One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.
Arthur, W J; Markham, O D
1984-04-01
Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of 210Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically (P less than or equal to 0.05) greater than the other sampling locations; however, the mean 210Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical (P greater than 0.05) difference was observed for 210Po concentrations in vegetation among any of the sampling locations.
NEW APPROACHES TO ESTIMATION OF SOLID-WASTE QUANTITY AND COMPOSITION
Efficient and statistically sound sampling protocols for estimating the quantity and composition of solid waste over a stated period of time in a given location, such as a landfill site or at a specific point in an industrial or commercial process, are essential to the design ...
PROTOCOL - A COMPUTERIZED SOLID WASTE QUANTITY AND COMPOSITION ESTIMATION SYSTEM: OPERATIONAL MANUAL
The assumptions of traditional sampling theory often do not fit the circumstances when estimating the quantity and composition of solid waste arriving at a given location, such as a landfill site, or at a specific point in an industrial or commercial process. The investigator oft...
An Accounting System for Solid Waste Management in Small Communities.
ERIC Educational Resources Information Center
Zausner, Eric R.
This pamphlet provides a guide to the type and quantity of information to be collected for effective solid waste management in small communities. It is directed at municipal or private personnel involved in the operation and ownership of management facilities. Sample activity reports are included for reference. (CS)
Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.
Jodłowski, Paweł; Macuda, Jan; Nowak, Jakub; Nguyen Dinh, Chau
2017-09-01
In the present study, the K-40, U-238, Ra-226, Pb-210, Ra-228 and Th-228 activity concentrations were measured in 64 samples of wastes generated from shale gas exploration in North-Eastern Poland. The measured samples consist of drill cuttings, solid phase of waste drilling muds, fracking fluids, return fracking fluids and waste proppants. The measured activity concentrations in solid samples vary in a wide range from 116 to around 1100 Bq/kg for K-40, from 14 to 393 Bq/kg for U-238, from 15 to 415 Bq/kg for Ra-226, from 12 to 391 Bq/kg for Pb-210, from a few Bq/kg to 516 Bq/kg for Ra-228 and from a few Bq/kg to 515 Bq/kg for Th-228. Excluding the waste proppants, the measured activity concentrations in solid samples oscillate around their worldwide average values in soil. In the case of the waste proppants, the activity concentrations of radionuclides from uranium and thorium decay series are significantly elevated and equal to several hundreds of Bq/kg but it is connected with the mineralogical composition of proppants. The significant enhancement of Ra-226 and Ra-228 activity concentrations after fracking process was observed in the case of return fracking fluids, but the radium isotopes content in these fluids is comparable with that in waste waters from copper and coal mines in Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Andersen, Jacob K.; Christensen, Thomas H.
2011-07-15
An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categoriesmore » and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.« less
Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.
Boldrin, Alessio; Andersen, Jacob K; Christensen, Thomas H
2011-07-01
An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg(-1) ww for the non-toxic categories and up to 100 mPE Mg(-1) ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly. Copyright © 2011 Elsevier Ltd. All rights reserved.
Two-phase anaerobic digestion within a solid waste/wastewater integrated management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Gioannis, G.; Diaz, L.F.; Muntoni, A.
2008-07-01
A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilicmore » conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.« less
Spatiotemporal Dynamics of Biogeochemical Species around Karadiyana Solid Waste Landfill, Sri Lanka
NASA Astrophysics Data System (ADS)
Koliyabandara, P. A.; Cooray, P. L. A. T.; Liyanage, S.; Siriwardana, C.
2017-12-01
Leachate from solid waste landfills is a significant environmental issue throughout the world. Most of the developed countries have strict guidelines for solid waste landfills as opposed to the open solid waste dumps in developing countries. Karadiyana solid waste management facility is located in Western province, Sri Lanka having a total area about 25 acres. Several Local Authorities use this facility as the final disposal site for their daily collected garbage. About 575 tons/day of Municipal Solid Waste reach the project site. This novel study was carried out to understand the spatiotemporal variation of nutrients around the site surrounded by a marshy land which directly has a connection to Weras River. Leachate, surface water and ground water samples were collected from pre-determined locations and analyzed to assess the interaction of leachate with surrounding water bodies. Sample locations were selected based on topography, areas close to dumpsite and flow regimes. Sampling was done monthly over eight months starting from September 2016 data and they were preserved, and analyzed according to the Standard Methods for the Examination of Water and wastewater analysis. Ammonia Nitrogen, Nitrate Nitrogen, Total Phosphorous (TP) of surface water ranged in between 0.08-320, 10-6000, 0.2-50 mg/L. For leachate samples, the above parameters varied in the range of 0.22-320, 18-13000 and 0.04-15 mg/L. Highest concentrations for Nitrogenous species and Phosphorous were observed at the sampling point closer to the site (latitude 6.816538 and longitude of 79.902250). Higher concentrations measured during the rainy period may be attributed to rainwater that infiltrated into the landfill that promotes solubilisation of pollutants and enhanced leaching of nutrients from actively decomposing waste mass into leachates. Interestingly, though high concentration of nitrogen and TP observed in surface waters, dense algae growth was not observed. This may be due to the presence of Cu at level in the range of 0.1 to 0.2 ppm. Ammonia Nitrogen, Nitrate Nitrogen, TP in ground water of monitoring wells ranged in between 400-500, 40-62, 1.6- 160 mg/L. Our results emphasizes there is a greater threat by the cumulative load discharged to the river annually. Proper treatment prior to disposal is recommended.
Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B
2018-03-01
The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.
Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G
2012-06-05
Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.
Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.
Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan
2014-10-01
The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Pellera, Frantseska-Maria; Pasparakis, Emmanouil; Gidarakos, Evangelos
2016-10-01
The scope of this study is to evaluate the use of laboratory-scale landfill-bioreactors, operated consecutively under anaerobic and aerobic conditions, for the combined treatment of the organic fraction of municipal solid waste (OFMSW) with two different co-substrates of lignocellulosic nature, namely green waste (GW) and dried olive pomace (DOP). According to the results such a system would represent a promising option for eventual larger scale applications. Similar variation patterns among bioreactors indicate a relatively defined sequence of processes. Initially operating the systems under anaerobic conditions would allow energetic exploitation of the substrates, while the implementation of a leachate treatment system ultimately aiming at nutrient recovery, especially during the anaerobic phase, could be a profitable option for the whole system, due to the high organic load that characterizes this effluent. In order to improve the overall effectiveness of such a system, measures towards enhancing methane contents of produced biogas, such as substrate pretreatment, should be investigated. Moreover, the subsequent aerobic phase should have the goal of stabilizing the residual materials and finally obtain an end material eventually suitable for other purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akil, A. M.; Ho, C. S.
2014-02-01
The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.
Sethurajan, Manivannan; Huguenot, David; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D
2016-04-01
Various mineral processing operations to produce pure metals from mineral ores generate sludges, residues, and other unwanted by-products/wastes. As a general practice, these wastes are either stored in a reservoir or disposed in the surrounding of mining/smelting areas, which might cause adverse environmental impacts. Therefore, it is important to understand the various characteristics like heavy metal leaching features and potential toxicity of these metallurgical wastes. In this study, zinc plant leach residues (ZLRs) were collected from a currently operating Zn metallurgical industry located in Minas Gerais (Brazil) and investigated for their potential toxicity, fractionation, and leachability. Three different ZLR samples (ZLR1, ZLR2, and ZLR3) were collected, based on their age of production and deposition. They mainly consisted of Fe (6-11.5 %), Zn (2.5 to 5.0 %), and Pb (1.5 to 2.5 %) and minor concentrations of Al, Cd, Cu, and Mn, depending on the sample age. Toxicity Characteristic Leaching Procedure (TCLP) results revealed that these wastes are hazardous for the environment. Accelerated Community Bureau of Reference (BCR) sequential extraction clearly showed that potentially toxic heavy metals such as Cd, Cu, Pb, and Zn can be released into the environment in high quantities under mild acidic conditions. The results of the liquid-solid partitioning as a function of pH showed that pH plays an important role in the leachability of metals from these residues. At low pH (pH 2.5), high concentrations of metals can be leached: 67, 25, and 7 % of Zn can be leached from leach residues ZLR1, ZLR2, and ZLR3, respectively. The release of metals decreased with increasing pH. Geochemical modeling of the pH-dependent leaching was also performed to determine which geochemical process controls the leachability/solubility of the heavy metals. This study showed that the studied ZLRs contain significant concentrations of non-residual extractable fractions of Zn and can be seen as a potential secondary resource for Zn.
Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.
1987-01-01
An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.
El Hanandeh, Ali; El-Zein, Abbas
2010-01-01
A modified version of the multi-criteria decision aid, ELECTRE III has been developed to account for uncertainty in criteria weightings and threshold values. The new procedure, called ELECTRE-SS, modifies the exploitation phase in ELECTRE III, through a new definition of the pre-order and the introduction of a ranking index (RI). The new approach accommodates cases where incomplete or uncertain preference data are present. The method is applied to a case of selecting a management strategy for the bio-degradable fraction in the municipal solid waste of Sydney. Ten alternatives are compared against 11 criteria. The results show that anaerobic digestion (AD) and composting of paper are less environmentally sound options than recycling. AD is likely to out-perform incineration where a market for heating does not exist. Moreover, landfilling can be a sound alternative, when considering overall performance and conditions of uncertainty.
Trzcinski, Antoine P; Stuckey, David C
2016-03-01
This paper focuses on the treatment of leachate from the organic fraction of municipal solid waste (OFMSW) in a submerged anaerobic membrane bioreactor (SAMBR). Operation of the SAMBR for this type of high strength wastewater was shown to be feasible at 5 days hydraulic retention time (HRT), 10 L min(-1) (LPM) biogas sparging rate and membrane fluxes in the range of 3-7 L m(-2) hr(-1) (LMH). Under these conditions, more than 90% COD removal was achieved during 4 months of operation without chemical cleaning the membrane. When the sparging rate was reduced to 2 LPM, the transmembrane pressure increased dramatically and the bulk soluble COD concentration increased due to a thicker fouling layer, while permeate soluble COD remained constant. Permeate soluble COD concentration increased by 20% when the sparging rate increased to 10 LPM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pretel, R; Moñino, P; Robles, A; Ruano, M V; Seco, A; Ferrer, J
2016-09-01
The objective of this study was to evaluate the economic and environmental sustainability of a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR technology is likely to be a net energy producer, resulting in considerable cost savings (up to €0.023 per m(3) of treated water) when treating low-sulphate influent. Life cycle analysis (LCA) results revealed that operating at high sludge retention times (70 days) and treating UWW jointly with OFMSW enhances the overall environmental performance of AnMBR technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K
2005-01-01
Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.
Felder, M A; Petrell, R J; Duff, S J
2001-08-01
A novel design for a solid waste audit was developed and applied to the University of British Columbia, Canada, in 1998. This audit was designed to determine the characteristics of the residual solid waste generated by the campus and provide directions for waste reduction. The methodology was constructed to address complications in solid waste sampling, including spatial and temporal variation in waste, extrapolation from the study area, and study validation. Accounting for spatial effects decreased the variation in calculating total waste loads. Additionally, collecting information on user flow provided a means to decrease daily variation in solid waste and allow extrapolation over time and space. The total annual waste estimated from the experimental design was compared to documented values and was found to differ by -18%. The majority of this discrepancy was likely attributable to the unauthorised disposal of construction and demolition waste. Several options were proposed to address waste minimisation goals. These included: enhancing the current recycling program, source reduction of plastic materials, and/or diverting organic material to composting (maximum diversion: approximately 320, approximately 270, and approximately 1510 t yr(-1), respectively). The greatest diversion by weight would be accomplished through the diversion of organic material, as it was estimated to comprise 70% of the projected waste stream. The audit methodology designed is most appropriate for facilities/regions that have a separate collection system for seasonal wastes and have a means for tracking user flow.
Copper and zinc uptake by rice and accumulation in soil amended with municipal solid waste compost
NASA Astrophysics Data System (ADS)
Bhattacharyya, P.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M. A.
2006-04-01
Effect of addition of municipal solid waste compost (MSWC) on two metals viz. copper (Cu) and zinc (Zn) contents of submerged rice paddies were studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the metal (Cu and Zn) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by exchangeable and water soluble fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. The MSWC would be a valuable resource for agriculture if it can be used safely, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.
Adeniran, A E; Nubi, A T; Adelopo, A O
2017-09-01
Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia; Fei-Baffoe, Bernard; Mensah, Moses Y
2015-12-01
Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47 kg/person/day, which translates into about 12,710 tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318 kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096 kg/person/day. Inert and miscellaneous waste was 0.055 kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72 kg/person/day. Metropolises generated higher waste (average 0.63 kg/person/day) than the municipalities (0.40 kg/person/day) and the least in the districts (0.28 kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint
Moens, Luc
1995-01-01
A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.
Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint
Moens, L.
1995-07-11
A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.
Angeriz-Campoy, R; Fdez-Güelfo, L A; Tyagi, Vinay Kumar; Álvarez-Gallego, C J; Romero-García, L I
2018-01-01
Effect of hydraulic retention time (HRT) on bio-hydrogen production from co-digestion of organic fraction of municipal solid waste (OFMSW) and mixed sludge (MS) in dry thermophilic conditions (55°C and 20% total solids) was investigated. A decreasing sequence of six HRTs, from 2.9 to 0.8-days, was performed to evaluate the stability of the system and the influence of HRT on the organic matter solubilization, the daily hydrogen production (HP) and the specific hydrogen production (SHP). Best results were obtained operating at 1.2-days HRT: HP of 3.67L H 2 /L reactor /day, SHP of 33.8mL H 2 /gVS added and hydrogen percentage in biogas of 52.4%. However, HRTs lower than 1.2-days induce failure in the system due to an unbalance of the hydrolytic phase. This fact was corroborated through the evaluation of two indirect parameters, "non-solubilized carbon" (NSC) and "acidogenic substrate as carbon" (ASC), and the relationships of NSC/TOC and ASC/TOC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latkowski, J F; Meier, W R; Reyes, S
1999-08-09
Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less
Nóvoa-Muñoz, J C; Simal-Gándara, J; Fernández-Calviño, D; López-Periago, E; Arias-Estévez, M
2008-10-01
The agronomic utility of a solid waste, waste perlite (WP), from wine companies was assessed. In this sense, the natural characteristics of the waste were measured, followed by the monitoring of its effects on the chemical properties of acid soils and the growth of Lolium multiflorum. Taking into account that heavy metals associated to the waste (such as Cu, Zn and Mn) could cause problems when used as amendment, the changes in their total levels and in their soil fractionation were also studied, together with their total contents in L. multiflorum. The high content in C (214gkg(-1)), N (25gkg(-1)), P (534mgkg(-1)) and K (106gkg(-1)) of WP turned it into an appropriate amendment to increase soil fertility, solving at the same time its disposal. WP contributed to increase soil pH (in 2 pH units) and cation exchange capacity (CEC increased in 3cmolckg(-1)units), but reduced the potential Cu phytotoxicity due to a change in Cu distribution towards less soluble fractions. The growth of L. multiflorum adequately responds to the treatment with WP at addition rates below 2.5gkg(-1), whereas the imbalance between nutrients can justify the reduction in biomass production at higher WP addition rates. The levels of heavy metals analyzed in L. multiflorum biomass (8-85gkg(-1)) do not seem to cause undesirable effects on its growth.
Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.
Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto
2013-10-15
This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign. Copyright © 2013 Elsevier B.V. All rights reserved.
The assumptions of traditional sampling theory often do not fit the circumstances when estimating the quantity and composition of solid waste arriving at a given location, such as a landfill site, or at a specific point in an industrial or commercial process. The investigator oft...
Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael
2006-02-01
A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.
Kawai, Kosuke; Osako, Masahiro; Matsui, Saburo; Dong, Nguyen The
2012-07-01
Even in developing countries, the amount of containers and packaging waste are increasing in line with population concentration and lifestyle changes in urban areas. This can cause serious problems for the disposal of municipal solid waste. Through a physical composition analysis of household waste in Hanoi, the capital of Vietnam, this study aimed to identify the contribution made by junk buyers to recycling. Interviews on the handling of recyclable waste by households were conducted. About 232 kg of recyclable waste was sampled from a total of 115 households, and about 230 kg of municipal solid waste was sampled from a total of 101 households and sorted into 69 categories for measurement by volume and weight. The interview survey revealed that a high proportion of households tended to routinely store recyclable waste for sale or donation to junk buyers. Junk buyers accounted for 8.8% of recycling by weight or 26.0% by volume according to the results of the physical composition analysis. In addition, the results suggested that containers and packaging waste accounted for the largest proportion of household waste by volume. Junk buyers recycled 25.5% by weight of containers and packaging waste. In the formulation of new plans for municipal solid waste management to improve the current situation and handle future challenges, the role of the informal sector should be monitored carefully and reliable data on recyclable waste should be collected continuously.
Motives as predictors of the public's attitudes toward solid waste issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebreo, A.; Vining, J.
2000-02-01
Surveys focusing on solid-waste-related issues, conducted over a period of several years, provided data from independent samples of residents of a Midwestern, USA, community. The collection of these data yielded useful information about the relationship between residents' recycling motives and their attitudes toward solid waste management in light of several changes in the solid waste infrastructure of the community over that time. The initial survey assessed baseline beliefs and attitudes, while later surveys were conducted after the implementation of a community educational program and a curbside recycling program. The findings indicated that for recyclers and nonrecyclers, different motives predicted endorsementmore » of solid waste programs and policies. Although a similar percentage of recyclers and nonrecyclers were in support of various proposed programs and policies, concern for the environment was found to be positively related to nonrecyclers' support of proposed programs, particularly before these programs were implemented. Prior to program implementation, motives other than environmental altruism were found to be related to recyclers' support of the programs. Additional findings support the idea that educational programs and increased accessibility to recycling opportunities affect the relationship between people's attitudes toward solid waste management and their recycling motives.« less
Municipal solid waste generation in Kathmandu, Nepal.
Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M
2011-01-01
Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.
IMPACT OF LEAD ACID BATTERIES AND CADMIUM STABILIZERS ON INCINERATOR EMISSIONS
The Waste Analysis Sampling, Testing and Evaluation (WASTE) Program is a multi-year, multi-disciplinary program designed to elicit the source and fate of environmentally significant trace materials as a solid waste progresses through management processes. s part of the WASTE Prog...
Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong
2016-01-01
Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover, pyrolysis can be a better choice for treatment of solid waster in terms of controlling heavy metals. PVC and Tire should be separated and treated individually due to high possibility of heavy metal emission. This information may then serve as a guideline for the design of the subsequent gas cleaning plant, necessary to reduce the final emissions to the atmosphere to an acceptable level.
Sáez, José A; Clemente, Rafael; Bustamante, M Ángeles; Yañez, David; Bernal, M Pilar
2017-05-01
The changes in livestock production systems towards intensification frequently lead to an excess of manure generation with respect to the agricultural land available for its soil application. However, treatment technologies can help in the management of manures, especially in N-surplus areas. An integrated slurry treatment system based on solid-liquid separation, aerobic treatment of the liquid and composting the solid fraction was evaluated in a pig farm (sows and piglets) in the South of Spain. Solid fraction separation using a filter band connected to a screw press had low efficiency (38%), which was greatly improved incorporating a rotatory sieve (61%). The depuration system was very efficient for the liquid, with total removal of 84% total solids, 87% volatile solids, and 98% phosphorus. Two composting systems were tested through mechanical turning of: 1- a mixture of solid fraction stored for 1 month after solid-liquid separation and cereal straw; 2- recently-separated solid fraction mixed with cotton gin waste. System 2 was recommended for the farm, as it exhibited a fast temperature rise and a long thermophilic phase to ensure compost sanitisation, and high recovery of nutrients (TN 77%, P and K > 85%) and organic matter (45%). The composts obtained were mature, stable and showed a high degree of humification of their organic matter, absence of phytotoxicity and concentrations of nutrients similar to other composts from pig manure or separated slurry solids. However, the introduction of slurry from piglets into the solid-liquid separation system should be avoided in order to reduce the content of Zn in the compost, which lowers its quality. The slurry separation followed by composting of the solid fraction using a passive windrow system, and aeration of the liquid phase, was the most recommendable procedure for the reduction of GHG emissions on the farm. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James
1995-01-01
The primary objectives of the study were to characterize the solid waste stream for MSFC facilities in Huntsville, Alabama, and to evaluate their present recycling program. The purpose of the study was to determine if improvements could be made in terms of increasing quantities of the present commodities collected, adding more recyclables to the program, and streamlining or improving operational efficiency. In conducting the study, various elements were implemented. These included sampling and sorting representative samples of the waste stream; visually inspecting each refuse bin, recycle bin, and roll-off; interviewing employees and recycling coordinators of other companies; touring local material recycling facilities; contacting experts in the field; and performing a literature search.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anast, Kurt Roy; Funk, David John
The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers,more » and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.« less
Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium.
Zahra, Sahebnazar; Abbas, Shojaosadati Seyed; Mahsa, Mohammad-Taheri; Mohsen, Nosrati
2010-03-01
In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 degrees C. Each fungus was added to a separate flask. The moisture content and pH of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus. Copyright 2009 Elsevier Ltd. All rights reserved.
Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahra, Sahebnazar; Abbas, Shojaosadati Seyed, E-mail: sa_shoja@modares.ac.i; Mahsa, Mohammad-Taheri
In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 deg. C. Each fungus was added to a separate flask. The moisture content and pHmore » of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus.« less
Metallic elements fractionation in municipal solid waste incineration residues
NASA Astrophysics Data System (ADS)
Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek
2016-04-01
Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for Cr. In comparison to bottom ash, in fly ash 10-fold more Zn was present (8070 ppm), 4-fold more Sn (540 ppm) and also 2-fold more Ti (1.1 wt%), Pb (460 ppm) and Sn (540 ppm). Although APC residue is the material produced in the smallest quantities, in its composition some high concentrations of metallic elements were also present. Contents of Zn (>1 wt%), Pb (2560 ppm) and Sn (875 ppm) were much higher than in bottom and fly ash. Obtained results confirmed that fractionation of elements occurs during the municipal waste incineration and further detailed study of the residues may allow better understanding of the process. Acknowledgment: Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171.
Bizzo, Waldir A.; Figueiredo, Renata A.; de Andrade, Valdelis F.
2014-01-01
The proper disposal of electrical and electronic waste is currently a concern of researchers and environmental managers not only because of the large volume of such waste generated, but also because of the heavy metals and toxic substances it contains. This study analyzed printed circuit boards (PCBs) from discarded computers to determine their metal content and characterized them as solid waste and fuel. The analysis showed that PCBs consist of approximately 26% metal, made up mainly of copper, lead, aluminum, iron and tin, as well as other heavy metals such as cadmium and nickel. Comparison with the results of other studies indicated that the concentration of precious metals (gold and silver) has declined over time. Analysis of the leachate revealed high concentrations of cadmium and lead, giving the residue the characteristics of hazardous waste. After milling the PCBs, we found that larger amounts of metal were concentrated in smaller fractions, while the lightest fraction, obtained by density separation, had a gross calorific value of approximately 11 MJ/kg, although with a high ash content. Milling followed by density separation proved potentially useful for recovery of metals and energy-rich fractions. PMID:28788692
Municipal Solid Waste Composition Study of Selected Area in Gambang, Pahang
NASA Astrophysics Data System (ADS)
Mokhtar, Nadiah; Ishak, Wan Faizal Wan; Suraya Romali, Noor; Fatimah Che Osmi, Siti; Armi Abu Samah, Mohd
2013-06-01
The amount of municipal solid waste (MSW) generated continue to increase in response to rapid growth in population, change in life style and accelerated urbanization and industrialization process. The study on MSW is important in order to determine the composition further seeks an immediate remedy to minimize the waste generated at the early stage. As most of the MSW goes to the landfill or dumping sites, particularly in Malaysia, closure of filled-up landfill may become an alarm clock for an immediate action of proper solid waste management. This research aims to determine the waste composition generated from selected residential area at Gambang, Kuantan, Pahang which represent Old residential area (ORA), Intermediate residential area (IRA) and New residential area (NRA). The study was conducted by segregating and weighing solid waste in the residential area into 6 main components ie., food waste, paper, plastic, glass, metal and others. In a period of four weeks, samples from the residential unit were taken and analyzed. The MSW generation rates were recorded vary from 0.217 to 0.388 kg person-1day-1. Food waste has become the major solid waste component generated daily which mounted up to 50%. From this research, the result revealed that the recyclable composition of waste generated by residents have a potential to be reuse, recycle and reduce at the point sources.
COMPONENTS IDENTIFIED IN ENERGY-RELATED WASTES AND EFFLUENTS
A state-of-the-art review of the characterization of solid wastes and aqueous effluents generated by energy-related processes was conducted. The reliability of these data was evaluated according to preselected criteria or sample source, sampling and analytical methodology, and da...
Antioxidative properties of defatted dabai pulp and peel prepared by solid phase extraction.
Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah
2012-08-14
Solid phase extraction (SPE) using Sep-Pak® cartridges is one of the techniques used for fractionation of antioxidant compounds in waste of dabai oil extraction (defatted dabai parts). The aim of this study was to determine the phenolic compounds and antioxidant capacity in crude extracts and several SPE fractions from methanolic extract of defatted dabai pulp and peel. Based on SPE, Sep-Pak® cyanopropyl and C₁₈ cartridges were used to fractionate the antioxidant-rich crude extracts into water and methanolic fractions. Analyzed using LC-MS, flavonoids, anthocyanins, saponin derivatives and other unknown antioxidative compounds were detected in the defatted dabai crude extracts and their SPE fractions. Anthocyanins were the major phenolic compounds identified in the defatted dabai peel and detected in most of the SPE fractions. Methanolic fractions of defatted dabai parts embraced higher total phenolics and antioxidant capacity than water fractions. This finding also revealed the crude extracts of defatted dabai peel have the most significant antioxidant properties compared to the methanolic and water fractions studied. The crude extract of defatted dabai parts remain as the most potent antioxidant as it contains mixture of flavonoids, anthocyanins and other potential antioxidants.
Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg
2008-01-01
During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace-element concentrations for aquatic life water-quality standards. The proximity of the uranium waste dumps in the Tomsich Butte area near Muddy Creek, coupled with the elevated concentration of trace elements, increases the offsite impact potential to water resources. Future assessment and remediation priority of these areas may be done by using GIS-based risk-mapping techniques, such as Sensitive Catchment Integrated Mapping and Analysis Project.
ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS
Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei
2013-01-01
This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.
Chang, N B; Lin, K S; Sun, Y P; Wang, H P
2001-12-01
This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Enderlin, Carl W.
Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less
Solid recovered fuel: An experiment on classification and potential applications.
Bessi, C; Lombardi, L; Meoni, R; Canovai, A; Corti, A
2016-01-01
The residual urban waste of Prato district (Italy) is characterized by a high calorific value that would make it suitable for direct combustion in waste-to-energy plants. Since the area of central Italy lacks this kind of plant, residual municipal waste is quite often allocated to mechanical treatment plants in order to recover recyclable materials (such as metals) and energy content, sending the dry fractions to waste-to-energy plants outside the region. With the previous Italian legislation concerning Refuse Derived Fuels, only the dry stream produced as output by the study case plant, considered in this study, could be allocated to energy recovery, while the other output flows were landfilled. The most recent Italian regulation, introduced a new classification for the fuel streams recovered from waste following the criteria of the European standard (EN 15359:2011), defining the Solid Recovered Fuel (SRF). In this framework, the aim of this study was to check whether the different streams produced as output by the study case plant could be classified as SRF. For this reason, a sampling and analysis campaign was carried out with the purpose of characterizing every single output stream that can be obtained from the study case mechanical treatment plant, when operating it in different ways. The results showed that all the output flows from the study case mechanical treatment plant were classified as SRF, although with a wide quality range. In particular, few streams, of rather poor quality, could be fed to waste-to-energy plants, compatibly with the plant feeding systems. Other streams, with very high quality, were suitable for non-dedicated facilities, such as cement plants or power plants, as a substitute for coal. The implementation of the new legislation has hence the potential for a significant reduction of landfilling, contributing to lowering the overall environmental impact by avoiding the direct impacts of landfilling and by exploiting the beneficial effects of energy recovery from waste. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik
2012-04-01
Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A combination of culture-dependent and culture-independent methods was used to assess bacterial diversity at different depths within a former solid waste dump in Medellín, Colombia. Sampling sites included a densely populated area, which is built upon 40 m of solid waste (domestic, industrial, agric...
ERIC Educational Resources Information Center
National Field Research Center Inc., Iowa City, IA.
Educational programs in solid waste management offered by 16 schools in 9 states were surveyed. These programs represent a sample, only, of the various programs available nationwide. Enrollment and graduate statistics are presented. Overall, 116 full-time and 124 part-time faculty were involved in the programs surveyed. Curricula and sources of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas
Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less
Ballardo, Cindy; Barrena, Raquel; Artola, Adriana; Sánchez, Antoni
2017-12-01
In the framework of a circular economy, organic solid wastes are considered to be resources useful for obtaining value-added products. Among other potential uses, biodegradable wastes from agricultural, industrial, and domestic sources are being studied to obtain biopesticides through solid-state fermentation (SSF), mainly at the laboratory scale. The suitability of biowaste (source-selected organic fraction of municipal solid waste) for use as a substrate for Bacillus thuringiensis (Bt) growth under non-sterile conditions in a 10 L SSF reactor was determined in this study. An operational strategy for setting up a semi-continuous process yielding a stabilised organic compost-like material enriched with Bt suitable for use as a soil amendment was developed. Concentrations of 1.7·10 7 -2.2·10 7 and 1.3·10 7 -2.1·10 7 CFU g -1 DM for Bt viable cells and spores, respectively, were obtained in the final material. As the results confirmed, Bt-enriched compost-like material with potential biopesticide properties can be produced from non-sterile biowaste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka
2016-01-01
In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.
Physical pretreatment of biogenic-rich trommel fines for fast pyrolysis.
Eke, Joseph; Onwudili, Jude A; Bridgwater, Anthony V
2017-12-01
Energy from Waste (EfW) technologies such as fluidized bed fast pyrolysis, are beneficial for both energy generation and waste management. Such technologies, however face significant challenges due to the heterogeneous nature, particularly the high ash contents of some municipal solid waste types e.g. trommel fines. A study of the physical/mechanical and thermal characteristics of these complex wastes is important for two main reasons; (a) to inform the design and operation of pyrolysis systems to handle the characteristics of such waste; (b) to control/modify the characteristics of the waste to fit with existing EFW technologies via appropriate feedstock preparation methods. In this study, the preparation and detailed characterisation of a sample of biogenic-rich trommel fines has been carried out with a view to making the feedstock suitable for fast pyrolysis based on an existing fluidized bed reactor. Results indicate that control of feed particle size was very important to prevent problems of dust entrainment in the fluidizing gas as well as to prevent feeder hardware problems caused by large stones and aggregates. After physical separation and size reduction, nearly 70wt% of the trommel fines was obtained within the size range suitable for energy recovery using the existing fast pyrolysis system. This pyrolyzable fraction could account for about 83% of the energy content of the 'as received' trommel fines sample. Therefore there was no significant differences in the thermochemical properties of the raw and pre-treated feedstocks, indicating that suitably prepared trommel fines samples can be used for energy recovery, with significant reduction in mass and volume of the original waste. Consequently, this can lead to more than 90% reduction in the present costs of disposal of trommel fines in landfills. In addition, the recovered plastics and textile materials could be used as refuse derived fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Irmak Aslan, Dilan; Parthasarathy, Prakash; Goldfarb, Jillian L; Ceylan, Selim
2017-10-01
Land applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis. This work is the first to probe the appropriate reaction model of waste tire pyrolysis. The average activation energy of pyrolysis was determined via iso-conversional methods over a mass fraction conversion range between 0.20 and 0.80 to be 162.8±23.2kJmol -1 . Using the Master Plots method, a reaction order of three was found to be the most suitable model to describe the pyrolytic decomposition. This suggests that the chemical reactions themselves (cracking, depolymerization, etc.), not diffusion or boundary layer interactions common with carbonaceous biomasses, are the rate-limiting steps in the pyrolytic decomposition of waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.
Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.
Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter
2010-11-01
The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bano, Shahina; Pervez, Shamsh; Chow, Judith C; Matawle, Jeevan Lal; Watson, John G; Sahu, Rakesh Kumar; Srivastava, Anjali; Tiwari, Suresh; Pervez, Yasmeen Fatima; Deb, Manas Kanti
2018-06-15
To develop coarse particle (PM 10-2.5 , 2.5 to 10μm) chemical source profiles, real-world source sampling from four domestic cooking and seven industrial processing facilities were carried out in "Raipur-Bhilai" of Central India. Collected samples were analysed for 32 chemical species including 21 elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Se, V, and Zn) by atomic absorption spectrophotometry (AAS), 8 water-soluble ions (Na + , K + , Mg 2+ , Ca 2+ , Cl - , F - , NO 3 - , and SO 4 2- ) by ion chromatography, ammonium (NH 4 + ) by spectrophotometry, and carbonaceous fractions (OC and EC) by thermal/optical transmittance. The carbonaceous fractions were most abundant fraction in household fuel and municipal solid waste combustion emissions while elemental species were more abundant in industrial emissions. Most of the elemental species were enriched in PM 2.5 (<2.5μm) size fraction as compared to the PM 10-2.5 fraction. Abundant Ca (13-28%) was found in steel-rolling mill (SRM) and cement production industry (CPI) emissions, with abundant Fe (14-32%) in ferro-manganese (FEMNI), steel production industry (SPI), and electric-arc welding emissions. High coefficients of divergence (COD) values (0.46 to 0.88) among the profiles indicate their differences. These region-specific source profiles are more relevant to source apportionment studies in India than profiles measured elsewhere. Copyright © 2018. Published by Elsevier B.V.
Colombo, Bianca; Favini, Francesca; Scaglia, Barbara; Sciarria, Tommy Pepè; D'Imporzano, Giuliana; Pognani, Michele; Alekseeva, Anna; Eisele, Giorgio; Cosentino, Cesare; Adani, Fabrizio
2017-01-01
In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. The optimized acidogenic process resulted in an OA production of 151 g kg -1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg -1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg -1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg -1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙10 5 kDa with a low polydispersity index, i.e. 1.4. This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.
Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo
2017-08-01
This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury <0.0064 mg MJ -1 and 80th percentile <0.0068 mg MJ -1 . The solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).
d'Antonio, Luca; Fabbricino, Massimiliano; Pontoni, Ludovico
2015-01-01
The paper investigates, at a laboratory scale, the applicability of anaerobic digestion for the treatment of pressed-off leachate produced in a biomechanical treatment plant for municipal solid waste. Batch tests show that the anaerobic process proceeds smoothly and produces about 10,000 mL of methane per litre of treated leachate. The process is characterized by a lag phase lasting about 30 days, and is completed in about 2 months. Chemical oxygen demand (COD) and volatile fatty acids monitoring allows studying process kinetics that are modelled through a triple linear expression. Physical and biological treatments are also investigated to reduce the residual organic charge of the produced digestate. The best performances are obtained via aerobic degradation followed by assisted sedimentation. This cycle reduces the residual COD of about 85%, and allows the correct disposal of the final waste stream.
Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J
2009-08-01
This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.
Durso, Lisa M.; Harhay, Dayna M.; Schmidt, John W.
2015-01-01
This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two “low impact” environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments. PMID:26197056
Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W
2015-01-01
This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments.
Evolution of various fractions during the windrow composting of chicken manure with rice chaff.
Kong, Zhijian; Wang, Xuanqing; Liu, Qiumei; Li, Tuo; Chen, Xing; Chai, Lifang; Liu, Dongyang; Shen, Qirong
2018-02-01
Different fractions during the 85-day windrow composting were characterized based on various parameters, such as physiochemical properties and hydrolytic enzyme activities; several technologies were used, including spectral scanning techniques, confocal laser scanning microscopy (CLSM) and 13 C Nuclear Magnetic Resonance Spectroscopy ( 13 C NMR). The evaluated parameters fluctuated strongly during the first 3 weeks which was the most active period of the composting process. The principal components analysis (PCA) results showed that four classes of the samples were clearly distinguishable, in which the physiochemical parameters were similar, and that the dynamics of the composting process was significantly influenced by C/N and moisture content. The 13 C NMR results indicated that O-alkyl-C was the predominant group both in the solid and water-soluble fractions (WSF), and the decomposition of O-alkyl-C mainly occurred during the active stage. In general, the various parameters indicated that windrow composting is a feasible treatment that can be used for the resource reuse of agricultural wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.
Sun, Mei; Sun, Wenjie; Barlaz, Morton A
2016-05-01
Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production potential of sulfur-containing wastes. Copyright © 2016 Elsevier B.V. All rights reserved.
Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.
Chan, Wen Ning; Holtzapple, Mark T
2003-11-01
The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.
Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.
Vázquez, M A; de la Varga, D; Plana, R; Soto, M
2017-07-04
The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.
An Industrial Ecology Approach to Municipal Solid Waste ...
The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.
Cannon shredding of municipal solid waste for the preparation of biological feedstock
NASA Astrophysics Data System (ADS)
Burke, J.
1981-04-01
Explosive decompression as a method of size reduction of materials found in municipal solid waste (MSW) was studied and preliminary data related to the handling and wet separation of exploded material was gathered. Steam was emphasized as the source of pressure. Municipal refuse was placed in an 8-ft long, 10.75-in. ID steel cannon which was sealed and pressurized. After an appropriate time, the cannon muzzle closure was opened and the test material expelled from the cannon through a constrictive orifice, resulting in explosive decompression. Flash evaporation of pressurized saturated water, expansion of steam, and the strong turbulence at the cannon muzzle accomplished size reduction. Hydraulic processing is shown to be an effective technique for separating heavy and light fractions.
Thermo-Catalytic Reforming of municipal solid waste.
Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas
2017-10-01
Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content <7wt.% and water content <4wt.%. Due to the bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco
2017-12-01
The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yadav, Pooja; Samadder, S R
2018-06-01
Selection of suitable municipal solid waste management (MSWM) options is one of the major challenges in urban areas of the developing countries. Success of MSWM requires accurate data of generation rate, composition and physico-chemical characteristics of solid wastes. Improper handling of solid waste can have significant environmental and aesthetical impacts. The present study proposes a new method (applicability index - P ik values) for identifying the most appropriate disposal option with the help of applicability values of Composting-C P , Incineration-I P and Landfill-L P for individual components of MSW based on the results of the physico-chemical analysis of the collected representative solid waste samples from the study area, Dhanbad, India. The mean values of moisture content, carbon, hydrogen, oxygen, nitrogen, sulfur, volatile organic carbon, fixed carbon, ash content, density and calorific values (CV) of individual components were used as input values in this process. Based on the proposed applicability index (P ik ), the highest P ik values were obtained for incineration (I P ) for plastics, polythene, paper, coconut shell, wood, cardboard, textile, thermocol (polystyrene), rubber, sugarcane bagasse, cow dung and leather wastes (I P > C P > L P ) due to high CV of these solid waste components; the highest P ik values were obtained for composting (C P ) of kitchen waste (C P > I P > L P ); and the highest P ik values for inert wastes were obtained for landfill option (L P > I P > C P ). The highest P ik value for a particular waste for a specific treatment option signifies that the waste is suitable for treatment/disposal using that option.
Code of Federal Regulations, 2014 CFR
2014-07-01
... gases, liquids, or solids through the heating of municipal solid waste, and the gases, liquids, or... diluent gas) for subsequent on-or off-site analysis; integrated sample(s) collected are representative of... arithmetic average flue gas temperature measured at the particulate matter control device inlet during four...
Code of Federal Regulations, 2013 CFR
2013-07-01
... gases, liquids, or solids through the heating of municipal solid waste, and the gases, liquids, or... diluent gas) for subsequent on-or off-site analysis; integrated sample(s) collected are representative of... arithmetic average flue gas temperature measured at the particulate matter control device inlet during four...
Code of Federal Regulations, 2012 CFR
2012-07-01
... gases, liquids, or solids through the heating of municipal solid waste, and the gases, liquids, or... diluent gas) for subsequent on-or off-site analysis; integrated sample(s) collected are representative of... arithmetic average flue gas temperature measured at the particulate matter control device inlet during four...
Liu, Yili; Sun, Weixin; Liu, Jianguo
2017-10-01
Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.
In situ Spectroscopic Analysis and Quantification of [Tc(CO)3]+ in Hanford Tank Waste.
Branch, Shirmir D; French, Amanda D; Lines, Amanda M; Soderquist, Chuck Z; Rapko, Brian M; Heineman, William R; Bryan, Samuel A
2018-06-12
The quantitative conversion of non-pertechnetate [Tc(CO)3]+ species in nuclear waste storage tank 241-AN-102 at the Hanford Site is demonstrated. A waste sample containing the [Tc(CO)3]+ species is added to a developer solution that rapidly converts the non-emissive species into a luminescent complex, which is detected spectroscopically. This method was first demonstrated using a [Tc(CO)3]+ sample non-waste containing matrix to determine a detection limit (LOD), resulting in a [Tc(CO)3]+ LOD of 2.20 × 10-7 M, very near the LOD of the independently synthesized standard (2.10 × 10-7 M). The method was then used to detect [Tc(CO)3]+ in a simulated waste using the standard addition method, resulting in a [Tc(CO)3]+ concentration of 1.89 × 10-5 M (within 27.7% of the concentration determined by β- liquid scintillation counting). Three samples from 241-AN-102 were tested by the standard addition method: (1) a 5 M Na adjusted fraction, (2) a fraction depleted of 137Cs, (3) and an acid-stripped eluate. The concentrations of [Tc(CO)3]+ in these fractions were determined to be 9.90 × 10-6 M (1), 0 M (2), and 2.46 × 10-6 M (3), respectively. The concentration of [Tc(CO)3]+ in the as-received AN-102 tank waste supernatant was determined to be 1.84 × 10-5 M.
Processing and analyzing solid waste samples from large and costly sampling events in a timely manner is often difficult. As part of a Cooperative Research and Development Agreement (CRADA), the U.S. EPA and Waste Management Inc. (WMI) are investigating the conversion of landfill...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrild, Hanna; Larsen, Anna W., E-mail: awla@env.dtu.dk; Christensen, Thomas H.
Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the casemore » if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.« less
A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.
Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L
2006-04-19
Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.
Liedl, B E; Bombardiere, J; Chaffield, J M
2006-01-01
Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.
Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and E h values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizingmore » with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry E h value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO 2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an E h range of approximately 0.7 V. However, the highest and lowest E h values achieved of ~+0.5 V and ~-0.2 V were significantly less positive and less negative, respectively, than the target values. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively.« less
Qin, Yong; Wang, Haoshu; Li, Xiangru; Cheng, Jay Jiayang; Wu, Weixiang
2017-12-01
Magnetic biochar is a potential economical anaerobic digestion (AD) additive. To better understand the possible role of magnetic biochar for the improvement of biomethanization performance and the retention of methanogens, magnetic biochar fabricated under different precursor concentrations were introduced into organic fraction of municipal solid waste (OFMSW) slurry AD system. Results showed that methane production in AD treatment with magnetic biochar fabricated under 3.2g FeCl 3 :100g rice-straw ratio increased by 11.69% compared with control treatment without biochar addition, due to selective enrichment of microorganisms participating in anaerobic digestion on magnetic biochar. AD treatment with magnetic biochar fabricated under 32g FeCl 3 :100g rice-straw ratio resulted in 38.34% decreasement of methane production because of the competition of iron oxide for electron. Furthermore, 25% of total methanogens were absorbed on magnetic biochar and can be harvested with magnet, which can offer a potential solution for preventing the methanogens loss in the anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pavan, P; Battistoni, P; Cecchi, F; Mata-Alvarez, J
2000-01-01
The results of a two-phase system operated in different conditions, treating the source-sorted organic fraction of municipal solid waste (SS-OFMSW), coming mainly from fruit and vegetable markets, are presented. Hydraulic retention time (HRT) in the hydrolytic reactor and in the methanogenic reactor and also the temperature in the hydrolytic reactor (mesophilic and thermophilic conditions) are varied in order to evaluate the effect of these factors. The methanogenic reactor is always operated within the thermophilic range. Optimum operating conditions are found to be around 12 days (total system) using the mesophilic range of temperature in the first reactor. Specific gas production (SGP) in these conditions is around 0.6 m3/kg TVS. A kinetic study is also carried out, using the first and the step diffusional models. The latter gives much better results, with fitted constants comparable to other studies. Finally, a comparison with a one-phase system is carried out, showing that a two-phase system is much more appropriate for the digestion of this kind of highly biodegradable substrate in thermophilic conditions.
Rapid mineralisation of the Organic Fraction of Municipal Solid Waste.
Martínez-Valdez, F J; Martínez-Ramírez, C; Martínez-Montiel, L; Favela-Torres, E; Soto-Cruz, N O; Ramírez-Vives, F; Saucedo-Castañeda, G
2015-03-01
The effect of pH, C/N ratio, addition of a microbial consortium (MC) and temperature upon mineralisation of Organic Fraction of Municipal Solid Waste (OFMSW) was studied; mineralisation was measured through the CO2 production rate and total CO2 formation. Through this process up to 432.9mg of CO2g(-1) initial dry matter (IDM) after 2days of treatment was obtained. It was found that under a slightly acidic pH (5-6) and C/N of 30, the mineralisation process was accelerated. Moreover, temperature (27-50°C) had no effect on the total CO2 produced. The highest CO2 production rate (5.28d(-1)) was observed at 27°C, C/N ratio of 30 and 8% of microbial consortium; it is at least 3.52 times higher than that reported (1.5d(-1)). The highest release of reducing sugars was determined at 50°C, possibly due to an increase in hydrolytic enzymes. Results suggest the potential use of rapid mineralisation of OFMSW for further friendly environmental processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol
2015-03-01
This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sambusiti, C; Monlau, F; Barakat, A
2016-07-01
This study investigates the feasibility of producing bioethanol from solid digestate after a mechanical fractionation (i.e. centrifugal milling), in order to improve the energy recovery from agricultural wastes and the sustainability of anaerobic digestion plants. A bioethanol yield of 37gkg(-1)TS was evaluated for the solid digestate fraction. Mass and energetic balances were performed and compared between two scenarios: (A) one-stage bioethanol fermentation and (B) two-stage anaerobic digestion-bioethanol fermentation, in order to evaluate the feasibility and the advantages of the two-stage process. Results revealed that, compared to the one-stage process, the dual anaerobic digestion-bioethanol process permitted: (i) to diversify biofuels production; (ii) to provide the thermal energy sufficient for drying digestate (13,351kWhthday(-1)), for the subsequent milling step; (iii) to reduce the electric energy requirement for the milling step (from 23,880 to 3580kWhelday(-1)); (iv) to produce extra electrical energy of 8483kWhelday(-1); (v) to improve the reduction of waste streams generated (from 13% to 54% of organic matter removal). Copyright © 2016. Published by Elsevier Ltd.
An evaluation of the occupational health risks to workers in a hazardous waste incinerator.
Bakoğlu, Mithat; Karademir, Aykan; Ayberk, Savaş
2004-03-01
A study was conducted to evaluate the health impact of airborne pollutants on incinerator workers at IZAYDAS Incinerator, Turkey. Ambient air samples were taken from two sampling points in the incinerator area and analyzed for particulate matter, heavy metals, volatile and semi-volatile organic compounds (VOCs and SVOCs) and dioxins. The places where the maximum exposure was expected to occur were selected in determining the sampling points. The first point was placed in the front area of the rotary kiln, between the areas of barrel feeding, aqueous and liquid waste storage and solid waste feeding, and the second one was near the fly ash transfer line from the ash silo. Results were evaluated based on the regulations related to occupational health. Benzene, dibromochloropropane (DBCP) and hexachlorobutadiene (HCBD) concentrations in the ambient air of the plant were measured at levels higher than the occupational exposure limits. Dioxin concentrations were measured as 0.050 and 0.075 pg TEQ.m(-3), corresponding to a daily intake between 0.007 and 0.01 pg TEQ. kg body weight(-1).day (-1). An assessment of dioxin congener and homologue profiles suggested that gaseous fractions of dioxin congeners are higher in front of the rotary kiln, while most of them are in particle-bound phases near the ash conveyor. Finally, the necessity of further studies including occupational health and medical surveillance assessments on the health effects of the pollutants for the workers and the general population in such an industrialized area was emphasized.
Hauser, Frank M; Hulshof, Janneke W; Rößler, Thorsten; Zimmermann, Ralf; Pütz, Michael
2018-04-18
Chemical waste from the clandestine production of amphetamine is of forensic and environmental importance due to its illegal nature which often leads to dumping into the environment. In this study, 27 aqueous amphetamine waste samples from controlled Leuckart reactions performed in Germany, the Netherlands, and Poland were characterised to increase knowledge about the chemical composition and physicochemical characteristics of such waste. Aqueous waste samples from different reaction steps were analysed to determine characteristic patterns which could be used for classification. Conductivity, pH, density, ionic load, and organic compounds were determined using different analytical methods. Conductivity values ranged from 1 to over 200 mS/cm, pH values from 0 to 14, and densities from 1.0 to 1.3 g/cm 3 . A capillary electrophoresis method with contactless conductivity detection (CE-C 4 D) was developed and validated to quantify chloride, sulphate, formate, ammonium, and sodium ions which were the most abundant ions in the investigated waste samples. A solid-phase extraction sample preparation was used prior to gas chromatography-mass spectrometry analysis to determine the organic compounds. Using the characterisation data of the known samples, it was possible to assign 16 seized clandestine waste samples from an amphetamine production to the corresponding synthesis step. The data also allowed us to draw conclusions about the synthesis procedure and used chemicals. The presented data and methods could support forensic investigations by showing the probative value of synthesis waste when investigating the illegal production of amphetamine. It can also act as starting point to develop new approaches to tackle the problem of clandestine waste dumping. Copyright © 2018 John Wiley & Sons, Ltd.
Biogasification of municipal solid wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, L.F.; Savage, G.M.; Trezek, G.J.
1981-06-01
A series of experiments on the anaerobic digestion of the organic fraction of municipal refuse was performed. The refuse fraction used in the study was one of the portions segregated in a resource recovery system developed at the University of California, Berkeley. The scale of experiments includes 4, 9, and 1600-L digesters. The refuse used as feed was enriched by the addition of raw sewage sludge in various ratios, i.e., from 0-100% of the total volatile solids. No other sources of nutrients or chemicals for pH control were introduced into the reactors. Organic loading rates ranging from 1.1 to 6.4more » g of volatile solids/Ld were obtained. Typical hydraulic detention times were 15 to 30 days. Temperatures were kept within the range of 72 to 104 F (22 to 40 C). Digestion efficiency was based on energy conversion and gas production.« less
NASA Astrophysics Data System (ADS)
Abdullah, N. O.; Pandebesie, E. S.
2018-03-01
Based on Indonesian Government Regulation number 18, 2008, solid waste management should be conducted from the source to minimize the amount of waste. The process includes the waste from domestic, commercial, and institution. This also includes in 3R program (reduce, reuse, and recycle). Vegetable waste from market is a potential material to produce biogas due to its chemical composition (hemi-cellulose, cellulose, and lignin) which transform the biomass to be the raw material of biogas. Acid substance of vegetable becomes an obstacle in process of producing biogas. There has to be buffer material which can improve the performance of biogas process. Cow manure is a material which can be easily obtained as buffer. This research used 24 biogas reactor in volume 6 L by batch method. Biogas volume is measured by checking the preferment in manometer. Methane measurement is conducted by using Gas Chromatography (GC) Hewlett Packard (HP-series 6890) in day 15 and 30. The research was started by sample characterization, sample test by total solid analysis, volatile solid, lignin, ratio C/N, ammonium, and ash. Analysis of pH, temperature, and biogas volume is conducted every day.
Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer
2016-12-01
Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess capacity of the Norwegian WtE sector and to reach Norway's ambitious political goals for environmentally friendly energy systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
A study of tritium in municipal solid waste leachate and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutch Jr, R. D.; Manhattan College, Riverdale, NY; Columbia Univ., New York, NY
2008-07-15
It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPAmore » MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)« less
Virus occupational exposure in solid waste processing facilities.
Carducci, Annalaura; Federigi, Ileana; Verani, Marco
2013-11-01
It is well known that workers involved in the management of solid waste are at risk of exposure to bioaerosol, which is generally studied in relation to bacteria, fungi, and endotoxins. However, to date, there have been no reports on the incidence of work-related infectious diseases. To determine if occupational exposure to viruses occurs upon exposure to waste-related activities, monitoring was carried out in a landfill, a waste recycling plant, an incineration plant, and a waste collection vehicles. Air and surfaces were sampled and analyzed for torque teno virus (TTV), human adenovirus (HAdV), norovirus, rotavirus, and enterovirus using polymerase chain reaction (PCR)-based techniques. Positivity was confirmed by sequencing and quantification with real-time PCR; infectivity was also tested for culturable viruses. Samples were analyzed in parallel for mean total bacterial and fungi counts in both the summer and winter. In total, 30% (12/40) of air and 13.5% (5/37) of surface samples collected in plants were positive for HAdV and TTV. Among the eight HAdV-positive samples, six (75%), revealed in landfill and recycling plant air and in incinerator and waste vehicles surfaces, were able to replicate in cell culture and were subsequently confirmed as infective. The frequency of detection of virus-positive samples was similar in both seasons, but with evident differences in the type of virus detected: TTV and HAdV were more frequently detected in the summer and winter, respectively. The area of highest viral contamination was the paper selection landfill. Fungi and bacterial contamination did not correlate with viral presence or concentration. In conclusion, we evidence that working with solid and liquid waste can lead to infectious viruses, included in Group 2 of the European Directive 90/679/CEE pathogens list; thus, further investigation on the sources and routes of contamination is needed in order to assess the occupational risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.
This document is a report of the analytical results for samples collected from the radioactive wastes in Tank 241-U-202 at the Hanford Reservation. Core samples were collected from the solid wastes in the tank and underwent safety screening analyses including differential scanning calorimetry, thermogravimetric analysis, and total alpha analysis. Results indicate that no safety screening notification limits were exceeded.
Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores
2018-07-01
The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R
The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based uponmore » the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less
Chromium uptake by rice and accumulation in soil amended with municipal solid waste compost.
Bhattacharyya, P; Chakraborty, A; Chakrabarti, K; Tripathy, S; Powell, M A
2005-09-01
Effect of addition of municipal solid waste compost (MSWC) on chromium (Cr) content of submerged rice paddies was studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the various chromium fractions in MSWC and cow dung manure (CDM). Chromium was significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Chromium content in rice straw was higher than in rice grain. Chromium bound with organic matter in MSWC best correlated with straw Cr (r=0.99**) followed by Fe and Mn oxides (r=0.97*) and water soluble as well as exchangeable fractions (r=0.96*). The water soluble and the exchangeable fractions in MSWC best correlated with grain Cr (r=0.98*). The Cr content of rice grain had the highest correlation with water soluble and exchangeable Cr (r=0.99**) while the straw Cr best correlated with the Fe and Mn oxides (r=0.98*). Both the carbonate bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain Cr. MSWC would be a valuable resource for agriculture if it can be used safely, but long-term use may require the cessation of the dumping by the leather tanneries and other major contributors of pollutants.
Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.
Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul
2018-01-01
The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.
Milani, M; Montorsi, L; Stefani, M
2014-07-01
The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.
Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai
2017-06-01
Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.
Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar
2016-05-01
Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-11-01
Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.
Charnier, Cyrille; Latrille, Eric; Jimenez, Julie; Lemoine, Margaux; Boulet, Jean-Claude; Miroux, Jérémie; Steyer, Jean-Philippe
2017-01-01
The development of anaerobic digestion involves both co-digestion of solid wastes and optimization of the feeding recipe. Within this context, substrate characterisation is an essential issue. Although it is widely used, the biochemical methane potential is not sufficient to optimize the operation of anaerobic digestion plants. Indeed the biochemical composition in carbohydrates, lipids, proteins and the chemical oxygen demand of the inputs are key parameters for the optimisation of process performances. Here we used near infrared spectroscopy as a robust and less-time consuming tool to predict the solid waste content in carbohydrates, lipids and nitrogen, and the chemical oxygen demand. We built a Partial Least Square regression model with 295 samples and validated it with an independent set of 46 samples across a wide range of solid wastes found in anaerobic digestion units. The standard errors of cross-validation were 90mgO 2 ⋅gTS -1 carbohydrates, 2.5∗10 -2 g⋅gTS -1 lipids, 7.2∗10 -3 g⋅gTS -1 nitrogen and 99mgO 2 ⋅gTS -1 chemical oxygen demand. The standard errors of prediction were 53mgO 2 ⋅gTS -1 carbohydrates, 3.2∗10 -2 g⋅gTS -1 lipids, 8.6∗10 -3 g⋅gTS -1 nitrogen and 83mgO 2 ⋅gTS -1 chemical oxygen demand. These results show that near infrared spectroscopy is a new fast and cost-efficient way to characterize solid wastes content and improve their anaerobic digestion monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessing total and volatile solids in municipal solid waste samples.
Peces, M; Astals, S; Mata-Alvarez, J
2014-01-01
Municipal solid waste is broadly generated in everyday activities and its treatment is a global challenge. Total solids (TS) and volatile solids (VS) are typical control parameters measured in biological treatments. In this study, the TS and VS were determined using the standard methods, as well as introducing some variants: (i) the drying temperature for the TS assays was 105°C, 70°C and 50°C and (ii) the VS were determined using different heating ramps from room tempature to 550°C. TS could be determined at either 105°C or 70°C, but oven residence time was tripled at 70°C, increasing from 48 to 144 h. The VS could be determined by smouldering the sample (where the sample is burnt without a flame), which avoids the release of fumes and odours in the laboratory. However, smouldering can generate undesired pyrolysis products as a consequence of carbonization, which leads to VS being underestimated. Carbonization can be avoided using slow heating ramps to prevent the oxygen limitation. Furthermore, crushing the sample cores decreased the time to reach constant weight and decreased the potential to underestimate VS.
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Current status of solid waste management in small island developing states: A review.
Mohee, Romeela; Mauthoor, Sumayya; Bundhoo, Zumar M A; Somaroo, Geeta; Soobhany, Nuhaa; Gunasee, Sanjana
2015-09-01
This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographic regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29kg/capita/day while that for OECD countries was at a mean value of 1.35kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the expense of sustainable waste treatment technologies such as composting, anaerobic digestion and recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pilot installation for the thermo-chemical characterisation of solid wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marculescu, C.; Antonini, G.; Badea, A.
The increasing production and the large variety of wastes require operators of thermal treatment units to continuously adapt the installations or the functioning parameters to the different physical and chemical properties of the wastes. Usually, the treated waste is encountered in the form of heterogeneous mixtures. The classical tests such as thermogravimetry and calorimetric bomb operate component by component, separately. In addition to this, they can analyse only small quantities of waste at a time (a few grams). These common tests are necessary but insufficient in the global waste analysis in the view further thermal treatment. This paper presents anmore » experimental installation, which was designed and built at the CNRS Science Division, Department of Industrial Methods, Compiegne University of Technology, France. It allows the determination of waste thermal and chemical properties by means of thermal treatment. Also, it is capable of continuously analysing significant quantities of waste (up to 50 kg/h) as compared to the classical tests and it can work under various conditions: {center_dot}oxidant or reductive atmosphere (on choice); {center_dot}variable temperature between 400 and 1000 deg. C; {center_dot}independently set residence time of treated sample in the installation and flow conditions. The installation reproduces the process conditions from incinerators or pyrolysis reactors. It also provides complete information on the kinetics of the waste thermal degradation and on the pollutant emissions. Using different mixtures of components present in the municipal solid waste and also in the reconstituted MSW samples, we defined a series of criteria for characterising waste behaviour during the stages of the main treatment process such as: feeding, devolatilisation/oxidation, advancement, solid residue evacuation, and pollutants emission.« less
Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.
Collivignarelli, Carlo; Sorlini, Sabrina
2002-01-01
This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.
Lewis, Leroy C.; Trammell, David R.
1986-01-01
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Lewis, L.C.; Trammell, D.R.
1983-10-12
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
[Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].
Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong
2016-03-15
Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.
Singh, Umesh Kumar; Kumar, Manish; Chauhan, Rita; Jha, Pawan Kumar; Ramanathan, Al; Subramanian, V
2008-06-01
In present study focus has been given on estimating quality and toxicity of waste with respect to heavy metals and its impact on groundwater quality, using statistical and empirical relationships between different hydrochemical data, so that easy monitoring may be possible which in turn help the sustainable management of landfill site and municipal solid waste. Samples of solid waste, leachate and groundwater were analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrochemical nature. Results suggest the existence of an empirical relationship between some specific indicator parameters like heavy metals of all three above mentioned sample type. Further, K/Mg ratio also indicates three groundwater samples heavily impacted from leachate contamination. A good number of samples are also showing higher values for NO(3)(-) and Pb than that of World Health Organization (WHO) drinking water regulation. Predominance of Fe and Zn in both groundwater and solid waste samples may be due to metal plating industries in the area. Factor analysis is used as a tool to explain observed relation between numerous variables in term of simpler relation, which may help to deduce the strength of relation. Positive loading of most of the factors for heavy metal clearly shows landfill impact on ground water quality especially along the hydraulic gradient. Cluster analysis, further substantiates the impact of landfill. Two major groups of samples obtained from cluster analysis suggest that one group comprises samples that are severely under the influence of landfill and contaminated leachates along the groundwater flow direction while other assorted with samples without having such influence.
Investigation of solid organic waste processing by oxidative pyrolysis
NASA Astrophysics Data System (ADS)
Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.
2017-11-01
A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.
Serrano, A; Pinto-Ibieta, F; Braga, A F M; Jeison, D; Borja, R; Fermoso, F G
2017-12-01
Low concentrations of trace elements in many organic wastes recommend their supplementation in order to avoid potential limitations. Different chelating agents have been used to ensure an adequate trace metal pool in the soluble fraction, by forming dissolved complexes. Ethylenediaminetetraacetic acid (EDTA) is probably the most common, although several negative effects could be associated with its usage. Biomethane potential tests were performed using Olive Mill Solid Waste as the substrate, supplementing different combinations of Fe, Co, Ni, Ba, always under the presence of EDTA. Results show that Ni and Co slightly recovered biodegradability. However, Ba supplementation resulted in worsening the methane yield coefficient in all cases. High concentration of EDTA led to decrease in the activity of anaerobic digestion. High availability of EDTA induces the capture of trace metals like Co or Ni, key trace metals for anaerobic biomass activity. While supplementing trace metals, the addition of Ba and/or EDTA must be carefully considered.
Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi
2018-02-15
The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zakiyya, Nida Maisa; Sarli, Prasanti Widyasih; Soewondo, Prayatni
2017-11-01
In developing countries the awareness on the importance of sanitation facilities, whether it is for municipal solid waste or domestic wastewater treatment, is still very low. Jodipan and Ksatrian Village, in Malang, East Java, are two slum areas that have recently been improved visually by using simple colorful paints. The visual improvement was expected to increase the resident's awareness on the importance of keeping the area clean; adjacent to the project, a new municipal waste management system was also put in place, changing the president's behaviour towards municipal solid waste. This study focuses on the relationship between community awareness in municipal solid waste management and domestic wastewater management. The result is expected to be an input for the government to enhance wastewater infrastructure program and its sustainability, related to its awareness on municipal solid waste. A descriptive model through questionnaire to 48 households of Jodipan sub district in Kampung Warna-warni and 69 households of Ksatrian sub district in Kampung 3D by random sampling, with an error of 0.1, was used to conduct this research. A nonlinear relationship between the change in awareness in municipal solid waste management (MSW) and domestic wastewater management was observed, with only 0.1312 of determination coefficient. Weak Spearman correlation coefficient number was found, ranging from 0.284 to 0.39, indicating another parameter turned into a role on affecting the awareness of wastewater. Further study about another parameter (eg. social and economic parameter) intervension on sanitation awareness could be investigated.
Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie
2014-08-01
Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.
Physico-chemical properties and performance of high oleic and palm-based shortenings.
Ramli, Muhamad Roddy; Lin, Siew Wai; Yoo, Cheah Kien; Idris, Nor Aini; Sahri, Miskandar Mat
2008-01-01
Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.
Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio
2018-01-01
Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2 h -1 kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meirhofer, Martina; Piringer, Gerhard; Rixrath, Doris; Sommer, Manuel; Ragossnig, Arne Michael
2013-10-01
Heavy fractions resulting from mechanical treatment stages of mechanical-biological waste treatment plants are posing very specific demands with regard to further treatment (large portions of inert and high-caloric components). Based on the current Austrian legal situation such a waste stream cannot be landfilled and must be thermally treated. The aim of this research was to evaluate if an inert fraction generated from this waste stream with advanced separation technologies, two sensor-based [near-infrared spectroscopy (NIR), X-ray transmission (XRT)] and two mechanical systems (wet and dry) is able to be disposed of. The performance of the treatment options for separation was evaluated by characterizing the resulting product streams with respect to purity and yield. Complementing the technical evaluation of the processing options, an assessment of the economic and global warming effects of the change in waste stream routing was conducted. The separated inert fraction was evaluated with regard to landfilling. The remaining high-caloric product stream was evaluated with regard to thermal utilization. The results show that, in principal, the selected treatment technologies can be used to separate high-caloric from inert components. Limitations were identified with regard to the product qualities achieved, as well as to the economic expedience of the treatment options. One of the sensor-based sorting systems (X-ray) was able to produce the highest amount of disposeable heavy fraction (44.1%), while having the lowest content of organic (2.0% C biogenic per kg waste input) components. None of the high-caloric product streams complied with the requirements for solid recovered fuels as defined in the Austrian Ordinance on Waste Incineration. The economic evaluation illustrates the highest specific treatment costs for the XRT (€ 23.15 per t), followed by the NIR-based sorting system (€ 15.67 per t), and the lowest costs for the air separation system (€ 10.79 per t). Within the ecological evaluation it can be shown that the results depend strongly on the higher heating value of the high caloric light fraction and on the content of C biogenic of the heavy fraction. Therefore, the XRT system had the best results for the overall GWP [-14 kg carbon dioxide equivalents (CO2 eq) per t of input waste] and the NIR-based the worst (193 kg CO2 eq per t of input waste). It is concluded that three of the treatment options would be suitable under the specific conditions considered here. Of these, sensor-based sorting is preferable owing to its flexibility.
Gravity packaging final waste recovery based on gravity separation and chemical imaging control.
Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco
2017-02-01
Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.
Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo
2013-10-15
Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.
Solid waste production and its management in dental clinics in Gorgan, northern Iran.
Nabizadeh, R; Faraji, H; Mohammadi, A A
2014-10-01
Waste produced in dental clinics has been the topic of investigations for many years. These waste materials have important health impacts and are hazardous to humans and the environment. To investigating solid waste production and its management in dental clinics in Gorgan, northern Iran. In this cross-sectional study, 45 of 143 public dental practices and 5 of 25 private dental practices were selected and studied. From each clinic, 3 samples were taken and analyzed at the end of successive working days (Tuesday and Wednesday). Samples were manually sorted into 50 components. The measured components were then classified on the basis of their characteristics, hazard potentials, and WHO classification. The total annual amount of dental waste produced in public and private dental practices in Gorgan was 12 015.1 and 3135.0 kg, respectively. Production percentages of infectious, domestic, chemical and pharmaceutical, and toxic waste in public dental practices were 38.4%, 33.7%, 6.6%, and 0.6%, respectively. The percentages for private practices were 8.7%, 10.6%, 1.1%, and 0.1%, respectively. Dental waste management in Gorgan is inadequate; dental waste is not properly segregated, collected, and disposed, as demanded by the WHO. Employees in dentist offices must be trained in correct handling of waste products and the associated risks.
Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom
2013-10-15
This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most effective treatment process, achieving consistently significant leaching stabilization, while also effectively washing out Cl ions, a requirement for the utilization of the ashes in construction applications. The benefits of carbonation were linked to the formation of significant quantities of Ca-carbonates, including appreciable quantities of the Aragonite polymorph formed in the slurry carbonated samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
EFFICIENT MONITORING OF HETEROGENEOUS MEDIA AND ELECTRONIC WASTES
The Agency's Office of Solid Waste and Emergency Response (OSWER) has recently issued improved guidance for the collection of "representative" samples from heterogeneous media. The Technology Innovation Office (TIO) has begun the development of a web-based handbook which advocat...
Process for preparing lubricating oil from used waste lubricating oil
Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.
1978-01-01
A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.
Leaching Characteristics of Hanford Ferrocyanide Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.
2009-12-21
A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindmark, Johan, E-mail: Johan.lindmark@mdh.se; Eriksson, Per; Thorin, Eva, E-mail: Eva.Thorin@mdh.se
2014-08-15
Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuousmore » mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, A.; Smith, R.; Hill, D.
2009-08-15
This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found tomore » be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.« less
Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments
2015-08-01
elements: • Expendable items: including materials such as stainless steel mixing bowls/spoons, decontamination supplies (buckets, brushes, distilled...PE samplers. Traditional sediment sampling equipment would include items such as decontamination fluids, stainless steel mixing bowls and spoons...hazardous/hazardous wastes (excess sediment, decontamination fluids). There is not expected to be a big difference in solid waste disposal costs
Fine grain separation for the production of biomass fuel from mixed municipal solid waste.
Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T
2016-01-01
The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sharma, Preeti; Melkania, Uma
2017-09-01
In the present study, the effect of furan derivatives (furfural and 5-hydroxymethylfurfural) and phenolic compounds (vanillin and syringaldehyde) on hydrogen production from organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. The inhibitors were applied in the concentration ranges of 0.25, 0.5, 1, 2 and 5g/L each. Inhibition coefficients of phenolic compounds were higher than those of furan derivatives and vanillin exhibited maximum inhibition coefficients correspondingly lowest hydrogen yield among all inhibitors. Furfural and 5-hydroxymethylfurfural addition resulted in an average decrease of 26.99% and 37.16% in hydrogen yield respectively, while vanillin and syringaldehyde resulted in 49.40% and 42.26% average decrease in hydrogen yield respectively. Further analysis revealed that Furfural and 5-hydroxymethylfurfural were completely degraded up to concentrations of 1g/L, while vanillin and syringaldehyde were degraded completely up to the concentration of 0.5g/L. Volatile fatty acid generation decreased with inhibitors addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caprai, V; Florea, M V A; Brouwers, H J H
2018-06-15
Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.
Julander, Anneli; Lundgren, Lennart; Skare, Lizbet; Grandér, Margaretha; Palm, Brita; Vahter, Marie; Lidén, Carola
2014-12-01
Electrical and electronic waste (e-waste) contains multiple toxic metals. However, there is currently a lack of exposure data for metals on workers in formal recycling plants. The objective of this study was to evaluate workers' exposure to metals, using biomarkers of exposure in combination with monitoring of personal air exposure. We assessed exposure to 20 potentially toxic metals among 55 recycling workers and 10 office workers at three formal e-waste recycling plants in Sweden. Workers at two of the plants were followed-up after 6 months. We collected the inhalable fraction and OFC (37-mm) fraction of particles, using personal samplers, as well as spot samples of blood and urine. We measured metal concentrations in whole blood, plasma, urine, and air filters using inductively coupled plasma-mass spectrometry following acid digestion. The air sampling indicated greater airborne exposure, 10 to 30 times higher, to most metals among the recycling workers handling e-waste than among the office workers. The exposure biomarkers showed significantly higher concentrations of chromium, cobalt, indium, lead, and mercury in blood, urine, and/or plasma of the recycling workers, compared with the office workers. Concentrations of antimony, indium, lead, mercury, and vanadium showed close to linear associations between the inhalable particle fraction and blood, plasma, or urine. In conclusion, our study of formal e-waste recycling shows that workers performing recycling tasks are exposed to multiple toxic metals. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Senapati, Pradipta Kumar; Mishra, Barada Kanta
2017-06-01
The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.
Indelicato, Serena; Orecchio, Santino; Avellone, Giuseppe; Bellomo, Sergio; Ceraulo, Leopoldo; Di Leonardo, Rossella; Di Stefano, Vita; Favara, Rocco; Candela, Esterina Gagliano; La Pica, Leonardo; Morici, Sabina; Pecoraino, Giovannella; Pisciotta, Antonino; Scaletta, Claudio; Vita, Fabio; Vizzini, Salvatrice; Bongiorno, David
2017-07-01
The aim of this study was to obtain information on the presence and levels of hazardous organic pollutants in groundwater located close to solid waste landfills. Eighty-two environmental contaminants, including 16 polycyclic aromatic hydrocarbons (PAHs), 20 volatile organic compounds (VOCs), 29 polychlorinated biphenyls (PCBs), 7 dioxins (polychlorinated dibenzo-p-dioxins, PCDDs) and 10 furans (polychlorinated dibenzofurans, PCDFs) were monitored in areas characterised by different geological environments surrounding three municipal solid waste landfills (Palermo, Siculiana and Ragusa) in Sicily (Italy) in three sampling campaigns. The total concentrations of the 16 PAHs were always below the legal threshold. Overall, the Fl/Fl + Py diagnostic ratio revealed that PAHs had a petrogenic origin. VOC levels, except for two notable exceptions near Palermo landfill, were always below the legal limit. As concerns PCB levels, several samples were found positive with levels exceeding the legal limits. It is worth noting that the % PCB distribution differs from that of commercial compositions. In parallel, some samples of groundwater containing PCDDs and PCDFs exceeding the legal threshold were also found. Among the 17 congeners monitored, the most abundant were the highest molecular weight ones.
Carlsson, My; Holmström, David; Bohn, Irene; Bisaillon, Mattias; Morgan-Sagastume, Fernando; Lagerkvist, Anders
2015-04-01
Several methods for physical pre-treatments of source sorted organic fraction of municipal solid waste (SSOFMSW) before for anaerobic digestion (AD) are available, with the common feature that they generate a homogeneous slurry for AD and a dry refuse fraction for incineration. The selection of efficient methods relies on improved understanding of how the pre-treatment impacts on the separation and on the slurry's AD. The aim of this study was to evaluate the impact of the performance of physical pre-treatment of SSOFMSW on greenhouse-gas (GHG) emissions and on the economy of an AD system including a biogas plant with supplementary systems for heat and power production in Sweden. Based on the performance of selected Swedish facilities, as well as chemical analyses and BMP tests of slurry and refuse, the computer-based evaluation tool ORWARE was improved as to accurately describe mass flows through the physical pre-treatment and anaerobic degradation. The environmental and economic performance of the evaluated system was influenced by the TS concentration in the slurry, as well as the distribution of incoming solids between slurry and refuse. The focus to improve the efficiency of these systems should primarily be directed towards minimising the water addition in the pre-treatment provided that this slurry can still be efficiently digested. Second, the amount of refuse should be minimised, while keeping a good quality of the slurry. Electricity use/generation has high impact on GHG emissions and the results of the study are sensitive to assumptions of marginal electricity and of electricity use in the pre-treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluidics platform and method for sample preparation
Benner, Henry W.; Dzenitis, John M.
2016-06-21
Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.
Mathematical modeling to predict residential solid waste generation.
Benítez, Sara Ojeda; Lozano-Olvera, Gabriela; Morelos, Raúl Adalberto; Vega, Carolina Armijo de
2008-01-01
One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R(2) were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.
López, Iván; Borzacconi, Liliana
2010-10-01
A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
Protano, Giuseppe; Nannoni, Francesco
2018-05-01
A geochemical study was carried out at the former Abbadia San Salvatore (ASS) mining site of the Monte Amiata ore district (Italy). Hg, As and Sb total contents and fractionation using a sequential extraction procedure were determined in soil and mining waste samples. Ore processing activities provided a different contribution to Hg contamination and concentration in soil fractions, influencing its behaviour as volatility and availability. Soils of roasting zone showed the highest Hg contamination levels mainly due to the deposition of Hg released as Hg 0 by furnaces during cinnabar roasting. High Hg contents were also measured in waste from the lower part of mining dump due to the presence of cinnabar. The fractionation pattern suggested that Hg was largely as volatile species in both uncontaminated and contaminated soils and mining waste, and concentrations of these Hg species increased as contamination increased. These findings were in agreement with the fact that the ASS mining site is characterized by high Hg concentrations in the air and the presence of Hg 0 liquid droplets in soil. Volatile Hg species were also prevalent in uncontaminated soils likely because the Monte Amiata region is an area characterized by anomalous fluxes of gaseous Hg from natural and anthropogenic inputs. At the ASS mining site soils were also contaminated by Sb, while As contents were comparable with its local background in soil. In all soil and waste samples Sb and As were preferentially in residual fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trzcinski, Antoine P., E-mail: a.trzcinski05@ic.ac.uk; Stuckey, David C., E-mail: d.stuckey@ic.ac.uk
2011-07-15
This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mgmore » CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.« less
Bovea, M D; Ibáñez-Forés, V; Gallardo, A; Colomer-Mendoza, F J
2010-11-01
The aim of this study is to compare, from an environmental point of view, different alternatives for the management of municipal solid waste generated in the town of Castellón de la Plana (Spain). This town currently produces 207 ton of waste per day and the waste management system employed today involves the collection of paper/cardboard, glass and light packaging from materials banks and of rest waste at street-side containers. The proposed alternative scenarios were based on a combination of the following elements: selective collection targets to be accomplished by the year 2015 as specified in the Spanish National Waste Plan (assuming they are reached to an extent of 50% and 100%), different collection models implemented nationally, and diverse treatments of both the separated biodegradable fraction and the rest waste to be disposed of on landfills. This resulted in 24 scenarios, whose environmental behaviour was studied by applying the life cycle assessment methodology. In accordance with the ISO 14040-44 (2006) standard, an inventory model was developed for the following stages of the waste management life cycle: pre-collection (bags and containers), collection, transport, pre-treatment (waste separation) and treatment/disposal (recycling, composting, biogasification+composting, landfill with/without energy recovery). Environmental indicators were obtained for different impact categories, which made it possible to identify the key variables in the waste management system and the scenario that offers the best environmental behaviour. Finally, a sensitivity analysis was used to test some of the assumptions made in the initial life cycle inventory model. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp
2012-01-15
Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.« less
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
Waste to biodiesel: A preliminary assessment for Saudi Arabia.
Rehan, M; Gardy, J; Demirbas, A; Rashid, U; Budzianowski, W M; Pant, Deepak; Nizami, A S
2018-02-01
This study presents a preliminary assessment of biodiesel production from waste sources available in the Kingdom of Saudi Arabia (KSA) for energy generation and solution for waste disposal issues. A case study was developed under three different scenarios: (S1) KSA population only in 2017, (S2) KSA population and pilgrims in 2017, and (S3) KSA population and pilgrims by 2030 using the fat fraction of the municipal solid waste. It was estimated that S1, S2, and S3 scenarios could produce around 1.08, 1.10 and 1.41 million tons of biodiesel with the energy potential of 43423, 43949 and 56493 TJ respectively. Furthermore, annual savings of US $55.89, 56.56 and 72.71 million can be generated from landfill diversion of food waste and added to the country's economy. However, there are challenges in commercialization of waste to biodiesel facilities in KSA, including waste collection and separation, impurities, reactor design and biodiesel quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Composition, production rate and characterization of Greek dental solid waste.
Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos
2018-05-01
The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Catalytic Pyrolysis of Waste Plastic Mixture
NASA Astrophysics Data System (ADS)
Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo
2018-03-01
Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.
Analysis report for 241-BY-104 Auger samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, M.A.
1994-11-10
This report describes the analysis of the surface crust samples taken from single-shell tank (SST) BY-104, suspected of containing ferrocyanide wastes. This sampling and analysis will assist in ascertaining whether there is any hazard due to combustion (burning) or explosion of these solid wastes. These characteristics are important to future efforts to characterize the salt and sludge in this type of waste tank. This report will outline the methodology and detail the results of analyses performed during the characterization of this material. All analyses were performed by Westinghouse Hanford Company at the 222-S laboratory unless stated otherwise.
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1912 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
Bekiaris, Georgios; Bruun, Sander; Peltre, Clément; Houot, Sabine; Jensen, Lars S
2015-05-01
Fourier transform infrared (FT-IR) spectroscopy has been used for several years as a fast, low-cost, reliable technique for characterising a large variety of materials. However, the strong influence of sample particle size and the inability to measure the absorption of very dark and opaque samples have made FTIR unsuitable for many waste materials. FTIR-photoacoustic spectroscopy (FTIR-PAS) can eliminate some of the shortcomings of traditional FTIR caused by scattering effects and reflection issues, and recent advances in PAS technology have made commercial instruments available. In this study, FTIR-PAS was used to characterise a wide range of organic waste products and predict their labile carbon fraction, which is normally determined from time-consuming assays. FTIR-PAS was found to be capable of predicting the labile fraction of carbon as efficiently as near infrared spectroscopy (NIR) and furthermore of identifying the compounds that are correlated with the predicted parameter, thus facilitating a more mechanistic interpretation. Copyright © 2015 Elsevier Ltd. All rights reserved.
GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witwer, Keith; Woosley, Steve; Campbell, Brett
2013-07-01
Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DL Blanchard; DE Kurath; BM Rapko
The current BNFL Inc. flow sheet for pretreating Hanford High-Level tank wastes includes the use of Superlig(reg.sign)639 (SL-639) in a dual column system for removing technetium-99 ({sup 99}Tc) from the aqueous fraction of the waste. This sorbent material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. This report documents the results of testing the SL-639 sorbent with diluted waste [Na{sup +}] {approx} 5 M from Tank 241-AN-107 (an Envelope C waste, abbreviated AN-107) at Battelle Northwest Laboratories (BNW). The equilibrium behavior was assessed with batch contacts between the sorbent and the waste. Two AN-107 samplesmore » were used: (1) an archived sample from previous testing and (2) a more recent sample collected specifically for BNFL. A portion of the archive sample and all of the BNFL sample were treated to remove Sr-90 and transuranic elements (TRU). All samples had also been Cs decontaminated by ion exchange (IX), and were spiked with a technetium-95m ({sup 95m}Tc) pertechnetate tracer, {sup 95m}TcO{sub 4}{sup -}.The TcO{sub 4}{sup -} and total Tc K{sub d} values, assumed equal to the {sup 95m}Tc and {sup 99}Tc K{sub d}'s, respectively, are shown in Table S1. Values are averages of duplicates, which showed significant scatter. The total Tc K{sub d} for the BNFL sample is much lower than the TcO{sub 4}{sup -}, indicating that a large fraction of the {sup 99}Tc is not pertechnetate.« less
Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
Beddow, H; Black, S; Read, D
2006-01-01
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.
Heggelund, Laura; Hansen, Steffen Foss; Astrup, Thomas Fruergaard; Boldrin, Alessio
2016-10-01
Many nano-enabled consumer products are known to be in the global market. At the same, little is known about the quantity, type, location etc. of the engineered nanomaterials (ENMs) inside the products. This limits the scientific investigations of potential environmental effects of these materials, and especially the knowledge of ENM behaviour and potential effects at the end-of-life stage of the products is scarce. To gain a better understanding of the end-of-life waste treatment of nano-enabled consumer product, we provide an overview of the ENMs flowing into and throughout waste systems in Europe, Denmark and the United Kingdom. Using a nanoproduct inventory (nanodb.dk), we performed a four-step analysis to estimate the most abundant ENMs and in which waste fractions they are present. We found that in terms of number of products: (i) nano silver is the most used ENM in consumer products, and (ii) plastic from used product containers is the largest waste fraction also comprising a large variety of ENMs, though possibly in very small masses. Also, we showed that the local waste management system can influence the distribution of ENMs. It is recommended that future research focus on recycling and landfilling of nano-enabled products since these compartments represent hot spots for end-of-life nanoproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morales Hernandez, Maria B.
The review of municipal solid waste (MSW) management scheme has indicated that the amount of MSW sent to incineration plants will increase in the UK in coming years. Therefore, the amount of municipal solid waste incineration (MSWI) residues generated will increase significantly. MSWI residues are divided into MSWI fly ash (MSWI-FA) and MSWI bottom ash (MSWI-BA). MSWI-FA is classified as hazardous residue thereby requires special treatment before disposal. MSWI-BA is mostly disposed in landfill sites. MSWI-BA fraction with particle size diameter below approximately 2mm has low engineering properties and may have an adverse effect on the environment due to its high porosity, solubility and leachability of possible toxic compounds. This research programme has investigated new potential uses and leaching behaviour of mortar containing MSWI-BA with particle size diameters below 2.36mm. Fraction of MSWI-BA with particle size diameters (φ) below 2.36 mm (φ <2.36) was divided into different sub-fractions to evaluate their influence on compressive strength of concrete when used as partial replacement of cement or sand. MSWI-BA fraction with φ <212mum (fine fraction) and 212mum < φ2.36mm (coarse fraction) used as partial replacement of cement and sand respectively, showed higher compressive strength compared with the other fractions examined. In addition, replacing sand with the coarse fraction of MSWI-BA exhibited similar or higher strength than the reference mix. Examination of physical and chemical properties of the fine and coarse fractions of MSWI-BA unbound indicated that both fractions had potential to be used as replacement of cement or sand. However, the evaluation of their leaching behaviour suggested that they should be bound in cement-based systems to avoid leaching of potential toxic elements. Evaluation of physical, mechanical and sulfate resistance properties of mortars containing 15% of the fine fraction of MSWI-BA as a partial replacement of cement and 50% of the coarse fraction as partial replacement of sand indicated potential uses in concrete production. In addition, the leachability of mortar specimens containing 15% and 50% of MSWI-BA as partial replacement of cement and sand respectively was significantly reduced when compared to unbound MSWI-BA fractions.
Sorption of radioactive contaminants by sediment from the Kara Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuhrmann, M.; Zhou, H.; Neiheisel, J.
1995-02-01
The purpose of this study is to quantify some of the parameters needed to perform near-field modeling of sites in the Kara Sea that were impacted by the disposal of radioactive waste. The parameters of interest are: the distribution coefficients (K{sub d}) for several important radionuclides, the mineralogy of the sediment, and the relationship of K{sub d} to liquid to solid ratio. Sediment from the Kara Sea (location: 73{degrees} 00` N, 58{degrees} 00` E) was sampled from a depth of 287 meters on August 23/24, 1992, during a joint Russian/Norwegian scientific cruise. Analysis of the material included mineralogy, grain sizemore » and total organic carbon. Uptake kinetics were determined for {sup 85}Sr, {sup 99}Tc, {sup 125}I, {sup 137}Cs, {sup 210}Pb, {sup 232}U, and {sup 241}Am and distribution coefficients (K{sub d}) were determined for these radionuclides using batch type experiments. Sorption isotherms were developed for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs to examine the effect that varying the concentration of a tracer has on the quantity of that tracer taken up by the solid. The effect of liquid to solid ratio on the uptake of contaminants was determined for {sup 99}Tc and {sup 137}Cs. In another set of experiments, the sediment was separated into four size fractions and uptake was determined for each fraction for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs. In addition, the sediment was analyzed to determine if it contains observable concentrations of anthropogenic radionuclides.« less
Global capacity, potentials and trends of solid waste research and management.
Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan
2017-09-01
In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.
Oduro-Kwarteng, Sampson; van Dijk, Meine Pieter
2013-10-01
Private sector involvement in solid waste management in developing countries has increased, but the effect is not always clear. This study assesses how it has been organized in five cities in Ghana, what has been its effect and what lessons for private sector development in developing countries can be drawn. Data were collected from 25 private companies and a sample of 1200 households. More than 60% of solid waste in Ghanaian cities is now collected by private enterprises. Sometimes, and increasingly, competitive bidding takes place, although sometimes no bidding is organized leading to rendering of this service and no contract being signed. Local governments and local solid waste companies have not changed to more customer-oriented delivery because of the slow pace of charging users and the resulting low rate of cost recovery. The participation of the population has been limited, which contributes to low cost recovery. However, a gradual better functioning of the system put in place is shown. We observed an increasing use of competitive bidding, signing of contracts and city-wide user charging.
Thermochemical valorization and characterization of household biowaste.
Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Vekkos, K; Baratieri, M
2017-12-01
Valorization of municipal solid waste (MSW), by means of energy and material recovery, is considered to be a crucial step for sustainable waste management. A significant fraction of MSW is comprised from food waste, the treatment of which is still a challenge. Therefore, the conventional disposal of food waste in landfills is being gradually replaced by recycling aerobic treatment, anaerobic digestion and waste-to-energy. In principle, thermal processes like combustion and gasification are preferred for the recovery of energy due to the higher electrical efficiency and the significantly less time required for the process to be completed when compared to biological process, i.e. composting, anaerobic digestion and transesterification. Nonetheless, the high water content and the molecular structure of biowaste are constraining factors in regard to the application of thermal conversion pathways. Investigating alternative solutions for the pre-treatment and more energy efficient handling of this waste fraction may provide pathways for the optimization of the whole process. In this study, by means of utilizing drying/milling as an intermediate step, thermal treatment of household biowaste has become possible. Household biowaste has been thermally processed in a bench scale reactor by means of torrefaction, carbonization and high temperature pyrolysis. According to the operational conditions, fluctuating fractions of biochar, bio-oil (tar) and syngas were recovered. The thermochemical properties of the feedstock and products were analyzed by means of Simultaneous Thermal Analysis (STA), Ultimate and Proximate analysis and Attenuated Total Reflectance (ATR). The analysis of the products shows that torrefaction of dried household biowaste produces an energy dense fuel and high temperature pyrolysis produces a graphite-like material with relatively high yield. Copyright © 2016 Elsevier Ltd. All rights reserved.
Landfill Mining - Wet mechanical treatment of fine MSW with a wet jigger.
Wanka, Sebastian; Münnich, Kai; Fricke, Klaus
2017-01-01
The motives for landfill mining are various. In the last couple of years Enhanced Landfill Mining (ELFM) has become increasingly important in academic discourse and practical implementation. The main goal of ELFM is to recover as much material as possible from deposited municipal solid waste (MSW). In most of the projects carried out so far, the main focus has been set on coarse materials such as plastics, woods, papers and metals. These fractions can be separated easily by sieving in combination with magnetic separation. In these projects most of the fine materials, which might represent as much as 60-70% of the total mass of the landfill body, had to be deposited again. A further treatment aiming at reducing the masses of these fine materials, which are still a conglomerate of soil, calorific fractions, metals, minerals and residues, usually did not take place. One topic in the framework of the landfill mining project TÖNSLM, in addition to the separation of the calorific fraction and metals has been the treatment of fine materials with the goal to re-use these e.g. for construction purposes. This paper shows the results obtained after the wet mechanical treatment of fine MSW 10-60mm with a wet jigger. The physical principle of this process is the separation of the mass flux due to the different densities of the waste constituents. As a result, three main waste fluxes are obtained: Dense inert and dense fine fraction with a high content of minerals and a lightweight fraction with a high calorific value between 16 and 20MJ/kg. An additional positive effect of wet mechanical treatment is the removal of the finest particles from the surface of the waste material, thus increasing the quality of the generated waste fluxes. The mass fluxes of the different fractions and their qualities as well as possible recovery paths are described below. An economical and ecological consideration of the treatment of the fine materials does not take place within the framework of this feasibility study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.
Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A
2014-08-15
The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.
Doležalová, Markéta; Benešová, Libuše; Závodská, Anita
2013-09-01
The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories - urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union's solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut
2011-10-01
Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.
Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.
Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.