STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
Meerschaert, Mark M; Sabzikar, Farzad
2014-07-01
Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.
NASA Astrophysics Data System (ADS)
Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria
2013-06-01
Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.
Multifractal detrending moving-average cross-correlation analysis
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Zhou, Wei-Xing
2011-07-01
There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis (MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents hxy extracted from the MFXDMA and MFXDFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q<0 and underperforms when q>0. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of hxy(q) since its hxy(2) is closest to 0.5, as expected, and the MFXDFA algorithm has the second best performance. For the volatilities, the forward and backward MFXDMA algorithms give similar results, while the centered MFXDMA and the MFXDFA algorithms fail to extract rational multifractal nature.
NASA Astrophysics Data System (ADS)
Li, Qingchen; Cao, Guangxi; Xu, Wei
2018-01-01
Based on a multifractal detrending moving average algorithm (MFDMA), this study uses the fractionally autoregressive integrated moving average process (ARFIMA) to demonstrate the effectiveness of MFDMA in the detection of auto-correlation at different sample lengths and to simulate some artificial time series with the same length as the actual sample interval. We analyze the effect of predictable and unpredictable meteorological disasters on the US and Chinese stock markets and the degree of long memory in different sectors. Furthermore, we conduct a preliminary investigation to determine whether the fluctuations of financial markets caused by meteorological disasters are derived from the normal evolution of the financial system itself or not. We also propose several reasonable recommendations.
NASA Astrophysics Data System (ADS)
Yin, Yip Chee; Hock-Eam, Lim
2012-09-01
This paper investigates the forecasting ability of Mallows Model Averaging (MMA) by conducting an empirical analysis of five Asia countries, Malaysia, Thailand, Philippines, Indonesia and China's GDP growth rate. Results reveal that MMA has no noticeable differences in predictive ability compared to the general autoregressive fractional integrated moving average model (ARFIMA) and its predictive ability is sensitive to the effect of financial crisis. MMA could be an alternative forecasting method for samples without recent outliers such as financial crisis.
Robust Semi-Active Ride Control under Stochastic Excitation
2014-01-01
broad classes of time-series models which are of practical importance; the Auto-Regressive (AR) models, the Integrated (I) models, and the Moving...Average (MA) models [12]. Combinations of these models result in autoregressive moving average (ARMA) and autoregressive integrated moving average...Down Up 4) Down Down These four cases can be written in compact form as: (20) Where is the Heaviside
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
NASA Astrophysics Data System (ADS)
Lopes, Sílvia R. C.; Prass, Taiane S.
2014-05-01
Here we present a theoretical study on the main properties of Fractionally Integrated Exponential Generalized Autoregressive Conditional Heteroskedastic (FIEGARCH) processes. We analyze the conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We prove that, if { is a FIEGARCH(p,d,q) process then, under mild conditions, { is an ARFIMA(q,d,0) with correlated innovations, that is, an autoregressive fractionally integrated moving average process. The convergence order for the polynomial coefficients that describes the volatility is presented and results related to the spectral representation and to the covariance structure of both processes { and { are discussed. Expressions for the kurtosis and the asymmetry measures for any stationary FIEGARCH(p,d,q) process are also derived. The h-step ahead forecast for the processes {, { and { are given with their respective mean square error of forecast. The work also presents a Monte Carlo simulation study showing how to generate, estimate and forecast based on six different FIEGARCH models. The forecasting performance of six models belonging to the class of autoregressive conditional heteroskedastic models (namely, ARCH-type models) and radial basis models is compared through an empirical application to Brazilian stock market exchange index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Rockhill, J; Phillips, M
Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3more » cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to normal brain.« less
ERIC Educational Resources Information Center
Doerann-George, Judith
The Integrated Moving Average (IMA) model of time series, and the analysis of intervention effects based on it, assume random shocks which are normally distributed. To determine the robustness of the analysis to violations of this assumption, empirical sampling methods were employed. Samples were generated from three populations; normal,…
Statistical modelling of subdiffusive dynamics in the cytoplasm of living cells: A FARIMA approach
NASA Astrophysics Data System (ADS)
Burnecki, K.; Muszkieta, M.; Sikora, G.; Weron, A.
2012-04-01
Golding and Cox (Phys. Rev. Lett., 96 (2006) 098102) tracked the motion of individual fluorescently labelled mRNA molecules inside live E. coli cells. They found that in the set of 23 trajectories from 3 different experiments, the automatically recognized motion is subdiffusive and published an intriguing microscopy video. Here, we extract the corresponding time series from this video by image segmentation method and present its detailed statistical analysis. We find that this trajectory was not included in the data set already studied and has different statistical properties. It is best fitted by a fractional autoregressive integrated moving average (FARIMA) process with the normal-inverse Gaussian (NIG) noise and the negative memory. In contrast to earlier studies, this shows that the fractional Brownian motion is not the best model for the dynamics documented in this video.
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Kantz, Holger
2016-04-01
As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).
Modeling Geodetic Processes with Levy α-Stable Distribution and FARIMA
NASA Astrophysics Data System (ADS)
Montillet, Jean-Philippe; Yu, Kegen
2015-04-01
Over the last years the scientific community has been using the auto regressive moving average (ARMA) model in the modeling of the noise in global positioning system (GPS) time series (daily solution). This work starts with the investigation of the limit of the ARMA model which is widely used in signal processing when the measurement noise is white. Since a typical GPS time series consists of geophysical signals (e.g., seasonal signal) and stochastic processes (e.g., coloured and white noise), the ARMA model may be inappropriate. Therefore, the application of the fractional auto-regressive integrated moving average (FARIMA) model is investigated. The simulation results using simulated time series as well as real GPS time series from a few selected stations around Australia show that the FARIMA model fits the time series better than other models when the coloured noise is larger than the white noise. The second fold of this work focuses on fitting the GPS time series with the family of Levy α-stable distributions. Using this distribution, a hypothesis test is developed to eliminate effectively coarse outliers from GPS time series, achieving better performance than using the rule of thumb of n standard deviations (with n chosen empirically).
Apparatus and method for determining solids circulation rate
Ludlow, J Christopher [Morgantown, WV; Spenik, James L [Morgantown, WV
2012-02-14
The invention relates to a method of determining bed velocity and solids circulation rate in a standpipe experiencing a moving packed bed flow, such as the in the standpipe section of a circulating bed fluidized reactor The method utilizes in-situ measurement of differential pressure over known axial lengths of the standpipe in conjunction with in-situ gas velocity measurement for a novel application of Ergun equations allowing determination of standpipe void fraction and moving packed bed velocity. The method takes advantage of the moving packed bed property of constant void fraction in order to integrate measured parameters into simultaneous solution of Ergun-based equations and conservation of mass equations across multiple sections of the standpipe.
Shao, Ying-Hui; Gu, Gao-Feng; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Sornette, Didier
2012-01-01
Notwithstanding the significant efforts to develop estimators of long-range correlations (LRC) and to compare their performance, no clear consensus exists on what is the best method and under which conditions. In addition, synthetic tests suggest that the performance of LRC estimators varies when using different generators of LRC time series. Here, we compare the performances of four estimators [Fluctuation Analysis (FA), Detrended Fluctuation Analysis (DFA), Backward Detrending Moving Average (BDMA), and Centred Detrending Moving Average (CDMA)]. We use three different generators [Fractional Gaussian Noises, and two ways of generating Fractional Brownian Motions]. We find that CDMA has the best performance and DFA is only slightly worse in some situations, while FA performs the worst. In addition, CDMA and DFA are less sensitive to the scaling range than FA. Hence, CDMA and DFA remain “The Methods of Choice” in determining the Hurst index of time series. PMID:23150785
NASA Astrophysics Data System (ADS)
Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin
2017-08-01
Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.
ECG artifact cancellation in surface EMG signals by fractional order calculus application.
Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B
2017-03-01
New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Forecasting coconut production in the Philippines with ARIMA model
NASA Astrophysics Data System (ADS)
Lim, Cristina Teresa
2015-02-01
The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.
Understanding the source of multifractality in financial markets
NASA Astrophysics Data System (ADS)
Barunik, Jozef; Aste, Tomaso; Di Matteo, T.; Liu, Ruipeng
2012-09-01
In this paper, we use the generalized Hurst exponent approach to study the multi-scaling behavior of different financial time series. We show that this approach is robust and powerful in detecting different types of multi-scaling. We observe a puzzling phenomenon where an apparent increase in multifractality is measured in time series generated from shuffled returns, where all time-correlations are destroyed, while the return distributions are conserved. This effect is robust and it is reproduced in several real financial data including stock market indices, exchange rates and interest rates. In order to understand the origin of this effect we investigate different simulated time series by means of the Markov switching multifractal model, autoregressive fractionally integrated moving average processes with stable innovations, fractional Brownian motion and Levy flights. Overall we conclude that the multifractality observed in financial time series is mainly a consequence of the characteristic fat-tailed distribution of the returns and time-correlations have the effect to decrease the measured multifractality.
How to Move Away from the Silos of Business Management Education?
ERIC Educational Resources Information Center
Nisula, Karoliina; Pekkola, Samuli
2018-01-01
Business management education is criticized for being too theoretical and fractional. Despite the numerous efforts to build integrated and experiential business curricula, learning is still organized in disciplinary silos. The curriculum integration efforts are carried out in separate sections of the curriculum rather than the core. There are…
Transport of the moving barrier driven by chiral active particles
NASA Astrophysics Data System (ADS)
Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan
2018-03-01
Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.
Time series modelling of increased soil temperature anomalies during long period
NASA Astrophysics Data System (ADS)
Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar
2015-10-01
Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.
Monthly streamflow forecasting with auto-regressive integrated moving average
NASA Astrophysics Data System (ADS)
Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani
2017-09-01
Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.
NASA Astrophysics Data System (ADS)
Levine, Zachary H.; Pintar, Adam L.
2015-11-01
A simple algorithm for averaging a stochastic sequence of 1D arrays in a moving, expanding window is provided. The samples are grouped in bins which increase exponentially in size so that a constant fraction of the samples is retained at any point in the sequence. The algorithm is shown to have particular relevance for a class of Monte Carlo sampling problems which includes one characteristic of iterative reconstruction in computed tomography. The code is available in the CPC program library in both Fortran 95 and C and is also available in R through CRAN.
Naive vs. Sophisticated Methods of Forecasting Public Library Circulations.
ERIC Educational Resources Information Center
Brooks, Terrence A.
1984-01-01
Two sophisticated--autoregressive integrated moving average (ARIMA), straight-line regression--and two naive--simple average, monthly average--forecasting techniques were used to forecast monthly circulation totals of 34 public libraries. Comparisons of forecasts and actual totals revealed that ARIMA and monthly average methods had smallest mean…
NASA Astrophysics Data System (ADS)
Cao, Guangxi; Zhang, Minjia; Li, Qingchen
2017-04-01
This study focuses on multifractal detrended cross-correlation analysis of the different volatility intervals of Mainland China, US, and Hong Kong stock markets. A volatility-constrained multifractal detrended cross-correlation analysis (VC-MF-DCCA) method is proposed to study the volatility conductivity of Mainland China, US, and Hong Kong stock markets. Empirical results indicate that fluctuation may be related to important activities in real markets. The Hang Seng Index (HSI) stock market is more influential than the Shanghai Composite Index (SCI) stock market. Furthermore, the SCI stock market is more influential than the Dow Jones Industrial Average stock market. The conductivity between the HSI and SCI stock markets is the strongest. HSI was the most influential market in the large fluctuation interval of 1991 to 2014. The autoregressive fractionally integrated moving average method is used to verify the validity of VC-MF-DCCA. Results show that VC-MF-DCCA is effective.
NASA Astrophysics Data System (ADS)
Loch-Olszewska, Hanna; Szwabiński, Janusz
2018-05-01
The ergodicity breaking phenomenon has already been in the area of interest of many scientists, who tried to uncover its biological and chemical origins. Unfortunately, testing ergodicity in real-life data can be challenging, as sample paths are often too short for approximating their asymptotic behaviour. In this paper, the authors analyze the minimal lengths of empirical trajectories needed for claiming the ɛ-ergodicity based on two commonly used variants of an autoregressive fractionally integrated moving average model. The dependence of the dynamical functional on the parameters of the process is studied. The problem of choosing proper ɛ for ɛ-ergodicity testing is discussed with respect to especially the variation of the innovation process and the data sample length, with a presentation on two real-life examples.
Loch-Olszewska, Hanna; Szwabiński, Janusz
2018-05-28
The ergodicity breaking phenomenon has already been in the area of interest of many scientists, who tried to uncover its biological and chemical origins. Unfortunately, testing ergodicity in real-life data can be challenging, as sample paths are often too short for approximating their asymptotic behaviour. In this paper, the authors analyze the minimal lengths of empirical trajectories needed for claiming the ε-ergodicity based on two commonly used variants of an autoregressive fractionally integrated moving average model. The dependence of the dynamical functional on the parameters of the process is studied. The problem of choosing proper ε for ε-ergodicity testing is discussed with respect to especially the variation of the innovation process and the data sample length, with a presentation on two real-life examples.
Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.
Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat
2014-01-01
The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.
Forecasting daily meteorological time series using ARIMA and regression models
NASA Astrophysics Data System (ADS)
Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir
2018-04-01
The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
Zhu, Yu; Xia, Jie-lai; Wang, Jing
2009-09-01
Application of the 'single auto regressive integrated moving average (ARIMA) model' and the 'ARIMA-generalized regression neural network (GRNN) combination model' in the research of the incidence of scarlet fever. Establish the auto regressive integrated moving average model based on the data of the monthly incidence on scarlet fever of one city, from 2000 to 2006. The fitting values of the ARIMA model was used as input of the GRNN, and the actual values were used as output of the GRNN. After training the GRNN, the effect of the single ARIMA model and the ARIMA-GRNN combination model was then compared. The mean error rate (MER) of the single ARIMA model and the ARIMA-GRNN combination model were 31.6%, 28.7% respectively and the determination coefficient (R(2)) of the two models were 0.801, 0.872 respectively. The fitting efficacy of the ARIMA-GRNN combination model was better than the single ARIMA, which had practical value in the research on time series data such as the incidence of scarlet fever.
Model Identification of Integrated ARMA Processes
ERIC Educational Resources Information Center
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Forecasting Instability Indicators in the Horn of Africa
2008-03-01
further than 2 (Makridakis, et al, 1983, 359). 2-32 Autoregressive Integrated Moving Average ( ARIMA ) Model . Similar to the ARMA model except for...stationary process. ARIMA models are described as ARIMA (p,d,q), where p is the order of the autoregressive process, d is the degree of the...differential process, and q is the order of the moving average process. The ARMA (1,1) model shown above is equivalent to an ARIMA (1,0,1) model . An ARIMA
Liu, Haipeng; Yu, Jia; Qiao, Rui; Zhou, Mi; Yang, Yongtao; Zhou, Jian; Xie, Peng
2016-01-01
The enormous depth complexity of the human plasma proteome poses a significant challenge for current mass spectrometry-based proteomic technologies in terms of detecting low-level proteins in plasma, which is essential for successful biomarker discovery efforts. Typically, a single-step analytical approach cannot reduce this intrinsic complexity. Current simplex immunodepletion techniques offer limited capacity for detecting low-abundance proteins, and integrated strategies are thus desirable. In this respect, we developed an improved strategy for analyzing the human plasma proteome by integrating polyethylene glycol (PEG) fractionation with immunoaffinity depletion. PEG fractionation of plasma proteins is simple, rapid, efficient, and compatible with a downstream immunodepletion step. Compared with immunodepletion alone, our integrated strategy substantially improved the proteome coverage afforded by PEG fractionation. Coupling this new protocol with liquid chromatography-tandem mass spectrometry, 135 proteins with reported normal concentrations below 100 ng/mL were confidently identified as common low-abundance proteins. A side-by-side comparison indicated that our integrated strategy was increased by average 43.0% in the identification rate of low-abundance proteins, relying on an average 65.8% increase of the corresponding unique peptides. Further investigation demonstrated that this combined strategy could effectively alleviate the signal-suppressive effects of the major high-abundance proteins by affinity depletion, especially with moderate-abundance proteins after incorporating PEG fractionation, thereby greatly enhancing the detection of low-abundance proteins. In sum, the newly developed strategy of incorporating PEG fractionation to immunodepletion methods can potentially aid in the discovery of plasma biomarkers of therapeutic and clinical interest. PMID:27832179
Rate of Oviposition by Culex Quinquefasciatus in San Antonio, Texas, During Three Years
1988-09-01
autoregression and zero orders of integration and moving average ( ARIMA (l,O,O)). This model was chosen initially because rainfall ap- peared to...have no trend requiring integration and no obvious requirement for a moving aver- age component (i.e., no regular periodicity). This ARIMA model was...Say in both the northern and southern hem- ispheres exposes this species to a variety of climatic challenges to its survival. It is able to adjust
Estimating Perturbation and Meta-Stability in the Daily Attendance Rates of Six Small High Schools
NASA Astrophysics Data System (ADS)
Koopmans, Matthijs
This paper discusses the daily attendance rates in six small high schools over a ten-year period and evaluates how stable those rates are. “Stability” is approached from two vantage points: pulse models are fitted to estimate the impact of sudden perturbations and their reverberation through the series, and Autoregressive Fractionally Integrated Moving Average (ARFIMA) techniques are used to detect dependencies over the long range of the series. The analyses are meant to (1) exemplify the utility of time series approaches in educational research, which lacks a time series tradition, (2) discuss some time series features that seem to be particular to daily attendance rate trajectories such as the distinct downward pull coming from extreme observations, and (3) present an analytical approach to handle the important yet distinct patterns of variability that can be found in these data. The analysis also illustrates why the assumption of stability that underlies the habitual reporting of weekly, monthly and yearly averages in the educational literature is questionable, as it reveals dynamical processes (perturbation, meta-stability) that remain hidden in such summaries.
Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.
2004-01-01
We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.
Fractional statistics and quantum scaling properties of the integrable Penson-Kolb-Hubbard chain
NASA Astrophysics Data System (ADS)
Vitoriano, Carlindo; Coutinho-Filho, M. D.
2010-09-01
We investigate the ground-state and low-temperature properties of the integrable version of the Penson-Kolb-Hubbard chain. The model obeys fractional statistical properties, which give rise to fractional elementary excitations and manifest differently in the four regions of the phase diagram U/t versus n , where U is the Coulomb coupling, t is the correlated hopping amplitude, and n is the particle density. In fact, we can find local pair formation, fractionalization of the average occupation number per orbital k , or U - and n -dependent average electric charge per orbital k . We also study the scaling behavior near the U -driven quantum phase transitions and characterize their universality classes. Finally, it is shown that in the regime of parameters where local pair formation is energetically more favorable, the ground state exhibits power-law superconductivity; we also stress that above half filling the pair-hopping term stabilizes local Cooper pairs in the repulsive- U regime for U
Time Series ARIMA Models of Undergraduate Grade Point Average.
ERIC Educational Resources Information Center
Rogers, Bruce G.
The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…
ERIC Educational Resources Information Center
Adams, Gerald J.; Dial, Micah
1998-01-01
The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)
A rational fraction polynomials model to study vertical dynamic wheel-rail interaction
NASA Astrophysics Data System (ADS)
Correa, N.; Vadillo, E. G.; Santamaria, J.; Gómez, J.
2012-04-01
This paper presents a model designed to study vertical interactions between wheel and rail when the wheel moves over a rail welding. The model focuses on the spatial domain, and is drawn up in a simple fashion from track receptances. The paper obtains the receptances from a full track model in the frequency domain already developed by the authors, which includes deformation of the rail section and propagation of bending, elongation and torsional waves along an infinite track. Transformation between domains was secured by applying a modified rational fraction polynomials method. This obtains a track model with very few degrees of freedom, and thus with minimum time consumption for integration, with a good match to the original model over a sufficiently broad range of frequencies. Wheel-rail interaction is modelled on a non-linear Hertzian spring, and consideration is given to parametric excitation caused by the wheel moving over a sleeper, since this is a moving wheel model and not a moving irregularity model. The model is used to study the dynamic loads and displacements emerging at the wheel-rail contact passing over a welding defect at different speeds.
Oscillation of a class of fractional differential equations with damping term.
Qin, Huizeng; Zheng, Bin
2013-01-01
We investigate the oscillation of a class of fractional differential equations with damping term. Based on a certain variable transformation, the fractional differential equations are converted into another differential equations of integer order with respect to the new variable. Then, using Riccati transformation, inequality, and integration average technique, some new oscillatory criteria for the equations are established. As for applications, oscillation for two certain fractional differential equations with damping term is investigated by the use of the presented results.
Direct determination approach for the multifractal detrending moving average analysis
NASA Astrophysics Data System (ADS)
Xu, Hai-Chuan; Gu, Gao-Feng; Zhou, Wei-Xing
2017-11-01
In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent τ (q ) is related to the partition function and the multifractal spectrum f (α ) can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional p -model, the two-dimensional p -model, and the fractional Brownian motions. We find that both approaches have comparable performances to unveil the fractal and multifractal nature. In other words, without loss of accuracy, the multifractal spectrum f (α ) can be directly determined using the new approach with less computation cost. We also apply the new MF-DMA approach to the volatility time series of stock prices and confirm the presence of multifractality.
Efficient Bayesian inference for natural time series using ARFIMA processes
NASA Astrophysics Data System (ADS)
Graves, T.; Gramacy, R. B.; Franzke, C. L. E.; Watkins, N. W.
2015-11-01
Many geophysical quantities, such as atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long memory (LM). LM implies that these quantities experience non-trivial temporal memory, which potentially not only enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LM. In this paper we present a modern and systematic approach to the inference of LM. We use the flexible autoregressive fractional integrated moving average (ARFIMA) model, which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LM, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short-memory effects) can be integrated over in order to focus on long-memory parameters and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data and the central England temperature (CET) time series, with favorable comparison to the standard estimators. For CET we also extend our method to seasonal long memory.
An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Hare, J. E.; Snider, J. B.
1990-08-01
As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.
Forecasting conditional climate-change using a hybrid approach
Esfahani, Akbar Akbari; Friedel, Michael J.
2014-01-01
A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.
Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice
NASA Astrophysics Data System (ADS)
Pei, Anqi; Wang, Jun
2015-01-01
The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting; Liu, Tian; Yang, Xiaofeng
2013-10-01
Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% ofmore » the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.« less
Attribution of trends in global vegetation greenness from 1982 to 2011
NASA Astrophysics Data System (ADS)
Zhu, Z.; Xu, L.; Bi, J.; Myneni, R.; Knyazikhin, Y.
2012-12-01
Time series of remotely sensed vegetation indices data provide evidence of changes in terrestrial vegetation activity over the past decades in the world. However, it is difficult to attribute cause-and-effect to vegetation trends because variations in vegetation productivity are driven by various factors. This study investigated changes in global vegetation productivity first, and then attributed the global natural vegetation with greening trend. Growing season integrated normalized difference vegetation index (GSI NDVI) derived from the new GIMMS NDVI3g dataset (1982-2011was analyzed. A combined time series analysis model, which was developed from simper linear trend model (SLT), autoregressive integrated moving average model (ARIMA) and Vogelsang's t-PST model shows that productivity of all vegetation types except deciduous broadleaf forest predominantly showed increasing trends through the 30-year period. The evolution of changes in productivity in the last decade was also investigated. Area of greening vegetation monotonically increased through the last decade, and both the browning and no change area monotonically decreased. To attribute the predominant increase trend of productivity of global natural vegetation, trends of eight climate time series datasets (three temperature, three precipitation and two radiation datasets) were analyzed. The attribution of trends in global vegetation greenness was summarized as relaxation of climatic constraints, fertilization and other unknown reasons. Result shows that nearly all the productivity increase of global natural vegetation was driven by relaxation of climatic constraints and fertilization, which play equally important role in driving global vegetation greenness.; Area fraction and productivity change fraction of IGBP vegetation land cover classes showing statistically significant (10% level) trend in GSI NDVIt;
Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.
2011-01-01
Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio
Kinesin-microtubule interactions during gliding assays under magnetic force
NASA Astrophysics Data System (ADS)
Fallesen, Todd L.
Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force-velocity relationship for multiple motors follows the same trend as for one motor, supporting the hypothesis that multiple motors share the load.
Integrating WEPP into the WEPS infrastructure
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) and the Water Erosion Prediction Project (WEPP) share a common modeling philosophy, that of moving away from primarily empirically based models based on indices or "average conditions", and toward a more process based approach which can be evaluated using ac...
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network
Yu, Ying; Wang, Yirui; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient. PMID:28246527
Wang, Kewei; Song, Wentao; Li, Jinping; Lu, Wu; Yu, Jiangang; Han, Xiaofeng
2016-05-01
The aim of this study is to forecast the incidence of bacillary dysentery with a prediction model. We collected the annual and monthly laboratory data of confirmed cases from January 2004 to December 2014. In this study, we applied an autoregressive integrated moving average (ARIMA) model to forecast bacillary dysentery incidence in Jiangsu, China. The ARIMA (1, 1, 1) × (1, 1, 2)12 model fitted exactly with the number of cases during January 2004 to December 2014. The fitted model was then used to predict bacillary dysentery incidence during the period January to August 2015, and the number of cases fell within the model's CI for the predicted number of cases during January-August 2015. This study shows that the ARIMA model fits the fluctuations in bacillary dysentery frequency, and it can be used for future forecasting when applied to bacillary dysentery prevention and control. © 2016 APJPH.
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
NASA Astrophysics Data System (ADS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network.
Yu, Ying; Wang, Yirui; Gao, Shangce; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.
Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-08-01
This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.
2013-01-01
29 3.5. ARIMA Models , Temporal Clustering of Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.6...39 3.9. ARIMA Models ...variance across a distribution. Autoregressive integrated moving average ( ARIMA ) models are used with time-series data sets and are designed to capture
Use of Time-Series, ARIMA Designs to Assess Program Efficacy.
ERIC Educational Resources Information Center
Braden, Jeffery P.; And Others
1990-01-01
Illustrates use of time-series designs for determining efficacy of interventions with fictitious data describing drug-abuse prevention program. Discusses problems and procedures associated with time-series data analysis using Auto Regressive Integrated Moving Averages (ARIMA) models. Example illustrates application of ARIMA analysis for…
NASA Astrophysics Data System (ADS)
Sitohang, Yosep Oktavianus; Darmawan, Gumgum
2017-08-01
This research attempts to compare between two forecasting models in time series analysis for predicting the sales volume of motorcycle in Indonesia. The first forecasting model used in this paper is Autoregressive Fractionally Integrated Moving Average (ARFIMA). ARFIMA can handle non-stationary data and has a better performance than ARIMA in forecasting accuracy on long memory data. This is because the fractional difference parameter can explain correlation structure in data that has short memory, long memory, and even both structures simultaneously. The second forecasting model is Singular spectrum analysis (SSA). The advantage of the technique is that it is able to decompose time series data into the classic components i.e. trend, cyclical, seasonal and noise components. This makes the forecasting accuracy of this technique significantly better. Furthermore, SSA is a model-free technique, so it is likely to have a very wide range in its application. Selection of the best model is based on the value of the lowest MAPE. Based on the calculation, it is obtained the best model for ARFIMA is ARFIMA (3, d = 0, 63, 0) with MAPE value of 22.95 percent. For SSA with a window length of 53 and 4 group of reconstructed data, resulting MAPE value of 13.57 percent. Based on these results it is concluded that SSA produces better forecasting accuracy.
NASA Astrophysics Data System (ADS)
Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.
2010-07-01
Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.
Weather explains high annual variation in butterfly dispersal
Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter
2016-01-01
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662
A Computer Program for the Generation of ARIMA Data
ERIC Educational Resources Information Center
Green, Samuel B.; Noles, Keith O.
1977-01-01
The autoregressive integrated moving averages model (ARIMA) has been applied to time series data in psychological and educational research. A program is described that generates ARIMA data of a known order. The program enables researchers to explore statistical properties of ARIMA data and simulate systems producing time dependent observations.…
The Mathematical Analysis of Style: A Correlation-Based Approach.
ERIC Educational Resources Information Center
Oppenheim, Rosa
1988-01-01
Examines mathematical models of style analysis, focusing on the pattern in which literary characteristics occur. Describes an autoregressive integrated moving average model (ARIMA) for predicting sentence length in different works by the same author and comparable works by different authors. This technique is valuable in characterizing stylistic…
The role of climatic variables in winter cereal yields: a retrospective analysis.
Luo, Qunying; Wen, Li
2015-02-01
This study examined the effects of observed climate including [CO2] on winter cereal [winter wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa)] yields by adopting robust statistical analysis/modelling approaches (i.e. autoregressive fractionally integrated moving average, generalised addition model) based on long time series of historical climate data and cereal yield data at three locations (Moree, Dubbo and Wagga Wagga) in New South Wales, Australia. Research results show that (1) growing season rainfall was significantly, positively and non-linearly correlated with crop yield at all locations considered; (2) [CO2] was significantly, positively and non-linearly correlated with crop yields in all cases except wheat and barley yields at Wagga Wagga; (3) growing season maximum temperature was significantly, negatively and non-linearly correlated with crop yields at Dubbo and Moree (except for barley); and (4) radiation was only significantly correlated with oat yield at Wagga Wagga. This information will help to identify appropriate management adaptation options in dealing with the risk and in taking the opportunities of climate change.
Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
NASA Astrophysics Data System (ADS)
Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia
2018-04-01
In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.
An Optimization of Inventory Demand Forecasting in University Healthcare Centre
NASA Astrophysics Data System (ADS)
Bon, A. T.; Ng, T. K.
2017-01-01
Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.
Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope
2013-01-01
With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.
Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope
2013-01-01
Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448
Forecast of Frost Days Based on Monthly Temperatures
NASA Astrophysics Data System (ADS)
Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.
2009-04-01
Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.
ERIC Educational Resources Information Center
Bobbitt, Larry; Otto, Mark
Three Autoregressive Integrated Moving Averages (ARIMA) forecast procedures for Census Bureau X-11 concurrent seasonal adjustment were empirically tested. Forty time series from three Census Bureau economic divisions (business, construction, and industry) were analyzed. Forecasts were obtained from fitted seasonal ARIMA models augmented with…
DOT National Transportation Integrated Search
1999-01-01
The three-quarter moving composite price index is the weighted average of the indices for three consecutive quarters. The Composite Bid Price Index is composed of six indicator items: common excavation, to indicate the price trend for all roadway exc...
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.
2009-12-01
Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.
Li, Jian; Wu, Huan-Yu; Li, Yan-Ting; Jin, Hui-Ming; Gu, Bao-Ke; Yuan, Zheng-An
2010-01-01
To explore the feasibility of establishing and applying of autoregressive integrated moving average (ARIMA) model to predict the incidence rate of dysentery in Shanghai, so as to provide the theoretical basis for prevention and control of dysentery. ARIMA model was established based on the monthly incidence rate of dysentery of Shanghai from 1990 to 2007. The parameters of model were estimated through unconditional least squares method, the structure was determined according to criteria of residual un-correlation and conclusion, and the model goodness-of-fit was determined through Akaike information criterion (AIC) and Schwarz Bayesian criterion (SBC). The constructed optimal model was applied to predict the incidence rate of dysentery of Shanghai in 2008 and evaluate the validity of model through comparing the difference of predicted incidence rate and actual one. The incidence rate of dysentery in 2010 was predicted by ARIMA model based on the incidence rate from January 1990 to June 2009. The model ARIMA (1, 1, 1) (0, 1, 2)(12) had a good fitness to the incidence rate with both autoregressive coefficient (AR1 = 0.443) during the past time series, moving average coefficient (MA1 = 0.806) and seasonal moving average coefficient (SMA1 = 0.543, SMA2 = 0.321) being statistically significant (P < 0.01). AIC and SBC were 2.878 and 16.131 respectively and predicting error was white noise. The mathematic function was (1-0.443B) (1-B) (1-B(12))Z(t) = (1-0.806B) (1-0.543B(12)) (1-0.321B(2) x 12) micro(t). The predicted incidence rate in 2008 was consistent with the actual one, with the relative error of 6.78%. The predicted incidence rate of dysentery in 2010 based on the incidence rate from January 1990 to June 2009 would be 9.390 per 100 thousand. ARIMA model can be used to fit the changes of incidence rate of dysentery and to forecast the future incidence rate in Shanghai. It is a predicted model of high precision for short-time forecast.
NASA Astrophysics Data System (ADS)
Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian
2018-01-01
Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.
NASA Astrophysics Data System (ADS)
Dickinson, M.; Kremens, R.; Bova, A. S.
2012-12-01
Closing the wildland fire heat budget involves characterizing the heat source and energy dissipation across the range of variability in fuels and fire behavior. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. Here, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption, and the behavior of spreading flame fronts. Experiments were conducted in 8 m x 8 m outdoor plots using pre-conditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of about 18.5 m^2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density (FRED) over a range of fuel consumption between 0.15 kg m^-2 to 3.25 kg m^-2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection, and soil heating across a range of fuels. We introduce the Rx-CADRE project through which such measurements are being made.
Collisionless dissipation in quasi-perpendicular shocks. [in terresrial bow waves
NASA Technical Reports Server (NTRS)
Forslund, D. W.; Quest, K. B.; Brackbill, J. U.; Lee, K.
1984-01-01
Microscopic dissipation processes in quasi-perpendicular shocks are studied by two-dimensional plasma simulations in which electrons and ions are treated as particles moving in self-consistent electric and magnetic fields. Cross-field currents induce substantial turbulence at the shock front reducing the reflected ion fraction, increasing the bulk ion temperature behind the shock, doubling the average magnetic ramp thickness, and enhancing the upstream field aligned electron heat flow. The short scale length magnetic fluctuations observed in the bow shock are probably associated with this turbulence.
Alternatives to the Moving Average
Paul C. van Deusen
2001-01-01
There are many possible estimators that could be used with annual inventory data. The 5-year moving average has been selected as a default estimator to provide initial results for states having available annual inventory data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is shown that moving average...
Weather explains high annual variation in butterfly dispersal.
Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter
2016-07-27
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Weber, Philipp; Wang, Fengzhong; Vodenska-Chitkushev, Irena; Havlin, Shlomo; Stanley, H. Eugene
2007-07-01
We analyze the memory in volatility by studying volatility return intervals, defined as the time between two consecutive fluctuations larger than a given threshold, in time periods following stock market crashes. Such an aftercrash period is characterized by the Omori law, which describes the decay in the rate of aftershocks of a given size with time t by a power law with exponent close to 1. A shock followed by such a power law decay in the rate is here called Omori process. We find self-similar features in the volatility. Specifically, within the aftercrash period there are smaller shocks that themselves constitute Omori processes on smaller scales, similar to the Omori process after the large crash. We call these smaller shocks subcrashes, which are followed by their own aftershocks. We also show that the Omori law holds not only after significant market crashes as shown by Lillo and Mantegna [Phys. Rev. E 68, 016119 (2003)], but also after “intermediate shocks.” By appropriate detrending we remove the influence of the crashes and subcrashes from the data, and find that this procedure significantly reduces the memory in the records. Moreover, when studying long-term correlated fractional Brownian motion and autoregressive fractionally integrated moving average artificial models for volatilities, we find Omori-type behavior after high volatilities. Thus, our results support the hypothesis that the memory in the volatility is related to the Omori processes present on different time scales.
A High Precision Prediction Model Using Hybrid Grey Dynamic Model
ERIC Educational Resources Information Center
Li, Guo-Dong; Yamaguchi, Daisuke; Nagai, Masatake; Masuda, Shiro
2008-01-01
In this paper, we propose a new prediction analysis model which combines the first order one variable Grey differential equation Model (abbreviated as GM(1,1) model) from grey system theory and time series Autoregressive Integrated Moving Average (ARIMA) model from statistics theory. We abbreviate the combined GM(1,1) ARIMA model as ARGM(1,1)…
An Intelligent Decision Support System for Workforce Forecast
2011-01-01
ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models
A Comparison of Alternative Approaches to the Analysis of Interrupted Time-Series.
ERIC Educational Resources Information Center
Harrop, John W.; Velicer, Wayne F.
1985-01-01
Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)
Impact of the Illinois Seat Belt Use Law on Accidents, Deaths, and Injuries.
ERIC Educational Resources Information Center
Rock, Steven M.
1992-01-01
The impact of the 1985 Illinois seat belt law is explored using Box-Jenkins Auto-Regressive, Integrated Moving Averages (ARIMA) techniques and monthly accident statistical data from the state department of transportation for January-July 1990. A conservative estimate is that the law provides benefits of $15 million per month in Illinois. (SLD)
Effects of improved spatial and temporal modeling of on-road vehicle emissions.
Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L
2012-04-01
Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost city modeled.
Models for short term malaria prediction in Sri Lanka
Briët, Olivier JT; Vounatsou, Penelope; Gunawardena, Dissanayake M; Galappaththy, Gawrie NL; Amerasinghe, Priyanie H
2008-01-01
Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. PMID:18460204
NASA Astrophysics Data System (ADS)
Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing
2017-09-01
The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.
Verrier, Richard L.; Klingenheben, Thomas; Malik, Marek; El-Sherif, Nabil; Exner, Derek V.; Hohnloser, Stefan H.; Ikeda, Takanori; Martínez, Juan Pablo; Narayan, Sanjiv M.; Nieminen, Tuomo; Rosenbaum, David S.
2014-01-01
This consensus guideline was prepared on behalf of the International Society for Holter and Noninvasive Electrocardiology and is cosponsored by the Japanese Circulation Society, the Computers in Cardiology Working Group on e-Cardiology of the European Society of Cardiology, and the European Cardiac Arrhythmia Society. It discusses the electrocardiographic phenomenon of T-wave alternans (TWA) (i.e., a beat-to-beat alternation in the morphology and amplitude of the ST- segment or T-wave). This statement focuses on its physiological basis and measurement technologies and its clinical utility in stratifying risk for life-threatening ventricular arrhythmias. Signal processing techniques including the frequency-domain Spectral Method and the time-domain Modified Moving Average method have demonstrated the utility of TWA in arrhythmia risk stratification in prospective studies in >12,000 patients. The majority of exercise-based studies using both methods have reported high relative risks for cardiovascular mortality and for sudden cardiac death in patients with preserved as well as depressed left ventricular ejection fraction. Studies with ambulatory electrocardiogram-based TWA analysis with Modified Moving Average method have yielded significant predictive capacity. However, negative studies with the Spectral Method have also appeared, including 2 interventional studies in patients with implantable defibrillators. Meta-analyses have been performed to gain insights into this issue. Frontiers of TWA research include use in arrhythmia risk stratification of individuals with preserved ejection fraction, improvements in predictivity with quantitative analysis, and utility in guiding medical as well as device-based therapy. Overall, although TWA appears to be a useful marker of risk for arrhythmic and cardiovascular death, there is as yet no definitive evidence that it can guide therapy. PMID:21920259
Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick
2009-08-01
Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.
Stambaugh, Cassandra; Nelms, Benjamin E; Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir
2013-09-01
The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments. VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤ 8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D99%), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found. For the motion amplitudes and periods obtained from the 4DCT, the interplay effect is negligible (<0.2%). It is also small (0.9% average, 2.2% maximum) when the target excursion increased to 2-3 cm. Only with large motion and increased period (60 s) was a significant interplay effect observed, with D99% ranging from 16% low to 17% high. The interplay effect was statistically significantly lower for the three- and five-fraction statistical simulations. Overall, the gradient effect dominates the clinical situation. A novel method was used to reconstruct the volumetric dose to a moving tumor during lung SBRT VMAT deliveries. With the studied planning and treatment technique for realistic motion periods, regardless of the amplitude, the interplay has nearly no impact on the near-minimum dose. The interplay effect was observed, for study purposes only, with the period comparable to the VMAT delivery time.
Development of fraction comparison strategies: A latent transition analysis.
Rinne, Luke F; Ye, Ai; Jordan, Nancy C
2017-04-01
The present study investigated the development of fraction comparison strategies through a longitudinal analysis of children's responses to a fraction comparison task in 4th through 6th grades (N = 394). Participants were asked to choose the larger value for 24 fraction pairs blocked by fraction type. Latent class analysis of performance over item blocks showed that most children initially exhibited a "whole number bias," indicating that larger numbers in numerators and denominators produce larger fraction values. However, some children instead chose fractions with smaller numerators and denominators, demonstrating a partial understanding that smaller numbers can yield larger fractions. Latent transition analysis showed that most children eventually adopted normative comparison strategies. Children who exhibited a partial understanding by choosing fractions with smaller numbers were more likely to adopt normative comparison strategies earlier than those with larger number biases. Controlling for general math achievement and other cognitive abilities, whole number line estimation accuracy predicted the probability of transitioning to normative comparison strategies. Exploratory factor analyses showed that over time, children appeared to increasingly represent fractions as discrete magnitudes when simpler strategies were unavailable. These results support the integrated theory of numerical development, which posits that an understanding of numbers as magnitudes unifies the process of learning whole numbers and fractions. The findings contrast with conceptual change theories, which propose that children must move from a view of numbers as counting units to a new view that accommodates fractions to overcome whole number bias. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Meditation is associated with increased brain network integration.
van Lutterveld, Remko; van Dellen, Edwin; Pal, Prasanta; Yang, Hua; Stam, Cornelis Jan; Brewer, Judson
2017-09-01
This study aims to identify novel quantitative EEG measures associated with mindfulness meditation. As there is some evidence that meditation is associated with higher integration of brain networks, we focused on EEG measures of network integration. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators performed a basic meditation practice that supported effortless awareness, which is an important quality of experience related to mindfulness practices, while their EEG was recorded. Experienced meditators performed a self-selected meditation practice that supported effortless awareness. Network integration was analyzed with maximum betweenness centrality and leaf fraction (which both correlate positively with network integration) as well as with diameter and average eccentricity (which both correlate negatively with network integration), based on a phase-lag index (PLI) and minimum spanning tree (MST) approach. Differences between groups were assessed using repeated-measures ANOVA for the theta (4-8 Hz), alpha (8-13 Hz) and lower beta (13-20 Hz) frequency bands. Maximum betweenness centrality was significantly higher in experienced meditators than in novices (P = 0.012) in the alpha band. In the same frequency band, leaf fraction showed a trend toward being significantly higher in experienced meditators than in novices (P = 0.056), while diameter and average eccentricity were significantly lower in experienced meditators than in novices (P = 0.016 and P = 0.028 respectively). No significant differences between groups were observed for the theta and beta frequency bands. These results show that alpha band functional network topology is better integrated in experienced meditators than in novice meditators during meditation. This novel finding provides the rationale to investigate the temporal relation between measures of functional connectivity network integration and meditation quality, for example using neurophenomenology experiments. Published by Elsevier Inc.
A 12-Year Analysis of Nonbattle Injury Among US Service Members Deployed to Iraq and Afghanistan.
Le, Tuan D; Gurney, Jennifer M; Nnamani, Nina S; Gross, Kirby R; Chung, Kevin K; Stockinger, Zsolt T; Nessen, Shawn C; Pusateri, Anthony E; Akers, Kevin S
2018-05-30
Nonbattle injury (NBI) among deployed US service members increases the burden on medical systems and results in high rates of attrition, affecting the available force. The possible causes and trends of NBI in the Iraq and Afghanistan wars have, to date, not been comprehensively described. To describe NBI among service members deployed to Iraq and Afghanistan, quantify absolute numbers of NBIs and proportion of NBIs within the Department of Defense Trauma Registry, and document the characteristics of this injury category. In this retrospective cohort study, data from the Department of Defense Trauma Registry on 29 958 service members injured in Iraq and Afghanistan from January 1, 2003, through December 31, 2014, were obtained. Injury incidence, patterns, and severity were characterized by battle injury and NBI. Trends in NBI were modeled using time series analysis with autoregressive integrated moving average and the weighted moving average method. Statistical analysis was performed from January 1, 2003, to December 31, 2014. Primary outcomes were proportion of NBIs and the changes in NBI over time. Among 29 958 casualties (battle injury and NBI) analyzed, 29 003 were in men and 955 were in women; the median age at injury was 24 years (interquartile range, 21-29 years). Nonbattle injury caused 34.1% of total casualties (n = 10 203) and 11.5% of all deaths (206 of 1788). Rates of NBI were higher among women than among men (63.2% [604 of 955] vs 33.1% [9599 of 29 003]; P < .001) and in Operation New Dawn (71.0% [298 of 420]) and Operation Iraqi Freedom (36.3% [6655 of 18 334]) compared with Operation Enduring Freedom (29.0% [3250 of 11 204]) (P < .001). A higher proportion of NBIs occurred in members of the Air Force (66.3% [539 of 810]) and Navy (48.3% [394 of 815]) than in members of the Army (34.7% [7680 of 22 154]) and Marine Corps (25.7% [1584 of 6169]) (P < .001). Leading mechanisms of NBI included falls (2178 [21.3%]), motor vehicle crashes (1921 [18.8%]), machinery or equipment accidents (1283 [12.6%]), blunt objects (1107 [10.8%]), gunshot wounds (728 [7.1%]), and sports (697 [6.8%]), causing predominantly blunt trauma (7080 [69.4%]). The trend in proportion of NBIs did not decrease over time, remaining at approximately 35% (by weighted moving average) after 2006 and approximately 39% by autoregressive integrated moving average. Assuming stable battlefield conditions, the autoregressive integrated moving average model estimated that the proportion of NBIs from 2015 to 2022 would be approximately 41.0% (95% CI, 37.8%-44.3%). In this study, approximately one-third of injuries during the Iraq and Afghanistan wars resulted from NBI, and the proportion of NBIs was steady for 12 years. Understanding the possible causes of NBI during military operations may be useful to target protective measures and safety interventions, thereby conserving fighting strength on the battlefield.
ERIC Educational Resources Information Center
Pridemore, William Alex; Trahan, Adam; Chamlin, Mitchell B.
2009-01-01
There is substantial evidence of detrimental psychological sequelae following disasters, including terrorist attacks. The effect of these events on extreme responses such as suicide, however, is unclear. We tested competing hypotheses about such effects by employing autoregressive integrated moving average techniques to model the impact of…
The Press Relations of a Local School District: An Analysis of the Emergence of School Issues.
ERIC Educational Resources Information Center
Morris, Jon R.; Guenter, Cornelius
Press coverage of a suburban midwest school district is analyzed as a set of time series of observations including the amount and quality of coverage. Possible shifts in these series because of the emergence of controversial issues are analyzed statistically using the Integrated Moving Average Time Series Model. Evidence of significant shifts in…
ERIC Educational Resources Information Center
Moore, Corey L.; Wang, Ningning; Washington, Janique Tynez
2017-01-01
Purpose: This study assessed and demonstrated the efficacy of two select empirical forecast models (i.e., autoregressive integrated moving average [ARIMA] model vs. grey model [GM]) in accurately predicting state vocational rehabilitation agency (SVRA) rehabilitation success rate trends across six different racial and ethnic population cohorts…
NASA Astrophysics Data System (ADS)
Husemann, B.; Davis, T. A.; Jahnke, K.; Dannerbauer, H.; Urrutia, T.; Hodge, J.
2017-09-01
We present single-dish 12CO(1-0) and 12CO(2-1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy, we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. 12CO(1-0) is detected in 8 of 14 targets and 12CO(2-1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times matching normal star-forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in 12CO(1-0), which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs, however, imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for the nuclear activity and it is well represented by a scaling relation between the total and circumnuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blown out of the gas envelope through outflows, or a different interstellar medium phase composition.
Forecasting Daily Volume and Acuity of Patients in the Emergency Department.
Calegari, Rafael; Fogliatto, Flavio S; Lucini, Filipe R; Neyeloff, Jeruza; Kuchenbecker, Ricardo S; Schaan, Beatriz D
2016-01-01
This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification.
Forecasting Daily Volume and Acuity of Patients in the Emergency Department
Fogliatto, Flavio S.; Neyeloff, Jeruza; Kuchenbecker, Ricardo S.; Schaan, Beatriz D.
2016-01-01
This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification. PMID:27725842
Treatment vault shielding for a flattening filter-free medical linear accelerator
NASA Astrophysics Data System (ADS)
Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.
2009-03-01
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Treatment vault shielding for a flattening filter-free medical linear accelerator.
Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N
2009-03-07
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m(3) less concrete to shield the single-energy linac and 36 m(3) less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data
Tran, Truyen; Luo, Wei; Phung, Dinh; Venkatesh, Svetha
2016-01-01
Background: Modeling patient flow is crucial in understanding resource demand and prioritization. We study patient outflow from an open ward in an Australian hospital, where currently bed allocation is carried out by a manager relying on past experiences and looking at demand. Automatic methods that provide a reasonable estimate of total next-day discharges can aid in efficient bed management. The challenges in building such methods lie in dealing with large amounts of discharge noise introduced by the nonlinear nature of hospital procedures, and the nonavailability of real-time clinical information in wards. Objective Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. Methods We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. Results Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. Conclusions In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments. PMID:27444059
Unveiling the Dynamical State of Massive Clusters through the ICL Fraction
NASA Astrophysics Data System (ADS)
Jiménez-Teja, Yolanda; Dupke, Renato; Benítez, Narciso; Koekemoer, Anton M.; Zitrin, Adi; Umetsu, Keiichi; Ziegler, Bodo L.; Frye, Brenda L.; Ford, Holland; Bouwens, Rychard J.; Bradley, Larry D.; Broadhurst, Thomas; Coe, Dan; Donahue, Megan; Graves, Genevieve J.; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel D.; Lahav, Ofer; Lazkoz, Ruth; Lemze, Dorom; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Mercurio, Amata; Merten, Julian; Molino, Alberto; Moustakas, Leonidas A.; Nonino, Mario; Ogaz, Sara; Riess, Adam G.; Rosati, Piero; Sayers, Jack; Seitz, Stella; Zheng, Wei
2018-04-01
We have selected a sample of 11 massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the intracluster light (ICL) fraction, the ratio of total integrated ICL to the total galaxy member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters. The ICL fraction is calculated in three optical filters using the CHEFs ICL estimator, a robust and accurate algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the merging clusters, ranging between ∼7% and 23%, compared with the ∼2%–11% found for the relaxed systems. We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average, coincident and, thus, so are their stellar populations. However, we find a higher ICL fraction in the F606W filter for the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have migrated violently from the outskirts of the infalling galaxies during the merger event.
A Modest Proposal to Move RCR Education Out of the Classroom and into Research.
Kalichman, Michael
2014-12-01
Requirements for training in responsible conduct of research have significantly increased over the past 25 years, but worries about the integrity of science have only intensified. The approach to training has relied largely on short-term experiences, either online or in person. Even if done well, such strategies remain separate from, and a negligible fraction of, the practice of research. A proposed alternative is to empower faculty, postdoctoral fellows, and graduate student leaders to foster conversations about research ethics in the research environment.
Space trajectory calculation based on G-sensor
NASA Astrophysics Data System (ADS)
Xu, Biya; Zhan, Yinwei; Shao, Yang
2017-08-01
At present, without full use of the mobile phone around us, most of the research in human body posture recognition field is use camera or portable acceleration sensor to collect data. In this paper, G-sensor built-in mobile phone is use to collect data. After processing data with the way of moving average filter and acceleration integral, joint point's space three-dimensional coordinates can be abtained accurately.
Hypervelocity stars from young stellar clusters in the Galactic Centre
NASA Astrophysics Data System (ADS)
Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.
2017-05-01
The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.
Integration of social information by human groups
Granovskiy, Boris; Gold, Jason M.; Sumpter, David; Goldstone, Robert L.
2015-01-01
We consider a situation in which individuals search for accurate decisions without direct feedback on their accuracy but with information about the decisions made by peers in their group. The “wisdom of crowds” hypothesis states that the average judgment of many individuals can give a good estimate of, for example, the outcomes of sporting events and the answers to trivia questions. Two conditions for the application of wisdom of crowds are that estimates should be independent and unbiased. Here, we study how individuals integrate social information when answering trivia questions with answers that range between 0 and 100% (e.g., ‘What percentage of Americans are left-handed?’). We find that, consistent with the wisdom of crowds hypothesis, average performance improves with group size. However, individuals show a consistent bias to produce estimates that are insufficiently extreme. We find that social information provides significant, albeit small, improvement to group performance. Outliers with answers far from the correct answer move towards the position of the group mean. Given that these outliers also tend to be nearer to 50% than do the answers of other group members, this move creates group polarization away from 50%. By looking at individual performance over different questions we find that some people are more likely to be affected by social influence than others. There is also evidence that people differ in their competence in answering questions, but lack of competence is not significantly correlated with willingness to change guesses. We develop a mathematical model based on these results that postulates a cognitive process in which people first decide whether to take into account peer guesses, and if so, to move in the direction of these guesses. The size of the move is proportional to the distance between their own guess and the average guess of the group. This model closely approximates the distribution of guess movements and shows how outlying incorrect opinions can be systematically removed from a group resulting, in some situations, in improved group performance. However, improvement is only predicted for cases in which the initial guesses of individuals in the group are biased. PMID:26189568
Integration of Social Information by Human Groups.
Granovskiy, Boris; Gold, Jason M; Sumpter, David J T; Goldstone, Robert L
2015-07-01
We consider a situation in which individuals search for accurate decisions without direct feedback on their accuracy, but with information about the decisions made by peers in their group. The "wisdom of crowds" hypothesis states that the average judgment of many individuals can give a good estimate of, for example, the outcomes of sporting events and the answers to trivia questions. Two conditions for the application of wisdom of crowds are that estimates should be independent and unbiased. Here, we study how individuals integrate social information when answering trivia questions with answers that range between 0% and 100% (e.g., "What percentage of Americans are left-handed?"). We find that, consistent with the wisdom of crowds hypothesis, average performance improves with group size. However, individuals show a consistent bias to produce estimates that are insufficiently extreme. We find that social information provides significant, albeit small, improvement to group performance. Outliers with answers far from the correct answer move toward the position of the group mean. Given that these outliers also tend to be nearer to 50% than do the answers of other group members, this move creates group polarization away from 50%. By looking at individual performance over different questions we find that some people are more likely to be affected by social influence than others. There is also evidence that people differ in their competence in answering questions, but lack of competence is not significantly correlated with willingness to change guesses. We develop a mathematical model based on these results that postulates a cognitive process in which people first decide whether to take into account peer guesses, and if so, to move in the direction of these guesses. The size of the move is proportional to the distance between their own guess and the average guess of the group. This model closely approximates the distribution of guess movements and shows how outlying incorrect opinions can be systematically removed from a group resulting, in some situations, in improved group performance. However, improvement is only predicted for cases in which the initial guesses of individuals in the group are biased. Copyright © 2015 Cognitive Science Society, Inc.
Kitzmann, J P; Karatzas, T; Mueller, K R; Avgoustiniatos, E S; Gruessner, A C; Balamurugan, A N; Bellin, M D; Hering, B J; Papas, K K
2014-01-01
Replacement of β-cells with the use of isolated islet allotransplantation (IT) is an emerging therapy for type 1 diabetics with hypoglycemia unawareness. The current standard protocol calls for a 36-72-hour culture period before IT. We examined 13 clinical islet preparations with ≥2 purity fractions to determine the effect of culture on viability. After standard islet isolation and purification, pure islet fractions were placed at 37°C with 5% CO2 for 12-24 hours and subsequently moved to 22°C, whereas less pure fractions were cultured at 22°C for the entire duration. Culture density was targeted at a range of 100-200 islet equivalents (IEQ)/cm(2) adjusted for purity. Islets were assessed for purity (dithizone staining), quantity (pellet volume and DNA), and viability (oxygen consumption rate normalized to DNA content [OCR/DNA] and membrane integrity). Results indicated that purity was overestimated, especially in less pure fractions. This was evidenced by significantly larger observed pellet sizes than expected and tissue amount as quantified with the use of a dsDNA assay when available. Less pure fractions showed significantly lower OCR/DNA and membrane integrity compared with pure. The difference in viability between the 2 purity fractions may be due to a variety of reasons, including hypoxia, nutrient deficiency, toxic metabolite accumulation, and/or proteolytic enzymes released by acinar tissue impurities that are not neutralized by human serum albumin in the culture media. Current clinical islet culture protocols should be examined further, especially for less pure fractions, to ensure the maintenance of viability before transplantation. Even though relatively small, the difference in viability is important because the amount of dead or dying tissue introduced into recipients may be dramatically increased, especially with less pure preparations. Copyright © 2014 Elsevier Inc. All rights reserved.
Efficient Bayesian inference for natural time series using ARFIMA processes
NASA Astrophysics Data System (ADS)
Graves, Timothy; Gramacy, Robert; Franzke, Christian; Watkins, Nicholas
2016-04-01
Many geophysical quantities, such as atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long memory (LM). LM implies that these quantities experience non-trivial temporal memory, which potentially not only enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LM. We present a modern and systematic approach to the inference of LM. We use the flexible autoregressive fractional integrated moving average (ARFIMA) model, which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LM, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short-memory effects) can be integrated over in order to focus on long-memory parameters and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data and the central England temperature (CET) time series, with favorable comparison to the standard estimators [1]. In addition we show how the method can be used to perform joint inference of the stability exponent and the memory parameter when ARFIMA is extended to allow for alpha-stable innovations. Such models can be used to study systems where heavy tails and long range memory coexist. [1] Graves et al, Nonlin. Processes Geophys., 22, 679-700, 2015; doi:10.5194/npg-22-679-2015.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, T.; Franzke, C.; Gramacy, R. B.; Watkins, N. W.
2012-12-01
Recent studies have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average (ARFIMA) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d,with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series such as the Central England Temperature. Many physical processes, for example the Faraday time series from Antarctica, are highly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption. Specifically, we assume a symmetric α -stable distribution for the innovations. Such processes provide good, flexible, initial models for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance σ d of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
Moran, John L; Solomon, Patricia J
2011-02-01
Time series analysis has seen limited application in the biomedical Literature. The utility of conventional and advanced time series estimators was explored for intensive care unit (ICU) outcome series. Monthly mean time series, 1993-2006, for hospital mortality, severity-of-illness score (APACHE III), ventilation fraction and patient type (medical and surgical), were generated from the Australia and New Zealand Intensive Care Society adult patient database. Analyses encompassed geographical seasonal mortality patterns, series structural time changes, mortality series volatility using autoregressive moving average and Generalized Autoregressive Conditional Heteroscedasticity models in which predicted variances are updated adaptively, and bivariate and multivariate (vector error correction models) cointegrating relationships between series. The mortality series exhibited marked seasonality, declining mortality trend and substantial autocorrelation beyond 24 lags. Mortality increased in winter months (July-August); the medical series featured annual cycling, whereas the surgical demonstrated long and short (3-4 months) cycling. Series structural breaks were apparent in January 1995 and December 2002. The covariance stationary first-differenced mortality series was consistent with a seasonal autoregressive moving average process; the observed conditional-variance volatility (1993-1995) and residual Autoregressive Conditional Heteroscedasticity effects entailed a Generalized Autoregressive Conditional Heteroscedasticity model, preferred by information criterion and mean model forecast performance. Bivariate cointegration, indicating long-term equilibrium relationships, was established between mortality and severity-of-illness scores at the database level and for categories of ICUs. Multivariate cointegration was demonstrated for {log APACHE III score, log ICU length of stay, ICU mortality and ventilation fraction}. A system approach to understanding series time-dependence may be established using conventional and advanced econometric time series estimators. © 2010 Blackwell Publishing Ltd.
Modeling of particle agglomeration in nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, K. Hari; Neti, S.; Oztekin, A.
2015-03-07
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid wasmore » moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.« less
NASA Astrophysics Data System (ADS)
Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.
2018-03-01
Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Dolly, S; Anastasio, M
Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) wasmore » first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first time allows to automatically identify the H&N upper airway and quantify in-treatment H&N internal motion in real-time. This approach can be applied to track other structures’ motion, and provide guidance on patient-specific prediction of intra-/inter-fractional structure displacements.« less
Creating, Naming, and Justifying Fractions
ERIC Educational Resources Information Center
Siebert, Daniel; Gaskin, Nicole
2006-01-01
For students to develop meaningful conceptions of fractions and fraction operations, they need to think of fractions in terms other than as just whole-number combinations. In this article, we suggest two powerful images for thinking about fractions that move beyond whole-number reasoning. (Contains 5 figures.)
A Case Study to Improve Emergency Room Patient Flow at Womack Army Medical Center
2009-06-01
use just the previous month, moving average 2-month period ( MA2 ) uses the average from the previous two months, moving average 3-month period (MA3...ED prior to discharge by provider) MA2 /MA3/MA4 - moving averages of 2-4 months in length MAD - mean absolute deviation (measure of accuracy for
Acoustic power of a moving point source in a moving medium
NASA Technical Reports Server (NTRS)
Cole, J. E., III; Sarris, I. I.
1976-01-01
The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.
Mao, Qiang; Zhang, Kai; Yan, Wu; Cheng, Chaonan
2018-05-02
The aims of this study were to develop a forecasting model for the incidence of tuberculosis (TB) and analyze the seasonality of infections in China; and to provide a useful tool for formulating intervention programs and allocating medical resources. Data for the monthly incidence of TB from January 2004 to December 2015 were obtained from the National Scientific Data Sharing Platform for Population and Health (China). The Box-Jenkins method was applied to fit a seasonal auto-regressive integrated moving average (SARIMA) model to forecast the incidence of TB over the subsequent six months. During the study period of 144 months, 12,321,559 TB cases were reported in China, with an average monthly incidence of 6.4426 per 100,000 of the population. The monthly incidence of TB showed a clear 12-month cycle, and a seasonality with two peaks occurring in January and March and a trough in December. The best-fit model was SARIMA (1,0,0)(0,1,1) 12 , which demonstrated adequate information extraction (white noise test, p>0.05). Based on the analysis, the incidence of TB from January to June 2016 were 6.6335, 4.7208, 5.8193, 5.5474, 5.2202 and 4.9156 per 100,000 of the population, respectively. According to the seasonal pattern of TB incidence in China, the SARIMA model was proposed as a useful tool for monitoring epidemics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
The temperature dependent amide I band of crystalline acetanilide
NASA Astrophysics Data System (ADS)
Cruzeiro, Leonor; Freedman, Holly
2013-10-01
The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.
Plasma properties in electron-bombardment ion thrusters
NASA Technical Reports Server (NTRS)
Matossian, J. N.; Beattie, J. R.
1987-01-01
The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.
Bose Condensation at He-4 Interfaces
NASA Technical Reports Server (NTRS)
Draeger, E. W.; Ceperley, D. M.
2003-01-01
Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.
Fast Algorithms for Mining Co-evolving Time Series
2011-09-01
Keogh et al., 2001, 2004] and (b) forecasting, like an autoregressive integrated moving average model ( ARIMA ) and related meth- ods [Box et al., 1994...computing hardware? We develop models to mine time series with missing values, to extract compact representation from time sequences, to segment the...sequences, and to do forecasting. For large scale data, we propose algorithms for learning time series models , in particular, including Linear Dynamical
Central Procurement Workload Projection Model
1981-02-01
generated by the P&P Directorates such as procurement actions (PA’s) are pursued. Specifi- cally, Box-Jenkins Autoregressive Integrated Moving Average...Breakout of PA’s to over and under $10,000 23 IV. FINDINGS AND RECOMMENDATIONS 24 A. General 24 B. Findings 24 C. Recommendations 25...the model will predict the actual values and hence the error will be zero . Therefore, after forecasting 3 quarters into the future no error
Alwee, Razana; Hj Shamsuddin, Siti Mariyam; Sallehuddin, Roselina
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models. PMID:23766729
Time Series Modelling of Syphilis Incidence in China from 2005 to 2012
Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau
2016-01-01
Background The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. Methods In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). Results The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Conclusion Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis. PMID:26901682
Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria.
Ihueze, Chukwutoo C; Onwurah, Uchendu O
2018-03-01
One of the major problems in the world today is the rate of road traffic crashes and deaths on our roads. Majority of these deaths occur in low-and-middle income countries including Nigeria. This study analyzed road traffic crashes in Anambra State, Nigeria with the intention of developing accurate predictive models for forecasting crash frequency in the State using autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average with explanatory variables (ARIMAX) modelling techniques. The result showed that ARIMAX model outperformed the ARIMA (1,1,1) model generated when their performances were compared using the lower Bayesian information criterion, mean absolute percentage error, root mean square error; and higher coefficient of determination (R-Squared) as accuracy measures. The findings of this study reveal that incorporating human, vehicle and environmental related factors in time series analysis of crash dataset produces a more robust predictive model than solely using aggregated crash count. This study contributes to the body of knowledge on road traffic safety and provides an approach to forecasting using many human, vehicle and environmental factors. The recommendations made in this study if applied will help in reducing the number of road traffic crashes in Nigeria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.
Time Series Modelling of Syphilis Incidence in China from 2005 to 2012.
Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau
2016-01-01
The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis.
Tani, Yuji; Ogasawara, Katsuhiko
2012-01-01
This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.
NASA Technical Reports Server (NTRS)
Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modeled by fractional integrodifferential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating, as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Barragan Montero, A; Di Perri, D
Purpose: The shift in mean position of a moving tumor also known as “baseline shift”, has been modeled, in order to automatically generate uncertainty scenarios for the assessment and robust optimization of proton therapy treatments in lung cancer. Methods: An average CT scan and a Mid-Position CT scan (MidPCT) of the patient at the planning time are first generated from a 4D-CT data. The mean position of the tumor along the breathing cycle is represented by the GTV contour in the MidPCT. Several studies reported both systematic and random variations of the mean tumor position from fraction to fraction. Ourmore » model can simulate this baseline shift by generating a local deformation field that moves the tumor on all phases of the 4D-CT, without creating any non-physical artifact. The deformation field is comprised of normal and tangential components with respect to the lung wall in order to allow the tumor to slip within the lung instead of deforming the lung surface. The deformation field is eventually smoothed in order to enforce its continuity. Two 4D-CT series acquired at 1 week of interval were used to validate the model. Results: Based on the first 4D-CT set, the model was able to generate a third 4D-CT that reproduced the 5.8 mm baseline-shift measured in the second 4D-CT. Water equivalent thickness (WET) of the voxels have been computed for the 3 average CTs. The root mean square deviation of the WET in the GTV is 0.34 mm between week 1 and week 2, and 0.08 mm between the simulated data and week 2. Conclusion: Our model can be used to automatically generate uncertainty scenarios for robustness analysis of a proton therapy plan. The generated scenarios can also feed a TPS equipped with a robust optimizer. Kevin Souris, Ana Barragan, and Dario Di Perri are financially supported by Televie Grants from F.R.S.-FNRS.« less
High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.
Haxton, Thomas K
2015-03-10
We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.
Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul
2011-07-01
In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Ukkusuri, Satish V.
We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less
Aziz, H. M. Abdul; Ukkusuri, Satish V.
2017-06-29
We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less
NASA Astrophysics Data System (ADS)
Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.
2016-06-01
A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.
Controlling sludge settleability in the oxidation ditch process.
Hartley, K J
2008-03-01
This paper describes an investigation aimed at developing an operating technique for controlling sludge settleability in the oxidation ditch form of the nitrification denitrification activated sludge process. It was hypothesized that specific sludge volume index (SSVI) is lowest at an optimum process anoxic fraction and increases at higher and lower fractions. Using effluent ammonia:nitrate ratio as a surrogate for anoxic fraction, it was found that a simple empirical model based on a three solids retention time moving average nitrogen ratio was able to replicate the long-term SSVI variations in two independent oxidation ditches at a full-scale plant. Operating data from a second oxidation ditch plant during periods when a prefermenter was on- or off-line showed that SSVI also varies with RBCOD, greater RBCOD giving lower SSVI. It was concluded that best settleability occurs at about the same anoxic fraction as lowest effluent total nitrogen concentration, with an ammonia:nitrate ratio of about 1. An operating rule of thumb is to use dissolved oxygen control to maintain effluent ammonia and nitrate nitrogen concentrations about equal. A third oxidation ditch plant deliberately operated in this manner achieved 15-month median operating values for SSVI of 60mL/g and for effluent ammonia, nitrate and total N, respectively, of 0.2, 0.3 and 2.0mgN/L.
Abou-Senna, Hatem; Radwan, Essam; Westerlund, Kurt; Cooper, C David
2013-07-01
The Intergovernmental Panel on Climate Change (IPCC) estimates that baseline global GHG emissions may increase 25-90% from 2000 to 2030, with carbon dioxide (CO2 emissions growing 40-110% over the same period. On-road vehicles are a major source of CO2 emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, for example, carbon monoxide (CO), nitrogen oxides (NO(x)), and particulate matter (PM). Therefore, the need to accurately quantify transportation-related emissions from vehicles is essential. The new US. Environmental Protection Agency (EPA) mobile source emissions model, MOVES2010a (MOVES), can estimate vehicle emissions on a second-by-second basis, creating the opportunity to combine a microscopic traffic simulation model (such as VISSIM) with MOVES to obtain accurate results. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, FL. First (at the most basic level), emissions were estimated for the entire 10-mile section "by hand" using one average traffic volume and average speed. Then three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NO(x), PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach. Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.
Detection of moving humans in UHF wideband SAR
NASA Astrophysics Data System (ADS)
Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy
2014-06-01
In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.
Koopmans, Matthijs
2015-01-01
While school attendance is a critical mediator to academic achievement, its time dependent characteristics are rarely investigated. To remedy situation, this paper reports on the analysis of daily attendance rates in five urban high schools over a seven-year period. Traditional time series analyses were conducted to estimate short-range and cyclical dependencies in the data. An Autoregressive Fractional Integrated Moving Average (ARFIMA) approach was used to address long-range correlational patterns, and detect signs of self-organized criticality. The analysis reveals a strong cyclical pattern (weekly) in all five schools, and evidence for self-organized criticality in one of the five. These findings illustrate the insufficiency of traditional statistical summary measures to characterize the distribution of daily attendance, and they suggest that daily attendance is not necessarily the stable and predictable feature of school effectiveness it is conventionally assumed to be. While educational practitioners can probably attest to the many of the irregularities in attendance patterns as well as some of their sources, a systematic description of these temporal aspects needs to be included in our assessment of daily attendance behavior to inform policy decisions, if only to better align formal research in this area with existing local knowledge about those patterns.
2012-01-01
regressive Integrated Moving Average ( ARIMA ) model for the data, eliminating the need to identify an appropriate model through trial and error alone...06 .11 13.67 16 .62 16 .14 .11 8.06 16 .95 * Based on the asymptotic chi-square approximation. 8 In general, ARIMA models address three...performance standards and measurement processes and a prevailing climate of organizational trust were important factors. Unfortunately, uneven
Near Real-Time Event Detection & Prediction Using Intelligent Software Agents
2006-03-01
value was 0.06743. Multiple autoregressive integrated moving average ( ARIMA ) models were then build to see if the raw data, differenced data, or...slight improvement. The best adjusted r^2 value was found to be 0.1814. Successful results were not expected from linear or ARIMA -based modelling ...appear, 2005. [63] Mora-Lopez, L., Mora, J., Morales-Bueno, R., et al. Modelling time series of climatic parameters with probabilistic finite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Pangam, S; Kolla, J
2015-06-15
Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less
Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
NASA Astrophysics Data System (ADS)
Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.
2017-06-01
A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan Rezaeian, N; Chi, Y; Zhou, Y
2016-06-15
Purpose: We are conducting a clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer. Doses to three targets, prostate, intra-prostatic lesion, and pelvic lymph node (PLN) region, are escalated to three different levels via simultaneous integrated boost technique. Inter-/intra-fractional organ motions deteriorate planned dose distribution. This study aims at developing a dose reconstruction system to comprehensively understand the impacts of organ motion in our clinical trial. Methods: A 4D dose reconstruction system has been developed for this study. Using a GPU-based Monte-Carlo dose engine and delivery log file, the system is able to reconstruct dose on staticmore » or dynamic anatomy. For prostate and intra-prostatic targets, intra-fractional motion is the main concern. Motion trajectory acquired from Calypso in previously treated SBRT patients were used to perform 4D dose reconstructions. For pelvic target, inter-fractional motion is one concern. Eight patients, each with four cone beam CTs, were used to derive fractional motion. The delivered dose was reconstructed on the deformed anatomy. Dosimetric parameters for delivered dose distributions of the three targets were extracted and compared with planned levels. Results: For prostate intra-fractional motion, the mean 3D motion amplitude during beam delivery ranged from 1.5mm to 5.0mm and the average among all patients was 2.61mm. Inter-fractional motion for the PLN target was more significant. The average amplitude among patients was 4mm with the largest amplitude up to 9.6mm. The D95% deviation from planned level for prostate PTVs and GTVs are on average less than<0.1% and this deviation for intra-prostatic lesion PTVs and GTVs were more prominent. The dose at PLN was significantly affected with D{sub 95}% reduced by up to 44%. Conclusion: Intra-/inter-fractional organ motion is a concern for high-risk prostate SBRT, particularly for the PLN target. Our dose reconstruction approach can also serve as the basis to guide treatment adaptation.« less
NASA Astrophysics Data System (ADS)
Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu
2012-01-01
A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.
NASA Astrophysics Data System (ADS)
McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.
2004-10-01
Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (
NASA Astrophysics Data System (ADS)
McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.
2004-10-01
Long-chain, odd-carbon-numbered C25 to C35n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (
Naqvi, Shahid A; D'Souza, Warren D
2005-04-01
Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.
Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas
NASA Astrophysics Data System (ADS)
Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph
2016-10-01
Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.
Kis, Maria
2005-01-01
In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.
NASA Astrophysics Data System (ADS)
Jia, Song; Xu, Tian-he; Sun, Zhang-zhen; Li, Jia-jing
2017-02-01
UT1-UTC is an important part of the Earth Orientation Parameters (EOP). The high-precision predictions of UT1-UTC play a key role in practical applications of deep space exploration, spacecraft tracking and satellite navigation and positioning. In this paper, a new prediction method with combination of Gray Model (GM(1, 1)) and Autoregressive Integrated Moving Average (ARIMA) is developed. The main idea is as following. Firstly, the UT1-UTC data are preprocessed by removing the leap second and Earth's zonal harmonic tidal to get UT1R-TAI data. Periodic terms are estimated and removed by the least square to get UT2R-TAI. Then the linear terms of UT2R-TAI data are modeled by the GM(1, 1), and the residual terms are modeled by the ARIMA. Finally, the UT2R-TAI prediction can be performed based on the combined model of GM(1, 1) and ARIMA, and the UT1-UTC predictions are obtained by adding the corresponding periodic terms, leap second correction and the Earth's zonal harmonic tidal correction. The results show that the proposed model can be used to predict UT1-UTC effectively with higher middle and long-term (from 32 to 360 days) accuracy than those of LS + AR, LS + MAR and WLS + MAR.
Tan, Ting; Chen, Lizhang; Liu, Fuqiang
2014-11-01
To establish multiple seasonal autoregressive integrated moving average model (ARIMA) according to the hand-foot-mouth disease incidence in Changsha, and to explore the feasibility of the multiple seasonal ARIMA in predicting the hand-foot-mouth disease incidence. EVIEWS 6.0 was used to establish multiple seasonal ARIMA according to the hand-foot- mouth disease incidence from May 2008 to August 2013 in Changsha, and the data of the hand- foot-mouth disease incidence from September 2013 to February 2014 were served as the examined samples of the multiple seasonal ARIMA, then the errors were compared between the forecasted incidence and the real value. Finally, the incidence of hand-foot-mouth disease from March 2014 to August 2014 was predicted by the model. After the data sequence was handled by smooth sequence, model identification and model diagnosis, the multiple seasonal ARIMA (1, 0, 1)×(0, 1, 1)12 was established. The R2 value of the model fitting degree was 0.81, the root mean square prediction error was 8.29 and the mean absolute error was 5.83. The multiple seasonal ARIMA is a good prediction model, and the fitting degree is good. It can provide reference for the prevention and control work in hand-foot-mouth disease.
$1.8 Million and counting: how volatile agent education has decreased our spending $1000 per day.
Miller, Scott A; Aschenbrenner, Carol A; Traunero, Justin R; Bauman, Loren A; Lobell, Samuel S; Kelly, Jeffrey S; Reynolds, John E
2016-12-01
Volatile anesthetic agents comprise a substantial portion of every hospital's pharmacy budget. Challenged with an initiative to lower anesthetic drug expenditures, we developed an education-based intervention focused on reducing volatile anesthetic costs while preserving access to all available volatile anesthetics. When postintervention evaluation demonstrated a dramatic year-over-year reduction in volatile agent acquisition costs, we undertook a retrospective analysis of volatile anesthetic purchasing data using time series analysis to determine the impact of our educational initiative. We obtained detailed volatile anesthetic purchasing data from the Central Supply of Wake Forest Baptist Health from 2007 to 2014 and integrated these data with the time course of our educational intervention. Aggregate volatile anesthetic purchasing data were analyzed for 7 consecutive fiscal years. The educational initiative emphasized tissue partition coefficients of volatile anesthetics in adipose tissue and muscle and their impact on case management. We used an interrupted time series analysis of monthly cost per unit data using autoregressive integrated moving average modeling, with the monthly cost per unit being the amount spent per bottle of anesthetic agent per month. The cost per unit decreased significantly after the intervention (t=-6.73, P<.001). The autoregressive integrated moving average model predicted that the average cost per unit decreased $48 after the intervention, with 95% confidence interval of $34 to $62. As evident from the data, the purchasing of desflurane and sevoflurane decreased, whereas that of isoflurane increased. An educational initiative focused solely on the selection of volatile anesthetic agent per case significantly reduced volatile anesthetic expense at a tertiary medical center. This approach appears promising for application in other hospitals in the rapidly evolving, value-added health care environment. We were able to accomplish this with instruction on tissue partition coefficients and each agent's individual cost per MAC-hour delivered. Copyright © 2016 Elsevier Inc. All rights reserved.
TH-A-BRF-04: Intra-Fraction Motion Characterization for Early Stage Rectal Cancer Using Cine-MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleijnen, J; Asselen, B; Burbach, M
2014-06-15
Purpose: To investigate the intra-fraction motion in patients with early stage rectal cancer using cine-MRI. Methods: Sixteen patient diagnosed with early stage rectal cancer underwent 1.5 T MR imaging prior to each treatment fraction of their short course radiotherapy (n=76). During each scan session, three 2D sagittal cine-MRIs were performed: at the beginning (Start), after 9:30 minutes (Mid), and after 18 minutes (End). Each cine-MRI has a duration of one minute at 2Hz temporal resolution, resulting in a total of 3:48 hours of cine-MRI. Additionally, standard T2-weighted (T2w) imaging was performed. Clinical target volume (CTV) an tumor (GTV) were delineatedmore » on the T2w scan and transferred to the first time-point of each cine-MRI scan. Within each cine-MRI, the first frame was registered to the remaining frames of the scan, using a non-rigid B-spline registration. To investigate potential drifts, a similar registration was performed between the first frame of the Start and End scans.To evaluate the motion, the distances by which the edge pixels of the delineations move in anterior-posterior (AP) and cranial-caudal (CC) direction, were determined using the deformation field of the registrations. The distance which incorporated 95% of these edge pixels (dist95%) was determined within each cine-MRI, and between Start- End scans, respectively. Results: Within a cine-MRI, we observed an average dist95% for the CTV of 1.3mm/1.5mm (SD=0.7mm/0.6mm) and for the GTV of 1.2mm/1.5mm (SD=0.8mm/0.9mm), in respectively AP/CC. For the CTV motion between the Start and End scan, an average dist95% of 5.5mm/5.3mm (SD=3.1mm/2.5mm) was found, in respectively AP/CC. For the GTV motion, an average dist95% of 3.6mm/3.9mm (SD=2.2mm/2.5mm) was found in AP/CC, respectively. Conclusion: Although intra-fraction motion within a one minute cine-MRI is limited, substantial intra-fraction motion was observed within the 18 minute time period between the Start and End cine-MRI.« less
Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.
25 CFR 700.173 - Average net earnings of business or farm.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 2 2011-04-01 2011-04-01 false Average net earnings of business or farm. 700.173 Section... PROCEDURES Moving and Related Expenses, Temporary Emergency Moves § 700.173 Average net earnings of business or farm. (a) Computing net earnings. For purposes of this subpart, the average annual net earnings of...
25 CFR 700.173 - Average net earnings of business or farm.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false Average net earnings of business or farm. 700.173 Section... PROCEDURES Moving and Related Expenses, Temporary Emergency Moves § 700.173 Average net earnings of business or farm. (a) Computing net earnings. For purposes of this subpart, the average annual net earnings of...
NASA Astrophysics Data System (ADS)
Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbarali; Abbaszadeh, Mahmoud
2016-04-01
The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu-water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 104, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect.
NASA Astrophysics Data System (ADS)
Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin
2017-08-01
Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.
Concept for an off-line gain stabilisation method.
Pommé, S; Sibbens, G
2004-01-01
Conceptual ideas are presented for an off-line gain stabilisation method for spectrometry, in particular for alpha-particle spectrometry at low count rate. The method involves list mode storage of individual energy and time stamp data pairs. The 'Stieltjes integral' of measured spectra with respect to a reference spectrum is proposed as an indicator for gain instability. 'Exponentially moving averages' of the latter show the gain shift as a function of time. With this information, the data are relocated stochastically on a point-by-point basis.
2005-01-21
integrated moving average ( ARIMA ) model [15,19]. Fore- casted values for the postexposure time periods were based on the training model extrapolated...Smith JF. Genetically engineered, live attenuated vaccines or Venezuelan equine encephalitis: testing in animal models . Vaccine 2003;21(25–26):3854–62...encephalitis: testing in animal models . Vaccine 2003;21(25-26):3854-62] and IE strains of VEE viruses. 15. SUBJECT TERMS Venezuelan equine
Ozone and its projection in regard to climate change
NASA Astrophysics Data System (ADS)
Melkonyan, Ani; Wagner, Patrick
2013-03-01
In this paper, the dependence of ozone-forming potential on temperature was analysed based on data from two stations (with an industrial and rural background, respectively) in North Rhine-Westphalia, Germany, for the period of 1983-2007. After examining the interrelations between ozone, NOx and temperature, a projection of the days with ozone exceedance (over a limit value of a daily maximum 8-h average ≥ 120 μg m-3 for 25 days per year averaged for 3 years) in terms of global climate change was made using probability theory and an autoregression integrated moving average (ARIMA) model. The results show that with a temperature increase of 3 K, the frequency of days when ozone exceeds its limit value will increase by 135% at the industrial station and by 87% at the rural background station.
Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies.
Chan Phooi M'ng, Jacinta; Zainudin, Rozaimah
2016-01-01
The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA') in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA'. The Efficacy Ratio adjusts the AMA' to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA' is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA' are superior to the passive buy-and-hold strategy. Specifically, AMA' outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets.
NASA Astrophysics Data System (ADS)
Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum
2017-04-01
We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Maintenance of order in a moving strong condensate
NASA Astrophysics Data System (ADS)
Whitehouse, Justin; Costa, André; Blythe, Richard A.; Evans, Martin R.
2014-11-01
We investigate the conditions under which a moving condensate may exist in a driven mass transport system. Our paradigm is a minimal mass transport model in which n - 1 particles move simultaneously from a site containing n > 1 particles to the neighbouring site in a preferred direction. In the spirit of a zero-range process the rate u(n) of this move depends only on the occupation of the departure site. We study a hopping rate u(n) = 1 + b/nα numerically and find a moving strong condensate phase for b > bc(α) for all α > 0. This phase is characterised by a condensate that moves through the system and comprises a fraction of the system's mass that tends to unity. The mass lost by the condensate as it moves is constantly replenished from the trailing tail of low occupancy sites that collectively comprise a vanishing fraction of the mass. We formulate an approximate analytical treatment of the model that allows a reasonable estimate of bc(α) to be obtained. We show numerically (for α = 1) that the transition is of mixed order, exhibiting a discontinuity in the order parameter as well as a diverging length scale as b\\searrow bc .
SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabat, C; Defoor, D; Alexandrian, A
2016-06-15
Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16more » fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gamma for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.« less
Measurements of absolute branching fractions for D mesons decays into two pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Andersson, W. Ikegami; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2018-04-01
Using a data sample of e+e- collision data with an integrated luminosity of 2.93 fb-1 taken at the center-of-mass energy √{s }=3.773 GeV with the BESIII detector operating at the BEPCII storage rings, we measure the absolute branching fractions of the two-body hadronic decays D+→π+π0 , K+π0, π+η , K+η , π+η', K+η', KS0π+, KS0K+, and D0→π+π-, K+K-, K∓π±, KS0π0, KS0η , KS0η'. Our results are consistent with previous measurements within uncertainties. Among them, the branching fractions for D+→π+π0, K+π0, π+η , π+η', KS0π+, KS0K+ and D0→KS0π0, KS0η , KS0η' are determined with improved precision compared to the world average values.
Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating
NASA Astrophysics Data System (ADS)
Weng, Rui; Zhang, Haifeng; Liu, Xiaowei
2014-03-01
In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.
Depth distribution of microbial production and oxidation of methane in northern boreal peatlands.
Sundh, I; Nilsson, M; Granberg, G; Svensson, B H
1994-05-01
The depth distributions of anaerobic microbial methane production and potential aerobic microbial methane oxidation were assessed at several sites in both Sphagnum- and sedge-dominated boreal peatlands in Sweden, and compared with net methane emissions from the same sites. Production and oxidation of methane were measured in peat slurries, and emissions were measured with the closed-chamber technique. Over all eleven sites sampled, production was, on average, highest 12 cm below the depth of the average water table. On the other hand, highest potential oxidation of methane coincided with the depth of the average water table. The integrated production rate in the 0-60 cm interval ranged between 0.05 and 1.7 g CH4 m (-2) day(-) and was negatively correlated with the depth of the average water table (linear regression: r (2) = 0.50, P = 0.015). The depth-integrated potential CH4-oxidation rate ranged between 3.0 and 22.1 g CH4 m(-2) day(-1) and was unrelated to the depth of the average water table. A larger fraction of the methane was oxidized at sites with low average water tables; hence, our results show that low net emission rates in these environments are caused not only by lower methane production rates, but also by conditions more favorable for the development of CH4-oxidizing bacteria in these environments.
Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed
2018-04-01
The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies
2016-01-01
The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA′) in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA′. The Efficacy Ratio adjusts the AMA′ to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA′ is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA′ are superior to the passive buy-and-hold strategy. Specifically, AMA′ outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets. PMID:27574972
Song, Mingkai; Cui, Linlin; Kuang, Han; Zhou, Jingwei; Yang, Pengpeng; Zhuang, Wei; Chen, Yong; Liu, Dong; Zhu, Chenjie; Chen, Xiaochun; Ying, Hanjie; Wu, Jinglan
2018-08-10
An intermittent simulated moving bed (3F-ISMB) operation scheme, the extension of the 3W-ISMB to the non-linear adsorption region, has been introduced for separation of glucose, lactic acid and acetic acid ternary-mixture. This work focuses on exploring the feasibility of the proposed process theoretically and experimentally. Firstly, the real 3F-ISMB model coupled with the transport dispersive model (TDM) and the Modified-Langmuir isotherm was established to build up the separation parameter plane. Subsequently, three operating conditions were selected from the plane to run the 3F-ISMB unit. The experimental results were used to verify the model. Afterwards, the influences of the various flow rates on the separation performances were investigated systematically by means of the validated 3F-ISMB model. The intermittent-retained component lactic acid was finally obtained with the purity of 98.5%, recovery of 95.5% and the average concentration of 38 g/L. The proposed 3F-ISMB process can efficiently separate the mixture with low selectivity into three fractions. Copyright © 2018 Elsevier B.V. All rights reserved.
Baquero, Oswaldo Santos; Santana, Lidia Maria Reis; Chiaravalloti-Neto, Francisco
2018-01-01
Globally, the number of dengue cases has been on the increase since 1990 and this trend has also been found in Brazil and its most populated city-São Paulo. Surveillance systems based on predictions allow for timely decision making processes, and in turn, timely and efficient interventions to reduce the burden of the disease. We conducted a comparative study of dengue predictions in São Paulo city to test the performance of trained seasonal autoregressive integrated moving average models, generalized additive models and artificial neural networks. We also used a naïve model as a benchmark. A generalized additive model with lags of the number of cases and meteorological variables had the best performance, predicted epidemics of unprecedented magnitude and its performance was 3.16 times higher than the benchmark and 1.47 higher that the next best performing model. The predictive models captured the seasonal patterns but differed in their capacity to anticipate large epidemics and all outperformed the benchmark. In addition to be able to predict epidemics of unprecedented magnitude, the best model had computational advantages, since its training and tuning was straightforward and required seconds or at most few minutes. These are desired characteristics to provide timely results for decision makers. However, it should be noted that predictions are made just one month ahead and this is a limitation that future studies could try to reduce.
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig
2013-11-01
To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (∼1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.
Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig
2013-11-07
To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (~1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.
Seasonal Change in Titan's Cloud Activity Observed with IRTF/SpeX
NASA Astrophysics Data System (ADS)
Schaller, Emily L.; Brown, M. E.; Roe, H. G.
2006-09-01
We have acquired whole disk spectra of Titan on nineteen nights with IRTF/SpeX over a three-month period in the spring of 2006. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk-integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. We find that Titan had less than 0.15% fractional cloud coverage on all but one of the nineteen nights. The near lack of cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 & 2000) who found rapidly varying clouds covering 0.5% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples. PMID:22736957
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples.
Hernandez, Ivan; Preston, Jesse Lee; Hepler, Justin
2014-01-01
Research on the timescale bias has found that observers perceive more capacity for mind in targets moving at an average speed, relative to slow or fast moving targets. The present research revisited the timescale bias as a type of halo effect, where normal-speed people elicit positive evaluations and abnormal-speed (slow and fast) people elicit negative evaluations. In two studies, participants viewed videos of people walking at a slow, average, or fast speed. We find evidence for a timescale halo effect: people walking at an average-speed were attributed more positive mental traits, but fewer negative mental traits, relative to slow or fast moving people. These effects held across both cognitive and emotional dimensions of mind and were mediated by overall positive/negative ratings of the person. These results suggest that, rather than eliciting greater perceptions of general mind, the timescale bias may reflect a generalized positivity toward average speed people relative to slow or fast moving people. PMID:24421882
Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble
2017-01-01
A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269–279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng–Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn. PMID:28737933
Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan
Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju
2016-01-01
This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675
On nonstationarity and antipersistency in global temperature series
NASA Astrophysics Data System (ADS)
KäRner, O.
2002-10-01
Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.
Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.
Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju
2016-02-03
This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.
Gerber, Brian D.; Kendall, William L.
2017-01-01
Monitoring animal populations can be difficult. Limited resources often force monitoring programs to rely on unadjusted or smoothed counts as an index of abundance. Smoothing counts is commonly done using a moving-average estimator to dampen sampling variation. These indices are commonly used to inform management decisions, although their reliability is often unknown. We outline a process to evaluate the biological plausibility of annual changes in population counts and indices from a typical monitoring scenario and compare results with a hierarchical Bayesian time series (HBTS) model. We evaluated spring and fall counts, fall indices, and model-based predictions for the Rocky Mountain population (RMP) of Sandhill Cranes (Antigone canadensis) by integrating juvenile recruitment, harvest, and survival into a stochastic stage-based population model. We used simulation to evaluate population indices from the HBTS model and the commonly used 3-yr moving average estimator. We found counts of the RMP to exhibit biologically unrealistic annual change, while the fall population index was largely biologically realistic. HBTS model predictions suggested that the RMP changed little over 31 yr of monitoring, but the pattern depended on assumptions about the observational process. The HBTS model fall population predictions were biologically plausible if observed crane harvest mortality was compensatory up to natural mortality, as empirical evidence suggests. Simulations indicated that the predicted mean of the HBTS model was generally a more reliable estimate of the true population than population indices derived using a moving 3-yr average estimator. Practitioners could gain considerable advantages from modeling population counts using a hierarchical Bayesian autoregressive approach. Advantages would include: (1) obtaining measures of uncertainty; (2) incorporating direct knowledge of the observational and population processes; (3) accommodating missing years of data; and (4) forecasting population size.
Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.
Feder, T J; Brust-Mascher, I; Slattery, J P; Baird, B; Webb, W W
1996-01-01
Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure. PMID:8744314
Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio
2016-10-01
This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as related to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and sunspot number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of sunspot cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of sunspot cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.
Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.
1993-01-01
A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.
Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.
1993-08-10
A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.
Motion coherence affects human perception and pursuit similarly.
Beutter, B R; Stone, L S
2000-01-01
Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.
Motion coherence affects human perception and pursuit similarly
NASA Technical Reports Server (NTRS)
Beutter, B. R.; Stone, L. S.
2000-01-01
Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.
Stochastic multifractal forecasts: from theory to applications in radar meteorology
NASA Astrophysics Data System (ADS)
da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2017-04-01
Radar meteorology has been very inspiring for the development of multifractals. It has enabled to work on a 3D+1 field with many challenging applications, including predictability and stochastic forecasts, especially nowcasts that are particularly demanding in computation speed. Multifractals are indeed parsimonious stochastic models that require only a few physically meaningful parameters, e.g. Universal Multifractal (UM) parameters, because they are based on non-trivial symmetries of nonlinear equations. We first recall the physical principles of multifractal predictability and predictions, which are so closely related that the latter correspond to the most optimal predictions in the multifractal framework. Indeed, these predictions are based on the fundamental duality of a relatively slow decay of large scale structures and an injection of new born small scale structures. Overall, this triggers a mulfitractal inverse cascade of unpredictability. With the help of high resolution rainfall radar data (≈ 100 m), we detail and illustrate the corresponding stochastic algorithm in the framework of (causal) UM Fractionally Integrated Flux models (UM-FIF), where the rainfall field is obtained with the help of a fractional integration of a conservative multifractal flux, whose average is strictly scale invariant (like the energy flux in a dynamic cascade). Whereas, the introduction of small structures is rather straightforward, the deconvolution of the past of the field is more subtle, but nevertheless achievable, to obtain the past of the flux. Then, one needs to only fractionally integrate a multiplicative combination of past and future fluxes to obtain a nowcast realisation.
A Fiber Interferometer for the Magnetized Shock Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Christian
2012-08-30
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radiallymore » resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.« less
Thermoelectric integrated membrane evaporation water recovery technology
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.
1982-01-01
The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.
A Fiber Interferometer for the Magnetized Shock Experiment
NASA Astrophysics Data System (ADS)
Yoo, C. B.; Gao, K. W.; Weber, T. E.; Intrator, T. P.
2012-10-01
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.
Statistical description of turbulent transport for flux driven toroidal plasmas
NASA Astrophysics Data System (ADS)
Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.
2017-06-01
A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.
Comparing Gravimetric and Real-Time Sampling of PM2.5 Concentrations Inside Truck Cabins
Zhu, Ying; Smith, Thomas J.; Davis, Mary E.; Levy, Jonathan I.; Herrick, Robert; Jiang, Hongyu
2012-01-01
As part of a study on truck drivers’ exposure and health risk, pickup and delivery (P&D) truck drivers’ on-road exposure patterns to PM2.5 were assessed in five weeklong sampling trips in metropolitan areas of five U.S. cities from April to August of 2006. Drivers were sampled with real-time (DustTrak) and gravimetric samplers to measure average in-cabin PM2.5 concentrations and to compare their correspondence in moving trucks. In addition, GPS measurements of truck locations, meteorological data, and driver behavioral data were collected throughout the day to determine which factors influence the relationship between real-time and gravimetric samplers. Results indicate that the association between average real-time and gravimetric PM2.5 measurements on moving trucks was fairly consistent (Spearman rank correlation of 0.63), with DustTrak measurements exceeding gravimetric measurements by approximately a factor of 2. This ratio differed significantly only between the industrial Midwest cities and the other three sampled cities scattered in the South and West. There was also limited evidence of an effect of truck age. Filter samples collected concurrently with DustTrak measurements can be used to calibrate average mass concentration responses for the DustTrak, allowing for real-time measurements to be integrated into longer-term studies of inter-city and intra-urban exposure patterns for truck drivers. PMID:21991940
Comparing gravimetric and real-time sampling of PM(2.5) concentrations inside truck cabins.
Zhu, Ying; Smith, Thomas J; Davis, Mary E; Levy, Jonathan I; Herrick, Robert; Jiang, Hongyu
2011-11-01
As part of a study on truck drivers' exposure and health risk, pickup and delivery (P&D) truck drivers' on-road exposure patterns to PM(2.5) were assessed in five, weeklong sampling trips in metropolitan areas of five U.S. cities from April to August of 2006. Drivers were sampled with real-time (DustTrak) and gravimetric samplers to measure average in-cabin PM(2.5) concentrations and to compare their correspondence in moving trucks. In addition, GPS measurements of truck locations, meteorological data, and driver behavioral data were collected throughout the day to determine which factors influence the relationship between real-time and gravimetric samplers. Results indicate that the association between average real-time and gravimetric PM(2.5) measurements on moving trucks was fairly consistent (Spearman rank correlation of 0.63), with DustTrak measurements exceeding gravimetric measurements by approximately a factor of 2. This ratio differed significantly only between the industrial Midwest cities and the other three sampled cities scattered in the South and West. There was also limited evidence of an effect of truck age. Filter samples collected concurrently with DustTrak measurements can be used to calibrate average mass concentration responses for the DustTrak, allowing for real-time measurements to be integrated into longer-term studies of inter-city and intra-urban exposure patterns for truck drivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps
NASA Astrophysics Data System (ADS)
Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.
2016-07-01
The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985-2014) on the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED-NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED-NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED-NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED-NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.
White matter and neurocognitive changes in adults with chronic traumatic brain injury.
Kennedy, Mary R T; Wozniak, Jeffrey R; Muetzel, Ryan L; Mueller, Bryon A; Chiou, Hsin-Huei; Pantekoek, Kari; Lim, Kelvin O
2009-01-01
Diffusion tensor imaging was used to investigate white matter (WM) integrity in adults with traumatic brain injury (TBI) and healthy adults as controls. Adults with TBI had sustained severe vehicular injuries on the average of 7 years earlier. A multivariate analysis of covariance with verbal IQ as the covariate revealed that adults with TBI had lower fractional anisotropy and higher mean diffusivity than controls, specifically in the three regions of interest (ROIs), the centrum semiovale (CS), the superior frontal (SPF), and the inferior frontal (INF). Adults with TBI averaged in the normal range in motor speed and two of three executive functions and were below average in delayed verbal recall and inhibition, whereas controls were above average. Time since injury, but not age, was associated with WM changes in the SPF ROI, whereas age, but not time since injury, was associated with WM changes in the INF ROI, suggesting that the effects of WM on time since injury may interact with age. To understand the utility of WM changes in chronic recovery, larger sample sizes are needed to investigate associations between cognition and WM integrity of severely injured individuals who have substantial cognitive impairment compared to severely injured individuals with little cognitive impairment. (JINS, 2009, 15, 130-136.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batin, E; Depauw, N; MacDonald, S
Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy.more » In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°.« less
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.
Rodríguez, Nibaldo
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%. PMID:25243200
Transient aging in fractional Brownian and Langevin-equation motion.
Kursawe, Jochen; Schulz, Johannes; Metzler, Ralf
2013-12-01
Stochastic processes driven by stationary fractional Gaussian noise, that is, fractional Brownian motion and fractional Langevin-equation motion, are usually considered to be ergodic in the sense that, after an algebraic relaxation, time and ensemble averages of physical observables coincide. Recently it was demonstrated that fractional Brownian motion and fractional Langevin-equation motion under external confinement are transiently nonergodic-time and ensemble averages behave differently-from the moment when the particle starts to sense the confinement. Here we show that these processes also exhibit transient aging, that is, physical observables such as the time-averaged mean-squared displacement depend on the time lag between the initiation of the system at time t=0 and the start of the measurement at the aging time t(a). In particular, it turns out that for fractional Langevin-equation motion the aging dependence on t(a) is different between the cases of free and confined motion. We obtain explicit analytical expressions for the aged moments of the particle position as well as the time-averaged mean-squared displacement and present a numerical analysis of this transient aging phenomenon.
NASA Astrophysics Data System (ADS)
Stott, John P.; Swinbank, A. M.; Johnson, Helen L.; Tiley, Alfie; Magdis, Georgios; Bower, Richard; Bunker, Andrew J.; Bureau, Martin; Harrison, Chris M.; Jarvis, Matt J.; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip; Cirasuolo, Michele
2016-04-01
The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO-guaranteed time survey of 795 typical star-forming galaxies in the redshift range z = 0.8-1.0 with the KMOS instrument on the Very Large Telescope. In this paper, we present resolved kinematics and star formation rates for 584 z ˜ 1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z ˜ 1 to date. We demonstrate the success of our selection criteria with 90 per cent of our targets found to be H α emitters, of which 81 per cent are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83 ± 5 per cent. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ˜35 per cent, and the majority are consistent with being marginally unstable (Toomre Q ˜ 1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbulence. We postulate that it is the ubiquity of high (likely molecular) gas fractions and the associated gravitational instabilities that drive the elevated star formation rates in these typical z ˜ 1 galaxies, leading to the 10-fold enhanced star formation rate density. Finally, by comparing the gas masses obtained from inverting the star formation law with the dynamical and stellar masses, we infer an average dark matter to total mass fraction within 2.2re (9.5 kpc) of 65 ± 12 per cent, in agreement with the results from hydrodynamic simulations of galaxy formation.
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung
2014-01-01
Background The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). Purpose To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Methods Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. Results The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. Conclusions The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain. PMID:25329643
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung; Lin, Tsung-Yi; Guo, How-Ran
2014-01-01
The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain.
NASA Astrophysics Data System (ADS)
Salari, Mahmoud; Rava, Amin
2017-09-01
Nowadays, Autonomous Underwater Vehicles (AUVs) are frequently used for exploring the oceans. The hydrodynamics of AUVs moving in the vicinity of the water surface are significantly different at higher depths. In this paper, the hydrodynamic coefficients of an AUV in non-dimensional depths of 0.75, 1, 1.5, 2, and 4D are obtained for movement close to the free-surface. Reynolds Averaged Navier Stokes Equations (RANS) are discretized using the finite volume approach and the water-surface effects modeled using the Volume of Fraction (VOF) method. As the operating speeds of AUVs are usually low, the boundary layer over them is not fully laminar or fully turbulent, so the effect of boundary layer transition from laminar to turbulent flow was considered in the simulations. Two different turbulence/transition models were used: 1) a full-turbulence model, the k-ɛ model, and 2) a turbulence/transition model, Menter's Transition-SST model. The results show that the Menter's Transition-SST model has a better consistency with experimental results. In addition, the wave-making effects of these bodies are studied at different immersion depths in the sea-surface vicinity or at finite depths. It is observed that the relevant pitch moments and lift coefficients are non-zero for these axi-symmetric bodies when they move close to the sea-surface. This is not expected for greater depths.
Dense flow around a sphere moving into a cloud of grains
NASA Astrophysics Data System (ADS)
Gondret, Philippe; Faure, Sylvain; Lefebvre-Lepot, Aline; Seguin, Antoine
2017-06-01
A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size that increases with the initial solid fraction ϕ0 of the cloud. A detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different spatial variations of strain and stresses, the local friction coeffcient μ appears to depend only on the local inertial number I as well as the local solid fraction ϕ, which means that a local rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on the sphere velocity and explore only a small range between about 10-2 and 10-1. The influence of sidewalls is then investigated on the flow and the forces.
Investigation of the moving structures in a coronal bright point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Zongjun; Guo, Yang, E-mail: ningzongjun@pmo.ac.cn
2014-10-10
We have explored the moving structures in a coronal bright point (CBP) observed by the Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) on 2011 March 5. This CBP event has a lifetime of ∼20 minutes and is bright with a curved shape along a magnetic loop connecting a pair of negative and positive fields. AIA imaging observations show that a lot of bright structures are moving intermittently along the loop legs toward the two footpoints from the CBP brightness core. Such moving bright structures are clearly seen at AIA 304 Å. In order to analyze their features, the CBP ismore » cut along the motion direction with a curved slit which is wide enough to cover the bulk of the CBP. After integrating the flux along the slit width, we get the spacetime slices at nine AIA wavelengths. The oblique streaks starting from the edge of the CBP brightness core are identified as moving bright structures, especially on the derivative images of the brightness spacetime slices. They seem to originate from the same position near the loop top. We find that these oblique streaks are bi-directional, simultaneous, symmetrical, and periodic. The average speed is about 380 km s{sup –1}, and the period is typically between 80 and 100 s. Nonlinear force-free field extrapolation shows the possibility that magnetic reconnection takes place during the CBP, and our findings indicate that these moving bright structures could be the observational outflows after magnetic reconnection in the CBP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Hogg, David W., E-mail: jo.bovy@nyu.ed
2010-07-10
The velocity distribution of nearby stars ({approx}<100 pc) contains many overdensities or 'moving groups', clumps of comoving stars, that are inconsistent with the standard assumption of an axisymmetric, time-independent, and steady-state Galaxy. We study the age and metallicity properties of the low-velocity moving groups based on the reconstruction of the local velocity distribution in Paper I of this series. We perform stringent, conservative hypothesis testing to establish for each of these moving groups whether it could conceivably consist of a coeval population of stars. We conclude that they do not: the moving groups are neither trivially associated with their eponymousmore » open clusters nor with any other inhomogeneous star formation event. Concerning a possible dynamical origin of the moving groups, we test whether any of the moving groups has a higher or lower metallicity than the background population of thin disk stars, as would generically be the case if the moving groups are associated with resonances of the bar or spiral structure. We find clear evidence that the Hyades moving group has higher than average metallicity and weak evidence that the Sirius moving group has lower than average metallicity, which could indicate that these two groups are related to the inner Lindblad resonance of the spiral structure. Further, we find weak evidence that the Hercules moving group has higher than average metallicity, as would be the case if it is associated with the bar's outer Lindblad resonance. The Pleiades moving group shows no clear metallicity anomaly, arguing against a common dynamical origin for the Hyades and Pleiades groups. Overall, however, the moving groups are barely distinguishable from the background population of stars, raising the likelihood that the moving groups are associated with transient perturbations.« less
A stop-restart solid propellant study with salt quench
NASA Technical Reports Server (NTRS)
Kumar, R. N.
1976-01-01
Experiments were conducted to gain insight into the unsatisfactory performance of the salt quench system of solid propellants in earlier studies. Nine open-air salt spray tests were conducted and high-speed cinematographic coverage was obtained of the events. It is shown that the salt spray by the detonator is generally a two-step process yielding two different fractions. The first fraction consists of finely powdered salt and moves practically unidirectionally at a high velocity (thousand of feet per second) while the second fraction consists of coarse particles and moves randomly at a low velocity (a few feet per second). Further investigation is required to verify the speculation that a lower quench charge ratio (weight of salt/propellant burning area) than previously employed may lead to an efficient quench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.; Boshier, M. G.
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Waste tyre pyrolysis: modelling of a moving bed reactor.
Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M
2010-12-01
This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kasemodel, Mariana Consiglio; Lima, Jacqueline Zanin; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amancio; Trofino, Julio Cesar; Rodrigues, Valéria Guimarães Silvestre
2016-12-01
Improper disposal of mining waste is still considered a global problem, and further details on the contamination by potentially toxic metals are required for a proper assessment. In this context, it is important to have a combined view of the chemical and biological changes in the mining dump area. Thus, the objective of this study was to evaluate the Pb, Zn and Cd contamination in a slag disposal area using the integration of geochemical and microbiological data. Analyses of soil organic matter (SOM), pH, Eh, pseudo-total concentration of metals, sequential extraction and microbial community by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were conducted. Metal availability was evaluated based on the geoaccumulation index (I geo ), ecological risk ([Formula: see text]), Risk Assessment Code (RAC) and experimental data, and different reference values were tested to assist in the interpretation of the indices. The soil pH was slightly acidic to neutral, the Eh values indicated oxidized conditions and the average SOM content varied from 12.10 to 53.60 g kg -1 . The average pseudo-total concentrations of metals were in the order of Zn > Pb > Cd. Pb and Zn were mainly bound to the residual fraction and Fe-Mn oxides, and a significant proportion of Cd was bound to the exchangeable and carbonate fractions. The topsoil (0-20 cm) is highly contaminated (I geo ) with Cd and has a very high potential ecological risk ([Formula: see text]). Higher bacterial diversity was mainly associated with higher metal concentrations. It is concluded that the integration of geochemical and microbiological data can provide an appropriate evaluation of mining waste-contaminated areas.
Littman, Alyson J; Damschroder, Laura J; Verchinina, Lilia; Lai, Zongshan; Kim, Hyungjin Myra; Hoerster, Katherine D; Klingaman, Elizabeth A; Goldberg, Richard W; Owen, Richard R; Goodrich, David E
2015-01-01
The objective was to determine whether obesity screening and weight management program participation and outcomes are equitable for individuals with serious mental illness (SMI) and depressive disorder (DD) compared to those without SMI/DD in Veterans Health Administration (VHA), the largest integrated US health system, which requires obesity screening and offers weight management to all in need. We used chart-reviewed, clinical and administrative VHA data from fiscal years 2010-2012 to estimate obesity screening and participation in the VHA's weight management program (MOVE!) across groups. Six- and 12-month weight changes in MOVE! participants were estimated using linear mixed models adjusted for confounders. Compared to individuals without SMI/DD, individuals with SMI or DD were less frequently screened for obesity (94%-94.7% vs. 95.7%) but had greater participation in MOVE! (10.1%-10.4% vs. 7.4%). MOVE! participants with SMI or DD lost approximately 1 lb less at 6 months. At 12 months, average weight loss for individuals with SMI or neither SMI/DD was comparable (-3.5 and -3.3 lb, respectively), but individuals with DD lost less weight (mean=-2.7 lb). Disparities in obesity screening and treatment outcomes across mental health diagnosis groups were modest. However, participation in MOVE! was low for every group, which limits population impact. Published by Elsevier Inc.
Analysis of Drude model using fractional derivatives without singular kernels
NASA Astrophysics Data System (ADS)
Jiménez, Leonardo Martínez; García, J. Juan Rosales; Contreras, Abraham Ortega; Baleanu, Dumitru
2017-11-01
We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF), and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.
Light Propagation in Turbulent Media
NASA Astrophysics Data System (ADS)
Perez, Dario G.
2003-07-01
First, we make a revision of the up-to-date Passive Scalar Fields properties: also, the refractive index is among them. Afterwards, we formulated the properties that make the family of `isotropic' fractional Brownian motion (with parameter H) a good candidate to simulate the turbulent refractive index. Moreover, we obtained its fractal dimension which matches the estimated by Constantin for passive scalar, and thus the parameter H determines the state of the turbulence. Next, using a path integral velocity representation, with the Markovian model, to calculate the effects of the turbulence over a system of grids. Finally, with the tools of Stochastic Calculus for fractional Brownian motions we studied the ray-equation coming from the Geometric Optics in the turbulent case. Our analysis covers those cases where average temperature gradients are relevant.
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.
Ge, Liang; Sotiropoulos, Fotis
2008-01-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533
Chadsuthi, Sudarat; Iamsirithaworn, Sopon; Triampo, Wannapong; Modchang, Charin
2015-01-01
Influenza is a worldwide respiratory infectious disease that easily spreads from one person to another. Previous research has found that the influenza transmission process is often associated with climate variables. In this study, we used autocorrelation and partial autocorrelation plots to determine the appropriate autoregressive integrated moving average (ARIMA) model for influenza transmission in the central and southern regions of Thailand. The relationships between reported influenza cases and the climate data, such as the amount of rainfall, average temperature, average maximum relative humidity, average minimum relative humidity, and average relative humidity, were evaluated using cross-correlation function. Based on the available data of suspected influenza cases and climate variables, the most appropriate ARIMA(X) model for each region was obtained. We found that the average temperature correlated with influenza cases in both central and southern regions, but average minimum relative humidity played an important role only in the southern region. The ARIMAX model that includes the average temperature with a 4-month lag and the minimum relative humidity with a 2-month lag is the appropriate model for the central region, whereas including the minimum relative humidity with a 4-month lag results in the best model for the southern region.
Fractional quantum integral operator with general kernels and applications
NASA Astrophysics Data System (ADS)
Babakhani, Azizollah; Neamaty, Abdolali; Yadollahzadeh, Milad; Agahi, Hamzeh
In this paper, we first introduce the concept of fractional quantum integral with general kernels, which generalizes several types of fractional integrals known from the literature. Then we give more general versions of some integral inequalities for this operator, thus generalizing some previous results obtained by many researchers.2,8,25,29,30,36
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2008-01-01
For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.
Kleinschmidt, J H; Tamm, L K
1999-04-20
The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.
Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa
2014-01-01
Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.
Selmane, Schehrazad; L'Hadj, Mohamed
2016-01-01
The aims of this study were to highlight some epidemiological aspects of scorpion envenomations, to analyse and interpret the available data for Biskra province, Algeria, and to develop a forecasting model for scorpion sting cases in Biskra province, which records the highest number of scorpion stings in Algeria. In addition to analysing the epidemiological profile of scorpion stings that occurred throughout the year 2013, we used the Box-Jenkins approach to fit a seasonal autoregressive integrated moving average (SARIMA) model to the monthly recorded scorpion sting cases in Biskra from 2000 to 2012. The epidemiological analysis revealed that scorpion stings were reported continuously throughout the year, with peaks in the summer months. The most affected age group was 15 to 49 years old, with a male predominance. The most prone human body areas were the upper and lower limbs. The majority of cases (95.9%) were classified as mild envenomations. The time series analysis showed that a (5,1,0)×(0,1,1) 12 SARIMA model offered the best fit to the scorpion sting surveillance data. This model was used to predict scorpion sting cases for the year 2013, and the fitted data showed considerable agreement with the actual data. SARIMA models are useful for monitoring scorpion sting cases, and provide an estimate of the variability to be expected in future scorpion sting cases. This knowledge is helpful in predicting whether an unusual situation is developing or not, and could therefore assist decision-makers in strengthening the province's prevention and control measures and in initiating rapid response measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Congwu; Zeng, Grace G.; Department of Radiation Oncology, University of Toronto, Toronto, ON
2014-08-15
We investigated the setup variations over the treatment courses of 113 patients with intact prostate treated with 78Gy/39fx. Institutional standard bladder and bowel preparation and image guidance protocols were used in CT simulation and treatment. The RapidArc treatment plans were optimized in Varian Eclipse treatment planning system and delivered on Varian 2100X Clinacs equipped with On-Board Imager to localize the target before beam-on. The setup variations were calculated in terms of mean and standard deviation of couch shifts. No correlation was observed between the mean shift and standard deviation over the treatment course and patient age, initial prostate volume andmore » rectum size. The mean shifts in the first and last 5 fractions are highly correlated (P < 10{sup −10}) while the correlation of the standard deviations cannot be determined. The Mann-Kendall tests indicate trends of the mean daily Ant-Post and Sup-Inf shifts of the group. The target is inferior by ∼1mm to the planned position when the treatment starts and moves superiorly, approaching the planned position at 10th fraction, and then gradually moves back inferiorly by ∼1mm in the remain fractions. In the Ant-Post direction, the prostate gradually moves posteriorly during the treatment course from a mean shift of ∼2.5mm in the first fraction to ∼1mm in the last fraction. It may be related to a systematic rectum size change in the progress of treatment. The biased mean shifts in Ant-Post and Sup-Inf direction of most patients suggest systematically larger rectum and smaller bladder during the treatment than at CT simulation.« less
Parameterization and scaling of arctic ice conditions in the context of ice-atmospheric processes
NASA Technical Reports Server (NTRS)
Barry, R. G.; Steffen, K.; Heinrichs, J. F.; Key, J. R.; Maslanik, J. A.; Serreze, M. C.; Weaver, R. L.
1995-01-01
The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.
Integrating Research and Practice: Distractions, Controversies, and Options for Moving Forward
ERIC Educational Resources Information Center
Gambrill, Eileen
2015-01-01
Integrating practice and research is vital in all helping professions in order to offer the most ethical, evidence-informed interventions to clients. This article describes some avoidable distractions that hinder integration, discusses controversies related to integration, and describes options for moving forward, including making wasted resources…
Structural proteins in the egg-shell of the oriental garden cricket, Gryllus mitratus
Kawasaki, Hiroya; Sato, Hitoshi; Suzuki, Motoko
1971-01-01
1. The egg-shell of the oriental garden cricket, Gryllus mitratus, contained at least two different types of structural protein in an approximate ratio of 5:1. The major fraction was extracted in a solvent containing dithiothreitol, EDTA and 8m-urea, and was purified to apparent homogeneity as judged by free-boundary electrophoresis and ultracentrifugation. This was designated SH-fraction and its S-carboxymethyl derivative (CM-fraction) was also prepared. The minor fraction, insoluble in the solvent, was designated insoluble residue. 2. The major fraction was a phosphoprotein, rich in serine (29.8mol% of the total amino acids) and phosphate (nearly equimolar to serine), and O-phosphoserine was identified in its partial acid hydrolysate. The content of cystine was rather low (0.9mol%) in spite of the importance of this amino acid residue in the native form of the protein. The insoluble residue contained only a small amount of phosphorus, and its amino acid composition was clearly different from the major fraction. 3. CM-fraction, a fibrous protein with an average molecular weight of 57500, behaved as a typical polyanion owing to the high content of phosphate. SH-fraction and CM-fraction were precipitable from their aqueous solutions by the addition of bivalent metal cations, and the precipitation of CM-fraction by Ca2+ and Mg2+ was studied in detail. 4. When SH-fraction was exposed to air, intermolecular disulphide linkages were formed, yielding a net-like gel that changed its volume with changes in Ca2+, Mg2+ and Na+. 5. The possible role of this protein fraction in maintaining the integrity of the egg-shell, and a comparison of its composition and properties with other egg-shell proteins and other phosphoproteins, are discussed. ImagesFig. 2.PLATE 1 PMID:5004198
NASA Astrophysics Data System (ADS)
Giallongo, E.; Menci, N.; Grazian, A.; Gallozzi, S.; Castellano, M.; Fiore, F.; Fontana, A.; Pentericci, L.; Boutsia, K.; Paris, D.; Speziali, R.; Testa, V.
2014-01-01
We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ~ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ~200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total emissivity in broad agreement with the measured ICL fraction. The present analysis shows that the measure of the ICL fraction in clusters can quantitatively account for the stellar stripping activity in their cores and can be used to probe their CDM distribution and evolutionary status. Observations have been carried out using the Large Binocular Telescope at Mt. Graham, AZ. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University; and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, T.J.T.; Moir, D.C.; Snell, C.M.
In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A targetmore » chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment.« less
Clustering and flow around a sphere moving into a grain cloud.
Seguin, A; Lefebvre-Lepot, A; Faure, S; Gondret, P
2016-06-01
A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains far from any boundaries and without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size. The key point is that the upstream cluster size increases with the initial solid fraction [Formula: see text] but the cluster packing fraction takes an about constant value independent of [Formula: see text]. Although the upstream cluster size around the moving sphere diverges when [Formula: see text] approaches a critical value, the drag force exerted by the grains on the sphere does not. The detailed analysis of the local strain rate and local stress fields made in the non-parallel granular flow inside the cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and shear stress. Despite different spatial variations of these invariants, the local friction coefficient μ appears to depend only on the local inertial number I as well as the local solid fraction, which means that a local rheology does exist in the present non-parallel flow. The key point is that the spatial variations of I inside the cluster do not depend on the sphere velocity and explore only a small range around the value one.
King, Tricia Z; Wang, Liya; Mao, Hui
2015-01-01
Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood. Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ). Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS) on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis) and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA) differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors. The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors. Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white matter integrity. Radiation and adjunct chemotherapy treatment may play a role in greater white matter disruption. The relationships between white matter integrity and IQ, as well as cumulative neurological risk factors exist in young adult survivors of childhood brain tumors.
NASA Astrophysics Data System (ADS)
Cheong, Chin Wen
2008-02-01
This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.
Edge Preserved Speckle Noise Reduction Using Integrated Fuzzy Filters
Dewal, M. L.; Rohit, Manoj Kumar
2014-01-01
Echocardiographic images are inherent with speckle noise which makes visual reading and analysis quite difficult. The multiplicative speckle noise masks finer details, necessary for diagnosis of abnormalities. A novel speckle reduction technique based on integration of geometric, wiener, and fuzzy filters is proposed and analyzed in this paper. The denoising applications of fuzzy filters are studied and analyzed along with 26 denoising techniques. It is observed that geometric filter retains noise and, to address this issue, wiener filter is embedded into the geometric filter during iteration process. The performance of geometric-wiener filter is further enhanced using fuzzy filters and the proposed despeckling techniques are called integrated fuzzy filters. Fuzzy filters based on moving average and median value are employed in the integrated fuzzy filters. The performances of integrated fuzzy filters are tested on echocardiographic images and synthetic images in terms of image quality metrics. It is observed that the performance parameters are highest in case of integrated fuzzy filters in comparison to fuzzy and geometric-fuzzy filters. The clinical validation reveals that the output images obtained using geometric-wiener, integrated fuzzy, nonlocal means, and details preserving anisotropic diffusion filters are acceptable. The necessary finer details are retained in the denoised echocardiographic images. PMID:27437499
NASA Astrophysics Data System (ADS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu; Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu; Chen, Jinghua, E-mail: cjhdzdz@163.com
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a temperedmore » fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.« less
Patterns of patient specific dosimetry in total body irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akino, Yuichi; Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871; McMullen, Kevin P.
2013-04-15
Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at ourmore » institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10%. However, some large differences greater than 35% were also found at several points. For one case, the knee received double the prescribed dose. When the dose differences for multiple fractions were averaged, compliance ({+-}10%) between the prescription and measured dose was improved compared to the dose difference of the first single fraction, for example, as at umbilicus, which improved from 83.9% to 98.5%. Conclusions: Actual dose measurement analysis of TBI patients revealed a potentially wide variance from the calculated dose. Based from their IVD method for TBI using Cobalt-60 irradiator and moving table, {+-}10% over entire body is hard to achieve. However, it can be significantly improved with immediate feedback after the first fraction prior to subsequent treatments.« less
Fractional calculus in hydrologic modeling: A numerical perspective
Benson, David A.; Meerschaert, Mark M.; Revielle, Jordan
2013-01-01
Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449
Sitepu, Monika S; Kaewkungwal, Jaranit; Luplerdlop, Nathanej; Soonthornworasiri, Ngamphol; Silawan, Tassanee; Poungsombat, Supawadee; Lawpoolsri, Saranath
2013-03-01
This study aimed to describe the temporal patterns of dengue transmission in Jakarta from 2001 to 2010, using data from the national surveillance system. The Box-Jenkins forecasting technique was used to develop a seasonal autoregressive integrated moving average (SARIMA) model for the study period and subsequently applied to forecast DHF incidence in 2011 in Jakarta Utara, Jakarta Pusat, Jakarta Barat, and the municipalities of Jakarta Province. Dengue incidence in 2011, based on the forecasting model was predicted to increase from the previous year.
Seasonal Change in Titan's Cloud Activity
NASA Astrophysics Data System (ADS)
Schaller, E. L.; Brown, M. E.; Roe, H. G.
2006-12-01
We have acquired whole disk spectra of Titan on nineteen nights with IRTF/SpeX over a three-month period in the spring of 2006 and will acquire data on ~50 additional nights between September and December 2006. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk- integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. We find that Titan had less than 0.15% fractional cloud coverage on all but one of the nineteen nights. The near lack of cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 &2000) who found rapidly varying clouds covering ~0.5% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.
Passenger Flow Forecasting Research for Airport Terminal Based on SARIMA Time Series Model
NASA Astrophysics Data System (ADS)
Li, Ziyu; Bi, Jun; Li, Zhiyin
2017-12-01
Based on the data of practical operating of Kunming Changshui International Airport during2016, this paper proposes Seasonal Autoregressive Integrated Moving Average (SARIMA) model to predict the passenger flow. This article not only considers the non-stationary and autocorrelation of the sequence, but also considers the daily periodicity of the sequence. The prediction results can accurately describe the change trend of airport passenger flow and provide scientific decision support for the optimal allocation of airport resources and optimization of departure process. The result shows that this model is applicable to the short-term prediction of airport terminal departure passenger traffic and the average error ranges from 1% to 3%. The difference between the predicted and the true values of passenger traffic flow is quite small, which indicates that the model has fairly good passenger traffic flow prediction ability.
Moving beyond Brownies and Pizza
ERIC Educational Resources Information Center
Freeman, Daniel W.; Jorgensen, Theresa A.
2015-01-01
A lack of fractional understanding is a well-documented obstacle to student achievement in upper elementary and middle school math (National Center for Educational Statistics [NCES] 1999; Lamon 1999; National Research Council [NRC] 2001). Lamon (1999) notes that one major conceptual hurdle that students must overcome is the idea that fractions are…
20007: Quantum particle displacement by a moving localized potential trap
NASA Astrophysics Data System (ADS)
Granot, E.; Marchewka, A.
2009-04-01
We describe the dynamics of a bound state of an attractive δ-well under displacement of the potential. Exact analytical results are presented for the suddenly moved potential. Since this is a quantum system, only a fraction of the initially confined wave function remains confined to the moving potential. However, it is shown that besides the probability to remain confined to the moving barrier and the probability to remain in the initial position, there is also a certain probability for the particle to move at double speed. A quasi-classical interpretation for this effect is suggested. The temporal and spectral dynamics of each one of the scenarios is investigated.
The sudden coalescene model of the boiling crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrica, P.M.; Clausse, A.
1995-09-01
A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.
NASA Technical Reports Server (NTRS)
Padovan, Joe
1986-01-01
In a three part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modelled by fractional integro-differential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator. In the second and third parts of the paper, 3-D extensions are developed along with transient contact strategies enabling the handling of impacts with obstructions. Overall, the various developments are benchmarked via comprehensive 2- and 3-D simulations. These are correlated with experimental data to define modelling capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, J; Matney, J; Chao, E
2015-06-15
Purpose: TomoTherapy treatment has unique challenges in handling intrafractional motion compared to conventional LINAC. This study is aimed to gain a realistic and quantitative understanding of motion impact on TomoTherapy SBRT treatment of lung and prostate cancer patients. Methods: A 4D dose engine utilizing GPUs and including motion during treatment was developed for the efficient simulation of TomoTherapy delivered dosimetry. Two clinical CyberKnife lung cases with respiratory motion tracking and two prostate cases with a slower non-periodical organ motion treated by LINAC plus Calypso tracking were used in the study. For each disease site, one selected case has an averagemore » motion (6mm); the other has a large motion (10mm for lung and 15mm for prostate). SBRT of lung and prostate cases were re-planned on TomoTherapy with 12 Gyx4 fractions and 7Gyx5 fractions, respectively, all with 95% PTV coverage. Each case was planned with 4 jaw settings: 1) conventional 1cm static, 2) 2.5cm static, 3) 2.5cm dynamic, and 4) 5cm dynamic. The intrafractional rigid motion of the target was applied in the dose calculation of individual fractions of each plan and total dose was accumulated from multiple fractions. Results: For 1cm static jaw plans with motions applied, PTV coverage is related to motion type and amplitude. For SBRT patients with average motion (6mm), the PTV coverage remains > 95% for lung case and 74% for prostate case. For cases with large motion, PTV coverage drops to 61% for lung SBRT and 49% for prostate SBRT. Plans with other jaws improve uniformity of moving target, but still suffer from poor PTV coverage (< 70%). Conclusion: TomoTherapy lung SBRT is less motion-impacted when average amplitude of respiratory-induced intrafractional motion is present (6mm). When motion is large and/or non-periodic (prostate), all studied plans lead to significantly decreased target coverage in actual delivered dosimetry.« less
Meerschaert, Mark M; Sabzikar, Farzad; Chen, Jinghua
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA
2014-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690
Space use by foragers consuming renewable resources
NASA Astrophysics Data System (ADS)
Abramson, Guillermo; Kuperman, Marcelo N.; Morales, Juan M.; Miller, Joel C.
2014-05-01
We study a simple model of a forager as a walk that modifies a relaxing substrate. Within it simplicity, this provides an insight on a number of relevant and non-intuitive facts. Even without memory of the good places to feed and no explicit cost of moving, we observe the emergence of a finite home range. We characterize the walks and the use of resources in several statistical ways, involving the behavior of the average used fraction of the system, the length of the cycles followed by the walkers, and the frequency of visits to plants. Preliminary results on population effects are explored by means of a system of two non directly interacting animals. Properties of the overlap of home ranges show the existence of a set of parameters that provides the best utilization of the shared resource.
Statistical physics in foreign exchange currency and stock markets
NASA Astrophysics Data System (ADS)
Ausloos, M.
2000-09-01
Problems in economy and finance have attracted the interest of statistical physicists all over the world. Fundamental problems pertain to the existence or not of long-, medium- or/and short-range power-law correlations in various economic systems, to the presence of financial cycles and on economic considerations, including economic policy. A method like the detrended fluctuation analysis is recalled emphasizing its value in sorting out correlation ranges, thereby leading to predictability at short horizon. The ( m, k)-Zipf method is presented for sorting out short-range correlations in the sign and amplitude of the fluctuations. A well-known financial analysis technique, the so-called moving average, is shown to raise questions to physicists about fractional Brownian motion properties. Among spectacular results, the possibility of crash predictions has been demonstrated through the log-periodicity of financial index oscillations.
Annual forest inventory estimates based on the moving average
Francis A. Roesch; James R. Steinman; Michael T. Thompson
2002-01-01
Three interpretations of the simple moving average estimator, as applied to the USDA Forest Service's annual forest inventory design, are presented. A corresponding approach to composite estimation over arbitrarily defined land areas and time intervals is given for each interpretation, under the assumption that the investigator is armed with only the spatial/...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
...: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Proposed rule. SUMMARY: This proposed rule..., especially the teaching status adjustment factor. Therefore, we implemented a 3-year moving average approach... moving average to calculate the facility-level adjustment factors. For FY 2011, we issued a notice to...
H2O absorption tomography in a diesel aftertreatment system using a polymer film for optical access
NASA Astrophysics Data System (ADS)
Wang, Ze; Sanders, Scott T.; Backhaus, Jacob A.; Munnannur, Achuth; Schmidt, Niklas M.
2017-12-01
Film-optical-access H2O absorption tomography is, for the first time, applied to a practical diesel aftertreatment system. A single rotation stage and a single translation stage are used to move a single laser beam to obtain each of the 3480 line-of-sight measurements used in the tomographic reconstruction. It takes 1 h to acquire one image in a 60-view-angle measurement. H2O images are acquired in a 292.4-mm-diameter selective catalytic reduction (SCR) can with a 5-mm spatial resolution at temperatures in the 158-185 °C range. When no liquid H2O is injected into the gas, the L1 norm-based uniformity index is 0.994, and the average mole fraction error is - 6% based on a separate FTIR measurement. When liquid water is injected through the reductant dosing system designed to inject diesel exhaust fluid, nonuniformity is observed, as evidenced by measured uniformity indices for H2O in the 0.977-0.986 range. A mixing plate installed into the system is able to improve the uniformity of the H2O mole fraction.
Risk-Seeking Versus Risk-Avoiding Investments in Noisy Periodic Environments
NASA Astrophysics Data System (ADS)
Navarro-Barrientos, J. Emeterio; Walter, Frank E.; Schweitzer, Frank
We study the performance of various agent strategies in an artificial investment scenario. Agents are equipped with a budget, x(t), and at each time step invest a particular fraction, q(t), of their budget. The return on investment (RoI), r(t), is characterized by a periodic function with different types and levels of noise. Risk-avoiding agents choose their fraction q(t) proportional to the expected positive RoI, while risk-seeking agents always choose a maximum value qmax if they predict the RoI to be positive ("everything on red"). In addition to these different strategies, agents have different capabilities to predict the future r(t), dependent on their internal complexity. Here, we compare "zero-intelligent" agents using technical analysis (such as moving least squares) with agents using reinforcement learning or genetic algorithms to predict r(t). The performance of agents is measured by their average budget growth after a certain number of time steps. We present results of extensive computer simulations, which show that, for our given artificial environment, (i) the risk-seeking strategy outperforms the risk-avoiding one, and (ii) the genetic algorithm was able to find this optimal strategy itself, and thus outperforms other prediction approaches considered.
A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals.
Gupta, Anubha; Singh, Pushpendra; Karlekar, Mandar
2018-05-01
This paper presents a signal modeling-based new methodology of automatic seizure detection in EEG signals. The proposed method consists of three stages. First, a multirate filterbank structure is proposed that is constructed using the basis vectors of discrete cosine transform. The proposed filterbank decomposes EEG signals into its respective brain rhythms: delta, theta, alpha, beta, and gamma. Second, these brain rhythms are statistically modeled with the class of self-similar Gaussian random processes, namely, fractional Brownian motion and fractional Gaussian noises. The statistics of these processes are modeled using a single parameter called the Hurst exponent. In the last stage, the value of Hurst exponent and autoregressive moving average parameters are used as features to design a binary support vector machine classifier to classify pre-ictal, inter-ictal (epileptic with seizure free interval), and ictal (seizure) EEG segments. The performance of the classifier is assessed via extensive analysis on two widely used data set and is observed to provide good accuracy on both the data set. Thus, this paper proposes a novel signal model for EEG data that best captures the attributes of these signals and hence, allows to boost the classification accuracy of seizure and seizure-free epochs.
Backing up and Moving forward in Fractional Understanding
ERIC Educational Resources Information Center
Barlow, Angela T.; Lischka, Alyson E.; Willingham, James C.; Hartland, Kristin S.
2017-01-01
This article describes a process called "Backing Up" which is a way to preassess student understanding of a topic and gauge student readiness to move forward in the learning process. This process of backing up begins with using responses to a word problem to identify categories of students' understandings in relation to the expectations…
Intra-fraction motion of the prostate is a random walk
NASA Astrophysics Data System (ADS)
Ballhausen, H.; Li, M.; Hegemann, N.-S.; Ganswindt, U.; Belka, C.
2015-01-01
A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey-Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski-Phillips-Schmidt-Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92 ± 0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p < 0.001). The Dickey-Fuller test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski-Phillips-Schmidt-Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r2 = 0.9 ± 0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to drift away from the isocenter during a fraction, and this variance increases with time, such that shorter fractions are beneficial to the problem of intra-fraction motion. As a consequence, fixed safety margins (which would over-compensate at the beginning and under-compensate at the end of a fraction) cannot optimally account for intra-fraction motion. Instead, online tracking and position correction on-the-fly should be considered as the preferred approach to counter intra-fraction motion.
The Choice of Spatial Interpolation Method Affects Research Conclusions
NASA Astrophysics Data System (ADS)
Eludoyin, A. O.; Ijisesan, O. S.; Eludoyin, O. M.
2017-12-01
Studies from developing countries using spatial interpolations in geographical information systems (GIS) are few and recent. Many of the studies have adopted interpolation procedures including kriging, moving average or Inverse Weighted Average (IDW) and nearest point without the necessary recourse to their uncertainties. This study compared the results of modelled representations of popular interpolation procedures from two commonly used GIS software (ILWIS and ArcGIS) at the Obafemi Awolowo University, Ile-Ife, Nigeria. Data used were concentrations of selected biochemical variables (BOD5, COD, SO4, NO3, pH, suspended and dissolved solids) in Ere stream at Ayepe-Olode, in the southwest Nigeria. Water samples were collected using a depth-integrated grab sampling approach at three locations (upstream, downstream and along a palm oil effluent discharge point in the stream); four stations were sited along each location (Figure 1). Data were first subjected to examination of their spatial distributions and associated variogram variables (nugget, sill and range), using the PAleontological STatistics (PAST3), before the mean values were interpolated in selected GIS software for the variables using each of kriging (simple), moving average and nearest point approaches. Further, the determined variogram variables were substituted with the default values in the selected software, and their results were compared. The study showed that the different point interpolation methods did not produce similar results. For example, whereas the values of conductivity was interpolated to vary as 120.1 - 219.5 µScm-1 with kriging interpolation, it varied as 105.6 - 220.0 µScm-1 and 135.0 - 173.9µScm-1 with nearest point and moving average interpolations, respectively (Figure 2). It also showed that whereas the computed variogram model produced the best fit lines (with least associated error value, Sserror) with Gaussian model, the Spherical model was assumed default for all the distributions in the software, such that the value of nugget was assumed as 0.00, when it was rarely so (Figure 3). The study concluded that interpolation procedures may affect decisions and conclusions on modelling inferences.
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
Weather variability, tides, and Barmah Forest virus disease in the Gladstone region, Australia.
Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; McMichael, Anthony J; Dale, Pat; Tong, Shilu
2006-05-01
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (b=0.15, p-value<0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (b=-1.03, p-value=0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Ultra-Short-Term Wind Power Prediction Using a Hybrid Model
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.
Buckingham-Jeffery, Elizabeth; Morbey, Roger; House, Thomas; Elliot, Alex J; Harcourt, Sally; Smith, Gillian E
2017-05-19
As service provision and patient behaviour varies by day, healthcare data used for public health surveillance can exhibit large day of the week effects. These regular effects are further complicated by the impact of public holidays. Real-time syndromic surveillance requires the daily analysis of a range of healthcare data sources, including family doctor consultations (called general practitioners, or GPs, in the UK). Failure to adjust for such reporting biases during analysis of syndromic GP surveillance data could lead to misinterpretations including false alarms or delays in the detection of outbreaks. The simplest smoothing method to remove a day of the week effect from daily time series data is a 7-day moving average. Public Health England developed the working day moving average in an attempt also to remove public holiday effects from daily GP data. However, neither of these methods adequately account for the combination of day of the week and public holiday effects. The extended working day moving average was developed. This is a further data-driven method for adding a smooth trend curve to a time series graph of daily healthcare data, that aims to take both public holiday and day of the week effects into account. It is based on the assumption that the number of people seeking healthcare services is a combination of illness levels/severity and the ability or desire of patients to seek healthcare each day. The extended working day moving average was compared to the seven-day and working day moving averages through application to data from two syndromic indicators from the GP in-hours syndromic surveillance system managed by Public Health England. The extended working day moving average successfully smoothed the syndromic healthcare data by taking into account the combined day of the week and public holiday effects. In comparison, the seven-day and working day moving averages were unable to account for all these effects, which led to misleading smoothing curves. The results from this study make it possible to identify trends and unusual activity in syndromic surveillance data from GP services in real-time independently of the effects caused by day of the week and public holidays, thereby improving the public health action resulting from the analysis of these data.
Moving in the Right Direction: Helping Children Cope with a Relocation
ERIC Educational Resources Information Center
Kruse, Tricia
2012-01-01
According to national figures, 37.1 million people moved in 2009 (U.S. Census Bureau, 2010). In fact, the average American will move 11.7 times in their lifetime. Why are Americans moving so much? There are a variety of reasons. Regardless of the reason, moving is a common experience for children. If one looks at the developmental characteristics…
NASA Astrophysics Data System (ADS)
Huang, Chien-Lin; Hsu, Nien-Sheng
2016-04-01
This study develops a novel methodology to resolve the geophysical cause of typhoon-induced rainfall considering diverse dynamic co-evolution at multiple spatiotemporal components. The multi-order hidden patterns of complex hydrological process in chaos are detected to understand the fundamental laws of rainfall mechanism. The discovered spatiotemporal features are utilized to develop a state-of-the-art descriptive statistical model for mechanism validation, modeling and further prediction during typhoons. The time series of hourly typhoon precipitation from different types of moving track, atmospheric field and landforms are respectively precede the signal analytical process to qualify each type of rainfall cause and to quantify the corresponding affected degree based on the measured geophysical atmospheric-hydrological variables. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse landform formation. The identified driving-causes include: (1) cloud height to ground surface; (2) co-movement effect induced by typhoon wind field with monsoon; (3) stem capacity; (4) interaction between typhoon rain band and terrain; (5) structural intensity variance of typhoon; and (6) integrated cloudy density of rain band. Results show that: (1) for the central maximum wind speed exceeding 51 m/sec, Causes (1) and (3) are the primary ones to generate rainfall; (2) for the typhoon moving toward the direction of 155° to 175°, Cause (2) is the primary one; (3) for the direction of 90° to 155°, Cause (4) is the primary one; (4) for the typhoon passing through mountain chain which above 3500 m, Cause (5) is the primary one; and (5) for the moving speed lower than 18 km/hr, Cause (6) is the primary one. Besides, the multiple geophysical component-based precipitation modeling can achieve 81% of average accuracy and 0.732 of average correlation coefficient (CC) within average 46 hours of duration, that improve their predictability.
The overview of the radon and environmental characteristics measurements in the Czech show caves.
Thinová, L; Froňka, A; Rovenská, K
2015-06-01
This paper focuses on the measurement and assessment of absorbed doses of radiation in caves of the Czech Republic, some of which exhibit high activity concentration of radon in air. Presented is an analysis and recommendations based on measurement results obtained in the underground caves over the past 12 y. The most important results for cave environments were as follows: integral radon monitoring using RAMARN detectors can provide more consistent results for calculating the effective dose; no major differences were shown in the average radon activity concentration during working time as opposed to non-working time; the unattached fraction of radioactive particles in air ranged from 0.03 to 0.6, with arithmetical average fp = 0.13; the direct dependence between equilibrium factor F and the size of the unattached fraction fp was described using the Log-Power expression ln(1/fp) = a*ln(1/F)(b); the calculated values for coefficients a and b were 1.85 and -1.096, respectively. The individual cave factor for each investigated underground area was calculated. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.
2018-04-01
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm
On the ψ-Hilfer fractional derivative
NASA Astrophysics Data System (ADS)
Vanterler da C. Sousa, J.; Capelas de Oliveira, E.
2018-07-01
In this paper we introduce a new fractional derivative with respect to another function the so-called ψ-Hilfer fractional derivative. We discuss some properties and important results of the fractional calculus. In this sense, we present some results involving uniformly convergent sequence of function, uniformly continuous function and examples including the Mittag-Leffler function with one parameter. Finally, we present a wide class of integrals and fractional derivatives, by means of the fractional integral with respect to another function and the ψ-Hilfer fractional derivative.
SU-G-TeP4-13: Interfraction Treatment Monitoring Using Integrated Invivo EPID Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Defoor, D; Papanikolaou, N; Stathakis, S
Purpose: To investigate inter-fraction differences of dose delivery by analyzing portal images acquired during treatment and implement an automated system to generate a report for each fraction. Large differences in images between fractions can alert the physicist of possible machine performance issues or patient set-up errors. Methods: A Varian Novalis Tx equipped with a HD120 MLC and aS1000 electronic portal imaging device (EPID) was used in our study. EPID images are acquired in continuous acquisition mode for 32 volumetric arc therapy (VMAT) patients. The images are summed to create an image for each arc and a single image for eachmore » fraction. The first fraction is designated as the reference unless a machine error prevented acquisition of all images. The images for each beam as well as the fraction image are compared using gamma analysis at 1%/1mm, 2%/2mm and 3%/3mm. A report is then generated using an in house MatLab program containing the comparison for the current fraction as well as a history of previous fractions. The reports are automatically sent via email to the physicist for review. Fractions in which the total number of images was not within 5% of the reference number of images were not included in the results. Results: 91 of the 182 fractions recorded an image count within 5% of the reference. Gamma averages over all fractions and patients were 96.2% ±0.8% at 3%/3mm, 92.9% ±1% at 2%/2mm and 80.6% ±1.8% at 1%/1mm. The SD between fractions for each patient ranged from .004% to 10.4%. Of the 91 fractions 3 flagged due to low gamma values. After further investigation no significant errors were found. Conclusion: This toolkit can be used for in-vivo monitoring of treatment plan delivery an alert the physics staff of any inter-fraction discrepancies that may require further investigation.« less
Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach
NASA Astrophysics Data System (ADS)
Moeeni, Hamid; Bonakdari, Hossein; Ebtehaj, Isa
2017-03-01
Forecasting reservoir inflow is one of the most important components of water resources and hydroelectric systems operation management. Seasonal autoregressive integrated moving average (SARIMA) models have been frequently used for predicting river flow. SARIMA models are linear and do not consider the random component of statistical data. To overcome this shortcoming, monthly inflow is predicted in this study based on a combination of seasonal autoregressive integrated moving average (SARIMA) and gene expression programming (GEP) models, which is a new hybrid method (SARIMA-GEP). To this end, a four-step process is employed. First, the monthly inflow datasets are pre-processed. Second, the datasets are modelled linearly with SARIMA and in the third stage, the non-linearity of residual series caused by linear modelling is evaluated. After confirming the non-linearity, the residuals are modelled in the fourth step using a gene expression programming (GEP) method. The proposed hybrid model is employed to predict the monthly inflow to the Jamishan Dam in west Iran. Thirty years' worth of site measurements of monthly reservoir dam inflow with extreme seasonal variations are used. The results of this hybrid model (SARIMA-GEP) are compared with SARIMA, GEP, artificial neural network (ANN) and SARIMA-ANN models. The results indicate that the SARIMA-GEP model ( R 2=78.8, VAF =78.8, RMSE =0.89, MAPE =43.4, CRM =0.053) outperforms SARIMA and GEP and SARIMA-ANN ( R 2=68.3, VAF =66.4, RMSE =1.12, MAPE =56.6, CRM =0.032) displays better performance than the SARIMA and ANN models. A comparison of the two hybrid models indicates the superiority of SARIMA-GEP over the SARIMA-ANN model.
Effect of environmental factors on Internet searches related to sinusitis.
Willson, Thomas J; Lospinoso, Joshua; Weitzel, Erik K; McMains, Kevin C
2015-11-01
Sinusitis significantly affects the population of the United States, exacting direct cost and lost productivity. Patients are likely to search the Internet for information related to their health before seeking care by a healthcare professional. Utilizing data generated from these searches may serve as an epidemiologic surrogate. A retrospective time series analysis was performed. Google search trend data from the Dallas-Fort Worth metro region for the years 2012 and 2013 were collected from www.google.com/trends for terms related to sinusitis based on literature outlining the most important symptoms for diagnosis. Additional terms were selected based on common English language terms used to describe the disease. Twelve months of data from the same time period and location for common pollutants (nitrogen dioxide, ozone, sulfur dioxide, and particulates), pollen and mold counts, and influenza-like illness were also collected. Statistical analysis was performed using Pearson correlation coefficients, and potential search activity predictors were assessed using autoregressive integrated moving average. Pearson correlation was strongest between the terms congestion and influenza-like illness (r=0.615), and sinus and influenza-like illness (r=0.534) and nitrogen dioxide (r=0.487). Autoregressive integrated moving average analysis revealed ozone, influenza-like illness, and nitrogen dioxide levels to be potential predictors for sinus pressure searches, with estimates of 0.118, 0.349, and 0.438, respectively. Nitrogen dioxide was also a potential predictor for the terms congestion and sinus, with estimates of 0.191 and 0.272, respectively. Google search activity for related terms follow the pattern of seasonal influenza-like illness and nitrogen dioxide. These data highlight the epidemiologic potential of this novel surveillance method. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
2016-01-01
OBJECTIVES The aims of this study were to highlight some epidemiological aspects of scorpion envenomations, to analyse and interpret the available data for Biskra province, Algeria, and to develop a forecasting model for scorpion sting cases in Biskra province, which records the highest number of scorpion stings in Algeria. METHODS In addition to analysing the epidemiological profile of scorpion stings that occurred throughout the year 2013, we used the Box-Jenkins approach to fit a seasonal autoregressive integrated moving average (SARIMA) model to the monthly recorded scorpion sting cases in Biskra from 2000 to 2012. RESULTS The epidemiological analysis revealed that scorpion stings were reported continuously throughout the year, with peaks in the summer months. The most affected age group was 15 to 49 years old, with a male predominance. The most prone human body areas were the upper and lower limbs. The majority of cases (95.9%) were classified as mild envenomations. The time series analysis showed that a (5,1,0)×(0,1,1)12 SARIMA model offered the best fit to the scorpion sting surveillance data. This model was used to predict scorpion sting cases for the year 2013, and the fitted data showed considerable agreement with the actual data. CONCLUSIONS SARIMA models are useful for monitoring scorpion sting cases, and provide an estimate of the variability to be expected in future scorpion sting cases. This knowledge is helpful in predicting whether an unusual situation is developing or not, and could therefore assist decision-makers in strengthening the province’s prevention and control measures and in initiating rapid response measures. PMID:27866407
Akhtar, Saeed; Rozi, Shafquat
2009-01-01
AIM: To identify the stochastic autoregressive integrated moving average (ARIMA) model for short term forecasting of hepatitis C virus (HCV) seropositivity among volunteer blood donors in Karachi, Pakistan. METHODS: Ninety-six months (1998-2005) data on HCV seropositive cases (1000-1 × month-1) among male volunteer blood donors tested at four major blood banks in Karachi, Pakistan were subjected to ARIMA modeling. Subsequently, a fitted ARIMA model was used to forecast HCV seropositive donors for 91-96 mo to contrast with observed series of the same months. To assess the forecast accuracy, the mean absolute error rate (%) between the observed and predicted HCV seroprevalence was calculated. Finally, a fitted ARIMA model was used for short-term forecasts beyond the observed series. RESULTS: The goodness-of-fit test of the optimum ARIMA (2,1,7) model showed non-significant autocorrelations in the residuals of the model. The forecasts by ARIMA for 91-96 mo closely followed the pattern of observed series for the same months, with mean monthly absolute forecast errors (%) over 6 mo of 6.5%. The short-term forecasts beyond the observed series adequately captured the pattern in the data and showed increasing tendency of HCV seropositivity with a mean ± SD HCV seroprevalence (1000-1 × month-1) of 24.3 ± 1.4 over the forecast interval. CONCLUSION: To curtail HCV spread, public health authorities need to educate communities and health care providers about HCV transmission routes based on known HCV epidemiology in Pakistan and its neighboring countries. Future research may focus on factors associated with hyperendemic levels of HCV infection. PMID:19340903
Liang, Hao; Gao, Lian; Liang, Bingyu; Huang, Jiegang; Zang, Ning; Liao, Yanyan; Yu, Jun; Lai, Jingzhen; Qin, Fengxiang; Su, Jinming; Ye, Li; Chen, Hui
2016-01-01
Background Hepatitis is a serious public health problem with increasing cases and property damage in Heng County. It is necessary to develop a model to predict the hepatitis epidemic that could be useful for preventing this disease. Methods The autoregressive integrated moving average (ARIMA) model and the generalized regression neural network (GRNN) model were used to fit the incidence data from the Heng County CDC (Center for Disease Control and Prevention) from January 2005 to December 2012. Then, the ARIMA-GRNN hybrid model was developed. The incidence data from January 2013 to December 2013 were used to validate the models. Several parameters, including mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean square error (MSE), were used to compare the performance among the three models. Results The morbidity of hepatitis from Jan 2005 to Dec 2012 has seasonal variation and slightly rising trend. The ARIMA(0,1,2)(1,1,1)12 model was the most appropriate one with the residual test showing a white noise sequence. The smoothing factor of the basic GRNN model and the combined model was 1.8 and 0.07, respectively. The four parameters of the hybrid model were lower than those of the two single models in the validation. The parameters values of the GRNN model were the lowest in the fitting of the three models. Conclusions The hybrid ARIMA-GRNN model showed better hepatitis incidence forecasting in Heng County than the single ARIMA model and the basic GRNN model. It is a potential decision-supportive tool for controlling hepatitis in Heng County. PMID:27258555
Zhang, Xujun; Pang, Yuanyuan; Cui, Mengjing; Stallones, Lorann; Xiang, Huiyun
2015-02-01
Road traffic injuries have become a major public health problem in China. This study aimed to develop statistical models for predicting road traffic deaths and to analyze seasonality of deaths in China. A seasonal autoregressive integrated moving average (SARIMA) model was used to fit the data from 2000 to 2011. Akaike Information Criterion, Bayesian Information Criterion, and mean absolute percentage error were used to evaluate the constructed models. Autocorrelation function and partial autocorrelation function of residuals and Ljung-Box test were used to compare the goodness-of-fit between the different models. The SARIMA model was used to forecast monthly road traffic deaths in 2012. The seasonal pattern of road traffic mortality data was statistically significant in China. SARIMA (1, 1, 1) (0, 1, 1)12 model was the best fitting model among various candidate models; the Akaike Information Criterion, Bayesian Information Criterion, and mean absolute percentage error were -483.679, -475.053, and 4.937, respectively. Goodness-of-fit testing showed nonautocorrelations in the residuals of the model (Ljung-Box test, Q = 4.86, P = .993). The fitted deaths using the SARIMA (1, 1, 1) (0, 1, 1)12 model for years 2000 to 2011 closely followed the observed number of road traffic deaths for the same years. The predicted and observed deaths were also very close for 2012. This study suggests that accurate forecasting of road traffic death incidence is possible using SARIMA model. The SARIMA model applied to historical road traffic deaths data could provide important evidence of burden of road traffic injuries in China. Copyright © 2015 Elsevier Inc. All rights reserved.
Peng, Ying; Yu, Bin; Wang, Peng; Kong, De-Guang; Chen, Bang-Hua; Yang, Xiao-Bing
2017-12-01
Outbreaks of hand-foot-mouth disease (HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average (ARIMA) model for time series analysis was designed in this study. Eighty-four-month (from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination (R 2 ), normalized Bayesian Information Criterion (BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as (1,0,1)(0,1,1) 12 , with the largest coefficient of determination (R 2 =0.743) and lowest normalized BIC (BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations (P Box-Ljung (Q) =0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.
A comparison of several techniques for imputing tree level data
David Gartner
2002-01-01
As Forest Inventory and Analysis (FIA) changes from periodic surveys to the multipanel annual survey, new analytical methods become available. The current official statistic is the moving average. One alternative is an updated moving average. Several methods of updating plot per acre volume have been discussed previously. However, these methods may not be appropriate...
Thamareerat, N; Luadsong, A; Aschariyaphotha, N
2016-01-01
In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.
On the origins of generalized fractional calculus
NASA Astrophysics Data System (ADS)
Kiryakova, Virginia
2015-11-01
In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer order m as a multi-order (1, 1,…, 1), the Gelfond-Leontiev generalized differentiation operators, many other integral and differential operators in Calculus that have been used in various topics, some of them not related to FC at all, others involved in differential and integral equations for treating fractional order models.
Zhang, Yao; Du, Ting-Song; Wang, Hao; Shen, Yan-Jun; Kashuri, Artion
2018-01-01
The authors discover a general k -fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite-Hadamard's and Simpson's inequalities for generalized [Formula: see text]-preinvex functions through k -fractional integrals. By taking the special parameter values for various suitable choices of function h , some interesting results are also obtained.
A stochastic post-processing method for solar irradiance forecasts derived from NWPs models
NASA Astrophysics Data System (ADS)
Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.
2010-09-01
Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.
New Students' Peer Integration and Exposure to Deviant Peers: Spurious Effects of School Moves?
ERIC Educational Resources Information Center
Siennick, Sonja E.; Widdowson, Alex O.; Ragan, Daniel T.
2017-01-01
School moves during adolescence predict lower peer integration and higher exposure to delinquent peers. Yet mobility and peer problems have several common correlates, so differences in movers' and non-movers' social adjustment may be due to selection rather than causal effects of school moves. Drawing on survey and social network data from a…
GENETICS OF WHITE MATTER DEVELOPMENT: A DTI STUDY OF 705 TWINS AND THEIR SIBLINGS AGED 12 TO 29
Chiang, Ming-Chang; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Hickie, Ian; Toga, Arthur W.; Wright, Margaret J.; Thompson, Paul M.
2011-01-01
White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12–29; 290 M/415 F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 800% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity. PMID:20950689
Computational aeroelasticity using a pressure-based solver
NASA Astrophysics Data System (ADS)
Kamakoti, Ramji
A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.
Steady-State Pursuit Is Driven by Object Motion Rather Than the Vector Average of Local Motions
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Beutter, B. R.; Lorenceau, J. D.; Ahumada, Al (Technical Monitor)
1997-01-01
We have previously shown that humans can pursue the motion of objects whose trajectories can be recovered only by spatio-temporal integration of local motion signals. We now explore the integration rule used to derive the target-motion signal driving pursuit. We measured the pursuit response of 4 observers (2 naive) to the motion of a line-figure diamond viewed through two vertical bar apertures (0.2 cd/square m). The comers were always occluded so that only four line segments (93 cd/square m) were visible behind the occluding foreground (38 cd/square m). The diamond was flattened (40 & 140 degree vertex angles) such that vector averaging of the local normal motions and vertical integration (e.g. IOC) yield very I or different predictions, analogous to using a Type II plaid. The diamond moved along Lissajous-figure trajectories (Ax = Ay = 2 degrees; TFx = 0.8 Hz; TFy = 0.4 Hz). We presented only 1.25 cycles and used 6 different randomly interleaved initial relative phases to minimize the role of predictive strategies. Observers were instructed to track the diamond and reported that its motion was always coherent (unlike type II plaids). Saccade-free portions of the horizontal and vertical eye-position traces sampled at 240 Hz were fit by separate sinusoids. Pursuit gain with respect to the diamond averaged 0.7 across subjects and directions. The ratio of the mean vertical to horizontal amplitude of the pursuit response was 1.7 +/- 0.7 averaged across subjects (1SD). This is close to the prediction of 1.0 from vertical motion-integration rules, but far from 7.7 predicted by vector averaging and infinity predicted by segment- or terminator-tracking strategies. Because there is no retinal motion which directly corresponds to the diamond's motion, steady-state pursuit of our "virtual" diamond is not closed-loop in the traditional sense. Thus, accurate pursuit is unlikely to result simply from local retinal negative feedback. We conclude that the signal driving steady-state pursuit is not the vector average of local motion signals, but rather a more vertical estimate of object motion, derived in extrastriate cortical areas beyond V1, perhaps NIT or MST.
Fast deuterium fractionation in magnetized and turbulent filaments
NASA Astrophysics Data System (ADS)
Körtgen, B.; Bovino, S.; Schleicher, D. R. G.; Stutz, A.; Banerjee, R.; Giannetti, A.; Leurini, S.
2018-04-01
Deuterium fractionation is considered as an important process to infer the chemical ages of prestellar cores in filaments. We present here the first magneto-hydrodynamical simulations including a chemical network to study deuterium fractionation in magnetized and turbulent filaments, with a line-mass of Mlin = 42 M⊙ pc-1 within a radius of R = 0.1 pc, and their substructures. The filaments typically show widespread deuterium fractionation with average values ≳ 0.01. For individual cores of similar age, we observe the deuteration fraction to increase with time, but also to be independent of their average properties such as density, virial or mass-to-magnetic flux ratio. We further find a correlation of the deuteration fraction with core mass, average H2 density and virial parameter only at late evolutionary stages of the filament and attribute this to the lifetime of the individual cores. Specifically, chemically old cores reveal higher deuteration fractions. Within the radial profiles of selected cores, we notice differences in the structure of the deuteration fraction or surface density, which we can attribute to their different turbulent properties. High deuteration fractions of the order 0.01 - 0.1 may be reached within approximately 200 kyrs, corresponding to two free-fall times, as defined for cylindrical systems, of the filaments.
Fast deuterium fractionation in magnetized and turbulent filaments
NASA Astrophysics Data System (ADS)
Körtgen, B.; Bovino, S.; Schleicher, D. R. G.; Stutz, A.; Banerjee, R.; Giannetti, A.; Leurini, S.
2018-07-01
Deuterium fractionation is considered as an important process to infer the chemical ages of prestellar cores in filaments. We present here the first magnetohydrodynamical simulations including a chemical network to study deuterium fractionation in magnetized and turbulent filaments, with a line-mass of Mlin = 42 M⊙ pc-1 within a radius of R= 0.1 pc, and their sub-structures. The filaments typically show widespread deuterium fractionation with average values ≳0.01. For individual cores of similar age, we observe the deuteration fraction to increase with time, but also to be independent of their average properties such as density, virial, or mass-to-magnetic flux ratio. We further find a correlation of the deuteration fraction with core mass, average H2 density, and virial parameter only at late evolutionary stages of the filament and attribute this to the lifetime of the individual cores. Specifically, chemically old cores reveal higher deuteration fractions. Within the radial profiles of selected cores, we notice differences in the structure of the deuteration fraction or surface density, which we can attribute to their different turbulent properties. High deuteration fractions of the order of 0.01-0.1 may be reached within approximately 200 kyr, corresponding to two free-fall times, as defined for cylindrical systems, of the filaments.
Quantifying rapid changes in cardiovascular state with a moving ensemble average.
Cieslak, Matthew; Ryan, William S; Babenko, Viktoriya; Erro, Hannah; Rathbun, Zoe M; Meiring, Wendy; Kelsey, Robert M; Blascovich, Jim; Grafton, Scott T
2018-04-01
MEAP, the moving ensemble analysis pipeline, is a new open-source tool designed to perform multisubject preprocessing and analysis of cardiovascular data, including electrocardiogram (ECG), impedance cardiogram (ICG), and continuous blood pressure (BP). In addition to traditional ensemble averaging, MEAP implements a moving ensemble averaging method that allows for the continuous estimation of indices related to cardiovascular state, including cardiac output, preejection period, heart rate variability, and total peripheral resistance, among others. Here, we define the moving ensemble technique mathematically, highlighting its differences from fixed-window ensemble averaging. We describe MEAP's interface and features for signal processing, artifact correction, and cardiovascular-based fMRI analysis. We demonstrate the accuracy of MEAP's novel B point detection algorithm on a large collection of hand-labeled ICG waveforms. As a proof of concept, two subjects completed a series of four physical and cognitive tasks (cold pressor, Valsalva maneuver, video game, random dot kinetogram) on 3 separate days while ECG, ICG, and BP were recorded. Critically, the moving ensemble method reliably captures the rapid cyclical cardiovascular changes related to the baroreflex during the Valsalva maneuver and the classic cold pressor response. Cardiovascular measures were seen to vary considerably within repetitions of the same cognitive task for each individual, suggesting that a carefully designed paradigm could be used to capture fast-acting event-related changes in cardiovascular state. © 2017 Society for Psychophysiological Research.
NASA Technical Reports Server (NTRS)
Hodges, D. B.
1976-01-01
An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W
2015-06-15
Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of themore » day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.« less
NASA Astrophysics Data System (ADS)
Warren, Aaron R.
2009-11-01
Time-series designs are an alternative to pretest-posttest methods that are able to identify and measure the impacts of multiple educational interventions, even for small student populations. Here, we use an instrument employing standard multiple-choice conceptual questions to collect data from students at regular intervals. The questions are modified by asking students to distribute 100 Confidence Points among the options in order to indicate the perceived likelihood of each answer option being the correct one. Tracking the class-averaged ratings for each option produces a set of time-series. ARIMA (autoregressive integrated moving average) analysis is then used to test for, and measure, changes in each series. In particular, it is possible to discern which educational interventions produce significant changes in class performance. Cluster analysis can also identify groups of students whose ratings evolve in similar ways. A brief overview of our methods and an example are presented.
Numerical Investigation of a Model Scramjet Combustor Using DDES
NASA Astrophysics Data System (ADS)
Shin, Junsu; Sung, Hong-Gye
2017-04-01
Non-reactive flows moving through a model scramjet were investigated using a delayed detached eddy simulation (DDES), which is a hybrid scheme combining Reynolds averaged Navier-Stokes scheme and a large eddy simulation. The three dimensional Navier-Stokes equations were solved numerically on a structural grid using finite volume methods. An in-house was developed. This code used a monotonic upstream-centered scheme for conservation laws (MUSCL) with an advection upstream splitting method by pressure weight function (AUSMPW+) for space. In addition, a 4th order Runge-Kutta scheme was used with preconditioning for time integration. The geometries and boundary conditions of a scramjet combustor operated by DLR, a German aerospace center, were considered. The profiles of the lower wall pressure and axial velocity obtained from a time-averaged solution were compared with experimental results. Also, the mixing efficiency and total pressure recovery factor were provided in order to inspect the performance of the combustor.
The Performance of Multilevel Growth Curve Models under an Autoregressive Moving Average Process
ERIC Educational Resources Information Center
Murphy, Daniel L.; Pituch, Keenan A.
2009-01-01
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Using Baidu Search Index to Predict Dengue Outbreak in China
NASA Astrophysics Data System (ADS)
Liu, Kangkang; Wang, Tao; Yang, Zhicong; Huang, Xiaodong; Milinovich, Gabriel J.; Lu, Yi; Jing, Qinlong; Xia, Yao; Zhao, Zhengyang; Yang, Yang; Tong, Shilu; Hu, Wenbiao; Lu, Jiahai
2016-12-01
This study identified the possible threshold to predict dengue fever (DF) outbreaks using Baidu Search Index (BSI). Time-series classification and regression tree models based on BSI were used to develop a predictive model for DF outbreak in Guangzhou and Zhongshan, China. In the regression tree models, the mean autochthonous DF incidence rate increased approximately 30-fold in Guangzhou when the weekly BSI for DF at the lagged moving average of 1-3 weeks was more than 382. When the weekly BSI for DF at the lagged moving average of 1-5 weeks was more than 91.8, there was approximately 9-fold increase of the mean autochthonous DF incidence rate in Zhongshan. In the classification tree models, the results showed that when the weekly BSI for DF at the lagged moving average of 1-3 weeks was more than 99.3, there was 89.28% chance of DF outbreak in Guangzhou, while, in Zhongshan, when the weekly BSI for DF at the lagged moving average of 1-5 weeks was more than 68.1, the chance of DF outbreak rose up to 100%. The study indicated that less cost internet-based surveillance systems can be the valuable complement to traditional DF surveillance in China.
NASA Astrophysics Data System (ADS)
Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi
2017-01-01
Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.
A Five-Dimensional Mathematical Model for Regional and Global Changes in Cardiac Uptake and Motion
NASA Astrophysics Data System (ADS)
Pretorius, P. H.; King, M. A.; Gifford, H. C.
2004-10-01
The objective of this work was to simultaneously introduce known regional changes in contraction pattern and perfusion to the existing gated Mathematical Cardiac Torso (MCAT) phantom heart model. We derived a simple integral to calculate the fraction of the ellipsoidal volume that makes up the left ventricle (LV), taking into account the stationary apex and the moving base. After calculating the LV myocardium volume of the existing beating heart model, we employed the property of conservation of mass to manipulate the LV ejection fraction to values ranging between 13.5% and 68.9%. Multiple dynamic heart models that differ in degree of LV wall thickening, base-to-apex motion, and ejection fraction, are thus available for use with the existing MCAT methodology. To introduce more complex regional LV contraction and perfusion patterns, we used composites of dynamic heart models to create a central region with little or no motion or perfusion, surrounded by a region in which the motion and perfusion gradually reverts to normal. To illustrate this methodology, the following gated cardiac acquisitions for different clinical situations were simulated analytically: 1) reduced regional motion and perfusion; 2) same perfusion as in (1) without motion intervention; and 3) washout from the normal and diseased myocardial regions. Both motion and perfusion can change dynamically during a single rotation or multiple rotations of a simulated single-photon emission computed tomography acquisition system.
NASA Astrophysics Data System (ADS)
Wei, Zhouchao; Rajagopal, Karthikeyan; Zhang, Wei; Kingni, Sifeu Takougang; Akgül, Akif
2018-04-01
Hidden hyperchaotic attractors can be generated with three positive Lyapunov exponents in the proposed 5D hyperchaotic Burke-Shaw system with only one stable equilibrium. To the best of our knowledge, this feature has rarely been previously reported in any other higher-dimensional systems. Unidirectional linear error feedback coupling scheme is used to achieve hyperchaos synchronisation, which will be estimated by using two indicators: the normalised average root-mean squared synchronisation error and the maximum cross-correlation coefficient. The 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integration. In addition, fractional-order hidden hyperchaotic system will be considered from the following three aspects: stability, bifurcation analysis and FPGA implementation. Such implementations in real time represent hidden hyperchaotic attractors with important consequences for engineering applications.
Assessing air quality in Aksaray with time series analysis
NASA Astrophysics Data System (ADS)
Kadilar, Gamze Özel; Kadilar, Cem
2017-04-01
Sulphur dioxide (SO2) is a major air pollutant caused by the dominant usage of diesel, petrol and fuels by vehicles and industries. One of the most air-polluted city in Turkey is Aksaray. Hence, in this study, the level of SO2 is analyzed in Aksaray based on the database monitored at air quality monitoring station of Turkey. Seasonal Autoregressive Integrated Moving Average (SARIMA) approach is used to forecast the level of SO2 air quality parameter. The results indicate that the seasonal ARIMA model provides reliable and satisfactory predictions for the air quality parameters and expected to be an alternative tool for practical assessment and justification.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, Timothy; Watkins, Nicholas; Franzke, Christian; Gramacy, Robert
2013-04-01
Recent studies [e.g. the Antarctic study of Franzke, J. Climate, 2010] have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. As we briefly review, the LRD idea originated at the same time as H-selfsimilarity, so it is often not realised that a model does not have to be H-self similar to show LRD [e.g. Watkins, GRL Frontiers, 2013]. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average ARFIMA(p,d,q) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d, with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series. Many physical processes, for example the Faraday Antarctic time series, are significantly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption, assuming an alpha-stable distribution for the innovations, and performing joint inference on d and alpha. Such a modified FARIMA(p,d,q) process is a flexible, initial model for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
NASA Astrophysics Data System (ADS)
Ağaç, Kübra; Koçak, Kasım; Deniz, Ali
2015-04-01
A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built in MATLAB an Eviews programmes. Because of the seasonality of PM10 data SARIMA model was also used. The order of autoregression model was determined according to AIC and BIC criteria. The model performances were evaluated from Fractional Bias, Normalized Mean Square Error (NMSE) and Mean Absolute Percentage Error (MAPE). As expected, the results were encouraging. Keywords: PM10, Autoregression, Forecast Acknowledgement The authors would like to acknowledge the financial support by the Scientific and Technological Research Council of Turkey (TUBITAK, project no:112Y319).
NASA Astrophysics Data System (ADS)
Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris
2017-04-01
Machine learning (ML) is considered to be a promising approach to hydrological processes forecasting. We conduct a comparison between several stochastic and ML point estimation methods by performing large-scale computational experiments based on simulations. The purpose is to provide generalized results, while the respective comparisons in the literature are usually based on case studies. The stochastic methods used include simple methods, models from the frequently used families of Autoregressive Moving Average (ARMA), Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Exponential Smoothing models. The ML methods used are Random Forests (RF), Support Vector Machines (SVM) and Neural Networks (NN). The comparison refers to the multi-step ahead forecasting properties of the methods. A total of 20 methods are used, among which 9 are the ML methods. 12 simulation experiments are performed, while each of them uses 2 000 simulated time series of 310 observations. The time series are simulated using stochastic processes from the families of ARMA and ARFIMA models. Each time series is split into a fitting (first 300 observations) and a testing set (last 10 observations). The comparative assessment of the methods is based on 18 metrics, that quantify the methods' performance according to several criteria related to the accurate forecasting of the testing set, the capturing of its variation and the correlation between the testing and forecasted values. The most important outcome of this study is that there is not a uniformly better or worse method. However, there are methods that are regularly better or worse than others with respect to specific metrics. It appears that, although a general ranking of the methods is not possible, their classification based on their similar or contrasting performance in the various metrics is possible to some extent. Another important conclusion is that more sophisticated methods do not necessarily provide better forecasts compared to simpler methods. It is pointed out that the ML methods do not differ dramatically from the stochastic methods, while it is interesting that the NN, RF and SVM algorithms used in this study offer potentially very good performance in terms of accuracy. It should be noted that, although this study focuses on hydrological processes, the results are of general scientific interest. Another important point in this study is the use of several methods and metrics. Using fewer methods and fewer metrics would have led to a very different overall picture, particularly if those fewer metrics corresponded to fewer criteria. For this reason, we consider that the proposed methodology is appropriate for the evaluation of forecasting methods.
Top income shares in Canada: recent trends and policy implications
Veall, Michael R
2012-01-01
According to Canadian taxfiler data, over the last thirty years there has been a surge in the income shares of the top 1%, top 0.1% and top 0.01% of income recipients, even with longitudinal smoothing by individual using three- or five-year moving averages. Top shares fell in 2008 and 2009, but only by a fraction of the overall surge. Alberta, British Columbia, and Ontario have much more pronounced surges than other provinces. Part of the Canadian surge is likely attributable to U.S. factors, but a comprehensive explanation remains elusive. Even so, I draw implications for policies that might achieve some support from across the political spectrum, including the elimination of tax preferences that favour those with high incomes, the promotion of shareholder democracy and, to maintain Canada's relatively high intergenerational mobility, continued wide accessibility to healthcare and education. PMID:23335814
Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.
Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel
2018-06-05
In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.
Orlov, Tanya; Zohary, Ehud
2018-01-17
We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on the retina. The lateral occipital complex (LOC) represents shape faithfully in such conditions even if the object is partially occluded. However, shape must sometimes be reconstructed over both space and time. Such is the case in anorthoscopic perception, when an object is moving behind a narrow slit. In this scenario, spatial information is limited at any moment so the whole-shape percept can only be inferred by integration of successive shape views over time. We find that LOC carries shape-specific information recovered using such temporal integration processes. The shape representation is invariant to slit orientation and is similar to that evoked by a fully viewed image. Existing models of object recognition lack such capabilities. Copyright © 2018 the authors 0270-6474/18/380659-20$15.00/0.
NASA Technical Reports Server (NTRS)
Rosenfeld, Moshe
1990-01-01
The main goals are the development, validation, and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems. A solution method that combines a finite volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illarionov, A A
2014-03-31
Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.
An improved moving average technical trading rule
NASA Astrophysics Data System (ADS)
Papailias, Fotis; Thomakos, Dimitrios D.
2015-06-01
This paper proposes a modified version of the widely used price and moving average cross-over trading strategies. The suggested approach (presented in its 'long only' version) is a combination of cross-over 'buy' signals and a dynamic threshold value which acts as a dynamic trailing stop. The trading behaviour and performance from this modified strategy are different from the standard approach with results showing that, on average, the proposed modification increases the cumulative return and the Sharpe ratio of the investor while exhibiting smaller maximum drawdown and smaller drawdown duration than the standard strategy.
A dragline-forming mobile robot inspired by spiders.
Wang, Liyu; Culha, Utku; Iida, Fumiya
2014-03-01
Mobility of wheeled or legged machines can be significantly increased if they are able to move from a solid surface into a three-dimensional space. Although that may be achieved by addition of flying mechanisms, the payload fraction will be the limiting factor in such hybrid mobile machines for many applications. Inspired by spiders producing draglines to assist locomotion, the paper proposes an alternative mobile technology where a robot achieves locomotion from a solid surface into a free space. The technology resembles the dragline production pathway in spiders to a technically feasible degree and enables robots to move with thermoplastic spinning of draglines. As an implementation, a mobile robot has been prototyped with thermoplastic adhesives as source material of the draglines. Experimental results show that a dragline diameter range of 1.17-5.27 mm was achievable by the 185 g mobile robot in descending locomotion from the solid surface of a hanging structure with a power consumption of 4.8 W and an average speed of 5.13 cm min(-1). With an open-loop controller consisting of sequences of discrete events, the robot has demonstrated repeatable dragline formation with a relative deviation within -4% and a length close to the metre scale.
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
Fractional dynamics pharmacokinetics–pharmacodynamic models
2010-01-01
While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics–pharmacodynamic (PKPD) literature. One of the reasons is computational: while the analytical solution of fractional differential equations is available in special cases, it this turns out that even the simplest PKPD models that can be constructed using fractional calculus do not allow an analytical solution. In this paper, we first introduce new families of PKPD models incorporating fractional order integrals and differential equations, and, second, exemplify and investigate their qualitative behavior. The families represent extensions of frequently used PK link and PD direct and indirect action models, using the tools of fractional calculus. In addition the PD models can be a function of a variable, the active drug, which can smoothly transition from concentration to exposure, to hyper-exposure, according to a fractional integral transformation. To investigate the behavior of the models we propose, we implement numerical algorithms for fractional integration and for the numerical solution of a system of fractional differential equations. For simplicity, in our investigation we concentrate on the pharmacodynamic side of the models, assuming standard (integer order) pharmacokinetics. PMID:20455076
Human factors considerations for integrating traffic information on airport moving maps.
DOT National Transportation Integrated Search
2011-05-01
The purpose of this research effort was to identify human factors considerations in the integration of traffic information and surface indications and alerts for runway status on airport moving maps for flight deck displays. The information is primar...
Alcohol and Homicide in Russia and the United States: A Comparative Analysis*
Landberg, Jonas; Norström, Thor
2011-01-01
Objective: The object of this study was to perform a comparative analysis of the aggregate relationship between alcohol and homicide in Russia and in the United States. The comparison was based on the magnitude of the alcohol effect, the alcohol attributable fraction (AAF), and the degree to which total consumption could account for trends in homicide. Method: We analyzed total and sex-specific homicide rates for the age groups 15–64 years, 15–34 years, and 35–64 years. The study period was 1959–1998 for Russia and 1950–2002 for the United States. For the United States, alcohol consumption was gauged by sales of alcohol; for Russia, estimated unrecorded consumption was included as well. The data were analyzed through autoregressive integrated moving average (ARIMA) modeling. Results: The results show that, for Russia as well as for the United States, a 1 -L increase in consumption was associated with an increase in homicides of about 10%, although the absolute effect was markedly larger in Russia because of differences in homicide rates. The AAF estimates suggested that 73% and 57% of the homicides would be attributable to alcohol in Russia and in the United States, respectively. Most of the temporal variation in the Russian homicide rate could be accounted for by the trend in drinking, whereas the U.S. trend in total alcohol consumption had a more limited ability to predict the trend in homicides. Conclusions: We conclude that the role of alcohol in homicide seems to be larger in Russia than in the United States. PMID:21906499
NASA Astrophysics Data System (ADS)
Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris
2018-02-01
We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.
NASA Astrophysics Data System (ADS)
Liu, Si-Qi; Zhang, Youjin; Zhou, Chunhui
2018-02-01
The generating function of cubic Hodge integrals satisfying the local Calabi-Yau condition is conjectured to be a tau function of a new integrable system which can be regarded as a fractional generalization of the Volterra lattice hierarchy, so we name it the fractional Volterra hierarchy. In this paper, we give the definition of this integrable hierarchy in terms of Lax pair and Hamiltonian formalisms, construct its tau functions, and present its multi-soliton solutions.
NASA Astrophysics Data System (ADS)
Yu, Xiawei; Wang, Zhibin; Zhang, Minghui; Kuhn, Uwe; Xie, Zhouqing; Cheng, Yafang; Pöschl, Ulrich; Su, Hang
2016-09-01
Fluorescence characteristics of aerosol particles in a polluted atmosphere were studied using a wideband integrated bioaerosol spectrometer (WIBS-4A) in Nanjing, Yangtze River Delta area of China. We observed strong diurnal and day-to-day variations of fluorescent aerosol particles (FAPs). The average number concentrations of FAPs (1-15 µm) detected in the three WIBS measurement channels (FL1: 0.6 cm-3, FL2: 3.4 cm-3, FL3: 2.1 cm-3) were much higher than those observed in forests and rural areas, suggesting that FAPs other than bioaerosols were detected. We found that the number fractions of FAPs were positively correlated with the black carbon mass fraction, especially for the FL1 channel, indicating a large contribution of combustion-related aerosols. To distinguish bioaerosols from combustion-related FAPs, we investigated two classification schemes for use with WIBS data. Our analysis suggests a strong size dependence for the fractional contributions of different types of FAPs. In the FL3 channel, combustion-related particles seem to dominate the 1-2 µm size range while bioaerosols dominate the 2-5 µm range. The number fractions of combustion-related particles and non-combustion-related particles to total aerosol particles were ˜ 11 and ˜ 5 %, respectively.
SU-F-J-30: Application of Intra-Fractional Imaging for Pretreatment CBCT of Breath-Hold Lung SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, D; Jermoumi, M; Mehta, V
2016-06-15
Purpose: Clinical implementation of gated lung SBRT requires tools to verify the accuracy of the target positioning on a daily basis. This is a particular challenge on Elekta linacs where the XVI imaging system does not interface directly to any commercial gating solution. In this study, we used the Elekta’s intra-fractional imaging functionality to perform the pretreatment CBCT verifications and evaluated both the image quality and gating accuracy. Methods: To use intrafraction imaging tools for pretreatment verifications, we planned a 360-degree arc with 1mmx5mm MLC opening. This beam was designed to drive the gantry during the gated CBCT data collection.more » A Catphan phantom was used to evaluate the image quality for the intra-fractional CBCT. A CIRS lung phantom with a 3cm sphereinsert and a moving chest plate were programmed with a simulated breathhold breathing pattern was used to check the gating accuracy. A C-Rad CatalystHD surface mapping system was used to provide the gating signal. Results: The total delivery time of the arc was 90 seconds. The uniformity and low contrast resolution for the intra-fractional CBCT was 1.5% and 3.6%, respectively. The values for the regular CBCT were 1.7% and 2.5%, respectively. The spatial resolution was 7 line-pairs/cm and the 3D spatial integrity was less than 1mm for the intra-fractional CBCT. The gated CBCT clearly demonstrated the accuracy of the gating image acquisition. Conclusion: The intra-fraction CBCT capabilities on an Elekta linac can be used to acquire pre-treatment gated images to verify the accuracy patient positioning. This imaging capability should provide for accurate patient alignments for the delivery of lung SBRT. This research was partially supported by Elekta.« less
Ultrafast optical ranging using microresonator soliton frequency combs
NASA Astrophysics Data System (ADS)
Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.
2018-02-01
Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.
Mobility in hospital work: towards a pervasive computing hospital environment.
Morán, Elisa B; Tentori, Monica; González, Víctor M; Favela, Jesus; Martínez-Garcia, Ana I
2007-01-01
Handheld computers are increasingly being used by hospital workers. With the integration of wireless networks into hospital information systems, handheld computers can provide the basis for a pervasive computing hospital environment; to develop this designers need empirical information to understand how hospital workers interact with information while moving around. To characterise the medical phenomena we report the results of a workplace study conducted in a hospital. We found that individuals spend about half of their time at their base location, where most of their interactions occur. On average, our informants spent 23% of their time performing information management tasks, followed by coordination (17.08%), clinical case assessment (15.35%) and direct patient care (12.6%). We discuss how our results offer insights for the design of pervasive computing technology, and directions for further research and development in this field such as transferring information between heterogeneous devices and integration of the physical and digital domains.
Takahashi, Wataru; Mori, Shinichiro; Nakajima, Mio; Yamamoto, Naoyoshi; Inaniwa, Taku; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji; Nakagawa, Keiichi; Kamada, Tadashi
2014-11-11
To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared. For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p < 0.05) and 13% (p < 0.05), respectively. Four or more PCR during PBS-CIRT improved dose conformation to moving lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.
Numerical modelling of bedload sediment transport
NASA Astrophysics Data System (ADS)
Langlois, Vincent J.
2010-05-01
We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.
Ambient temperature and biomarkers of heart failure: a repeated measures analysis.
Wilker, Elissa H; Yeh, Gloria; Wellenius, Gregory A; Davis, Roger B; Phillips, Russell S; Mittleman, Murray A
2012-08-01
Extreme temperatures have been associated with hospitalization and death among individuals with heart failure, but few studies have explored the underlying mechanisms. We hypothesized that outdoor temperature in the Boston, Massachusetts, area (1- to 4-day moving averages) would be associated with higher levels of biomarkers of inflammation and myocyte injury in a repeated-measures study of individuals with stable heart failure. We analyzed data from a completed clinical trial that randomized 100 patients to 12 weeks of tai chi classes or to time-matched education control. B-type natriuretic peptide (BNP), C-reactive protein (CRP), and tumor necrosis factor (TNF) were measured at baseline, 6 weeks, and 12 weeks. Endothelin-1 was measured at baseline and 12 weeks. We used fixed effects models to evaluate associations with measures of temperature that were adjusted for time-varying covariates. Higher apparent temperature was associated with higher levels of BNP beginning with 2-day moving averages and reached statistical significance for 3- and 4-day moving averages. CRP results followed a similar pattern but were delayed by 1 day. A 5°C change in 3- and 4-day moving averages of apparent temperature was associated with 11.3% [95% confidence interval (CI): 1.1, 22.5; p = 0.03) and 11.4% (95% CI: 1.2, 22.5; p = 0.03) higher BNP. A 5°C change in the 4-day moving average of apparent temperature was associated with 21.6% (95% CI: 2.5, 44.2; p = 0.03) higher CRP. No clear associations with TNF or endothelin-1 were observed. Among patients undergoing treatment for heart failure, we observed positive associations between temperature and both BNP and CRP-predictors of heart failure prognosis and severity.
NASA Technical Reports Server (NTRS)
Pongratz, M.
1972-01-01
Results from a Nike-Tomahawk sounding rocket flight launched from Fort Churchill are presented. The rocket was launched into a breakup aurora at magnetic local midnight on 21 March 1968. The rocket was instrumented to measure electrons with an electrostatic analyzer electron spectrometer which made 29 measurements in the energy interval 0.5 KeV to 30 KeV. Complete energy spectra were obtained at a rate of 10/sec. Pitch angle information is presented via 3 computed average per rocket spin. The dumped electron average corresponds to averages over electrons moving nearly parallel to the B vector. The mirroring electron average corresponds to averages over electrons moving nearly perpendicular to the B vector. The average was also computed over the entire downward hemisphere (the precipitated electron average). The observations were obtained in an altitude range of 10 km at 230 km altitude.
Trigonometric Integrals via Partial Fractions
ERIC Educational Resources Information Center
Chen, H.; Fulford, M.
2005-01-01
Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.
Kumaraswamy autoregressive moving average models for double bounded environmental data
NASA Astrophysics Data System (ADS)
Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme
2017-12-01
In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.
Noise is the new signal: Moving beyond zeroth-order geomorphology (Invited)
NASA Astrophysics Data System (ADS)
Jerolmack, D. J.
2010-12-01
The last several decades have witnessed a rapid growth in our understanding of landscape evolution, led by the development of geomorphic transport laws - time- and space-averaged equations relating mass flux to some physical process(es). In statistical mechanics this approach is called mean field theory (MFT), in which complex many-body interactions are replaced with an external field that represents the average effect of those interactions. Because MFT neglects all fluctuations around the mean, it has been described as a zeroth-order fluctuation model. The mean field approach to geomorphology has enabled the development of landscape evolution models, and led to a fundamental understanding of many landform patterns. Recent research, however, has highlighted two limitations of MFT: (1) The integral (averaging) time and space scales in geomorphic systems are sometimes poorly defined and often quite large, placing the mean field approximation on uncertain footing, and; (2) In systems exhibiting fractal behavior, an integral scale does not exist - e.g., properties like mass flux are scale-dependent. In both cases, fluctuations in sediment transport are non-negligible over the scales of interest. In this talk I will synthesize recent experimental and theoretical work that confronts these limitations. Discrete element models of fluid and grain interactions show promise for elucidating transport mechanics and pattern-forming instabilities, but require detailed knowledge of micro-scale processes and are computationally expensive. An alternative approach is to begin with a reasonable MFT, and then add higher-order terms that capture the statistical dynamics of fluctuations. In either case, moving beyond zeroth-order geomorphology requires a careful examination of the origins and structure of transport “noise”. I will attempt to show how studying the signal in noise can both reveal interesting new physics, and also help to formalize the applicability of geomorphic transport laws. Flooding on an experimental alluvial fan. Intensity is related to the cumulative amount of time flow has visited an area of the fan over the experiment. Dark areas represent an emergent channel network resulting from stochastic migration of river channels.
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.
1993-01-01
Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.
Weather Variability, Tides, and Barmah Forest Virus Disease in the Gladstone Region, Australia
Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S.; McMichael, Anthony J.; Dale, Pat; Tong, Shilu
2006-01-01
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention. PMID:16675420
Shared genetic variance between obesity and white matter integrity in Mexican Americans.
Spieker, Elena A; Kochunov, Peter; Rowland, Laura M; Sprooten, Emma; Winkler, Anderson M; Olvera, Rene L; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John; Glahn, David C; Curran, Joanne E
2015-01-01
Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18-81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m(2)) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h (2) = 0.58), WC (h (2) = 0.57), and FA (h (2) = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = -0.25), body (ρG = -0.30), and splenium (ρG = -0.26) of the corpus callosum, internal capsule (ρG = -0.29), and thalamic radiation (ρG = -0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = -0.39, p = 0.020; ρG = -0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors.
Moran, Marcel E; Luscher, Zoe I; McAdams, Harrison; Hsu, John T; Greenstein, Deanna; Clasen, Liv; Ludovici, Katharine; Lloyd, Jonae; Rapoport, Judith; Mori, Susumu; Gogtay, Nitin
2015-01-01
Diffusion tensor imaging is a neuroimaging method that quantifies white matter (WM) integrity and brain connectivity based on the diffusion of water in the brain. White matter has been hypothesized to be of great importance in the development of schizophrenia as part of the dysconnectivity model. Childhood-onset schizophrenia (COS), is a rare, severe form of the illness that resembles poor outcome adult-onset schizophrenia. We hypothesized that COS would be associated with WM abnormalities relative to a sample of controls. To evaluate WM integrity in this population 39 patients diagnosed with COS, 39 of their healthy (nonpsychotic) siblings, and 50 unrelated healthy volunteers were scanned using a diffusion tensor imaging (DTI) sequence during a 1.5 T MRI acquisition. Each DTI scan was processed via atlas-based analysis using a WM parcellation map, and diffeomorphic mapping that shapes a template atlas to each individual subject space. Fractional anisotropy (FA), a measure of WM integrity was averaged over each of the 46 regions of the atlas. Eleven WM regions were examined based on previous reports of WM growth abnormalities in COS. Of those regions, patients with COS, and their healthy siblings had significantly lower mean FA in the left and right cuneus as compared to the healthy volunteers (P < .005). Together, these findings represent the largest DTI study in COS to date, and provide evidence that WM integrity is significantly impaired in COS. Shared deficits in their healthy siblings might result from increased genetic risk. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2014.
Moran, Marcel E.; Luscher, Zoe I.; McAdams, Harrison; Hsu, John T.; Greenstein, Deanna; Clasen, Liv; Ludovici, Katharine; Lloyd, Jonae; Rapoport, Judith; Mori, Susumu; Gogtay, Nitin
2015-01-01
Background: Diffusion tensor imaging is a neuroimaging method that quantifies white matter (WM) integrity and brain connectivity based on the diffusion of water in the brain. White matter has been hypothesized to be of great importance in the development of schizophrenia as part of the dysconnectivity model. Childhood-onset schizophrenia (COS), is a rare, severe form of the illness that resembles poor outcome adult-onset schizophrenia. We hypothesized that COS would be associated with WM abnormalities relative to a sample of controls. Methods: To evaluate WM integrity in this population 39 patients diagnosed with COS, 39 of their healthy (nonpsychotic) siblings, and 50 unrelated healthy volunteers were scanned using a diffusion tensor imaging (DTI) sequence during a 1.5 T MRI acquisition. Each DTI scan was processed via atlas-based analysis using a WM parcellation map, and diffeomorphic mapping that shapes a template atlas to each individual subject space. Fractional anisotropy (FA), a measure of WM integrity was averaged over each of the 46 regions of the atlas. Eleven WM regions were examined based on previous reports of WM growth abnormalities in COS. Results: Of those regions, patients with COS, and their healthy siblings had significantly lower mean FA in the left and right cuneus as compared to the healthy volunteers (P < .005). Together, these findings represent the largest DTI study in COS to date, and provide evidence that WM integrity is significantly impaired in COS. Shared deficits in their healthy siblings might result from increased genetic risk. PMID:25217482
Neural net forecasting for geomagnetic activity
NASA Technical Reports Server (NTRS)
Hernandez, J. V.; Tajima, T.; Horton, W.
1993-01-01
We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).
Queues with Choice via Delay Differential Equations
NASA Astrophysics Data System (ADS)
Pender, Jamol; Rand, Richard H.; Wesson, Elizabeth
Delay or queue length information has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze two two-dimensional deterministic fluid models that incorporate customer choice behavior based on delayed queue length information. In the first fluid model, customers join each queue according to a Multinomial Logit Model, however, the queue length information the customer receives is delayed by a constant Δ. We show that the delay can cause oscillations or asynchronous behavior in the model based on the value of Δ. In the second model, customers receive information about the queue length through a moving average of the queue length. Although it has been shown empirically that giving patients moving average information causes oscillations and asynchronous behavior to occur in U.S. hospitals, we analytically and mathematically show for the first time that the moving average fluid model can exhibit oscillations and determine their dependence on the moving average window. Thus, our analysis provides new insight on how operators of service systems should report queue length information to customers and how delayed information can produce unwanted system dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, Evgueni I.; Riley, Erin A.; Kleiss, Jessica
Cloud amount is an essential and extensively used macrophysical parameter of cumulus clouds. It is commonly defined as a cloud fraction (CF) from zenith-pointing ground-based active and passive remote sensing. However, conventional retrievals of CF from the remote sensing data with very narrow field-of-view (FOV) may not be representative of the surrounding area. Here we assess its representativeness using an integrated dataset collected at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site in Oklahoma, USA. For our assessment with focus on selected days with single-layer cumulus clouds (2005-2016), we include the narrow-FOVmore » ARM Active Remotely Sensed Clouds Locations (ARSCL) and large-FOV Total Sky Imager (TSI) cloud products, the 915-MHz Radar Wind Profiler (RWP) measurements of wind speed and direction, and also high-resolution satellite images from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS). We demonstrate that a root-mean-square difference (RMSD) between the 15-min averaged ARSCL cloud fraction (CF) and the 15-min averaged TSI fractional sky cover (FSC) is large (up to 0.3). We also discuss how the horizontal distribution of clouds can modify the obtained large RMSD using a new uniformity metric. The latter utilizes the spatial distribution of the FSC over the 100° FOV TSI images obtained with high temporal resolution (30 sec sampling). We demonstrate that cases with more uniform spatial distribution of FSC show better agreement between the narrow-FOV CF and large-FOV FSC, reducing the RMSD by up to a factor of 2.« less
Let’s move our health! The experience of 40 physical activity motivational workshops
Bouté, Catherine; Cailliez, Elisabeth; D Hour, Alain; Goxe, Didier; Gusto, Gaëlle; Copin, Nane; Lantieri, Olivier
2016-10-19
Aims: To set up physical activity promotion workshops in health centres to help people with a sedentary lifestyle achieve an adequate level of physical activity. Methods: This health programme, called ‘Bougeons Notre Santé’ (Let’s move our health) has been implemented since 2006 by four health centres in the Pays de la Loire region, in France. This article describes implementation of the programme, its feasibility, how it can be integrated into a global preventive approach and its outcomes on promoting more physical activity. The “Let’s move our health!” programme comprises four group meetings with participants over a period of several months. At these meetings, participants discuss, exchange and monitor their qualitative and quantitative level of physical activity. Realistic and achievable goals are set in consultation with each participant in relation to their personal circumstances and are monitored with a pedometer and a follow-up diary. Support on healthy eating is also provided. This programme is an opportunity to promote health and refer participants to existing local resources. Results: Forty groups, comprising a total of 275 people, have participated in the programme since 2006. After the four meetings, participants had increased their physical activity level by an average of 723 steps per day and 85% reported that they had changed their eating habits. Conclusion: This health promotion programme is feasible and effective: an increase in the physical activity of participants was observed, together with a favourable impact on perceived health, well-being and social links. These workshops are integrated into a network of associations and institutional partners and could be implemented by similar social or health organisations.
MARD—A moving average rose diagram application for the geosciences
NASA Astrophysics Data System (ADS)
Munro, Mark A.; Blenkinsop, Thomas G.
2012-12-01
MARD 1.0 is a computer program for generating smoothed rose diagrams by using a moving average, which is designed for use across the wide range of disciplines encompassed within the Earth Sciences. Available in MATLAB®, Microsoft® Excel and GNU Octave formats, the program is fully compatible with both Microsoft® Windows and Macintosh operating systems. Each version has been implemented in a user-friendly way that requires no prior experience in programming with the software. MARD conducts a moving average smoothing, a form of signal processing low-pass filter, upon the raw circular data according to a set of pre-defined conditions selected by the user. This form of signal processing filter smoothes the angular dataset, emphasising significant circular trends whilst reducing background noise. Customisable parameters include whether the data is uni- or bi-directional, the angular range (or aperture) over which the data is averaged, and whether an unweighted or weighted moving average is to be applied. In addition to the uni- and bi-directional options, the MATLAB® and Octave versions also possess a function for plotting 2-dimensional dips/pitches in a single, lower, hemisphere. The rose diagrams from each version are exportable as one of a selection of common graphical formats. Frequently employed statistical measures that determine the vector mean, mean resultant (or length), circular standard deviation and circular variance are also included. MARD's scope is demonstrated via its application to a variety of datasets within the Earth Sciences.
Chui, Chen-Shou; Yorke, Ellen; Hong, Linda
2003-07-01
Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study,with the amplitude of the organ motion varying from +/- 3.5 mm to +/- 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques.
How to Compute the Partial Fraction Decomposition without Really Trying
ERIC Educational Resources Information Center
Brazier, Richard; Boman, Eugene
2007-01-01
For various reasons there has been a recent trend in college and high school calculus courses to de-emphasize teaching the Partial Fraction Decomposition (PFD) as an integration technique. This is regrettable because the Partial Fraction Decomposition is considerably more than an integration technique. It is, in fact, a general purpose tool which…
NASA Astrophysics Data System (ADS)
Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn
2018-03-01
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.
Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa.
Dziekońska, A; Świąder, K; Koziorowska-Gilun, M; Mietelska, K; Zasiadczyk, Ł; Kordan, W
2017-03-28
The aim of this study was to investigate the effect the sperm-rich fraction (F1) and the post-F1 fraction (F2) on the quality of boar spermatozoa stored in a liquid state. Ejaculates were collected from three Polish Landrace boars. Each ejaculate fraction was diluted with BTS short-term extender and Safe-Cell Plus (SCP) long-term extender and stored for seven days (D1-D7) at 17°C. Analyses included sperm motility parameters, normal apical ridge (NAR) acrosomes and plasma membrane integrity (PMI). Prior to the dilution of fractions, marked changes (p<0.05) were noted between F1 and F2 in progressive motility (PMOT), velocity average pathway (VAP) and velocity straight line (VCL). After the ejaculate was diluted, the type of fraction and type of extender significantly affected (p<0.05) PMOT, being markedly higher (p<0.05) for F1 extended in BTS. No marked changes (p<0.05) were observed between F1 and F2 extended in SCP for any of the analyzed sperm quality parameters during seven days of storage. Significantly higher (p<0.05) values of sperm quality parameters were noted in F1 compared with F2 for BTS on D7 of storage. The results of the four-way ANOVA analysis indicate that boar, fraction of ejaculate, extender type and day of storage had significant effects on the quality of boar stored spermatozoa. The F1 was characterised by higher quality of spermatozoa during storage in comparison with F2 in the short-term extender. Using the long-term extender containing the proteins allowed for a better application of F2, which could be important for the pig industry.
Fractional-order difference equations for physical lattices and some applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less
Sharp bounds for singular values of fractional integral operators
NASA Astrophysics Data System (ADS)
Burman, Prabir
2007-03-01
From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].
A Bayesian model averaging approach with non-informative priors for cost-effectiveness analyses.
Conigliani, Caterina
2010-07-20
We consider the problem of assessing new and existing technologies for their cost-effectiveness in the case where data on both costs and effects are available from a clinical trial, and we address it by means of the cost-effectiveness acceptability curve. The main difficulty in these analyses is that cost data usually exhibit highly skew and heavy-tailed distributions, so that it can be extremely difficult to produce realistic probabilistic models for the underlying population distribution. Here, in order to integrate the uncertainty about the model into the analysis of cost data and into cost-effectiveness analyses, we consider an approach based on Bayesian model averaging (BMA) in the particular case of weak prior informations about the unknown parameters of the different models involved in the procedure. The main consequence of this assumption is that the marginal densities required by BMA are undetermined. However, in accordance with the theory of partial Bayes factors and in particular of fractional Bayes factors, we suggest replacing each marginal density with a ratio of integrals that can be efficiently computed via path sampling. Copyright (c) 2010 John Wiley & Sons, Ltd.
Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.
Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri
2016-07-28
The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.
Effect of low-frequency mechanical vibration on orthodontic tooth movement.
Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Gupta, Himank; Kalajzic, Zana; Nanda, Ravindra
2015-09-01
Our objective was to investigate the effect of low-frequency mechanical vibration (LFMV) on the rate of tooth movement, bone volume fraction, tissue density, and the integrity of the periodontal ligament. Our null hypothesis was that there would be no difference in the amount of tooth movement between different values of LFMV. Sixty-four male CD1 mice, 12 weeks old, were used for orthodontic tooth movement. The mice were randomly divided into 2 groups: control groups (baseline; no spring + 5 Hz; no spring + 10 Hz; and no spring + 20 Hz) and experimental groups (spring + no vibration; spring + 5 Hz; spring + 10 Hz; and spring + 20 Hz). In the experimental groups, the first molars were moved mesially for 2 weeks using nickel-titanium coil springs delivering 10 g of force. In the control and experimental groups, LFMV was applied at 5, 10, or 20 Hz. Microfocus x-ray computed tomography analysis was used for tooth movement measurements, bone volume fraction, and tissue density. Additionally, immunostaining for sclerostin, tartrate-resistant acid phosphatase (TRAP) staining, and picrosirius red staining were used on the histologic sections. Simple descriptive statistics were used to summarize the data. Kruskal-Wallis tests were used to compare the outcomes across treatment groups. LFMV did not increase the rate of orthodontic tooth movement. Microfocus x-ray computed tomography analysis showed increases in bone volume fractions and tissue densities with applications of LFMV. Sclerostin expression was decreased with 10 and 20 Hz vibrations in both the control and experimental groups. Additionally, the picrosirius staining showed that LFMV helped in maintaining the thickness and integrity of collagen fibers in the periodontal ligament. There was no significant increase in tooth movement by applying LFMV when compared with the control groups (spring + no vibration). Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Graph-based structural change detection for rotating machinery monitoring
NASA Astrophysics Data System (ADS)
Lu, Guoliang; Liu, Jie; Yan, Peng
2018-01-01
Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).
Forecasting of Water Consumptions Expenditure Using Holt-Winter’s and ARIMA
NASA Astrophysics Data System (ADS)
Razali, S. N. A. M.; Rusiman, M. S.; Zawawi, N. I.; Arbin, N.
2018-04-01
This study is carried out to forecast water consumption expenditure of Malaysian university specifically at University Tun Hussein Onn Malaysia (UTHM). The proposed Holt-Winter’s and Auto-Regressive Integrated Moving Average (ARIMA) models were applied to forecast the water consumption expenditure in Ringgit Malaysia from year 2006 until year 2014. The two models were compared and performance measurement of the Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) were used. It is found that ARIMA model showed better results regarding the accuracy of forecast with lower values of MAPE and MAD. Analysis showed that ARIMA (2,1,4) model provided a reasonable forecasting tool for university campus water usage.
Hybrid empirical mode decomposition- ARIMA for forecasting exchange rates
NASA Astrophysics Data System (ADS)
Abadan, Siti Sarah; Shabri, Ani; Ismail, Shuhaida
2015-02-01
This paper studied the forecasting of monthly Malaysian Ringgit (MYR)/ United State Dollar (USD) exchange rates using the hybrid of two methods which are the empirical model decomposition (EMD) and the autoregressive integrated moving average (ARIMA). MYR is pegged to USD during the Asian financial crisis causing the exchange rates are fixed to 3.800 from 2nd of September 1998 until 21st of July 2005. Thus, the chosen data in this paper is the post-July 2005 data, starting from August 2005 to July 2010. The comparative study using root mean square error (RMSE) and mean absolute error (MAE) showed that the EMD-ARIMA outperformed the single-ARIMA and the random walk benchmark model.
A plastic scintillator-based muon tomography system with an integrated muon spectrometer
NASA Astrophysics Data System (ADS)
Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.
2015-10-01
A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.
NASA Astrophysics Data System (ADS)
Khlebtsov, Boris N.; Burygin, Gennadii L.; Matora, Larisa Y.; Shchyogolev, Sergei Y.; Khlebtsov, Nikolai G.
2004-07-01
We describe two variants of a method for determining the average composition of insoluble immune complex particles (IICP). The first variant is based on measuring the specific turbidity (the turbidity per unit mass concentration of the dispersed substance) and the average size of IICP determined from dynamic light scattering (DLS). In the second variant, the wavelength exponent (i.e., the slope of the logarithmic turbidity spectrum) is used in combination with specific turbidity measurements. Both variants allow the average biopolymer volume fraction to be determined in terms of the average refractive index of IICP. The method is exemplified by two experimental antigen+antibody systems: (i) lipopolysaccharide-protein complex (LPPC) of Azospirillum brasilense Sp245+rabbit anti-LPPC; and (ii) human IgG (hIgG)+sheep anti-hIgG. Our measurements by the two methods for both types of systems gave, on the average, the same result: the volume fraction of the IICP biopolymers is about 30%; accordingly, the volume fraction of buffer solvent is 70%.
Teaching Fractions. Educational Practices Series-22
ERIC Educational Resources Information Center
Fazio, Lisa; Siegler, Robert
2011-01-01
Students around the world have difficulties in learning about fractions. In many countries, the average student never gains a conceptual knowledge of fractions. This research guide provides suggestions for teachers and administrators looking to improve fraction instruction in their classrooms or schools. The recommendations are based on a…
Gupta, Prachi; Song, Biqin; Neto, Catherine; Camesano, Terri A
2016-06-15
Cranberry juice has been long used to prevent infections because of its effect on the adhesion of the bacteria to the host surface. Proanthocyanidins (PACs) comprise of one of the major classes of phytochemicals found in cranberry, which have been extensively studied and found effective in combating adhesion of pathogenic bacteria. The role of other cranberry constituents in impacting bacterial adhesion haven't been studied very well. In this study, cranberry juice fractions were prepared, characterized and tested for their effect on the surface adhesion of the pathogenic clinical bacterial strain E. coli B78 and non-pathogenic control E. coli HB101. The preparations tested included crude cranberry juice extract (CCE); three fractions containing flavonoid classes including proanthocyanidins, anthocyanins and flavonols; selected sub-fractions, and commercially available flavonol glycoside, quercetin-3-O-galactoside. Atomic force microscopy (AFM) was used to quantify the adhesion forces between the bacterial surface and the AFM probe after the treatment with the cranberry fractions. Adhesion forces of the non-pathogenic, non fimbriated lab strain HB101 are small (average force 0.19 nN) and do not change with cranberry treatments, whereas the adhesion forces of the pathogenic, Dr adhesion E. coli strain B78 (average force of 0.42 nN) show a significant decrease when treated with cranberry juice extract or fractions (average force of 0.31 nN, 0.37 nN and 0.39 nN with CCE, Fraction 7 and Fraction 4 respectively). In particular, the fractions that contained flavonols in addition to PACs were more efficient at lowering the force of adhesion (average force of 0.31 nN-0.18 nN between different sub-fractions containing flavonols and PACs). The sub-fractions containing flavonol glycosides (from juice, fruit and commercial quercetin) all resulted in reduced adhesion of the pathogenic bacteria to the model probe. This strongly suggests the anti adhesive role of other classes of cranberry compounds in conjunction with already known PACs and may have implications for development of alternative anti bacterial treatments.
2012-01-01
Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics. PMID:22410131
Segregation in Post-Civil Rights America: Stalled Integration or End of the Segregated Century?
Massey, Douglas S.; Rugh, Jacob S.
2016-01-01
In this paper we adjudicate between competing claims of persisting segregation and rapid integration by analyzing trends in residential dissimilarity and spatial isolation for African Americans, Hispanics, and Asians living in 287 consistently defined metropolitan areas from 1970 to 2010. On average, black segregation and isolation have fallen steadily but still remain very high in many areas, particularly those areas historically characterized by hypersegregation. In contrast, Hispanic segregation has increased slightly but Hispanic isolation has risen substantially owing to rapid population growth. Asian segregation has changed little and remains moderate, and although Asian isolation has increased it remains at low levels compared with other groups. Multivariate analyses reveal that segregation and isolation are being actively produced in some areas by restrictive density zoning regimes, large and/or rising minority percentages, lagging minority socioeconomic status, and active expressions of anti-black and anti-Latino sentiment, especially in large metropolitan areas. Areas displaying these characteristics are either integrating very slowly (in the case of blacks) or becoming more segregated (in the case of Hispanics), whereas those lacking these attributes are clearly moving toward integration, often quite rapidly. PMID:26966459
Hu, Wenbiao; Tong, Shilu; Mengersen, Kerrie; Connell, Des
2007-09-01
Few studies have examined the relationship between weather variables and cryptosporidiosis in Australia. This paper examines the potential impact of weather variability on the transmission of cryptosporidiosis and explores the possibility of developing an empirical forecast system. Data on weather variables, notified cryptosporidiosis cases, and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics for the period of January 1, 1996-December 31, 2004, respectively. Time series Poisson regression and seasonal auto-regression integrated moving average (SARIMA) models were performed to examine the potential impact of weather variability on the transmission of cryptosporidiosis. Both the time series Poisson regression and SARIMA models show that seasonal and monthly maximum temperature at a prior moving average of 1 and 3 months were significantly associated with cryptosporidiosis disease. It suggests that there may be 50 more cases a year for an increase of 1 degrees C maximum temperature on average in Brisbane. Model assessments indicated that the SARIMA model had better predictive ability than the Poisson regression model (SARIMA: root mean square error (RMSE): 0.40, Akaike information criterion (AIC): -12.53; Poisson regression: RMSE: 0.54, AIC: -2.84). Furthermore, the analysis of residuals shows that the time series Poisson regression appeared to violate a modeling assumption, in that residual autocorrelation persisted. The results of this study suggest that weather variability (particularly maximum temperature) may have played a significant role in the transmission of cryptosporidiosis. A SARIMA model may be a better predictive model than a Poisson regression model in the assessment of the relationship between weather variability and the incidence of cryptosporidiosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael
A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy inmore » 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.« less
Measurements of absolute branching fractions for D mesons decays into two pseudoscalar mesons
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2018-04-09
Using a data sample of e +e - collision data with an integrated luminosity of 2.93 fb -1 taken at the center-of-mass energy √s = 3:773 GeV with the BESIII detector operating at the BEPCII storage rings, we measure the absolute branching fractions of the two-body hadronic decays D + → π⁺π⁰, K⁺π⁰, μ⁺η, K⁺η, π⁺η', K⁺η',more » $$K_s^0$$π⁺, $$K_s^0$$K⁺, and D⁰ → π⁺π⁻, K⁺K⁻, K ∓π ±, $$K_s^0$$π⁰, $$K_s^0$$η, $$K_s^0$$η'. Our results are consistent with previous measurements within uncertainties. Among them, the branching fractions for D⁺ → π⁺π⁰, K⁺π⁰, π⁺η, π⁺η', $$K_s^0$$π⁺, $$K_s^0$$K⁺ and D° → $$K_s^0$$π⁰, $$K_s^0$$η, $$K_s^0$$η' are determined with improved precision compared to the world average values.« less
Measurements of absolute branching fractions for D mesons decays into two pseudoscalar mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
Using a data sample of e +e - collision data with an integrated luminosity of 2.93 fb -1 taken at the center-of-mass energy √s = 3:773 GeV with the BESIII detector operating at the BEPCII storage rings, we measure the absolute branching fractions of the two-body hadronic decays D + → π⁺π⁰, K⁺π⁰, μ⁺η, K⁺η, π⁺η', K⁺η',more » $$K_s^0$$π⁺, $$K_s^0$$K⁺, and D⁰ → π⁺π⁻, K⁺K⁻, K ∓π ±, $$K_s^0$$π⁰, $$K_s^0$$η, $$K_s^0$$η'. Our results are consistent with previous measurements within uncertainties. Among them, the branching fractions for D⁺ → π⁺π⁰, K⁺π⁰, π⁺η, π⁺η', $$K_s^0$$π⁺, $$K_s^0$$K⁺ and D° → $$K_s^0$$π⁰, $$K_s^0$$η, $$K_s^0$$η' are determined with improved precision compared to the world average values.« less
NASA Astrophysics Data System (ADS)
Patel, Jitendra Kumar; Natarajan, Ganesh
2018-05-01
We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.
NASA Technical Reports Server (NTRS)
Fairall, C. W.; Hare, J. E.; Snider, Jack B.
1990-01-01
As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.
Validation of the Poisson Stochastic Radiative Transfer Model
NASA Technical Reports Server (NTRS)
Zhuravleva, Tatiana; Marshak, Alexander
2004-01-01
A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.
The compressible aerodynamics of rotating blades based on an acoustic formulation
NASA Technical Reports Server (NTRS)
Long, L. N.
1983-01-01
An acoustic formula derived for the calculation of the noise of moving bodies is applied to aerodynamic problems. The acoustic formulation is a time domain result suitable for slender wings and bodies moving at subsonic speeds. A singular integral equation is derived in terms of the surface pressure which must then be solved numerically for aerodynamic purposes. However, as the 'observer' is moved onto the body surface, the divergent integrals in the acoustic formulation are semiconvergent. The procedure for regularization (or taking principal values of divergent integrals) is explained, and some numerical examples for ellipsoids, wings, and lifting rotors are presented. The numerical results show good agreement with available measured surface pressure data.
1990-11-01
1 = Q- 1 - 1 QlaaQ- 1.1 + a’Q-1a This is a simple case of a general formula called Woodbury’s formula by some authors; see, for example, Phadke and...1 2. The First-Order Moving Average Model ..... .................. 3. Some Approaches to the Iterative...the approximate likelihood function in some time series models. Useful suggestions have been the Cholesky decomposition of the covariance matrix and
Decadal Trends of Atlantic Basin Tropical Cyclones (1950-1999)
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2001-01-01
Ten-year moving averages of the seasonal rates for 'named storms,' tropical storms, hurricanes, and major (or intense) hurricanes in the Atlantic basin suggest that the present epoch is one of enhanced activity, marked by seasonal rates typically equal to or above respective long-term median rates. As an example, the 10-year moving average of the seasonal rates for named storms is now higher than for any previous year over the past 50 years, measuring 10.65 in 1994, or 2.65 units higher than its median rate of 8. Also, the 10-year moving average for tropical storms has more than doubled, from 2.15 in 1955 to 4.60 in 1992, with 16 of the past 20 years having a seasonal rate of three or more (the median rate). For hurricanes and major hurricanes, their respective 10-year moving averages turned upward, rising above long-term median rates (5.5 and 2, respectively) in 1992, a response to the abrupt increase in seasonal rates that occurred in 1995. Taken together, the outlook for future hurricane seasons is for all categories of Atlantic basin tropical cyclones to have seasonal rates at levels equal to or above long-term median rates, especially during non-El Nino-related seasons. Only during El Nino-related seasons does it appear likely that seasonal rates might be slightly diminished.
Stability and delay sensitivity of neutral fractional-delay systems.
Xu, Qi; Shi, Min; Wang, Zaihua
2016-08-01
This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhao, Chuanfeng
2016-04-01
Clouds play essential roles in the Earth's energy and water cycle, and Cloud Fraction (CF) is one of the most important cloud parameters. The CF from Moderate Resolution Imaging Spectroradiometer (MODIS) has been widely used, whereas the time representation of these instantaneous CF values is not clear. In this study, we evaluate MODIS-derived CF by using continuous, day-and-night radar/lidar CF from the Atmospheric Radiation Measurement (ARM) program Active Remote Sensing of CLouds (ARSCL) product and the total sky cover (TSC) day-time CF datasets. Inter-comparisons between MODIS and surface CFs for time period from 2000 to 2011 are performed for three climate regimes as represented by the ARM sites of Southern Great Plains (SGP), Manus, Papua New Guinea (PNG) and North Slope of Alaska (NSA). We first choose both the TSC and ARSCL CFs averaged over 1 hour around the two passing time of satellite, which are around 10:30 AM and 1:30 PM local time. Then two kind of analyses have been done. One is the spatial variation analysis and the other is temporal variation analysis. For the spatial variation analysis, we compare the 1-hour averaged cloud fractions from TSC and ARSCL around 10:30 AM and 1:30 PM with the instantaneous cloud fractions from MODIS but with different spatial resolution. By obtaining the RMS errors and ratio of average values of CFs for these inter-comparisons, the optimal CF-matching spatial resolutions for MODIS regarding to TSC and ARSCL are obtained which are both 30 km radius of circle. We also find that the optimal matching spatial resolution increases when the ground observation average time increases. For the temporal analysis, we first analyze the diurnal variation of the cloud fraction based on the surface CFs from TSC and ARSCL from which we can see the daily representation of cloud fraction observed at 10:30 AM and 1:30 PM. Then we make a statistical comparison of daily and monthly cloud fraction between using all time observation and using the 1-hour averaged observations at both 10:30 AM and 1:30 PM. Comparison results will be shown in our paper. It shows a high correlation coefficient of 0.95 (0.93) for observations from TSC (ARSCL). The ratios of daily (monthly) averaged cloud fraction between using all time and using the time satellite passes are 0.87(0.92) and 0.86(0.97) for TSC and ARSCL, respectively. This suggests that considerable errors could be introduced while using the cloud fraction at two fixed time points (10:30 AM and 1:30 PM) to represent the daily cloud fraction.
Fractional Brownian motion of an Al nanosphere in liquid Al-Si alloy under electron-beam irradiation
NASA Astrophysics Data System (ADS)
Yokota, Takeshi; Howe, J. M.; Jesser, W. A.; Murayama, M.
2004-05-01
Fractional forces and Brownian motion are expected to govern the behavior of nanoscale metallic solids in liquids, but such systems have not been studied. We investigated the motion of a crystalline Al nanosphere inside a partially molten Al-Si alloy particle, using an electron beam to both stimulate and observe the motion of the nanosphere. The irregular motion observed was quantified as antipersistant fractional Brownian motion. Analysis of possible phenomena contributing to the motion demonstrates that the incident electrons provide the fractional force that moves the Al nanosphere and that gravity and the oxide shell on the partially molten particle cause the antipersistant behavior.
NASA Astrophysics Data System (ADS)
Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio
2018-01-01
This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.
NASA Astrophysics Data System (ADS)
Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.
2017-12-01
In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.
Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers.
Ohta, Aaron T; Garcia, Maurice; Valley, Justin K; Banie, Lia; Hsu, Hsan-Yin; Jamshidi, Arash; Neale, Steven L; Lue, Tom; Wu, Ming C
2010-12-07
Optoelectronic tweezers was used to manipulate human spermatozoa to determine whether their response to OET predicts sperm viability among non-motile sperm. We review the electro-physical basis for how live and dead human spermatozoa respond to OET. The maximal velocity that non-motile spermatozoa could be induced to move by attraction or repulsion to a moving OET field was measured. Viable sperm are attracted to OET fields and can be induced to move at an average maximal velocity of 8.8 ± 4.2 µm s(-1), while non-viable sperm are repelled to OET, and are induced to move at an average maximal velocity of -0.8 ± 1.0 µm s(-1). Manipulation of the sperm using OET does not appear to result in increased DNA fragmentation, making this a potential method by which to identify viable non-motile sperm for assisted reproductive technologies.
Prediction of South China sea level using seasonal ARIMA models
NASA Astrophysics Data System (ADS)
Fernandez, Flerida Regine; Po, Rodolfo; Montero, Neil; Addawe, Rizavel
2017-11-01
Accelerating sea level rise is an indicator of global warming and poses a threat to low-lying places and coastal countries. This study aims to fit a Seasonal Autoregressive Integrated Moving Average (SARIMA) model to the time series obtained from the TOPEX and Jason series of satellite radar altimetries of the South China Sea from the year 2008 to 2015. With altimetric measurements taken in a 10-day repeat cycle, monthly averages of the satellite altimetry measurements were taken to compose the data set used in the study. SARIMA models were then tried and fitted to the time series in order to find the best-fit model. Results show that the SARIMA(1,0,0)(0,1,1)12 model best fits the time series and was used to forecast the values for January 2016 to December 2016. The 12-month forecast using SARIMA(1,0,0)(0,1,1)12 shows that the sea level gradually increases from January to September 2016, and decreases until December 2016.
NASA Technical Reports Server (NTRS)
Houdeville, R.; Cousteix, J.
1979-01-01
The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.
Solar corona electron density distribution
NASA Astrophysics Data System (ADS)
Esposito, P. B.; Edenhofer, P.; Lueneburg, E.
1980-07-01
The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.
NASA Astrophysics Data System (ADS)
Glushkov, A. V.; Pravdin, M. I.
2012-07-01
The energy spectrum of cosmic rays and the fraction of muons with the threshold 1.0secθ GeV in the total number of charged particles in extensive air showers with energy E 0 ≥ 1017 eV according to Yakutsk array data collected during 35 years of its continuous operation in 1978-2012 have been analyzed. It has been shown that these characteristics are noticeably different in different time periods. Before 1996, the integral intensity of the spectrum at E 0 = 1017 eV varied near one stable position and then began to increase. It increased by (45 ± 5)% in seven years and, then, began to decrease. This phenomenon was accompanied a similar change in the fraction of muons and was caused by a significant increase in the average weight of the chemical composition of cosmic rays after 1996 as compared to preceding years.
A time-dependent model to determine the thermal conductivity of a nanofluid
NASA Astrophysics Data System (ADS)
Myers, T. G.; MacDevette, M. M.; Ribera, H.
2013-07-01
In this paper, we analyse the time-dependent heat equations over a finite domain to determine expressions for the thermal diffusivity and conductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles with average size below 100 nm). Due to the complexity of the standard mathematical analysis of this problem, we employ a well-known approximate solution technique known as the heat balance integral method. This allows us to derive simple analytical expressions for the thermal properties, which appear to depend primarily on the volume fraction and liquid properties. The model is shown to compare well with experimental data taken from the literature even up to relatively high concentrations and predicts significantly higher values than the Maxwell model for volume fractions approximately >1 %. The results suggest that the difficulty in reproducing the high values of conductivity observed experimentally may stem from the use of a static heat flow model applied over an infinite domain rather than applying a dynamic model over a finite domain.
NASA Astrophysics Data System (ADS)
di Volo, Matteo; Burioni, Raffaella; Casartelli, Mario; Livi, Roberto; Vezzani, Alessandro
2016-01-01
We study the dynamics of networks with inhibitory and excitatory leak-integrate-and-fire neurons with short-term synaptic plasticity in the presence of depressive and facilitating mechanisms. The dynamics is analyzed by a heterogeneous mean-field approximation, which allows us to keep track of the effects of structural disorder in the network. We describe the complex behavior of different classes of excitatory and inhibitory components, which give rise to a rich dynamical phase diagram as a function of the fraction of inhibitory neurons. Using the same mean-field approach, we study and solve a global inverse problem: reconstructing the degree probability distributions of the inhibitory and excitatory components and the fraction of inhibitory neurons from the knowledge of the average synaptic activity field. This approach unveils new perspectives on the numerical study of neural network dynamics and the possibility of using these models as a test bed for the analysis of experimental data.
Parameterization and scaling of Arctic ice conditions in the context of ice-atmosphere processes
NASA Technical Reports Server (NTRS)
Barry, R. G.; Heinrichs, J.; Steffen, K.; Maslanik, J. A.; Key, J.; Serreze, M. C.; Weaver, R. W.
1994-01-01
This report summarizes achievements during year three of our project to investigate the use of ERS-1 SAR data to study Arctic ice and ice/atmosphere processes. The project was granted a one year extension, and goals for the final year are outlined. The specific objects of the project are to determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space; determine whether SAR data might be used to calibrate ice concentration estimates from medium and low-rate bit sensors (AVHRR and DMSP-OLS) and the special sensor microwave imager (SSM/I); and investigate methods to integrate SAR data for turbulent heat flux parametrization at the atmosphere interface with other satellite data.
Self-consistent Monte Carlo study of high-field carrier transport in graded heterostructures
NASA Astrophysics Data System (ADS)
Al-Omar, A.; Krusius, J. P.
1987-11-01
Hot-electron transport over graded heterostructures was investigated. A new formulation of the carrier transport, based on the effective mass theorem, a position-dependent Hamiltonian, scattering rates that included overlap integrals with correct symmetry, and ohmic contact models preserving the stochastic nature of carrier injection, was developed and implemented into the self-consistent ensemble Monte Carlo method. Hot-carrier transport in a graded Al(x)Ga(1-x)As device was explored with the following results: (1) the transport across compositionally graded semiconductor structures cannot be described with drift and diffusion concepts; (2) although heterostructure launchers generate a ballistic electron fraction as high as 15 percent and 40 percent of the total electron population for 300 and 77 K, respectively, they simultaneously reduce macroscopic average currents and carrier velocities; and (3) the width of the ballistic electron distribution and the magnitude of the ballistic fraction are primarily determined by material parameters and operating voltages rather than details of the device structure.
Characterization of urban solid waste in Chihuahua, Mexico.
Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc
2008-12-01
The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.
Stochastic approaches for time series forecasting of boron: a case study of Western Turkey.
Durdu, Omer Faruk
2010-10-01
In the present study, a seasonal and non-seasonal prediction of boron concentrations time series data for the period of 1996-2004 from Büyük Menderes river in western Turkey are addressed by means of linear stochastic models. The methodology presented here is to develop adequate linear stochastic models known as autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to predict boron content in the Büyük Menderes catchment. Initially, the Box-Whisker plots and Kendall's tau test are used to identify the trends during the study period. The measurements locations do not show significant overall trend in boron concentrations, though marginal increasing and decreasing trends are observed for certain periods at some locations. ARIMA modeling approach involves the following three steps: model identification, parameter estimation, and diagnostic checking. In the model identification step, considering the autocorrelation function (ACF) and partial autocorrelation function (PACF) results of boron data series, different ARIMA models are identified. The model gives the minimum Akaike information criterion (AIC) is selected as the best-fit model. The parameter estimation step indicates that the estimated model parameters are significantly different from zero. The diagnostic check step is applied to the residuals of the selected ARIMA models and the results indicate that the residuals are independent, normally distributed, and homoscadastic. For the model validation purposes, the predicted results using the best ARIMA models are compared to the observed data. The predicted data show reasonably good agreement with the actual data. The comparison of the mean and variance of 3-year (2002-2004) observed data vs predicted data from the selected best models show that the boron model from ARIMA modeling approaches could be used in a safe manner since the predicted values from these models preserve the basic statistics of observed data in terms of mean. The ARIMA modeling approach is recommended for predicting boron concentration series of a river.
Wang, Yujuan; Song, Yongduan; Ren, Wei
2017-07-06
This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.
Jakabek, David; Yücel, Murat; Lorenzetti, Valentina; Solowij, Nadia
2016-10-01
Conflicting evidence exists on the effects of cannabis use on brain white matter integrity. The extant literature has exclusively focused on younger cannabis users, with no studies sampling older cannabis users. We recruited a sample with a broad age range to examine the integrity of major white matter tracts in association with cannabis use parameters and neurodevelopmental stage. Regular cannabis users (n = 56) and non-users (n = 20) with a mean age of 32 (range 18-55 years) underwent structural and diffusion MRI scans. White matter was examined using voxel-based statistics and via probabilistic tract reconstruction. The integrity of tracts was assessed using average fractional anisotropy, axial diffusivity and radial diffusivity. Diffusion measures were compared between users and non-users and as group-by-age interactions. Correlations between diffusion measures and age of onset, duration, frequency and dose of current cannabis use were examined. Cannabis users overall had lower fractional anisotropy than healthy non-users in the forceps minor tract only (p = .015, partial eta = 0.07), with no voxel-wise differences observed. Younger users showed predominantly reduced axial diffusivity, whereas older users had higher radial diffusivity in widespread tracts. Higher axial diffusivity was associated with duration of cannabis use in the cingulum angular bundle (beta = 5.00 × 10(-5), p = .003). Isolated higher AD in older cannabis users was also observed. The findings suggest that exogenous cannabinoids alter normal brain maturation, with differing effects at various neurodevelopmental stages of life. These age-related differences are posited to account for the disparate results described in the literature.
Shared genetic variance between obesity and white matter integrity in Mexican Americans
Spieker, Elena A.; Kochunov, Peter; Rowland, Laura M.; Sprooten, Emma; Winkler, Anderson M.; Olvera, Rene L.; Almasy, Laura; Duggirala, Ravi; Fox, Peter T.; Blangero, John; Glahn, David C.; Curran, Joanne E.
2015-01-01
Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18–81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m2) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h2 = 0.58), WC (h2 = 0.57), and FA (h2 = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = −0.25), body (ρG = −0.30), and splenium (ρG = −0.26) of the corpus callosum, internal capsule (ρG = −0.29), and thalamic radiation (ρG = −0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = −0.39, p = 0.020; ρG = −0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors. PMID:25763009
[A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].
Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y
2016-04-18
To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed axis movement. The new method can replace the traditional method in accuracy. It can make up the deficiency of the traditional fixed axis method.
O'Brien, J K; Roth, T L; Stoops, M A; Ball, R L; Steinman, K J; Montano, G A; Love, C C; Robeck, T R
2015-01-01
White rhinoceros ejaculates (n=9) collected by electroejaculation from four males were shipped (10°C, 12h) to develop procedures for the production of chilled and frozen-thawed sex-sorted spermatozoa of adequate quality for artificial insemination (AI). Of all electroejaculate fractions, 39.7% (31/78) exhibited high quality post-collection (≥70% total motility and membrane integrity) and of those, 54.8% (17/31) presented reduced in vitro quality after transport and were retrospectively determined to exhibit urine-contamination (≥21.0μg creatinine/ml). Of fractions analyzed for creatinine concentration, 69% (44/64) were classified as urine-contaminated. For high quality non-contaminated fractions, in vitro parameters (motility, velocity, membrane, acrosome and DNA integrity) of chilled non-sorted and sorted spermatozoa were well-maintained at 5°C up to 54h post-collection, whereby >70% of post-transport (non-sorted) or post-sort (sorted) values were retained. By 54h post-collection, some motility parameters were higher (P<0.05) for non-sorted spermatozoa (total motility, rapid velocity, average path velocity) whereas all remaining motion parameters as well as membrane, acrosome and DNA integrity were similar between sperm types. In comparison with a straw method, directional freezing resulted in enhanced (P<0.05) motility and velocity of non-sorted and sorted spermatozoa, with comparable overall post-thaw quality between sperm types. High purity enrichment of X-bearing (89±6%) or Y-bearing (86±3%) spermatozoa was achieved using moderate sorting rates (2540±498X-spermatozoa/s; 1800±557Y-spermatozoa/s). Collective in vitro characteristics of sorted-chilled or sorted-frozen-thawed spermatozoa derived from high quality electroejaculates indicate acceptable fertility potential for use in AI. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling of Particle Agglomeration in Nanofluids
NASA Astrophysics Data System (ADS)
Kanagala, Hari Krishna
Nanofluids are colloidal dispersions of nano sized particles (<100nm in diameter) in dispersion mediums. They are of great interest in industrial applications as heat transfer fluids owing to their enhanced thermal conductivities. Stability of nanofluids is a major problem hindering their industrial application. Agglomeration and then sedimentation are some reasons, which drastically decrease the shelf life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.
NASA Astrophysics Data System (ADS)
Maghsoodi, Elham; Kamani, Davoud
2017-05-01
We shall obtain the interaction of the Dp1- and Dp2-branes in the toroidal-orbifold space-time Tn × ℝ1,d-n-5 × ℂ2/ℤ 2. The configuration of the branes is nonintersecting, perpendicular, moving-rotating, wrapped-fractional with background fields. For this, we calculate the bosonic boundary state corresponding to a dynamical fractional-wrapped Dp-brane in the presence of the Kalb-Ramond field, a U1 gauge potential and an open string tachyon field. The long-range behavior of the interaction amplitude will be extracted.
NASA Technical Reports Server (NTRS)
Rosenfeld, Moshe
1990-01-01
The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.
NASA Astrophysics Data System (ADS)
Kaufman, Darrell S.; Miller, Gifford H.
1995-07-01
This study explores the geochronological utility and analytical reproducibility of separating the high-molecular-weight fraction (HMW) from eggshells of the extinct late Pleistocene ratite, Genyornis, using disposable, prepacked gel-filtration columns. The superior integrity of ratite eggshell for the retention of amino acids indicates that this biomineral is better suited for this type of investigation than previously studied molluscan shell. To evaluate the reproducibility of the gel-filtration technique, we analyzed triplicate subsamples of three eggshells of different ages. The reproducibility, based on the average intrashell variation (coefficient of variation; CV) in the extent of isoleucine epimerization (aIle/Ile) in the HMW (enriched in molecules ca. >10,000 MW) is 3%, well within the range appropriate for geochronological purposes. The average intrashell variation in the total amino acid concentration (Σ[aa]) of the HMW is 5%, somewhat better than for the total acid hydrolysate (TOTAL) of the same samples (7%). To evaluate the relation between molecular weight and the rate of isoleucine epimerization, three molecular-weight fractions were separated using gel filtration, plus the naturally hydrolyzed free fraction (FREE), for each of four fossil eggshells. AIle/Ile increases with decreasing molecular weight in all shells, with a ca. sixfold to ninefold difference in ratios between the HMW andFREE, and a ca. fivefold difference between the HMW andTOTAL. Although linear correlations between aIle/Ile measured in each molecular-weight fraction and in theTOTAL are all highly significant (r ⩾ 0.951), the relation between the extent of epimerization in the HMW and in the TOTAL is best expressed as an exponential function (r = 0.951). This relation is consistent with the idea that, as the epimerization reaction approaches equilibrium in theTOTAL (ca. aIle/Ile > 1.1), its rate decreases beyond that of the HMW. The amino acid composition (relative percent of eight amino acids or combinations of amino acids) is more uniform in the HMW of the four samples compared to lower-molecular-weight fractions. The greater "compositional stability" of the HMW indicates that it contains a residuum of macromolecules that have not been affected by the diagenetically driven changes observed in lower-molecular-weight fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Shi, F; Tian, Z
2014-06-01
Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less
Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model
Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel
2014-01-01
The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903
Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames
NASA Astrophysics Data System (ADS)
Mokhov, A. V.; Levinsky, H. B.; van der Meij, C. E.; Jacobs, R. A. A. M.
1995-10-01
The influence of fluctuating concentrations and temperature on the laser-induced-fluorescence (LIF) measurement of CO in turbulent flames is described, under conditions in which the fluorescence and the temperature are measured independently. The analysis shows that correlations between CO concentration and temperature can bias the averaged mole fraction extracted from LIF measurements. The magnitude of the bias can exceed the order of the average CO mole fraction. Further, LIF measurements of CO concentrations in a turbulent, nonpremixed, natural gas flame are described. The averaged CO mole fractions are derived from the fluorescence measurements by the use of flame temperatures independently measured by coherent anti-Stokes Raman spectroscopy. Analysis of the fluctuations in measured temperature and fluorescence indicates that temperature and CO concentrations in flame regions with intensive mixing are indeed correlated. In the flame regions where burnout of CO has ceased, the LIF measurements of the CO mole fraction correspond to the probe measurements in exhaust.
A spline-based non-linear diffeomorphism for multimodal prostate registration.
Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice
2012-08-01
This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
A multi-domain spectral method for time-fractional differential equations
NASA Astrophysics Data System (ADS)
Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.
2015-07-01
This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.
ERIC Educational Resources Information Center
Gaines, Gale F.
Focused state efforts have helped teacher salaries in Southern Regional Education Board (SREB) states move toward the national average. Preliminary 2000-01 estimates put SREB's average teacher salary at its highest point in 22 years compared to the national average. The SREB average teacher salary is approximately 90 percent of the national…
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Vana, Sudha; Bhattacharya, Sumit; Uijt de Haag, Maarten
2009-05-01
This paper discusses the integration of Forward-looking Infrared (FLIR) and traffic information from, for example, the Automatic Dependent Surveillance - Broadcast (ADS-B) or the Traffic Information Service-Broadcast (TIS-B). The goal of this integration method is to obtain an improved state estimate of a moving obstacle within the Field-of-View of the FLIR with added integrity. The focus of the paper will be on the approach phase of the flight. The paper will address methods to extract moving objects from the FLIR imagery and geo-reference these objects using outputs of both the onboard Global Positioning System (GPS) and the Inertial Navigation System (INS). The proposed extraction method uses a priori airport information and terrain databases. Furthermore, state information from the traffic information sources will be extracted and integrated with the state estimates from the FLIR. Finally, a method will be addressed that performs a consistency check between both sources of traffic information. The methods discussed in this paper will be evaluated using flight test data collected with a Gulfstream V in Reno, NV (GVSITE) and simulated ADS-B.
NASA Astrophysics Data System (ADS)
Weymer, Bradley A.; Wernette, Phillipe; Everett, Mark E.; Houser, Chris
2018-06-01
Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to be described in the wave number domain by a power-law characteristic of scale independence. Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of systematic variations in the underlying framework geology. The LRD of framework geology, which influences island geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted along Padre Island National Seashore (PAIS), Texas, United States, reveal that the EMI apparent conductivity (σa) signal and, by inference, the framework geology exhibits LRD at scales of up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and lidar spatial series by a fractional autoregressive integrated moving average (ARIMA) process that specifically models LRD. This method offers a robust and compact way of quantifying the geological variations along a barrier island shoreline using three statistical parameters (p, d, q). We discuss how ARIMA models that use a single parameter d provide a quantitative measure for determining free and forced barrier island evolutionary behavior across different scales. Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area of paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst nearshore, beach, and dune in areas outside this region are scale independent, implying that barrier islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the island to sea level rise.
A novel single-parameter approach for forecasting algal blooms.
Xiao, Xi; He, Junyu; Huang, Haomin; Miller, Todd R; Christakos, George; Reichwaldt, Elke S; Ghadouani, Anas; Lin, Shengpan; Xu, Xinhua; Shi, Jiyan
2017-01-01
Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 10 4 cells mL -1 ). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.
La, Hung Manh; Sheng, Weihua
2013-04-01
In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.
NASA Astrophysics Data System (ADS)
Wang, Yi-Hong; Wu, Guo-Cheng; Baleanu, Dumitru
2013-10-01
The variational iteration method is newly used to construct various integral equations of fractional order. Some iterative schemes are proposed which fully use the method and the predictor-corrector approach. The fractional Bagley-Torvik equation is then illustrated as an example of multi-order and the results show the efficiency of the variational iteration method's new role.
Fractional Relativistic Yamaleev Oscillator Model and Its Dynamical Behaviors
NASA Astrophysics Data System (ADS)
Luo, Shao-Kai; He, Jin-Man; Xu, Yan-Li; Zhang, Xiao-Tian
2016-07-01
In the paper we construct a new kind of fractional dynamical model, i.e. the fractional relativistic Yamaleev oscillator model, and explore its dynamical behaviors. We will find that the fractional relativistic Yamaleev oscillator model possesses Lie algebraic structure and satisfies generalized Poisson conservation law. We will also give the Poisson conserved quantities of the model. Further, the relation between conserved quantities and integral invariants of the model is studied and it is proved that, by using the Poisson conserved quantities, we can construct integral invariants of the model. Finally, the stability of the manifold of equilibrium states of the fractional relativistic Yamaleev oscillator model is studied. The paper provides a general method, i.e. fractional generalized Hamiltonian method, for constructing a family of fractional dynamical models of an actual dynamical system.
Time and size resolved Measurement of Mass Concentration at an Urban Site
NASA Astrophysics Data System (ADS)
Karg, E.; Ferron, G. A.; Heyder, J.
2003-04-01
Time- and size-resolved measurements of ambient particles are necessary for modelling of atmospheric particle transport, the interpretation of particulate pollution events and the estimation of particle deposition in the human lungs. In the size range 0.01 - 2 µm time- and size-resolved data are obtained from differential mobility and optical particle counter measurements and from gravimetric filter analyses on a daily basis (PM2.5). By comparison of the time averaged and size integrated particle volume concentration with PM2.5 data, an average density of ambient particles can be estimated. Using this density, the number concentration data can be converted in time- and size-resolved mass concentration. Such measurements were carried out at a Munich downtown crossroads. The spectra were integrated in the size ranges 10 - 100 nm, 100 - 500 nm and 500 - 2000 nm. Particles in these ranges are named ultrafine, fine and coarse particles. These ranges roughly represent freshly emitted particles, aged/accumulated particles and particles entrained by erosive processes. An average number concentration of 80000 1/cm3 (s.d. 67%), a particle volume concentration of 53 µm3/cm3 (s.d. 76%) and a PM2.5 mass concentration of 27 µg/m3 was found. These particle volume- and PM2.5 data imply an average density of 0.51 g/cm3. Average number concentration showed 95.3%, 4.7% and 0.006% of the total particle concentration in the size ranges mentioned above. Mass concentration was 14.7%, 80.2% and 5.1% of the total, assuming the average density to be valid for all particles. The variability in mass concentration was 94%, 75% and 33% for the three size ranges. Nearly all ambient particles were in the ultrafine size range, whereas most of the mass concentration was in the fine size range. However, a considerable mass fraction of nearly 15% was found in the ultrafine size range. As the sampling site was close to the road and traffic emissions were the major source of the particles, 1) the density was very low due to agglomerated and porous structures of freshly emitted combustion particles and 2) the variability was highest in the ultrafine range, obviously correlated to traffic activity and lowest in the micron size range. In conclusion, almost all ambient particles were ultrafine particles, whereas most of the particle mass was associated with fine particles. Nevertheless, a considerable mass fraction was found in the ultrafine size range. These particles had a very low density so that they can be considered as agglomerated and porous particles emitted from vehicles passing the crossroads. Therefore they showed a much higher variation in mass concentration than the fine and coarse particles.
McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe
2007-04-01
Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.
Mechanistic approach to generalized technical analysis of share prices and stock market indices
NASA Astrophysics Data System (ADS)
Ausloos, M.; Ivanova, K.
2002-05-01
Classical technical analysis methods of stock evolution are recalled, i.e. the notion of moving averages and momentum indicators. The moving averages lead to define death and gold crosses, resistance and support lines. Momentum indicators lead the price trend, thus give signals before the price trend turns over. The classical technical analysis investment strategy is thereby sketched. Next, we present a generalization of these tricks drawing on physical principles, i.e. taking into account not only the price of a stock but also the volume of transactions. The latter becomes a time dependent generalized mass. The notion of pressure, acceleration and force are deduced. A generalized (kinetic) energy is easily defined. It is understood that the momentum indicators take into account the sign of the fluctuations, while the energy is geared toward the absolute value of the fluctuations. They have different patterns which are checked by searching for the crossing points of their respective moving averages. The case of IBM evolution over 1990-2000 is used for illustrations.
An impact analysis of forecasting methods and forecasting parameters on bullwhip effect
NASA Astrophysics Data System (ADS)
Silitonga, R. Y. H.; Jelly, N.
2018-04-01
Bullwhip effect is an increase of variance of demand fluctuation from downstream to upstream of supply chain. Forecasting methods and forecasting parameters were recognized as some factors that affect bullwhip phenomena. To study these factors, we can develop simulations. There are several ways to simulate bullwhip effect in previous studies, such as mathematical equation modelling, information control modelling, computer program, and many more. In this study a spreadsheet program named Bullwhip Explorer was used to simulate bullwhip effect. Several scenarios were developed to show the change in bullwhip effect ratio because of the difference in forecasting methods and forecasting parameters. Forecasting methods used were mean demand, moving average, exponential smoothing, demand signalling, and minimum expected mean squared error. Forecasting parameters were moving average period, smoothing parameter, signalling factor, and safety stock factor. It showed that decreasing moving average period, increasing smoothing parameter, increasing signalling factor can create bigger bullwhip effect ratio. Meanwhile, safety stock factor had no impact to bullwhip effect.
Hui, Shisheng; Chen, Lizhang; Liu, Fuqiang; Ouyang, Yanhao
2015-12-01
To establish multiple seasonal autoregressive integrated moving average model(ARIMA) according to mumps disease incidence in Hunan province, and to predict the mumps incidence from May 2015 to April 2016 in Hunan province by the model. The data were downloaded from "Disease Surveillance Information Reporting Management System" in China Information System for Disease Control and Prevention. The monthly incidence of mumps in Hunan province was collected from January 2004 to April 2015 according to the onset date, including clinical diagnosis and laboratory confirmed cases. The predictive analysis method was the ARIMA model in SPSS 18.0 software, the ARIMA model was established on the monthly incidence of mumps from January 2004 to April 2014, and the date from May 2014 to April 2015 was used as the testing sample, Box-Ljung Q test was used to test the residual of the selected model. Finally, the monthly incidence of mumps from May 2015 to April 2016 was predicted by the model. The peak months of the mumps incidence were May to July every year, and the secondary peak months were November to January of the following year, during January 2004 to April 2014 in Hunan province. After the data sequence was handled by smooth sequence, model identification, establishment and diagnosis, the ARIMA(2,1,1) × (0,1,1)(12) was established, Box-Ljung Q test found, Q=8.40, P=0.868, the residual sequence was white noise, the established model to the data information extraction was complete, the model was reasonable. The R(2) value of the model fitting degree was 0.871, and the value of BIC was -1.646, while the average absolute error of the predicted value and the actual value was 0.025/100 000, the average relative error was 13.004%. The relative error of the model for the prediction of the mumps incidence in Hunan province was small, and the predicting results were reliable. Using the ARIMA(2,1,1) ×(0,1,1)(12) model to predict the mumps incidence from April 2016 to May 2015 in Hunan province, the peak months of the mumps incidence were May to July, and the secondary peak months were November to January of the following year, the incidence of the peak month was close to the same period. The ARIMA(2,1,1)×(0,1,1)(12) model is well fitted the trend of the mumps disease incidence in Hunan province, it has some practical value for the prevention and control of the disease.
Unsteady specific work and isentropic efficiency of a radial turbine driven by pulsed detonations
NASA Astrophysics Data System (ADS)
Rouser, Kurt P.
There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace typical steady deflagration combustors. The PDC is inherently unsteady, however, and comparisons with conventional steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a PDC in experiments fueled by hydrogen or ethylene. Data included pulsed cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Peak power increased with PDC fill fraction, and duty cycle increased with PDC frequency. Cycle-averaged unsteady specific work increased with fill fraction and frequency. An unsteady turbine efficiency formulation is proposed, including heat transfer effects, enthalpy flux-weighted total pressure ratio, and ensemble averaging over multiple cycles. Turbine efficiency increased with frequency but was lower than the manufacturer reported conventional steady turbine efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacalone, J.
We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less
White Matter Integrity in High-Altitude Pilots Exposed to Hypobaria
McGuire, Stephen A.; Boone, Goldie R.E.; Sherman, Paul M.; Tate, David F.; Wood, Joe D.; Patel, Beenish; Eskandar, George; Wijtenburg, S. Andrea; Rowland, Laura M.; Clarke, Geoffrey D.; Grogan, Patrick M.; Sladky, John H.; Kochunov, Peter V.
2017-01-01
Introduction Nonhypoxic hypobaric (low atmospheric pressure) occupational exposure, such as experienced by U.S. Air Force U-2 pilots and safety personnel operating inside altitude chambers, is associated with increased subcortical white matter hyperintensity (WMH) burden. The pathophysiological mechanisms underlying this discrete WMH change remain unknown. The objectives of this study were to demonstrate that occupational exposure to nonhypoxic hypobaria is associated with altered white matter integrity as quantified by fractional anisotropy (FA) measured using diffusion tensor imaging and relate these findings to WMH burden and neurocognitive ability. Methods There were 102 U-2 pilots and 114 age- and gender-controlled, health-matched controls who underwent magnetic resonance imaging. All pilots performed neurocognitive assessment. Whole-brain and tract-wise average FA values were compared between pilots and controls, followed by comparison within pilots separated into high and low WMH burden groups. Neurocognitive measurements were used to help interpret group difference in FA values. Results Pilots had significantly lower average FA values than controls (0.489/0.500, respectively). Regionally, pilots had higher FA values in the fronto-occipital tract where FA values positively correlated with visual-spatial performance scores (0.603/0.586, respectively). There was a trend for high burden pilots to have lower FA values than low burden pilots. Discussion Nonhypoxic hypobaric exposure is associated with significantly lower average FA in young, healthy U-2 pilots. This suggests that recurrent hypobaric exposure causes diffuse axonal injury in addition to focal white matter changes. PMID:28323582
Khan, Khalid Saifullah; Joergensen, Rainer Georg
2009-01-01
The present study was conducted to evaluate the changes in microbial biomass indices (C, N, and especially P) and in P fractions in compost amended with inorganic P fertilizers. In the non-amended control, the average contents of microbial biomass C, N, and P were 1744, 193, and 63 microg g(-1) compost, respectively. On average, 1.3% of total P was stored as microbial biomass P. The addition of KH(2)PO(4) and TSP (triple super phosphate) led to immediate significant increases in microbial biomass C, N, and P. Approximately, 4.6% of the added TSP and 5.8% of the added KH(2)PO(4) were incorporated on average into the microbial biomass throughout the incubation. Approximately, 4.7% of the 1mg and 5.8% of the 2mg addition rate were incorporated on average into the microbial biomass. In the amendment treatments, the average contents of microbial biomass C, N, and P declined by 44%, 64%, and 49%, respectively. Initially, the average size of the P fractions in the non-amended compost increased in the order (% of total P in brackets) resin P (0.7%)
Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M
2015-01-07
We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Complex Patterns in Financial Time Series Through HIGUCHI’S Fractal Dimension
NASA Astrophysics Data System (ADS)
Grace Elizabeth Rani, T. G.; Jayalalitha, G.
2016-11-01
This paper analyzes the complexity of stock exchanges through fractal theory. Closing price indices of four stock exchanges with different industry sectors are selected. Degree of complexity is assessed through Higuchi’s fractal dimension. Various window sizes are considered in evaluating the fractal dimension. It is inferred that the data considered as a whole represents random walk for all the four indices. Analysis of financial data through windowing procedure exhibits multi-fractality. Attempts to apply moving averages to reduce noise in the data revealed lower estimates of fractal dimension, which was verified using fractional Brownian motion. A change in the normalization factor in Higuchi’s algorithm did improve the results. It is quintessential to focus on rural development to realize a standard and steady growth of economy. Tools must be devised to settle the issues in this regard. Micro level institutions are necessary for the economic growth of a country like India, which would induce a sporadic development in the present global economical scenario.
Electron Flux Models for Different Energies at Geostationary Orbit
NASA Technical Reports Server (NTRS)
Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.
2016-01-01
Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.
Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.
2010-09-01
Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less
On the Milankovitch orbital elements for perturbed Keplerian motion
NASA Astrophysics Data System (ADS)
Rosengren, Aaron J.; Scheeres, Daniel J.
2014-03-01
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.
Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors
NASA Astrophysics Data System (ADS)
Thomas, Weston; Middlebrook, Christopher
2014-12-01
Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.
NASA Astrophysics Data System (ADS)
Colucci, Simone; de'Michieli Vitturi, Mattia; Landi, Patrizia
2016-04-01
It is well known that nucleation and growth of crystals play a fundamental role in controlling magma ascent dynamics and eruptive behavior. Size- and shape-distribution of crystal populations can affect mixture viscosity, causing, potentially, transitions between effusive and explosive eruptions. Furthermore, volcanic samples are usually characterized in terms of Crystal Size Distribution (CSD), which provide a valuable insight into the physical processes that led to the observed distributions. For example, a large average size can be representative of a slow magma ascent, and a bimodal CSD may indicate two events of nucleation, determined by two degassing events within the conduit. The Method of Moments (MoM), well established in the field of chemical engineering, represents a mesoscopic modeling approach that rigorously tracks the polydispersity by considering the evolution in time and space of integral parameters characterizing the distribution, the moments, by solving their transport differential-integral equations. One important advantage of this approach is that the moments of the distribution correspond to quantities that have meaningful physical interpretations and are directly measurable in natural eruptive products, as well as in experimental samples. For example, when the CSD is defined by the number of particles of size D per unit volume of the magmatic mixture, the zeroth moment gives the total number of crystals, the third moment gives the crystal volume fraction in the magmatic mixture and ratios between successive moments provide different ways to evaluate average crystal length. Tracking these quantities, instead of volume fraction only, will allow using, for example, more accurate viscosity models in numerical code for magma ascent. Here we adopted, for the first time, a quadrature based method of moments to track the temporal evolution of CSD in a magmatic mixture and we verified and calibrated the model again experimental data. We also show how the equations and the tool developed can be integrated in a magma ascent numerical model, with application to eruptive events occurred at Stromboli volcano (Italy).
Neural network versus classical time series forecasting models
NASA Astrophysics Data System (ADS)
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
ARIMA representation for daily solar irradiance and surface air temperature time series
NASA Astrophysics Data System (ADS)
Kärner, Olavi
2009-06-01
Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.
Single top quark production as a probe of anomalous tqγ and tqZ couplings at the FCC-ee
NASA Astrophysics Data System (ADS)
Khanpour, Hamzeh; Khatibi, Sara; Yanehsari, Morteza Khatiri; Najafabadi, Mojtaba Mohammadi
2017-12-01
In this paper, a detailed study to probe the top quark Flavour-Changing Neutral Currents (FCNC) tqγ and tqZ at the future e-e+ collider FCC-ee in two different center-of-mass energies of 240 and 350 GeV is presented. A set of useful variables are proposed and used in a multivariate technique to separate signal e-e+ → Z / γ → t q bar (t bar q) from Standard Model background processes. The study includes a fast detector simulation based on the DELPHES package to consider the detector effects. The upper limits on the FCNC branching ratios at 95% confidence level (CL) in terms of the integrated luminosity are presented. It is shown that with 300 fb-1 of integrated luminosity of data, FCC-ee would be able to exclude the effective coupling strengths above O (10-4 -10-5) which is corresponding to branching fraction of O (0.01 - 0.001)%. We show that moving to a high-luminosity regime leads to a significant improvement on the upper bounds on the top quark FCNC couplings to a photon or a Z boson.
Photodamage and the importance of photoprotection in biomolecular-powered device applications.
Vandelinder, Virginia; Bachand, George D
2014-01-07
In recent years, an enhanced understanding of the mechanisms underlying photobleaching and photoblinking of fluorescent dyes has led to improved photoprotection strategies, such as reducing and oxidizing systems (ROXS) that reduce blinking and oxygen scavenging systems to reduce bleaching. Excitation of fluorescent dyes can also result in damage to catalytic proteins (e.g., biomolecular motors), affecting the performance of integrated devices. Here, we characterized the motility of microtubules driven by kinesin motor proteins using various photoprotection strategies, including a microfluidic deoxygenation device. Impaired motility of microtubules was observed at high excitation intensities in the absence of photoprotection as well as in the presence of an enzymatic oxygen scavenging system. In contrast, using a polydimethylsiloxane (PDMS) microfluidic deoxygenation device and ROXS, not only were the fluorophores slower to bleach but also moving the velocity and fraction of microtubules over time remained unaffected even at high excitation intensities. Further, we demonstrate the importance of photoprotection by examining the effect of photodamage on the behavior of a switchable mutant of kinesin. Overall, these results demonstrate that improved photoprotection strategies may have a profound impact on functional fluorescently labeled biomolecules in integrated devices.
NASA Astrophysics Data System (ADS)
Nair, Kalyani P.; Harkness, Elaine F.; Gadde, Soujanye; Lim, Yit Y.; Maxwell, Anthony J.; Moschidis, Emmanouil; Foden, Philip; Cuzick, Jack; Brentnall, Adam; Evans, D. Gareth; Howell, Anthony; Astley, Susan M.
2017-03-01
Personalised breast screening requires assessment of individual risk of breast cancer, of which one contributory factor is weight. Self-reported weight has been used for this purpose, but may be unreliable. We explore the use of volume of fat in the breast, measured from digital mammograms. Volumetric breast density measurements were used to determine the volume of fat in the breasts of 40,431 women taking part in the Predicting Risk Of Cancer At Screening (PROCAS) study. Tyrer-Cuzick risk using self-reported weight was calculated for each woman. Weight was also estimated from the relationship between self-reported weight and breast fat volume in the cohort, and used to re-calculate Tyrer-Cuzick risk. Women were assigned to risk categories according to 10 year risk (below average <2%, average 2-3.49%, above average 3.5-4.99%, moderate 5-7.99%, high >=8%) and the original and re-calculated Tyrer-Cuzick risks were compared. Of the 716 women diagnosed with breast cancer during the study, 15 (2.1%) moved into a lower risk category, and 37 (5.2%) moved into a higher category when using weight estimated from breast fat volume. Of the 39,715 women without a cancer diagnosis, 1009 (2.5%) moved into a lower risk category, and 1721 (4.3%) into a higher risk category. The majority of changes were between below average and average risk categories (38.5% of those with a cancer diagnosis, and 34.6% of those without). No individual moved more than one risk group. Automated breast fat measures may provide a suitable alternative to self-reported weight for risk assessment in personalized screening.
S3/S4 Integrated Truss being moved into the Space Shuttle Payloa
2007-02-07
In the Space Station Processing Facility, an overhead crane moves the S3/S4 integrated truss to a payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.
Jeon, Jae-Hyung; Metzler, Ralf
2010-02-01
Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.
Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan
2018-01-01
This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; ...
2015-07-23
A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse directions, as opposed to possible mechanisms involving a dominance of either one direction of transport. Furthermore, it features upstream transport balanced by entrainment into richer conditions, while on the rich side, upstream turbulent transport and entrainment from leaner conditions balance the streamwise convection.« less
Improving Children's Knowledge of Fraction Magnitudes
ERIC Educational Resources Information Center
Fazio, Lisa K.; Kennedy, Casey A.; Siegler, Robert S.
2016-01-01
We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played "Catch…
Fractional order implementation of Integral Resonant Control - A nanopositioning application.
San-Millan, Andres; Feliu-Batlle, Vicente; Aphale, Sumeet S
2017-10-04
By exploiting the co-located sensor-actuator arrangement in typical flexure-based piezoelectric stack actuated nanopositioners, the polezero interlacing exhibited by their axial frequency response can be transformed to a zero-pole interlacing by adding a constant feed-through term. The Integral Resonant Control (IRC) utilizes this unique property to add substantial damping to the dominant resonant mode by the use of a simple integrator implemented in closed loop. IRC used in conjunction with an integral tracking scheme, effectively reduces positioning errors introduced by modelling inaccuracies or parameter uncertainties. Over the past few years, successful application of the IRC control technique to nanopositioning systems has demonstrated performance robustness, easy tunability and versatility. The main drawback has been the relatively small positioning bandwidth achievable. This paper proposes a fractional order implementation of the classical integral tracking scheme employed in tandem with the IRC scheme to deliver damping and tracking. The fractional order integrator introduces an additional design parameter which allows desired pole-placement, resulting in superior closed loop bandwidth. Simulations and experimental results are presented to validate the theory. A 250% improvement in the achievable positioning bandwidth is observed with proposed fractional order scheme. Copyright © 2017. Published by Elsevier Ltd.
Dynamics of actin-based movement by Rickettsia rickettsii in vero cells.
Heinzen, R A; Grieshaber, S S; Van Kirk, L S; Devin, C J
1999-08-01
Actin-based motility (ABM) is a virulence mechanism exploited by invasive bacterial pathogens in the genera Listeria, Shigella, and Rickettsia. Due to experimental constraints imposed by the lack of genetic tools and their obligate intracellular nature, little is known about rickettsial ABM relative to Listeria and Shigella ABM systems. In this study, we directly compared the dynamics and behavior of ABM of Rickettsia rickettsii and Listeria monocytogenes. A time-lapse video of moving intracellular bacteria was obtained by laser-scanning confocal microscopy of infected Vero cells synthesizing beta-actin coupled to green fluorescent protein (GFP). Analysis of time-lapse images demonstrated that R. rickettsii organisms move through the cell cytoplasm at an average rate of 4.8 +/- 0.6 micrometer/min (mean +/- standard deviation). This speed was 2.5 times slower than that of L. monocytogenes, which moved at an average rate of 12.0 +/- 3.1 micrometers/min. Although rickettsiae moved more slowly, the actin filaments comprising the actin comet tail were significantly more stable, with an average half-life approximately three times that of L. monocytogenes (100.6 +/- 19.2 s versus 33.0 +/- 7.6 s, respectively). The actin tail associated with intracytoplasmic rickettsiae remained stationary in the cytoplasm as the organism moved forward. In contrast, actin tails of rickettsiae trapped within the nucleus displayed dramatic movements. The observed phenotypic differences between the ABM of Listeria and Rickettsia may indicate fundamental differences in the mechanisms of actin recruitment and polymerization.
Books average previous decade of economic misery.
Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.
Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions
Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; ...
2015-01-14
Here, anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D 3He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and 3He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuteriummore » density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.« less
Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.
Jensen, Michael D; Abdellatif, Ady; Chen, Jeff; Wong, Eugene
2012-04-21
Respiratory motion may lead to dose errors when treating thoracic and abdominal tumours with radiotherapy. The interplay between complex multileaf collimator patterns and patient respiratory motion could result in unintuitive dose changes. We have developed a treatment reconstruction simulation computer code that accounts for interplay effects by combining multileaf collimator controller log files, respiratory trace log files, 4DCT images and a Monte Carlo dose calculator. Two three-dimensional (3D) IMRT step-and-shoot plans, a concave target and integrated boost were delivered to a 1D rigid motion phantom. Three sets of experiments were performed with 100%, 50% and 25% duty cycle gating. The log files were collected, and five simulation types were performed on each data set: continuous isocentre shift, discrete isocentre shift, 4DCT, 4DCT delivery average and 4DCT plan average. Analysis was performed using 3D gamma analysis with passing criteria of 2%, 2 mm. The simulation framework was able to demonstrate that a single fraction of the integrated boost plan was more sensitive to interplay effects than the concave target. Gating was shown to reduce the interplay effects. We have developed a 4DCT Monte Carlo simulation method that accounts for IMRT interplay effects with respiratory motion by utilizing delivery log files.
NASA Astrophysics Data System (ADS)
Feliu-Talegon, D.; Feliu-Batlle, V.
2017-06-01
Flexible links combined with force and torque sensors can be used to detect obstacles in mobile robotics, as well as for surface and object recognition. These devices, called sensing antennae, perform an active sensing strategy in which a servomotor system moves the link back and forth until it hits an object. At this instant, information of the motor angles combined with force and torque measurements allow calculating the positions of the hitting points, which are valuable information about the object surface. In order to move the antenna fast and accurately, this article proposes a new closed-loop control for driving this flexible link-based sensor. The control strategy is based on combining a feedforward term and a feedback phase-lag compensator of fractional order. We demonstrate that some drawbacks of the control of these sensing devices like the apparition of spillover effects when a very fast positioning of the antenna tip is desired, and actuator saturation caused by high-frequency sensor noise, can be significantly reduced by using our newly proposed fractional-order controllers. We have applied these controllers to the position control of a prototype of sensing antenna and experiments have shown the improvements attained with this technique in the accurate and vibration free motion of its tip (the fractional-order controller reduced ten times the residual vibration obtained with the integer-order controller).
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2017-01-04
As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2mmHg is consistent with reported data. We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Quan-Ying; Sun, Jing-Yue; Xu, Xing-Jian; Yu, Hong-Wen
2018-06-20
Because the extensive use of Cu-based fungicides, the accumulation of Cu in agricultural soil has been widely reported. However, little information is known about the bioavailability of Cu deriving from different fungicides in soil. This paper investigated both the distribution behaviors of Cu from two commonly used fungicides (Bordeaux mixture and copper oxychloride) during the aging process and the toxicological effects of Cu on earthworms. Copper nitrate was selected as a comparison during the aging process. The distribution process of exogenous Cu into different soil fractions involved an initial rapid retention (the first 8 weeks) and a following slow continuous retention. Moreover, Cu mainly moved from exchangeable and carbonate fractions to Fe-Mn oxides-combined fraction during the aging process. The Elovich model fit well with the available Cu aging process, and the transformation rate was in the order of Cu(NO 3 ) 2 > Bordeaux mixture > copper oxychloride. On the other hand, the biological responses of earthworms showed that catalase activities and malondialdehyde contents of the copper oxychloride treated earthworms were significantly higher than those of Bordeaux mixture treated earthworms. Also, body Cu loads of earthworms from different Cu compounds spiked soils were in the following order: copper oxychloride > Bordeaux mixture. Thus, the bioavailability of Cu from copper oxychloride in soil was significantly higher than that of Bordeaux mixture, and different Cu compounds should be taken into consideration when studying the bioavailability of Cu-based fungicides in the soil. Copyright © 2018 Elsevier Inc. All rights reserved.
Darrow, Lyndsey A; Klein, Mitchel; Flanders, W Dana; Mulholland, James A; Tolbert, Paige E; Strickland, Matthew J
2014-11-15
Upper and lower respiratory infections are common in early childhood and may be exacerbated by air pollution. We investigated short-term changes in ambient air pollutant concentrations, including speciated particulate matter less than 2.5 μm in diameter (PM2.5), in relation to emergency department (ED) visits for respiratory infections in young children. Daily counts of ED visits for bronchitis and bronchiolitis (n = 80,399), pneumonia (n = 63,359), and upper respiratory infection (URI) (n = 359,246) among children 0-4 years of age were collected from hospitals in the Atlanta, Georgia, area for the period 1993-2010. Daily pollutant measurements were combined across monitoring stations using population weighting. In Poisson generalized linear models, 3-day moving average concentrations of ozone, nitrogen dioxide, and the organic carbon fraction of particulate matter less than 2.5 μm in diameter (PM2.5) were associated with ED visits for pneumonia and URI. Ozone associations were strongest and were observed at low (cold-season) concentrations; a 1-interquartile range increase predicted a 4% increase (95% confidence interval: 2%, 6%) in visits for URI and an 8% increase (95% confidence interval: 4%, 13%) in visits for pneumonia. Rate ratios tended to be higher in the 1- to 4-year age group compared with infants. Results suggest that primary traffic pollutants, ozone, and the organic carbon fraction of PM2.5 exacerbate upper and lower respiratory infections in early life, and that the carbon fraction of PM2.5 is a particularly harmful component of the ambient particulate matter mixture. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Flemming, Burghard W.
2017-08-01
This study investigates the effect of particle shape on the transport and deposition of mixed siliciclastic-bioclastic sediments in the lower mesotidal Langebaan Lagoon along the South Atlantic coast of South Africa. As the two sediment components have undergone mutual sorting for the last 7 ka, they can be expected to have reached a highest possible degree of hydraulic equivalence. A comparison of sieve and settling tube data shows that, with progressive coarsening of the size fractions, the mean diameters of individual sediment components increasingly depart from the spherical quartz standard, the experimental data demonstrating the hydraulic incompatibility of the sieve data. Overall, the spatial distribution patterns of textural parameters (mean settling diameter, sorting and skewness) of the siliciclastic and bioclastic sediment components are very similar. Bivariate plots between them reveal linear trends when averaged over small intervals. A systematic deviation is observed in sorting, the trend ranging from uniformity at poorer sorting levels to a progressively increasing lag of the bioclastic component relative to the siliciclastic one as overall sorting improves. The deviation amounts to 0.8 relative sorting units at the optimal sorting level. The small textural differences between the two components are considered to reflect the influence of particle shape, which prevents the bioclastic fraction from achieving complete textural equivalence with the siliciclastic one. This is also reflected in the inferred transport behaviour of the two shape components, the bioclastic fraction moving closer to the bed than the siliciclastic one because of the higher drag experienced by low shape factor particles. As a consequence, the bed-phase development of bioclastic sediments departs significantly from that of siliciclastic sediments. Systematic flume experiments, however, are currently still lacking.
Visibility of Active Galactic Nuclei in the Illustris Simulation
NASA Astrophysics Data System (ADS)
Hutchinson-Smith, Tenley; Kelley, Luke; Moreno, Jorge; Hernquist, Lars; Illustris Collaboration
2018-01-01
Active galactic nuclei (AGN) are the very bright, luminous regions surrounding supermassive black holes (SMBH) located at the centers of galaxies. Supermassive black holes are the source of AGN feedback, which occurs once the SMBH reaches a certain critical mass. Almost all large galaxies contain a SMBH, but SMBH binaries are extremely rare. Finding these binary systems are important because it can be a source of gravitational waves if the two SMBH collide. In order to study supermassive black holes, astronomers will often rely on the AGN’s light in order to locate them, but this can be difficult due to the extinction of light caused by the dust and gas surrounding the AGN. My research project focuses on determining the fraction of light we can observe from galactic centers using the Illustris simulation, one of the most advanced cosmological simulations of the universe which was created using a hydrodynamic code and consists of a moving mesh. Measuring the fraction of light observable from galactic centers will help us know what fraction of the time we can observe dual and binary AGN in different galaxies, which would also imply a binary SMBH system. In order to find how much light is being blocked or scattered by the gas and dust surrounding the AGN, we calculated the density of the gas and dust along the lines of sight. I present results including the density of gas along different lines of sight and how it correlates with the image of the galaxy. Future steps include taking an average of the column densities for all the galaxies in Illustris and studying them as a function of galaxy type (before merger, during merger, and post-merger), which will give us information on how this can also affect the AGN luminosity.
Up-down Asymmetries in Speed Perception
NASA Technical Reports Server (NTRS)
Thompson, Peter; Stone, Leland S.
1997-01-01
We compared speed matches for pairs of stimuli that moved in opposite directions (upward and downward). Stimuli were elliptical patches (2 deg horizontally by 1 deg vertically) of horizontal sinusoidal gratings of spatial. frequency 2 cycles/deg. Two sequential 380 msec reveal presentations were compared. One of each pair of gratings (the standard) moved at 4 Hz (2 deg/sec), the other (the test) moved at a rate determined by a simple up-down staircase. The point of subjectively equal speed was calculated from the average of the last eight reversals. The task was to fixate a central point and to determine which one of the pair appeared to move faster. Eight of 10 observers perceived the upward drifting grating as moving faster than a grating moving downward but otherwise identical. on average (N = 10), when the standard moved downward, it was matched by a test moving upward at 94.7+/-1.7(SE)% of the standard speed, and when the standard moved upward it was matched by a test moving downward at 105.1+/-2.3(SE)% of the standard speed. Extending this paradigm over a range of spatial (1.5 to 13.5 c/d) and temporal (1.5 to 13.5 Hz) frequencies, preliminary results (N = 4) suggest that, under the conditions of our experiment, upward matter is seen as faster than downward for speeds greater than approx.1 deg/sec, but the effect appears to reverse at speeds below approx.1 deg/sec with downward motion perceived as faster. Given that an up-down asymmetry has been observed for the optokinetic response, both perceptual and oculomotor contributions to this phenomenon deserve exploration.
Morozova, Maria; Koschutnig, Karl; Klein, Elise; Wood, Guilherme
2016-01-15
Non-linear effects of age on white matter integrity are ubiquitous in the brain and indicate that these effects are more pronounced in certain brain regions at specific ages. Box-Cox analysis is a technique to increase the log-likelihood of linear relationships between variables by means of monotonic non-linear transformations. Here we employ Box-Cox transformations to flexibly and parsimoniously determine the degree of non-linearity of age-related effects on white matter integrity by means of model comparisons using a voxel-wise approach. Analysis of white matter integrity in a sample of adults between 20 and 89years of age (n=88) revealed that considerable portions of the white matter in the corpus callosum, cerebellum, pallidum, brainstem, superior occipito-frontal fascicle and optic radiation show non-linear effects of age. Global analyses revealed an increase in the average non-linearity from fractional anisotropy to radial diffusivity, axial diffusivity, and mean diffusivity. These results suggest that Box-Cox transformations are a useful and flexible tool to investigate more complex non-linear effects of age on white matter integrity and extend the functionality of the Box-Cox analysis in neuroimaging. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kemp, Andrew
2005-01-01
Everything moves. Even apparently stationary objects such as houses, roads, or mountains are moving because they sit on a spinning planet orbiting the Sun. Not surprisingly, the concepts of motion and the forces that affect moving objects are an integral part of the middle school science curriculum. However, middle school students are often taught…
Enriched reproducing kernel particle method for fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam
2018-06-01
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
A new method for determining the plasma electron density using three-color interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, Hiroyuki; Kawano, Yasunori; Itami, Kiyoshi
2012-06-15
A new method for determining the plasma electron density using the fractional fringes on three-color interferometer is proposed. Integrated phase shift on each interferometer is derived without using the temporal history of the fractional fringes. The dependence on the fringe resolution and the electrical noise are simulated on the wavelengths of CO{sub 2} laser. Short-time integrations of the fractional fringes enhance the reliability of this method.
Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J
2016-05-01
A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1). © The Author(s) 2016.
Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2016-01-01
This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed (
Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S
2018-07-01
The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuganbaev, A. A.
1982-04-01
This paper studies integrally closed rings. It is shown that a semiprime integrally closed Goldie ring is the direct product of a semisimple artinian ring and a finite number of integrally closed invariant domains that are classically integrally closed in their (division) rings of fractions. It is shown also that an integrally closed ring has a classical ring of fractions and is classically integrally closed in it.Next, integrally closed noetherian rings are considered. It is shown that an integrally closed noetherian ring all of whose nonzero prime ideals are maximal is either a quasi-Frobenius ring or a hereditary invariant domain.Finally, those noetherian rings all of whose factor rings are invariant are described, and the connection between integrally closed rings and distributive rings is examined.Bibliography: 13 titles.
Control of Initialized Fractional-Order Systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
2004-01-01
Fractional-Order systems, or systems containing fractional derivatives and integrals, have been studied by many in the engineering area. Additionally, very readable discussions, devoted specifically to the subject, are presented by Oldham and Spanier, Miller and Ross, and Pudlubny (1999a). It should be noted that there are a growing number of physical systems whose behavior can be compactly described using fractional system theory. Of specific interest to electrical engineers are long lines, electrochemical processes, dielectric polarization, colored noise, viscoelastic materials, and chaos. With the growing number of applications, it is important to establish a theory of control for these fractional-order systems, and for the potential use of fractional-order systems as feedback compensators. This topic is addressed in this paper. The first section discusses the control of fractional-order systems using a vector space representation, where initialization is included in the discussion. It should be noted that Bagley and Calico and Padovan and Sawicki both present a fractional state-space representation, which do not include the important historic effects. Incorporation of these effects based on the initialized fractional calculus is presented . The control methods presented in this paper are based on the initialized fractional order system theory. The second section presents an input-output approach. Some of the problems encountered in these sections are: a) the need to introduce a new complex plane to study the dynamics of fractional-order systems, b) the need to properly define the Laplace transform of the fractional derivative, and c) the proper inclusion of the initialization response in the system and control formulation. Following this, the next section generalizes the proportional-plus-integral-control (PI-control) and PID-control (PI-plus- derivative) concepts using fractional integrals. This is then further generalized using general fractional- order compensators. Finally the compensator concept is generalized by the use of a continuum of fractions in the compensator via the concept of order-distributions. The last section introduces fractional feedback in discrete-time.
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1993-01-01
A formulation that makes possible the integration of collision prediction and avoidance stages for mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the distance between the robot and a moving obstacle is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. A feedback control is developed and local asymptotic stability is proved if the velocity of the moving obstacle is bounded. Furthermore, a solution to the problem of inverse dynamics for the mobile robot is given. Simulation results verify the value of the proposed strategy.
Negative energy seen by accelerated observers
NASA Astrophysics Data System (ADS)
Ford, L. H.; Roman, Thomas A.
2013-04-01
The sampled negative energy density seen by inertial observers, in arbitrary quantum states is limited by quantum inequalities, which take the form of an inverse relation between the magnitude and duration of the negative energy. The quantum inequalities severely limit the utilization of negative energy to produce gross macroscopic effects, such as violations of the second law of thermodynamics. The restrictions on the sampled energy density along the worldlines of accelerated observers are much weaker than for inertial observers. Here we will illustrate this with several explicit examples. We consider the worldline of a particle undergoing sinusoidal motion in space in the presence of a single mode squeezed vacuum state of the electromagnetic field. We show that it is possible for the integrated energy density along such a worldline to become arbitrarily negative at a constant average rate. Thus the averaged weak energy condition is violated in these examples. This can be the case even when the particle moves at nonrelativistic speeds. We use the Raychaudhuri equation to show that there can be net defocusing of a congruence of these accelerated worldlines. This defocusing is an operational signature of the negative integrated energy density. These results in no way invalidate nor undermine either the validity or utility of the quantum inequalities for inertial observers. In particular, they do not change previous constraints on the production of macroscopic effects with negative energy, e.g., the maintenance of traversable wormholes.
NASA Astrophysics Data System (ADS)
Tesi, Tommaso; Geibel, Marc C.; Pearce, Christof; Panova, Elena; Vonk, Jorien E.; Karlsson, Emma; Salvado, Joan A.; Kruså, Martin; Bröder, Lisa; Humborg, Christoph; Semiletov, Igor; Gustafsson, Örjan
2017-09-01
Recent Arctic studies suggest that sea ice decline and permafrost thawing will affect phytoplankton dynamics and stimulate heterotrophic communities. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we investigate the chemical signature of the plankton-dominated fraction of particulate organic matter (POM) collected along the Siberian Shelf. POM (> 10 µm) samples were analysed using molecular biomarkers (CuO oxidation and IP25) and dual-carbon isotopes (δ13C and Δ14C). In addition, surface water chemical properties were integrated with the POM (> 10 µm) dataset to understand the link between plankton composition and environmental conditions. δ13C and Δ14C exhibited a large variability in the POM (> 10 µm) distribution while the content of terrestrial biomarkers in the POM was negligible. In the Laptev Sea (LS), δ13C and Δ14C of POM (> 10 µm) suggested a heterotrophic environment in which dissolved organic carbon (DOC) from the Lena River was the primary source of metabolisable carbon. Within the Lena plume, terrestrial DOC probably became part of the food web via bacteria uptake and subsequently transferred to relatively other heterotrophic communities (e.g. dinoflagellates). Moving eastwards toward the sea-ice-dominated East Siberian Sea (ESS), the system became progressively more autotrophic. Comparison between δ13C of POM (> 10 µm) samples and CO2aq concentrations revealed that the carbon isotope fractionation increased moving towards the easternmost and most productive stations. In a warming scenario characterised by enhanced terrestrial DOC release (thawing permafrost) and progressive sea ice decline, heterotrophic conditions might persist in the LS while the nutrient-rich Pacific inflow will likely stimulate greater primary productivity in the ESS. The contrasting trophic conditions will result in a sharp gradient in δ13C between the LS and ESS, similar to what is documented in our semi-synoptic study.
Temporal Variation and Scaling of Hydrological Variables in a Typical Watershed
NASA Astrophysics Data System (ADS)
Yang, C.; Zhang, Y. K.; Liang, X.; Liu, J.
2016-12-01
Temporal variations of the main hydrological variables over 16 years were systematically investigated based on the results from an integrated hydrological modeling at the Sagehen Creek Watershed in northern Sierra Nevada. Temporal scaling of these variables and damping effects of the hydrological system as well as its subsystems, i.e., the land surface, unsaturated zone, and saturated zone, were analyzed with spectral analyses. It was found that the hydrological system may act as a cascade of hierarchical fractal filters which sequentially transfer a non-fractal or less correlated fractal hydrological signal to a more correlated fractal signal. Temporal scaling of infiltration (I), actual evapotraspiration (ET), recharge (R), baseflow (BF), streamflow (SF) exist and the temporal autocorrelation of these variables increase as water moves through the system. The degree of the damping effect of the subsystems is different and is strongest in the unsaturated zone compared with that of the land surface and saturated zone. The temporal scaling of the groundwater levels (h) also exists and is strongly affected by the river: the temporal autocorrelation of h near the river is similar to that of the river stage fluctuations and increases away from the river. There is a break in the temporal scaling of h near the river at low frequencies due to the effect of the river. Temporal variations of the soil moisture (θ) is more complicated: the value of the scaling exponent (β) for θ increases with depth as water moves downwards and its high-frequency fluctuations are damped by the unsaturated zone. The temporal fluctuations of precipitation (P) and I are fractional Gauss noise (fGn), those of ET, R, BF, and SF are fractional Brownian motion (fBm), and those of h away from the river are 2nd-order fBm based on the values of β obtained in this study. Keywords: Temporal variations, Scaling, Damping effect, Hydrological system.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
Shi, Yijing; Huang, Chunkai; Gamal El-Din, Mohamed; Liu, Yang
2017-11-15
Two moving bed biofilm reactors (MBBRs) were optimized to improve the biodegradation of organic compounds in raw and ozonated OSPW by changing the hydraulic retention time (HRT) and the influent ammonia concentrations. During the five stages, the average COD removal reached 50.8±3.4%, 52.8±6.5%, 54.7±4.3%, 56.3±2.2%, and 58.0±2.3% respectively in raw OSPW MBBR, and 54.6±3.8%, 57.2±7.1%, 55.5±5.8%, 58.3±2.2%, and 60.7±2.3% respectively in ozonated OSPW MBBR. Welch's weighted ANOVA tests show that the increase in ammonia levels significantly improved the COD removal in the two systems, while the HRT was an important parameter for COD decrease in the raw OSPW MBBR. Compared to the HRT, the increase in ammonia concentrations were more beneficial for acid extractable fraction (AEF) degradation and the average AEF removal reached 29.80% (raw OSPW MBBR) and 16.50% (ozonated OSPW MBBR) by the end of the optimization (Stage V; HRT=96h, 60mg/L NH 4 + -N). >98% of the NH 4 + -N was removed in the two MBBR systems, showing good nitrification. Microtoxicity tests showed that no significant correlations were found between HRT/ammonia levels and the OSPW toxicity changes toward V. fischeri. Spearman's rank correlation analysis was applied for q-PCR data, showing that positive correlations between the removal efficiencies of AEF and NSR and NirK gene copies were observed in the raw OSPW MBBR system, while positive correlations between AEF removal efficiency and total bacteria gene, NSR, Nitro, and NirK gene copies were observed in the ozonated OSPW MBBR system. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.
2018-04-01
The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.
The Importance of Optical Pathlength Control for Plasma Absorption Measurements
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.; Partridge, Harry (Technical Monitor)
2001-01-01
An inductively coupled GEC Cell with modified viewing ports has been used to measure in-situ absorption in CF4 plasmas via Fourier Transform Infrared Spectroscopy, and the results compared to those obtained in a standard viewport configuration. The viewing ports were modified so that the window boundary is inside, rather than outside, of the GEC cell. Because the absorption obtained is a spatially integrated absorption, measurements made represent an averaging of absorbing species inside and outside of the plasma. This modification is made to reduce this spatial averaging and thus allow a more accurate estimation of neutral species concentrations and temperatures within the plasmas. By reducing this pathlength, we find that the apparent CF4 consumption increases from 65% to 95% and the apparent vibrational temperature of CF4 rises by 50-75 K. The apparent fraction of etch product SiF4 decreases from 4% to 2%. The data suggests that these density changes may be due to significant temperature gradients between the plasma and chamber viewports.
Class III correction using an inter-arch spring-loaded module
2014-01-01
Background A retrospective study was conducted to determine the cephalometric changes in a group of Class III patients treated with the inter-arch spring-loaded module (CS2000®, Dynaflex, St. Ann, MO, USA). Methods Thirty Caucasian patients (15 males, 15 females) with an average pre-treatment age of 9.6 years were treated consecutively with this appliance and compared with a control group of subjects from the Bolton-Brush Study who were matched in age, gender, and craniofacial morphology to the treatment group. Lateral cephalograms were taken before treatment and after removal of the CS2000® appliance. The treatment effects of the CS2000® appliance were calculated by subtracting the changes due to growth (control group) from the treatment changes. Results All patients were improved to a Class I dental arch relationship with a positive overjet. Significant sagittal, vertical, and angular changes were found between the pre- and post-treatment radiographs. With an average treatment time of 1.3 years, the maxillary base moved forward by 0.8 mm, while the mandibular base moved backward by 2.8 mm together with improvements in the ANB and Wits measurements. The maxillary incisor moved forward by 1.3 mm and the mandibular incisor moved forward by 1.0 mm. The maxillary molar moved forward by 1.0 mm while the mandibular molar moved backward by 0.6 mm. The average overjet correction was 3.9 mm and 92% of the correction was due to skeletal contribution and 8% was due to dental contribution. The average molar correction was 5.2 mm and 69% of the correction was due to skeletal contribution and 31% was due to dental contribution. Conclusions Mild to moderate Class III malocclusion can be corrected using the inter-arch spring-loaded appliance with minimal patient compliance. The overjet correction was contributed by forward movement of the maxilla, backward and downward movement of the mandible, and proclination of the maxillary incisors. The molar relationship was corrected by mesialization of the maxillary molars, distalization of the mandibular molars together with a rotation of the occlusal plane. PMID:24934153
Designing components using smartMOVE electroactive polymer technology
NASA Astrophysics Data System (ADS)
Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter
2008-03-01
Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.
NASA Technical Reports Server (NTRS)
Blanchard, D. L.; Chan, F. K.
1973-01-01
For a time-dependent, n-dimensional, special diagonal Hamilton-Jacobi equation a necessary and sufficient condition for the separation of variables to yield a complete integral of the form was established by specifying the admissible forms in terms of arbitrary functions. A complete integral was then expressed in terms of these arbitrary functions and also the n irreducible constants. As an application of the results obtained for the two-dimensional Hamilton-Jacobi equation, analysis was made for a comparatively wide class of dynamical problems involving a particle moving in Euclidean three-dimensional space under the action of external forces but constrained on a moving surface. All the possible cases in which this equation had a complete integral of the form were obtained and these are tubulated for reference.
Books Average Previous Decade of Economic Misery
Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159
Time fractional capital-induced labor migration model
NASA Astrophysics Data System (ADS)
Ali Balcı, Mehmet
2017-07-01
In this study we present a new model of neoclassical economic growth by considering that workers move from regions with lower density of capital to regions with higher density of capital. Since the labor migration and capital flow involves self-similarities in long range time, we use the fractional order derivatives for the time variable. To solve this model we proposed Variational Iteration Method, and studied numerically labor migration flow data from Turkey along with other countries throughout the period of 1966-2014.
NASA Astrophysics Data System (ADS)
Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan
2018-06-01
In this paper, we studied the parametric resonance issue of an axially moving viscoelastic nanobeam with varying velocity. Based on the nonlocal strain gradient theory, we established the transversal vibration equation of the axially moving nanobeam and the corresponding boundary condition. By applying the average method, we obtained a set of self-governing ordinary differential equations when the excitation frequency of the moving parameters is twice the intrinsic frequency or near the sum of certain second-order intrinsic frequencies. On the plane of parametric excitation frequency and excitation amplitude, we can obtain the instability region generated by the resonance, and through numerical simulation, we analyze the influence of the scale effect and system parameters on the instability region. The results indicate that the viscoelastic damping decreases the resonance instability region, and the average velocity and stiffness make the instability region move to the left- and right-hand sides. Meanwhile, the scale effect of the system is obvious. The nonlocal parameter exhibits not only the stiffness softening effect but also the damping weakening effect, while the material characteristic length parameter exhibits the stiffness hardening effect and damping reinforcement effect.
Dynamical Evolution of Meteoroid Streams, Developments Over the Last 30 Years
NASA Technical Reports Server (NTRS)
Williams, I. P.
2011-01-01
As soon as reliable methods for observationally determining the heliocentric orbits of meteoroids and hence the mean orbit of a meteoroid stream in the 1950s and 60s, astronomers strived to investigate the evolution of the orbit under the effects of gravitational perturbations from the planets. At first, the limitations in the capabilities of computers, both in terms of speed and memory, placed severe restrictions on what was possible to do. As a consequence, secular perturbation methods, where the perturbations are averaged over one orbit became the norm. The most popular of these is the Halphen- Goryachev method which was used extensively until the early 1980s. The main disadvantage of these methods lies in the fact that close encounter can be missed, however they remain useful for performing very long-term integrations. Direct integration methods determine the effects of the perturbing forces at many points on an orbit. This give a better picture of the orbital evolution of an individual meteoroid, but many meteoroids have to be integrated in order to obtain a realistic picture of the evolution of a meteoroid stream. The notion of generating a family of hypothetical meteoroids to represent a stream and directly integrate the motion of each was probably first used by Williams Murray & Hughes (1979), to investigate the Quadrantids. Because of computing limitations, only 10 test meteoroids were used. Only two years later, Hughes et. al. (1981) had increased the number of particles 20-fold to 200 while after a further year, Fox Williams and Hughes used 500 000 test meteoroids to model the Geminid stream. With such a number of meteoroids it was possible for the first time to produce a realistic cross-section of the stream on the ecliptic. From that point on there has been a continued increase in the number of meteoroids, the length of time over which integration is carried out and the frequency with which results can be plotted so that it is now possible to produce moving images of the stream. As a consequence, over recent years, emphasis has moved to considering stream formation and the role fragmentation plays in this.
NASA Astrophysics Data System (ADS)
Karakullukcu, Baris; Kanick, Stephen; Aans, Jan Bonne; Sterenborg, Henricus; Tan, Bing; Amelink, Arjen; Robinson, Dominic
2015-04-01
The use of fluorescence differential pathlength spectroscopy (FDPS) has the potential to provide real-time information on photosensitiser pharmacokinetics, vascular physiology and photosensitizer photobleaching based dosimetry of tumors in the oral cavity receiving m-tetrahydroxyphenylchlorin (mTHPC) photodynamic therapy (PDT). Reflectance spectra can be used provide quantitative values of oxygen saturation, blood volume fraction, blood vessel diameter, and to determine the local optical properties that can be used to correct raw fluorescence for tissue absorption. Patients and methods: Twenty-seven lesions in the oral cavity, either dysplasias or cancer were interrogated using FDPS, before and immediately after the therapeutic illumination. The average tumor center to normal mucosa ratio of fluorescence was 1.50 ± 0.66. mTHPC photobleaching was observed in 24 of the lesions treated. The average extent of photobleaching was 81% ± 17%. Information from FDPS spectroscopy coupled with the clinical results of the treatment identified 3 types of correctable errors in the application of mTHPC-PDT: Two patients exhibited very low concentrations of photosensitizer in tumour center, indicating an ineffective i.v. injection of photosensitiser or an erroneous systemic distribution of mTHPC. In one in tumor we observed no photobleaching accompanied by a high blood volume fraction in the illuminated tissue, suggesting that the presence of blood prevented therapeutic light reaching the target tissue. All 3 of the these lesions had no clinical response to PDT. In four patients we observed less than 50% photobleaching at the tumor margins , suggesting a possible geographic miss. One patient in this group had a recurrence within 2 months after PDT even though the initial response was good. The integration of FDPS to clinical PDT yields data on tissue physiology, photosensitiser content and photobleaching that can help identify treatment errors that can potentially be corrected.
NASA Astrophysics Data System (ADS)
Chen, H.; Ye, Sh.; Nedzvedz, O. V.; Ablameyko, S. V.
2018-03-01
Study of crowd movement is an important practical problem, and its solution is used in video surveillance systems for preventing various emergency situations. In the general case, a group of fast-moving people is of more interest than a group of stationary or slow-moving people. We propose a new method for crowd movement analysis using a video sequence, based on integral optical flow. We have determined several characteristics of a moving crowd such as density, speed, direction of motion, symmetry, and in/out index. These characteristics are used for further analysis of a video scene.
A supine cranio-spinal irradiation technique using moving field junctions
NASA Astrophysics Data System (ADS)
Mani, Karthick Raj; Sapru, Shantanu; Maria Das, K. J.; Basu, Ayan
2016-12-01
Aim: To demonstrate a simple technique of cranio-spinal irradiation (CSI) in supine position using inter fraction moving field junctions to feather out any potential hot and cold spots. Materials and Methods: Fifteen patients diagnosed with medulloblastoma were treated during the period February 2011 to June 2015 were included in this study. Out of fifteen patients in the study nine were male and 6 were female with a median age of 13.4 years (range 5-27 years). All the patients were positioned supine on CT simulation, immobilized using thermoplastic mask and aligned using room based laser system. Two parallel opposed lateral fields for the whole brain using an asymmetrical jaw with isocenter at C2 vertebral body. A posterior field also placed to cover the cervical and dorsal field using the same isocenter at C2. The second isocenter was placed at lumbar vertebral region to cover the remaining dorsal, lumbar and sacral region using an inter-fraction moving junction. Field-in-field and enhanced dynamic wedge used to homogeneous dose distribution when required. Results and Discussion: In this study, we found that only two patients failed in the primary site, no radiation myelitis or recurrences in the filed junctions were reported in these fifteen patients with a median follow-up of 36.4 months. The automated sequence of treatment plans with moving junctions in the comfortable supine position negating the need for manual junction matching or junction shifts avoiding potential treatment errors and also facilitating delivery of anesthesia where necessary.
S3/S4 Integrated Truss being moved into the Space Shuttle Payloa
2007-02-07
In the Space Station Processing Facility, workers attach an overhead crane to the S3/S4 integrated truss in order to move it to the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.
TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach.
Elgendi, Mohamed
2016-11-02
Biomedical signals contain features that represent physiological events, and each of these events has peaks. The analysis of biomedical signals for monitoring or diagnosing diseases requires the detection of these peaks, making event detection a crucial step in biomedical signal processing. Many researchers have difficulty detecting these peaks to investigate, interpret and analyze their corresponding events. To date, there is no generic framework that captures these events in a robust, efficient and consistent manner. A new method referred to for the first time as two event-related moving averages ("TERMA") involves event-related moving averages and detects events in biomedical signals. The TERMA framework is flexible and universal and consists of six independent LEGO building bricks to achieve high accuracy detection of biomedical events. Results recommend that the window sizes for the two moving averages ( W 1 and W 2 ) have to follow the inequality ( 8 × W 1 ) ≥ W 2 ≥ ( 2 × W 1 ) . Moreover, TERMA is a simple yet efficient event detector that is suitable for wearable devices, point-of-care devices, fitness trackers and smart watches, compared to more complex machine learning solutions.
A non-local model of fractional heat conduction in rigid bodies
NASA Astrophysics Data System (ADS)
Borino, G.; di Paola, M.; Zingales, M.
2011-03-01
In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.
Dexter, F
2000-10-01
We examined how to program an operating room (OR) information system to assist the OR manager in deciding whether to move the last case of the day in one OR to another OR that is empty to decrease overtime labor costs. We first developed a statistical strategy to predict whether moving the case would decrease overtime labor costs for first shift nurses and anesthesia providers. The strategy was based on using historical case duration data stored in a surgical services information system. Second, we estimated the incremental overtime labor costs achieved if our strategy was used for moving cases versus movement of cases by an OR manager who knew in advance exactly how long each case would last. We found that if our strategy was used to decide whether to move cases, then depending on parameter values, only 2.0 to 4.3 more min of overtime would be required per case than if the OR manager had perfect retrospective knowledge of case durations. The use of other information technologies to assist in the decision of whether to move a case, such as real-time patient tracking information systems, closed-circuit cameras, or graphical airport-style displays can, on average, reduce overtime by no more than only 2 to 4 min per case that can be moved. The use of other information technologies to assist in the decision of whether to move a case, such as real-time patient tracking information systems, closed-circuit cameras, or graphical airport-style displays, can, on average, reduce overtime by no more than only 2 to 4 min per case that can be moved.
A Stochastic Model of Space-Time Variability of Mesoscale Rainfall: Statistics of Spatial Averages
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Bell, Thomas L.
2003-01-01
A characteristic feature of rainfall statistics is that they depend on the space and time scales over which rain data are averaged. A previously developed spectral model of rain statistics that is designed to capture this property, predicts power law scaling behavior for the second moment statistics of area-averaged rain rate on the averaging length scale L as L right arrow 0. In the present work a more efficient method of estimating the model parameters is presented, and used to fit the model to the statistics of area-averaged rain rate derived from gridded radar precipitation data from TOGA COARE. Statistical properties of the data and the model predictions are compared over a wide range of averaging scales. An extension of the spectral model scaling relations to describe the dependence of the average fraction of grid boxes within an area containing nonzero rain (the "rainy area fraction") on the grid scale L is also explored.
NASA Astrophysics Data System (ADS)
Mkoma, Stelyus L.; Chi, Xuguang; Maenhaut, Willy
2010-05-01
Atmospheric aerosol samples in PM10 and PM2.5 size fractions were collected in parallel at a rural site in Morogoro during wet season in March and April 2006. All samples were analysed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM10 and PM2.5 mass concentrations and associated standard deviations were 14 ± 13 μg/m 3 and 7.3 ± 4 μg/m 3 respectively. On average, TC accounted for 33% of the PM10 mass and 44% of the PM2.5 mass for the campaign. The average OC/PM percentage ratios were 27% and 33% in PM10 and PM2.5 size fractions respectively and a larger fraction of the OC was water-soluble. The observed low EC/TC mean percentage ratios of 10-14% respectively for PM10 and PM2.5 fractions indicate that the carbonaceous aerosol originates mainly from biogenic aerosols and/or biomass burning. A simple source apportionment approach was used to apportion the OC to biofuel and charcoal burning. On average, 93% of the PM10 OC was attributed to biofuel and 7% to charcoal burning in the 2006 wet season campaign. However, it is suggested that a contribution to the OC at Morogoro could also come from other natural biogenic matter, and/or biomass burning aerosols. The results for the sources of OC at Morogoro should therefore be considered with great caution.
Zhan, Yilei; Cohen, Andrew B.; Tinetti, Mary E.; Trentalange, Mark; McAvay, Gail
2016-01-01
Background: Persons with multiple chronic conditions receive multiple guideline-recommended medications to improve outcomes such as mortality. Our objective was to estimate the longitudinal average attributable fraction for 3-year survival of medications for cardiovascular conditions in persons with multiple chronic conditions and to determine whether heterogeneity occurred by age. Methods: Medicare Current Beneficiary Survey participants (N = 8,578) with two or more chronic conditions, enrolled from 2005 to 2009 with follow-up through 2011, were analyzed. We calculated the longitudinal extension of the average attributable fraction for oral medications (beta blockers, renin–angiotensin system blockers, and thiazide diuretics) indicated for cardiovascular conditions (atrial fibrillation, coronary artery disease, heart failure, and hypertension), on survival adjusted for 18 participant characteristics. Models stratified by age (≤80 and >80 years) were analyzed to determine heterogeneity of both cardiovascular conditions and medications. Results: Heart failure had the greatest average attributable fraction (39%) for mortality. The fractional contributions of beta blockers, renin–angiotensin system blockers, and thiazides to improve survival were 10.4%, 9.3%, and 7.2% respectively. In age-stratified models, of these medications thiazides had a significant contribution to survival only for those aged 80 years or younger. The effects of the remaining medications were similar in both age strata. Conclusions: Most cardiovascular medications were attributed independently to survival. The two cardiovascular conditions contributing independently to death were heart failure and atrial fibrillation. The medication effects were similar by age except for thiazides that had a significant contribution to survival in persons younger than 80 years. PMID:26748093
[Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].
Mao, Hai-Fang; He, Jiang; Lü, Chang-Wei; Liang, Ying; Liu, Hua-Lin; Wang, Feng-Jiao
2011-03-01
The characteristics and differences of organic carbon forms in the sediments of the Wuliangsuhai and the Daihai Lakes with different eutrophication types were discussed in the present study. The results showed that the range of total organic carbon content (TOC) in Wuliangsuhai Lake was 4.50-22.83 g x kg(-1) with the average of 11.80 g x kg(-1). The range of heavy-fraction organic carbon content was 3.38-21.67 g x kg(-1) with the average of 10.76 g x kg(-1). The range of light-fraction organic carbon content was 0.46-1.80 g x kg(-1) with the average of 1.04 g x kg(-1); The range of ROC content was 0.62-3.64 g x kg(-1) with the average of 2.11 g x kg(-1), while the range of total organic carbon content in Daihai lake was 6.84-23.46 g x kg(-1) with the average of 14.94 g x kg(-1). The range of heavy-fraction organic carbon content was 5.27-22.23 g x kg(-1) with the average of 13.89 g x kg(-1). The range of light-fraction organic carbon content was 0.76-1.57 g x kg(-1). The range of ROC content was 1.54-7.08 g x kg(-1) with the average of 3.62 g x kg(-1). The results indicated that the heavy-fraction organic carbon was the major component of the organic carbon and plays an important role in the accumulation of organic carbon in the sediments of two Lakes. The content of light-fraction organic carbon was similar in the sediments of two lakes, whereas, the contents of total organic carbon and heavy-fraction organic carbon in the sediment of Wuliangsuhai Lake were less than those in the sediment of Daihai Lake, and the value of LFOC/TOC in the Wuliangsuhai Lake was larger than that in the Daihai Lake. The humin was the dominant component of the sediment humus, followed by fulvic acid in the two lakes. The values of HM/HS in the sediments of Wuliangsuhai lake range from 43.06% to 77.25% with the average of 62.15% and values of HM/HS in the sediments of Dahai lake range from 49.23% to 73.85% with the average of 65.30%. The tightly combined humus was the dominant form in the sediment humus of two lakes, and the followed was loosely combined humus. As a whole, the carbon storage of two lakes were all relatively stable, but the values of PQ, LFOC/TOC, the ratio of loosely to tightly combined humus and HA/FA revealed that, in the sediment of Wuliangsuhai, the humification degree of organic matter was lower than that of Daihai, while the activity of humus was higher than that of Daihai, thus the carbon storage is less stable than that of Daihai.
40 CFR 98.144 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mineral mass fractions at least annually to verify the mass fraction data provided by the supplier of the... determine the annual average mass fraction for the carbonate-based mineral in each carbonate-based raw... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall...
40 CFR 98.144 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mineral mass fractions at least annually to verify the mass fraction data provided by the supplier of the... Spectrometry (incorporated by reference, see § 98.7). (c) You must determine the annual average mass fraction... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall...
Peak Running Intensity of International Rugby: Implications for Training Prescription.
Delaney, Jace A; Thornton, Heidi R; Pryor, John F; Stewart, Andrew M; Dascombe, Ben J; Duthie, Grant M
2017-09-01
To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies. Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s 2 ), and average metabolic power (P met ) for a range of durations (1-10 min). Differences between positions and durations were described using a magnitude-based network. Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27-1.00). P met demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86-0.99). Halfbacks demonstrated the greatest relative distance and P met outputs but were similar to outside backs and loose forwards in AveAcc demands. The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.
Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
Ai, Bao-quan; Shao, Zhi-gang; Zhong, Wei-rong
2012-11-07
We study fractional brownian motion and Lévy flights in periodic corrugated channels without any external driving forces. From numerical simulations, we find that both fractional gaussian noise and Lévy-stable noise in asymmetric corrugated channels can break thermodynamical equilibrium and induce directed transport. The rectified mechanisms for fractional brownian motion and Lévy flights are different. The former is caused by non-uniform spectral distribution (low or high frequencies) of fractional gaussian noise, while the latter is due to the nonthermal character (occasional long jumps) of the Lévy-stable noise. For fractional brownian motion, average velocity increases with the Hurst exponent for the persistent case, while for the antipersistent case there exists an optimal value of Hurst exponent at which average velocity takes its maximal value. For Lévy flights, the group velocity decreases monotonically as the Lévy index increases. In addition, for both cases, the optimized periodicity and radius at the bottleneck can facilitate the directed transport. Our results could be implemented in constrained structures with narrow channels and pores where the particles undergo anomalous diffusion.
Barraza-Villarreal, Albino; Sunyer, Jordi; Hernandez-Cadena, Leticia; Escamilla-Nuñez, Maria Consuelo; Sienra-Monge, Juan Jose; Ramírez-Aguilar, Matiana; Cortez-Lugo, Marlene; Holguin, Fernando; Diaz-Sánchez, David; Olin, Anna Carin; Romieu, Isabelle
2008-06-01
The biological mechanisms involved in inflammatory response to air pollution are not clearly understood. In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function. We studied a cohort of 158 asthmatic and 50 nonasthmatic school-age children, followed an average of 22 weeks. We conducted spirometric tests, measurements of fractional exhaled nitric oxide (Fe(NO)), interleukin-8 (IL-8) in nasal lavage, and pH of exhaled breath condensate every 15 days during follow-up. Data were analyzed using linear mixed-effects models. An increase of 17.5 microg/m(3) in the 8-hr moving average of PM(2.5) levels (interquartile range) was associated with a 1.08-ppb increase in Fe(NO) [95% confidence interval (CI), 1.01-1.16] and a 1.07-pg/mL increase in IL-8 (95% CI 0.98-1.19) in asthmatic children and a 1.16 pg/ml increase in IL-8 (95% CI, 1.00-1.36) in nonasthmatic children. The 5-day accumulated average of exposure to particulate matter <2.5 microm in aerodynamic diamter (PM(2.5)) was significantly inversely associated with forced expiratory volume in 1 sec (FEV(1)) (p=0.048) and forced vital capacity (FVC) (p=0.012) in asthmatic children and with FVC (p=0.021) in nonasthmatic children. Fe(NO) and FEV(1) were inversely associated (p=0.005) in asthmatic children. Exposure to PM(2.5) resulted in acute airway inflammation and decrease in lung function in both asthmatic and nonasthmatic children.
Depletion and capture: revisiting “The source of water derived from wells"
Konikow, Leonard F.; Leake, Stanley A.
2014-01-01
A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion and capture relative to groundwater withdrawals (extraction or pumpage) have not previously been well characterized. This study assesses the partitioning of long-term cumulative withdrawal volumes into fractions derived from storage depletion and capture, where capture includes both increases in recharge and decreases in discharge. Numerical simulation of a hypothetical groundwater basin is used to further illustrate some of Theis' (1940) principles, particularly when capture is constrained by insufficient available water. Most prior studies of depletion and capture have assumed that capture is unconstrained through boundary conditions that yield linear responses. Examination of real systems indicates that capture and depletion fractions are highly variable in time and space. For a large sample of long-developed groundwater systems, the depletion fraction averages about 0.15 and the capture fraction averages about 0.85 based on cumulative volumes. Higher depletion fractions tend to occur in more arid regions, but the variation is high and the correlation coefficient between average annual precipitation and depletion fraction for individual systems is only 0.40. Because 85% of long-term pumpage is derived from capture in these real systems, capture must be recognized as a critical factor in assessing water budgets, groundwater storage depletion, and sustainability of groundwater development. Most capture translates into streamflow depletion, so it can detrimentally impact ecosystems.
Lunch, recess and nutrition: responding to time incentives in the cafeteria.
Price, Joseph; Just, David R
2015-02-01
In this study, we evaluate if moving recess before lunch has an effect on the amount of fruits and vegetables elementary school students eat as part of their school-provided lunch. Participants were 1st-6th grade students from three schools that switched recess from after to before lunch and four similar schools that continued to hold recess after lunch. We collected data for an average of 14 days at each school (4 days during spring 2011, May 3 through June 1, 2011 and 9 days during fall 2011, September 19 through November 11, 2011). All of the schools were in Orem, UT. Data was collected for all students receiving a school lunch and was based on observational plate waste data. We find that moving recess before lunch increased consumption of fruits and vegetables by 0.16 servings per child (a 54% increase) and increased the fraction of children eating at least one serving of fruits or vegetables by 10 percentage points (a 45% increase). In contrast, the schools in our control group actually experienced a small reduction in fruit and vegetable consumption during the same time period. Our results show the benefits of holding recess before lunch and suggest that if more schools implement this policy, there would be significant increases in fruit and vegetable consumption among students who eat school lunch as part of the National School Lunch Program. Copyright © 2014 Elsevier Inc. All rights reserved.
Aging and the Visual Perception of Motion Direction: Solving the Aperture Problem.
Shain, Lindsey M; Norman, J Farley
2018-07-01
An experiment required younger and older adults to estimate coherent visual motion direction from multiple motion signals, where each motion signal was locally ambiguous with respect to the true direction of pattern motion. Thus, accurate performance required the successful integration of motion signals across space (i.e., accurate performance required solution of the aperture problem) . The observers viewed arrays of either 64 or 9 moving line segments; because these lines moved behind apertures, their individual local motions were ambiguous with respect to direction (i.e., were subject to the aperture problem). Following 2.4 seconds of pattern motion on each trial (true motion directions ranged over the entire range of 360° in the fronto-parallel plane), the observers estimated the coherent direction of motion. There was an effect of direction, such that cardinal directions of pattern motion were judged with less error than oblique directions. In addition, a large effect of aging occurred-The average absolute errors of the older observers were 46% and 30.4% higher in magnitude than those exhibited by the younger observers for the 64 and 9 aperture conditions, respectively. Finally, the observers' precision markedly deteriorated as the number of apertures was reduced from 64 to 9.
[Application of ARIMA model on prediction of malaria incidence].
Jing, Xia; Hua-Xun, Zhang; Wen, Lin; Su-Jian, Pei; Ling-Cong, Sun; Xiao-Rong, Dong; Mu-Min, Cao; Dong-Ni, Wu; Shunxiang, Cai
2016-01-29
To predict the incidence of local malaria of Hubei Province applying the Autoregressive Integrated Moving Average model (ARIMA). SPSS 13.0 software was applied to construct the ARIMA model based on the monthly local malaria incidence in Hubei Province from 2004 to 2009. The local malaria incidence data of 2010 were used for model validation and evaluation. The model of ARIMA (1, 1, 1) (1, 1, 0) 12 was tested as relatively the best optimal with the AIC of 76.085 and SBC of 84.395. All the actual incidence data were in the range of 95% CI of predicted value of the model. The prediction effect of the model was acceptable. The ARIMA model could effectively fit and predict the incidence of local malaria of Hubei Province.
A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.
2013-12-18
This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less
GPC-Based Stable Reconfigurable Control
NASA Technical Reports Server (NTRS)
Soloway, Don; Shi, Jian-Jun; Kelkar, Atul
2004-01-01
This paper presents development of multi-input multi-output (MIMO) Generalized Pre-dictive Control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA) model is used to describe the plant dynamics. The control law is derived using input-output description of the system and is also related to the state-space form of the model. The stability of the GPC control law without reconfiguration is first established using Riccati-based approach and state-space formulation. A novel reconfiguration strategy is developed for the systems which have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. Several numerical examples are presented to demonstrate the application of various results.
Forecasting seeing and parameters of long-exposure images by means of ARIMA
NASA Astrophysics Data System (ADS)
Kornilov, Matwey V.
2016-02-01
Atmospheric turbulence is the one of the major limiting factors for ground-based astronomical observations. In this paper, the problem of short-term forecasting seeing is discussed. The real data that were obtained by atmospheric optical turbulence (OT) measurements above Mount Shatdzhatmaz in 2007-2013 have been analysed. Linear auto-regressive integrated moving average (ARIMA) models are used for the forecasting. A new procedure for forecasting the image characteristics of direct astronomical observations (central image intensity, full width at half maximum, radius encircling 80 % of the energy) has been proposed. Probability density functions of the forecast of these quantities are 1.5-2 times thinner than the respective unconditional probability density functions. Overall, this study found that the described technique could adequately describe temporal stochastic variations of the OT power.
NASA Astrophysics Data System (ADS)
Cui, Min; Chen, Yingjun; Feng, Yanli; Li, Cheng; Zheng, Junyu; Tian, Chongguo; Yan, Caiqing; Zheng, Mei
2017-06-01
With the rapid growth in the number of both non-road and on-road diesel vehicles, the adverse effects of particulate matter (PM) and its constituents on air quality and human health have attracted increasing attentions. However, studies on the characteristics of PM and its composition emitted from diesel vehicles are still scarce, especially under real-world driving conditions. In this study, six excavators and five trucks that provided a wide range of emission standards and operation modes were tested, and PM emissions and their constituents - including organic carbon (OC), elemental carbon (EC), water-soluble ions (WSIs), elements, and organic species like polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes - as well as steranes were analyzed and characterized. The average emission factors for PM (EFPM) from excavator and truck emissions were 829 ± 806 and 498 ± 234 mg kg-1 fuel, respectively. EFPM and PM constituents were significantly affected by fuel quality, operational mode, and emission standards. A significant correlation (R2 = 0. 79, p < 0. 01) was found between EFPM for excavators and the sulfur contents in fuel. The highest average EFPM for working excavators was 904 ± 979 mg kg-1 fuel as a higher engine load required in this mode. From pre-stage 1 to stage 2, the average EFPM for excavators decreased by 58 %. For trucks, the average non-highway EFPM at 548 ± 311 mg kg-1 fuel was higher than the highway EFPM at 497 ± 231 mg kg-1 fuel. Moreover, the reduction rates were 63.5 and 65.6 % when switched from China II and III to China IV standards, respectively. Generally, the PM composition emitted from excavators was dominated by OC (39. 2 ± 21. 0 %) and EC (33. 3 ± 25. 9 %); PM from trucks was dominated by EC (26. 9 ± 20. 8 %), OC (9. 89 ± 12 %), and WSIs (4. 67 ± 5. 74 %). The average OC / EC ratios for idling and working excavators were 3 to 4 times higher than those for moving excavators. Although the EFPM for excavators and trucks was reduced with the constraint of regulations, the element fractions for excavators increased from 0.49 % in pre-stage 1 to 3.03 % in stage 2, and the fraction of WSIs for the China IV truck was 5 times higher than the average value of all other-level trucks. Furthermore, as compared with other diesel vehicles, wide ranges were found for excavators of the ratios of benzo[a]anthracene / (benzo[a]anthracene + chrysene) (0.26-0.86), indeno[1,2,3-cd]pyrene / (indeno[1,2,3-cd]pyrene + benzo[ghi]perylene) (0.20-1.0), and fluoranthene / (fluoranthene + pyrene) (0.24-0.87), which might be a result of the complex characteristics of the excavator operation modes. A comparison of our results with those in the literature revealed that on-board measurement data more accurately reflect actual conditions. Although the fractions of the 16 priority PAHs in PM from the excavator and truck emissions were similar, the equivalent concentrations of total benzo[a]pyrene of excavators were 31 times than that for trucks, implying that more attention should be paid to non-road vehicle emissions.
An application of fractional integration to a long temperature series
NASA Astrophysics Data System (ADS)
Gil-Alana, L. A.
2003-11-01
Some recently proposed techniques of fractional integration are applied to a long UK temperature series. The tests are valid under general forms of serial correlation and do not require estimation of the fractional differencing parameter. The results show that central England temperatures have increased about 0.23 °C per 100 years in recent history. Attempting to summarize the conclusions for each of the months, we are left with the impression that the highest increase has occurred during the months from October to March.
DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Vicente, J.; Mediavilla, E.; Kochanek, C. S.
2015-02-01
We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars based on microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian estimate for the fraction of the surface mass density in the form of stars is α = 0.21 ± 0.14 near the Einstein radius of the lenses (∼1-2 effective radii). The estimate for the average accretion disk size is R{sub 1/2}=7.9{sub −2.6}{sup +3.8}√(M/0.3 M{sub ⊙}) light days. The fraction of mass in stars at these radii is significantly largermore » than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.« less