Arbitrage with fractional Gaussian processes
NASA Astrophysics Data System (ADS)
Zhang, Xili; Xiao, Weilin
2017-04-01
While the arbitrage opportunity in the Black-Scholes model driven by fractional Brownian motion has a long history, the arbitrage strategy in the Black-Scholes model driven by general fractional Gaussian processes is in its infancy. The development of stochastic calculus with respect to fractional Gaussian processes allowed us to study such models. In this paper, following the idea of Shiryaev (1998), an arbitrage strategy is constructed for the Black-Scholes model driven by fractional Gaussian processes, when the stochastic integral is interpreted in the Riemann-Stieltjes sense. Arbitrage opportunities in some fractional Gaussian processes, including fractional Brownian motion, sub-fractional Brownian motion, bi-fractional Brownian motion, weighted-fractional Brownian motion and tempered fractional Brownian motion, are also investigated.
NASA Astrophysics Data System (ADS)
Ma, Chao; Ma, Qinghua; Yao, Haixiang; Hou, Tiancheng
2018-03-01
In this paper, we propose to use the Fractional Stable Process (FSP) for option pricing. The FSP is one of the few candidates to directly model a number of desired empirical properties of asset price risk neutral dynamics. However, pricing the vanilla European option under FSP is difficult and problematic. In the paper, built upon the developed Feynman Path Integral inspired techniques, we present a novel computational model for option pricing, i.e. the Fractional Stable Process Path Integral (FSPPI) model under a general fractional stable distribution that tackles this problem. Numerical and empirical experiments show that the proposed pricing model provides a correction of the Black-Scholes pricing error - overpricing long term options, underpricing short term options; overpricing out-of-the-money options, underpricing in-the-money options without any additional structures such as stochastic volatility and a jump process.
NASA Astrophysics Data System (ADS)
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.
2018-04-01
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm
Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model
Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel
2014-01-01
The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903
NASA Astrophysics Data System (ADS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu; Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu; Chen, Jinghua, E-mail: cjhdzdz@163.com
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a temperedmore » fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.« less
Meerschaert, Mark M; Sabzikar, Farzad; Chen, Jinghua
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA
2014-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690
Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang
2013-12-01
Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lopes, Sílvia R. C.; Prass, Taiane S.
2014-05-01
Here we present a theoretical study on the main properties of Fractionally Integrated Exponential Generalized Autoregressive Conditional Heteroskedastic (FIEGARCH) processes. We analyze the conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We prove that, if { is a FIEGARCH(p,d,q) process then, under mild conditions, { is an ARFIMA(q,d,0) with correlated innovations, that is, an autoregressive fractionally integrated moving average process. The convergence order for the polynomial coefficients that describes the volatility is presented and results related to the spectral representation and to the covariance structure of both processes { and { are discussed. Expressions for the kurtosis and the asymmetry measures for any stationary FIEGARCH(p,d,q) process are also derived. The h-step ahead forecast for the processes {, { and { are given with their respective mean square error of forecast. The work also presents a Monte Carlo simulation study showing how to generate, estimate and forecast based on six different FIEGARCH models. The forecasting performance of six models belonging to the class of autoregressive conditional heteroskedastic models (namely, ARCH-type models) and radial basis models is compared through an empirical application to Brazilian stock market exchange index.
Wang, Miaomiao; Meng, Yingjie; Ma, Defang; Wang, Yan; Li, Fengli; Xu, Xing; Xia, Chufan; Gao, Baoyu
2017-05-01
This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (<30 kDa) and hydrophilic fractions (HiS) in biologically treated municipal wastewater. Integrated coagulation-adsorption treatments showed the highest reduction capacity for NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.
Continuous Flash Suppression: Stimulus Fractionation rather than Integration.
Moors, Pieter; Hesselmann, Guido; Wagemans, Johan; van Ee, Raymond
2017-10-01
Recent studies using continuous flash suppression suggest that invisible stimuli are processed as integrated, semantic entities. We challenge the viability of this account, given recent findings on the neural basis of interocular suppression and replication failures of high-profile CFS studies. We conclude that CFS reveals stimulus fractionation in visual cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fractional dynamics pharmacokinetics–pharmacodynamic models
2010-01-01
While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics–pharmacodynamic (PKPD) literature. One of the reasons is computational: while the analytical solution of fractional differential equations is available in special cases, it this turns out that even the simplest PKPD models that can be constructed using fractional calculus do not allow an analytical solution. In this paper, we first introduce new families of PKPD models incorporating fractional order integrals and differential equations, and, second, exemplify and investigate their qualitative behavior. The families represent extensions of frequently used PK link and PD direct and indirect action models, using the tools of fractional calculus. In addition the PD models can be a function of a variable, the active drug, which can smoothly transition from concentration to exposure, to hyper-exposure, according to a fractional integral transformation. To investigate the behavior of the models we propose, we implement numerical algorithms for fractional integration and for the numerical solution of a system of fractional differential equations. For simplicity, in our investigation we concentrate on the pharmacodynamic side of the models, assuming standard (integer order) pharmacokinetics. PMID:20455076
USDA-ARS?s Scientific Manuscript database
An integrated process has been developed for a wheat straw biorefinery. In this process wheat straw was pretreated by soaking in aqueous ammonia (SAA), which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment condi...
On the fragility of fractional-order PID controllers for FOPDT processes.
Padula, Fabrizio; Visioli, Antonio
2016-01-01
This paper analyzes the fragility issue of fractional-order proportional-integral-derivative controllers applied to integer first-order plus-dead-time processes. In particular, the effects of the variations of the controller parameters on the achieved control system robustness and performance are investigated. Results show that this kind of controllers is more fragile with respect to the standard proportional-integral-derivative controllers and therefore a significant attention should be paid by the user in their tuning. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass
NASA Astrophysics Data System (ADS)
Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath
2016-07-01
We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.
Persistence Probabilities of Two-Sided (Integrated) Sums of Correlated Stationary Gaussian Sequences
NASA Astrophysics Data System (ADS)
Aurzada, Frank; Buck, Micha
2018-02-01
We study the persistence probability for some two-sided, discrete-time Gaussian sequences that are discrete-time analogues of fractional Brownian motion and integrated fractional Brownian motion, respectively. Our results extend the corresponding ones in continuous time in Molchan (Commun Math Phys 205(1):97-111, 1999) and Molchan (J Stat Phys 167(6):1546-1554, 2017) to a wide class of discrete-time processes.
Parareal algorithms with local time-integrators for time fractional differential equations
NASA Astrophysics Data System (ADS)
Wu, Shu-Lin; Zhou, Tao
2018-04-01
It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.
Dynamic stability analysis of fractional order leaky integrator echo state neural networks
NASA Astrophysics Data System (ADS)
Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.
2017-06-01
The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.
Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process.
Snelders, Jeroen; Dornez, Emmie; Benjelloun-Mlayah, Bouchra; Huijgen, Wouter J J; de Wild, Paul J; Gosselink, Richard J A; Gerritsma, Jort; Courtin, Christophe M
2014-03-01
To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integrated coke, asphalt and jet fuel production process and apparatus
Shang, Jer Y.
1991-01-01
A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.
Rational-number comparison across notation: Fractions, decimals, and whole numbers.
Hurst, Michelle; Cordes, Sara
2016-02-01
Although fractions, decimals, and whole numbers can be used to represent the same rational-number values, it is unclear whether adults conceive of these rational-number magnitudes as lying along the same ordered mental continuum. In the current study, we investigated whether adults' processing of rational-number magnitudes in fraction, decimal, and whole-number notation show systematic ratio-dependent responding characteristic of an integrated mental continuum. Both reaction time (RT) and eye-tracking data from a number-magnitude comparison task revealed ratio-dependent performance when adults compared the relative magnitudes of rational numbers, both within the same notation (e.g., fractions vs. fractions) and across different notations (e.g., fractions vs. decimals), pointing to an integrated mental continuum for rational numbers across notation types. In addition, eye-tracking analyses provided evidence of an implicit whole-number bias when we compared values in fraction notation, and individual differences in this whole-number bias were related to the individual's performance on a fraction arithmetic task. Implications of our results for both cognitive development research and math education are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
NASA Technical Reports Server (NTRS)
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
2003-01-01
Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.
Kellogg, Joshua J; Todd, Daniel A; Egan, Joseph M; Raja, Huzefa A; Oberlies, Nicholas H; Kvalheim, Olav M; Cech, Nadja B
2016-02-26
A central challenge of natural products research is assigning bioactive compounds from complex mixtures. The gold standard approach to address this challenge, bioassay-guided fractionation, is often biased toward abundant, rather than bioactive, mixture components. This study evaluated the combination of bioassay-guided fractionation with untargeted metabolite profiling to improve active component identification early in the fractionation process. Key to this methodology was statistical modeling of the integrated biological and chemical data sets (biochemometric analysis). Three data analysis approaches for biochemometric analysis were compared, namely, partial least-squares loading vectors, S-plots, and the selectivity ratio. Extracts from the endophytic fungi Alternaria sp. and Pyrenochaeta sp. with antimicrobial activity against Staphylococcus aureus served as test cases. Biochemometric analysis incorporating the selectivity ratio performed best in identifying bioactive ions from these extracts early in the fractionation process, yielding altersetin (3, MIC 0.23 μg/mL) and macrosphelide A (4, MIC 75 μg/mL) as antibacterial constituents from Alternaria sp. and Pyrenochaeta sp., respectively. This study demonstrates the potential of biochemometrics coupled with bioassay-guided fractionation to identify bioactive mixture components. A benefit of this approach is the ability to integrate multiple stages of fractionation and bioassay data into a single analysis.
Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics
NASA Astrophysics Data System (ADS)
Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco
2014-06-01
The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in the investigated system.
ERIC Educational Resources Information Center
Safadi, Rafi'
2018-01-01
I examined how well a self-diagnosis activity engages students in knowledge-integration processes, and its impact on students' mathematical achievements. The self-diagnosis activity requires students to self-diagnose their solutions to problems that they have solved on their own--namely, to identify where they went wrong and to explain the nature…
Control of Initialized Fractional-Order Systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
2004-01-01
Fractional-Order systems, or systems containing fractional derivatives and integrals, have been studied by many in the engineering area. Additionally, very readable discussions, devoted specifically to the subject, are presented by Oldham and Spanier, Miller and Ross, and Pudlubny (1999a). It should be noted that there are a growing number of physical systems whose behavior can be compactly described using fractional system theory. Of specific interest to electrical engineers are long lines, electrochemical processes, dielectric polarization, colored noise, viscoelastic materials, and chaos. With the growing number of applications, it is important to establish a theory of control for these fractional-order systems, and for the potential use of fractional-order systems as feedback compensators. This topic is addressed in this paper. The first section discusses the control of fractional-order systems using a vector space representation, where initialization is included in the discussion. It should be noted that Bagley and Calico and Padovan and Sawicki both present a fractional state-space representation, which do not include the important historic effects. Incorporation of these effects based on the initialized fractional calculus is presented . The control methods presented in this paper are based on the initialized fractional order system theory. The second section presents an input-output approach. Some of the problems encountered in these sections are: a) the need to introduce a new complex plane to study the dynamics of fractional-order systems, b) the need to properly define the Laplace transform of the fractional derivative, and c) the proper inclusion of the initialization response in the system and control formulation. Following this, the next section generalizes the proportional-plus-integral-control (PI-control) and PID-control (PI-plus- derivative) concepts using fractional integrals. This is then further generalized using general fractional- order compensators. Finally the compensator concept is generalized by the use of a continuum of fractions in the compensator via the concept of order-distributions. The last section introduces fractional feedback in discrete-time.
Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics.
Teka, Wondimu W; Upadhyay, Ranjit Kumar; Mondal, Argha
2017-09-01
Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Shengda; Migórski, Stanisław
2018-03-01
In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Kumar, Anupam; Kumar, Vijay
2017-05-01
In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk
NASA Astrophysics Data System (ADS)
Gorenflo, R.; Mainardi, F.
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.
Visual White Matter Integrity in Schizophrenia
Butler, Pamela D.; Hoptman, Matthew J.; Nierenberg, Jay; Foxe, John J.; Javitt, Daniel C.; Lim, Kelvin O.
2007-01-01
Objective Patients with schizophrenia have visual-processing deficits. This study examines visual white matter integrity as a potential mechanism for these deficits. Method Diffusion tensor imaging was used to examine white matter integrity at four levels of the visual system in 17 patients with schizophrenia and 21 comparison subjects. The levels examined were the optic radiations, the striate cortex, the inferior parietal lobule, and the fusiform gyrus. Results Schizophrenia patients showed a significant decrease in fractional anisotropy in the optic radiations but not in any other region. Conclusions This finding indicates that white matter integrity is more impaired at initial input, rather than at higher levels of the visual system, and supports the hypothesis that visual-processing deficits occur at the early stages of processing. PMID:17074957
Developmental Foundations of Children's Fraction Magnitude Knowledge.
Mou, Yi; Li, Yaoran; Hoard, Mary K; Nugent, Lara D; Chu, Felicia W; Rouder, Jeffrey N; Geary, David C
2016-01-01
The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children's mathematical development, and the knowledge of fraction magnitudes influences children's later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8 th and 9 th graders' (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9 th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7 th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8 th and 9 th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9 th but not 8 th graders' fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students' understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually.
Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao
2018-04-14
Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Diesel production from lignocellulosic feed: the bioCRACK process
Ritzberger, J.; Schwaiger, N.; Pucher, P.; Siebenhofer, M.
2017-01-01
The bioCRACK process is a promising technology for the production of second generation biofuels. During this process, biomass is pyrolized in vacuum gas oil and converted into gaseous, liquid and solid products. In cooperation with the Graz University of Technology, the liquid phase pyrolysis process was investigated by BDI – BioEnergy International AG at an industrial pilot plant, fully integrated in the OMV refinery in Vienna/Schwechat. The influence of various biogenous feedstocks and the influence of the temperature on the product distribution in the temperature range of 350°C to 390°C was studied. It was shown that the temperature has a major impact on the product formation. With rising temperature, the fraction of liquid products, namely liquid CHO-products, reaction water and hydrocarbons, increases and the fraction of biochar decreases. At 390°C, 39.8 wt% of biogenous carbon was transferred into a crude hydrocarbon fractions. The type of lignocellulosic feedstock has a minor impact on the process. The biomass liquefaction concept of the bioCRACK process was in pilot scale compatible with oil refinery processes. PMID:29291098
Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory.
Delorme, Mathieu; Wiese, Kay Jörg
2015-11-20
Fractional Brownian motion is a non-Markovian Gaussian process X_{t}, indexed by the Hurst exponent H. It generalizes standard Brownian motion (corresponding to H=1/2). We study the probability distribution of the maximum m of the process and the time t_{max} at which the maximum is reached. They are encoded in a path integral, which we evaluate perturbatively around a Brownian, setting H=1/2+ϵ. This allows us to derive analytic results beyond the scaling exponents. Extensive numerical simulations for different values of H test these analytical predictions and show excellent agreement, even for large ϵ.
Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.
Juan Chen; Zhuang, Bo; Chen, YangQuan; Cui, Baotong
2017-05-09
This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortright, Randy; Rozmiarek, Robert; Dally, Brice
2017-08-31
The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefactionmore » task and included temperature scoping, solvent optimization, and separations.« less
Fractional quantum integral operator with general kernels and applications
NASA Astrophysics Data System (ADS)
Babakhani, Azizollah; Neamaty, Abdolali; Yadollahzadeh, Milad; Agahi, Hamzeh
In this paper, we first introduce the concept of fractional quantum integral with general kernels, which generalizes several types of fractional integrals known from the literature. Then we give more general versions of some integral inequalities for this operator, thus generalizing some previous results obtained by many researchers.2,8,25,29,30,36
Renewal processes based on generalized Mittag-Leffler waiting times
NASA Astrophysics Data System (ADS)
Cahoy, Dexter O.; Polito, Federico
2013-03-01
The fractional Poisson process has recently attracted experts from several fields of study. Its natural generalization of the ordinary Poisson process made the model more appealing for real-world applications. In this paper, we generalized the standard and fractional Poisson processes through the waiting time distribution, and showed their relations to an integral operator with a generalized Mittag-Leffler function in the kernel. The waiting times of the proposed renewal processes have the generalized Mittag-Leffler and stretched-squashed Mittag-Leffler distributions. Note that the generalizations naturally provide greater flexibility in modeling real-life renewal processes. Algorithms to simulate sample paths and to estimate the model parameters are derived. Note also that these procedures are necessary to make these models more usable in practice. State probabilities and other qualitative or quantitative features of the models are also discussed.
Ecophysiological variation of transpiration of pine forests: synthesis of new and published results
Pantana Tor-ngern; Ram Oren; Andrew C. Oishi; Joshua M. Uebelherr; Sari Palmroth; Lasse Tarvainen; Mikaell Ottosson-Löfvenius; Sune Linder; Jean-Christophe Domec; Torgny Näsholm
2017-01-01
Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to...
Developmental Foundations of Children’s Fraction Magnitude Knowledge
Mou, Yi; Li, Yaoran; Hoard, Mary K.; Nugent, Lara D.; Chu, Felicia W.; Rouder, Jeffrey N.; Geary, David C.
2016-01-01
The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children’s mathematical development, and the knowledge of fraction magnitudes influences children’s later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8th and 9th graders’ (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8th and 9th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9th but not 8th graders’ fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students’ understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually. PMID:27773965
NASA Astrophysics Data System (ADS)
Cheong, Chin Wen
2008-02-01
This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.
STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
Meerschaert, Mark M; Sabzikar, Farzad
2014-07-01
Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.
Fractional calculus in hydrologic modeling: A numerical perspective
Benson, David A.; Meerschaert, Mark M.; Revielle, Jordan
2013-01-01
Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449
Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum.
Lau, Kit-Man; He, Zhen-Dan; Dong, Hui; Fung, Kwok-Pui; But, Paul Pui-Hay
2002-11-01
Aqueous extract of processed leaves of Ligustrum robustum could dose-dependently scavenge superoxide radicals, inhibit lipid peroxidation, and prevent AAPH-induced hemolysis of red blood cells. In comparison with green tea, oolong tea and black tea, processed leaves of L. robustum exhibited comparable antioxidant potency in scavenging superoxide radicals and in preventing red blood cell hemolysis. By activity-guided fractionation, a glycoside-rich fraction named fraction B2 was separated and demonstrated to possess strong antioxidant effect. It was evaluated for its anti-inflammatory and hepato-protective activities. A single oral dose of fraction B2 at 0.5 g/kg could provide 51.5% inhibition on the vascular permeability change induced by intraperitoneal injection of acetic acid, but it could not inhibit croton oil-induced ear edema. On the other hand, fraction B2 exhibited moderate hepato-protective effect. Intragastric application of fraction B2 at 1.25, 2.5 or 5 g/kg 6 h after carbon tetrachloride administration could reduce the elevations of serum levels of aminotransferases (AST and ALT). Also, liver integrity was preserved, as liver sections from rats post-treated with fraction B2 showed a milder degree of fatty accumulation and necrosis. These results offer partial support to the traditional uses of the leaves of L. robustum as Ku-Ding-Cha.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beriwal, Sushil, E-mail: beriwals@upmc.edu; Rajagopalan, Malolan S.; Flickinger, John C.
2012-07-15
Purpose: Clinical pathways are an important tool used to manage the quality in health care by standardizing processes. This study evaluated the impact of the implementation of a peer-reviewed clinical pathway in a large, integrated National Cancer Institute-Designated Comprehensive Cancer Center Network. Methods: In 2003, we implemented a clinical pathway for the management of bone metastases with palliative radiation therapy. In 2009, we required the entry of management decisions into an online tool that records pathway choices. The pathway specified 1 or 5 fractions for symptomatic bone metastases with the option of 10-14 fractions for certain clinical situations. The datamore » were obtained from 13 integrated sites (3 central academic, 10 community locations) from 2003 through 2010. Results: In this study, 7905 sites were treated with 64% of courses delivered in community practice and 36% in academic locations. Academic practices were more likely than community practices to treat with 1-5 fractions (63% vs. 23%; p < 0.0001). The number of delivered fractions decreased gradually from 2003 to 2010 for both academic and community practices (p < 0.0001); however, greater numbers of fractions were selected more often in community practices (p < 0.0001). Using multivariate logistic regression, we found that a significantly greater selection of 1-5 fractions developed after implementation online pathway monitoring (2009) with an odds ratio of 1.2 (confidence interval, 1.1-1.4) for community and 1.3 (confidence interval, 1.1-1.6) for academic practices. The mean number of fractions also decreased after online peer review from 6.3 to 6.0 for academic (p = 0.07) and 9.4 to 9.0 for community practices (p < 0.0001). Conclusion: This is one of the first studies to examine the efficacy of a clinical pathway for radiation oncology in an integrated cancer network. Clinical pathway implementation appears to be effective in changing patterns of care, particularly with online clinical peer review as a valuable aid to encourage adherence to evidence-based practice.« less
USDA-ARS?s Scientific Manuscript database
Lignin depolymerization to aromatic monomers with high yields and selectivity is essential for the economic feasibility of many lignin-valorization strategies within integrated biorefining processes. Importantly, the quality and properties of the lignin source play an essential role in impacting the...
On the ψ-Hilfer fractional derivative
NASA Astrophysics Data System (ADS)
Vanterler da C. Sousa, J.; Capelas de Oliveira, E.
2018-07-01
In this paper we introduce a new fractional derivative with respect to another function the so-called ψ-Hilfer fractional derivative. We discuss some properties and important results of the fractional calculus. In this sense, we present some results involving uniformly convergent sequence of function, uniformly continuous function and examples including the Mittag-Leffler function with one parameter. Finally, we present a wide class of integrals and fractional derivatives, by means of the fractional integral with respect to another function and the ψ-Hilfer fractional derivative.
NASA Astrophysics Data System (ADS)
Yang, Chen; Liu, Ying
2017-08-01
A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.
On the origins of generalized fractional calculus
NASA Astrophysics Data System (ADS)
Kiryakova, Virginia
2015-11-01
In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer order m as a multi-order (1, 1,…, 1), the Gelfond-Leontiev generalized differentiation operators, many other integral and differential operators in Calculus that have been used in various topics, some of them not related to FC at all, others involved in differential and integral equations for treating fractional order models.
Zhang, Yao; Du, Ting-Song; Wang, Hao; Shen, Yan-Jun; Kashuri, Artion
2018-01-01
The authors discover a general k -fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite-Hadamard's and Simpson's inequalities for generalized [Formula: see text]-preinvex functions through k -fractional integrals. By taking the special parameter values for various suitable choices of function h , some interesting results are also obtained.
Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.
2004-01-01
We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.
Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd
In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parametermore » estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.« less
Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI
NASA Astrophysics Data System (ADS)
Chen, Kho Chia; Bahar, Arifah; Kane, Ibrahim Lawal; Ting, Chee-Ming; Rahman, Haliza Abd
2015-02-01
In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.
Age-related white matter integrity differences in oldest-old without dementia.
Bennett, Ilana J; Greenia, Dana E; Maillard, Pauline; Sajjadi, S Ahmad; DeCarli, Charles; Corrada, Maria M; Kawas, Claudia H
2017-08-01
Aging is known to have deleterious effects on cerebral white matter, yet little is known about these white matter alterations in advanced age. In this study, 94 oldest-old adults without dementia (90-103 years) underwent diffusion tensor imaging to assess relationships between chronological age and multiple measures of integrity in 18 white matter regions across the brain. Results revealed significant age-related declines in integrity in regions previously identified as being sensitive to aging in younger-old adults (corpus callosum, fornix, cingulum, external capsule). For the corpus callosum, the effect of age on genu fractional anisotropy was significantly weaker than the relationship between age and splenium fractional anisotropy. Importantly, age-related declines in white matter integrity did not differ in cognitively normal and cognitively impaired not demented oldest-old, suggesting that they were not solely driven by cognitive dysfunction or preclinical dementia in this advanced age group. Instead, white matter in these regions appears to remain vulnerable to normal aging processes through the 10th decade of life. Copyright © 2017 Elsevier Inc. All rights reserved.
Hurst, Michelle A; Cordes, Sara
2018-04-01
Fraction and decimal concepts are notoriously difficult for children to learn yet are a major component of elementary and middle school math curriculum and an important prerequisite for higher order mathematics (i.e., algebra). Thus, recently there has been a push to understand how children think about rational number magnitudes in order to understand how to promote rational number understanding. However, prior work investigating these questions has focused almost exclusively on fraction notation, overlooking the open questions of how children integrate rational number magnitudes presented in distinct notations (i.e., fractions, decimals, and whole numbers) and whether understanding of these distinct notations may independently contribute to pre-algebra ability. In the current study, we investigated rational number magnitude and arithmetic performance in both fraction and decimal notation in fourth- to seventh-grade children. We then explored how these measures of rational number ability predicted pre-algebra ability. Results reveal that children do represent the magnitudes of fractions and decimals as falling within a single numerical continuum and that, despite greater experience with fraction notation, children are more accurate when processing decimal notation than when processing fraction notation. Regression analyses revealed that both magnitude and arithmetic performance predicted pre-algebra ability, but magnitude understanding may be particularly unique and depend on notation. The educational implications of differences between children in the current study and previous work with adults are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications
USDA-ARS?s Scientific Manuscript database
A typical petroleum refinery makes use of the vacuum gas oil by cracking the large molecular weight compounds into light fuel hydrocarbons. For various types of fast pyrolysis bio-oil, successful analogous methods for processing heavy fractions could expedite integration into a petroleum refinery fo...
Two-phase anaerobic digestion within a solid waste/wastewater integrated management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Gioannis, G.; Diaz, L.F.; Muntoni, A.
2008-07-01
A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilicmore » conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.« less
Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François
2016-08-01
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Magnen, Jacques; Unterberger, Jérémie
2012-03-01
{Let $B=(B_1(t),...,B_d(t))$ be a $d$-dimensional fractional Brownian motion with Hurst index $\\alpha<1/4$, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of $B$ is a difficult task because of the low H\\"older regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to $B$, or to solving differential equations driven by $B$. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using "standard" tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates, and call for an extension of Gaussian tools such as for instance the Malliavin calculus. After a first introductory paper \\cite{MagUnt1}, this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as L\\'evy area.
NASA Astrophysics Data System (ADS)
Muniandy, Sithi V.; Uning, Rosemary
2006-11-01
Foreign currency exchange rate policies of ASEAN member countries have undergone tremendous changes following the 1997 Asian financial crisis. In this paper, we study the fractal and long-memory characteristics in the volatility of five ASEAN founding members’ exchange rates with respect to US dollar. The impact of exchange rate policies implemented by the ASEAN-5 countries on the currency fluctuations during pre-, mid- and post-crisis are briefly discussed. The time series considered are daily price returns, absolute returns and aggregated absolute returns, each partitioned into three segments based on the crisis regimes. These time series are then modeled using fractional Gaussian noise, fractionally integrated ARFIMA (0,d,0) and generalized Cauchy process. The first two stationary models provide the description of long-range dependence through Hurst and fractional differencing parameter, respectively. Meanwhile, the generalized Cauchy process offers independent estimation of fractal dimension and long memory exponent. In comparison, among the three models we found that the generalized Cauchy process showed greater sensitivity to transition of exchange rate regimes that were implemented by ASEAN-5 countries.
NASA Astrophysics Data System (ADS)
Liu, Si-Qi; Zhang, Youjin; Zhou, Chunhui
2018-02-01
The generating function of cubic Hodge integrals satisfying the local Calabi-Yau condition is conjectured to be a tau function of a new integrable system which can be regarded as a fractional generalization of the Volterra lattice hierarchy, so we name it the fractional Volterra hierarchy. In this paper, we give the definition of this integrable hierarchy in terms of Lax pair and Hamiltonian formalisms, construct its tau functions, and present its multi-soliton solutions.
Tagawa, Shin-Ichi; Yoshida, Norio; Iino, Yukihiro; Horiguchi, Ken-Ichi; Takahashi, Toshiyoshi; Watanabe, Maria; Takemura, Kei; Ito, Syuhei; Mikami, Toyoji
2017-01-01
This study was conducted to determine the effect of pelleting on in situ dry matter degradability of pelleted compound feed containing brown rice for dairy cows. Mash feed of the same composition was used as a control and the in situ study was conducted using three non-lactating Holstein steers fitted with a rumen cannula. The feeds contained 32.3% brown rice, 19.4% rapeseed meal, 11.4% wheat bran and 10.6% soybean meal (fresh weight basis). Except for moisture content, the chemical composition of the feed was not affected by pelleting. In situ dry matter disappearance of the feed increased from 0 to 2 h and after 72 h of incubation with pellet processing. Integration of the dry matter disappearance values over time revealed that degradability parameter a (soluble fraction) increased with pellet processing, whereas parameter b (potentially degradable fraction) decreased. Parameter c (fractional rate of degradation) and effective degradability (5% passage rate) were not affected by pellet processing. We concluded that pellet processing promotes rumen degradability at early incubation hours when the pelleted feed contains brown rice. © 2016 Japanese Society of Animal Science.
Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1981-01-01
In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.
On time-dependent diffusion coefficients arising from stochastic processes with memory
NASA Astrophysics Data System (ADS)
Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.
2017-08-01
Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.
Trigonometric Integrals via Partial Fractions
ERIC Educational Resources Information Center
Chen, H.; Fulford, M.
2005-01-01
Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.
Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris
2017-07-01
Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.
King, Michael A; Scotty, Nicole; Klein, Ronald L; Meyer, Edwin M
2002-10-01
Assessing the efficacy of in vivo gene transfer often requires a quantitative determination of the number, size, shape, or histological visualization characteristics of biological objects. The optical fractionator has become a choice stereological method for estimating the number of objects, such as neurons, in a structure, such as a brain subregion. Digital image processing and analytic methods can increase detection sensitivity and quantify structural and/or spectral features located in histological specimens. We describe a hardware and software system that we have developed for conducting the optical fractionator process. A microscope equipped with a video camera and motorized stage and focus controls is interfaced with a desktop computer. The computer contains a combination live video/computer graphics adapter with a video frame grabber and controls the stage, focus, and video via a commercial imaging software package. Specialized macro programs have been constructed with this software to execute command sequences requisite to the optical fractionator method: defining regions of interest, positioning specimens in a systematic uniform random manner, and stepping through known volumes of tissue for interactive object identification (optical dissectors). The system affords the flexibility to work with count regions that exceed the microscope image field size at low magnifications and to adjust the parameters of the fractionator sampling to best match the demands of particular specimens and object types. Digital image processing can be used to facilitate object detection and identification, and objects that meet criteria for counting can be analyzed for a variety of morphometric and optical properties. Copyright 2002 Elsevier Science (USA)
ERIC Educational Resources Information Center
Vandermosten, Maaike; Boets, Bart; Poelmans, Hanne; Sunaert, Stefan; Wouters, Jan; Ghesquiere, Pol
2012-01-01
Diffusion tensor imaging tractography is a structural magnetic resonance imaging technique allowing reconstruction and assessment of the integrity of three dimensional white matter tracts, as indexed by their fractional anisotropy. It is assumed that the left arcuate fasciculus plays a crucial role for reading development, as it connects two…
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Siembida, B; Cornel, P; Krause, S; Zimmermann, B
2010-07-01
The research on fouling reduction and permeability loss in membrane bioreactors (MBRs) was carried out at two MBR pilot plants with synthetic and real wastewater. On the one hand, the effect of mechanical cleaning with an abrasive granular material on the performance of a submerged MBR process was tested. Additionally, scanning electron microscopy (SEM) measurements and integrity tests were conducted to check whether the membrane material was damaged by the granulate.The results indicate that the fouling layer formation was significantly reduced by abrasion using the granular material. This technique allowed a long-term operation of more than 600 days at a flux up to 40 L/(m2 h) without chemical cleaning of the membranes. Moreover, it was demonstrated that the membrane bioreactor (MBR) with granulate could be operated with more than 20% higher flux compared to a conventional MBR operation. SEM images and integrity tests showed that in consequence of abrasive cleaning, the granular material left brush marks on the membrane surface, however, the membrane function was not affected.In a parallel experimental set up, the impact of the operationally defined "truly soluble fraction" <0.04 microm from wastewater and activated sludge on the ultrafiltration membrane fouling characteristics was investigated. It was shown that the permeability loss was caused predominantly by the colloidal fraction >0.04 microm rather than by the dissolved fraction of wastewater and activated sludge.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-10-01
Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
Closed cycle construction: an integrated process for the separation and reuse of C&D waste.
Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens
2007-01-01
In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.
Search for fractionally charged particles in pp collisions at s=7TeV
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.
2013-05-01
A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions at s=7TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0fb-1. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)C and SU(2)L. We exclude at 95% confidence level such particles with electric charge ±2e/3 with masses below 310 GeV, and those with charge ±e/3 with masses below 140 GeV.
Search for fractionally charged particles in p p collisions at s = 7 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions atmore » $$\\sqrt{s}$$ = 7 TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)$$_C$$ and SU(2)$$_L$$. We exclude at 95% confidence level such particles with electric charge $$\\pm$$2e/3 with masses below 310 GeV, and those with charge $$\\pm$$e/3 with masses below 140 GeV.« less
Parameterization and scaling of arctic ice conditions in the context of ice-atmospheric processes
NASA Technical Reports Server (NTRS)
Barry, R. G.; Steffen, K.; Heinrichs, J. F.; Key, J. R.; Maslanik, J. A.; Serreze, M. C.; Weaver, R. L.
1995-01-01
The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.
How to Compute the Partial Fraction Decomposition without Really Trying
ERIC Educational Resources Information Center
Brazier, Richard; Boman, Eugene
2007-01-01
For various reasons there has been a recent trend in college and high school calculus courses to de-emphasize teaching the Partial Fraction Decomposition (PFD) as an integration technique. This is regrettable because the Partial Fraction Decomposition is considerably more than an integration technique. It is, in fact, a general purpose tool which…
Fractional-order difference equations for physical lattices and some applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less
Sharp bounds for singular values of fractional integral operators
NASA Astrophysics Data System (ADS)
Burman, Prabir
2007-03-01
From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].
Milani, M; Montorsi, L; Stefani, M
2014-07-01
The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.
Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity
NASA Astrophysics Data System (ADS)
Bertolotti, Elena; Burioni, Raffaella; di Volo, Matteo; Vezzani, Alessandro
2017-01-01
We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons fI and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on fI, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.
Angelis, Apostolis; Hamzaoui, Mahmoud; Aligiannis, Nektarios; Nikou, Theodora; Michailidis, Dimitris; Gerolimatos, Panagiotis; Termentzi, Aikaterini; Hubert, Jane; Halabalaki, Maria; Renault, Jean-Hugues; Skaltsounis, Alexios-Léandros
2017-03-31
An integrated extraction and purification process for the direct recovery of high added value compounds from extra virgin olive oil (EVOO) is proposed by using solid support free liquid-liquid extraction and chromatography techniques. Two different extraction methods were developed on a laboratory-scale Centrifugal Partition Extractor (CPE): a sequential strategy consisting of several "extraction-recovery" cycles and a continuous strategy based on stationary phase co-current elution. In both cases, EVOO was used as mobile phase diluted in food grade n-hexane (feed mobile phase) and the required biphasic system was obtained by adding ethanol and water as polar solvents. For the sequential process, 17.5L of feed EVOO containing organic phase (i.e. 7L of EVOO treated) were extracted yielding 9.5g of total phenolic fraction corresponding to a productivity of 5.8g/h/L of CPE column. Regarding the second approach, the co-current process, 2L of the feed oil phase (containing to 0.8L of EVOO) were treated at 100mL/min yielding 1.03g of total phenolic fraction corresponding to a productivity of 8.9g/h/L of CPE column. The total phenolic fraction was then fractionated by using stepwise gradient elution Centrifugal Partition Chromatography (CPC). The biphasic solvent systems were composed of n-hexane, ethyl acetate, ethanol and water in different proportions (X/Y/2/3, v/v). In a single run of 4h on a column with a capacity of 1L, 910mg of oleocanthal, 882mg of oleacein, 104mg of hydroxytyrosol were successfully recovered from 5g of phenolic extract with purities of 85%, 92% and 90%, respectively. CPC fractions were then submitted to orthogonal chromatographic steps (adsorption on silica gel or size exclusion chromatography) leading to the isolation of additional eleven compounds belonging to triterpens, phenolic compounds and secoiridoids. Among them, elenolic acid ethylester was found to be new compound. Thin Layer Chromatography (TLC), Nuclear magnetic Resonance (NMR) and High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD) were used for monitoring and evaluation purposes throughout the entire procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization
2017-01-01
Abstract Lignocellulosic biomass is available in large quantities and constitutes an attractive feedstock for the sustainable production of bulk and fine chemicals. Although methods have been established for the conversion of its cellulosic fractions, valorization of lignin has proven to be challenging. The difficulty in disassembling lignin originates from its heterogeneous structure and its propensity to undergo skeletal rearrangements and condensation reactions during biorefinery fractionation or biomass pretreatment processes. A strategy for hindering the generation of these resistive interunit linkages during biomass pretreatment has now been devised using formaldehyde as a stabilizing agent. The developed method when combined with Ru/C‐catalyzed hydrogenolysis allows for efficient disassembly of all three biomass fractions: (cellulose, hemicellulose, and lignin) and suggests that lignin upgrading can be integrated into prevailing biorefinery schemes. PMID:28394095
All-optical liquid crystal spatial light modulators
NASA Astrophysics Data System (ADS)
Tabiryan, Nelson; Grozhik, Vladimir; Khoo, Iam Choon; Nersisyan, Sarik R.; Serak, Svetlana
2003-12-01
Nonlinear optical processes in liquid crystals (LC) can be used for construction of all-optical spatial light modulators (SLM) where the photosensitivity and phase modulating functions are integrated into a single layer of an LC-material. Such spatial light integrated modulators (SLIMs) cost only a fraction of the conventional LC-SLM and can be used with high power laser radiation due to high transparency of LC materials and absence of light absorbing electrodes on the substrates of the LC-cell constituting the SLIM. Recent development of LC materials the photosensitivity of which is comparable to that of semiconductors has led to using SLIM in schemes of optical anti-jamming, sensor protection, and image processing. All-optical processes add remarkable versatility to the operation of SLIM harnessing the wealth inherent to light-matter interaction phenomena.
Municipal waste stabilization in a reactor with an integrated active and passive aeration system.
Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna
2016-04-01
To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chaita, Eliza; Gikas, Evagelos; Aligiannis, Nektarios
2017-03-01
In drug discovery, bioassay-guided isolation is a well-established procedure, and still the basic approach for the discovery of natural products with desired biological properties. However, in these procedures, the most laborious and time-consuming step is the isolation of the bioactive constituents. A prior identification of the compounds that contribute to the demonstrated activity of the fractions would enable the selection of proper chromatographic techniques and lead to targeted isolation. The development of an integrated HPTLC-based methodology for the rapid tracing of the bioactive compounds during bioassay-guided processes, using multivariate statistics. Materials and Methods - The methanol extract of Morus alba was fractionated employing CPC. Subsequently, fractions were assayed for tyrosinase inhibition and analyzed with HPTLC. PLS-R algorithm was performed in order to correlate the analytical data with the biological response of the fractions and identify the compounds with the highest contribution. Two methodologies were developed for the generation of the dataset; one based on manual peak picking and the second based on chromatogram binning. Results and Discussion - Both methodologies afforded comparable results and were able to trace the bioactive constituents (e.g. oxyresveratrol, trans-dihydromorin, 2,4,3'-trihydroxydihydrostilbene). The suggested compounds were compared in terms of R f values and UV spectra with compounds isolated from M. alba using typical bioassay-guided process. Chemometric tools supported the development of a novel HPTLC-based methodology for the tracing of tyrosinase inhibitors in M. alba extract. All steps of the experimental procedure implemented techniques that afford essential key elements for application in high-throughput screening procedures for drug discovery purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Comparative study on thermodynamic characteristics of AgCuZnSn brazing alloys
NASA Astrophysics Data System (ADS)
Wang, Xingxing; Li, Shuai; Peng, Jin
2018-01-01
AgCuZnSn brazing alloys were prepared based on the BAg50CuZn filler metal through electroplating diffusion process, and melting alloying method. The thermodynamics of phase transformations of those fillers were analyzed by non-isothermal differentiation and integration methods of thermal analysis kinetics. In this study, it was demonstrated that as the Sn content increased, the reaction fractional integral curves of AgCuZnSn fillers from solid to liquid became straighter at the endothermic peak. Under the same Sn contents, the reaction fractional integral curve of the Sn-plated filler metal was straighter, and the phase transformation activation energy was higher compared to the traditional silver filler metal. At the 7.2 wt% Sn content, the activation energies and pre-exponential factors of the two fillers reached the maximum, then the phase transformation rate equations of the Sn-plated silver filler and the traditional filler were determined as: k = 1.41 × 1032exp(-5.56 × 105/RT), k = 7.29 × 1020exp(-3.64 × 105/RT), respectively.
Stability and delay sensitivity of neutral fractional-delay systems.
Xu, Qi; Shi, Min; Wang, Zaihua
2016-08-01
This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.
NASA Astrophysics Data System (ADS)
Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael
2018-06-01
Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.
Development of fraction comparison strategies: A latent transition analysis.
Rinne, Luke F; Ye, Ai; Jordan, Nancy C
2017-04-01
The present study investigated the development of fraction comparison strategies through a longitudinal analysis of children's responses to a fraction comparison task in 4th through 6th grades (N = 394). Participants were asked to choose the larger value for 24 fraction pairs blocked by fraction type. Latent class analysis of performance over item blocks showed that most children initially exhibited a "whole number bias," indicating that larger numbers in numerators and denominators produce larger fraction values. However, some children instead chose fractions with smaller numerators and denominators, demonstrating a partial understanding that smaller numbers can yield larger fractions. Latent transition analysis showed that most children eventually adopted normative comparison strategies. Children who exhibited a partial understanding by choosing fractions with smaller numbers were more likely to adopt normative comparison strategies earlier than those with larger number biases. Controlling for general math achievement and other cognitive abilities, whole number line estimation accuracy predicted the probability of transitioning to normative comparison strategies. Exploratory factor analyses showed that over time, children appeared to increasingly represent fractions as discrete magnitudes when simpler strategies were unavailable. These results support the integrated theory of numerical development, which posits that an understanding of numbers as magnitudes unifies the process of learning whole numbers and fractions. The findings contrast with conceptual change theories, which propose that children must move from a view of numbers as counting units to a new view that accommodates fractions to overcome whole number bias. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Fractional order integration and fuzzy logic based filter for denoising of echocardiographic image.
Saadia, Ayesha; Rashdi, Adnan
2016-12-01
Ultrasound is widely used for imaging due to its cost effectiveness and safety feature. However, ultrasound images are inherently corrupted with speckle noise which severely affects the quality of these images and create difficulty for physicians in diagnosis. To get maximum benefit from ultrasound imaging, image denoising is an essential requirement. To perform image denoising, a two stage methodology using fuzzy weighted mean and fractional integration filter has been proposed in this research work. In stage-1, image pixels are processed by applying a 3 × 3 window around each pixel and fuzzy logic is used to assign weights to the pixels in each window, replacing central pixel of the window with weighted mean of all neighboring pixels present in the same window. Noise suppression is achieved by assigning weights to the pixels while preserving edges and other important features of an image. In stage-2, the resultant image is further improved by fractional order integration filter. Effectiveness of the proposed methodology has been analyzed for standard test images artificially corrupted with speckle noise and real ultrasound B-mode images. Results of the proposed technique have been compared with different state-of-the-art techniques including Lsmv, Wiener, Geometric filter, Bilateral, Non-local means, Wavelet, Perona et al., Total variation (TV), Global Adaptive Fractional Integral Algorithm (GAFIA) and Improved Fractional Order Differential (IFD) model. Comparison has been done on quantitative and qualitative basis. For quantitative analysis different metrics like Peak Signal to Noise Ratio (PSNR), Speckle Suppression Index (SSI), Structural Similarity (SSIM), Edge Preservation Index (β) and Correlation Coefficient (ρ) have been used. Simulations have been done using Matlab. Simulation results of artificially corrupted standard test images and two real Echocardiographic images reveal that the proposed method outperforms existing image denoising techniques reported in the literature. The proposed method for denoising of Echocardiographic images is effective in noise suppression/removal. It not only removes noise from an image but also preserves edges and other important structure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodríguez-Escales, Paula; Folch, Albert; van Breukelen, Boris M.; Vidal-Gavilan, Georgina; Soler, Albert
2014-05-01
Enhanced in-situ biodenitrification is a feasible technology to recovery groundwater polluted by nitrates and achieves drinking water standards. Under optimum conditions, nitrate is reduced by autochthonous bacteria trough different reactions until arrive to harmless dinitrogen gas. Isotopic fractionation monitoring in field applications allows knowing the exact degree and the real scope of this technology. Using the Rayleigh equation the change in the isotope ratio of the nitrate molecule (δ15N-NO3-, δ18O-NO3-) is related to the fraction of molecules remaining as a result of biodenitrification. However, Rayleigh application at field scale is sometimes limited due to other processes involved during groundwater flow such as dispersion or adsorption and geological media heterogeneities that interferes in concentration values. Then, include isotope fractionation processes in reactive transport models is a useful tool to interpret and predict data from in-situ biodenitrification. We developed a reactive transport model of enhanced in situ application at field scale in a fractured aquifer that considers biogeochemical processes as well as isotope fractionation to enable better monitoring and management of this technology. Processes considered were: microbiological- exogenous and endogenous nitrate and sulfate respiration coupled with microbial growth and decay, geochemical reactions (precipitation of calcite) and isotopic fractionation (δ15N-NO3-; δ18O- NO3- and carbon isotope network). The 2-D simulations at field scale were developed using PHAST code. Modeling of nitrate isotope geochemistry has allowed determining the extent of biodenitrification in model domain. We have quantified which is the importance in decreasing of nitrate concentrations due to biodegradation (percentage of biodegradation, 'B%') and due to dilution process (percentage of dilution, 'D%'). On the other hand, the stable carbon isotope geochemistry has been modeled. We have considered the isotopic carbon fractionation of different carbon species involved in enhanced biodenitrification: external organic carbon, biomass, inorganic carbon (in different forms) and calcite. The inclusion of carbon isotopes in the model, which are involved in both direct (oxidation of organic carbon) and indirect (carbonate mineral interaction) processes of enhanced biodenitrification, improves the evaluation of the overall model consistency due to the central role of carbon in the reaction network.
NASA Astrophysics Data System (ADS)
Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.
2007-01-01
For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that can take place for many linear non-equilibrium systems.
Wan, Cuihong; Liu, Jian; Fong, Vincent; Lugowski, Andrew; Stoilova, Snejana; Bethune-Waddell, Dylan; Borgeson, Blake; Havugimana, Pierre C; Marcotte, Edward M; Emili, Andrew
2013-04-09
The experimental isolation and characterization of stable multi-protein complexes are essential to understanding the molecular systems biology of a cell. To this end, we have developed a high-throughput proteomic platform for the systematic identification of native protein complexes based on extensive fractionation of soluble protein extracts by multi-bed ion exchange high performance liquid chromatography (IEX-HPLC) combined with exhaustive label-free LC/MS/MS shotgun profiling. To support these studies, we have built a companion data analysis software pipeline, termed ComplexQuant. Proteins present in the hundreds of fractions typically collected per experiment are first identified by exhaustively interrogating MS/MS spectra using multiple database search engines within an integrative probabilistic framework, while accounting for possible post-translation modifications. Protein abundance is then measured across the fractions based on normalized total spectral counts and precursor ion intensities using a dedicated tool, PepQuant. This analysis allows co-complex membership to be inferred based on the similarity of extracted protein co-elution profiles. Each computational step has been optimized for processing large-scale biochemical fractionation datasets, and the reliability of the integrated pipeline has been benchmarked extensively. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Spiking and bursting patterns of fractional-order Izhikevich model
NASA Astrophysics Data System (ADS)
Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha
2018-03-01
Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.
A multi-domain spectral method for time-fractional differential equations
NASA Astrophysics Data System (ADS)
Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.
2015-07-01
This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.
Khellouf, A; Benhenia, K; Fatami, S; Iguer-Ouada, M
During cryopreservation sperm cells suffer from two major deleterious impacts: oxidative stress and cold shock. To investigate in bovine species the benefit of cholesterol and vitamin E, both loaded in cyclodextrins, as a double protection against oxidative stress and cold shock. Semen was collected from nine mature bulls using an artificial vagina and each ejaculate was split into four equal aliquots. The control aliquot was diluted with Fraction A (Tris+citric acid+fructose+penicillin) without further supplementation; the treated samples were diluted in Fraction A supplemented with cholesterol-loaded cyclodextrins (CD-CHL), vitamin E-loaded cyclodextrins (CD-Vit E) or CD-CHL in association with CD-Vit E (CD-CHL-VitE). After incubation at 22°C for 15 min and addition of Fraction B (Fraction A+egg yolk+glycerol), all aliquots were frozen in 0.25 ml straws. Straws were then thawed individually at 37C for 30 seconds in a water bath and immediately analyzed for motility, using Computer Aided Semen Analysis (CASA), membrane integrity and oxidative stress status. The results showed that samples treated with CD-CHL and CD-Vit E were protected against the deleterious impact of freezing thawing process. However, the optimal protection was observed when the two complexes CD-CHL and CD-Vit E were simultaneously used. All analysed semen parameters including motility, membrane integrity and oxidative stress status were significantly improved in CD-CHL-Vit E compared to all other treatments. Cholesterol and vitamin E, both preloaded in cyclodextrins to increase their solubility, appeared as a powerful protection in cryopreserved bovine semen to fight simultaneously cold shock and oxidative stress.
NASA Astrophysics Data System (ADS)
Song, Jia; Wang, Lun; Cai, Guobiao; Qi, Xiaoqiang
2015-06-01
Near space hypersonic vehicle model is nonlinear, multivariable and couples in the reentry process, which are challenging for the controller design. In this paper, a nonlinear fractional order proportion integral derivative (NFOPIλDμ) active disturbance rejection control (ADRC) strategy based on a natural selection particle swarm (NSPSO) algorithm is proposed for the hypersonic vehicle flight control. The NFOPIλDμ ADRC method consists of a tracking-differentiator (TD), an NFOPIλDμ controller and an extended state observer (ESO). The NFOPIλDμ controller designed by combining an FOPIλDμ method and a nonlinear states error feedback control law (NLSEF) is to overcome concussion caused by the NLSEF and conversely compensate the insufficiency for relatively simple and rough signal processing caused by the FOPIλDμ method. The TD is applied to coordinate the contradiction between rapidity and overshoot. By attributing all uncertain factors to unknown disturbances, the ESO can achieve dynamic feedback compensation for these disturbances and thus reduce their effects. Simulation results show that the NFOPIλDμ ADRC method can make the hypersonic vehicle six-degree-of-freedom nonlinear model track desired nominal signals accurately and fast, has good stability, dynamic properties and strong robustness against external environmental disturbances.
NASA Astrophysics Data System (ADS)
Wang, Yi-Hong; Wu, Guo-Cheng; Baleanu, Dumitru
2013-10-01
The variational iteration method is newly used to construct various integral equations of fractional order. Some iterative schemes are proposed which fully use the method and the predictor-corrector approach. The fractional Bagley-Torvik equation is then illustrated as an example of multi-order and the results show the efficiency of the variational iteration method's new role.
Fractional Relativistic Yamaleev Oscillator Model and Its Dynamical Behaviors
NASA Astrophysics Data System (ADS)
Luo, Shao-Kai; He, Jin-Man; Xu, Yan-Li; Zhang, Xiao-Tian
2016-07-01
In the paper we construct a new kind of fractional dynamical model, i.e. the fractional relativistic Yamaleev oscillator model, and explore its dynamical behaviors. We will find that the fractional relativistic Yamaleev oscillator model possesses Lie algebraic structure and satisfies generalized Poisson conservation law. We will also give the Poisson conserved quantities of the model. Further, the relation between conserved quantities and integral invariants of the model is studied and it is proved that, by using the Poisson conserved quantities, we can construct integral invariants of the model. Finally, the stability of the manifold of equilibrium states of the fractional relativistic Yamaleev oscillator model is studied. The paper provides a general method, i.e. fractional generalized Hamiltonian method, for constructing a family of fractional dynamical models of an actual dynamical system.
The generalised isodamping approach for robust fractional PID controllers design
NASA Astrophysics Data System (ADS)
Beschi, M.; Padula, F.; Visioli, A.
2017-06-01
In this paper, we present a novel methodology to design fractional-order proportional-integral-derivative controllers. Based on the description of the controlled system by means of a family of linear models parameterised with respect to a free variable that describes the real process operating point, we design the controller by solving a constrained min-max optimisation problem where the maximum sensitivity has to be minimised. Among the imposed constraints, the most important one is the new generalised isodamping condition, that defines the invariancy of the phase margin with respect to the free parameter variations. It is also shown that the well-known classical isodamping condition is a special case of the new technique proposed in this paper. Simulation results show the effectiveness of the proposed technique and the superiority of the fractional-order controller compared to its integer counterpart.
1990-01-01
The yeast RNA1 gene is required for RNA processing and nuclear transport of RNA. The rna1-1 mutation of this locus causes defects in pre-tRNA splicing, processing of the primary pre-rRNA transcript, production of mRNA and export of RNA from the nucleus to the cytosol. To understand how this gene product can pleiotropically affect these processes, we sought to determine the intracellular location of the RNA1 protein. As determined by indirect immunofluorescence localization and organelle fractionation, the RNA1 antigen is found exclusively or primarily in the cytoplasm. Only a tiny fraction of the endogenous protein could be localized to and functional in the nucleus. Furthermore, the RNA1 antigen does not localize differently under stress conditions. These findings suggest that the RNA1 protein is not directly involved in RNA processing but may modify nuclear proteins or otherwise transmit a signal from the cytosol to the nucleus or play a role in maintaining the integrity of the nucleus. PMID:2116418
Wiener-Hopf optimal control of a hydraulic canal prototype with fractional order dynamics.
Feliu-Batlle, Vicente; Feliu-Talegón, Daniel; San-Millan, Andres; Rivas-Pérez, Raúl
2017-06-26
This article addresses the control of a laboratory hydraulic canal prototype that has fractional order dynamics and a time delay. Controlling this prototype is relevant since its dynamics closely resembles the dynamics of real main irrigation canals. Moreover, the dynamics of hydraulic canals vary largely when the operation regime changes since they are strongly nonlinear systems. All this makes difficult to design adequate controllers. The controller proposed in this article looks for a good time response to step commands. The design criterium for this controller is minimizing the integral performance index ISE. Then a new methodology to control fractional order processes with a time delay, based on the Wiener-Hopf control and the Padé approximation of the time delay, is developed. Moreover, in order to improve the robustness of the control system, a gain scheduling fractional order controller is proposed. Experiments show the adequate performance of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sembolini, Federico; Yepes, Gustavo; De Petris, Marco; Gottlöber, Stefan; Lamagna, Luca; Comis, Barbara
2013-02-01
We introduce the Marenostrum-MultiDark SImulations of galaxy Clusters (MUSIC) data set. It constitutes one of the largest samples of hydrodynamically simulated galaxy clusters with more than 500 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using smoothed particle hydrodynamics (SPH) together with relevant physical processes that include cooling, UV photoionization, star formation and different feedback processes associated with supernovae explosions. In this first paper we focus on the analysis of the baryon content (gas and star) of clusters in the MUSIC data set as a function of both aperture radius and redshift. The results from our simulations are compared with a compilation of the most recent observational estimates of the gas fraction in galaxy clusters at different overdensity radii. We confirm, as in previous simulations, that the gas fraction is overestimated if radiative physics are not properly taken into account. On the other hand, when the effects of cooling and stellar feedbacks are included, the MUSIC clusters show a good agreement with the most recent observed gas fractions quoted in the literature. A clear dependence of the gas fractions with the total cluster mass is also evident. However, we do not find a significant evolution with redshift of the gas fractions at aperture radius corresponding to overdensities smaller than 1500 with respect to critical density. At smaller radii, the gas fraction does exhibit a decrease with redshift that is related to the gas depletion due to star formation in the central region of the clusters. The impact of the aperture radius choice, when comparing integrated quantities at different redshifts, is tested. The standard, widely used definition of radius at a fixed overdensity with respect to critical density is compared with a definition of aperture radius based on the redshift dependent overdensity with respect to background matter density: we show that the latter definition is more successful in probing the same fraction of the virial radius at different redshifts, providing a more reliable derivation of the time evolution of integrated quantities. We also present in this paper a detailed analysis of the scaling relations of the thermal Sunyaev-Zel'dovich (SZ) effect derived from MUSIC clusters. The integrated SZ brightness, Y, is related to the cluster total mass, M, as well as, the M - Y counterpart which is more suitable for observational applications. Both laws are consistent with predictions from the self-similar model, showing a very low scatter which is σlog Y ≃ 0.04 and even a smaller one (σlog M ≃ 0.03) for the inverse M-Y relation. The effects of the gas fraction on the Y-M scaling relation are also studied. At high overdensities, the dispersion of the gas fractions introduces non-negligible deviation from self-similarity, which is directly related to the fgas-M relation. The presence of a possible redshift dependence on the Y-M scaling relation is also explored. No significant evolution of the SZ relations is found at lower overdensities, regardless of the definition of overdensity used.
Martin, Turf D
2006-04-01
Is the process the product? Immune globulin intravenous (IGIV) is not manufactured, but is purified (fractionated) from human plasma. Machines can only damage what Mother Nature makes; they cannot improve it. Therefore, fractionators of biologic molecules must strive to ensure what is taken from a human body is exactly the same when it is returned to the human body for optimal tolerability and safety. The processes of purification have the potential to adversely affect the product. Four primary purification processes exist for commercial IGIV. The Cohn-Oncley process is 1940s technology, which has been modified through the decades, but the basic process remains unchanged. The Kistler-Nitschmann process was developed in the 1950s by the Central Laboratory of the Swiss Red Cross (ZLB, today known as ZLB-Behring, a subsidiary of CSL Limited). Various attempts have been made to utilize chromatography as the sole separation technology without much success. Most recently, Bayer HealthCare (Talecris Biotherapeutics acquired the contributed assets of the worldwide plasma business of Bayer Biological Products and became operational April 1, 2005; all plasma-based products, including Gamunex, Prolastin, the hyperimmune line (Fraction II), Plasbumin (Bayer Albumin), Koate DVI, and Thrombate III were included) introduced a new product into the United States and Canada that utilizes caprylate and chromatography for high purity, better yields, and integration of safety and efficacy. This is the first new IGIV purification technology in over 20 years.
Licursi, Domenico; Antonetti, Claudia; Martinelli, Marco; Ribechini, Erika; Zanaboni, Marco; Raspolli Galletti, Anna Maria
2016-03-01
Recycled paper needs a lot of mechanical/chemical treatments for its re-use in the papermaking process. Some of these ones produce considerable rejected waste fractions, such as "screen rejects", which include both cellulose fibers and non-fibrous organic contaminants, or "stickies", these last representing a shortcoming both for the papermaking process and for the quality of the final product. Instead, the accepted fractions coming from these unit operations become progressively poorer in contaminants and richer in cellulose. Here, input and output streams coming from mechanical screening systems of a papermaking plant using recycled paper for cardboard production were sampled and analyzed directly and after solvent extraction, thus confirming the abundant presence of styrene-butadiene rubber (SBR) and ethylene vinyl acetate (EVA) copolymers in the output rejected stream and cellulose in the output accepted one. Despite some significant drawbacks, the "screen reject" fraction could be traditionally used as fuel for energy recovery within the paper mill, in agreement with the integrated recycled paper mill approach. The waste, which still contains a cellulose fraction, can be also exploited by means of the hydrothermal route to give levulinic acid, a platform chemical of very high value added. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improving Children's Knowledge of Fraction Magnitudes
ERIC Educational Resources Information Center
Fazio, Lisa K.; Kennedy, Casey A.; Siegler, Robert S.
2016-01-01
We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played "Catch…
Fractional order implementation of Integral Resonant Control - A nanopositioning application.
San-Millan, Andres; Feliu-Batlle, Vicente; Aphale, Sumeet S
2017-10-04
By exploiting the co-located sensor-actuator arrangement in typical flexure-based piezoelectric stack actuated nanopositioners, the polezero interlacing exhibited by their axial frequency response can be transformed to a zero-pole interlacing by adding a constant feed-through term. The Integral Resonant Control (IRC) utilizes this unique property to add substantial damping to the dominant resonant mode by the use of a simple integrator implemented in closed loop. IRC used in conjunction with an integral tracking scheme, effectively reduces positioning errors introduced by modelling inaccuracies or parameter uncertainties. Over the past few years, successful application of the IRC control technique to nanopositioning systems has demonstrated performance robustness, easy tunability and versatility. The main drawback has been the relatively small positioning bandwidth achievable. This paper proposes a fractional order implementation of the classical integral tracking scheme employed in tandem with the IRC scheme to deliver damping and tracking. The fractional order integrator introduces an additional design parameter which allows desired pole-placement, resulting in superior closed loop bandwidth. Simulations and experimental results are presented to validate the theory. A 250% improvement in the achievable positioning bandwidth is observed with proposed fractional order scheme. Copyright © 2017. Published by Elsevier Ltd.
Residency of rhenium and osmium in a heavy crude oil
NASA Astrophysics Data System (ADS)
DiMarzio, Jenna M.; Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.
2018-01-01
Rhenium-osmium (Re-Os) isotope geochemistry is an emerging tool for the study of oil formation and migration processes, and a new technology for petroleum exploration. Little is known, however, about the residency of Re and Os within asphaltene and maltene sub-fractions of crude oil. This information is crucial for understanding the 187Re-187Os radiometric clock held in petroleum systems and for interpreting geochronology for key processes such as oil formation, migration, and biodegradation. In this study, a heavy crude oil was separated into soluble (maltene, MALT) and insoluble (asphaltene, ASPH) fractions using n-heptane as the asphaltene-precipitating agent. The asphaltenes were separated sequentially into sub-fractions using two different solvent pairs (heptane-dichloromethane and acetone-toluene), and the bulk maltenes were separated into saturate, aromatic, and resin (SAR) fractions using open column chromatography. Each asphaltene and maltene sub-fraction was analyzed for Re and Os. The asphaltene sub-fractions and the bulk ASPH, MALT, and crude oil were analyzed for a suite of trace metals by ICP-MS. Our results show that Re and Os concentrations co-vary between the asphaltene sub-fractions, and that both elements are found mostly in the more polar and aromatic sub-fractions. Significant Re and Os are also present in the aromatic and resin fractions of the maltenes. However, each asphaltene and maltene sub-fraction has a distinct isotopic composition, and sub-fractions are not isochronous. This suggests that asphaltene sub-fractionation separates Re-Os complexes to the point where the isotopic integrity of the geochronometer is compromised. The mobility of individual Re and Os isotopes and the decoupling possibilities between radiogenic 187Os produced from 187Re remain elusive, but their recognition in this study is a critical first step. Re and Os correlate strongly with Mo and Cd in the asphaltene sub-fractions, suggesting that these metals occupy similar sites. Re-Os and Ni-V budgets also show some similarities, indicating that at least some Re (and possibly Os) could be present in metalloporphyrin form. We conclude that progressive asphaltene precipitation during migration and mixing of oils can change the isotopic ratios of the resultant oil. A sense of process is key to interpretation of Re-Os data for tar mats and live oils, whether isochronous or scattered datasets result. Optimally, by combining data from source rocks, oils, and asphaltenes generated along the migration pathway, we can construct temporal histories for whole petroleum systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel
2015-05-21
Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a highmore » fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).« less
Li, Yu; Liu, Yuanyuan; Li, Shuai; Liang, Gang; Jiang, Chen; Hu, Qingxi
2016-01-01
Alginate tubular fiber has been successfully prepared via coaxial fluid crosslink mode, which is potentially used for the construction of vascularized tissue engineering scaffolds (VTES). However, its elastic and smooth surface is negative for the adhesion of fibers. In this study, the gel fractions were controlled in a novel way of two-step crosslink process in order to meet the needs of each processing link. Based on such consideration, an appropriate formulation was selected to direct write single fiber, which ensured the tubular structure with enough gel portion as well as adhesion between fibers with the reserved sol. Finally, the integrity of the scaffolds had a further development within the 2nd crosslink bath process, which would help to solve the question of poor shear resistance for hydrogel scaffolds. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Parameterization and scaling of Arctic ice conditions in the context of ice-atmosphere processes
NASA Technical Reports Server (NTRS)
Barry, R. G.; Heinrichs, J.; Steffen, K.; Maslanik, J. A.; Key, J.; Serreze, M. C.; Weaver, R. W.
1994-01-01
This report summarizes achievements during year three of our project to investigate the use of ERS-1 SAR data to study Arctic ice and ice/atmosphere processes. The project was granted a one year extension, and goals for the final year are outlined. The specific objects of the project are to determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space; determine whether SAR data might be used to calibrate ice concentration estimates from medium and low-rate bit sensors (AVHRR and DMSP-OLS) and the special sensor microwave imager (SSM/I); and investigate methods to integrate SAR data for turbulent heat flux parametrization at the atmosphere interface with other satellite data.
White matter integrity and processing speed in sickle cell anemia.
Stotesbury, Hanne; Kirkham, Fenella J; Kölbel, Melanie; Balfour, Philippa; Clayden, Jonathan D; Sahota, Sati; Sakaria, Simrat; Saunders, Dawn E; Howard, Jo; Kesse-Adu, Rachel; Inusa, Baba; Pelidis, Maria; Chakravorty, Subarna; Rees, David C; Awogbade, Moji; Wilkey, Olu; Layton, Mark; Clark, Christopher A; Kawadler, Jamie M
2018-05-11
The purpose of this retrospective cross-sectional study was to investigate whether changes in white matter integrity are related to slower processing speed in sickle cell anemia. Thirty-seven patients with silent cerebral infarction, 46 patients with normal MRI, and 32 sibling controls (age range 8-37 years) underwent cognitive assessment using the Wechsler scales and 3-tesla MRI. Tract-based spatial statistics analyses of diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) parameters were performed. Processing speed index (PSI) was lower in patients than controls by 9.34 points (95% confidence interval: 4.635-14.855, p = 0.0003). Full Scale IQ was lower by 4.14 scaled points (95% confidence interval: -1.066 to 9.551, p = 0.1), but this difference was abolished when PSI was included as a covariate ( p = 0.18). There were no differences in cognition between patients with and without silent cerebral infarction, and both groups had lower PSI than controls (both p < 0.001). In patients, arterial oxygen content, socioeconomic status, age, and male sex were identified as predictors of PSI, and correlations were found between PSI and DTI scalars (fractional anisotropy r = 0.614, p < 0.00001; r = -0.457, p < 0.00001; mean diffusivity r = -0.341, p = 0.0016; radial diffusivity r = -0.457, p < 0.00001) and NODDI parameters (intracellular volume fraction r = 0.364, p = 0.0007) in widespread regions. Our results extend previous reports of impairment that is independent of presence of infarction and may worsen with age. We identify processing speed as a vulnerable domain, with deficits potentially mediating difficulties across other domains, and provide evidence that reduced processing speed is related to the integrity of normal-appearing white matter using microstructure parameters from DTI and NODDI. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
A new method for determining the plasma electron density using three-color interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, Hiroyuki; Kawano, Yasunori; Itami, Kiyoshi
2012-06-15
A new method for determining the plasma electron density using the fractional fringes on three-color interferometer is proposed. Integrated phase shift on each interferometer is derived without using the temporal history of the fractional fringes. The dependence on the fringe resolution and the electrical noise are simulated on the wavelengths of CO{sub 2} laser. Short-time integrations of the fractional fringes enhance the reliability of this method.
NASA Astrophysics Data System (ADS)
Tuganbaev, A. A.
1982-04-01
This paper studies integrally closed rings. It is shown that a semiprime integrally closed Goldie ring is the direct product of a semisimple artinian ring and a finite number of integrally closed invariant domains that are classically integrally closed in their (division) rings of fractions. It is shown also that an integrally closed ring has a classical ring of fractions and is classically integrally closed in it.Next, integrally closed noetherian rings are considered. It is shown that an integrally closed noetherian ring all of whose nonzero prime ideals are maximal is either a quasi-Frobenius ring or a hereditary invariant domain.Finally, those noetherian rings all of whose factor rings are invariant are described, and the connection between integrally closed rings and distributive rings is examined.Bibliography: 13 titles.
Integrated anaerobic/aerobic biological treatment for intensive swine production.
Bortone, Giuseppe
2009-11-01
Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.
Effect of centrifugal fractionation protocols on quality and recovery rate of equine sperm.
Edmond, A J; Brinsko, S P; Love, C C; Blanchard, T L; Teague, S R; Varner, D D
2012-03-15
Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used. Copyright © 2012 Elsevier Inc. All rights reserved.
Duguid, K B; Montross, M D; Radtke, C W; Crofcheck, C L; Wendt, L M; Shearer, S A
2009-11-01
Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.
Fractional calculus in bioengineering, part 3.
Magin, Richard L
2004-01-01
Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub-threshold nerve propagation. By expanding the range of mathematical operations to include fractional calculus, we can develop new and potentially useful functional relationships for modeling complex biological systems in a direct and rigorous manner. In Part 2 of this review (Crit Rev Biomed Eng 2004; 32(1):105-193), fractional calculus was applied to problems in nerve stimulation, dielectric relaxation, and viscoelastic materials by extending the governing differential equations to include fractional order terms. In this third and final installment, we consider distributed systems that represent shear stress in fluids, heat transfer in uniform one-dimensional media, and subthreshold nerve depolarization. Classic electrochemical analysis and impedance spectroscopy are also reviewed from the perspective of fractional calculus, and selected examples from recent studies in neuroscience, bioelectricity, and tissue biomechanics are analyzed to illustrate the vitality of the field.
Precision cast vs. wrought superalloys
NASA Technical Reports Server (NTRS)
Tien, J. K.; Borofka, J. C.; Casey, M. E.
1986-01-01
While cast polycrystalline superalloys recommend themselves in virtue of better 'buy-to-fly' ratios and higher strengthening gamma-prime volume fractions than those of wrought superalloys, the expansion of their use into such critical superalloy applications as gas turbine hot section components has been slowed by insufficient casting process opportunities for microstructural control. Attention is presently drawn, however, to casting process developments facilitating the production of defect-tolerant superalloy castings having improved fracture reliability. Integrally bladed turbine wheel and thin-walled turbine exhaust case near-net-shape castings have been produced by these means.
Liu, Haipeng; Yu, Jia; Qiao, Rui; Zhou, Mi; Yang, Yongtao; Zhou, Jian; Xie, Peng
2016-01-01
The enormous depth complexity of the human plasma proteome poses a significant challenge for current mass spectrometry-based proteomic technologies in terms of detecting low-level proteins in plasma, which is essential for successful biomarker discovery efforts. Typically, a single-step analytical approach cannot reduce this intrinsic complexity. Current simplex immunodepletion techniques offer limited capacity for detecting low-abundance proteins, and integrated strategies are thus desirable. In this respect, we developed an improved strategy for analyzing the human plasma proteome by integrating polyethylene glycol (PEG) fractionation with immunoaffinity depletion. PEG fractionation of plasma proteins is simple, rapid, efficient, and compatible with a downstream immunodepletion step. Compared with immunodepletion alone, our integrated strategy substantially improved the proteome coverage afforded by PEG fractionation. Coupling this new protocol with liquid chromatography-tandem mass spectrometry, 135 proteins with reported normal concentrations below 100 ng/mL were confidently identified as common low-abundance proteins. A side-by-side comparison indicated that our integrated strategy was increased by average 43.0% in the identification rate of low-abundance proteins, relying on an average 65.8% increase of the corresponding unique peptides. Further investigation demonstrated that this combined strategy could effectively alleviate the signal-suppressive effects of the major high-abundance proteins by affinity depletion, especially with moderate-abundance proteins after incorporating PEG fractionation, thereby greatly enhancing the detection of low-abundance proteins. In sum, the newly developed strategy of incorporating PEG fractionation to immunodepletion methods can potentially aid in the discovery of plasma biomarkers of therapeutic and clinical interest. PMID:27832179
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
A non-local model of fractional heat conduction in rigid bodies
NASA Astrophysics Data System (ADS)
Borino, G.; di Paola, M.; Zingales, M.
2011-03-01
In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.
Multifractal detrending moving-average cross-correlation analysis
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Zhou, Wei-Xing
2011-07-01
There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis (MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents hxy extracted from the MFXDMA and MFXDFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q<0 and underperforms when q>0. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of hxy(q) since its hxy(2) is closest to 0.5, as expected, and the MFXDFA algorithm has the second best performance. For the volatilities, the forward and backward MFXDMA algorithms give similar results, while the centered MFXDMA and the MFXDFA algorithms fail to extract rational multifractal nature.
Measurement of Γee ×Bμμ for ψ(2S) meson
NASA Astrophysics Data System (ADS)
Anashin, V. V.; Anchugov, O. V.; Aulchenko, V. M.; Baldin, E. M.; Baranov, G. N.; Barladyan, A. K.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Baru, S. E.; Basok, I. Yu.; Batrakov, A. M.; Bekhtenev, E. A.; Blinov, A. E.; Blinov, V. E.; Bobrov, A. V.; Bobrovnikov, V. S.; Bogomyagkov, A. V.; Bondar, A. E.; Buzykaev, A. R.; Cheblakov, P. B.; Dorohov, V. L.; Eidelman, S. I.; Grigoriev, D. N.; Glukhov, S. A.; Karnaev, S. E.; Karpov, G. V.; Karpov, S. V.; Karukina, K. Yu.; Kashtankin, D. P.; Kharlamova, T. A.; Kiselev, V. A.; Kolmogorov, V. V.; Kononov, S. A.; Kotov, K. Yu.; Krasnov, A. A.; Kravchenko, E. A.; Kudryavtsev, V. N.; Kulikov, V. F.; Kurkin, G. Ya.; Kuyanov, I. A.; Kuper, E. A.; Levichev, E. B.; Maksimov, D. A.; Malyshev, V. M.; Maslennikov, A. L.; Meshkov, O. I.; Mishnev, S. I.; Morozov, I. A.; Morozov, I. I.; Muchnoi, N. Yu.; Nikitin, S. A.; Nikolaev, I. B.; Okunev, I. N.; Onuchin, A. P.; Oreshkin, S. B.; Osipov, A. A.; Ovtin, I. V.; Peleganchuk, S. V.; Pivovarov, S. G.; Piminov, P. A.; Petrov, V. V.; Prisekin, V. G.; Rezanova, O. L.; Ruban, A. A.; Savinov, G. A.; Shamov, A. G.; Shatilov, D. N.; Shvedov, D. A.; Shwartz, B. A.; Simonov, E. A.; Sinyatkin, S. V.; Skrinsky, A. N.; Sokolov, A. V.; Sukhanov, D. P.; Sukharev, A. M.; Starostina, E. V.; Talyshev, A. A.; Tayursky, V. A.; Telnov, V. I.; Tikhonov, Yu. A.; Todyshev, K. Yu.; Tribendis, A. G.; Tumaikin, G. M.; Usov, Yu. V.; Vorobiov, A. I.; Zhilich, V. N.; Zhukov, A. A.; Zhulanov, V. V.; Zhuravlev, A. N.
2018-06-01
The product of the electronic width of the ψ(2S) meson and the branching fraction of its decay to the muon pair was measured in the e+e- → ψ(2S) →μ+μ- process using nine data sets corresponding to an integrated luminosity of about 6.5 pb-1 collected with the KEDR detector at the VEPP-4M electron-positron collider:
Corton, John; Toop, Trisha; Walker, Jonathan; Donnison, Iain S; Fraser, Mariecia D
2014-10-01
The integrated generation of solid fuel and biogas from biomass (IFBB) system is an innovative approach to maximising energy conversion from low input high diversity (LIHD) biomass. In this system water pre-treated and ensiled LIHD biomass is pressed. The press fluid is anaerobically digested to produce methane that is used to power the process. The fibrous fraction is densified and then sold as a combustion fuel. Two process options designed to concentrate the press fluid were assessed to ascertain their influence on productivity in an IFBB like system: sedimentation and the omission of pre-treatment water. By concentrating press fluid and not adding water during processing, energy production from methane was increased by 75% per unit time and solid fuel productivity increased by 80% per unit of fluid produced. The additional energy requirements for pressing more biomass in order to generate equal volumes of feedstock were accounted for in these calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.
An application of fractional integration to a long temperature series
NASA Astrophysics Data System (ADS)
Gil-Alana, L. A.
2003-11-01
Some recently proposed techniques of fractional integration are applied to a long UK temperature series. The tests are valid under general forms of serial correlation and do not require estimation of the fractional differencing parameter. The results show that central England temperatures have increased about 0.23 °C per 100 years in recent history. Attempting to summarize the conclusions for each of the months, we are left with the impression that the highest increase has occurred during the months from October to March.
Kehili, Mouna; Schmidt, Lisa Marie; Reynolds, Wienke; Zammel, Ayachi; Zetzl, Carsten; Smirnova, Irina; Allouche, Noureddine; Sayadi, Sami
2016-01-01
In today's consumer perception of industrial processes and food production, aspects like food quality, human health, environmental safety, and energy security have become the keywords. Therefore, much effort has been extended toward adding value to biowastes of agri-food industries through biorefinery processing approaches. This study focused, for the first time, on the valorization of tomato by-products of a Tunisian industry for the recovery of value-added compounds using biorefinery cascade processing. The process integrated supercritical CO 2 extraction of carotenoids within the oil fractions from tomato seeds (TS) and tomato peels (TP), followed by a batch isolation of protein from the residues. The remaining lignocellulosic matter from both fractions was then submitted to a liquid hot water (LHW) hydrolysis. Supercritical CO 2 experiments extracted 5.79% oleoresin, 410.53 mg lycopene/kg, and 31.38 mg β-carotene/kg from TP and 26.29% oil, 27.84 mg lycopene/kg, and 5.25 mg β-carotene/kg from TS, on dry weights. Protein extraction yields, nearing 30% of the initial protein contents equal to 13.28% in TP and 39.26% in TS, revealed that TP and TS are a rich source of essential amino acids. LHW treatment run at 120-200 °C, 50 bar for 30 min showed that a temperature of 160 °C was the most convenient for cellulose and hemicellulose hydrolysis from TP and TS, while keeping the degradation products low. Results indicated that tomato by-products are not only a green source of lycopene-rich oleoresin and tomato seed oil (TSO) and of protein with good nutritional quality but also a source of lignocellulosic matter with potential for bioethanol production. This study would provide an important reference for the concept and the feasibility of the cascade fractionation of valuable compounds from tomato industrial by-products.Graphical abstractSchema of biorefinery cascade processing of tomato industrial by-products toward isolation of valuable fractions.
Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
Sardar, Tridip; Saha, Bapi
2017-06-01
In the last few years, fractional order derivatives have been used in epidemiology to capture the memory phenomena. However, these models do not have proper biological justification in most of the cases and lack a derivation from a stochastic process. In this present manuscript, using theory of a stochastic process, we derived a general time dependent single strain vector borne disease model. It is shown that under certain choice of time dependent transmission kernel this model can be converted into the classical integer order system. When the time-dependent transmission follows a power law form, we showed that the model converted into a vector borne disease model with fractional order transmission. We explicitly derived the disease-free and endemic equilibrium of this new fractional order vector borne disease model. Using mathematical properties of nonlinear Volterra type integral equation it is shown that the unique disease-free state is globally asymptotically stable under certain condition. We define a threshold quantity which is epidemiologically known as the basic reproduction number (R 0 ). It is shown that if R 0 > 1, then the derived fractional order model has a unique endemic equilibrium. We analytically derived the condition for the local stability of the endemic equilibrium. To test the model capability to capture real epidemic, we calibrated our newly proposed model to weekly dengue incidence data of San Juan, Puerto Rico for the time period 30th April 1994 to 23rd April 1995. We estimated several parameters, including the order of the fractional derivative of the proposed model using aforesaid data. It is shown that our proposed fractional order model can nicely capture real epidemic. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, Jack R.
Catalytic hydroprocessing of pyrolysis oils from biomass produces hydrocarbons that can be considered for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. A comprehensive understanding of product oils is useful to optimize cost versus degree of deoxygenation. Additionally, a better understanding of the chemical composition of the distillate fractions can open up other uses of upgraded oils for potentially higher-value chemical streams. We present in this paper the characterization data for five well-defined distillate fractions of two hydroprocessed oils withmore » different oxygen levels: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. Elemental analysis and 13C NMR results suggest that the distillate fractions become more aromatic/unsaturated as they become heavier. Our results also show that the use of sulfided catalysts directly affects the S content of the lightest distillate fraction. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. PIONA analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. These results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less
Miles, P C
1999-03-20
An optical diagnostic system based on line imaging of Raman-scattered light has been developed to study the mixing processes in internal combustion engines. The system permits multipoint, single laser-shot measurements of CO(2), O(2), N(2), C(3)H(8), and H(2)O mole fractions with submillimeter spatial resolution. Selection of appropriate system hardware is discussed, as are subsequent data reduction and analysis procedures. Results are reported for data obtained at multiple crank angles and in two different engine flow fields. Measurements are made at 12 locations simultaneously, each location having measurement volume dimensions of 0.5 mm x 0.5 mm x 0.9 mm. The data are analyzed to obtain statistics of species mole fractions: mean, rms, histograms, and both spatial and cross-species covariance functions. The covariance functions are used to quantify the accuracy of the measured rms mole fraction fluctuations, to determine the integral length scales of the mixture inhomogeneities, and to quantify the cycle-to-cycle fluctuations in bulk mixture composition under well-mixed conditions.
Developmental Changes in the Whole Number Bias
ERIC Educational Resources Information Center
Braithwaite, David W.; Siegler, Robert S.
2017-01-01
Many students' knowledge of fractions is adversely affected by whole number bias, the tendency to focus on the separate whole number components (numerator and denominator) of a fraction rather than on the fraction's integrated magnitude (ratio of numerator to denominator). Although whole number bias appears early in the fraction learning process…
Fraction Development in Children: Importance of Building Numerical Magnitude Understanding
ERIC Educational Resources Information Center
Jordan, Nancy C.; Carrique, Jessica; Hansen, Nicole; Resnick, Ilyse
2016-01-01
This chapter situates fraction learning within the integrated theory of numerical development. We argue that the understanding of numerical magnitudes for whole numbers as well as for fractions is critical to fraction learning in particular and mathematics achievement more generally. Results from the Delaware Longitudinal Study, which examined…
Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T
2013-01-01
To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years) underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years) underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex) was performed. Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05) than controls (4 had scores in the clinically significant range). Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively). There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic radiations of children with mild to moderate or no visual impairment raises questions as to the pathogenesis of these changes which will need to be addressed by future studies.
NASA Astrophysics Data System (ADS)
Azarov, A. V.; Zhukova, N. S.; Kozlovtseva, E. Yu; Dobrinsky, D. R.
2018-05-01
The article considers obtaining mathematical models to assess the efficiency of the dust collectors using an integrated system of analysis and data management STATISTICA Design of Experiments. The procedure for obtaining mathematical models and data processing is considered by the example of laboratory studies on a mounted installation containing a dust collector in counter-swirling flows (CSF) using gypsum dust of various fractions. Planning of experimental studies has been carried out in order to reduce the number of experiments and reduce the cost of experimental research. A second-order non-position plan (Box-Bencken plan) was used, which reduced the number of trials from 81 to 27. The order of statistical data research of Box-Benken plan using standard tools of integrated system for analysis and data management STATISTICA Design of Experiments is considered. Results of statistical data processing with significance estimation of coefficients and adequacy of mathematical models are presented.
Jackson, B Scott
2004-10-01
Many different types of integrate-and-fire models have been designed in order to explain how it is possible for a cortical neuron to integrate over many independent inputs while still producing highly variable spike trains. Within this context, the variability of spike trains has been almost exclusively measured using the coefficient of variation of interspike intervals. However, another important statistical property that has been found in cortical spike trains and is closely associated with their high firing variability is long-range dependence. We investigate the conditions, if any, under which such models produce output spike trains with both interspike-interval variability and long-range dependence similar to those that have previously been measured from actual cortical neurons. We first show analytically that a large class of high-variability integrate-and-fire models is incapable of producing such outputs based on the fact that their output spike trains are always mathematically equivalent to renewal processes. This class of models subsumes a majority of previously published models, including those that use excitation-inhibition balance, correlated inputs, partial reset, or nonlinear leakage to produce outputs with high variability. Next, we study integrate-and-fire models that have (nonPoissonian) renewal point process inputs instead of the Poisson point process inputs used in the preceding class of models. The confluence of our analytical and simulation results implies that the renewal-input model is capable of producing high variability and long-range dependence comparable to that seen in spike trains recorded from cortical neurons, but only if the interspike intervals of the inputs have infinite variance, a physiologically unrealistic condition. Finally, we suggest a new integrate-and-fire model that does not suffer any of the previously mentioned shortcomings. By analyzing simulation results for this model, we show that it is capable of producing output spike trains with interspike-interval variability and long-range dependence that match empirical data from cortical spike trains. This model is similar to the other models in this study, except that its inputs are fractional-gaussian-noise-driven Poisson processes rather than renewal point processes. In addition to this model's success in producing realistic output spike trains, its inputs have long-range dependence similar to that found in most subcortical neurons in sensory pathways, including the inputs to cortex. Analysis of output spike trains from simulations of this model also shows that a tight balance between the amounts of excitation and inhibition at the inputs to cortical neurons is not necessary for high interspike-interval variability at their outputs. Furthermore, in our analysis of this model, we show that the superposition of many fractional-gaussian-noise-driven Poisson processes does not approximate a Poisson process, which challenges the common assumption that the total effect of a large number of inputs on a neuron is well represented by a Poisson process.
Integrating Music into Math in a Virtual Reality Game: Learning Fractions
ERIC Educational Resources Information Center
Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng
2016-01-01
The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…
Universal block diagram based modeling and simulation schemes for fractional-order control systems.
Bai, Lu; Xue, Dingyü
2017-05-08
Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neil, D.J.; Bery, M.K.; El-Barbary, I.A.
1979-01-01
In 1973 it was reported that the treatment of southern pine trees with the herbicide Paraquat could induce lightwood formation with very significant increases in the extractable oleoresins and turpentine fractions. The objectives of this project included the characterization of this phenomenon, development of realistic qualitative and quantitative data on the extent of lightwood formation and the recovery of oleoresin and turpentine fractions. The principal objective was to determine if the yields of oleoresinous products and turpentine justified a stand-alone, economic wood extraction process technology, based on the utilization of whole- or complete-Paraquat-treated pine trees. The application of this technologymore » was considered to be appropriate as a sub-system of an integrated chemical process system wherein ethanol, lignin (or hydrocarbon derivatives), and sugars would be manufactured as co-products. Alternately, such extraction technology could be used as a pre-treatment operation prior to Kraft pulping processing. Yield results tended to be variable. Turpentine increases ranged from 2- to 4-fold on a merchantable bole basis with increases at the site of injection as high as 12-fold. The distribution of the turpentine content in Paraquat-treated trees, as well as for extractives content, decreased to normal background levels at about six feet above the wound site. Oleoresin content increases normally ranged from 2 to 3 fold with a maximum total extractables content (or yield) of about 8% on a dry weight basis. Under current conditions, the phenomenon of lightwood formation in mature trees may best be exploited in pulp process plants.« less
2010-04-01
energy a fish can devote to growth being the difference between consumption in the form of food and the sum of life process expenditures , including...can incur an elemental deficit, and subsequently retain higher fractions of that element when it is in abun- dance to regain the target composition...Organic nitrogen and caloric content of detritus. Estuarine, Coastal, and Shelf Science 12: 39-47
Arnell, Magnus; Astals, Sergi; Åmand, Linda; Batstone, Damien J; Jensen, Paul D; Jeppsson, Ulf
2016-07-01
Anaerobic co-digestion is an emerging practice at wastewater treatment plants (WWTPs) to improve the energy balance and integrate waste management. Modelling of co-digestion in a plant-wide WWTP model is a powerful tool to assess the impact of co-substrate selection and dose strategy on digester performance and plant-wide effects. A feasible procedure to characterise and fractionate co-substrates COD for the Benchmark Simulation Model No. 2 (BSM2) was developed. This procedure is also applicable for the Anaerobic Digestion Model No. 1 (ADM1). Long chain fatty acid inhibition was included in the ADM1 model to allow for realistic modelling of lipid rich co-substrates. Sensitivity analysis revealed that, apart from the biodegradable fraction of COD, protein and lipid fractions are the most important fractions for methane production and digester stability, with at least two major failure modes identified through principal component analysis (PCA). The model and procedure were tested on bio-methane potential (BMP) tests on three substrates, each rich on carbohydrates, proteins or lipids with good predictive capability in all three cases. This model was then applied to a plant-wide simulation study which confirmed the positive effects of co-digestion on methane production and total operational cost. Simulations also revealed the importance of limiting the protein load to the anaerobic digester to avoid ammonia inhibition in the digester and overloading of the nitrogen removal processes in the water train. In contrast, the digester can treat relatively high loads of lipid rich substrates without prolonged disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Quan-Ying; Sun, Jing-Yue; Xu, Xing-Jian; Yu, Hong-Wen
2018-06-20
Because the extensive use of Cu-based fungicides, the accumulation of Cu in agricultural soil has been widely reported. However, little information is known about the bioavailability of Cu deriving from different fungicides in soil. This paper investigated both the distribution behaviors of Cu from two commonly used fungicides (Bordeaux mixture and copper oxychloride) during the aging process and the toxicological effects of Cu on earthworms. Copper nitrate was selected as a comparison during the aging process. The distribution process of exogenous Cu into different soil fractions involved an initial rapid retention (the first 8 weeks) and a following slow continuous retention. Moreover, Cu mainly moved from exchangeable and carbonate fractions to Fe-Mn oxides-combined fraction during the aging process. The Elovich model fit well with the available Cu aging process, and the transformation rate was in the order of Cu(NO 3 ) 2 > Bordeaux mixture > copper oxychloride. On the other hand, the biological responses of earthworms showed that catalase activities and malondialdehyde contents of the copper oxychloride treated earthworms were significantly higher than those of Bordeaux mixture treated earthworms. Also, body Cu loads of earthworms from different Cu compounds spiked soils were in the following order: copper oxychloride > Bordeaux mixture. Thus, the bioavailability of Cu from copper oxychloride in soil was significantly higher than that of Bordeaux mixture, and different Cu compounds should be taken into consideration when studying the bioavailability of Cu-based fungicides in the soil. Copyright © 2018 Elsevier Inc. All rights reserved.
Microfluidic Blood Cell Preparation: Now and Beyond
Yu, Zeta Tak For; Yong, Koh Meng Aw; Fu, Jianping
2014-01-01
Blood plays an important role in homeostatic regulation with each of its cellular components having important therapeutic and diagnostic uses. Therefore, separation and sorting of blood cells has been of a great interest to clinicians and researchers. However, while conventional methods of processing blood have been successful in generating relatively pure fractions, they are time consuming, labor intensive, and are not optimal for processing small volume blood samples. In recent years, microfluidics has garnered great interest from clinicians and researchers as a powerful technology for separating blood into different cell fractions. As microfluidics involves fluid manipulation at the microscale level, it has the potential for achieving high-resolution separation and sorting of blood cells down to a single-cell level, with an added benefit of integrating physical and biological methods for blood cell separation and analysis on the same single chip platform. This paper will first review the conventional methods of processing and sorting blood cells, followed by a discussion on how microfluidics is emerging as an efficient tool to rapidly change the field of blood cell sorting for blood-based therapeutic and diagnostic applications. PMID:24515899
ERIC Educational Resources Information Center
Prediger, Susanne; Wessel, Lena
2013-01-01
Learning situations that concentrate on conceptual understanding are particularly challenging for learners with limited proficiency in the language of instruction. This article presents an intervention on fractions for Grade 7 in which linguistic challenges and conceptual mathematical challenges were treated in an integrated way. The quantitative…
Junyong Zhu; Ronald Sabo; Xiaolin Luo
2011-01-01
This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...
Gabriel, Florence C.; Szücs, Dénes
2014-01-01
Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based either on the holistic values of fractions or on their denominators. Here, stimuli variability referred to the fact that fractions were not monotonous but diversiform. Contextual interference referred to the fact that the processing of fractions was interfered by other stimuli. To our ends, three tasks were used. In Task 1, participants compared a standard fraction 1/5 to unit fractions. This task was used as a low stimuli variability and low contextual interference task. In Task 2 stimuli variability was increased by mixing unit and non-unit fractions. In Task 3, high contextual interference was created by incorporating decimals into fractions. The RT results showed that the processing patterns of fractions were very similar for adults and children. In task 1 and task 3, only componential processing was utilzied. In contrast, both holistic processing and componential processing were utilized in task 2. These results suggest that, if individuals are presented with the opportunity to perform componential processing, both adults and children will tend to do so, even if they are faced with high variability of fractions or high contextual interference. PMID:25249995
Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szücs, Dénes
2014-01-01
Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based either on the holistic values of fractions or on their denominators. Here, stimuli variability referred to the fact that fractions were not monotonous but diversiform. Contextual interference referred to the fact that the processing of fractions was interfered by other stimuli. To our ends, three tasks were used. In Task 1, participants compared a standard fraction 1/5 to unit fractions. This task was used as a low stimuli variability and low contextual interference task. In Task 2 stimuli variability was increased by mixing unit and non-unit fractions. In Task 3, high contextual interference was created by incorporating decimals into fractions. The RT results showed that the processing patterns of fractions were very similar for adults and children. In task 1 and task 3, only componential processing was utilzied. In contrast, both holistic processing and componential processing were utilized in task 2. These results suggest that, if individuals are presented with the opportunity to perform componential processing, both adults and children will tend to do so, even if they are faced with high variability of fractions or high contextual interference.
Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon
2013-11-01
Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation, uncinate fasciculus and hippocampal portion of the cingulum bundles. Significant differences also emerged in the anterior corona radiata as well as in white matter underlying the superior, medial and inferior frontal gyri and the temporal gyri. Dual-task performance significantly correlated with fractional anisotropy measures in the middle frontal gyrus white matter and anterior corona radiata. Letter fluency indices significantly correlated with fractional anisotropy measures of the inferior frontal gyrus white matter and corpus callosum in addition to the corticospinal tracts and mean diffusivity measures in the white matter of the superior frontal gyrus. The current study demonstrates that cognitive impairment in amyotrophic lateral sclerosis is not due to generic slowing of processing speed. Moreover, different executive deficits are related to distinct prefrontal tract involvement in amyotrophic lateral sclerosis with dual-task impairment associating with dorsolateral prefrontal dysfunction and letter fluency showing greater dependence on inferolateral prefrontal dysfunction.
Condition of Mechanical Equilibrium at the Phase Interface with Arbitrary Geometry
NASA Astrophysics Data System (ADS)
Zubkov, V. V.; Zubkova, A. V.
2017-09-01
The authors produced an expression for the mechanical equilibrium condition at the phase interface within the force definition of surface tension. This equilibrium condition is the most general one from the mathematical standpoint and takes into account the three-dimensional aspect of surface tension. Furthermore, the formula produced allows describing equilibrium on the fractal surface of the interface. The authors used the fractional integral model of fractal distribution and took the fractional order integrals over Euclidean space instead of integrating over the fractal set.
Production of extreme-purity aluminum and silicon by fractional crystallization processing
NASA Astrophysics Data System (ADS)
Dawless, R. K.; Troup, R. L.; Meier, D. L.; Rohatgi, A.
1988-06-01
Large scale fractional crystallization is used commercially at Alcoa to produce extreme purity aluminum (99.999+% Al). The primary market is sputtering targets used to make interconnects for integrated circuits. For some applications the impurities uranium and thorium are reduced to less than 1 ppbw to avoid "soft errors" associated with α particle emission. The crystallization process achieves segregation coefficients which are close to theoretical at normal yields, and this, coupled with the scale of the units, allows practical production of this material. The silicon purification process involves crystallization of Si from molten aluminum alloys containing about 30% silicon. The crystallites from this process are further treated to remove residual Al and an extreme purity ingot is obtained. This material is considered suitable for single crystal or ribbon type photovoltaic cells and for certain IC applications, including highly doped substrates used for epitaxial growth. In production of both extreme purity Al and Si, impurities are rejected to the remaining melt as the crystals form and some separation is achieved by draining this downgraded melt from the unit. Purification of this downgrade by crystallization has also been demonstrated for both systems and is important for achieving high recoveries.
Xie, Yuanlong; Tang, Xiaoqi; Song, Bao; Zhou, Xiangdong; Guo, Yixuan
2018-04-01
In this paper, data-driven adaptive fractional order proportional integral (AFOPI) control is presented for permanent magnet synchronous motor (PMSM) servo system perturbed by measurement noise and data dropouts. The proposed method directly exploits the closed-loop process data for the AFOPI controller design under unknown noise distribution and data missing probability. Firstly, the proposed method constructs the AFOPI controller tuning problem as a parameter identification problem using the modified l p norm virtual reference feedback tuning (VRFT). Then, iteratively reweighted least squares is integrated into the l p norm VRFT to give a consistent compensation solution for the AFOPI controller. The measurement noise and data dropouts are estimated and eliminated by feedback compensation periodically, so that the AFOPI controller is updated online to accommodate the time-varying operating conditions. Moreover, the convergence and stability are guaranteed by mathematical analysis. Finally, the effectiveness of the proposed method is demonstrated both on simulations and experiments implemented on a practical PMSM servo system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiryakova, Virginia S.
2012-11-01
The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order. Throughout the survey, we illustrate the parallels in the relationships: Laplace type integral transforms - special functions as kernels - operators of generalized integration and differentiation generated by special functions - special functions as solutions of related differential equations. The role of the so-called Special Functions of Fractional Calculus is emphasized.
Fractional Poisson Fields and Martingales
NASA Astrophysics Data System (ADS)
Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely
2018-02-01
We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.
Levi-Civita cylinders with fractional angular deficit
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2011-05-01
The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index α. When the fractional index is continued into the negative α region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.
NASA Astrophysics Data System (ADS)
Ha, Sanghyun; Park, Junshin; You, Donghyun
2017-11-01
Utility of the computational power of modern Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. Due to its serial and bandwidth-bound nature, the present choice of numerical methods is considered to be a good candidate for evaluating the potential of GPUs for solving Navier-Stokes equations using non-explicit time integration. An efficient algorithm is presented for GPU acceleration of the Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution method used in the semi-implicit fractional-step method. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while Navier-Stokes equations are computed on a GPU. Extension to multiple NVIDIA GPUs is implemented using NVLink supported by the Pascal architecture. Performance of the present method is experimented on multiple Tesla P100 GPUs compared with a single-core Xeon E5-2650 v4 CPU in simulations of boundary-layer flow over a flat plate. Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (Ministry of Science, ICT and Future Planning NRF-2016R1E1A2A01939553, NRF-2014R1A2A1A11049599, and Ministry of Trade, Industry and Energy 201611101000230).
Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK
Wang, Qin; Downey, Gregory P.; McCulloch, Christopher A.
2011-01-01
In connective tissue cells, IL-1-induced ERK activation leading to matrix metalloproteinase (MMP)-3 expression is dependent on cooperative interactions between focal adhesions and the endoplasmic reticulum (ER). As Ras can be activated on the ER, we investigated the role of Ras in IL-1 signaling and focal adhesion formation. We found that constitutively active H-Ras, K-Ras or N-Ras enhanced focal adhesion maturation and β1-integrin activation. IL-1 promoted the accumulation of Ras isoforms in ER and focal adhesion fractions, as shown in cells cotransfected with GFP-tagged Ras isoforms and YFP-ER protein and by analysis of subcellular fractions enriched for ER or focal adhesion proteins. Dominant-negative H-Ras or K-Ras reduced accumulation of H-Ras and K-Ras in focal adhesions induced by IL-1 and also blocked ERK activation and focal adhesion maturation. Ras-GRF was enriched constitutively in focal adhesion fractions and was required for Ras recruitment to focal adhesions. We conclude that Ras activation and IL-1 signaling are interactive processes that regulate the maturation of focal adhesions, which, in turn, is required for ERK activation.—Wang, Q., Downey, G. P., McCulloch, C. A. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK. PMID:21719512
Off-Line Quality Control In Integrated Circuit Fabrication Using Experimental Design
NASA Astrophysics Data System (ADS)
Phadke, M. S.; Kackar, R. N.; Speeney, D. V.; Grieco, M. J.
1987-04-01
Off-line quality control is a systematic method of optimizing production processes and product designs. It is widely used in Japan to produce high quality products at low cost. The method was introduced to us by Professor Genichi Taguchi who is a Deming-award winner and a former Director of the Japanese Academy of Quality. In this paper we will i) describe the off-line quality control method, and ii) document our efforts to optimize the process for forming contact windows in 3.5 Aim CMOS circuits fabricated in the Murray Hill Integrated Circuit Design Capability Laboratory. In the fabrication of integrated circuits it is critically important to produce contact windows of size very near the target dimension. Windows which are too small or too large lead to loss of yield. The off-line quality control method has improved both the process quality and productivity. The variance of the window size has been reduced by a factor of four. Also, processing time for window photolithography has been substantially reduced. The key steps of off-line quality control are: i) Identify important manipulatable process factors and their potential working levels. ii) Perform fractional factorial experiments on the process using orthogonal array designs. iii) Analyze the resulting data to determine the optimum operating levels of the factors. Both the process mean and the process variance are considered in this analysis. iv) Conduct an additional experiment to verify that the new factor levels indeed give an improvement.
Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.; ...
2017-04-06
We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.
We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less
On some new properties of fractional derivatives with Mittag-Leffler kernel
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Fernandez, Arran
2018-06-01
We establish a new formula for the fractional derivative with Mittag-Leffler kernel, in the form of a series of Riemann-Liouville fractional integrals, which brings out more clearly the non-locality of fractional derivatives and is easier to handle for certain computational purposes. We also prove existence and uniqueness results for certain families of linear and nonlinear fractional ODEs defined using this fractional derivative. We consider the possibility of a semigroup property for these derivatives, and establish extensions of the product rule and chain rule, with an application to fractional mechanics.
Bildirici, Melike; Ersin, Özgür
2014-01-01
The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.
Bildirici, Melike; Ersin, Özgür
2014-01-01
The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications. PMID:24977200
Step-by-step integration for fractional operators
NASA Astrophysics Data System (ADS)
Colinas-Armijo, Natalia; Di Paola, Mario
2018-06-01
In this paper, an approach based on the definition of the Riemann-Liouville fractional operators is proposed in order to provide a different discretisation technique as alternative to the Grünwald-Letnikov operators. The proposed Riemann-Liouville discretisation consists of performing step-by-step integration based upon the discretisation of the function f(t). It has been shown that, as f(t) is discretised as stepwise or piecewise function, the Riemann-Liouville fractional integral and derivative are governing by operators very similar to the Grünwald-Letnikov operators. In order to show the accuracy and capabilities of the proposed Riemann-Liouville discretisation technique and the Grünwald-Letnikov discrete operators, both techniques have been applied to: unit step functions, exponential functions and sample functions of white noise.
Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs
NASA Astrophysics Data System (ADS)
Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.
2013-12-01
Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.
Merrikh-Bayat, Farshad
2017-05-01
In this paper first the Multi-term Fractional-Order PID (MFOPID) whose transfer function is equal to [Formula: see text] , where k j and α j are unknown and known real parameters respectively, is introduced. Without any loss of generality, a special form of MFOPID with transfer function k p +k i /s+k d1 s+k d2 s μ where k p , k i , k d1 , and k d2 are unknown real and μ is a known positive real parameter, is considered. Similar to PID and TID, MFOPID is also linear in its parameters which makes it possible to study all of them in a same framework. Tuning the parameters of PID, TID, and MFOPID based on loop shaping using Linear Matrix Inequalities (LMIs) is discussed. For this purpose separate LMIs for closed-loop stability (of sufficient type) and adjusting different aspects of the open-loop frequency response are developed. The proposed LMIs for stability are obtained based on the Nyquist stability theorem and can be applied to both integer and fractional-order (not necessarily commensurate) processes which are either stable or have one unstable pole. Numerical simulations show that the performance of the four-variable MFOPID can compete the trivial five-variable FOPID and often excels PID and TID. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario
White Matter Changes and Confrontation Naming in Retired Aging National Football League Athletes.
Strain, Jeremy F; Didehbani, Nyaz; Spence, Jeffrey; Conover, Heather; Bartz, Elizabeth K; Mansinghani, Sethesh; Jeroudi, Myrtle K; Rao, Neena K; Fields, Lindy M; Kraut, Michael A; Cullum, C Munro; Hart, John; Womack, Kyle B
2017-01-15
Using diffusion tensor imaging (DTI), we assessed the relationship of white matter integrity and performance on the Boston Naming Test (BNT) in a group of retired professional football players and a control group. We examined correlations between fractional anisotropy (FA) and mean diffusivity (MD) with BNT T-scores in an unbiased voxelwise analysis processed with tract-based spatial statistics (TBSS). We also analyzed the DTI data by grouping voxels together as white matter tracts and testing each tract's association with BNT T-scores. Significant voxelwise correlations between FA and BNT performance were only seen in the retired football players (p < 0.02). Two tracts had mean FA values that significantly correlated with BNT performance: forceps minor and forceps major. White matter integrity is important for distributed cognitive processes, and disruption correlates with diminished performance in athletes exposed to concussive and subconcussive brain injuries, but not in controls without such exposure.
USDA-ARS?s Scientific Manuscript database
Soil organic matter is conventionally extracted through either physical or chemical means. The benefits of integrating both approaches into one fractionation procedure were evaluated on an Iowa corn-soybean soil used for a cover crop study. The light fraction was first extracted from the 0-5 cm soil...
Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials
Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane
2014-01-01
In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293
NASA Astrophysics Data System (ADS)
Dong, Huan He; Guo, Bao Yong; Yin, Bao Shu
2016-06-01
In the paper, based on the modified Riemann-Liouville fractional derivative and Tu scheme, the fractional super NLS-MKdV hierarchy is derived, especially the self-consistent sources term is considered. Meanwhile, the generalized fractional supertrace identity is proposed, which is a beneficial supplement to the existing literature on integrable system. As an application, the super Hamiltonian structure of fractional super NLS-MKdV hierarchy is obtained.
Turner, J.; Albrechtsen, H.-J.; Bonell, M.; Duguet, J.-P.; Harris, B.; Meckenstock, R.; McGuire, K.; Moussa, R.; Peters, N.; Richnow, H.H.; Sherwood-Lollar, B.; Uhlenbrook, S.; van, Lanen H.
2006-01-01
A summary is provided of the first of a series of proposed Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, environmental chemists, microbiologists, stable isotope specialists and natural resource managers with the purpose of communicating new ideas on ways to assess microbial degradation processes and reactive transport at catchment scales. The focus was on diffuse contamination at catchment scales and the application of compound-specific isotope analysis (CSIA) in the assessment of biological degradation processes of agrochemicals. Major outcomes were identifying the linkage between water residence time distribution and rates of contaminant degradation, identifying the need for better information on compound specific microbial degradation isotope fractionation factors and the potential of CSIA in identifying key degradative processes. In the natural resource management context, a framework was developed where CSIA techniques were identified as practically unique in their capacity to serve as distributed integrating indicators of process across a range of scales (micro to diffuse) of relevance to the problem of diffuse pollution assessment. Copyright ?? 2006 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Quillen, A. C.; Holman, M.
2000-01-01
During the orbital migration of a giant extrasolar planet via ejection of planetesimals (as studied by Murray et al. in 1998), inner mean-motion resonances can be strong enough to cause planetesimals to graze or impact the star. We integrate numerically the motions of particles which pass through the 3:1 or 4:1 mean-motion resonances of a migrating Jupiter-mass planet. We find that many particles can be trapped in the 3:1 or 4:1 resonances and pumped to high enough eccentricities that they impact the star. This implies that for a planet migrating a substantial fraction of its semimajor axis, a fraction of its mass in planetesimals could impact the star. This process may be capable of enriching the metallicity of the star at a time when the star is no longer fully convective. Upon close approaches to the star, the surfaces of these planetesimals will be sublimated. Orbital migration should cause continuing production of evaporating bodies, suggesting that this process should be detectable with searches for transient absorption lines in young stars. The remainder of the particles will not impact the star but can be ejected subsequently by the planet as it migrates further inward. This allows the planet to migrate a substantial fraction of its initial semimajor axis by ejecting planetesimals.
NASA Astrophysics Data System (ADS)
Wang, Jiafeng; Fan, Xiangning; Shi, Xiaoyang; Wang, Zhigong
2017-12-01
With the rapid evolution of wireless communication technology, integrating various communication modes in a mobile terminal has become the popular trend. Because of this, multi-standard wireless technology is one of the hot spots in current research. This paper presents a wideband fractional-N frequency divider of the multi-standard wireless transceiver for many applications. High-speed divider-by-2 with traditional source-coupled-logic is designed for very wide band usage. Phase switching technique and a chain of divider-by-2/3 are applied to the programmable frequency divider with 0.5 step. The phase noise of the whole frequency synthesizer will be decreased by the narrower step of programmable frequency divider. Δ-Σ modulator is achieved by an improved MASH 1-1-1 structure. This structure has excellent performance in many ways, such as noise, spur and input dynamic range. Fabricated in TSMC 0.18μm CMOS process, the fractional-N frequency divider occupies a chip area of 1130 × 510 μm2 and it can correctly divide within the frequency range of 0.8-9 GHz. With 1.8 V supply voltage, its division ratio ranges from 62.5 to 254 and the total current consumption is 29 mA.
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.
2009-12-01
Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.
A new approach to Ozone Depletion Potential (ODP) estimation
NASA Astrophysics Data System (ADS)
Portmann, R. W.; Daniel, J. S.; Yu, P.
2017-12-01
The Ozone Depletion Potential (ODP) is given by the time integrated global ozone loss of an ozone depleting substance (ODS) relative to a reference ODS (usually CFC-11). The ODP is used by the Montreal Protocol (and subsequent amendments) to inform policy decisions on the production of ODSs. Since the early 1990s, ODPs have usually been estimated using an approximate formulism that utilizes the lifetime and the fractional release factor of the ODS. This has the advantage that it can utilize measured concentrations of the ODSs to estimate their fractional release factors. However, there is a strong correlation between stratospheric lifetimes and fractional release factors of ODSs and that this can introduce uncertainties into ODP calculations when the terms are estimated independently. Instead, we show that the ODP is proportional to the average global ozone loss per equivalent chlorine molecule released in the stratosphere by the ODS loss process (which we call the Γ factor) and, importantly, this ratio varies only over a relatively small range ( 0.3-1.5) for ODPs with stratospheric lifetimes of 20 to more than 1,000 years. The Γ factor varies smoothly with stratospheric lifetime for ODSs with loss processes dominated by photolysis and is larger for long-lived species, while stratospheric OH loss processes produce relatively small Γs that are nearly independent of stratospheric lifetime. The fractional release approach does not accurately capture these relationships. We propose a new formulation that takes advantage of this smooth variation by parameterizing the Γ factor using ozone changes computed using the chemical climate model CESM-WACCM and the NOCAR two-dimensional model. We show that while the absolute Γ's vary between WACCM and NOCAR models, much of the difference is removed for the Γ/ΓCFC-11 ratio that is used in the ODP formula. This parameterized method simplifies the computation of ODPs while providing enhanced accuracy compared to the fractional release method and it can be used to estimate many ODPs given information on chemical reaction rates and photolysis processes.
Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo
2016-10-01
An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.
NASA Astrophysics Data System (ADS)
Jain, Shilpi; Agarwal, Praveen; Kıymaz, I. Onur; ćetinkaya, Ayá¹£egül
2018-01-01
Authors presented some composition formulae for the Marichev-Saigo-Maeda (M-S-M) fractional integral operator with the multi-index Mittag-Leffler functions. Our results are generalizes the results obtained by Choi and Agarwal [3]. Here, we record some particular cases of our main result. Finally, we obtain Laplace transforms of the composition formulae.
Cárdenas-Fernández, Max; Bawn, Maria; Hamley-Bennett, Charlotte; Bharat, Penumathsa K V; Subrizi, Fabiana; Suhaili, Nurashikin; Ward, David P; Bourdin, Sarah; Dalby, Paul A; Hailes, Helen C; Hewitson, Peter; Ignatova, Svetlana; Kontoravdi, Cleo; Leak, David J; Shah, Nilay; Sheppard, Tom D; Ward, John M; Lye, Gary J
2017-09-21
Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).
Integrated standardization concept for Angelica botanicals using quantitative NMR
Gödecke, Tanja; Yao, Ping; Napolitano, José G.; Nikolić, Dejan; Dietz, Birgit M.; Bolton, Judy L.; van Breemen, Richard B.; Farnsworth, Norman R.; Chen, Shao-Nong; Lankin, David C.; Pauli, Guido F.
2011-01-01
Despite numerous in vitro/vivo and phytochemical studies, the active constituents of Angelica sinensis (AS) have not been conclusively identified for the standardization to bioactive markers. Phytochemical analyses of AS extracts and fractions that demonstrate activity in a panel of in vitro bioassays, have repeatedly pointed to ligustilide as being (associated with) the active principle(s). Due to the chemical instability of ligustilide and related issues in GC/LC analyses, new methods capable of quantifying ligustilide in mixtures that do not rely on an identical reference standard are in high demand. This study demonstrates how NMR can satisfy the requirement for simultaneous, multi-target quantification and qualitative identification. First, the AS activity was concentrated into a single fraction by RP-solid-phase extraction, as confirmed by an (anti-)estrogenicity and cytotoxicity assay. Next, a quantitative 1H NMR (qHNMR) method was established and validated using standard compounds and comparing processing methods. Subsequent 1D/2D NMR and qHNMR analysis led to the identification and quantification of ligustilide and other minor components in the active fraction, and to the development of quality criteria for authentic AS preparations. The absolute and relative quantities of ligustilide, six minor alkyl phthalides, and groups of phenylpropanoids, polyynes, and poly-unsaturated fatty acids were measured by a combination of qHNMR and 2D COSY. The qNMR approach enables multi-target quality control of the bioactive fraction, and enables the integrated biological and chemical standardization of AS botanicals. This methodology can potentially be transferred to other botanicals with active principles that act synergistically, or that contain closely related and/or constituents, which have not been conclusively identified as the active principles. PMID:21907766
Mineralogical, chemical, and optical interrelationships of mineral dusts from desert source regions
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; Moosmüller, H.; Pincock, S.; Jayanty, J.; Casuccio, G.
2013-12-01
The goal of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected from global dust sources. Surface soil samples were previously collected from more than 64 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment facility, from which the airborne mineral dust could be sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic instrument with integrating reciprocal nephelometer for monitoring aerosol absorption and scattering coefficients during the re-suspension process. Filter sample media included Teflon membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm fractions were further mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interrelationships, of the entrained dust samples. Information from this data base will be available for research in global climate, remote sensing, visibility, and health (medical geology).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.
The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less
Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; ...
2017-03-11
The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less
A new method for calculating differential distributions directly in Mellin space
NASA Astrophysics Data System (ADS)
Mitov, Alexander
2006-12-01
We present a new method for the calculation of differential distributions directly in Mellin space without recourse to the usual momentum-fraction (or z-) space. The method is completely general and can be applied to any process. It is based on solving the integration-by-parts identities when one of the powers of the propagators is an abstract number. The method retains the full dependence on the Mellin variable and can be implemented in any program for solving the IBP identities based on algebraic elimination, like Laporta. General features of the method are: (1) faster reduction, (2) smaller number of master integrals compared to the usual z-space approach and (3) the master integrals satisfy difference instead of differential equations. This approach generalizes previous results related to fully inclusive observables like the recently calculated three-loop space-like anomalous dimensions and coefficient functions in inclusive DIS to more general processes requiring separate treatment of the various physical cuts. Many possible applications of this method exist, the most notable being the direct evaluation of the three-loop time-like splitting functions in QCD.
2014-01-01
Background Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). Results The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. Conclusions A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable. PMID:24559312
Macrelli, Stefano; Galbe, Mats; Wallberg, Ola
2014-02-21
Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable.
NASA Technical Reports Server (NTRS)
Friedrich, Craig R.; Warrington, Robert O.
1995-01-01
Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.
Gauge invariant fractional electromagnetic fields
NASA Astrophysics Data System (ADS)
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
Visualization and void-fraction measurements in a molten metal bath
NASA Astrophysics Data System (ADS)
Baker, Michael Charles
In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift-flux correlation.
Siqueira, A P; Wallgren, M; Hossain, M S; Johannisson, A; Sanz, L; Calvete, J J; Rodríguez-Martínez, H
2011-04-15
Boar sperm viability post-thaw differs depending on the ejaculate fraction used, with spermatozoa present in the first 10 mL of the sperm-rich fraction (SRF) (portion 1, P1, sperm-peak portion) displaying the best cryosurvival in vitro compared with that of spermatozoa from the rest of the ejaculate (portion 2 of the SRF plus the post-spermatic fraction), even when using simplified freezing routines. This viability apparently relates to the specific profile of seminal plasma in P1 (i.e., glycoprotein and bicarbonate concentrations, and pH). However, spermatozoa from P1 have not been compared with spermatozoa from the rest of the SRF (SRF-P1, usually 30-40 mL of the SRF), which is routinely used for freezing. We compared P1 with SRF-P1 in terms of sperm kinematics (using the QualiSperm™ system), while membrane integrity (SYBR-14/PI), acrosome integrity (FITC PNA/PI), and sperm membrane stability (Annexin-V) were explored using flow cytometry. As well, total protein concentration and the proteomics of the seminal plasma (SP) of both portions of the SRF were studied using two-dimensional electrophoresis (2DE), mass fingerprinting (MALDI-TOF), and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) on selected peptides. The SRF portions were collected weekly from four mature boars (4-5 replicates per boar, sperm concentration: P1, 1.86 ± 0.20; SRF-P1, 1.25 ± 0.14 × 10(9) spz/mL) and processed using a quick freezing method in MiniFlatPacks. Post-thaw sperm motility reached 50%, without differences between SRF portions, but with clear inter-boar variation. Neither plasma membrane nor acrosome integrity differed (ns) between fractions. These results indicate that there are no differences in cryosurvival after quick freezing of boar spermatozoa derived from either of the two SRF portions. While P1 and SRF-P1 clearly differed in relative total protein contents, as expected, they displayed very similar protein profiles as assessed using 2DE and mass spectrometry (tryptic peptide mass fingerprint analysis and CID-MS/MS), indicating a similar emission of epididymal protein content. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhang, Bitao; Pi, YouGuo
2013-07-01
The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Overton, Tim W; Lu, Tiejun; Bains, Narinder; Leeke, Gary A
Current treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO 2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk.
Novel white matter tract integrity metrics sensitive to Alzheimer disease progression.
Fieremans, E; Benitez, A; Jensen, J H; Falangola, M F; Tabesh, A; Deardorff, R L; Spampinato, M V S; Babb, J S; Novikov, D S; Ferris, S H; Helpern, J A
2013-01-01
Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82-0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r = |0.80-0.82|, P < .001). These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression.
Edelman, Mark
2015-07-01
In this paper, we consider a simple general form of a deterministic system with power-law memory whose state can be described by one variable and evolution by a generating function. A new value of the system's variable is a total (a convolution) of the generating functions of all previous values of the variable with weights, which are powers of the time passed. In discrete cases, these systems can be described by difference equations in which a fractional difference on the left hand side is equal to a total (also a convolution) of the generating functions of all previous values of the system's variable with the fractional Eulerian number weights on the right hand side. In the continuous limit, the considered systems can be described by the Grünvald-Letnikov fractional differential equations, which are equivalent to the Volterra integral equations of the second kind. New properties of the fractional Eulerian numbers and possible applications of the results are discussed.
The Magmatic Structure of Mid-ocean Ridges: Integrating Geophysical and Petrological Observations
NASA Astrophysics Data System (ADS)
Maclennan, J.; Singh, S.
Geophysical surveys, petrological observations and numerical models have all played an important role in the study of magmatic processes at mid-ocean ridges. However, few studies have attempted to integrate the constraints from both geophysical and geochemical observations in order to develop models of mid-ocean ridges. Composi- tional variation within the oceanic crust must be considered when geophysical models are interpreted in terms of variation in temperature or fluid fraction. Modellers com- monly assume that the crust is compositionally homogeneous and that the relationship between temperature and melt fraction does not vary within the crust. However, the compositions of oceanic crustal rocks collected from the Oman ophiolite vary widely and their predicted solidus temperatures vary from 9901240C and their liquidus temperatures from 12501700C. Compositional variation within the solid part of the oceanic crust causes variation in seismic velocities. At fixed temperature and pressure the compositional variation present in crustal rocks can give P-wave velocity variation of 1 km s-1 or more. This has the same effect as a temperature variation of 1500C in the solid or of a variation of 20% in the melt fraction. The importance of this petrolog- ical framework for the interpretation of the seismic structure of mid-ocean ridges and for the development of thermal models of oceanic crustal accretion is demonstrated using an example from the East Pacific Rise near 9N.
On the mathematical modeling of soccer dynamics
NASA Astrophysics Data System (ADS)
Machado, J. A. Tenreiro; Lopes, António M.
2017-12-01
This paper addresses the modeling and dynamical analysis of soccer teams. Two modeling perspectives based on the concepts of fractional calculus are adopted. In the first, the power law behavior and fractional-order integration are explored. In the second, a league season is interpreted in the light of a system where the teams are represented by objects (particles) that evolve in time and interact (collide) at successive rounds with dynamics driven by the outcomes of the matches. The two proposed models embed implicitly details of players and coaches, or strategical and tactical maneuvers during the matches. Therefore, the scale of observation focuses on the teams behavior in the scope of the observed variables. Data characterizing two European soccer leagues in the season 2015-2016 are adopted and processed. The model leads to the emergence of patterns that are analyzed and interpreted.
Statistical modelling of subdiffusive dynamics in the cytoplasm of living cells: A FARIMA approach
NASA Astrophysics Data System (ADS)
Burnecki, K.; Muszkieta, M.; Sikora, G.; Weron, A.
2012-04-01
Golding and Cox (Phys. Rev. Lett., 96 (2006) 098102) tracked the motion of individual fluorescently labelled mRNA molecules inside live E. coli cells. They found that in the set of 23 trajectories from 3 different experiments, the automatically recognized motion is subdiffusive and published an intriguing microscopy video. Here, we extract the corresponding time series from this video by image segmentation method and present its detailed statistical analysis. We find that this trajectory was not included in the data set already studied and has different statistical properties. It is best fitted by a fractional autoregressive integrated moving average (FARIMA) process with the normal-inverse Gaussian (NIG) noise and the negative memory. In contrast to earlier studies, this shows that the fractional Brownian motion is not the best model for the dynamics documented in this video.
The Fractions SNARC Revisited: Processing Fractions on a Consistent Mental Number Line.
Toomarian, Elizabeth Y; Hubbard, Edward M
2017-07-12
The ability to understand fractions is key to establishing a solid foundation in mathematics, yet children and adults struggle to comprehend them. Previous studies have suggested that these struggles emerge because people fail to process fraction magnitude holistically on the mental number line (MNL), focusing instead on fraction components (Bonato et al. 2007). Subsequent studies have produced evidence for default holistic processing (Meert et al., 2009; 2010), but examined only magnitude processing, not spatial representations. We explored the spatial representations of fractions on the MNL in a series of three experiments: Experiment 1 replicated Bonato et al. (2007); 30 naïve undergraduates compared unit fractions (1/1-1/9) to 1/5, resulting in a reverse SNARC effect. Experiment 2 countered potential strategic biases induced by the limited set of fractions used by Bonato et al. by expanding the stimulus set to include all irreducible, single-digit proper fractions, and asked participants to compare them against 1/2. We observed a classic SNARC effect, completely reversing the pattern from Experiment 1. Together, Experiments 1 and 2 demonstrate that stimulus properties dramatically impact spatial representations of fractions. In Experiment 3, we demonstrated within-subjects reliability of the SNARC effect across both a fractions and whole number comparison task. Our results suggest that adults can indeed process fraction magnitudes holistically, and that their spatial representations occur on a consistent MNL for both whole numbers and fractions.
Testing Hypotheses about Sun-Climate Complexity Linking
NASA Astrophysics Data System (ADS)
Rypdal, M.; Rypdal, K.
2010-03-01
We reexamine observational evidence presented in support of the hypothesis of a sun-climate complexity linking by N. Scafetta and B. J. West, Phys. Rev. Lett. 90, 248701 (2003)PRLTAO0031-900710.1103/PhysRevLett.90.248701, which contended that the integrated solar flare index (SFI) and the global temperature anomaly (GTA) both follow Lévy walk statistics with the same waiting-time exponent μ≈2.1. However, their analysis does not account for trends in the signal, cannot deal correctly with infinite variance processes (Lévy flights), and suffers from considering only the second moment. Our analysis shows that properly detrended, the integrated SFI is well described as a Lévy flight, and the integrated GTA as a persistent fractional Brownian motion. These very different stochastic properties of the solar and climate records do not support the hypothesis of a sun-climate complexity linking.
Mardanov, M J; Mahmudov, N I; Sharifov, Y A
2014-01-01
We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.
Generalized Functions for the Fractional Calculus
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
1999-01-01
Previous papers have used two important functions for the solution of fractional order differential equations, the Mittag-Leffler functionE(sub q)[at(exp q)](1903a, 1903b, 1905), and the F-function F(sub q)[a,t] of Hartley & Lorenzo (1998). These functions provided direct solution and important understanding for the fundamental linear fractional order differential equation and for the related initial value problem (Hartley and Lorenzo, 1999). This paper examines related functions and their Laplace transforms. Presented for consideration are two generalized functions, the R-function and the G-function, useful in analysis and as a basis for computation in the fractional calculus. The R-function is unique in that it contains all of the derivatives and integrals of the F-function. The R-function also returns itself on qth order differ-integration. An example application of the R-function is provided. A further generalization of the R-function, called the G-function brings in the effects of repeated and partially repeated fractional poles.
Hughes, Sarah A; Mahaffey, Ashley; Shore, Bryon; Baker, Josh; Kilgour, Bruce; Brown, Christine; Peru, Kerry M; Headley, John V; Bailey, Howard C
2017-11-01
Previous assessments of oil sands process-affected water (OSPW) toxicity were hampered by lack of high-resolution analytical analysis, use of nonstandard toxicity methods, and variability between OSPW samples. We integrated ultrahigh-resolution mass spectrometry with a toxicity identification evaluation (TIE) approach to quantitatively identify the primary cause of acute toxicity of OSPW to rainbow trout (Oncorhynchus mykiss). The initial characterization of OSPW toxicity indicated that toxicity was associated with nonpolar organic compounds, and toxicant(s) were further isolated within a range of discrete methanol fractions that were then subjected to Orbitrap mass spectrometry to evaluate the contribution of naphthenic acid fraction compounds to toxicity. The results showed that toxicity was attributable to classical naphthenic acids, with the potency of individual compounds increasing as a function of carbon number. Notably, the mass of classical naphthenic acids present in OSPW was dominated by carbon numbers ≤16; however, toxicity was largely a function of classical naphthenic acids with ≥17 carbons. Additional experiments found that acute toxicity of the organic fraction was similar when tested at conductivities of 400 and 1800 μmhos/cm and that rainbow trout fry were more sensitive to the organic fraction than larval fathead minnows (Pimephales promelas). Collectively, the results will aid in developing treatment goals and targets for removal of OSPW toxicity in water return scenarios both during operations and on mine closure. Environ Toxicol Chem 2017;36:3148-3157. © 2017 SETAC. © 2017 SETAC.
Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.
2003-01-01
Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.
Xue, Lu; Lin, Lin; Zhou, Wenbin; Chen, Wendong; Tang, Jun; Sun, Xiujie; Huang, Peiwu; Tian, Ruijun
2018-06-09
Plasma proteome profiling by LC-MS based proteomics has drawn great attention recently for biomarker discovery from blood liquid biopsy. Due to standard multi-step sample preparation could potentially cause plasma protein degradation and analysis variation, integrated proteomics sample preparation technologies became promising solution towards this end. Here, we developed a fully integrated proteomics sample preparation technology for both fast and deep plasma proteome profiling under its native pH. All the sample preparation steps, including protein digestion and two-dimensional fractionation by both mixed-mode ion exchange and high-pH reversed phase mechanism were integrated into one spintip device for the first time. The mixed-mode ion exchange beads design achieved the sample loading at neutral pH and protein digestion within 30 min. Potential sample loss and protein degradation by pH changing could be voided. 1 μL of plasma sample with depletion of high abundant proteins was processed by the developed technology with 12 equally distributed fractions and analyzed with 12 h of LC-MS gradient time, resulting in the identification of 862 proteins. The combination of the Mixed-mode-SISPROT and data-independent MS method achieved fast plasma proteome profiling in 2 h with high identification overlap and quantification precision for a proof-of-concept study of plasma samples from 5 healthy donors. We expect that the Mixed-mode-SISPROT become a generally applicable sample preparation technology for clinical oriented plasma proteome profiling. Copyright © 2018 Elsevier B.V. All rights reserved.
Moran, Marcel E; Luscher, Zoe I; McAdams, Harrison; Hsu, John T; Greenstein, Deanna; Clasen, Liv; Ludovici, Katharine; Lloyd, Jonae; Rapoport, Judith; Mori, Susumu; Gogtay, Nitin
2015-01-01
Diffusion tensor imaging is a neuroimaging method that quantifies white matter (WM) integrity and brain connectivity based on the diffusion of water in the brain. White matter has been hypothesized to be of great importance in the development of schizophrenia as part of the dysconnectivity model. Childhood-onset schizophrenia (COS), is a rare, severe form of the illness that resembles poor outcome adult-onset schizophrenia. We hypothesized that COS would be associated with WM abnormalities relative to a sample of controls. To evaluate WM integrity in this population 39 patients diagnosed with COS, 39 of their healthy (nonpsychotic) siblings, and 50 unrelated healthy volunteers were scanned using a diffusion tensor imaging (DTI) sequence during a 1.5 T MRI acquisition. Each DTI scan was processed via atlas-based analysis using a WM parcellation map, and diffeomorphic mapping that shapes a template atlas to each individual subject space. Fractional anisotropy (FA), a measure of WM integrity was averaged over each of the 46 regions of the atlas. Eleven WM regions were examined based on previous reports of WM growth abnormalities in COS. Of those regions, patients with COS, and their healthy siblings had significantly lower mean FA in the left and right cuneus as compared to the healthy volunteers (P < .005). Together, these findings represent the largest DTI study in COS to date, and provide evidence that WM integrity is significantly impaired in COS. Shared deficits in their healthy siblings might result from increased genetic risk. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2014.
Moran, Marcel E.; Luscher, Zoe I.; McAdams, Harrison; Hsu, John T.; Greenstein, Deanna; Clasen, Liv; Ludovici, Katharine; Lloyd, Jonae; Rapoport, Judith; Mori, Susumu; Gogtay, Nitin
2015-01-01
Background: Diffusion tensor imaging is a neuroimaging method that quantifies white matter (WM) integrity and brain connectivity based on the diffusion of water in the brain. White matter has been hypothesized to be of great importance in the development of schizophrenia as part of the dysconnectivity model. Childhood-onset schizophrenia (COS), is a rare, severe form of the illness that resembles poor outcome adult-onset schizophrenia. We hypothesized that COS would be associated with WM abnormalities relative to a sample of controls. Methods: To evaluate WM integrity in this population 39 patients diagnosed with COS, 39 of their healthy (nonpsychotic) siblings, and 50 unrelated healthy volunteers were scanned using a diffusion tensor imaging (DTI) sequence during a 1.5 T MRI acquisition. Each DTI scan was processed via atlas-based analysis using a WM parcellation map, and diffeomorphic mapping that shapes a template atlas to each individual subject space. Fractional anisotropy (FA), a measure of WM integrity was averaged over each of the 46 regions of the atlas. Eleven WM regions were examined based on previous reports of WM growth abnormalities in COS. Results: Of those regions, patients with COS, and their healthy siblings had significantly lower mean FA in the left and right cuneus as compared to the healthy volunteers (P < .005). Together, these findings represent the largest DTI study in COS to date, and provide evidence that WM integrity is significantly impaired in COS. Shared deficits in their healthy siblings might result from increased genetic risk. PMID:25217482
Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers
NASA Astrophysics Data System (ADS)
Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru
2018-06-01
The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.
2012-01-01
Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics. PMID:22410131
Developments in the Disposal of Residue from the Alumina Refining Industry
NASA Astrophysics Data System (ADS)
Cooling, D. J.
The disposal of residue forms an integral part of the alumina refining process. The refining of Western Australia bauxite, which is low grade ore by world standards, results in 2 dry tonnes of residue for every 1 tonne of alumina produced. The disposal of this residue contributes a significant proportion of the overall cost of producing alumina. The residue is also highly alkaline, and, if not contained in sealed impoundment areas, can impact on the local environment. It has been these two considerations, the cost of disposal and the potential impact of disposal on the environment, which have been the main driving forces behind changes to the way residue is stored. This paper traces the various residue disposal techniques adopted by Alcoa of Australia Limited from containment in large settling ponds, to splitting the coarse and fine fractions for separate disposal, to the storage of the fine mud fraction in base drained ponds, to the more recent pre-thickening of the fine mud fraction for disposal in solar drying ponds. The reasons for change and the problems encountered are reviewed, and possible future developments are discussed.
Oktem, Figen S; Ozaktas, Haldun M
2010-08-01
Linear canonical transforms (LCTs) form a three-parameter family of integral transforms with wide application in optics. We show that LCT domains correspond to scaled fractional Fourier domains and thus to scaled oblique axes in the space-frequency plane. This allows LCT domains to be labeled and ordered by the corresponding fractional order parameter and provides insight into the evolution of light through an optical system modeled by LCTs. If a set of signals is highly confined to finite intervals in two arbitrary LCT domains, the space-frequency (phase space) support is a parallelogram. The number of degrees of freedom of this set of signals is given by the area of this parallelogram, which is equal to the bicanonical width product but usually smaller than the conventional space-bandwidth product. The bicanonical width product, which is a generalization of the space-bandwidth product, can provide a tighter measure of the actual number of degrees of freedom, and allows us to represent and process signals with fewer samples.
Bioactive compounds from palm fatty acid distillate and crude palm oil
NASA Astrophysics Data System (ADS)
Estiasih, T.; Ahmadi, K.
2018-03-01
Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.
ERIC Educational Resources Information Center
Torbeyns, Joke; Schneider, Michael; Xin, Ziqiang; Siegler, Robert S.
2015-01-01
Numerical understanding and arithmetic skills are easier to acquire for whole numbers than fractions. The "integrated theory of numerical development" posits that, in addition to these differences, whole numbers and fractions also have important commonalities. In both, students need to learn how to interpret number symbols in terms of…
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
Partial fraction decomposition is a useful technique often taught at senior secondary or undergraduate levels to handle integrations, inverse Laplace transforms or linear ordinary differential equations, etc. In recent years, an improved Heaviside's approach to partial fraction decomposition was introduced and developed by the author. An important…
Integration through a Card-Sort Activity
ERIC Educational Resources Information Center
Green, Kris; Ricca, Bernard P.
2015-01-01
Learning to compute integrals via the various techniques of integration (e.g., integration by parts, partial fractions, etc.) is difficult for many students. Here, we look at how students in a college level Calculus II course develop the ability to categorize integrals and the difficulties they encounter using a card sort-resort activity. Analysis…
Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges
Amore, Antonella; Ciesielski, Peter N.; Lin, Chien-Yuan; ...
2016-06-06
We describe some recent developments of the biorefinery concept within this review, which focuses on the efforts required to make the lignocellulosic biorefinery a sustainable and economically viable reality. In spite of the major research and development endeavours directed towards this goal over the past several decades, the integrated production of biofuel and other bio-based products still needs to be optimized from both technical and economical perspectives. This review will highlight recent progress towards the optimization of the major biorefinery processes, including biomass pretreatment and fractionation, saccharification of sugars, and conversion of sugars and lignin into fuels and chemical precursors.more » Additionally, advances in genetic modification of biomass structure and composition for the purpose of enhancing the efficacy of conversion processes, which is emerging as a powerful tool for tailoring biomass fated for the biorefinery, will be overviewed. The continual improvement of these processes and their integration in the format of a modern biorefinery is paving the way for a sustainable bio-economy which will displace large portions of petroleum-derived fuels and chemicals with renewable substitutes.« less
Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amore, Antonella; Ciesielski, Peter N.; Lin, Chien-Yuan
We describe some recent developments of the biorefinery concept within this review, which focuses on the efforts required to make the lignocellulosic biorefinery a sustainable and economically viable reality. In spite of the major research and development endeavours directed towards this goal over the past several decades, the integrated production of biofuel and other bio-based products still needs to be optimized from both technical and economical perspectives. This review will highlight recent progress towards the optimization of the major biorefinery processes, including biomass pretreatment and fractionation, saccharification of sugars, and conversion of sugars and lignin into fuels and chemical precursors.more » Additionally, advances in genetic modification of biomass structure and composition for the purpose of enhancing the efficacy of conversion processes, which is emerging as a powerful tool for tailoring biomass fated for the biorefinery, will be overviewed. The continual improvement of these processes and their integration in the format of a modern biorefinery is paving the way for a sustainable bio-economy which will displace large portions of petroleum-derived fuels and chemicals with renewable substitutes.« less
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.; Smith, Richard N.; Marsh, Steven P.; Kuklinski, Robert
A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This paper describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical predictions are temporal scaling laws that indicate that average lengthscale increases as time 1/3, a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a macroscopic heat transfer model of one-dimensional alloy solidification, using the Double Integral Method. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. Finally, some suggestions are made for future experimental and theoretical studies required in developing comprehensive solidification processing models.
Reddy, M Venkateswar; Mohan, S Venkata
2012-01-01
The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Boucsein, Clemens; Nawrot, Martin P; Schnepel, Philipp; Aertsen, Ad
2011-01-01
Current concepts of cortical information processing and most cortical network models largely rest on the assumption that well-studied properties of local synaptic connectivity are sufficient to understand the generic properties of cortical networks. This view seems to be justified by the observation that the vertical connectivity within local volumes is strong, whereas horizontally, the connection probability between pairs of neurons drops sharply with distance. Recent neuroanatomical studies, however, have emphasized that a substantial fraction of synapses onto neocortical pyramidal neurons stems from cells outside the local volume. Here, we discuss recent findings on the signal integration from horizontal inputs, showing that they could serve as a substrate for reliable and temporally precise signal propagation. Quantification of connection probabilities and parameters of synaptic physiology as a function of lateral distance indicates that horizontal projections constitute a considerable fraction, if not the majority, of inputs from within the cortical network. Taking these non-local horizontal inputs into account may dramatically change our current view on cortical information processing.
Recovery of Anthocyanins Using Membrane Technologies: A Review.
Martín, Julia; Díaz-Montaña, Enrique Jacobo; Asuero, Agustin G
2018-05-04
Anthocyanins are naturally occurring polyphenolic compounds and give many flowers, fruits and vegetable their orange, red, purple and blue colors. Besides their color attributes, anthocyanins have received much attention in recent years due to the growing evidence of their antioxidant capacity and health benefits on humans. However, these compounds usually occur in low concentrations in mixtures of complex matrices, and therefore large-scale harvesting is needed to obtain sufficient amounts for their practical usage. Effective fractionation or separation technologies are therefore essential for the screening and production of these bioactive compounds. In this context, membrane technologies have become popular due to their operational simplicity, the capacity to achieve good simultaneous separation/pre-concentration and matrix reduction with lower temperature and lower operating cost in comparison to other sample preparation methods. Membrane fractionation is based on the molecular or particle sizes (pressure-driven processes), on their charge (electrically driven processes) or are dependent on both size and charge. Other non-pressure-driven membrane processes (osmotic pressure and vapor pressure-driven) have been developed in recent years and employed as alternatives for the separation or fractionation of bioactive compounds at ambient conditions without product deterioration. These technologies are applied either individually or in combination as an integrated membrane system to meet the different requirements for the separation of bioactive compounds. The first section of this review examines the basic principles of membrane processes, including the different types of membranes, their structure, morphology and geometry. The most frequently used techniques are also discussed. Last, the specific application of these technologies for the separation, purification and concentration of phenolic compounds, with special emphasis on anthocyanins, are also provided.
Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja
2013-01-01
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.
Dynamical property analysis of fractionally damped van der pol oscillator and its application
NASA Astrophysics Data System (ADS)
Zhong, Qiuhui; Zhang, Chunrui
2012-01-01
In this paper, the fractionally damped van der pol equation was studied. Firstly, the fractionally damped van der pol equation was transformed into a set of integer order equations. Then the Lyapunov exponents diagram was given. Secondly, it was transformed into a set of fractional integral equations and solved by a predictor-corrector method. The time domain diagrams and phase trajectory were used to describe the dynamic behavior. Finally, the fractionally damped van der pol equation was used to detect a weak signal.
Kotzias-Bandeira, E; Waberski, D; Weitze, K F
1997-08-01
The influence of an extended holding time at room temperature (+18 degrees C) before freezing on boar sperm quality was investigated. 17 ejaculates were collected from 5 different boars by separation in sperm rich and sperm poor fraction. The ejaculate were split, diluted 1+1 with Merck I-Medium, and submitted to three different treatments before freezing: 1. Sperm rich fraction, cooling to +20 degrees C for 1.5 h and subsequent cooling to +15 degrees C for 2.5 h; 2. Sperm rich fraction, cooling to +18 degrees C for 4 h and subsequent holding time at +18 degrees C for 16 h; 3. Whole ejaculate (sperm rich fraction plus seminal plasma), cooling to +18 degrees C for 4 h and subsequent holding time at +18 degrees C for 16 h. Subjectively assessed post thaw motility (SMOT), computer-measured motility (CMOT), and acrosome integrity (NAR), assessed by phase contrast microscopy were significantly (p < 0.05) higher after extended holding time (procedure 2 and 3) compared to short holding time (procedure 1). The exposure to seminal plasma during holding had no significant effect. Chlortetracyclin (CTC) staining of sperm membranes gave no reliable information in the presence of an EDTA-containing preservation medium, used routinely in the preservation process.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
NASA Astrophysics Data System (ADS)
Xue, Q.; Tang, J., Sr.; Chen, H.
2017-12-01
High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pH<4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.
A Multi-Scale Integrated Approach to Representing Watershed Systems: Significance and Challenges
NASA Astrophysics Data System (ADS)
Kim, J.; Ivanov, V. Y.; Katopodes, N.
2013-12-01
A range of processes associated with supplying services and goods to human society originate at the watershed level. Predicting watershed response to forcing conditions has been of high interest to many practical societal problems, however, remains challenging due to two significant properties of the watershed systems, i.e., connectivity and non-linearity. Connectivity implies that disturbances arising at any larger scale will necessarily propagate and affect local-scale processes; their local effects consequently influence other processes, and often convey nonlinear relationships. Physically-based, process-scale modeling is needed to approach the understanding and proper assessment of non-linear effects between the watershed processes. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion and sediment transport, tRIBS-OFM-HRM (Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model-Hairsine and Rose Model). This coupled model offers the advantage of exploring the hydrological effects of watershed physical factors such as topography, vegetation, and soil, as well as their feedback mechanisms. Several examples investigating the effects of vegetation on flow movement, the role of soil's substrate on sediment dynamics, and the driving role of topography on morphological processes are illustrated. We show how this comprehensive modeling tool can help understand interconnections and nonlinearities of the physical system, e.g., how vegetation affects hydraulic resistance depending on slope, vegetation cover fraction, discharge, and bed roughness condition; how the soil's substrate condition impacts erosion processes with an non-unique characteristic at the scale of a zero-order catchment; and how topographic changes affect spatial variations of morphologic variables. Due to feedback and compensatory nature of mechanisms operating in different watershed compartments, our conclusion is that a key to representing watershed systems lies in an integrated, interdisciplinary approach, whereby a physically-based model is used for assessments/evaluations associated with future changes in landuse, climate, and ecosystems.
Generalized vector calculus on convex domain
NASA Astrophysics Data System (ADS)
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
Certain composition formulae for the fractional integral operators
NASA Astrophysics Data System (ADS)
Agarwal, Praveen; Harjule, Priyanka
2017-09-01
In this paper we establish some (presumably new) interesting expressions for the composition of some well known fractional integral operators Ia+ μ,Da+ μ,Ia+ γ ,μ and also derive an integral operator ℋa+;p ,q ;β w ;m ,n ;α whose kernel involves the Fox's H- function. By suitably specializing the coefficients and the parameters in these functions we can get a large number of (new and known) interesting expressions for the composition formulae which occur rather frequently in many problems of engineering and mathematical analysis but here we can mention only those which follow as particular cases of the Srivastava et al.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1991-01-01
The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.
The Role of Second Phase Hard Particles on Hole Stretchability of two AA6xxx Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaohua; Sun, Xin; Golovashchenko, Sergey F.
The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
USDA-ARS?s Scientific Manuscript database
Fractions of soil organic matter (SOM) are usually extracted from soil by either physical (e.g., size, density) or chemical (e.g., base, acid) procedures. Integrated procedures that combine both of these types promise greater insights into SOM chemistry and function. For a corn-soybean soil in Iowa,...
NASA Astrophysics Data System (ADS)
Guénet, Hélène; Davranche, Mélanie; Vantelon, Delphine; Bouhnik-Le Coz, Martine; Jardé, Emilie; Pierson-Wickmann, Anne-Catherine; Dorcet, Vincent; Jestin, Jacques
2017-04-01
Although the behavior of Arsenic (As) under reducing conditions in periods of high water levels in wetlands is well understood and documented, there is a lack of information under oxidizing conditions when the water level decreases. In this study, we were interested in the first stage of the oxidizing period, when oxidation products are still in suspension. A soil sample from the Naizin Kervidy wetland (France) was incubated in the laboratory to produce a reduced soil solution. The reduced solution was subsequently oxidized, filtered and ultrafiltered using decreasing pore size membranes (5 μm, 3 μm, 0.2 μm, 30 kDa and 5 kDa). The distribution of As and Fe was investigated in each size fraction of the oxidized solution and their speciations were studied using XAS, HPLC and SEC-ICP-MS. Organic matter was characterized using thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry (THM-GC-MS) and fluorescence spectroscopy. The majority of the As was present as As(V) but a small amount of As(III) still remained despite the advanced oxidized conditions. In the >0.2 μm fractions, the XAS analyses showed that As was associated, in the second shell, with Fe (As-Fe = 3.35 Å) as bidentate binuclear complexes and C (As-C = 2.90 Å), suggesting the integration of As in biological objects. In the <30 kDa fraction, As was directly bound to C (As-C = 1.96 Å) in the first shell indicating the presence of organic As species. In the second shell, an As-Fe distance of 3.35 Å was found showing that part of the As was still complexed with Fe. The 0.2 μm-30 kDa fraction was a transitional fraction in terms of the Fe species and OM composition. In this fraction, organic matter exhibited a more humic character (aromatic molecules) inducing an increasing cation binding capacity. As a consequence, in this fraction and in the smallest one, As, Fe and OM seemed to form ternary complexes in which the Fe or nano-oxides in the >30 kDa fraction and as monomer, or cluster in <30 kDa fraction acted as a bridge. In all of the fractions, a proportion of As(V) was present as organic methylated species. These organic species might be produced by several organisms (animal or plant) via a detoxification process. They seemed to be bound to the particulate and colloidal Fe/OM phases as well as integrated in the remains of the organisms. Mass calculations provided evidence that 90% of the As was contained in the >5 μm particulate fraction and thus was hardly mobile. This study showed that although wetlands have been identified as a potential source of As, a number of biological and geochemical trapping mechanisms also favor As stabilization in wetlands.
Aruldass, Claira Arul; Masalamany, Santhana Raj Louis; Venil, Chidambaram Kulandaisamy; Ahmad, Wan Azlina
2018-02-01
Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K + , and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC 50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
Method for Integrated Simulation (MINTSIM)
1976-01-01
sorties allocated to attack SAMs. FAPA = fraction of striking aircraft attacking air bases which attack parked aircraft in the open. TAAB...each striking aircraft. FAS = fraction of striking aircraft attacking air bases which attack sheltered aircraft. (NOTE: FAPA + FAS = 1.0
Quantifying biological integrity of California sage scrub communities using plant life-form cover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Y.; Stow, D. A.; Franklin, J.
2010-01-01
The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems supports a large number of rare, threatened, and endangered species, and is critically degraded and endangered. Monitoring ecological variables that provide information about community integrity is vital to conserving these biologically diverse communities. Fractional cover of true shrub, subshrub, herbaceous vegetation, and bare ground should fill information gaps between generalized vegetation type maps and detailed field-based plot measurements of species composition and provide an effective means for quantifying CSS community integrity. Remote sensing is the only tool available for estimating spatially comprehensive fractional cover over large extent, and fractionalmore » cover of plant life-form types is one of the measures of vegetation state that is most amenable to remote sensing. The use of remote sensing does not eliminate the need for either field surveying or vegetation type mapping; rather it will likely require a combination of approaches to reliably estimate life-form cover and to provide comprehensive information for communities. According to our review and synthesis, life-form fractional cover has strong potential for providing ecologically meaningful intermediate-scale information, which is unattainable from vegetation type maps and species-level field measurements. Thus, we strongly recommend incorporating fractional cover of true shrub, subshrub, herb, and bare ground in CSS community monitoring methods. Estimating life-form cover at a 25 m x 25 m spatial scale using remote sensing would be an appropriate approach for initial implementation. Investigation of remote sensing techniques and an appropriate spatial scale; collaboration of resource managers, biologists, and remote sensing specialists, and refinement of protocols are essential for integrating life-form fractional cover mapping into strategies for sustainable long-term CSS community management.« less
An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Hare, J. E.; Snider, J. B.
1990-08-01
As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.
Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.
Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik
2007-01-01
In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.
Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review
Alvankarian, Jafar; Majlis, Burhanuddin Yeop
2015-01-01
The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519
Wang, Lili; Zhou, Hu; Li, Zhengjun; Lim, Teck Kwang; Lim, Xin Shan; Lin, Qingsong
2015-11-01
Aquaporins are integral membrane channel proteins found in all kingdoms of life. The Escherichia coli aquaporin Z (AqpZ) has been shown to solely conduct water at high permeability. Functional AqpZ is generally purified from the membrane fraction. However, the quantity of the purified protein is limited. In this study, a new method is developed to achieve high yield of bioactive AqpZ protein. A mild detergent n-dodecyl-β-D-maltopyranoside (DDM) was used to solubilize the over-expressed insoluble AqpZ from inclusion bodies without a refolding process. The recovered AqpZ protein showed high water permeability comparable with AqpZ obtained from the membrane fraction. In this way, the total yield of bioactive AqpZ has been increased greatly, which will facilitate the structural and functional characterization and future applications of AqpZ. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumari, Puja; Mudiganti, Jagadish Chandra
2017-11-01
In this work bandpass filter based on SIW technology with an adequate fractional bandwidth as well as refinement in the stopband performance is presented. Its application lies with the receiver filter working in the Ka band used mainly in the ground terminal for satellite communication. Additionally analysis of divergent input/output arrangement is also demonstrated. Three SIW filter having a varying passband from 19.2GHz -21.2GHz depending on the input/output are synthesized on a planar substrate having height of 0.508mm RT/duroid 6002 using periodically arranged metal via holes through a regulated PCB process. Simulated outputs has a in-band insertion loss 0.9dB and the improved stopband attenuation within the frequency range of 29.5GHz - 31GHz is around 45 dB. It is observed that the experimented results coincide completely with the results simulated in HFSS/CST.
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.
Developmental dyscalculia: a dysconnection syndrome?
Kucian, Karin; Ashkenazi, Simone Schwizer; Hänggi, Jürgen; Rotzer, Stephanie; Jäncke, Lutz; Martin, Ernst; von Aster, Michael
2014-09-01
Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10 years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia.
An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order
Almeida, Ricardo
2013-01-01
We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve differential equations, and problems of the calculus of variations that depend on fractional derivatives of Marchaud type. PMID:24319382
Oscillation of a class of fractional differential equations with damping term.
Qin, Huizeng; Zheng, Bin
2013-01-01
We investigate the oscillation of a class of fractional differential equations with damping term. Based on a certain variable transformation, the fractional differential equations are converted into another differential equations of integer order with respect to the new variable. Then, using Riccati transformation, inequality, and integration average technique, some new oscillatory criteria for the equations are established. As for applications, oscillation for two certain fractional differential equations with damping term is investigated by the use of the presented results.
NASA Astrophysics Data System (ADS)
Bohrson, Wendy A.; Spera, Frank J.
2007-11-01
Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.
Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons
NASA Astrophysics Data System (ADS)
Nasir Khattak, M.; Mushtaq, A.; Qamar, A.
2015-12-01
Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.
A comparison of the hot atom chemistry of muonium, tritium and positronium in gases
NASA Astrophysics Data System (ADS)
Fleming, Donald G.
Energetic positive muons thermalizing in gases are observed in either diamagnetic environments, with relative fraction ƒ D, or as the polarized muonium atom ( Mu = μ+e-), with fraction ƒ Mu. In molecular gases, the fraction ƒ D is found to vary from ˜0.10 in NH 3 to ˜0.55 in CCl 4 at pressures near 1 atm (300K). The diamagnetic fraction (yield) is interpreted as due to hot atom reactions (Mu ∗) in complete analogy with past studies in hot tritium (T ∗) chemistry. Hot tritium yields are generally seen to be considerably larger than the muonium ones, although there are marked exceptions to this, notably in the chloroalkanes. In the (unmoderated) normal alkanes, the ratio of T ∗/Mu ∗ reactivity is about 3.5. An interpretation of this ratio within the Wolfgang-Estrup formalism gives about 6 for the corresponding ratio of reactivity integrals I(T ∗)/I(Mu ∗). The fractions of muonium seen in gases are compared with those found for positronium: there seems to be little, if any, evidence for hot positronium reactions in gases. The amount of muonium found in the gas phase is compared also with that in condensed phases: the large differences seen are indicative of radically different mechanisms, indicating the importance of either spur processes or the role played by many-body effects on the distribution of muon polarization in condensed media (or both).
NASA Astrophysics Data System (ADS)
Kim, Eugene; Hopke, Philip K.; Edgerton, Eric S.
Daily integrated PM 2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) composition data including eight individual carbon fractions collected at the Jefferson Street monitoring site in Atlanta were analyzed with positive matrix factorization (PMF). Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. A total of 529 samples and 28 variables were measured between August 1998 and August 2000. PMF identified 11 sources in this study: sulfate-rich secondary aerosol I (50%), on-road diesel emissions (11%), nitrate-rich secondary aerosol (9%), wood smoke (7%), gasoline vehicle (6%), sulfate-rich secondary aerosol II (6%), metal processing (3%), airborne soil (3%), railroad traffic (3%), cement kiln/carbon-rich (2%), and bus maintenance facility/highway traffic (2%). Differences from previous studies using only the traditional OC and EC data (J. Air Waste Manag. Assoc. 53(2003a)731; Atmos Environ. (2003b)) include four traffic-related combustion sources (gasoline vehicle, on-road diesel, railroad, and bus maintenance facility) containing carbon fractions whose abundances were different between the various sources. This study indicates that the temperature resolved fractional carbon data can be utilized to enhance source apportionment study, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and identified source contributions aid the identifications of local point sources.
Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; ...
2016-01-18
Here, the development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after themore » SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario.« less
Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications
NASA Astrophysics Data System (ADS)
Khosravian-Arab, Hassan; Dehghan, Mehdi; Eslahchi, M. R.
2017-06-01
This paper is intended to provide exponentially accurate Galerkin, Petrov-Galerkin and pseudo-spectral methods for fractional differential equations on a semi-infinite interval. We start our discussion by introducing two new non-classical Lagrange basis functions: NLBFs-1 and NLBFs-2 which are based on the two new families of the associated Laguerre polynomials: GALFs-1 and GALFs-2 obtained recently by the authors in [28]. With respect to the NLBFs-1 and NLBFs-2, two new non-classical interpolants based on the associated- Laguerre-Gauss and Laguerre-Gauss-Radau points are introduced and then fractional (pseudo-spectral) differentiation (and integration) matrices are derived. Convergence and stability of the new interpolants are proved in detail. Several numerical examples are considered to demonstrate the validity and applicability of the basis functions to approximate fractional derivatives (and integrals) of some functions. Moreover, the pseudo-spectral, Galerkin and Petrov-Galerkin methods are successfully applied to solve some physical ordinary differential equations of either fractional orders or integer ones. Some useful comments from the numerical point of view on Galerkin and Petrov-Galerkin methods are listed at the end.
Levitt, James J; Nestor, Paul G; Levin, Laura; Pelavin, Paula; Lin, Pan; Kubicki, Marek; McCarley, Robert W; Shenton, Martha E; Rathi, Yogesh
2017-11-01
The striatum receives segregated and integrative white matter tracts from the cortex facilitating information processing in the cortico-basal ganglia network. The authors examined both types of input tracts in the striatal associative loop in chronic schizophrenia patients and healthy control subjects. Structural and diffusion MRI scans were acquired on a 3-T system from 26 chronic schizophrenia patients and 26 matched healthy control subjects. Using FreeSurfer, the associative cortex was parcellated into ventrolateral prefrontal cortex and dorsolateral prefrontal cortex subregions. The striatum was manually parcellated into its associative and sensorimotor functional subregions. Fractional anisotropy and normalized streamlines, an estimate of fiber counts, were assessed in four frontostriatal tracts (dorsolateral prefrontal cortex-associative striatum, dorsolateral prefrontal cortex-sensorimotor striatum, ventrolateral prefrontal cortex-associative striatum, and ventrolateral prefrontal cortex-sensorimotor striatum). Furthermore, these measures were correlated with a measure of cognitive control, the Trail-Making Test, Part B. Results showed reduced fractional anisotropy and fewer streamlines in chronic schizophrenia patients for all four tracts, both segregated and integrative. Post hoc t tests showed reduced fractional anisotropy in the left ventrolateral prefrontal cortex-associative striatum and left ventrolateral prefrontal cortex-sensorimotor striatum and fewer normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum and in the left and right ventrolateral prefrontal cortex-sensorimotor striatum in chronic schizophrenia patients. Furthermore, normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum negatively correlated with Trail-Making Test, Part B, time spent in healthy control subjects but not in chronic schizophrenia patients. These findings demonstrated that structural connectivity is reduced in both segregated and integrative tracts in the striatal associative loop in chronic schizophrenia and that reduced normalized streamlines in the right-hemisphere dorsolateral prefrontal cortex-sensorimotor striatum predicted worse cognitive control in healthy control subjects but not in chronic schizophrenia patients, suggesting a loss of a "normal" brain-behavior correlation in chronic schizophrenia.
NASA Technical Reports Server (NTRS)
Fairall, C. W.; Hare, J. E.; Snider, Jack B.
1990-01-01
As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.
Song, Junqiang; Leng, Hongze; Lu, Fengshun
2014-01-01
We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303
Genova, Helen M.; DeLuca, John; Chiaravalloti, Nancy; Wylie, Glenn
2014-01-01
The primary purpose of the current study was to examine the relationship between performance on executive tasks and white matter integrity, assessed by diffusion tensor imaging (DTI) in Multiple Sclerosis (MS). A second aim was to examine how processing speed affects the relationship between executive functioning and FA. This relationship was examined in two executive tasks that rely heavily on processing speed: the Color-Word Interference Test and Trail-Making Test (Delis-Kaplan Executive Function System). It was hypothesized that reduced fractional anisotropy (FA) is related to poor performance on executive tasks in MS, but that this relationship would be affected by the statistical correction of processing speed from the executive tasks. 15 healthy controls and 25 persons with MS participated. Regression analyses were used to examine the relationship between executive functioning and FA, both before and after processing speed was removed from the executive scores. Before processing speed was removed from the executive scores, reduced FA was associated with poor performance on Color-Word Interference Test and Trail-Making Test in a diffuse network including corpus callosum and superior longitudinal fasciculus. However, once processing speed was removed, the relationship between executive functions and FA was no longer significant on the Trail Making test, and significantly reduced and more localized on the Color-Word Interference Test. PMID:23777468
NASA Astrophysics Data System (ADS)
Wilde, M. V.; Sergeeva, N. V.
2018-05-01
An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.
Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G
2013-01-01
Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chih-Hsien; Hsieh, Wen-Feng; Institute of Electro-Optical Science and Engineering, National Cheng Kung University, 1 Dahsueh Rd., Tainan 701, Taiwan
2011-07-15
Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoidingmore » the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.« less
Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting
2017-05-01
High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH <4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process. Graphical abstract ᅟ.
An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery
Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing
2010-01-01
The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897
Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis
Liu, Weiran; Chen, Weixing; Liu, Ran; Ou, Yuan; Liu, Haoran; Xie, Lan; Lu, Ying; Li, Caixia; Li, Bin; Cheng, Jing
2015-01-01
In sexual assault cases, forensic samples are a mixture of sperm from the perpetrator and epithelial cells from the victim. To obtain an independent short tandem repeat (STR) profile of the perpetrator, sperm cells must be separated from the mixture of cells. However, the current method used in crime laboratories, namely, differential extraction, is a time-consuming and labor-intensive process. To achieve a rapid and automated sample pretreatment process, we fabricated a microdevice for hydrodynamic and size-based separation of sperm and epithelial cells. When cells in suspension were introduced into the device's microfluidic channels, they were forced to flow along different streamlines and into different outlets due to their different diameters. With the proposed microdevice, sperm can be separated within a short period of time (0.5 h for a 50-μl mock sample). The STR profiles of the products in the sperm outlet reservoir demonstrated that a highly purified male DNA fraction could be obtained (94.0% male fraction). This microdevice is of low-cost and can be easily integrated with other subsequent analysis units, providing great potential in the process of analyzing sexual assault evidence as well as in other areas requiring cell sorting. PMID:26392829
Catalytic Pyrolysis of Waste Plastic Mixture
NASA Astrophysics Data System (ADS)
Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo
2018-03-01
Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.
Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus
2015-12-01
In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.
An automated dose tracking system for adaptive radiation therapy.
Liu, Chang; Kim, Jinkoo; Kumarasiri, Akila; Mayyas, Essa; Brown, Stephen L; Wen, Ning; Siddiqui, Farzan; Chetty, Indrin J
2018-02-01
The implementation of adaptive radiation therapy (ART) into routine clinical practice is technically challenging and requires significant resources to perform and validate each process step. The objective of this report is to identify the key components of ART, to illustrate how a specific automated procedure improves efficiency, and to facilitate the routine clinical application of ART. Data was used from patient images, exported from a clinical database and converted to an intermediate format for point-wise dose tracking and accumulation. The process was automated using in-house developed software containing three modularized components: an ART engine, user interactive tools, and integration tools. The ART engine conducts computing tasks using the following modules: data importing, image pre-processing, dose mapping, dose accumulation, and reporting. In addition, custom graphical user interfaces (GUIs) were developed to allow user interaction with select processes such as deformable image registration (DIR). A commercial scripting application programming interface was used to incorporate automated dose calculation for application in routine treatment planning. Each module was considered an independent program, written in C++or C#, running in a distributed Windows environment, scheduled and monitored by integration tools. The automated tracking system was retrospectively evaluated for 20 patients with prostate cancer and 96 patients with head and neck cancer, under institutional review board (IRB) approval. In addition, the system was evaluated prospectively using 4 patients with head and neck cancer. Altogether 780 prostate dose fractions and 2586 head and neck cancer dose fractions went processed, including DIR and dose mapping. On average, daily cumulative dose was computed in 3 h and the manual work was limited to 13 min per case with approximately 10% of cases requiring an additional 10 min for image registration refinement. An efficient and convenient dose tracking system for ART in the clinical setting is presented. The software and automated processes were rigorously evaluated and validated using patient image datasets. Automation of the various procedures has improved efficiency significantly, allowing for the routine clinical application of ART for improving radiation therapy effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.
A remark on fractional differential equation involving I-function
NASA Astrophysics Data System (ADS)
Mishra, Jyoti
2018-02-01
The present paper deals with the solution of the fractional differential equation using the Laplace transform operator and its corresponding properties in the fractional calculus; we derive an exact solution of a complex fractional differential equation involving a special function known as I-function. The analysis of the some fractional integral with two parameters is presented using the suggested Theorem 1. In addition, some very useful corollaries are established and their proofs presented in detail. Some obtained exact solutions are depicted to see the effect of each fractional order. Owing to the wider applicability of the I-function, we can conclude that, the obtained results in our work generalize numerous well-known results obtained by specializing the parameters.
The mental representations of fractions: adults' same–different judgments
Gabriel, Florence; Szucs, Denes; Content, Alain
2013-01-01
Two experiments examined whether the processing of the magnitude of fractions is global or componential. Previously, some authors concluded that adults process the numerators and denominators of fractions separately and do not access the global magnitude of fractions. Conversely, others reported evidence suggesting that the global magnitude of fractions is accessed. We hypothesized that in a fraction matching task, participants automatically extract the magnitude of the components but that the activation of the global magnitude of the whole fraction is only optional or strategic. Participants carried out same/different judgment tasks. Two different tasks were used: a physical matching task and a numerical matching task. Pairs of fractions were presented either simultaneously or sequentially. Results showed that participants only accessed the representation of the global magnitude of fractions in the numerical matching task. The mode of stimulus presentation did not affect the processing of fractions. The present study allows a deeper understanding of the conditions in which the magnitude of fractions is mentally represented by using matching tasks and two different modes of presentation. PMID:23847562
Salami, Alireza; Eriksson, Johan; Nilsson, Lars-Göran; Nyberg, Lars
2012-03-01
Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n=287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weber, Philipp; Wang, Fengzhong; Vodenska-Chitkushev, Irena; Havlin, Shlomo; Stanley, H. Eugene
2007-07-01
We analyze the memory in volatility by studying volatility return intervals, defined as the time between two consecutive fluctuations larger than a given threshold, in time periods following stock market crashes. Such an aftercrash period is characterized by the Omori law, which describes the decay in the rate of aftershocks of a given size with time t by a power law with exponent close to 1. A shock followed by such a power law decay in the rate is here called Omori process. We find self-similar features in the volatility. Specifically, within the aftercrash period there are smaller shocks that themselves constitute Omori processes on smaller scales, similar to the Omori process after the large crash. We call these smaller shocks subcrashes, which are followed by their own aftershocks. We also show that the Omori law holds not only after significant market crashes as shown by Lillo and Mantegna [Phys. Rev. E 68, 016119 (2003)], but also after “intermediate shocks.” By appropriate detrending we remove the influence of the crashes and subcrashes from the data, and find that this procedure significantly reduces the memory in the records. Moreover, when studying long-term correlated fractional Brownian motion and autoregressive fractionally integrated moving average artificial models for volatilities, we find Omori-type behavior after high volatilities. Thus, our results support the hypothesis that the memory in the volatility is related to the Omori processes present on different time scales.
Alterations of White Matter Integrity Related to the Season of Birth in Schizophrenia: A DTI Study
Giezendanner, Stéphanie; Walther, Sebastian; Razavi, Nadja; Van Swam, Claudia; Fisler, Melanie Sarah; Soravia, Leila Maria; Andreotti, Jennifer; Schwab, Simon; Jann, Kay; Wiest, Roland; Horn, Helge; Müller, Thomas Jörg; Dierks, Thomas; Federspiel, Andrea
2013-01-01
In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia. PMID:24086548
NASA Astrophysics Data System (ADS)
Post, Evert Jan
1999-05-01
This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction between ensemble disorder as in the normal Hall effect versus ensemble order in the plateau states. Since the order of the latter permits a view of the plateau states as a macro- or meso-scopic single system, the period integral description applies, yielding a straightforward unified description of integer and fractional quantum Hall effects.
Evaluating fractionated space systems - Status
NASA Astrophysics Data System (ADS)
Cornford, S.; Jenkins, S.; Wall, S.; Cole, B.; Bairstow, B.; Rouquette, N.; Dubos, G.; Ryan, T.; Zarifian, P.; Boutwell, J.
DARPA has funded a number of teams to further refine its Fractionated Spacecraft vision. Several teams, including this team led by JPL, have been tasked to develop a tool for the evaluation of the Business case for a fractionated system architecture. This evaluation is to understand under what conditions and constraints the fractionated architecture make more sense (in a cost/benefit sense) than the traditional monolithic paradigm. Our approach to this evaluation is to generate and evaluate a variety of trade space options. These options include various sets of stimuli, various degrees of fractionation and various subsystem element properties. The stimuli include many not normally modeled such as technology obsolescence, funding profile changes and changes in mission objectives during the mission itself. The degrees of fractionation enable various traditional subsystem elements to be distributed across different free flyers which then act in concert as needed. This will enable key technologies to be updated as need dictates and availability allows. We have described our approach in a previous IEEE Aerospace conference paper but will briefly summarize here. Our approach to generate the Business Case evaluation is to explicitly model both the implementation and operation phases for the life cycle of a fractionated constellation. A variety of models are integrated into the Phoenix ModelCenter framework and are used to generate various intermediate data which is aggregated into the Present Strategic Value (PSV). The PSV is essentially the value (including the value of the embedded real options) minus the cost. These PSVs are calculated for a variety of configurations and scenarios including variations of various stimuli or uncertainties (e.g. supply chain delays, launch vehicle failures and orbital debris events). There are various decision options (e.g. delay, accelerate, cancel) which can now be exercised for each stimulus. We can compute the PSV for the various comb- nations and populate a tradespace. We have developed tooling to allow models to be automatically created and executed allowing us to explore large numbers of options with no human intervention. The methodology, models and the process by which they are integrated were a key subset of the previous paper. We will present the results of the Business Case analyses for a variety of configurations and scenarios, present the populated tradespace, show the GUI we have developed to facilitate the use of the tool and discuss the implications of both the results and our work to date. We will also discuss future work and possible approaches for that work.
Grove, T.L.; Kinzler, R.J.; Baker, M.B.; Donnelly-Nolan, J. M.; Lesher, C.E.
1988-01-01
At Medicine Lake volcano, California, andesite of the Holocene Burnt Lava flow has been produced by fractional crystallization of parental high alumina basalt (HAB) accompanied by assimilation of granitic crustal material. Burnt Lava contains inclusions of quenched HAB liquid, a potential parent magma of the andesite, highly melted granitic crustal xenoliths, and xenocryst assemblages which provide a record of the fractional crystallization and crustal assimilation process. Samples of granitic crustal material occur as xenoliths in other Holocene and Pleistocene lavas, and these xenoliths are used to constrain geochemical models of the assimilation process. A large amount of assimilation accompanied fractional crystallization to produce the contaminated Burnt lava andesites. Models which assume that assimilation and fractionation occurred simultaneously estimate the ratio of assimilation to fractional crystallization (R) to be >1 and best fits to all geochemical data are at an R value of 1.35 at F=0.68. Petrologic evidence, however, indicates that the assimilation process did not involve continuous addition of granitic crust as fractionation occurred. Instead, heat and mass transfer were separated in space and time. During the assimilation process, HAB magma underwent large amounts of fractional crystallization which was not accompanied by significant amounts of assimilation. This fractionation process supplied heat to melt granitic crust. The models proposed to explain the contamination process involve fractionation, replenishment by parental HAB, and mixing of evolved and parental magmas with melted granitic crust. ?? 1988 Springer-Verlag.
Composite material having high thermal conductivity and process for fabricating same
Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.
1998-07-21
A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.
Process for fabricating composite material having high thermal conductivity
Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.
2001-01-01
A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.
Composite material having high thermal conductivity and process for fabricating same
Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.
1998-01-01
A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.
An ERP Study of the Processing of Common and Decimal Fractions: How Different They Are
Zhang, Li; Wang, Qi; Lin, Chongde; Ding, Cody; Zhou, Xinlin
2013-01-01
This study explored event-related potential (ERP) correlates of common fractions (1/5) and decimal fractions (0.2). Thirteen subjects performed a numerical magnitude matching task under two conditions. In the common fraction condition, a nonsymbolic fraction was asked to be judged whether its magnitude matched the magnitude of a common fraction; in the decimal fraction condition, a nonsymbolic fraction was asked to be matched with a decimal fraction. Behavioral results showed significant main effects of condition and numerical distance, but no significant interaction of condition and numerical distance. Electrophysiological data showed that when nonsymbolic fractions were compared to common fractions, they displayed larger N1 and P3 amplitudes than when they were compared to decimal fractions. This finding suggested that the visual identification for nonsymbolic fractions was different under the two conditions, which was not due to perceptual differences but to task demands. For symbolic fractions, the condition effect was observed in the N1 and P3 components, revealing stimulus-specific visual identification processing. The effect of numerical distance as an index of numerical magnitude representation was observed in the P2, N3 and P3 components under the two conditions. However, the topography of the distance effect was different under the two conditions, suggesting stimulus specific semantic processing of common fractions and decimal fractions. PMID:23894491
White matter integrity as a predictor of response to treatment in first episode psychosis.
Reis Marques, Tiago; Taylor, Heather; Chaddock, Chris; Dell'acqua, Flavio; Handley, Rowena; Reinders, A A T Simone; Mondelli, Valeria; Bonaccorso, Stefania; Diforti, Marta; Simmons, Andrew; David, Anthony S; Murray, Robin M; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola
2014-01-01
The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response.
Mass fractionation processes of transition metal isotopes
NASA Astrophysics Data System (ADS)
Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.
2002-06-01
Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.
New Operational Matrices for Solving Fractional Differential Equations on the Half-Line
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369
New operational matrices for solving fractional differential equations on the half-line.
Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
Local effects of partly-cloudy skies on solar and emitted radiation
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1982-01-01
A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.
Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih
2017-01-18
Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white matter tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the cognitive tests.
Fractional statistics and quantum scaling properties of the integrable Penson-Kolb-Hubbard chain
NASA Astrophysics Data System (ADS)
Vitoriano, Carlindo; Coutinho-Filho, M. D.
2010-09-01
We investigate the ground-state and low-temperature properties of the integrable version of the Penson-Kolb-Hubbard chain. The model obeys fractional statistical properties, which give rise to fractional elementary excitations and manifest differently in the four regions of the phase diagram U/t versus n , where U is the Coulomb coupling, t is the correlated hopping amplitude, and n is the particle density. In fact, we can find local pair formation, fractionalization of the average occupation number per orbital k , or U - and n -dependent average electric charge per orbital k . We also study the scaling behavior near the U -driven quantum phase transitions and characterize their universality classes. Finally, it is shown that in the regime of parameters where local pair formation is energetically more favorable, the ground state exhibits power-law superconductivity; we also stress that above half filling the pair-hopping term stabilizes local Cooper pairs in the repulsive- U regime for U
Lim, Kelvin O.; Ardekani, Babak A.; Nierenberg, Jay; Butler, Pamela D.; Javitt, Daniel C.; Hoptman, Matthew J.
2007-01-01
Patients with schizophrenia show deficits in several neurocognitive domains. However, the relationship between white matter integrity and performance in these domains is poorly understood. The authors conducted neurocognitive testing and diffusion tensor imaging in 25 patients with schizophrenia. Performance was examined for tests of verbal declarative memory, attention, and executive function. Relationships between fractional anisotropy and cognitive performance were examined by using voxelwise correlational analyses. In each case, better performance on these tasks was associated with higher levels of fractional anisotropy in task-relevant regions. PMID:17074956
Fractional Fourier transform of truncated elliptical Gaussian beams.
Du, Xinyue; Zhao, Daomu
2006-12-20
Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.
Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin
2009-08-10
A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Chen, Wen; Magin, Richard L.
2016-07-01
Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.
Cvek, J; Kubes, J; Skacelikova, E; Otahal, B; Kominek, P; Halamka, M; Feltl, D
2012-08-01
The present study was performed to evaluate the feasibility of a new, 5-week regimen of 70-75 Gy hyperfractionated accelerated radiotherapy with concomitant integrated boost (HARTCIB) for locally advanced, inoperable head and neck cancer. A total of 39 patients with very advanced, stage IV nonmetastatic head and neck squamous cell carcinoma (median gross tumor volume 72 ml) were included in this phase I dose escalation study. A total of 50 fractions intensity-modulated radiotherapy (IMRT) were administered twice daily over 5 weeks. Prescribed total dose/dose per fraction for planning target volume (PTV(tumor)) were 70 Gy in 1.4 Gy fractions, 72.5 Gy in 1.45 Gy fractions, and 75 Gy in 1.5 Gy fractions for 10, 13, and 16 patients, respectively. Uninvolved lymphatic nodes (PTV(uninvolved)) were irradiated with 55 Gy in 1.1 Gy fractions using the concomitant integrated boost. Acute toxicity was evaluated according to the RTOG/EORTC scale; the incidence of grade 3 mucositis was 51% in the oral cavity/pharynx and 0% in skin and the recovery time was ≤ 9 weeks for all patients. Late toxicity was evaluated in patients in complete remission according to the RTOG/EORTC scale. No grade 3/4 late toxicity was observed. The 1-year locoregional progression-free survival was 50% and overall survival was 55%. HARTCIB (75 Gy in 5 weeks) is feasible for patients deemed unsuitable for chemoradiation. Acute toxicity was lower than predicted from radiobiological models; duration of dysphagia and confluent mucositis were particularly short. Better conformity of radiotherapy allows the use of more intensive altered fractionation schedules compared with older studies. These results suggest that further dose escalation might be possible when highly conformal techniques (e.g., stereotactic radiotherapy) are used.
Zhou, Yanting; Gao, Jing; Zhu, Hongwen; Xu, Jingjing; He, Han; Gu, Lei; Wang, Hui; Chen, Jie; Ma, Danjun; Zhou, Hu; Zheng, Jing
2018-02-20
Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.
Short temporal asynchrony disrupts visual object recognition
Singer, Jedediah M.; Kreiman, Gabriel
2014-01-01
Humans can recognize objects and scenes in a small fraction of a second. The cascade of signals underlying rapid recognition might be disrupted by temporally jittering different parts of complex objects. Here we investigated the time course over which shape information can be integrated to allow for recognition of complex objects. We presented fragments of object images in an asynchronous fashion and behaviorally evaluated categorization performance. We observed that visual recognition was significantly disrupted by asynchronies of approximately 30 ms, suggesting that spatiotemporal integration begins to break down with even small deviations from simultaneity. However, moderate temporal asynchrony did not completely obliterate recognition; in fact, integration of visual shape information persisted even with an asynchrony of 100 ms. We describe the data with a concise model based on the dynamic reduction of uncertainty about what image was presented. These results emphasize the importance of timing in visual processing and provide strong constraints for the development of dynamical models of visual shape recognition. PMID:24819738
Feedbacks between climate change and biosphere integrity
NASA Astrophysics Data System (ADS)
Lade, Steven; Anderies, J. Marty; Donges, Jonathan; Steffen, Will; Rockström, Johan; Richardson, Katherine; Cornell, Sarah; Norberg, Jon; Fetzer, Ingo
2017-04-01
The terrestrial and marine biospheres sink substantial fractions of human fossil fuel emissions. How the biosphere's capacity to sink carbon depends on biodiversity and other measures of biosphere integrity is however poorly understood. Here, we (1): review assumptions from literature regarding the relationships between the carbon cycle and the terrestrial and marine biospheres; and (2) explore the consequences of these different assumptions for climate feedbacks using the stylised carbon cycle model PB-INT. We find that: terrestrial biodiversity loss could significantly dampen climate-carbon cycle feedbacks; direct biodiversity effects, if they exist, could rival temperature increases from low-emission trajectories; and the response of the marine biosphere is critical for longer term climate change. Simple, low-dimensional climate models such as PB-INT can help assess the importance of still unknown or controversial earth system processes such as biodiversity loss for climate feedbacks. This study constitutes the first detailed study of the interactions between climate change and biosphere integrity, two of the 'planetary boundaries'.
Strategy and design of Innovation Policy Road Mapping for a waste biorefinery.
Rama Mohan, S
2016-09-01
Looming energy crisis, climate change concerns coupled with decreasing fossil fuel resources has garnered significant global attention toward development of alternative, renewable, carbon-neutral and eco-friendly fuels to fulfil burgeoning energy demands. Waste utilization and its management are being pursued with renewed interest due to the gamut of biobased products it can offer apart from providing enough energy to meet a major fraction of the world's energy demand. Biorefining is the sustainable processing of biomass into a spectrum of marketable products and energy. Integrating all components of waste treatment culminating into biobased products and energy recovery in a single integrated waste biorefinery is self sufficient, highly sustainable and is very beneficial. Designing systematic innovation policies are essential for development and commercialization of new technologies in this important futuristic research area. This communication explores Innovation Policy Road Mapping (IPRM) methodology available in the literature and applies it to design integrated waste biorefinery. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Moosmüller, Hans; Pincock, Samuel; Jayanty, R. K. M.; Lersch, Traci; Casuccio, Gary
2016-08-01
This paper promotes an understanding of the mineralogical, chemical, and physical interrelationships of re-suspended mineral dusts collected as grab samples from global dust sources. Surface soils were collected from arid regions, including the southwestern USA, Mali, Chad, Morocco, Canary Islands, Cabo Verde, Djibouti, Afghanistan, Iraq, Kuwait, Qatar, UAE, Serbia, China, Namibia, Botswana, Australia, and Chile. The < 38 µm sieved fraction of each sample was re-suspended in a chamber, from which the airborne mineral dust could be extracted, sampled, and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size analyzer, and a three-wavelength (405, 532, 781 nm) photoacoustic instrument with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sampling media included Teflon® membrane and quartz fiber filters for chemical analysis and Nuclepore® filters for individual particle analysis by scanning electron microscopy (SEM). The < 38 µm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 75, < 125 µm soil fractions were mineralogically assessed by optical microscopy. Presented here are results of the optical measurements, showing the interdependency of single-scattering albedos (SSA) at three different wavelengths and mineralogical content of the entrained dust samples. To explain the elevated concentrations of iron (Fe) and Fe / Al ratios in the soil re-suspensions, we propose that dust particles are to a large extent composed of nano-sized particles of micas, clays, metal oxides, and ions of potassium (K+), calcium (Ca2+), and sodium (Na+) evenly dispersed as a colloid or adsorbed in amorphous clay-like material. Also shown are differences in SSA of the kaolinite/hematite/goethite samples from Mali and those from colloidal soils elsewhere. Results from this study can be integrated into a database of mineral dust properties, for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and impact on equipment.
Braun, H P; Emmermann, M; Kruft, V; Schmitz, U K
1992-01-01
The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Images PMID:1324169
Large eddy simulation of soot evolution in an aircraft combustor
NASA Astrophysics Data System (ADS)
Mueller, Michael E.; Pitsch, Heinz
2013-11-01
An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel-to-air ratio, the maximum soot volume fraction is found inside the recirculation zone; at the lower fuel-to-air ratio, turbulent fluctuations in the mixture fraction promote the oxidation of soot inside the recirculation zone and suppress the accumulation of a large soot volume fraction. Downstream, soot exits the combustor in intermittent fuel-rich pockets that are not mixed during the injection of dilution air and subsequent secondary fuel-lean combustion. At the higher fuel-to-air ratio, the frequency of these fuel-rich pockets is increased, leading to higher soot emissions from the combustor. Quantitatively, the soot emissions from the combustor are overpredicted by about 50%, which is a substantial improvement over previous works utilizing RANS to predict such emissions. In addition, the ratio between the two fuel-to-air ratios predicted by LES compares very favorably with the experimental measurements. Furthermore, soot growth is dominated by an acetylene-based pathway rather than an aromatic-based pathway, which is usually the dominant mechanism in nonpremixed flames. This finding is the result of the interactions between the hydrodynamics, mixing, chemistry, and soot in the recirculation zone and the resulting residence times of soot at various mixture fractions (compositions), which are not the same in this complex recirculating flow as in nonpremixed jet flames.
NASA Astrophysics Data System (ADS)
Set, Erhan; Özdemir, M. Emin; Alan, E. Aykan
2017-04-01
In this article, by using the Hölder's inequality and power mean inequality the authors establish several inequalities of Hermite-Hadamard type for n- time differentiable quasi-convex functions and P- functions involving Riemann-Liouville fractional integrals.
Desbiens, Raphaël; Tremblay, Pierre; Genest, Jérôme; Bouchard, Jean-Pierre
2006-01-20
The instrument line shape (ILS) of a Fourier-transform spectrometer is expressed in a matrix form. For all line shape effects that scale with wavenumber, the ILS matrix is shown to be transposed in the spectral and interferogram domains. The novel representation of the ILS matrix in the interferogram domain yields an insightful physical interpretation of the underlying process producing self-apodization. Working in the interferogram domain circumvents the problem of taking into account the effects of finite optical path difference and permits a proper discretization of the equations. A fast algorithm in O(N log2 N), based on the fractional Fourier transform, is introduced that permits the application of a constant resolving power line shape to theoretical spectra or forward models. The ILS integration formalism is validated with experimental data.
NASA Astrophysics Data System (ADS)
Li, Can; Deng, Wei-Hua
2014-07-01
Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L. Wearne, Phys. Rev. Lett. 100 (2008) 128103], we present the time-space fractional cable equation which describes the anomalous transport of electrodiffusion in nerve cells. The derivation is based on the generalized fractional Ohm's law; and the temporal memory effects and spatial-nonlocality are involved in the time-space fractional model. With the help of integral transform method we derive the analytical solutions expressed by the Green's function; the corresponding fractional moments are calculated; and their asymptotic behaviors are discussed. In addition, the explicit solutions of the considered model with two different external current injections are also presented.
Jones, Jeffery I.; Gardner, Michael S.; Schieltz, David M.; Parks, Bryan A.; Toth, Christopher A.; Rees, Jon C.; Andrews, Michael L.; Carter, Kayla; Lehtikoski, Antony K.; McWilliams, Lisa G.; Williamson, Yulanda M.; Bierbaum, Kevin P.; Pirkle, James L.; Barr, John R.
2018-01-01
Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples. PMID:29634782
Bounded diffusion impedance characterization of battery electrodes using fractional modeling
NASA Astrophysics Data System (ADS)
Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît
2017-06-01
This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.
Separation of Biologically Active Compounds by Membrane Operations.
Zhu, Xiaoying; Bai, Renbi
2017-01-01
Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The "cold" separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis
NASA Astrophysics Data System (ADS)
Jiao, Yujian; Wang, Li-Lian; Huang, Can
2016-01-01
The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.
Audio-visual integration through the parallel visual pathways.
Kaposvári, Péter; Csete, Gergő; Bognár, Anna; Csibri, Péter; Tóth, Eszter; Szabó, Nikoletta; Vécsei, László; Sáry, Gyula; Tamás Kincses, Zsigmond
2015-10-22
Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction. Copyright © 2015. Published by Elsevier B.V.
Improving Children’s Knowledge of Fraction Magnitudes
Fazio, Lisa K.; Kennedy, Casey A.; Siegler, Robert S.
2016-01-01
We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards’ suggestions for teaching fractions, would improve children’s fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played Catch the Monster with Fractions, a game in which they estimated fraction locations on a number line and received feedback on the accuracy of their estimates. The intervention lasted less than 15 minutes. In our initial study, children showed large gains from pretest to posttest in their fraction number line estimates, magnitude comparisons, and recall accuracy. In a more rigorous second study, the experimental group showed similarly large improvements, whereas a control group showed no improvement from practicing fraction number line estimates without feedback. The results provide evidence for the effectiveness of interventions emphasizing fraction magnitudes and indicate how psychological theories and research can be used to evaluate specific recommendations of the Common Core State Standards. PMID:27768756
Cosmology and particle physics
NASA Astrophysics Data System (ADS)
Barrow, J. D.
A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters.
Cancer treatment model with the Caputo-Fabrizio fractional derivative
NASA Astrophysics Data System (ADS)
Ali Dokuyucu, Mustafa; Celik, Ercan; Bulut, Hasan; Mehmet Baskonus, Haci
2018-03-01
In this article, a model for cancer treatment is examined. The model is integrated into the Caputo-Fabrizio fractional derivative first, to examine the existence of the solution. Then, the uniqueness of the solution is investigated and we identified under which conditions the model provides a unique solution.
Yuan, Naiming; Fu, Zuntao; Liu, Shida
2014-01-01
Long term memory (LTM) in climate variability is studied by means of fractional integral techniques. By using a recently developed model, Fractional Integral Statistical Model (FISM), we in this report proposed a new method, with which one can estimate the long-lasting influences of historical climate states on the present time quantitatively, and further extract the influence as climate memory signals. To show the usability of this method, two examples, the Northern Hemisphere monthly Temperature Anomalies (NHTA) and the Pacific Decadal Oscillation index (PDO), are analyzed in this study. We find the climate memory signals indeed can be extracted and the whole variations can be further decomposed into two parts: the cumulative climate memory (CCM) and the weather-scale excitation (WSE). The stronger LTM is, the larger proportion the climate memory signals will account for in the whole variations. With the climate memory signals extracted, one can at least determine on what basis the considered time series will continue to change. Therefore, this report provides a new perspective on climate prediction. PMID:25300777
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack
2006-08-05
An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tang, Bin; Jiang, ShengBao; Jiang, Chun; Zhu, Haibin
2014-07-01
A hollow sinh-Gaussian beam (HsG) is an appropriate model to describe the dark-hollow beam. Based on Collins integral formula and the fact that a hard-edged-aperture function can be expanded into a finite sum of complex Gaussian functions, the propagation properties of a HsG beam passing through fractional Fourier transform (FRFT) optical systems with and without apertures have been studied in detail by some typical numerical examples. The results obtained using the approximate analytical formula are in good agreement with those obtained using numerical integral calculation. Further, the studies indicate that the normalized intensity distribution of the HsG beam in FRFT plane is closely related with not only the fractional order but also the beam order and the truncation parameter. The FRFT optical systems provide a convenient way for laser beam shaping.
An Alternative Method to the Classical Partial Fraction Decomposition
ERIC Educational Resources Information Center
Cherif, Chokri
2007-01-01
PreCalculus students can use the Completing the Square Method to solve quadratic equations without the need to memorize the quadratic formula since this method naturally leads them to that formula. Calculus students, when studying integration, use various standard methods to compute integrals depending on the type of function to be integrated.…
Strenziok, Maren; Greenwood, Pamela M.; Santa Cruz, Sophia A.; Thompson, James C.; Parasuraman, Raja
2013-01-01
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity. PMID:24312550
2012-01-01
Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and if the cost of enzymes continues to fall. PMID:22502801
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, T.; Franzke, C.; Gramacy, R. B.; Watkins, N. W.
2012-12-01
Recent studies have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average (ARFIMA) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d,with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series such as the Central England Temperature. Many physical processes, for example the Faraday time series from Antarctica, are highly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption. Specifically, we assume a symmetric α -stable distribution for the innovations. Such processes provide good, flexible, initial models for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance σ d of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
Fraser, L; Strzezek, J
2007-06-01
Whole ejaculate or sperm-rich fraction, collected from four sexually mature boars, was frozen in an extender containing lactose-hen egg yolk with glycerol (lactose-HEY-G) or extender containing lactose, lyophilized lipoprotein fractions isolated from ostrich egg yolk and glycerol (lactose-LPFo-G), and Orvus Es Paste, respectively. The sperm samples were also frozen in a standard boar semen extender (Kortowo-3), without the addition of cryoprotective substances. Sperm DNA integrity was assessed using a modified neutral comet assay. Sperm characteristics such as motility, plasma membrane integrity (SYBR-14/PI), mitochondrial function (rhodamine 123) and acrosome integrity were monitored. Freezing-thawing caused a significant increase (P<0.05) in sperm DNA fragmentation, irrespective of the procedures of ejaculate collection and extender type. Sperm DNA fragmentation was significantly lower (P<0.05) in the whole ejaculate compared with the sperm-rich fraction, indicating that spermatozoa maintained in the whole seminal plasma prior to its removal for freezing-thawing procedure were less vulnerable to cryo-induced DNA fragmentation. Furthermore, spermatozoa frozen in lactose-HEY-G or lactose-LPFo-G extender exhibited lower (P<0.05) DNA fragmentation than those frozen in the absence of cryoprotective substances. The levels of sperm DNA damage, as expressed by comet tail length and tail moment values, were significantly higher (P<0.05) in sperm samples frozen in the absence of cryoprotective substances. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. It can be suggested that evaluation of DNA integrity, coupled with different sperm characteristics such as motility, plasma membrane integrity and mitochondrial function, may aid in determining the quality of frozen-thawed boar semen.
The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes.
van Zundert, G C P; Rodrigues, J P G L M; Trellet, M; Schmitz, C; Kastritis, P L; Karaca, E; Melquiond, A S J; van Dijk, M; de Vries, S J; Bonvin, A M J J
2016-02-22
The prediction of the quaternary structure of biomolecular macromolecules is of paramount importance for fundamental understanding of cellular processes and drug design. In the era of integrative structural biology, one way of increasing the accuracy of modeling methods used to predict the structure of biomolecular complexes is to include as much experimental or predictive information as possible in the process. This has been at the core of our information-driven docking approach HADDOCK. We present here the updated version 2.2 of the HADDOCK portal, which offers new features such as support for mixed molecule types, additional experimental restraints and improved protocols, all of this in a user-friendly interface. With well over 6000 registered users and 108,000 jobs served, an increasing fraction of which on grid resources, we hope that this timely upgrade will help the community to solve important biological questions and further advance the field. The HADDOCK2.2 Web server is freely accessible to non-profit users at http://haddock.science.uu.nl/services/HADDOCK2.2. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera
2014-11-01
Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article. Copyright © 2014 Elsevier B.V. All rights reserved.
Chum, Helena L.; Kreibich, Roland E.
1992-01-01
A process for preparing phenol-formaldehyde resole resins and adhesive compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils.
Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin
2011-03-01
The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.
Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin
2010-07-01
The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.
Jordão, Helga; Sousa, António Jorge; Carvalho, M Teresa
2016-02-01
With the purpose of reducing the waste generated by end-of-life vehicles (ELVs) by enhancing the recovery and recycling of nonferrous metals, an experimental study was conducted with the finest size fraction of nonferrous stream produced at an ELV shredder plant. The aim of this work was to characterize the nonferrous stream and to evaluate the efficiency of a gravity concentration process in separating light and heavy nonferrous metal particles that could be easily integrated in a ELV shredder plant (in this case study the separation explicitly addressed copper and aluminum separation). The characterization of a sample of the 0-10mm particle size fraction showed a mixture of nonferrous metals with a certain degree of impurity due to the present of contaminants such as plastics. The majority of the particles exhibited a wire shape, preventing an efficient separation of materials without prior fragmentation. The gravity concentration process selected for this study was the wet shaking table and three operating parameters of the equipment were manipulated. A full factorial design in combination with a central composite design was employed to model metals recovery. Two second order polynomial equations were successfully fitted to describe the process and predict the recovery of copper and aluminum in Cu concentrate under the conditions of the present study. The optimum conditions were determined to be 11.1° of inclination, 2.8L/min of feed water flow and 4.9L/min of wash water flow. All three final products of the wet shaking table had a content higher than 90% in relation to one of the metals, wherein a Cu concentrate product was obtained with a Cu content of 96%, and 78% of Cu recovery and 2% of Al recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Feng; Huisman, Jaco; Meskers, Christina E M; Schluep, Mathias; Stevels, Ab; Hagelüken, Christian
2012-11-01
E-waste is a complex waste category containing both hazardous and valuable substances. It demands for a cost-efficient treatment system which simultaneously liberates and refines target fractions in an environmentally sound way. In most developing countries there is a lack of systems covering all steps from disposal until final processing due to limited infrastructure and access to technologies and investment. This paper introduces the 'Best-of-2-Worlds' philosophy (Bo2W), which provides a network and pragmatic solution for e-waste treatment in emerging economies. It seeks technical and logistic integration of 'best' pre-processing in developing countries to manually dismantle e-waste and 'best' end-processing to treat hazardous and complex fractions in international state-of-the-art end-processing facilities. A series of dismantling trials was conducted on waste desktop computers, IT equipment, large and small household appliances, in order to compare the environmental and economic performances of the Bo2W philosophy with other conventional recycling scenarios. The assessment showed that the performance of the Bo2W scenario is more eco-efficient than mechanical separation scenarios and other local treatment solutions. For equipment containing substantial hazardous substances, it demands the assistance from domestic legislation for mandatory removal and safe handling of such fractions together with proper financing to cover the costs. Experience from Bo2W pilot projects in China and India highlighted key societal factors influencing successful implementation. These include market size, informal competitors, availability of national e-waste legislation, formal take-back systems, financing and trust between industrial players. The Bo2W philosophy can serve as a pragmatic and environmentally responsible transition before establishment of end-processing facilities in developing countries is made feasible. The executive models of Bo2W should be flexibly differentiated for various countries by adjusting to local conditions related to operational scale, level of centralized operations, dismantling depth, combination with mechanical processing and optimized logistics to international end-processors. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria
2013-06-01
Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization.
Hilton, Harry H
2012-01-18
Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.
2001-01-01
Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.
Díez, C; Martínez, O; Calvo, L F; Cara, J; Morán, A
2004-01-01
A study was made of the pyrolysis of tyre particles, with the aim of determining the possibilities of using the products resulting from the process as fuel. Three final temperatures were used, determined from thermogravimetric data. The design of the experiment was a horizontal oven containing a reactor into which particles of the original tyre were placed. After the process, a solid fraction (char) remained in the reactor, while the gases generated went through a set of scrubbers where most of the condensable fraction (oils) was retained. Finally, once free of this fraction, the gases were collected in glass ampoules. Solid and liquids fractions were subjected to thermogravimetric analyses in order to study their combustibility. The gas fraction was analysed by means of gas chromatography to establish the content of CO, CO2, H2 and hydrocarbons present in the samples (mainly components of gases produced in the pyrolysis process). A special study was made of the sulphur and chlorine content of all the fractions, as the presence of these elements could be problematic if the products are used as fuel. Tyre pyrolysis engenders a solid carbon residue that concentrates sulphur and chorine, with a relatively high calorific value, although not so high as that of the original tyre. The liquid fraction produced by the process has a high calorific value, which rises with the final temperature, up to 40 MJ/kg. The chlorine content of this fraction is negligible. Over 95% of the gas fraction, regardless of the final temperature, is composed of hydrocarbons of a low molecular weight and hydrogen, this fraction also appearing to be free of chlorine.
A survey of size-fractionated dust levels in the U.S. wood processing industry.
Kalliny, Medhat I; Brisolara, Joseph A; Glindmeyer, Henry; Rando, Roy
2008-08-01
A survey of size-fractionated dust exposure was carried out in 10 wood processing plants across the United States as part of a 5-year longitudinal respiratory health study. The facilities included a sawmill, plywood assembly plants, secondary wood milling operations, and factories producing finished wood products such as wood furniture and cabinets. Size-fractionated dust exposures were determined using the RespiCon Personal Particle Sampler. There were 2430 valid sets of respirable, thoracic, and inhalable dust samples collected. Overall, geometric mean (geometric standard deviation) exposure levels were found to be 1.44 (2.67), 0.35 (2.65), and 0.18 (2.54) mg/m, for the inhalable, thoracic, and respirable fractions, respectively. Averaged across all samples, the respirable fraction accounted for 16.7% of the inhalable dust mass, whereas the corresponding figure for thoracic fraction as a percentage of the inhalable fraction was 28.7%. Exposures in the furniture manufacturing plants were significantly higher than those in sawmill and plywood assembly plants, wood milling plants, and cabinet manufacturing plants, whereas the sawmill and plywood assembly plants exhibited significantly lower dust levels than the other industry segments. Among work activities, cleaning with compressed air and sanding processes produced the highest size-fractionated dust exposures, whereas forklift drivers demonstrated the lowest respirable and inhalable dust fractions and shipping processes produced the lowest thoracic dust fraction. Other common work activities such as sawing, milling, and clamping exhibited intermediate exposure levels, but there were significant differences in relative ranking of these across the various industry segments. Processing of hardwood and mixed woods generally were associated with higher exposures than were softwood and plywood, although these results were confounded with industry segment also.
Salian, Sujith Raj; Kumar, Dayanidhi; Singh, Vikram Jeet; D’Souza, Fiona; Kalthur, Guruprasad; Kamath, Asha; Adiga, Satish Kumar
2016-01-01
Background The influence of ejaculatory abstinence (EA) on semen parameters and subsequent reproductive outcome is still debatable; hence understanding the impact of EA on sperm structural and functional integrity may provide a valuable information on predicting successful clinical outcome. Objective To understand the influence of EA on sperm chromatin maturity, integrity, longevity and global methylation status. Methods This experimental prospective study included 76 ejaculates from 19 healthy volunteers who provided ejaculates after observing 1, 3, 5 and 7 days of abstinence. Sperm chromatin maturity, DNA integrity and global methylation status were assessed in the neat ejaculate. Sperm motility, DNA integrity and longevity were assessed in the processed fraction of the fresh and frozen-thawed ejaculates to determine their association with the length of EA. Results Spermatozoa from 1 day ejaculatory abstinence (EA-1) displayed significantly higher level of sperm chromatin immaturity in comparison to EA-3 (P < 0.05) and EA-5 (P < 0.01) whereas; the number of 5-methyl cytosine immunostained spermatozoa did not vary significantly across groups. On the other hand, in vitro incubation of processed ejaculate from EA-1 resulted in approximately 20 and 40 fold increase in the DNA fragmented spermatozoa at the end of 6 and 24h respectively (P < 0.01–0.001). Conclusion Use of short-term EA for therapeutic fertilization would be a clinically valuable strategy to improve the DNA quality. However, use of such spermatozoa after prolonged incubation in vitro should be avoided as it can carry a substantial risk of transmitting DNA fragmentation to the oocytes. PMID:27043437
Progress towards MODIS and VIIRS Cloud Fraction Data Record Continuity
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Frey, R.; Holz, R.; Platnick, S. E.; Heidinger, A. K.
2016-12-01
Satellite-derived clear-sky vs. cloudy-sky discrimination at the pixel scale is an important input parameter used in many real-time applications. Cloud fractions, resulting from integrating over time and space, are also critical to the study of recent decadal climate changes. The NASA NPOESS Preparatory Project (NPP) has funded a science team to develop and study the ability to make continuous climate records from MODIS (2000-2020) and VIIRS (2012-2030). The MODAWG project, led by Dr. Steve Platnick of NASA/GSFC, combines elements of the MODIS processing system and the NOAA Algorithm Working Group (AWG) to achieve this goal. This presentation will focus on the cloud masking aspects of MODAWG, derived primarily from the MODIS cloud mask (MOD35). Challenges to continuity of cloud detection due to differences in instrument characteristics will be discussed. Cloud mask results from use of the same (continuity) algorithm will be shown for both MODIS and VIIRS, including comparisons to collocated CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud data.
Understanding the source of multifractality in financial markets
NASA Astrophysics Data System (ADS)
Barunik, Jozef; Aste, Tomaso; Di Matteo, T.; Liu, Ruipeng
2012-09-01
In this paper, we use the generalized Hurst exponent approach to study the multi-scaling behavior of different financial time series. We show that this approach is robust and powerful in detecting different types of multi-scaling. We observe a puzzling phenomenon where an apparent increase in multifractality is measured in time series generated from shuffled returns, where all time-correlations are destroyed, while the return distributions are conserved. This effect is robust and it is reproduced in several real financial data including stock market indices, exchange rates and interest rates. In order to understand the origin of this effect we investigate different simulated time series by means of the Markov switching multifractal model, autoregressive fractionally integrated moving average processes with stable innovations, fractional Brownian motion and Levy flights. Overall we conclude that the multifractality observed in financial time series is mainly a consequence of the characteristic fat-tailed distribution of the returns and time-correlations have the effect to decrease the measured multifractality.
Fractal Physiology and the Fractional Calculus: A Perspective
West, Bruce J.
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355
Zheng, Weijia; Pi, Youguo
2016-07-01
A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Jing; Wen, Guoguang; Rahmani, Ahmed
2018-04-01
Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, J.; Amthor, J.; Dahlman, R.
2008-12-01
One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biologicalmore » components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.« less
On the role of the amygdala for experiencing fatigue in patients with multiple sclerosis.
Hanken, Katrin; Francis, Yoselin; Kastrup, Andreas; Eling, Paul; Klein, Jan; Hildebrandt, Helmut
2018-02-01
Recently, we proposed a model explaining the origin of fatigue in multiple sclerosis (MS) patients. This model assumes that the feeling of fatigue results from inflammation-induced information processing within interoceptive brain areas. To investigate the association between self-reported cognitive fatigue and structural integrity of interoceptive brain areas in MS patients. 95 MS patients and 28 healthy controls participated in this study. All participants underwent diffusion tensor MRI and fractional anisotropy data were calculated for the amygdala, the stria terminalis and the corpus callosum, a non-interoceptive brain area. Based on the cognitive fatigue score of the Fatigue Scale for Motor and Cognition, patients were divided into moderately cognitively fatigued (cognitive fatigue score ≥ 28) and cognitively non-fatigued (cognitive fatigue score < 28) MS patients. Healthy controls were recruited as a third group. Repeated measures analyses of covariance, controlling for age, depression and brain atrophy, were performed to investigate whether the factor Group had a significant effect on the fractional anisotropy data. A significant effect of Group was observed for the amygdala (F = 3.389, p = 0.037). MS patients without cognitive fatigue presented lower values of the amygdala than MS patients with cognitive fatigue and healthy controls. For the stria terminalis and the corpus callosum, no main effect of Group was observed. The structural integrity of the amygdala in non-fatigued MS patients appears to be reduced. According to our model this might indicate that the absence of fatigue in non-fatigued MS patients might result from disturbed inflammation-induced information processing in the amygdala. Copyright © 2017 Elsevier B.V. All rights reserved.
Levin, Harvey S.; Wilde, Elisabeth A.; Chu, Zili; Yallampalli, Ragini; Hanten, Gerri R.; Li, Xiaoqi; Chia, Jon; Vasquez, Carmen; Hunter, Jill V.
2008-01-01
Objective To investigate the relation of white matter integrity using diffusion tensor imaging (DTI) to cognitive and functional outcome of moderate to severe traumatic brain injury (TBI) in children. Design Prospective observational study of children who had sustained moderate to severe TBI and a comparison group of children who had sustained orthopedic injury (OI). Participants Thirty-two children who had sustained moderate to severe TBI and 36 children with OI were studied. Methods Fiber tracking analysis of DTI acquired at 3-month postinjury and assessment of global outcome and cognitive function within 2 weeks of brain imaging. Global outcome was assessed using the Glasgow Outcome Scale and the Flanker task was used to measure cognitive processing speed and resistance to interference. Results Fractional anisotropy and apparent diffusion coefficient values differentiated the groups and both cognitive and functional outcome measures were related to the DTI findings. Dissociations were present wherein the relation of Fractional anisotropy to cognitive performance differed between the TBI and OI groups. A DTI composite measure of white matter integrity was related to global outcome in the children with TBI. Conclusions DTI is sensitive to white matter injury at 3 months following moderate to severe TBI in children, including brain regions that appear normal on conventional magnetic resonance imaging. DTI measures reflecting diffusion of water parallel and perpendicular to white matter tracts as calculated by fiber tracking analysis are related to global outcome, cognitive processing speed, and speed of resolving interference in children with moderate to severe TBI. Longitudinal data are needed to determine whether these relations between DTI and neurobehavioral outcome of TBI in children persist at longer follow-up intervals. PMID:18650764
Airborne characterization of smoke marker ratios from prescribed burning
A. P. Sullivan; A. A. May; T. Lee; G. R. McMeeking; S. M. Kreidenweis; S. K. Akagi; R. J. Yokelson; S. P. Urbanski; J. L. Collett
2014-01-01
A Particle-Into-Liquid Sampler - Total Organic Carbon (PILS-TOC) and fraction collector system was flown aboard a Twin Otter aircraft sampling prescribed burning emissions in South Carolina in November 2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated offline samples for carbohydrate (i.e., smoke markers levoglucosan,...
Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.
Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo
2016-03-26
The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.
Analytical solutions for coagulation and condensation kinetics of composite particles
NASA Astrophysics Data System (ADS)
Piskunov, Vladimir N.
2013-04-01
The processes of composite particles formation consisting of a mixture of different materials are essential for many practical problems: for analysis of the consequences of accidental releases in atmosphere; for simulation of precipitation formation in clouds; for description of multi-phase processes in chemical reactors and industrial facilities. Computer codes developed for numerical simulation of these processes require optimization of computational methods and verification of numerical programs. Kinetic equations of composite particle formation are given in this work in a concise form (impurity integrated). Coagulation, condensation and external sources associated with nucleation are taken into account. Analytical solutions were obtained in a number of model cases. The general laws for fraction redistribution of impurities were defined. The results can be applied to develop numerical algorithms considerably reducing the simulation effort, as well as to verify the numerical programs for calculation of the formation kinetics of composite particles in the problems of practical importance.
Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites
NASA Astrophysics Data System (ADS)
Sordo, Federica; Michaud, Véronique
2016-08-01
Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.
NASA Astrophysics Data System (ADS)
Loch-Olszewska, Hanna; Szwabiński, Janusz
2018-05-01
The ergodicity breaking phenomenon has already been in the area of interest of many scientists, who tried to uncover its biological and chemical origins. Unfortunately, testing ergodicity in real-life data can be challenging, as sample paths are often too short for approximating their asymptotic behaviour. In this paper, the authors analyze the minimal lengths of empirical trajectories needed for claiming the ɛ-ergodicity based on two commonly used variants of an autoregressive fractionally integrated moving average model. The dependence of the dynamical functional on the parameters of the process is studied. The problem of choosing proper ɛ for ɛ-ergodicity testing is discussed with respect to especially the variation of the innovation process and the data sample length, with a presentation on two real-life examples.
Loch-Olszewska, Hanna; Szwabiński, Janusz
2018-05-28
The ergodicity breaking phenomenon has already been in the area of interest of many scientists, who tried to uncover its biological and chemical origins. Unfortunately, testing ergodicity in real-life data can be challenging, as sample paths are often too short for approximating their asymptotic behaviour. In this paper, the authors analyze the minimal lengths of empirical trajectories needed for claiming the ε-ergodicity based on two commonly used variants of an autoregressive fractionally integrated moving average model. The dependence of the dynamical functional on the parameters of the process is studied. The problem of choosing proper ε for ε-ergodicity testing is discussed with respect to especially the variation of the innovation process and the data sample length, with a presentation on two real-life examples.
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...
Code of Federal Regulations, 2013 CFR
2013-04-01
... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...
Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.
Chen, Boshan; Chen, Jiejie
2015-08-01
We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antioxidants, mechanisms, and recovery by membrane processes.
Bazinet, Laurent; Doyen, Alain
2017-03-04
Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.
Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation
NASA Astrophysics Data System (ADS)
Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.
2017-07-01
The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.
Recovery of glass from the inert fraction refused by MBT plants in a pilot plant.
Dias, Nilmara; Garrinhas, Inés; Maximo, Angela; Belo, Nuno; Roque, Paulo; Carvalho, M Teresa
2015-12-01
Selective collection is a common practice in many countries. However, even in some of those countries there are recyclable materials, like packaging glass, erroneously deposited in the Mixed Municipal Solid Waste (MMSW). In the present paper, a solution is proposed to recover glass from the inert reject of Mechanical and Biological Treatment (MBT) plants treating MMSW aiming at its recycling. The inert reject of MBT (MBTr) plants is characterized by its small particle size and high heterogeneity. The study was made with three real samples of diverse characteristics superimposed mainly by the different upstream MBT. One of the samples (VN) had a high content in organics (approximately 50%) and a particle size smaller than 16 mm. The other two were coarser and exhibited similar particle size distribution but one (RE) was rich in glass (almost 70%) while the other (SD) contained about 40% in glass. A flowsheet was developed integrating drying, to eliminate moisture related with organic matter contamination; magnetic separation, to separate remaining small ferrous particles; vacuum suction, to eliminate light materials; screening, to eliminate the finer fraction that has a insignificant content in glass, and to classify the >6mm fraction in 6-16 mm and >16 mm fractions to be processed separately; separation by particle shape, in the RecGlass equipment specifically designed to eliminate stones; and optical sorting, to eliminate opaque materials. A pilot plant was built and the tests were conducted with the three samples separately. With all samples, it was possible to attain approximately 99% content in glass in the glass products, but the recovery of glass was related with the feed particle size. The finer the feed was, the lower the percentage of glass recovered in the glass product. The results show that each one of the separation processes was needed for product enrichment. The organic matter recovered in the glass product was high, ranging from 0.76% to 1.13%, showing that drying was not sufficient in the tests but that it is a key process for the success of the operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced High-Level Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, David K.; Vienna, John D.; Schweiger, Michael J.
2015-07-01
The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less
Process for the physical segregation of minerals
Yingling, Jon C.; Ganguli, Rajive
2004-01-06
With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.
Quantifying Ubiquitin Signaling
Ordureau, Alban; Münch, Christian; Harper, J. Wade
2015-01-01
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850
Construction, database integration, and application of an Oenothera EST library.
Mrácek, Jaroslav; Greiner, Stephan; Cho, Won Kyong; Rauwolf, Uwe; Braun, Martha; Umate, Pavan; Altstätter, Johannes; Stoppel, Rhea; Mlcochová, Lada; Silber, Martina V; Volz, Stefanie M; White, Sarah; Selmeier, Renate; Rudd, Stephen; Herrmann, Reinhold G; Meurer, Jörg
2006-09-01
Coevolution of cellular genetic compartments is a fundamental aspect in eukaryotic genome evolution that becomes apparent in serious developmental disturbances after interspecific organelle exchanges. The genus Oenothera represents a unique, at present the only available, resource to study the role of the compartmentalized plant genome in diversification of populations and speciation processes. An integrated approach involving cDNA cloning, EST sequencing, and bioinformatic data mining was chosen using Oenothera elata with the genetic constitution nuclear genome AA with plastome type I. The Gene Ontology system grouped 1621 unique gene products into 17 different functional categories. Application of arrays generated from a selected fraction of ESTs revealed significantly differing expression profiles among closely related Oenothera species possessing the potential to generate fertile and incompatible plastid/nuclear hybrids (hybrid bleaching). Furthermore, the EST library provides a valuable source of PCR-based polymorphic molecular markers that are instrumental for genotyping and molecular mapping approaches.
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.
Comparison of different methods used in integral codes to model coagulation of aerosols
NASA Astrophysics Data System (ADS)
Beketov, A. I.; Sorokin, A. A.; Alipchenkov, V. M.; Mosunova, N. A.
2013-09-01
The methods for calculating coagulation of particles in the carrying phase that are used in the integral codes SOCRAT, ASTEC, and MELCOR, as well as the Hounslow and Jacobson methods used to model aerosol processes in the chemical industry and in atmospheric investigations are compared on test problems and against experimental results in terms of their effectiveness and accuracy. It is shown that all methods are characterized by a significant error in modeling the distribution function for micrometer particles if calculations are performed using rather "coarse" spectra of particle sizes, namely, when the ratio of the volumes of particles from neighboring fractions is equal to or greater than two. With reference to the problems considered, the Hounslow method and the method applied in the aerosol module used in the ASTEC code are the most efficient ones for carrying out calculations.
NASA Technical Reports Server (NTRS)
Motil, Susan M.
2002-01-01
The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.
Using operational and defined fractions to assess soil organic matter stabilization and structure
NASA Astrophysics Data System (ADS)
Horwath, W. R.
2015-12-01
Studies on soil organic matter (SOM) began with alkaline solvents revealing a dark colored substance that could be isolated under low pH. Further studies revealed fulvic and humic acids and humin fractions leading to theories on functional groups and metal-clay bridging mechanisms. The fate of isotopes in these fractions revealed soil carbon pools with varying turnover rates with half the soil carbon (C) in humin and acid hydrolyzed fractions over 1000 years old. These results are the basis of the three pool conceptual framework used in many biogeochemical models. Theories on the role of functional groups and compound classes further elaborated concepts on physical (aggregates) and chemical mechanisms of C stabilization. With the advance of analytical instrumentation, the operational fractions were further defined to the compound and molecular levels. These studies confirmed the majority of soil C is microbially derived. Our observation that all microbial groups contributed nonselectively to soil C maintenance independent of mineralogy suggests that compound characteristics within integrated structures are more important than the source of individual compounds for stabilizing soil C. In dissolved organic C floccing studies using Near Edge X-ray Fine Structure analysis, we found that aromatic compounds interacted first with Fe, however, the majority of direct bonds to Fe were polysaccharides, reinforcing that an integrative chemical structure rather than direct bonds imparted stability in organo-metal interactions. Using a novel differential scanning calorimeter coupled to an isotope ratio mass spectrometer setup, we confirmed that the presence of clays (independent of clay type) increased the microbial utilization of calcium stabilized high versus low temperature compounds, asserting that higher temperature compounds (i.e., phenolics) are likely less tightly bound by clay minerals. The integration of operational and defined fractions of SOM remains a legitimate approach to examine SOM structure and stabilization across scales of soil development and management.
Karagiannidis, A; Perkoulidis, G
2009-04-01
This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Andrew; Crewson, Cody; Davis, William
Spatial fractionation of radiation using arrays of narrow parallel micro-planar beams (less than 1 mm), is a relatively new concept with many unknowns specifically within the underlying biology of cell death. A tungsten collimator has been designed to produce mini-beams with a Varian linear accelerator for translational animal research into the effectiveness of spatial fractionation mini-beam radiotherapy (MBRT). This work presents the treatment planning process and workflow for the application of MBRT treatments within a clinical study. For patient dose calculations, the MBRT collimator was incorporated into a Monte Carlo based treatment planning system called MMCTP. Treatment planning was splitmore » between Eclipse and MMCTP, as the field apertures were determined within Eclipse prior to being sent to MMCTP for dose calculations. The calculated plan was transferred back into Aria with updated MUs per field for patient treatment. Patients were positioned within a vac-lock bag lying prone with a bite block and a thermoplastic mask to immobilize the head. Prior to treatment, a delivery verification plan was created within MMCTP. DQA output measurements of the treatment fields agreed with the calculated dose to within 1.5%. We have presented a workflow for MBRT treatments that include the planning technique, dose calculation method, DQA process and data integration into a record and verify system. The clinical study following this workflow represent the first series of linac based MBRT patients and depending on the clinical outcome of the study, our technique could be applied to human MBRT treatments.« less
Pirozzi, Enrica
2018-04-01
High variability in the neuronal response to stimulations and the adaptation phenomenon cannot be explained by the standard stochastic leaky integrate-and-fire model. The main reason is that the uncorrelated inputs involved in the model are not realistic. There exists some form of dependency between the inputs, and it can be interpreted as memory effects. In order to include these physiological features in the standard model, we reconsider it with time-dependent coefficients and correlated inputs. Due to its hard mathematical tractability, we perform simulations of it for a wide investigation of its output. A Gauss-Markov process is constructed for approximating its non-Markovian dynamics. The first passage time probability density of such a process can be numerically evaluated, and it can be used to fit the histograms of simulated firing times. Some estimates of the moments of firing times are also provided. The effect of the correlation time of the inputs on firing densities and on firing rates is shown. An exponential probability density of the first firing time is estimated for low values of input current and high values of correlation time. For comparison, a simulation-based investigation is also carried out for a fractional stochastic model that allows to preserve the memory of the time evolution of the neuronal membrane potential. In this case, the memory parameter that affects the firing activity is the fractional derivative order. In both models an adaptation level of spike frequency is attained, even if along different modalities. Comparisons and discussion of the obtained results are provided.
Pintucci, Cristina; Carballa, Marta; Varga, Sam; Sarli, Jimena; Peng, Lai; Bousek, Johannes; Pedizzi, Chiara; Ruscalleda, Maël; Tarragó, Elena; Prat, Delphine; Colica, Giovanni; Picavet, Merijn; Colsen, Joop; Benito, Oscar; Balaguer, Marilos; Puig, Sebastià; Lema, Juan M; Colprim, Jesús; Fuchs, Werner; Vlaeminck, Siegfried E
2017-03-01
Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit ® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m -3 d -1 , with a biogas production rate of 1.4 Nm 3 m -3 d -1 . The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, A.N.; Morehead, J.J.; Brizard, A.J.
Linear conversion of an incoming magnetosonic wave (a.k.a. fast or compressional wave) to an ion-hybrid wave can be considered as a 3-step process in ray phase space. This is demonstrated by casting the cold-fluid model into the Friedland-Kaufman normal form for linear mode conversion. First, the incoming magnetosonic ray (MSR) converts a fraction of its action to an {ital intermediate} ion-hybrid ray (IHR), with the transmitted ray proceeding through the conversion layer. The IHR propagates in k-space to a {ital second} conversion point, where it converts in turn a fraction of its action into a {ital reflected} MSR, with themore » remainder of the its action constituting the {ital converted} IHR. The modular approach gives {ital exact} agreement with the more standard Budden formulation for the transmission, reflection and conversion coefficients, but has the important advantage of exposing the intermediate IHR. The existence of the intermediate IHR has important physical consequences as it can resonate with {alpha} particles. We estimate the time-integrated damping coefficient between the two conversions and show that {integral}{gamma}dt is of order {minus}100, thus the IH wave is completely annihilated between conversions and transfers its energy to the {alpha}{close_quote}s. This suggests that proposals to use the IH mode for current drive or DT heating are likely to fail in the presence of fusion {alpha}{close_quote}s. {copyright} {ital 1997 American Institute of Physics.}« less
Cognitive Profiles Associated with Responsiveness to Fraction Intervention
ERIC Educational Resources Information Center
Krowka, Sarah K.; Fuchs, Lynn S.
2017-01-01
This study examined differences in cognitive processing between 4th-grade students who respond adequately, as opposed to inadequately, to intervention on 3 fraction outcomes: number-line estimation, calculation, and word problems. Students were assessed on 7 cognitive processes and on the 3 fraction outcomes. Students were grouped as adequate or…
USDA-ARS?s Scientific Manuscript database
An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...
Fine grained event processing on HPCs with the ATLAS Yoda system
NASA Astrophysics Data System (ADS)
Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre
2015-12-01
High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.
Enabling aqueous processing for crack-free thick electrodes
Du, Zhijia; Rollag, K. M.; Li, J.; ...
2017-04-14
Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less
Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms
NASA Astrophysics Data System (ADS)
Yu, Yue; Perdikaris, Paris; Karniadakis, George Em
2016-10-01
We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O (log (N)) and the computational complexity to O (Nlog (N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid-structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives.
Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms
Perdikaris, Paris; Karniadakis, George Em
2017-01-01
We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O(log(N)) and the computational complexity to O(N log(N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid–structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives. PMID:29104310
NASA Astrophysics Data System (ADS)
Liu, H.; Zhang, C.; Tian, J.
2017-12-01
Microbial degradation of organic matter is an essential process in marine carbon cycle, which constitutes an integral component of the marine ecosystem and influences climate change. It is still poorly known, however, how microorganisms interact in utilizing organic matter in the ocean. We have performed metagenomic and qPCR analyses of archaea and bacteria in both particle-attached (>3 mm) and free-living (0.2-3 mm) fractions from surface down to 8727 m in the Mariana Trench. The metagenomic results showed large numbers of genes related to the degradation of valine, leucine, isoleucine and lysine, which were similar between free-living and particle-attached fractions from surface to 6000 m depth intervals. However, the relative abundance of these genes decreased in particle-attached fractions and increased in the free-living fractions below 6000 m depth. This is consistent with the ecophysiology of marine group II (MGII) Euryarchaeota, which are suggested to be able to degrade proteins and lipids. Overall, significant correlation (R2 = 0.95) was observed between the abundance of particle-attached MGII and that of particle-attached heterotrophic bacteria in the Mariana Trench water column; whereas, the correlation was significantly reduced (R2 = 0.34) between free-living MGII and free-living bacteria. We hypothesize that particle-attached MGII and heterotrophic bacteria were mutually beneficial in degrading organic matter, which becomes less important between these organisms in the free-living population.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
Ceballos, Melisa Rodas; García-Tenorio, Rafael; Estela, José Manuel; Cerdà, Víctor; Ferrer, Laura
2017-12-01
Leached fractions of U and Th from different environmental solid matrices were evaluated by an automatic system enabling the on-line lixiviation and extraction/pre-concentration of these two elements previous ICP-MS detection. UTEVA resin was used as selective extraction material. Ten leached fraction, using artificial rainwater (pH 5.4) as leaching agent, and a residual fraction were analyzed for each sample, allowing the study of behavior of U and Th in dynamic lixiviation conditions. Multivariate techniques have been employed for the efficient optimization of the independent variables that affect the lixiviation process. The system reached LODs of 0.1 and 0.7ngkg -1 of U and Th, respectively. The method was satisfactorily validated for three solid matrices, by the analysis of a soil reference material (IAEA-375), a certified sediment reference material (BCR- 320R) and a phosphogypsum reference material (MatControl CSN-CIEMAT 2008). Besides, environmental samples were analyzed, showing a similar behavior, i.e. the content of radionuclides decreases with the successive extractions. In all cases, the accumulative leached fraction of U and Th for different solid matrices studied (soil, sediment and phosphogypsum) were extremely low, up to 0.05% and 0.005% of U and Th, respectively. However, a great variability was observed in terms of mass concentration released, e.g. between 44 and 13,967ngUkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Methods to recover value-added coproducts from dry grind processing of grains into fuel ethanol.
Liu, Keshun; Barrows, Frederic T
2013-07-31
Three methods are described to fractionate condensed distillers solubles (CDS) into several new coproducts, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein fraction, an oil fraction, a mineral fraction, and a glycerol fraction by a physicochemical method. Processing factors (ethanol concentration and centrifuge force) were also investigated. Results show that the three methods separated CDS into different fractions, with each fraction enriched with one or more of the five components (protein, oil, ash, glycerol and other carbohydrates) and thus having different targeted end uses. Furthermore, because glycerol, a hygroscopic substance, was mostly shifted to the glycerol or glycerol-mineral fraction, the other fractions had much faster moisture reduction rates than CDS upon drying in a forced air oven at 60 °C. Thus, these methods could effectively solve the dewatering problem of CDS, allowing elimination of the current industrial practice of blending distiller wet grains with CDS for drying together and production of distiller dried grains as a standalone coproduct in addition to a few new fractions.
Tuning algorithms for fractional order internal model controllers for time delay processes
NASA Astrophysics Data System (ADS)
Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.
2016-03-01
This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.
GTX Reference Vehicle Structural Verification Methods and Weight Summary
NASA Technical Reports Server (NTRS)
Hunter, J. E.; McCurdy, D. R.; Dunn, P. W.
2002-01-01
The design of a single-stage-to-orbit air breathing propulsion system requires the simultaneous development of a reference launch vehicle in order to achieve the optimal mission performance. Accordingly, for the GTX study a 300-lb payload reference vehicle was preliminary sized to a gross liftoff weight (GLOW) of 238,000 lb. A finite element model of the integrated vehicle/propulsion system was subjected to the trajectory environment and subsequently optimized for structural efficiency. This study involved the development of aerodynamic loads mapped to finite element models of the integrated system in order to assess vehicle margins of safety. Commercially available analysis codes were used in the process along with some internally developed spread-sheets and FORTRAN codes specific to the GTX geometry for mapping of thermal and pressure loads. A mass fraction of 0.20 for the integrated system dry weight has been the driver for a vehicle design consisting of state-of-the-art composite materials in order to meet the rigid weight requirements. This paper summarizes the methodology used for preliminary analyses and presents the current status of the weight optimization for the structural components of the integrated system.
GTX Reference Vehicle Structural Verification Methods and Weight Summary
NASA Technical Reports Server (NTRS)
Hunter, J. E.; McCurdy, D. R.; Dunn, P. W.
2002-01-01
The design of a single-stage-to-orbit air breathing propulsion system requires the simultaneous development of a reference launch vehicle in order to achieve the optimal mission performance. Accordingly, for the GTX study a 300-lb payload reference vehicle was preliminarily sized to a gross liftoff weight (GLOW) of 238,000 lb. A finite element model of the integrated vehicle/propulsion system was subjected to the trajectory environment and subsequently optimized for structural efficiency. This study involved the development of aerodynamic loads mapped to finite element models of the integrated system in order to assess vehicle margins of safety. Commercially available analysis codes were used in the process along with some internally developed spreadsheets and FORTRAN codes specific to the GTX geometry for mapping of thermal and pressure loads. A mass fraction of 0.20 for the integrated system dry weight has been the driver for a vehicle design consisting of state-of-the-art composite materials in order to meet the rigid weight requirements. This paper summarizes the methodology used for preliminary analyses and presents the current status of the weight optimization for the structural components of the integrated system.
NASA Astrophysics Data System (ADS)
Durner, Wolfgang; Huber, Magdalena; Yangxu, Li; Steins, Andi; Pertassek, Thomas; Göttlein, Axel; Iden, Sascha C.; von Unold, Georg
2017-04-01
The particle-size distribution (PSD) is one of the main properties of soils. To determine the proportions of the fine fractions silt and clay, sedimentation experiments are used. Most common are the Pipette and Hydrometer method. Both need manual sampling at specific times. Both are thus time-demanding and rely on experienced operators. Durner et al. (Durner, W., S.C. Iden, and G. von Unold (2017): The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation, Water Resources Research, doi:10.1002/2016WR019830) recently developed the integral suspension method (ISP) method, which is implemented in the METER Group device PARIOTM. This new method estimates continuous PSD's from sedimentation experiments by recording the temporal evolution of the suspension pressure at a certain measurement depth in a sedimentation cylinder. It requires no manual interaction after start and thus no specialized training of the lab personnel. The aim of this study was to test the precision and accuracy of new method with a variety of materials, to answer the following research questions: (1) Are the results obtained by PARIO reliable and stable? (2) Are the results affected by the initial mixing technique to homogenize the suspension, or by the presence of sand in the experiment? (3) Are the results identical to the one that are obtained with the Pipette method as reference method? The experiments were performed with a pure quartz silt material and four real soil materials. PARIO measurements were done repetitively on the same samples in a temperature-controlled lab to characterize the repeatability of the measurements. Subsequently, the samples were investigated by the pipette method to validate the results. We found that the statistical error for silt fraction from replicate and repetitive measurements was in the range of 1% for the quartz material to 3% for soil materials. Since the sand fractions, as in any sedimentation method, must be measured explicitly and are used as fixed parameters in the PARIO evaluation, the error of the clay fraction is determined by error propagation from the sand and silt fraction. Homogenization of the suspension by overhead shaking gave lower reproducibility and smaller silt fractions than vertical stirring. However, it turned out that vertical stirring must be performed with sufficient rigour to obtain a fully homogeneous initial distribution. Analysis of material sieved to < 2000 μm and to < 200 μm gave equal results, i.e., there was no hint towards dragging effects of large particles. Complete removal of the sand fraction, i.e. sieving to < 63 μm lead to less silt, probably due to a loss of fine material by the sieving process. The PSD's obtained with the PARIO corresponded very well with the results of the Pipette method.
The fractional Fourier transform and applications
NASA Technical Reports Server (NTRS)
Bailey, David H.; Swarztrauber, Paul N.
1991-01-01
This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.
A review and evaluation of numerical tools for fractional calculus and fractional order controls
NASA Astrophysics Data System (ADS)
Li, Zhuo; Liu, Lu; Dehghan, Sina; Chen, YangQuan; Xue, Dingyü
2017-06-01
In recent years, as fractional calculus becomes more and more broadly used in research across different academic disciplines, there are increasing demands for the numerical tools for the computation of fractional integration/differentiation, and the simulation of fractional order systems. Time to time, being asked about which tool is suitable for a specific application, the authors decide to carry out this survey to present recapitulative information of the available tools in the literature, in hope of benefiting researchers with different academic backgrounds. With this motivation, the present article collects the scattered tools into a dashboard view, briefly introduces their usage and algorithms, evaluates the accuracy, compares the performance, and provides informative comments for selection.
Fractional domain varying-order differential denoising method
NASA Astrophysics Data System (ADS)
Zhang, Yan-Shan; Zhang, Feng; Li, Bing-Zhao; Tao, Ran
2014-10-01
Removal of noise is an important step in the image restoration process, and it remains a challenging problem in image processing. Denoising is a process used to remove the noise from the corrupted image, while retaining the edges and other detailed features as much as possible. Recently, denoising in the fractional domain is a hot research topic. The fractional-order anisotropic diffusion method can bring a less blocky effect and preserve edges in image denoising, a method that has received much interest in the literature. Based on this method, we propose a new method for image denoising, in which fractional-varying-order differential, rather than constant-order differential, is used. The theoretical analysis and experimental results show that compared with the state-of-the-art fractional-order anisotropic diffusion method, the proposed fractional-varying-order differential denoising model can preserve structure and texture well, while quickly removing noise, and yields good visual effects and better peak signal-to-noise ratio.
Correcting the initialization of models with fractional derivatives via history-dependent conditions
NASA Astrophysics Data System (ADS)
Du, Maolin; Wang, Zaihua
2016-04-01
Fractional differential equations are more and more used in modeling memory (history-dependent, non-local, or hereditary) phenomena. Conventional initial values of fractional differential equations are defined at a point, while recent works define initial conditions over histories. We prove that the conventional initialization of fractional differential equations with a Riemann-Liouville derivative is wrong with a simple counter-example. The initial values were assumed to be arbitrarily given for a typical fractional differential equation, but we find one of these values can only be zero. We show that fractional differential equations are of infinite dimensions, and the initial conditions, initial histories, are defined as functions over intervals. We obtain the equivalent integral equation for Caputo case. With a simple fractional model of materials, we illustrate that the recovery behavior is correct with the initial creep history, but is wrong with initial values at the starting point of the recovery. We demonstrate the application of initial history by solving a forced fractional Lorenz system numerically.
Methods to recover value-added co-products from dry grind processing of grains into fuel ethanol
USDA-ARS?s Scientific Manuscript database
Three methods were described to fractionate condensed distillers solubles (CDS) into several new co-products, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein frac...
White matter integrity as a marker for cognitive plasticity in aging.
de Lange, Ann-Marie Glasø; Bråthen, Anne Cecilie Sjøli; Grydeland, Håkon; Sexton, Claire; Johansen-Berg, Heidi; Andersson, Jesper L R; Rohani, Darius A; Nyberg, Lars; Fjell, Anders M; Walhovd, Kristine B
2016-11-01
Age-related differences in white matter (WM) integrity are substantial, but it is unknown whether between-subject variability in WM integrity influences the capacity for cognitive improvement. We investigated the effects of memory training related to active and passive control conditions in older adults and tested whether WM integrity at baseline was predictive of training benefits. We hypothesized that (1) memory improvement would be restricted to the training group, (2) widespread areas would show greater mean diffusivity (MD) and lower fractional anisotropy in older adults relative to young adults, and (3) within these areas, variability in WM microstructure in the older group would be predictive of training gains. The results showed that only the group receiving training improved their memory. Significant age differences in MD and fractional anisotropy were found in widespread areas. Within these areas, voxelwise analyses showed a negative relationship between MD and memory improvement in 3 clusters, indicating that WM integrity could serve as a marker for the ability to adapt in response to cognitive challenges in aging. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Anisotropic fractal media by vector calculus in non-integer dimensional space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less
Rivas-Cantu, Raul C; Jones, Kim D; Mills, Patrick L
2013-04-01
An assessment of recent technical advances on pretreatment processes and its effects on enzymatic hydrolysis as the main steps of a proposed citrus processing waste (CPW) biorefinery is presented. Engineering challenges and relevant gaps in scientific and technical information for reliable design, modeling and scale up of a CPW biorefinery are also discussed. Some integrated physico-chemical pretreatments are proposed for testing for CPW, including high speed knife-grinding and simultaneous caustic addition. These new proposed processes and the effect of parameters such as particle size, surface area and morphology, pore volume and chemical composition of the diverse fractions resulting from pretreatment and enzymatic hydrolysis need to be evaluated and compared for pretreated and untreated samples of grapefruit processing waste. This assessment suggests the potential for filling the data gaps, and preliminary results demonstrate that the reduction of particle size and the increased surface area for the CPW will result in higher reaction rates and monosaccharide yields for the pretreated waste material.
Modern supercritical fluid technology for food applications.
King, Jerry W
2014-01-01
This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.
Investigation of Municipal Solid Waste to Alcohol Conversion for Army Use
1992-03-01
fuel ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...of the cellulosic fraction to produce fermentable sugars. The first process, developed by the Tennessee Valley Authority (TVA), employs a single
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao; Science and Technology on Electronic Information Control Laboratory, 610036, Chengdu, Sichuan; Wei, Chaozhen
2014-11-15
In this paper we use Dirac function to construct a fractional operator called fractional corresponding operator, which is the general form of momentum corresponding operator. Then we give a judging theorem for this operator and with this judging theorem we prove that R–L, G–L, Caputo, Riesz fractional derivative operator and fractional derivative operator based on generalized functions, which are the most popular ones, coincide with the fractional corresponding operator. As a typical application, we use the fractional corresponding operator to construct a new fractional quantization scheme and then derive a uniform fractional Schrödinger equation in form. Additionally, we find thatmore » the five forms of fractional Schrödinger equation belong to the particular cases. As another main result of this paper, we use fractional corresponding operator to generalize fractional quantization scheme by using Lévy path integral and use it to derive the corresponding general form of fractional Schrödinger equation, which consequently proves that these two quantization schemes are equivalent. Meanwhile, relations between the theory in fractional quantum mechanics and that in classic quantum mechanics are also discussed. As a physical example, we consider a particle in an infinite potential well. We give its wave functions and energy spectrums in two ways and find that both results are the same.« less
A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS.
Lemmerhirt, David F; Cheng, Xiaoyang; White, Robert; Rich, Collin A; Zhang, Man; Fowlkes, J Brian; Kripfgans, Oliver D
2012-07-01
As ultrasound imagers become increasingly portable and lower cost, breakthroughs in transducer technology will be needed to provide high-resolution, real-time 3-D imaging while maintaining the affordability needed for portable systems. This paper presents a 32 x 32 ultrasound array prototype, manufactured using a CMUT-in-CMOS approach whereby ultrasonic transducer elements and readout circuits are integrated on a single chip using a standard integrated circuit manufacturing process in a commercial CMOS foundry. Only blanket wet-etch and sealing steps are added to complete the MEMS devices after the CMOS process. This process typically yields better than 99% working elements per array, with less than ±1.5 dB variation in receive sensitivity among the 1024 individually addressable elements. The CMUT pulseecho frequency response is typically centered at 2.1 MHz with a -6 dB fractional bandwidth of 60%, and elements are arranged on a 250 μm hexagonal grid (less than half-wavelength pitch). Multiplexers and CMOS buffers within the array are used to make on-chip routing manageable, reduce the number of physical output leads, and drive the transducer cable. The array has been interfaced to a commercial imager as well as a set of custom transmit and receive electronics, and volumetric images of nylon fishing line targets have been produced.
Associative Pattern Recognition In Analog VLSI Circuits
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1995-01-01
Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.
Fractions Learning in Children With Mathematics Difficulties.
Tian, Jing; Siegler, Robert S
Learning fractions is difficult for children in general and especially difficult for children with mathematics difficulties (MD). Recent research on developmental and individual differences in fraction knowledge of children with MD and typically achieving (TA) children has demonstrated that U.S. children with MD start middle school behind their TA peers in fraction understanding and fall further behind during middle school. In contrast, Chinese children, who like the MD children in the United States score in the bottom one third of the distribution in their country, possess reasonably good fraction understanding. We interpret these findings within the framework of the integrated theory of numerical development. By emphasizing the importance of fraction magnitude knowledge for numerical understanding in general, the theory proved useful for understanding differences in fraction knowledge between MD and TA children and for understanding how knowledge can be improved. Several interventions demonstrated the possibility of improving fraction magnitude knowledge and producing benefits that generalize to fraction arithmetic learning among children with MD. The reasonably good fraction understanding of Chinese children with MD and several successful interventions with U.S. students provide hope for the improvement of fraction knowledge among American children with MD.
Running, Steven W.; Gower, Stith T.
1991-01-01
A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.
Generating subtour elimination constraints for the TSP from pure integer solutions.
Pferschy, Ulrich; Staněk, Rostislav
2017-01-01
The traveling salesman problem ( TSP ) is one of the most prominent combinatorial optimization problems. Given a complete graph [Formula: see text] and non-negative distances d for every edge, the TSP asks for a shortest tour through all vertices with respect to the distances d. The method of choice for solving the TSP to optimality is a branch and cut approach . Usually the integrality constraints are relaxed first and all separation processes to identify violated inequalities are done on fractional solutions . In our approach we try to exploit the impressive performance of current ILP-solvers and work only with integer solutions without ever interfering with fractional solutions. We stick to a very simple ILP-model and relax the subtour elimination constraints only. The resulting problem is solved to integer optimality, violated constraints (which are trivial to find) are added and the process is repeated until a feasible solution is found. In order to speed up the algorithm we pursue several attempts to find as many relevant subtours as possible. These attempts are based on the clustering of vertices with additional insights gained from empirical observations and random graph theory. Computational results are performed on test instances taken from the TSPLIB95 and on random Euclidean graphs .
Yver, Alexandra L.; Bonnaillie, Laetitia M.; Yee, Winnie; McAloon, Andrew; Tomasula, Peggy M.
2012-01-01
An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG) from a commercial whey protein isolate (WPI) containing 20% α-LA and 55% β-LG, through selective precipitation of α-LA. Pilot-scale experiments were performed around the optimal parameter range (T = 60 to 65 °C, P = 8 to 31 MPa, C = 5 to 15% (w/w) WPI) to quantify the recovery rates of the individual proteins and the compositions of both fractions as a function of processing conditions. Mass balances were calculated in a process flow-sheet to design a large-scale, semi-continuous process model using SuperproDesigner® software. Total startup and production costs were estimated as a function of processing parameters, product yield and purity. Temperature, T, pressure, P, and concentration, C, showed conflicting effects on equipment costs and the individual precipitation rates of the two proteins, affecting the quantity, quality, and production cost of the fractions considerably. The highest α-LA purity, 61%, with 80% α-LA recovery in the solid fraction, was obtained at T = 60 °C, C = 5% WPI, P = 8.3 MPa, with a production cost of $8.65 per kilogram of WPI treated. The most profitable conditions resulted in 57%-pure α-LA, with 71% α-LA recovery in the solid fraction and 89% β-LG recovery in the soluble fraction, and production cost of $5.43 per kilogram of WPI treated at T = 62 °C, C = 10% WPI and P = 5.5 MPa. The two fractions are ready-to-use, new food ingredients with a pH of 6.7 and contain no residual acid or chemical contaminants. PMID:22312250
Relating Optical Properties of Dusts to their Mineralogical and Physical Interrelationships
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; Moosmuller, H.; Jayanty, R. K. M.; Casuccio, G.; Pincock, S. L.
2015-12-01
The purpose of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected as grab samples from global dust sources. Surface soil samples were collected from about 65 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment chamber, from which the airborne mineral dust could be monitored, sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic resonator with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm soil fractions were mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, also showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interdependencies of the entrained dust samples. Examples showing the relationships between the single scattering albedos of airborne dusts, and iron (Fe) in hematite, goethite, and clay minerals (montmorillonite, illite, palygorskite), will be discussed. Our goal is to establish a database of the optical, mineralogical, and chemical properties of dust samples collected at multiple global dust sources. These data can be for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and damage to equipment.
Mineralogical, Chemical, and Optical Interrelationships of Airborne Mineral Dusts
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; Moosmuller, H.; Pincock, S. L.; Jayanty, R. K. M.; Casuccio, G.
2014-12-01
The purpose of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected as grab samples from global dust sources. Surface soil samples were collected from about 65 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment chamber, from which the airborne mineral dust could be monitored, sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic resonator with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm soil fractions were mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, also showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interdependencies of the entrained dust samples. Examples showing the relationships between the single scattering albedos of airborne dusts, and iron (Fe) in hematite, goethite, and clay minerals (montmorillonite, illite, palygorskite), will be discussed. Differences between the clay minerals in samples from Mali and those from other localities are demonstrated. We intend establishing a data base for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and damage to equipment.
Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT.
Alt, Volker; Kögelmaier, Daniela Vera; Lips, Katrin S; Witt, Vera; Pacholke, Sabine; Heiss, Christian; Kampschulte, Marian; Heinemann, Sascha; Hanke, Thomas; Thormann, Ulrich; Schnettler, Reinhard; Langheinrich, Alexander C
2011-10-01
Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 μm)(3) and nano-CT (3 μm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
First observation of a mass independent isotopic fractionation in a condensation reaction
NASA Technical Reports Server (NTRS)
Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III
1994-01-01
Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.
Ash reduction strategies in corn stover facilitated by anatomical and size fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.
There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less
Ash reduction strategies in corn stover facilitated by anatomical and size fractionation
Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...
2016-04-22
There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-11-01
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.
Pucci, G N; Pucci, O H
2003-01-01
The complex composition of the crude oil and the hydrocarbons that integrate the waste of the different stages of the oil industry turn this product a mixture that presents different difficulties for its elimination by biological methods. The objective of this paper was to study the biodegradation potential of autochthonous bacterial communities on hydrocarbons obtained from four polluted places and subjected to landfarming biorremediation system during a decade. The results showed a marked difference in biodegradability of the three main fractions of crude oil, aliphatic, aromatic, and polar fractions, obtained by column chromatography. All fractions were used as carbon source and energy. There were variations in the production of biomass among the different fractions as well as in the kinetics of biodegradation, according to the composition of each fraction.
Fractional kinetics of compartmental systems: first approach with use digraph-based method
NASA Astrophysics Data System (ADS)
Markowski, Konrad Andrzej
2017-08-01
In the last two decades, integral and differential calculus of a fractional order has become a subject of great interest in different areas of physics, biology, economics and other sciences. The idea of such a generalization was mentioned in 1695 by Leibniz and L'Hospital. The first definition of the fractional derivative was introduced by Liouville and Riemann at the end of the 19th century. Fractional calculus was found to be a very useful tool for modelling the behaviour of many materials and systems. In this paper fractional calculus was applied to pharmacokinetic compartmental model. For introduced model determine all possible quasi-positive realisation based on one-dimensional digraph theory. The proposed method was discussed and illustrated in detail with some numerical examples.
Sours, Chandler; Raghavan, Prashant; Medina, Alexandre E.; Roys, Steven; Jiang, Li; Zhuo, Jiachen
2017-01-01
Abstract Severe and moderate traumatic brain injury (sTBI) often results in long-term cognitive deficits such as reduced processing speed and attention. The intraparietal sulcus (IPS) is a neocortical structure that plays a crucial role in the deeply interrelated processes of multi-sensory processing and top down attention. Therefore, we hypothesized that disruptions in the functional and structural connections of the IPS may play a role in the development of such deficits. To examine these connections, we used resting state magnetic resonance imaging (rsfMRI and diffusion kurtosis imaging (DKI) in a cohort of 27 patients with sTBI (29.3 ± 8.9 years) and 27 control participants (29.8 ± 10.3 years). Participants were prospectively recruited and received rsfMRI and neuropsychological assessments including the Automated Neuropsychological Assessment Metrics (ANAM) at greater than 6 months post-injury. A subset of participants received a DKI scan. Results suggest that patients with sTBI performed worse than control participants on multiple subtests of the ANAM suggesting reduced cognitive performance. Reduced resting state functional connectivity between the IPS and cortical regions associated with multi-sensory processing and the dorsal attention network was observed in the patients with sTBI. The patients also showed reduced structural integrity of the superior longitudinal fasciculus (SLF), a key white matter tract connecting the IPS to anterior frontal areas, as measured by reduced mean kurtosis (MK) and fractional anisotropy (FA) and increased mean diffusivity (MD). Further, this reduced structural integrity of the SLF was associated with a reduction in overall cognitive performance. These findings suggest that disruptions in the structural and functional connectivity of the IPS may contribute to chronic cognitive deficits experienced by these patients. PMID:27931179
Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin
2016-01-01
The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sours, Chandler; Raghavan, Prashant; Medina, Alexandre E; Roys, Steven; Jiang, Li; Zhuo, Jiachen; Gullapalli, Rao P
2017-04-01
Severe and moderate traumatic brain injury (sTBI) often results in long-term cognitive deficits such as reduced processing speed and attention. The intraparietal sulcus (IPS) is a neocortical structure that plays a crucial role in the deeply interrelated processes of multi-sensory processing and top down attention. Therefore, we hypothesized that disruptions in the functional and structural connections of the IPS may play a role in the development of such deficits. To examine these connections, we used resting state magnetic resonance imaging (rsfMRI and diffusion kurtosis imaging (DKI) in a cohort of 27 patients with sTBI (29.3 ± 8.9 years) and 27 control participants (29.8 ± 10.3 years). Participants were prospectively recruited and received rsfMRI and neuropsychological assessments including the Automated Neuropsychological Assessment Metrics (ANAM) at greater than 6 months post-injury. A subset of participants received a DKI scan. Results suggest that patients with sTBI performed worse than control participants on multiple subtests of the ANAM suggesting reduced cognitive performance. Reduced resting state functional connectivity between the IPS and cortical regions associated with multi-sensory processing and the dorsal attention network was observed in the patients with sTBI. The patients also showed reduced structural integrity of the superior longitudinal fasciculus (SLF), a key white matter tract connecting the IPS to anterior frontal areas, as measured by reduced mean kurtosis (MK) and fractional anisotropy (FA) and increased mean diffusivity (MD). Further, this reduced structural integrity of the SLF was associated with a reduction in overall cognitive performance. These findings suggest that disruptions in the structural and functional connectivity of the IPS may contribute to chronic cognitive deficits experienced by these patients.
Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
1998-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Initialization, conceptualization, and application in the generalized (fractional) calculus.
Lorenzo, Carl F; Hartley, Tom T
2007-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Apparatus for measuring the local void fraction in a flowing liquid containing a gas
Dunn, P.F.
1979-07-17
The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.
Apparatus for measuring the local void fraction in a flowing liquid containing a gas
Dunn, Patrick F.
1981-01-01
The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekelman, Justin E.; Yahalom, Joachim
2009-02-01
Purpose: Standards for the reporting of radiotherapy details in randomized controlled trials (RCTs) are lacking. Although radiotherapy (RT) is an important component of curative therapy for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), we postulated that RT reporting may be inadequate in Phase III HL and NHL trials. Methods and Materials: We searched PubMed and the Cochrane registry for reports of RCTs involving RT and either HL or NHL published between 1998 and 2007. We screened 133 titles and abstracts to identify relevant studies. We included a total of 61 reports. We assessed these reports for the presence of sixmore » quality measures: target volume, radiation dose, fractionation, radiation prescription, quality assurance (QA) process use, and adherence to QA (i.e., reporting of major or minor deviations). Results: Of 61 reports, 23 (38%) described the target volume. Of the 42 reports involving involved-field RT alone, only 8 (19%) adequately described the target volume. The radiation dose and fractionation was described in most reports (54 reports [89%] and 39 reports [64%], respectively). Thirteen reports specified the RT prescription point (21%). Only 12 reports (20%) described using a RT QA process, and 7 reports (11%) described adherence to the QA process. Conclusion: Reporting of RT in HL and NHL RCTs is deficient. Because the interpretation, replication, and application of RCT results depend on adequate description and QA of therapeutic interventions, consensus standards for RT reporting should be developed and integrated into the peer-review process.« less
NASA Astrophysics Data System (ADS)
Lai, J.; Anders, A. M.
2017-12-01
Landscapes of the US Midwest were repeatedly affected by the southern margin of the Laurentide Ice Sheet during the Quaternary. Glacial processes removed pre-glacial relief and left constructional landforms including low-relief till plains and high-relief moraines. As the ice retreated, meltwater was collected in subglacial or proglacial lakes and outburst floods of glacial lakes episodically carved deep valleys. These valleys provided the majority of post-glacial landscape relief. However, a significant fraction of the area of low-relief till plains was occupied by closed depressions and remained unconnected to these meltwater valleys. This area is referred to as non-contributing area (NCA) because it does not typically contribute surface runoff to stream networks. Decreasing fractions of NCA on older glacial landscape surfaces suggests that NCA becomes integrated into external drainage networks over time. We propose that this integration could occur via two different paths: 1) through capture of NCA as channel heads propagate into the upland or, 2) through erosion of a channel along a flow path that, perhaps intermittently, connects NCA to the external drainage network. We refer the two cases as "disconnected" and "connected" cases since the crucial difference between them is the hydrological connectivity on the upland. We investigate the differences in the evolution of channel networks and morphology in low relief landscapes under disconnected and connected drainage regimes through numerical simulations of fluvial and hillslope processes. We observe a substantially faster evolution of the channel network in the connected case than in the disconnected case. Modeled landscapes show that channel network in the connected case has longer, more sinuous channels. We also find that the connected case removes lower amounts of total mass than the disconnected case when the same degree of channel integration is achieved. Observed landscapes in US Midwest are more comparable to the connected case than the disconnected case. This finding suggest that the hydrological connectivity in these landscapes may not be entirely controlled by topographic drainage divides.
Improving Mastery of Fractions by Blending Video Games into the Math Classroom
ERIC Educational Resources Information Center
Masek, M.; Boston, J.; Lam, C. P.; Corcoran, S.
2017-01-01
Concepts from the Australian mathematics curriculum on fractions were used as core elements to design three computer games. In each game, the concepts were presented in the form of tangible puzzles, customized to a difficulty level based on student capability. The games were integrated into a single virtual game world, and a fantasy story was used…
Optimal fractional order PID design via Tabu Search based algorithm.
Ateş, Abdullah; Yeroglu, Celaleddin
2016-01-01
This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...
Salient features of dependence in daily US stock market indices
NASA Astrophysics Data System (ADS)
Gil-Alana, Luis A.; Cunado, Juncal; de Gracia, Fernando Perez
2013-08-01
This paper deals with the analysis of long range dependence in the US stock market. We focus first on the log-values of the Dow Jones Industrial Average, Standard and Poors 500 and Nasdaq indices, daily from February, 1971 to February, 2007. The volatility processes are examined based on the squared and the absolute values of the returns series, and the stability of the parameters across time is also investigated in both the level and the volatility processes. A method that permits us to estimate fractional differencing parameters in the context of structural breaks is conducted in this paper. Finally, the “day of the week” effect is examined by looking at the order of integration for each day of the week, providing also a new modeling approach to describe the dependence in this context.
Chemical pyrolysis of E-waste plastics: Char characterization.
Shen, Yafei; Chen, Xingming; Ge, Xinlei; Chen, Mindong
2018-05-15
This work studied the disposal of the non-metallic fraction from waste printed circuit board (NMF-WPCB) via the chemical pretreatments followed by pyrolysis. As a main heavy metal, the metallic Cu could be significantly removed by 92.4% using the HCl leaching process. Subsequently, the organic-Br in the brominated flame retardants (BFRs) plastics could be converted into HBr by pyrolysis. The alkali pretreatment was benefit for the Br fixation in the solid char. The Br fixation efficiency could reach up to 53.6% by the NaOH pretreatment followed by the pyrolysis process. The formed HBr could react with NaOH/KOH to generate the stabilized NaBr/KBr. Therefore, the integrated chemical pretreatment could be used for the eco-friendly disposal of the NMF-WPCB via pyrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasano, Koji; Okajima, Hiroshi; Matsunaga, Nobutomo
Recently, the fractional order PID (FO-PID) control, which is the extension of the PID control, has been focused on. Even though the FO-PID requires the high-order filter, it is difficult to realize the high-order filter due to the memory limitation of digital computer. For implementation of FO-PID, approximation of the fractional integrator and differentiator are required. Short memory principle (SMP) is one of the effective approximation methods. However, there is a disadvantage that the approximated filter with SMP cannot eliminate the steady-state error. For this problem, we introduce the distributed implementation of the integrator and the dynamic quantizer to make the efficient use of permissible memory. The objective of this study is to clarify how to implement the accurate FO-PID with limited memories. In this paper, we propose the implementation method of FO-PID with memory constraint using dynamic quantizer. And the trade off between approximation of fractional elements and quantized data size are examined so as to close to the ideal FO-PID responses. The effectiveness of proposed method is evaluated by numerical example and experiment in the temperature control of heat plate.
Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A.
2014-01-01
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities. PMID:25279954
NASA Astrophysics Data System (ADS)
Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin
2017-08-01
Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.
Generation of dark hollow beams by using a fractional radial Hilbert transform system
NASA Astrophysics Data System (ADS)
Xie, Qiansen; Zhao, Daomu
2007-07-01
The radial Hilbert transform has been extend to the fractional field, which could be called the fractional radial Hilbert transform (FRHT). Using edge-enhancement characteristics of this transform, we convert a Gaussian light beam into a variety of dark hollow beams (DHBs). Based on the fact that a hard-edged aperture can be expanded approximately as a finite sum of complex Gaussian functions, the analytical expression of a Gaussian beam passing through a FRHT system has been derived. As a numerical example, the properties of the DHBs with different fractional orders are illustrated graphically. The calculation results obtained by use of the analytical method and the integral method are also compared.
Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel
2017-08-01
High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selvaraju, Subhashini; Rassi, Ziad El
2013-01-01
A fully integrated platform was developed for capturing/fractionating human fucome from disease-free and breast cancer sera. It comprised multicolumn operated by HPLC pumps and switching valves for the simultaneous depletion of high abundance proteins via affinity-based subtraction and the capturing of fucosylated glycoproteins via lectin affinity chromatography followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) were utilized. The platform allowed the “cascading” of the serum sample from column-to-column in the liquid phase with no sample manipulation between the various steps. This guaranteed no sample loss and no propagation of experimental biases between the various columns. Finally, the fucome was fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to trypsinolysis for LC-MS/MS analysis. This permitted the identification of the differentially expressed proteins (DEP) in breast cancer serum yielding a broad panel of 35 DEP from the combined LTA and AAL captured proteins and a narrower panel of 8 DEP that were commonly differentially expressed in both LTA and AAL fractions, which are considered as more representative of cancer altered fucome. PMID:23533108
Shot-noise evidence of fractional quasiparticle creation in a local fractional quantum Hall state.
Hashisaka, Masayuki; Ota, Tomoaki; Muraki, Koji; Fujisawa, Toshimasa
2015-02-06
We experimentally identify fractional quasiparticle creation in a tunneling process through a local fractional quantum Hall (FQH) state. The local FQH state is prepared in a low-density region near a quantum point contact in an integer quantum Hall (IQH) system. Shot-noise measurements reveal a clear transition from elementary-charge tunneling at low bias to fractional-charge tunneling at high bias. The fractional shot noise is proportional to T(1)(1-T(1)) over a wide range of T(1), where T(1) is the transmission probability of the IQH edge channel. This binomial distribution indicates that fractional quasiparticles emerge from the IQH state to be transmitted through the local FQH state. The study of this tunneling process enables us to elucidate the dynamics of Laughlin quasiparticles in FQH systems.
Extremely low order time-fractional differential equation and application in combustion process
NASA Astrophysics Data System (ADS)
Xu, Qinwu; Xu, Yufeng
2018-11-01
Fractional blow-up model, especially which is of very low order of fractional derivative, plays a significant role in combustion process. The order of time-fractional derivative in diffusion model essentially distinguishes the super-diffusion and sub-diffusion processes when it is relatively high or low accordingly. In this paper, the blow-up phenomenon and condition of its appearance are theoretically proved. The blow-up moment is estimated by using differential inequalities. To numerically study the behavior around blow-up point, a mixed numerical method based on adaptive finite difference on temporal direction and highly effective discontinuous Galerkin method on spatial direction is proposed. The time of blow-up is calculated accurately. In simulation, we analyze the dynamics of fractional blow-up model under different orders of fractional derivative. It is found that the lower the order, the earlier the blow-up comes, by fixing the other parameters in the model. Our results confirm the physical truth that a combustor for explosion cannot be too small.
Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies.
Hargreaves, Paulo Iiboshi; Barcelos, Carolina Araújo; da Costa, Antonio Carlos Augusto; Pereira, Nei
2013-04-01
This study evaluated the potential of Kappaphycus alvarezii as feedstock for ethanol production, i.e. ethanol 3G. First, aquatic biomass was subjected to a diluted acid pretreatment. This acid pretreatment generated two streams--a galactose-containing liquid fraction and a cellulose-containing solid fraction, which were investigated to determine their fermentability with the following strategies: a single-stream process (simultaneous saccharification and co-fermentation (SSCF) of both fractions altogether), which achieved 64.3 g L(-1) of ethanol, and a two-stream process (fractions were fermented separately), which resulted in 38 g L(-1) of ethanol from the liquid fraction and 53.0 g L(-1) from the simultaneous saccharification and fermentation (SSF) of the solid fraction. Based on the average fermentable carbohydrate concentration, it was possible to obtain 105 L of ethanol per ton of dry seaweed. These preliminaries results indicate that the use of the macro-algae K. alvarezii has a good potential feedstock for bioethanol production. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Atangana, Abdon; Gómez-Aguilar, J. F.
2018-04-01
To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature. We demonstrate the failure of the semi-group principle in modeling real-world problems. We use natural phenomena to illustrate the importance of non-commutative and non-associative operators under which the Caputo-Fabrizio and Atangana-Baleanu fractional operators fall. We present statistical properties of generator for each fractional derivative, including Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu ones. The Atangana-Baleanu and Caputo-Fabrizio fractional derivatives show crossover properties for the mean-square displacement, while the Riemann-Liouville is scale invariant. Their probability distributions are also a Gaussian to non-Gaussian crossover, with the difference that the Caputo Fabrizio kernel has a steady state between the transition. Only the Atangana-Baleanu kernel is a crossover for the waiting time distribution from stretched exponential to power law. A new criterion was suggested, namely the Atangana-Gómez fractional bracket, that helps describe the energy needed by a fractional derivative to characterize a 2-pletic manifold. Based on these properties, we classified fractional derivatives in three categories: weak, mild and strong fractional differential and integral operators. We presented some applications of fractional differential operators to describe real-world problems and we proved, with numerical simulations, that the Riemann-Liouville power-law derivative provides a description of real-world problems with much additional information, that can be seen as noise or error due to specific memory properties of its power-law kernel. The Caputo-Fabrizio derivative is less noisy while the Atangana-Baleanu fractional derivative provides an excellent description, due to its Mittag-Leffler memory, able to distinguish between dynamical systems taking place at different scales without steady state. The study suggests that the properties of associativity and commutativity or the semi-group principle are just irrelevant in fractional calculus. Properties of classical derivatives were established for the ordinary calculus with no memory effect and it is a failure of mathematical investigation to attempt to describe more complex natural phenomena using the same notions.
How to Move Away from the Silos of Business Management Education?
ERIC Educational Resources Information Center
Nisula, Karoliina; Pekkola, Samuli
2018-01-01
Business management education is criticized for being too theoretical and fractional. Despite the numerous efforts to build integrated and experiential business curricula, learning is still organized in disciplinary silos. The curriculum integration efforts are carried out in separate sections of the curriculum rather than the core. There are…
Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren
2016-01-01
Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750
Solarin, Sakiru Adebola; Gil-Alana, Luis Alberiko; Al-Mulali, Usama
2018-04-13
In this article, we have examined the hypothesis of convergence of renewable energy consumption in 27 OECD countries. However, instead of relying on classical techniques, which are based on the dichotomy between stationarity I(0) and nonstationarity I(1), we consider a more flexible approach based on fractional integration. We employ both parametric and semiparametric techniques. Using parametric methods, evidence of convergence is found in the cases of Mexico, Switzerland and Sweden along with the USA, Portugal, the Czech Republic, South Korea and Spain, and employing semiparametric approaches, we found evidence of convergence in all these eight countries along with Australia, France, Japan, Greece, Italy and Poland. For the remaining 13 countries, even though the orders of integration of the series are smaller than one in all cases except Germany, the confidence intervals are so wide that we cannot reject the hypothesis of unit roots thus not finding support for the hypothesis of convergence.
Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X
NASA Astrophysics Data System (ADS)
Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.
2009-05-01
We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Larson; Robert Williams; Thomas Kreutz
2012-03-11
The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less
Mohammed, Ali I; Gritton, Howard J; Tseng, Hua-an; Bucklin, Mark E; Yao, Zhaojie; Han, Xue
2016-02-08
Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks.
Advances in biologically inspired on/near sensor processing
NASA Astrophysics Data System (ADS)
McCarley, Paul L.
1999-07-01
As electro-optic sensors increase in size and frame rate, the data transfer and digital processing resource requirements also increase. In many missions, the spatial area of interest is but a small fraction of the available field of view. Choosing the right region of interest, however, is a challenge and still requires an enormous amount of downstream digital processing resources. In order to filter this ever-increasing amount of data, we look at how nature solves the problem. The Advanced Guidance Division of the Munitions Directorate, Air Force Research Laboratory at Elgin AFB, Florida, has been pursuing research in the are of advanced sensor and image processing concepts based on biologically inspired sensory information processing. A summary of two 'neuromorphic' processing efforts will be presented along with a seeker system concept utilizing this innovative technology. The Neuroseek program is developing a 256 X 256 2-color dual band IRFPA coupled to an optimized silicon CMOS read-out and processing integrated circuit that provides simultaneous full-frame imaging in MWIR/LWIR wavebands along with built-in biologically inspired sensor image processing functions. Concepts and requirements for future such efforts will also be discussed.
Cannon, Theodore W.
1994-01-01
A broadband radiometer including (a) an optical integrating sphere having a enerally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample.
Cannon, T.W.
1994-07-26
A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.
Fractional Number Operator and Associated Fractional Diffusion Equations
NASA Astrophysics Data System (ADS)
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
Improving SLCF Science in the Himalayan Region: ICIMOD's Atmosphere Initiative
NASA Astrophysics Data System (ADS)
Panday, A. K.; Pradhan, B. B.; Surapipith, V.
2013-12-01
What fraction of the black carbon arriving on Yala Glacier in Langtang, Nepal, is from cooking fires in the houses in the valley below? What fraction is from elsewhere in rural Nepal? What fraction is from industrial and transport sources in Kathmandu? What fraction is from northern India and beyond? What fraction is from the high altitude forest fires that take place during March or April? Effectively mitigating the impacts of black carbon and other short-lived climate forcers requires detailed understanding not just of emissions and impacts, but also of the atmospheric transport pathways that connect the two. In mountainous areas of the Hindu-Kush Himalaya detailed quantitative knowledge about emissions, atmospheric processes, and impacts is still largely missing. The International Centre for Integrated Mountain Development (ICIMOD) is an intergovernmental organization covering Afghanistan, Pakistan, India, Nepal, China, Bhutan, Bangladesh, and Myanmar. ICIMOD's recently established Atmosphere Initiative not only assesses mitigation options and contributes to policy and capacity building in the region, but also works actively to promote collaboration among researchers in the region, while building up an in-house team whose research will address key questions about SLCF. In Spring 2013 ICIMOD's Atmosphere Initiative, in collaboration with the Institute for Advanced Sustainability Studies (IASS) in Potsdam, Germany, carried out the largest field campaign to date in Nepal, hosting instruments belonging to dozens of institutions around the world, at nine field site within and upwind of the Kathmandu Valley, Nepal. The dataset that has been collected gives unprecedented insights into the emissions and atmospheric processes taking place downwind of and within the largest urban agglomeration in the Himalaya region. Meanwhile, in collaboration with national partner institutions, ICIMOD is in the process of setting up one atmospheric observatory each in Bhutan and in Nepal. Each will be on a mountain peak overlooking the Indo-Gangetic Plains. A building will house laboratories and visitor space, and will have a small tower. Each site will be equipped with a Picarro G2401 analyzer for CO, CO¬2, methane and water vapor, aerosol filter samplers, as well as instruments to measure black carbon, ozone, aerosol size distribution, aerosol scattering, cloud condensation nuclei, solar radiation, aerosol optical depth, and meteorology. Together with output from ICIMOD's new atmospheric modeling centre, the data from the sites will allow quantifying the flux of pollutants from the Indo-Gangetic Plains towards the high Himalaya, and to estimate emissions of SLCFs within the Himalayan foothills region. The infrastructure at both observatory sites is designed to accommodate training and future expansion as well as to host visiting instruments.
Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos
2018-06-01
Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.
Speciation of Cu and Zn during composting of pig manure amended with rock phosphate.
Lu, Duian; Wang, Lixia; Yan, Baixing; Ou, Yang; Guan, Jiunian; Bian, Yu; Zhang, Yubin
2014-08-01
Pig manure usually contains a large amount of metals, especially Cu and Zn, which may limit its land application. Rock phosphate has been shown to be effective for immobilizing toxic metals in toxic metals contaminated soils. The aim of this study work was to investigate the effect of rock phosphate on the speciation of Cu and Zn during co-composting of pig manure with rice straw. The results showed that composting process and rock phosphate addition significantly affected the changes of metal species. During co-composting, the exchangeable and reducible fractions of Cu were transformed to organic and residue fractions, thus the bioavailable Cu fractions were decreased. The rock phosphate addition enhanced the metal transformation depending on the level of rock phosphate amendment. Zinc was found in the exchangeable and reducible fractions in the compost. The bioavailable Zn fraction changed a little during the composting process. The composting process converted the exchangeable Zn fraction into reducible fraction. Addition of an appropriate amount (5.0%) of rock phosphate could advance the conversion. Rock phosphate could reduce metal availability through adsorption and complexation of the metal ions on inorganic components. The increase in pH and organic matter degradation could be responsible for the reduction in exchangeable and bioavailable Cu fractions and exchangeable Zn fraction in rock phosphate amended compost. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gembong, S.; Suwarsono, S. T.; Prabowo
2018-03-01
Schema in the current study refers to a set of action, process, object and other schemas already possessed to build an individual’s ways of thinking to solve a given problem. The current study aims to investigate the schemas built among elementary school students in solving problems related to operations of addition to fractions. The analyses of the schema building were done qualitatively on the basis of the analytical framework of the APOS theory (Action, Process, Object, and Schema). Findings show that the schemas built on students of high and middle ability indicate the following. In the action stage, students were able to add two fractions by way of drawing a picture or procedural way. In the Stage of process, they could add two and three fractions. In the stage of object, they could explain the steps of adding two fractions and change a fraction into addition of fractions. In the last stage, schema, they could add fractions by relating them to another schema they have possessed i.e. the least common multiple. Those of high and middle mathematic abilities showed that their schema building in solving problems related to operations odd addition to fractions worked in line with the framework of the APOS theory. Those of low mathematic ability, however, showed that their schema on each stage did not work properly.
NASA Astrophysics Data System (ADS)
Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh
2015-11-01
The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more-advanced parameter reconstruction algorithms.
García, E M; Calvete, J J; Sanz, L; Roca, J; Martínez, E A; Vázquez, J M
2009-04-01
The aim of this study was to evaluate how different protein profiles of seminal plasma (SP) fractions affect sperm functionality in vitro. Ejaculates from three boars were separated into six fractions. The fractions differed from each other in their sperm content, in their total SP protein content, and their spermadhesin PSP-I/PSP-II and heparin-binding protein (HBP) concentrations. Spermatozoa were mainly recovered in fraction 2 (sperm-rich fraction, >1800 x 10(6) spermatozoa/ml), whereas the pre-sperm fraction 1 and the post-sperm fractions 4-6 contained low numbers of spermatozoa (<500 x 10(6)/ml). Except in fraction 2, the total SP protein concentration and the concentration of both, spermadhesin PSP-I/PSP-II and the HBPs increased with fraction order. Distinct time-dependent effects were observed on motility characteristics and membrane integrity of highly diluted boar spermatozoa upon incubation with a 10% dilution of the SP from each fraction. The highest sperm viability was recorded after exposure for 5 h to fraction 2, followed by fractions 1 and 3. The percentages of motile spermatozoa also differed significantly among fractions after 5 h of incubation. Spermatozoa incubated with SP of fractions 1-3 showed the highest percentage motility. We conclude that different SP fractions exert distinct effects on the functionality of highly diluted boar spermatozoa. Fractions 1-3 appear to promote sperm survival, whereas fractions 4-6 seem to be harmful for preserving the physiological functions of highly diluted boar spermatozoa.
NASA Astrophysics Data System (ADS)
Ha, Sanghyun; Park, Junshin; You, Donghyun
2018-01-01
Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.
Inverse analysis and regularisation in conditional source-term estimation modelling
NASA Astrophysics Data System (ADS)
Labahn, Jeffrey W.; Devaud, Cecile B.; Sipkens, Timothy A.; Daun, Kyle J.
2014-05-01
Conditional Source-term Estimation (CSE) obtains the conditional species mass fractions by inverting a Fredholm integral equation of the first kind. In the present work, a Bayesian framework is used to compare two different regularisation methods: zeroth-order temporal Tikhonov regulatisation and first-order spatial Tikhonov regularisation. The objectives of the current study are: (i) to elucidate the ill-posedness of the inverse problem; (ii) to understand the origin of the perturbations in the data and quantify their magnitude; (iii) to quantify the uncertainty in the solution using different priors; and (iv) to determine the regularisation method best suited to this problem. A singular value decomposition shows that the current inverse problem is ill-posed. Perturbations to the data may be caused by the use of a discrete mixture fraction grid for calculating the mixture fraction PDF. The magnitude of the perturbations is estimated using a box filter and the uncertainty in the solution is determined based on the width of the credible intervals. The width of the credible intervals is significantly reduced with the inclusion of a smoothing prior and the recovered solution is in better agreement with the exact solution. The credible intervals for temporal and spatial smoothing are shown to be similar. Credible intervals for temporal smoothing depend on the solution from the previous time step and a smooth solution is not guaranteed. For spatial smoothing, the credible intervals are not dependent upon a previous solution and better predict characteristics for higher mixture fraction values. These characteristics make spatial smoothing a promising alternative method for recovering a solution from the CSE inversion process.
Phytoplankton Growth and Microzooplankton Grazing in the Subtropical Northeast Atlantic
Cáceres, Carlos; Taboada, Fernando González; Höfer, Juan; Anadón, Ricardo
2013-01-01
Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2–5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11–1.60 d−1), especially in the case of the large fraction. Grazing rates were also high (0.15–1.29 d−1), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres. PMID:23935946
NASA Astrophysics Data System (ADS)
Ashmawy, E. A.
2017-03-01
In this paper, we investigate the translational motion of a slip sphere with time-dependent velocity in an incompressible viscous fluid. The modified Navier-Stokes equation with fractional order time derivative is used. The linear slip boundary condition is applied on the spherical boundary. The integral Laplace transform technique is employed to solve the problem. The solution in the physical domain is obtained analytically by inverting the Laplace transform using the complex inversion formula together with contour integration. An exact formula for the drag force exerted by the fluid on the spherical object is deduced. This formula is applied to some flows, namely damping oscillation, sine oscillation and sudden motion. The numerical results showed that the order of the fractional derivative contributes considerably to the drag force. The increase in this parameter resulted in an increase in the drag force. In addition, the values of the drag force increased with the increase in the slip parameter.
NASA Astrophysics Data System (ADS)
Defant, Marc J.; Nielsen, Roger L.
1990-01-01
We have used a computer model (TRACES) to simulate low pressure differentiation of natural basaltic magmas in an attempt to investigate the chemical dynamics of open system magmatic processes. Our results, in the form of simulated liquid lines of descent and the calculated equilibrium mineralogy, were determined for perfect fractional crystallization; fractionation paired with recharge and eruption (PRF); fractionation paired with assimilation (AFC); and fractionation paired with recharge, eruption, and assimilation (FEAR). These simulations were calculated in an attempt to assess the effects of combinations of petrogenetic processes on major and trace element evolution of natural systems and to test techniques that have been used to decipher the relative roles of these processes. If the results of PRF calculations are interpreted in terms of a mass balance based fractionation model (e.g., Bryan et al., 1969), it is possible to generate low residuals even if one assumes that fractional crystallization was the only active process. In effect, the chemical consequences of recharge are invisible to mass balance models. Pearce element ratio analyses, however, can effectively discern the effects of PRF versus simple fractionation. The fractionating mineral proportions, and therefore, bulk distribution coefficients ( D¯) of a differentiating system are dependent on the recharge or assimilation rate. Comparison of the results of simulations assuming constant D¯ with the results calculated by TRACES show that the steady state liquid concentrations of some elements can differ by a factor of 2 to 5. If the PRF simulation is periodic, with episodes of mixing separated by intervals of fractionation, parallel liquidus mineral control lines are produced. Most of these control lines do not project back to the parental composition. This must be an important consideration when attempting to calculate a potential parental magma for any natural suite where magma chamber recharge has occurred. Most basaltic magmas cannot evolve to high silica compositions without magnetite fractionation. Small amounts of rhyolite assimilation (assimilation/fractionation < 0.1), however, can drive evolving basalts to more silica rich compositions. If mass balance models are used to interpret these synthetic AFC data, low residuals are obtained if magnetite is added to the crystallizing assemblage. This approach works even for cases where magnetite was not a fractionating phase. Thus, the mass balance results are mathematically correct, but are geologically irrelevant.
Kitzmann, J P; Karatzas, T; Mueller, K R; Avgoustiniatos, E S; Gruessner, A C; Balamurugan, A N; Bellin, M D; Hering, B J; Papas, K K
2014-01-01
Replacement of β-cells with the use of isolated islet allotransplantation (IT) is an emerging therapy for type 1 diabetics with hypoglycemia unawareness. The current standard protocol calls for a 36-72-hour culture period before IT. We examined 13 clinical islet preparations with ≥2 purity fractions to determine the effect of culture on viability. After standard islet isolation and purification, pure islet fractions were placed at 37°C with 5% CO2 for 12-24 hours and subsequently moved to 22°C, whereas less pure fractions were cultured at 22°C for the entire duration. Culture density was targeted at a range of 100-200 islet equivalents (IEQ)/cm(2) adjusted for purity. Islets were assessed for purity (dithizone staining), quantity (pellet volume and DNA), and viability (oxygen consumption rate normalized to DNA content [OCR/DNA] and membrane integrity). Results indicated that purity was overestimated, especially in less pure fractions. This was evidenced by significantly larger observed pellet sizes than expected and tissue amount as quantified with the use of a dsDNA assay when available. Less pure fractions showed significantly lower OCR/DNA and membrane integrity compared with pure. The difference in viability between the 2 purity fractions may be due to a variety of reasons, including hypoxia, nutrient deficiency, toxic metabolite accumulation, and/or proteolytic enzymes released by acinar tissue impurities that are not neutralized by human serum albumin in the culture media. Current clinical islet culture protocols should be examined further, especially for less pure fractions, to ensure the maintenance of viability before transplantation. Even though relatively small, the difference in viability is important because the amount of dead or dying tissue introduced into recipients may be dramatically increased, especially with less pure preparations. Copyright © 2014 Elsevier Inc. All rights reserved.
Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R; McQueen, Philip G; Yang, Andrew X; Mizuguchi, Takeshi; Grewal, Shiv I S; Levin, Henry L
2015-11-01
Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. Copyright © 2015 by the Genetics Society of America.
Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R.; McQueen, Philip G.; Yang, Andrew X.; Mizuguchi, Takeshi; Grewal, Shiv I. S.; Levin, Henry L.
2015-01-01
Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and −9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. PMID:26358720
Role of primary sedimentation on plant-wide energy recovery and carbon footprint.
Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego
2013-01-01
The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.
Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara-Nishimura, I.; Nishimura, M.
1987-10-01
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with (/sup 35/S)methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, ..gamma.. and delta. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin bymore » the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg/sup 2 +/, and Cu/sup 2 +/, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.« less
Abd-El-Aziz, Tarek A
2012-01-01
The aim of this study was to compare 3 different available methods for estimating left ventricular end-diastolic pressure (LVEDP) noninvasively in patients with coronary artery disease and preserved left ventricular ejection fraction (EF). We used 3 equations for noninvasive estimation of LVEDP: The equation of Mulvagh et al., LVEDP(1) = 46 - 0.22 (IVRT) - 0.10 (AFF) - 0.03 (DT) - (2 ÷ E/A) + 0.05 MAR; the equation of Stork et al., LVEDP(2) = 1.06 + 15.15 × Ai/Ei; and the equation of Abd-El-Aziz, LVEDP(3) = [0.54 (MABP) × (1 - EF)] - 2.23. ( A, A-wave velocity; AFF, atrial filling fraction; Ai, time velocity integral of A wave; DT, deceleration time; E, E-wave velocity; Ei, time velocity integral of E wave; IVRT, isovolumic relaxation time; MABP, mean arterial blood pressure; MAR, time from termination of mitral flow to the electrocardiographic R wave; Ti, time velocity integral of total wave.) LVEDP measured by catheterization was correlated with LVEDP(1) (r = 0.52, P < 0.001), LVEDP(2) (r = 0.31, P < 0.05), and LVEDP(3) (r = 0.81, P < 0.001). The equation described by Abd-El-Aziz, LVEDP = [0.54 MABP × (1 - EF)] - 2.23, appears to be the most accurate, reliable, and easily applied method for estimating LVEDP noninvasively in patients with preserved left ventricular ejection fraction and an LVEDP < 20 mm Hg. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Lee, Hsin-Hua; Hou, Ming-Feng; Chuang, Hung-Yi; Huang, Ming-Yii; Tsuei, Le-Ping; Chen, Fang-Ming; Ou-Yang, Fu; Huang, Chih-Jen
2015-10-01
This study was aimed to assess the acute dermatological adverse effect from two distinct RT techniques for breast cancer patients. We compared intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and conventional radiotherapy followed by sequential boost (CRT-SB). The study population was composed of 126 consecutive female breast cancer patients treated with breast conserving surgery. Sixty-six patients received IMRT-SIB to 2 dose levels simultaneously. They received 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Sixty patients in the CRT-SB group received 50 Gy in 25 fractions to the whole breast followed by a boost irradiation to tumor bed in 5-7 fractions to a total dose of 60-64 Gy. Acute skin toxicities were documented in agreement with the Common Terminology Criteria for Adverse Events version 3 (CTCAE v.3.0). Ninety-eight patients had grade 1 radiation dermatitis while 14 patients had grade 2. Among those with grade 2, there were 3 patients in IMRT-SIB group (4.5%) while 11 in CRT-SB group (18.3%). (P = 0.048) There was no patient with higher than grade 2 toxicity. Three year local control was 99.2%, 3-year disease free survival was 97.5% and 3-year overall survival was 99.2%. A significant reduction in the severity of acute radiation dermatitis from IMRT-SIB comparing with CRT-SB is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Military blast exposure, ageing and white matter integrity
Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.
2015-01-01
Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure—one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan—is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a ‘dose-response’ relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group, suggesting a specific influence of time since exposure on tissue structure, and this effect was also independent of post-traumatic stress symptoms. Overall, these data suggest that blast exposure may negatively affect brain-ageing trajectories at the microstructural tissue level. Additional work examining longitudinal changes in brain tissue integrity in individuals exposed to military blast forces will be an important future direction to the initial findings presented here. PMID:26033970
Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen
NASA Technical Reports Server (NTRS)
Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.
1983-01-01
In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.
Taupin, P; Zini, S; Cesselin, F; Ben-Ari, Y; Roisin, M P
1994-04-01
A method for preparation of hippocampal mossy fiber synaptosomes directly from the postnuclear pellet is presented. This method represents an adaptation of that previously described for the isolation of synaptosomes by centrifugation through Percoll gradients directly from the supernatant fraction. We have characterized by electron microscopy two fractions, PII and PIII, enriched in mossy fiber synaptosomes; fraction PIII had 75% mossy fiber synaptosomes with well-preserved morphology (large size 3 microns, complex morphology, high synaptic vesicle density, multisynapses), whereas fraction PII contained 12%. These fractions were enriched in lactate dehydrogenase activity indicating that the integrity of synaptosomes was preserved. Compared with the other synaptosomal fractions, these fractions showed greater levels of dynorphin A (1-8) immunoreactivity and endogenous zinc, which are particularly concentrated in hippocampal mossy fiber terminals. Furthermore, we prepared synaptosomes from adult hippocampus after neonatal irradiation, which destroys the majority of granule cells and associated mossy fibers. The levels of dynorphin and zinc decreased by 88 and 70% in fraction PII and by 95 and 90%, respectively, in PIII. These results suggest that the rapid Percoll procedure is convenient for the purification of mossy fiber synaptosomes.
Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes
NASA Astrophysics Data System (ADS)
Orsingher, Enzo; Polito, Federico
2012-08-01
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.
A Heuristic Parameterization for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2017-10-01
The author developed a heuristic parameterization to handle the contrasting vertical overlap structures of cumulus and stratus in an integrated way. The parameterization assumes that cumulus is maximum-randomly overlapped with adjacent cumulus; stratus is maximum-randomly overlapped with adjacent stratus; and radiation and precipitation areas at each model interface are grouped into four categories, that is, convective, stratiform, mixed, and clear areas. For simplicity, thermodynamic scalars within individual portions of cloud, radiation, and precipitation areas are assumed to be internally homogeneous. The parameterization was implemented into the Seoul National University Atmosphere Model version 0 (SAM0) in an offline mode and tested over the globe. The offline control simulation reasonably reproduces the online surface precipitation flux and longwave cloud radiative forcing (LWCF). Although the cumulus fraction is much smaller than the stratus fraction, cumulus dominantly contributes to precipitation production in the tropics. For radiation, however, stratus is dominant. Compared with the maximum overlap, the random overlap of stratus produces stronger LWCF and, surprisingly, more precipitation flux due to less evaporation of convective precipitation. Compared with the maximum overlap, the random overlap of cumulus simulates stronger LWCF and weaker precipitation flux. Compared with the control simulation with separate cumulus and stratus, the simulation with a single-merged cloud substantially enhances the LWCF in the tropical deep convection and midlatitude storm track regions. The process-splitting treatment of convective and stratiform precipitation with an independent precipitation approximation (IPA) simulates weaker surface precipitation flux than the control simulation in the tropical region.
Zhang, Mei; Zhu, Lin; Cui, Steve W; Wang, Qi; Zhou, Ting; Shen, Hengsheng
2011-01-01
Fractionation and purification of mushroom polysaccharides is a critical process for mushroom clinical application. After a hot-water treatment, the crude Pleurotus geesteranus (PG) was further fractionated into four fractions (PG-1, -2, -3, -4) using gradient precipitation with water and ammonia sulphate. By controlling the initial polymer concentration and ratio of solvents, this process produced PG fractions with high chemical uniformity and narrow Mw distribution without free proteins. Structurally, PG-1 and PG-2 are pure homopolysaccharide mainly composed of glucose; and PG-3 and PG-4 are heteropolysaccharide-protein complexes. PG-2, a high M(w) fraction mainly composed of glucose presented significant cytotoxicity at the concentration of 200 and 100 μg/ml to human breast cancer cells. Here, we report a new mushroom polysaccharides extraction and fractionation method, with which we produced four fractions of PG with PG-2 appearing effective anti-tumour activity. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Liao, Maoliang; Shang, Haihua; Li, Yazhuo; Li, Tian; Wang, Miao; Zheng, Yanan; Hou, Wenbin; Liu, Changxiao
2018-06-01
Quality control of traditional Chinese medicines is currently a great concern, due to the correlation between the quality control indicators and clinic effect is often questionable. According to the "multi-components and multi-targets" property of TCMs, a new special quality and bioactivity evaluation system is urgently needed. Present study adopted an integrated approach to provide new insights relating to uncover quality marker underlying the effects of Alisma orientale (AO) on lipid metabolism. In this paper, guided by the concept of the quality marker (Q-marker), an integrated strategies "effect-compound-target-fingerprint" was established to discovery and screen the potential quality marker of AO based on network pharmacology and chemical analysis. Firstly, a bioactivity evaluation was performed to screen the main active fractions. Then the chemical compositions were rapidly identified by chemical analysis. Next, networks were constructed to illuminate the interactions between these component and their targets for lipid metabolism, and the potential Q-marker of AO was initially screened. Finally, the activity of the Q-markers was validated in vitro. 50% ethanol extract fraction was found to have the strongest lipid-lowering activity. Then, the network pharmacology was used to clarify the unique relationship between the Q-markers and their integral pharmacological action. Combined with the results obtained, five active ingredients in the 50% ethanol extract fraction were given special considerations to be representative Q-markers: Alisol A, Alisol B, Alisol A 23-acetate, Alisol B 23-acetate and Alisol A 24-acetate, respectively. The chromatographic fingerprints based Q-marker was establishment. The integrated Q-marker screen may offer an alternative quality assessment of herbal medicines. Copyright © 2018. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Mariana; Li, X. Allen; Ma Lijun
2005-07-01
Purpose: Whole-pelvis irradiation (WPI) followed by a boost to the tumor site is the standard of practice for the radiotherapeutic management of locally advanced gynecologic cancers. The boost is frequently administered by use of brachytherapy or, occasionally, external-beam radiotherapy (EBRT) when brachytherapy does not provide sufficient coverage because of the size of the tumor or the geometry of the patient. In this work, we propose using an intensity-modulated radiotherapy (IMRT) simultaneous integrated boost (SIB), which is a single-phase process, to replace the conventional two-phase process involving WPI plus a boost. Radiobiological modeling is used to design appropriate regimens for themore » IMRT SIB. To demonstrate feasibility, a dosimetric study is carried out on an example patient. Methods and Materials: The standard linear-quadratic (LQ) model is used to calculate the biologically effective dose (BED) and equivalent uniform dose (EUD). A series of regimens that are biologically equivalent to those conventional two-phase treatments is calculated for the proposed SIB. A commercial inverse planning system (Corvus) was used to generate IMRT SIB plans for a sample patient case that used the newly designed fractionations. The dose-volume histogram (DVH) and EUD of both the target and normal structures for conventional treatments and the SIB are compared. A sparing factor was introduced to characterize the sparing of normal structures. Results: Fractionation regimes that are equivalent to the conventional treatments and are suitable for the IMRT SIB are deduced. For example, a SIB plan with 25 x 3.1 Gy (77.5 Gy) to a tumor is equivalent to a conventional treatment of EBRT of 45 Gy to the whole pelvis in 25 fractions plus a high-dose rate (HDR) brachytherapy boost with 30 Gy in 5 fractions. The normal tissue BED is found to be lower for the SIB plan than for the whole-pelvis plus HDR scheme when a sparing factor for the critical structures is considered. This finding suggests that the IMRT SIB has a better therapeutic ratio. Three IMRT SIB plans with 25 x 1.8 Gy to the pelvic nodes and 25 x 2.4 Gy (60 Gy), 25 x 2.8 Gy (70 Gy), and 25 x 3.2 Gy (80 Gy) to the tumor site were generated for the example patient case. The target coverage ranged from 94% to 95.5%. The sparing of bladder and rectum is significantly improved with the 60 to 70 Gy SIB treatments, as compared with the conventional treatments. The proposed SIB treatment can reduce the treatment time to 5 weeks. Conclusions: An IMRT simultaneous integrated boost to replace the conventional two-phase treatments (whole pelvic irradiation followed by brachytherapy or EBRT boost) is radiobiologically and dosimetricaly feasible for locally advanced gynecological cancers that may not be amenable to brachytherapy for anatomic or medical reasons. In addition to its shorter treatment time, the proposed IMRT SIB can provide significant sparing to normal structures, which offers potential for dose escalation. Issues such as organ motion and changing anatomy as tumor responds still must be addressed.« less
Challenges for critical raw material recovery from WEEE - The case study of gallium.
Ueberschaar, Maximilian; Otto, Sarah Julie; Rotter, Vera Susanne
2017-02-01
Gallium and gallium compounds are more frequently used in future oriented technologies such as photovoltaics, light diodes and semiconductor technology. In the long term the supply risk is estimated to be critical. Germany is one of the major primary gallium producer, recycler of gallium from new scrap and GaAs wafer producer. Therefore, new concepts for a resource saving handling of gallium and appropriate recycling strategies have to be designed. This study focus on options for a possible recycling of gallium from waste electric and electronic equipment. To identify first starting points, a substance flow analysis was carried out for gallium applied in integrated circuits applied on printed circuit boards and for LEDs used for background lighting in Germany in 2012. Moreover, integrated circuits (radio amplifier chips) were investigated in detail to deduce first approaches for a recycling of such components. An analysis of recycling barriers was carried out in order to investigate general opportunities and risks for the recycling of gallium from chips and LEDs. Results show, that significant gallium losses arose in primary production and in waste management. 93±11%, equivalent to 43,000±4700kg of the total gallium potential was lost over the whole primary production process until applied in electronic goods. The largest share of 14,000±2300kggallium was lost in the production process of primary raw materials. The subsequent refining process was related to additional 6900±3700kg and the chip and wafer production to 21,700±3200kg lost gallium. Results for the waste management revealed only low collection rates for related end-of-life devices. Not collected devices held 300 ± 200 kg gallium. Due to the fact, that current waste management processes do not recover gallium, further 80 ± 10 kg gallium were lost. A thermal pre-treatment of the chips, followed by a manual separation allowed an isolation of gallium rich fractions, with gallium mass fractions up to 35%. Here, gallium loads per chip were between 0.9 and 1.3mg. Copper, gold and arsenic were determined as well. Further treatment options for this gallium rich fraction were assessed. The conventional pyrometallurgical copper route might be feasible. A recovery of gold and gallium in combination with copper is possible due to a compatibility with this base-metal. But, a selective separation prior to this process is necessary. Diluted with other materials, the gallium content would be too low. The recycling of gallium from chips applied on printed circuit boards and LEDs used for background lighting is technically complex. Recycling barriers exist over the whole recycling chain. A forthcoming commercial implementation is not expected in nearer future. This applies in particular for chips carrying gallium. Copyright © 2016 Elsevier Ltd. All rights reserved.
Statistical properties of several models of fractional random point processes
NASA Astrophysics Data System (ADS)
Bendjaballah, C.
2011-08-01
Statistical properties of several models of fractional random point processes have been analyzed from the counting and time interval statistics points of view. Based on the criterion of the reduced variance, it is seen that such processes exhibit nonclassical properties. The conditions for these processes to be treated as conditional Poisson processes are examined. Numerical simulations illustrate part of the theoretical calculations.
Lafrenière, Nelson M; Mudrik, Jared M; Ng, Alphonsus H C; Seale, Brendon; Spooner, Neil; Wheeler, Aaron R
2015-04-07
There is great interest in the development of integrated tools allowing for miniaturized sample processing, including solid phase extraction (SPE). We introduce a new format for microfluidic SPE relying on C18-functionalized magnetic beads that can be manipulated in droplets in a digital microfluidic platform. This format provides the opportunity to tune the amount (and potentially the type) of stationary phase on-the-fly, and allows the removal of beads after the extraction (to enable other operations in same device-space), maintaining device reconfigurability. Using the new method, we employed a design of experiments (DOE) operation to enable automated on-chip optimization of elution solvent composition for reversed phase SPE of a model system. Further, conditions were selected to enable on-chip fractionation of multiple analytes. Finally, the method was demonstrated to be useful for online cleanup of extracts from dried blood spot (DBS) samples. We anticipate this combination of features will prove useful for separating a wide range of analytes, from small molecules to peptides, from complex matrices.
Jin, Biao; Haderlein, Stefan B; Rolle, Massimo
2013-02-05
We propose a self-consistent method to predict the evolution of carbon and chlorine isotope ratios during degradation of chlorinated hydrocarbons. The method treats explicitly the cleavage of isotopically different C-Cl bonds and thus considers, simultaneously, combined carbon-chlorine isotopologues. To illustrate the proposed modeling approach we focus on the reductive dehalogenation of chlorinated ethenes. We compare our method with the currently available approach, in which carbon and chlorine isotopologues are treated separately. The new approach provides an accurate description of dual-isotope effects regardless of the extent of the isotope fractionation and physical characteristics of the experimental system. We successfully applied the new approach to published experimental results on dehalogenation of chlorinated ethenes both in well-mixed systems and in situations where mass-transfer limitations control the overall rate of biodegradation. The advantages of our self-consistent dual isotope modeling approach proved to be most evident when isotope fractionation factors of carbon and chlorine differed significantly and for systems with mass-transfer limitations, where both physical and (bio)chemical transformation processes affect the observed isotopic values.
NASA Astrophysics Data System (ADS)
Randazzo, J. M.; Ancarani, L. U.
2015-12-01
For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.
DNS Study of the Ignition of n-Heptane Fuel Spray under HCCI Conditions
NASA Astrophysics Data System (ADS)
Wang, Yunliang; Rutland, Christopher J.
2004-11-01
Direct numerical simulations are carried out to investigate the mixing and auto-ignition processes of n-heptane fuel spray in a turbulent field using a skeletal chemistry mechanism with 44 species and 112 reactions. For the solution of the carrier gas fluid, we use the Eulerian method, while for the fuel spray, the Lagrangian method is used. We use an eighth-order finite difference scheme to calculate spacial derivatives and a fourth-order Runge-Kutta scheme for the time integration. The initial gas temperature is 926 K and the initial gas pressure is 30 atmospheres. The initial global equivalence ratio based on the fuel concentration is around 0.4. The initial droplet diameter is 60 macrons and the droplet temperature is 300 K. Evolutions of averaged temperature, species mass fraction, heat release and reaction rate are presented. Contours of temperature and species mass fractions are presented. The objective is to understand the mechanism of ignition under Homogeneous Charged Compression Ignition (HCCI) conditions, aiming at providing some useful information of HCCI combustion, which is one of the critical issues to be resolved.
Ozone disintegration of excess biomass and application to nitrogen removal.
Park, Ki Young; Lee, Jae Woo; Ahn, Kyu-Hong; Maeng, Sung Kyu; Hwang, Jong Hyuk; Song, Kyung-Guen
2004-01-01
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-01-01
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-04-20
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.
Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan
2011-07-01
Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.
Structures Containing Polyphosphate in Micrococcus lysodeikticus1
Friedberg, Ilan; Avigad, Gad
1968-01-01
Granular structures containing inorganic polyphosphate were found in Micrococcus lysodeikticus. These structures were isolated by fractionation of the bacterial extract obtained by lysing the organisms with lysozyme. The composition of the fraction which was enriched with these structures was found to be: protein, 24%; lipids, 30%; and polyphosphate, 27%. This fraction also contained small amounts of ribonucleic acids, carbohydrate, and polyvalent cations. The effect of different reagents and enzymes on the integrity of the granules was examined. It was noticed that they accumulate in the bacteria during the logarithmic phase of growth but disappear gradually during the stationary phase. Images PMID:5674060
NASA Astrophysics Data System (ADS)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses
Maroto, Rosario; Zhao, Yingxin; Jamaluddin, Mohammad; Popov, Vsevolod L.; Wang, Hongwang; Kalubowilage, Madumali; Zhang, Yueqing; Luisi, Jonathan; Sun, Hong; Culbertson, Christopher T.; Bossmann, Stefan H.; Motamedi, Massoud; Brasier, Allan R.
2017-01-01
ABSTRACT Background: Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim: We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods: Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or −80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results: Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at −80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound “peri-exosomal” proteins. In preparations stored at −80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions: Storage destabilizes the surface characteristics, morphological features and protein content of BALF exosomes. For preservation of the exosome protein content and representative functional analysis, airway exosomes should be analysed immediately after isolation. PMID:28819550
Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses.
Maroto, Rosario; Zhao, Yingxin; Jamaluddin, Mohammad; Popov, Vsevolod L; Wang, Hongwang; Kalubowilage, Madumali; Zhang, Yueqing; Luisi, Jonathan; Sun, Hong; Culbertson, Christopher T; Bossmann, Stefan H; Motamedi, Massoud; Brasier, Allan R
2017-01-01
Background : Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim : We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods : Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or -80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results : Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at -80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound "peri-exosomal" proteins. In preparations stored at -80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions : Storage destabilizes the surface characteristics, morphological features and protein content of BALF exosomes. For preservation of the exosome protein content and representative functional analysis, airway exosomes should be analysed immediately after isolation.
NASA Astrophysics Data System (ADS)
Strohaber, James; Boran, Yakup; Sayrac, Muhammed; Johnson, Lewis; Zhu, Feng; Kolomenskii, Alexandre; Schuessler, Hans
We studied the nonlinear parametric interaction of femtosecond fractionally-charged optical vortices in a Raman-active medium. Propagation of such beams is described using the Kirchhoff-Fresnel integrals by embedding a non-integer 2pi phase step in a Gaussian beam profile. When using fractionally-charged pump or Stokes beams, we observed the production of new topological charge and phase discontinuities in the Raman field. These newly generated fractionally-charged Raman vortex beams were found to follow the same orbital angular momentum algebra derived by for integer vortex beams. This work was funded by the Robert A. Welch Foundation, Grant No. A1546 and the Qatar Foundation under Grants No. NPRP 6-465-1-091.
Improvement of dry fractionation ethanol fermentation by partial germ supplementation
USDA-ARS?s Scientific Manuscript database
Ethanol fermentation of dry fractionated grits (corn endosperm pieces) containing different levels of germ was studied using the dry grind process. Partial removal of germ fraction allows for marketing the germ fraction and potentially more efficient fermentation. Grits obtained from a dry milling p...
High-order fractional partial differential equation transform for molecular surface construction.
Hu, Langhua; Chen, Duan; Wei, Guo-Wei
2013-01-01
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.
NASA Astrophysics Data System (ADS)
Deng, Chengbin; Wu, Changshan
2013-12-01
Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available.
[Depression, social support and compliance in patients with chronic heart failure].
Reutlinger, Julia; Müller-Tasch, Thomas; Schellberg, Dieter; Frankenstein, Lutz; Zugck, Christian; Herzog, Wolfgang; Lossnitzer, Nicole
2010-01-01
Depressive patients with chronic heart failure (CHF) show less social integration and greater physical impairment as well as poorer compliance than non depressive CHF patients. Using multiple regression analyses, this study (n=84) investigated a potential mediating effect of depression on the relationship between compliance and both social support and physical functioning. Results did not support the hypothesized mediating effect of depression. However, the variables age, depression, left ventricular ejection fraction (LVEF) and social support were associated with self-reported compliance. Therefore, a lack of social support and depression should be considered as possible reasons, if patients are noncompliant during the treatment process. © Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
Bonotto, C.
1995-01-01
Attempted to verify knowledge regarding decimal and rational numbers in children ages 10-14. Discusses how pupils can receive and assimilate extensions of the number system from natural numbers to decimals and fractions and later can integrate this extension into a single and coherent numerical structure. (Author/MKR)
Reaction Order Ambiguity in Integrated Rate Plots
ERIC Educational Resources Information Center
Lee, Joe
2008-01-01
Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…
Energetic contribution potential of building-integrated photovoltaics on airports in warm climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruether, Ricardo; LABSOLAR - Laboratorio de Energia Solar, UFSC - Universidade Federal de Santa Catarina, Caixa Postal 476, Florianopolis, SC 88040-900; Braun, Priscila
2009-10-15
Especially in warm climates, a considerable fraction of the electricity demand in commercial buildings is due to the intensive use of air-conditioning systems. Airport buildings in sunny and warm regions present a perfect match between energy demand and solar resource availability. Airport buildings are also typically large and horizontal, isolated and free of shading, and have a great potential for the integration of solar photovoltaic (PV) systems. In this work, we assess the potential impact in energy demand reduction at the Florianopolis International Airport in Brazil (27 S, 48 W) with the use of building-integrated photovoltaic (BIPV) systems. We analysemore » the building's hourly energy consumption and solar irradiation data, to assess the match between energy demand and potential generation, and we estimate the PV power necessary to supply both the total amount and fractions of the annual energy demand. Our results show that the integration of PV systems on airport buildings in warm climates can supply the entire electric power consumption of an airport complex, in line with the general concept of a zero-energy building (ZEB). (author)« less
NASA Astrophysics Data System (ADS)
Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank
2018-02-01
In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.
Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.
Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard
2016-06-01
Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; P = .016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877). These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Giuliana, D'Imporzano; Fabrizio, Adani
2007-02-01
This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.
Rico, Carlos; Muñoz, Noelia; Rico, José Luis
2015-01-01
Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Dong Young; Kim, Young Soo; Kim, Tae Hyun; Oh, Kyeong Keun
2016-01-01
Fractionation of EFB was conducted in two consecutive steps using a batch reaction system: hemicellulose hydrolysis using acetic acid (AA; 3.0-7.0 wt.%) at 170-190°C for 10-20 min in the first stage, and lignin solubilization using ammonium hydroxide (5-20 wt.%) at 140-220°C for 5-25 min in the second stage. The two-stage process effectively fractionated empty fruit bunches (EFB) in terms of hemicellulose hydrolysis (53.6%) and lignin removal (59.5%). After the two-stage treatment, the fractionated solid contained 65.3% glucan. Among three investigated process parameters, reaction temperature and ammonia concentration had greater impact on the delignification reaction in the second stage than reaction time. The two-stage fractionation processing improved the enzymatic digestibility to 72.9% with 15 FPU of cellulase/g of glucan supplemented with 70 pNPG of β-glycosidase (Novozyme 188)/g-glucan, which was significantly enhanced from the equivalent digestibility of 28.3% for untreated EFB and 45.7% for AAH-fractionated solid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jenkins, Clinton N.; Flocks, J.; Kulp, M.; ,
2006-01-01
Information-processing methods are described that integrate the stratigraphic aspects of large and diverse collections of sea-floor sample data. They efficiently convert common types of sea-floor data into database and GIS (geographical information system) tables, visual core logs, stratigraphic fence diagrams and sophisticated stratigraphic statistics. The input data are held in structured documents, essentially written core logs that are particularly efficient to create from raw input datasets. Techniques are described that permit efficient construction of regional databases consisting of hundreds of cores. The sedimentological observations in each core are located by their downhole depths (metres below sea floor - mbsf) and also by a verbal term that describes the sample 'situation' - a special fraction of the sediment or position in the core. The main processing creates a separate output event for each instance of top, bottom and situation, assigning top-base mbsf values from numeric or, where possible, from word-based relative locational information such as 'core catcher' in reference to sampler device, and recovery or penetration length. The processing outputs represent the sub-bottom as a sparse matrix of over 20 sediment properties of interest, such as grain size, porosity and colour. They can be plotted in a range of core-log programs including an in-built facility that better suits the requirements of sea-floor data. Finally, a suite of stratigraphic statistics are computed, including volumetric grades, overburdens, thicknesses and degrees of layering. ?? The Geological Society of London 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less