Sample records for fracture control design

  1. Fracture control methods for space vehicles. Volume 1: Fracture control design methods. [for space shuttle configuration planning

    NASA Technical Reports Server (NTRS)

    Liu, A. F.

    1974-01-01

    A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.

  2. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  3. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  4. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  5. Fracture mechanisms and fracture control in composite structures

    NASA Astrophysics Data System (ADS)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally observed complex compressive failure modes, such as shear crippling and pure compressive fiber failure of fibers are explained by the predicted stress distributions calculated in this work. These fracture analyses can be damage tolerant design methodology for composite structures. The proposed fracture criteria and the corresponding critical fracture strains provide the designer with quantitative guidelines for safe-life design. These have been incorporated into a fracture control plan for composite structures, which is also described. Currently, fracture control plans do not exist for composite structures; the proposed plan is a first step towards establishing fracture control and damage tolerant design methodology for this important class of materials.

  6. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    PubMed

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  7. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  8. Fracture control for the Oman India Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, T.V.

    1996-12-31

    This paper describes the evaluation of the resistance to fracture initiation and propagation for the high-strength, heavy-wall pipe required for the Oman India Pipeline (OIP). It discusses the unique aspects of this pipeline and their influence on fracture control, reviews conventional fracture control design methods, their limitations with regard to the pipe in question, the extent to which they can be utilized for this project, and other approaches being explored. Test pipe of the size and grade required for the OIP show fracture toughness well in excess of the minimum requirements.

  9. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    PubMed Central

    Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃–55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns. PMID:26949485

  10. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  11. Design and real-time control of a robotic system for fracture manipulation.

    PubMed

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-08-01

    This paper presents the design, development and control of a new robotic system for fracture manipulation. The objective is to improve the precision, ergonomics and safety of the traditional surgical procedure to treat joint fractures. The achievements toward this direction are here reported and include the design, the real-time control architecture and the evaluation of a new robotic manipulator system. The robotic manipulator is a 6-DOF parallel robot with the struts developed as linear actuators. The control architecture is also described here. The high-level controller implements a host-target structure composed by a host computer (PC), a real-time controller, and an FPGA. A graphical user interface was designed allowing the surgeon to comfortably automate and monitor the robotic system. The real-time controller guarantees the determinism of the control algorithms adding an extra level of safety for the robotic automation. The system's positioning accuracy and repeatability have been demonstrated showing a maximum positioning RMSE of 1.18 ± 1.14mm (translations) and 1.85 ± 1.54° (rotations).

  12. Design and application of nickel-titanium olecranon memory connector in treatment of olecranon fractures: a prospective randomized controlled trial.

    PubMed

    Chen, Xiao; Liu, Peng; Zhu, Xiaofei; Cao, Liehu; Zhang, Chuncai; Su, Jiacan

    2013-06-01

    We carried out this study to test the efficacy of the olecranon memory connector (OMC) in olecranon fractures. We designed a prospective randomised controlled trial involving 40 cases of olecranon fractures. From May 2004 to December 2009, 40 patients with olecranon fractures were randomly assigned into two groups. Twenty patients were treated with OMC, while another 20 patients were fixed with locking plates in our hospital. The DASH score, MEP score, range of motion and radiographs were used to evaluate the postoperative elbow function and complications. For MEP score, OMC was better than the locking plate; for DASH score, complication rate, and range of elbow motion, the two methods presented no significant difference. The study showed that OMC could be an effective alternative to treat olecranon fractures.

  13. Fracture and failure: Analyses, mechanisms and applications; Proceedings of the Symposium, Los Angeles, CA, March 17-20, 1980

    NASA Technical Reports Server (NTRS)

    Tung, P. P. (Editor); Agrawal, S. P.; Kumar, A.; Katcher, M.

    1981-01-01

    Papers are presented on the application of fracture mechanics to spacecraft design, fracture control applications on the Space Shuttle reaction control thrusters, and an assessment of fatigue crack growth rate relationships for metallic airframe materials. Also considered are fracture mechanisms and microstructural relationships in Ni-base alloy systems, the use of surface deformation markings to determine crack propagation directions, case histories of metallurgical failures in the electronics industry, and a failure analysis of silica phenolic nozzle liners.

  14. Functional assessment of a surgical robot for reduction of lower limb fractures.

    PubMed

    Hung, Shuo-Suei; Lee, Ming-Yih

    2010-12-01

    This paper presents a novel robot designed for reduction of lower limb fractures, with the additional features of automatic controlled flexion of the knee joint, individual traction of thigh and leg, and foot rotation. The aim of this design is to assist the orthopaedic surgeon to perform better fracture reduction through motor control, in contrast to current manual control, and the results of assessments of its functions on normal subjects are presented in this paper. The robot was designed to be mounted onto the operation table, and was controlled through open switch relay. Functional assessments were conducted on six healthy volunteers in terms of knee joint motion and lower limb traction; measurement of angle and distance was calculated from data obtained by a 3D ultrasonic motion system (Zebris(®) ). The results showed a good correlation of the flexion angle between the robot and the subjects at the knee joint. In the traction tests, a steady lengthening of the proximal as well as the distal segment of the robot was observed, and a slight increase in subjects' limb length was also recorded, which might be due to distraction in the joint space. This automatic control fracture table has distinct features compared with the conventional ones, and it is believed to be of assistance to surgeons when performing fracture fixations. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  16. Design, fracture control, fabrication, and testing of pressurized space-vehicle structures

    NASA Technical Reports Server (NTRS)

    Babel, H. W.; Christensen, R. H.; Dixon, H. H.

    1974-01-01

    The relationship between analysis, design, fabrication, and testing of thin shells is illustrated by Saturn S-IVB, Thor, Delta, and other single-use and reusable large-size cryogenic aluminum tankage. The analyses and design to meet the design requirements are reviewed and include consideration of fracture control, general instability, and other failure modes. The effect of research and development testing on the structure is indicated. It is shown how fabrication and nondestructive and acceptance testing constrain the design. Finally, qualification testing is reviewed to illustrate the extent of testing used to develop the Saturn S-IVB.

  17. Effect of extended physiotherapy and high-dose vitamin D on rate of falls and hospital re-admission after acute hip fracture: a randomized controlled trial

    USDA-ARS?s Scientific Manuscript database

    Guidelines for post-fracture care of elderly hip fracture patients are not established despite the significant socio-economic burden of post hip fracture morbidity and mortality. Using a factorial design, we studied the effects of extended physiotherapy (supervised 1 hour per day during acute care p...

  18. Clinical effects of internal fixation for ulnar styloid fractures associated with distal radius fractures: A matched case-control study.

    PubMed

    Sawada, Hideyoshi; Shinohara, Takaaki; Natsume, Tadahiro; Hirata, Hitoshi

    2016-11-01

    Ulnar styloid fractures are often associated with distal radius fractures. However, controversy exists regarding whether to treat ulnar styloid fractures. This study aimed to evaluate clinical effects of internal fixation for ulnar styloid fractures after distal radius fractures were treated with the volar locking plate system. We used prospectively collected data of distal radius fractures. 111 patients were enrolled in this study. A matched case-control study design was used. We selected patients who underwent fixation for ulnar styloid fractures (case group). Three control patients for each patient of the case group were matched on the basis of age, sex, and fracture type of distal radius fractures from among patients who did not undergo fixation for ulnar styloid fractures (control group). The case group included 16 patients (7 men, 9 women; mean age: 52.6 years; classification of ulnar styloid fractures: center, 3; base, 11; and proximal, 2). The control group included 48 patients (15 men, 33 women; mean age: 61.1 years; classification of ulnar styloid fractures: center, 10; base, 31; and proximal, 7). For radiographic examination, the volar tilt angle, radial inclination angle, and ulnar variance length were measured, and the union of ulnar styloid fractures was judged. For clinical examination, the range of motions, grip strength, Hand20 score, and Numeric Rating Scale score were evaluated. There was little correction loss for each radiological parameter of fracture reduction, and these parameters were not significantly different between the groups. The bone-healing rate of ulnar styloid fractures was significantly higher in the case group than in the control group, but the clinical results were not significantly different. We revealed that there was no need to fix ulnar styloid fractures when distal radius fractures were treated via open reduction and internal fixation with a volar locking plate system. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  19. Forefoot Adduction Is a Risk Factor for Jones Fracture.

    PubMed

    Fleischer, Adam E; Stack, Rebecca; Klein, Erin E; Baker, Jeffrey R; Weil, Lowell; Weil, Lowell Scott

    Jones fractures are among the most common fractures of the foot; however, much remains unknown about their etiology. The purpose of the present study was to further examine the risk factors of forefoot and hindfoot alignment on Jones fractures using an epidemiologic study design. We used a retrospective, matched, case-control study design. Cases consisted of patients with acute, isolated Jones fractures confirmed on plain film radiographs seen at our institute from January 2009 to December 2013. Patients presenting with pain unrelated to metatarsal fractures served as controls. Controls were matched to cases by age (±2 years), gender, and year of presentation. Weightbearing foot radiographs were assessed for 13 angular relationships by a single rater. Conditional multivariable logistic regression was used to identify important risk factors. Fifty patients with acute Jones fractures and 200 controls were included. The only significant variables in the final multivariable model were the metatarsus adductus angle (odds ratio [OR] 1.16, 95% confidence interval [CI] 1.08 to 1.25) and fourth/fifth intermetatarsal angle (OR 0.69, 95% CI 0.57 to 0.83)-both measures of static forefoot adduction. The presence of metatarsus adductus (defined as >15°) on foot radiographs was associated with a 2.4 times greater risk of a Jones fracture (adjusted OR 2.4, 95% CI 1.2 to 4.8). We have concluded that the risk of Jones fracture increases with an adducted forefoot posture. In our population, which consisted primarily of patients presenting after a fall (10 of 50; 20%) or misstep/inversion injury (19 of 50; 38%), the hindfoot alignment appeared to be a less important factor. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. User-only design to assess drug effectiveness in clinical practice: application to bisphosphonates and secondary prevention of fractures.

    PubMed

    Corrao, Giovanni; Ghirardi, Arianna; Segafredo, Giulia; Zambon, Antonella; Della Vedova, Gianluca; Lapi, Francesco; Cipriani, Francesco; Caputi, Achille; Vaccheri, Alberto; Gregori, Dario; Gesuita, Rosaria; Vestri, Annarita; Staniscia, Tommaso; Mazzaglia, Giampiero; Di Bari, Mauro

    2014-08-01

    Different strategies applicable to control for confounding by indication in observational studies were compared in a large population-based study regarding the effect of bisphosphonates (BPs) for secondary prevention of fractures. The cohort was drawn from healthcare utilization databases of 13 Italian territorial units. Patients aged 55 years or more who were hospitalized for fracture during 2003-2005 entered into the cohort. A nested case-control design was used to compare BPs use in cohort members who did (cases) and who did not experience (controls) a new fracture until 2007 (outcome). Three designs were employed: conventional-matching (D1 ), propensity score-matching (D2 ), and user-only (D3 ) designs. They differed for (i) cohort composition, restricted to patients who received BPs straight after cohort entry (D3 ); (ii) using propensity score for case-control matching (D2 ); and (iii) compared groups of BPs users versus no users (D1 and D2 ) and long-term versus short-term users (D3 ). Bisphosphonate users had odds ratios (95% confidence interval) of 1.20 (1.01 to 1.44) and 0.95 (0.74 to 1.24) by applying D1 and D2 designs, respectively. Statistical evidence that long-term BPs use protects the outcome onset with respect to short-term use was observed for user-only design (D3 ) being the corresponding odds ratio (95% confidence interval) 0.64 (0.44 to 0.93). User-only design yielded closer results to those seen in RCTs. This approach is one possible strategy to account for confounding by indication. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Exercise prescription after fragility fracture in older adults: a scoping review

    PubMed Central

    Feehan, Lynne M.; Beck, Charlotte A.; Harris, Susan R.; MacIntyre, Donna L.; Li, Linda C.

    2017-01-01

    Purpose To identify and chart research literature on safety, efficacy or effectiveness of exercise prescription following fracture in older adults. Methods We conducted a systematic, research-user-informed, scoping review. The population of interest was adults aged ≥ 45 years with any fracture. ‘Exercise prescription’ included post-fracture therapeutic exercise, physical activity or rehabilitation interventions. Eligible designs included knowledge synthesis studies, primary interventional studies and observational studies. Trained reviewers independently evaluated citations for inclusion. Results A total of 9415 citations were reviewed with 134 citations (119 unique studies) identified: 13 knowledge syntheses, 95 randomized or controlled clinical trials, and 11 ‘other’ designs, representing 74 articles on lower extremity fractures, 34 on upper extremity, eight on vertebral, and three on mixed body region fractures. Exercise prescription characteristics were often missing or poorly described. Six general categories emerged describing exercise prescription characteristics: timing post-fracture, person prescribing, program design, functional focus, exercise script parameters and co-interventions. Upper extremity and ankle fracture studies focused on fracture healing or structural impairment outcomes, whereas hip fracture studies focused more on activity limitation outcomes. The variety of different outcome measures used made pooling or comparison of outcomes difficult. Conclusions There was insufficient information to identify evidence-informed parameters for safe and effective exercise prescription for older adults following fracture. Key gaps in the literature include limited numbers of studies on exercise prescription following vertebral fracture, poor delineation of effectiveness of different strategies for early post-fracture mobilization following upper extremity fracture, and inconsistent details of exercise prescription characteristics after lower extremity fracture. PMID:20967425

  2. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., fully killed, continuously cast steel with calcium treatment. (2) The carbon equivalents of the steel... under this section. (b) Fracture control (1) The toughness properties for pipe must address the... specification level 2 or ASME B31.8 (incorporated by reference, see § 192.7). (2) Fracture control must: (i...

  3. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., fully killed, continuously cast steel with calcium treatment. (2) The carbon equivalents of the steel... under this section. (b) Fracture control (1) The toughness properties for pipe must address the... specification level 2 or ASME B31.8 (incorporated by reference, see § 192.7). (2) Fracture control must: (i...

  4. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., fully killed, continuously cast steel with calcium treatment. (2) The carbon equivalents of the steel... under this section. (b) Fracture control (1) The toughness properties for pipe must address the... specification level 2 or ASME B31.8 (incorporated by reference, see § 192.7). (2) Fracture control must: (i...

  5. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., fully killed, continuously cast steel with calcium treatment. (2) The carbon equivalents of the steel... under this section. (b) Fracture control (1) The toughness properties for pipe must address the... specification level 2 or ASME B31.8 (incorporated by reference, see § 192.7). (2) Fracture control must: (i...

  6. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., fully killed, continuously cast steel with calcium treatment. (2) The carbon equivalents of the steel... under this section. (b) Fracture control (1) The toughness properties for pipe must address the... specification level 2 or ASME B31.8 (incorporated by reference, see § 192.7). (2) Fracture control must: (i...

  7. Comparative evaluation of the effect of different crown ferrule designs on the fracture resistance of endodontically treated mandibular premolars restored with fiber posts, composite cores, and crowns: An ex-vivo study

    PubMed Central

    Dua, Nikita; Kumar, Bhupendra; Arunagiri, D.; Iqbal, Mohammad; Pushpa, S.; Hussain, Juhi

    2016-01-01

    Introduction: In cases of severe hard tissue loss, 2 mm circumferential ferrule is difficult to achieve which leads to incorporation of different ferrule designs. Aim: To compare and evaluate the effect of different crown ferrule designs on the fracture resistance of mandibular premolars restored with fiber posts, composite cores, and crowns. Materials and Methods: Fifty freshly extracted mandibular premolars were endodontically treated and divided into five groups: Group I - 2 mm circumferential ferrule above the cementoenamel junction (CEJ); Group II - 2 mm ferrule on the facial aspect above CEJ; Group III - 2 mm ferrule on the lingual aspect above CEJ; Group IV - 2 mm ferrule on the facial and lingual aspects above CEJ with interproximal concavities, and Group V - no ferrule (control group) and were later restored with fiber posts, composite cores, and crowns. Specimens were mounted on a universal testing machine, and compressive load was applied at a crosshead speed of 1 mm/min until fracture occurred. Results: The results showed that circumferential ferrule produced the highest mean fracture resistance and the least fracture resistance was found in the control group. Conclusion: Circumferential ferrule increases the fracture resistance of endodontically treated teeth restored with bonded post, core, and crown. PMID:27217642

  8. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns.

    PubMed

    Alhasanyah, Abdulrahman; Vaidyanathan, Tritala K; Flinton, Robert J

    2013-07-01

    Despite the excellent esthetics of veneered zirconia crowns, the incidence of chipping and fracture of veneer porcelain on zirconia crowns has been recognized to be higher than in metal ceramic crowns. The objective of this investigation was to study the effect of selected variations in core thickness on the post-fatigue fracture resistance of veneer porcelain on zirconia crowns. Zirconia crowns for veneering were prepared with three thickness designs of (a) uniform 0.6-mm thick core (group A), (b) extra-thick 1.7 mm occlusal core support (group B), and (c) uniform 1.2-mm thick core (group C). The copings were virtually designed and milled by the CAD/CAM technique. Metal ceramic copings (group D) with the same design as in group C were used as controls. A sample size of N = 20 was used for each group. The copings were veneered with compatible porcelain and fatigue tested under a sinusoidal loading regimen. Loading was done with a 200 N maximum force amplitude under Hertzian axial loading conditions at the center of the crowns using a spherical tungsten carbide indenter. After 100,000 fatigue cycles, the crowns were axially loaded to fracture and maximum load levels before fracture was recorded. One-way ANOVA (P < 0.05) and post hoc Tukey tests (α = 0.05) were used to determine significant differences between means. The mean fracture failure load of group B was not significantly different from that of control group D. In contrast, the mean failure loads of groups A and C were significantly lower than that of control group D. Failure patterns also indicated distinct differences in failure mode distributions. The results suggest that proper occlusal core support improves veneer chipping fracture resistance in zirconia crowns. Extra-thick occlusal core support for porcelain veneer may significantly reduce the veneer chipping and fracture of zirconia crowns. This is suggested as an important consideration in the design of copings for zirconia crowns. © 2013 by the American College of Prosthodontists.

  9. A randomised controlled trial of low-dose aspirin for the prevention of fractures in healthy older people: protocol for the ASPREE-Fracture substudy.

    PubMed

    Barker, Anna L; McNeil, John J; Seeman, Ego; Ward, Stephanie A; Sanders, Kerrie M; Khosla, Sundeep; Cumming, Robert G; Pasco, Julie A; Bohensky, Megan A; Ebeling, Peter R; Woods, Robyn L; Lockery, Jessica E; Wolfe, Rory; Talevski, Jason

    2016-08-01

    Disability, mortality and healthcare burden from fractures in older people is a growing problem worldwide. Observational studies suggest that aspirin may reduce fracture risk. While these studies provide room for optimism, randomised controlled trials are needed. This paper describes the rationale and design of the ASPirin in Reducing Events in the Elderly (ASPREE)-Fracture substudy, which aims to determine whether daily low-dose aspirin decreases fracture risk in healthy older people. ASPREE is a double-blind, randomised, placebo-controlled primary prevention trial designed to assess whether daily active treatment using low-dose aspirin extends the duration of disability-free and dementia-free life in 19 000 healthy older people recruited from Australian and US community settings. This substudy extends the ASPREE trial data collection to determine the effect of daily low-dose aspirin on fracture and fall-related hospital presentation risk in the 16 500 ASPREE participants aged ≥70 years recruited in Australia. The intervention is a once daily dose of enteric-coated aspirin (100 mg) versus a matching placebo, randomised on a 1:1 basis. The primary outcome for this substudy is the occurrence of any fracture-vertebral, hip and non-vert-non-hip-occurring post randomisation. Fall-related hospital presentations are a secondary outcome. This substudy will determine whether a widely available, simple and inexpensive health intervention-aspirin-reduces the risk of fractures in older Australians. If it is demonstrated to safely reduce the risk of fractures and serious falls, it is possible that aspirin might provide a means of fracture prevention. The protocol for this substudy is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615000347561). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Linear elastic fracture mechanics primer

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1992-01-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  11. Uncertainty Analysis of Simulated Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.

    2012-12-01

    Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. A QI Initiative to Reduce Hospitalization for Children With Isolated Skull Fractures.

    PubMed

    Lyons, Todd W; Stack, Anne M; Monuteaux, Michael C; Parver, Stephanie L; Gordon, Catherine R; Gordon, Caroline D; Proctor, Mark R; Nigrovic, Lise E

    2016-06-01

    Although children with isolated skull fractures rarely require acute interventions, most are hospitalized. Our aim was to safely decrease the hospitalization rate for children with isolated skull fractures. We designed and executed this multifaceted quality improvement (QI) initiative between January 2008 and July 2015 to reduce hospitalization rates for children ≤21 years old with isolated skull fractures at a single tertiary care pediatric institution. We defined an isolated skull fracture as a skull fracture without intracranial injury. The QI intervention consisted of 2 steps: (1) development and implementation of an evidence-based guideline, and (2) dissemination of a provider survey designed to reinforce guideline awareness and adherence. Our primary outcome was hospitalization rate and our balancing measure was hospital readmission within 72 hours. We used standard statistical process control methodology to assess change over time. To assess for secular trends, we examined admission rates for children with an isolated skull fracture in the Pediatric Health Information System administrative database. We identified 321 children with an isolated skull fracture with a median age of 11 months (interquartile range 5-16 months). The baseline admission rate was 71% (179/249, 95% confidence interval, 66%-77%) and decreased to 46% (34/72, 95% confidence interval, 35%-60%) after implementation of our QI initiative. No child was readmitted after discharge. The admission rate in our secular trend control group remained unchanged at 78%. We safely reduced the hospitalization rate for children with isolated skull fractures without an increase in the readmissions. Copyright © 2016 by the American Academy of Pediatrics.

  13. Multiwell fracturing experiments. [Nitrogen foam fracture treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.

    The objective of the Multiwell fracturing experiments is to test and develop the technology for the efficient stimulation of tight, lenticular gas sands. This requires basic understanding of: (1) fracture behavior and geometry in this complex lithologic environment, and (2) subsequent production into the created fracture. The intricate interplay of the hydraulic fracture with the lens geometry, the internal reservoir characteristics (fractures, reservoir breaks, etc.), the in situ stresses, and the mechanical defects (fracture, bedding, etc.) need to be defined in order to develop a successful stimulation program. The stimulation phase of the Multiwell Experiment is concerned with: (1) determiningmore » important rock/reservoir properties that influence or control fracture geometry and behavior, (2) designing fracture treatments to achieve a desired size and objectives, and (3) conducting post-treatment analyses to evaluate the effectiveness of the treatment. Background statement, project description, results and evaluation of future plans are presented. 5 refs., 2 figs., 2 tabs.« less

  14. Physiotherapy Rehabilitation for Osteoporotic Vertebral Fracture (PROVE): study protocol for a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Osteoporosis and vertebral fracture can have a considerable impact on an individual’s quality of life. There is increasing evidence that physiotherapy including manual techniques and exercise interventions may have an important treatment role. This pragmatic randomised controlled trial will investigate the clinical and cost-effectiveness of two different physiotherapy approaches for people with osteoporosis and vertebral fracture, in comparison to usual care. Methods/Design Six hundred people with osteoporosis and a clinically diagnosed vertebral fracture will be recruited and randomly allocated to one of three management strategies, usual care (control - A), an exercise-based physiotherapy intervention (B) or a manual therapy-based physiotherapy intervention (C). Those in the usual care arm will receive a single session of education and advice, those in the active treatment arms (B + C) will be offered seven individual physiotherapy sessions over 12 weeks. The trial is designed as a prospective, adaptive single-blinded randomised controlled trial. An interim analysis will be completed and if one intervention is clearly superior the trial will be adapted at this point to continue with just one intervention and the control. The primary outcomes are quality of life measured by the disease specific QUALLEFO 41 and the Timed Loaded Standing test measured at 1 year. Discussion There are a variety of different physiotherapy packages used to treat patients with osteoporotic vertebral fracture. At present, the indication for each different therapy is not well defined, and the effectiveness of different modalities is unknown. Trial registration Reference number ISRCTN49117867. PMID:24422876

  15. Thick section aluminum weldments for SRB structures

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Sexton, J.

    1978-01-01

    The Space Shuttle Solid Rocket Booster (SRB) forward and aft skirts were designed with fracture control considerations used in the design data. Fracture control is based on reliance upon nondestructive evaluation (NDE) techniques to detect potentially critical flaws. In the aerospace industry, welds on aluminum in the thicknesses (0.500 to 1.375 in.) such as those encountered on the SRB skirts are normally welded from both sides to minimize distortion. This presents a problem with the potential presence of undefined areas of incomplete fusion and the inability to detect these potential flaws by NDE techniques. To eliminate the possibility of an undetectable defect, weld joint design was revised to eliminate blind root penetrations. Weld parameters and mechanical property data were developed to verify the adequacy of the new joint design.

  16. Design and Fabrication of Automatic Glass Cutting Machine

    NASA Astrophysics Data System (ADS)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  17. The Effect of Cavity Design on Fracture Resistance and Failure Pattern in Monolithic Zirconia Partial Coverage Restorations - An In vitro Study.

    PubMed

    Harsha, Madhavareddy Sri; Praffulla, Mynampati; Babu, Mandava Ramesh; Leneena, Gudugunta; Krishna, Tejavath Sai; Divya, G

    2017-05-01

    Cavity preparations of posterior teeth have been frequently associated with decreased fracture strength of the teeth. Choosing the correct indirect restoration and the cavity design when restoring the posterior teeth i.e., premolars was difficult as it involves aesthetic, biomechanical and anatomical considerations. To evaluate the fracture resistance and failure pattern of three different cavity designs restored with monolithic zirconia. Human maxillary premolars atraumatically extracted for orthodontic reasons were chosen. A total of 40 teeth were selected and divided into four groups (n=10). Group I-Sound teeth (control with no preparation). Group II-MOD Inlay, Group III-Partial Onlay, Group IV-Complete Onlay. Restorations were fabricated with monolithic partially sintered zirconia CAD (SAGEMAX- NexxZr). All the 30 samples were cemented using Multilink Automix (Ivoclar) and subjected to fracture resistance testing using Universal Testing Machine (UTM) (Instron) with a steel ball of 3.5 mm diameter at crosshead speed of 0.5 mm/minute. Stereomicroscope was used to evaluate the modes of failure of the fractured specimen. Fracture resistance was tested using parametric one way ANOVA test, unpaired t-test and Tukey test. Fracture patterns were assessed using non-parametric Chi-square test. Group IV (Complete Onlay) presented highest fracture resistance and showed statistical significant difference. Group II (MOD Inlay) and Group III (Partial Onlay) showed significantly lower values than the Group I (Sound teeth). However, Groups I, II and III presented no significant difference from each other. Coming to the modes of failure, Group II (MOD Inlay) and Group III (Partial Onlay) presented mixed type of failures; Group IV (Complete Onlay) demonstrated 70% Type I failures. Of the three cavity designs evaluated, Complete Onlay had shown a significant increase in the fracture resistance than the Sound teeth.

  18. Temperament and fracture in preschool-aged children.

    PubMed

    Ryckman, Kandace; Richmond, Sarah A; Anderson, Laura N; Birken, Catherine S; Parkin, Patricia C; Macarthur, Colin; Maguire, Jonathon L; Howard, Andrew W

    2017-07-01

    Approximately one-half of all children will sustain a fracture before adulthood. Understanding the factors that place a child at increased risk of fracture is necessary to inform effective injury prevention strategies. The purpose of this study was to examine the association between temperament and fracture risk in preschool-aged children. Children aged 3 to 6 years who were diagnosed with a fracture were recruited from the Hospital for Sick Children Fracture Clinic. Using a retrospective case-control study design, the 148 cases were frequency-matched by age and sex to 426 controls from the TARGet Kids primary care paediatric cohort. The Childhood Behaviour Questionnaire, a 36-item caregiver response questionnaire was used to assess three of the following temperament factors: surgency (e.g., high activity level), negative affect (e.g., anger, fear, discomfort) and effortful control (e.g., attentional focusing). Unadjusted logistic models demonstrated no association between children with previous fracture and higher scores of surgency (unadjusted odds ratio [OR]=1.06, 95% confidence interval [CI]: 0.84, 1.34), negative affect (unadjusted OR=1.15, 95% CI: 0.93, 1.42) or effortful control (unadjusted OR=0.80, 95% CI: 0.63, 1.03). Further, models adjusted for covariates also demonstrated no significant association with surgency (1.00, 95% CI: 0.78, 1.29), negative affect (1.09, 95% CI: 0.86, 1.37) and effortful control (0.80, 95% CI: 0.61, 1.05). None of the three main temperament types identified by the Childhood Behaviour Questionnaire were associated with an increase in fracture risk.

  19. Serum of 25-Hydroxyvitamin D and Intact Parathyroid Hormone Levels in Postmenopausal Women with Hip and Upper Limb Fractures.

    PubMed

    Lv, Jiang-Tao; Zhang, Ying-Ying; Tian, Shao-Qi; Sun, Kang

    2016-05-01

    To assess the serum of 25-hydroxyvitamin D (25(OH)D) and intact parathyroid hormone (iPTH) levels in postmenopausal women from northern China with hip and upper limb fractures. Case-control. Affiliated Hospital of Qingdao University. Postmenopausal women diagnosed with hip fracture (n = 335) and matched controls without fracture (n = 335). Between 2011 and 2013, fasting venous samples were analyzed for 25(OH)D, iPTH, alkaline phosphatase (ALP), calcium, and phosphorus. All women completed a standardized questionnaire designed to document putative risk factors for fractures. Eight percent of participants had vitamin D deficiency, and 66.0% had secondary hyperparathyroidism. Serum 25(OH)D levels were significantly (P < .001) lower in women with hip fracture than in controls. Multivariate logistic regression analysis adjusted for common risk factors showed that serum 25(OH)D of 20 ng/mL or less was an independent indicator of hip fracture (odds ratio (OR) = 2.98, 95% confidence interval (CI) = 2.11-4.20) and concomitant upper limb fracture in those with existing hip fractures (OR = 4.77, 95% CI = 1.60-10.12). The area under the receiver operating characteristic curve of 25(OH)D was 0.77 (95% CI = 0.68-0.84) for hip fracture and 0.80 (95% CI = 0.72-0.89) for hip and upper limb fractures. Vitamin D insufficiency and secondary hyperparathyroidism were a common problem in postmenopausal women who presented with concomitant hip and upper limb fractures, suggesting that they might contribute to the pathophysiology of fractures in postmenopausal women. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  20. Fall with and without fracture in elderly: what's different?

    PubMed

    Kantayaporn, Choochat

    2012-10-01

    Falling fracture was one of the health problems in elderly. This presentation aimed to identify the factors of fall that caused fractures. The retrospective case-control study was designed. Samples were all who experienced fall within 1 year in Lamphun. Factors included age, gender underlying diseases, chronic drugs used, history of parent fragility fracture, age of menopause, steroid used, body mass index, visual acuity and time up and go test were studied. Multivariate regression analysis was used. 336 cases of fractures in 1,244 cases of fall were found. Significant factors of falling fracture group that were different from fall without fracture group included age, female gender, menopause before age of 45 and visual impairment. Visual impairment was the other key factor rather than osteoporosis that caused fall with fracture. The author suggested that falling fracture prevention programs should be included correction of visual impairment other than osteoporosis treatment.

  1. [Fracture resistance of Procera Allceram depending on the framework design--an in vitro study].

    PubMed

    Hagmann, Edgar; Marinello, Carlo P; Zitzmann, Nicola U

    2006-01-01

    Procera AllCeram is one of the all-ceramic systems with an aluminium-oxide core employing CAD/CAM technology. The aim of the current study was to investigate the fracture resistance of Procera AllCeram full-ceramic crowns with a reduced core design compared to the conventional method. In addition, a possible influence of the preparation form (molars or premolars) and the cementation material (glas-ionomer or composite) was analyzed. For both preparation forms, 30 ceramic cores with reduced margins (collarless cores, test) and 30 cores with extended cores (control) were veneered with porcelain in a standardized procedure (total 120 crowns). For the test group, Procera-AllCeram-margin ceramic material was used for the porcelain collar. 40 crowns each were cemented on stainless steel dies with either Ketac-Cem Aplicap or Panavia F. The additional 40 crowns were set on polyurethane dies without cementation and occlusally loaded until fracture occurred. Among the molar crowns, no differences were observed in fracture resistance neither for the different core designs (test or control) nor for the cementation materials. For the premolar form, fusing of a porcelain margin was associated with a reduction in fracture resistance, while the use of composite cement was accompanied with an increase. The present in vitro results indicate that for Procera AllCeram crowns with a highly undulating preparation margin, a conventional core design combined with adhesive cementation is preferable, especially in the posterior region due to higher chewing forces; this assumption needs to be proven in clinical studies.

  2. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    NASA Astrophysics Data System (ADS)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  3. Effects of pulp capping materials on fracture resistance of Class II composite restorations

    PubMed Central

    Kucukyilmaz, Ebru; Yasa, Bilal; Akcay, Merve; Savas, Selcuk; Kavrik, Fevzi

    2015-01-01

    Objective: The aim of this study was to investigate the effect of cavity design and the type of pulp capping materials on the fracture resistance of Class II composite restorations. Materials and Methods: Sixty freshly extracted, sound molar teeth were selected for the study. A dovetail cavity on the mesio-occlusal and a slot cavity on disto-occlusal surfaces of each tooth were prepared, and the teeth were divided 4 groups which one of them as a control group. The pulp capping materials (TheraCal LC, Calcimol LC, Dycal) applied on pulpo-axial wall of each cavity, and the restoration was completed with composite resin. The teeth were subjected to a compressive load in a universal mechanical testing machine. The surfaces of the tooth and restoration were examined under a stereomicroscope. The data were analyzed using factorial analysis of variance and Tukey's test. Results: For pulp capping materials, the highest fracture load (931.15 ± 203.81 N) and the lowest fracture load (832.28 ± 245.75 N) were calculated for Control and Dycal group, respectively. However, there were no statistically significant differences among all groups (P > 0.05). The fracture load of the dovetail groups was significantly higher than those of the slot cavity groups (P < 0.05). Conclusion: Dovetail cavity design shows better fracture resistance in Class II composite restorations, independent of used or not used pulp capping materials. PMID:26038653

  4. Can paramedics use FRAX (the WHO Fracture Risk Assessment Tool) to help GPs improve future fracture risk in patients who fall? Protocol for a randomised controlled feasibility study.

    PubMed

    Clarke, Shane; Bradley, Rachel; Simmonds, Bethany; Salisbury, Chris; Benger, Jonathan; Marques, Elsa; Greenwood, Rosemary; Shepstone, Lee; Robinson, Maria; Appleby-Fleming, John; Gooberman-Hill, Rachael

    2014-09-03

    Currently identification, and therefore, management of patients at risk of osteoporotic fracture in the UK is suboptimal. As the majority of patients who fracture have fallen, it follows that people who fall can usefully be targeted in any programme that aims to reduce osteoporotic fracture. Targeting vulnerable patients who are likely to benefit from intervention may help shift the management of fracture prevention into primary care, away from emergency departments. Paramedics who attend to patients who have fallen may be well placed to assess future fracture risk, using the Fracture Risk Assessment Tool (FRAX) and communicate that information directly to general practitioners (GPs). This feasibility study takes the form of a pragmatic, randomised controlled trial aimed at exploring and refining issues of study design, recruitment, retention, sample size and acceptability preceding a large-scale study with fracture as the end point. Patients (aged >50) who fall, call an ambulance, are attended by a study paramedic and give verbal consent will be asked FRAX and fall questions. Patients who subsequently formally consent to participation will be randomised to control (usual care) or intervention groups. Intervention will constitute transmission of calculated future fracture risk to the patients' GP with suitable, evidence-based recommendations for investigation or treatment. 3 months after the index fall, data (proportion of patients in each group undergoing investigation or starting new treatment, quality of life and health economic) will be collected and analysed using descriptive statistics. A nested qualitative study will explore issues of acceptability and study design with patients, paramedics and GPs. This protocol was approved by NRES Committee South Central Oxford C in October 2012. Research Ethics Committee ref.12/SC/0604. The study findings will be disseminated through peer-reviewed journals, conference presentations and local public events. A publication plan and authorship criteria have been preagreed. 36245726. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.

    PubMed

    Cao, H

    1996-06-01

    An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.

  6. Mathematical modeling and simulation analysis of hydraulic fracture propagation in three-layered poro-elastic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, H.Y.; Advani, S.H.; Lee, T.S.

    1992-11-01

    Hydraulic fracturing plays a pivotal role in the enhancement of oil and gas production recovery from low permeability reservoirs. The process of hydraulic fracturing entails the generation of a fracture by pumping fluids blended with special chemicals and proppants into the payzone at high injection rates and pressures to extend and wedge fractures. The mathematical modeling of hydraulically induced fractures generally incorporates coupling between the formation elasticity, fracture fluid flow, and fracture mechanics equations governing the formation structural responses, fluid pressure profile, and fracture growth. Two allied unsymmetric elliptic fracture models are developed for fracture configuration evolutions in three-layered rockmore » formations. The first approach is based on a Lagrangian formulation incorporating pertinent energy components associated with the formation structural responses and fracture fluid flow. The second model is based on a generalized variational principle, introducing an energy rate related functional. These models initially simulate a penny-shaped fracture, which becomes elliptic if the crack tips encounters (upper and/or lower) barriers with differential reservoir properties (in situ stresses, 16 elastic moduli, and fracture toughness-contrasts and fluid leak-off characteristics). The energy rate component magnitudes are determined to interpret the governing hydraulic fracture mechanisms during fracture evolution. The variational principle is extended to study the phenomenon and consequences of fluid lag in fractures. Finally, parametric sensitivity and energy rate investigations to evaluate the roles of controllable hydraulic treatment variables and uncontrollable reservoir property characterization parameters are performed. The presented field applications demonstrate the overall capabilities of the developed models. These studies provide stimulation treatment guidelines for fracture configuration design, control, and optimization.« less

  7. The fluid mechanics of channel fracturing flows: experiment

    NASA Astrophysics Data System (ADS)

    Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).

  8. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  9. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  10. Greater Polar Moment of Inertia at the Tibia in Athletes Who Develop Stress Fractures

    PubMed Central

    Weidauer, Lee A.; Binkley, Teresa; Vukovich, Matt; Specker, Bonny

    2014-01-01

    Background: Several previous investigations have determined potential risk factors for stress fractures in athletes and military personnel. Purpose: To determine factors associated with the development of stress fractures in female athletes. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 88 female athletes (cross-country, n = 29; soccer, n = 15; swimming, n = 9; track and field, n = 14; volleyball, n = 12; and basketball, n = 9) aged 18 to 24 years were recruited to participate in a longitudinal bone study and had their left distal tibia at the 4%, 20%, and 66% sites scanned by peripheral quantitative computed tomography (pQCT). Patients included 23 athletes who developed stress fractures during the following year (cases). Whole body, hip, and spine scans were obtained using dual-energy x-ray absorptiometry (DXA). Analysis of covariance was used to determine differences in bone parameters between cases and controls after adjusting for height, lower leg length, lean mass, fat mass, and sport. Results: No differences were observed between cases and controls in any of the DXA measurements. Cases had significantly greater unadjusted trabecular bone mineral content (BMC), greater polar moment of inertia (PMI) at the 20% site, and greater cortical BMC at the 66% site; however, after adjusting for covariates, the differences became nonsignificant. When analyses were repeated using all individuals who had ever had a stress fracture as cases (n = 31) and after controlling for covariates, periosteal circumference was greater in the cases than the controls (71.1 ± 0.7 vs 69.4 ± 0.5 mm, respectively; P = .04). Conclusion: A history of stress fractures is associated with larger bones. These findings are important because larger bones were previously reported to be protective against fractures and stress fractures, but study findings indicate that may not always be true. One explanation could be that individuals who sustain stress fractures have greater loading that results in greater periosteal circumference but also results in the development of stress fractures. PMID:26535343

  11. Vitamin D in Foot and Ankle Fracture Healing: A Literature Review and Research Design.

    PubMed

    Bernhard, Andrew; Matuk, Jorge

    2015-10-01

    Vitamin D is a generic name for a group of essential vitamins, or secosteroids, important in calcium homeostasis and bone metabolism. Specifically, efficacy of vitamin D with regard to bone healing is in question. A literature review was performed, finding mostly large studies involving vitamin D effects on prevention of fractures and randomized animal model studies consisting of controlled fractures with vitamin D interventions. The prevention articles generally focus on at-risk populations, including menopausal women and osteoporotic patients, and also most often include calcium in the treatment group. Few studies look at vitamin D specifically. The animal model studies often focus more on vitamin D supplementation; however the results are still largely inconclusive. While recent case reports appear promising, the ambiguity of results on the topic of fracture healing suggests a need for more, higher level research. A novel study design is proposed to help determine the efficacy on vitamin D in fracture healing. Therapeutic, Level IV: Systematic Review. © 2015 The Author(s).

  12. Functional Recovery of Older Hip-Fracture Patients after Interdisciplinary Intervention Follows Three Distinct Trajectories

    ERIC Educational Resources Information Center

    Tseng, Ming-Yueh; Shyu, Yea-Ing L.; Liang, Jersey

    2012-01-01

    Purpose To assess the effects of an interdisciplinary intervention on the trajectories of functional recovery among older patients with hip fracture during 2 years after hospitalization. Design and Methods In a randomized controlled trial with 24-month follow-up, 162 patients [greater than or equal to]60 years were enrolled after hip-fracture…

  13. Fracture Strength of Endodontically Treated Teeth with Different Access Cavity Designs.

    PubMed

    Plotino, Gianluca; Grande, Nicola Maria; Isufi, Almira; Ioppolo, Pietro; Pedullà, Eugenio; Bedini, Rossella; Gambarini, Gianluca; Testarelli, Luca

    2017-06-01

    The purpose of this study was to compare in vitro the fracture strength of root-filled and restored teeth with traditional endodontic cavity (TEC), conservative endodontic cavity (CEC), or ultraconservative "ninja" endodontic cavity (NEC) access. Extracted human intact maxillary and mandibular premolars and molars were selected and assigned to control (intact teeth), TEC, CEC, or NEC groups (n = 10/group/type). Teeth in the TEC group were prepared following the principles of traditional endodontic cavities. Minimal CECs and NECs were plotted on cone-beam computed tomographic images. Then, teeth were endodontically treated and restored. The 160 specimens were then loaded to fracture in a mechanical material testing machine (LR30 K; Lloyd Instruments Ltd, Fareham, UK). The maximum load at fracture and fracture pattern (restorable or unrestorable) were recorded. Fracture loads were compared statistically, and the data were examined with analysis of variance and the Student-Newman-Keuls test for multiple comparisons. The mean load at fracture for TEC was significantly lower than the one for the CEC, NEC, and control groups for all types of teeth (P < .05), whereas no difference was observed among CEC, NEC, and intact teeth (P > .05). Unrestorable fractures were significantly more frequent in the TEC, CEC, and NEC groups than in the control group in each tooth type (P < .05). Teeth with TEC access showed lower fracture strength than the ones prepared with CEC or NEC. Ultraconservative "ninja" endodontic cavity access did not increase the fracture strength of teeth compared with the ones prepared with CEC. Intact teeth showed more restorable fractures than all the prepared ones. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less

  15. Do Tibial Plateau Fractures Worsen Outcomes of Knee Ligament Injuries? A Matched Cohort Analysis

    PubMed Central

    Cinque, Mark E.; Godin, Jonathan A.; Moatshe, Gilbert; Chahla, Jorge; Kruckeberg, Bradley M.; Pogorzelski, Jonas; LaPrade, Robert F.

    2017-01-01

    Background: Tibial plateau fractures account for a small portion of all fractures; however, these fractures can pose a surgical challenge when occurring concomitantly with ligament injuries. Purpose/Hypothesis: The purpose of this study was to compare 2-year outcomes of soft tissue reconstruction with or without a concomitant tibial plateau fracture and open reduction internal fixation. We hypothesized that patients with a concomitant tibial plateau fracture at the time of soft tissue surgery would have inferior outcomes compared with patients without an associated tibial plateau fracture. Study Design: Cohort study; Level of evidence, 3. Methods: Forty patients were included in this study: 8 in the fracture group and 32 in the matched control group. Inclusion criteria for the fracture group included patients who were at least 18 years old at the time of surgery and sustained a tibial plateau fracture and a concomitant injury of the anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament, or fibular collateral ligament in isolation or any combination of cruciate or collateral ligaments and who subsequently underwent isolated or combined ligament reconstruction. Patients were excluded if they underwent prior ipsilateral knee surgery, sustained additional bony injuries, or sustained an isolated extra-articular ligament injury at the time of injury. Each patient with a fracture was matched with 4 patients from a control group who had no evidence of a tibial plateau fracture but underwent the same soft tissue reconstruction procedure. Results: Patients in the fracture group improved significantly from preoperatively to postoperatively with respect to Short Form–12 (P < .05) and Western Ontario and McMaster Universities Osteoarthritis Index total scores (P < .05). The Lysholm (P = .075) and Tegner scores (P = .086) also improved, although this was not statistically significant. Patients in the control group improved significantly from preoperatively to postoperatively across all measured scores. A comparison of the postoperative results between the 2 groups showed no statistically significant difference. Conclusion: The presence of a tibial plateau fracture in conjunction with a ligamentous knee injury did not have a negative effect on postoperative patient-reported outcomes. Patient-reported outcome scores after surgery in both the fracture and control groups improved beyond the minimally clinically important difference, indicating that the presence of a fracture did not detract from the outcomes observed in patients without fractures undergoing concomitant ligament reconstruction. PMID:28840154

  16. Multi-factor Analysis of Pre-control Fracture Simulations about Projectile Material

    NASA Astrophysics Data System (ADS)

    Wan, Ren-Yi; Zhou, Wei

    2016-05-01

    The study of projectile material pre-control fracture is helpful to improve the projectile metal effective fragmentation and the material utilization rate. Fragments muzzle velocity and lethality can be affected by the different explosive charge and the way of initiation. The finite element software can simulate the process of projectile explosive rupture which has a pre-groove in the projectile shell surface and analysis of typical node velocity change with time, to provides a reference for the design and optimization of precontrol frag.

  17. [Distortion and vertical fracture of the root: effect produced by condenser design].

    PubMed

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.

  18. A pragmatic randomised controlled trial of the effectiveness and cost-effectiveness of screening older women for the prevention of fractures: rationale, design and methods for the SCOOP study.

    PubMed

    Shepstone, L; Fordham, R; Lenaghan, E; Harvey, I; Cooper, C; Gittoes, N; Heawood, A; Peters, T J; O'Neill, T; Torgerson, D; Holland, R; Howe, A; Marshall, T; Kanis, J A; McCloskey, E

    2012-10-01

    SCOOP is a UK seven-centre, pragmatic, randomised controlled trial with 5-year follow-up, including 11,580 women aged 70 to 85 years, to assess the effectiveness and cost-effectiveness of a community-based screening programme to reduce fractures. It utilises the FRAX algorithm and DXA to assess the 10-year probability of fracture. Introduction Osteoporotic, or low-trauma, fractures present a considerable burden to the National Health Service and have major adverse effects on quality of life, disability and mortality for the individual. Methods Given the availability of efficacious treatments and a risk assessment tool based upon clinical risk factors and bone mineral density, a case exists to undertake a community-based controlled evaluation of screening for subjects at high risk of fracture, under the hypothesis that such a screening programme would reduce fractures in this population. Results This study is a UK seven-centre, unblinded, pragmatic, randomised controlled trial with a 5-year follow-up period. A total of 11,580 women, aged 70 to 85 years and not on prescribed bone protective therapy will be consented to the trial by post via primary care providing 90% power to detect an 18% decrease in fractures. Conclusions Participants will be randomised to either a screening arm or control. Those undergoing screening will have a 10-year fracture probability computed from baseline risk factors together with bone mineral density measured by DXA in selected subjects. Individuals above an age-dependent threshold of fracture probability will be recommended for treatment for the duration of the trial. Subjects in the control arm will receive 'usual care'. Participants will be followed up 6 months after randomisation and annually by postal questionnaires with independent checking of hospital and primary care records. The primary outcome will be the proportion of individuals sustaining fractures in each group. An economic analysis will be carried out to assess cost-effectiveness of screening. A qualitative evaluation will be conducted to examine the acceptability of the process to participants.

  19. Design of experiments confirms optimization of lithium administration parameters for enhanced fracture healing.

    PubMed

    Vachhani, Kathak; Pagotto, Andrea; Wang, Yufa; Whyne, Cari; Nam, Diane

    2018-01-03

    Fracture healing is a lengthy process which fails in 5-10% of cases. Lithium, a low-cost therapeutic used in psychiatric medicine, up-regulates the canonical Wingless pathway crucial for osteoblastic mineralization in fracture healing. A design-of-experiments (DOE) methodology was used to optimize lithium administration parameters (dose, onset time and treatment duration) to enhance healing in a rat femoral fracture model. In the previously completed first stage (screening), onset time was found to significantly impact healing, with later (day 7 vs. day 3 post-fracture) treatment yielding improved maximum yield torque. The greatest strength was found in healing femurs treated at day 7 post fracture, with a low lithium dose (20 mg/kg) for 2 weeks duration. This paper describes the findings of the second (optimization) and third (verification) stages of the DOE investigation. Closed traumatic diaphyseal femur fractures were induced in 3-month old rats. Healing was evaluated on day 28 post fracture by CT-based morphometry and torsional loading. In optimization, later onset times of day 10 and 14 did not perform as well as day 7 onset. As such, efficacy of the best regimen (20 mg/kg dose given at day 7 onset for 2 weeks duration) was reassessed in a distinct cohort of animals to complete the DOE verification. A significant 44% higher maximum yield torque (primary outcome) was seen with optimized lithium treatment vs. controls, which paralleled the 46% improvement seen in the screening stage. Successful completion of this robustly designed preclinical DOE study delineates the optimal lithium regimen for enhancing preclinical long-bone fracture healing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Considerations for development of surrogate endpoints for antifracture efficacy of new treatments in osteoporosis: a perspective.

    PubMed

    Bouxsein, Mary L; Delmas, Pierre D

    2008-08-01

    Because of the broad availability of efficacious osteoporosis therapies, conduct of placebo-controlled trials in subjects at high risk for fracture is becoming increasing difficult. Alternative trial designs include placebo-controlled trials in patients at low risk for fracture or active comparator studies, both of which would require enormous sample sizes and associated financial resources. Another more attractive alternative is to develop and validate surrogate endpoints for fracture. In this perspective, we review the concept of surrogate endpoints as it has been developed in other fields of medicine and discuss how it could be applied in clinical trials of osteoporosis. We outline a stepwise approach and possible study designs to qualify a biomarker as a surrogate endpoint in osteoporosis and review the existing data for several potential surrogate endpoints to assess their success in meeting the proposed criteria. Finally, we suggest a research agenda needed to advance the development of biomarkers as surrogate endpoints for fracture in osteoporosis trials. To ensure optimal development and best use of biomarkers to accelerate drug development, continuous dialog among the health professionals, industry, and regulators is of paramount importance.

  1. Structural design/margin assessment

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1993-01-01

    Determining structural design inputs and the structural margins following design completion is one of the major activities in space exploration. The end result is a statement of these margins as stability, safety factors on ultimate and yield stresses, fracture limits (fracture control), fatigue lifetime, reuse criteria, operational criteria and procedures, stability factors, deflections, clearance, handling criteria, etc. The process is normally called a load cycle and is time consuming, very complex, and involves much more than structures. The key to successful structural design is the proper implementation of the process. It depends on many factors: leadership and management of the process, adequate analysis and testing tools, data basing, communications, people skills, and training. This process and the various factors involved are discussed.

  2. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted treatment strategy should focus on simulating, in vitro, a physiological bone environment to predict clinical effectiveness of engineered bone and understand cellular responses due to the proposed agents and bioactive scaffolds. An in vitro test system can be the necessary catalyst to reduce implant failures and non-unions in fragility fractures.

  3. Performance Outcomes After Hook of Hamate Fractures in Major League Baseball Players.

    PubMed

    Guss, Michael S; Begly, John P; Ramme, Austin J; Taormina, David P; Rettig, Michael E; Capo, John T

    2017-07-17

    Major League Baseball (MLB) players are at risk of hook of hamate fractures. There is a paucity of data assessing the effect of a hook of hamate fracture on MLB players' future athletic performance. To determine if MLB players who sustain hook of hamate fractures demonstrate decreased performance upon return to competition when compared with their performance before injury and that of their control-matched peers. Retrospective Case-Control Design. Retrospective Database Study. 18 MLB players who sustained hook of hamate fractures. Data for 18 MLB players with hook of hamate fractures incurred over 26 seasons (1989 to 2014) were obtained from injury reports, press releases, and player profiles ( www.mlb.com and www.baseballreference.com ). Player age, position, number of years in the league, mechanism of injury and treatment were recorded. Individual season statistics for the two seasons immediately prior to injury and the two seasons after injury for the main performance variable - wins above replacement (WAR) were obtained. Eighteen controls matched by player position, age, and performance statistics were identified. A performance comparison of the cohorts was performed. Post-injury performance compared to pre-injury performance and matched-controls. Mean age at the time of injury was 25.1 years with a mean of 4.4 seasons of MLB experience prior to injury. All injuries were sustained to their nondominant batting hand. All players underwent operative intervention. There was no significant change in WAR or ISO when pre-injury and post-injury performance was compared. When compared with matched-controls, no significant decline in performance in WAR the first season and second season after injury was found. MLB players sustaining hook of hamate fractures can reasonably expect to return to their pre-injury performance levels following operative treatment.

  4. Novel fracture technology proves marginal Viking prospect economic, part II: Well clean-up, flowback and testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, S.; Rylance, M.; Tybero, G.

    1996-12-31

    Having completed both fracture treatments as discussed in a companion paper, this paper continues on to describe the post fracture shut-in, clean-up and well testing operations that took place on the Viking Wx exploration well 49/17-12. These operations involved the removal of Resin Coated Proppant (RCP) from the wellbore, via Coiled Tubing (CT), through the use of a specially designed jetting nozzle. The RCP pack stability at a concentration of 3.0 lb/ft{sup 2} (as per planned design) had already been tested in a flowback cell. The use of a Surface Read-Out (SRO) gauge, combined with gas, water and proppant flowmore » rates as well as the viscosity of fracturing fluids returns, enabled real time calculation of the drag forces, on the proppant pack, during clean-up. The flow rate, in the field, was controlled such that the calculated drag forces remained below those observed in the laboratory. Following the clean-up a flow and build-up test was conducted, to evaluate the fracture half length and fracture conductivity, from which a Pseudo-radial skin was calculated. The Non-Darcy effects in the fracture were also evaluated, and finally the short term and long term well deliverabilities were assessed.« less

  5. Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing.

    PubMed

    Wang, Yu-Tzu; Huang, Shao-Fu; Fang, Yu-Ting; Huang, Shou-Chieh; Cheng, Hwei-Fang; Chen, Chih-Hao; Wang, Po-Fang; Lin, Chun-Li

    2018-01-01

    This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement) and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

  6. Results of the multiwell experiment in situ stresses, natural fractures, and other geological controls on reservoirs

    NASA Astrophysics Data System (ADS)

    Lorenz, John C.; Warpinski, Norman R.; Teufel, Lawrence W.; Branagan, Paul T.; Sattler, Allan R.; Northrop, David A.

    Hundreds of millions of cubic meters of natural gas are locked up in low-permeability, natural gas reservoirs. The Multiwell Experiment (MWX) was designed to characterize such reservoirs, typical of much of the western United States, and to assess and develop a technology for the production of this unconventional resource. Flow-rate tests of the MWX reservoirs indicate a system permeability that is several orders of magnitude higher than laboratory permeability measurements made on matrix-rock sandstones. This enhanced permeability is caused by natural fractures. The single set of fractures present in the reservoirs provides a significant permeability anisotropy that is aligned with the maximum in situ horizontal stress. Hydraulic fractures therefore form parallel to the natural fractures and are consequently an inefficient mechanism for stimulation. Successful stimulation may be possible by perturbing the local stress field with a large hydraulic fracture in one well so that a second hydraulic fracture in an offset well propagates transverse to the natural fracture permeability trend.

  7. Modem transmission of data for 3D fracture modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, S.A.; Rodgerson, J.L.; Martinez, A.D.

    1996-06-01

    Hydraulic fracturing treatments require measurement of numerous parameters, including surface rates and pressures, to quantify fluids, proppant, and additives. Computers are used to acquire data for the purpose of calculating bottomhole pressure (BHP), compiling quality-control data, generating diagnostic plots, and, often, for modeling fracture geometry in real time. In the recent past, modems have been routinely used in conjunction with cellular phone systems to transmit field-monitored data to a remote office. More recently, these data have been used at the remote site to perform 3D fracture modeling for design verification and adjustment. This paper describes data-transmission technology and discusses themore » related cost and reliability.« less

  8. Effects of exercise on fracture reduction in older adults: a systematic review and meta-analysis.

    PubMed

    Kemmler, W; Häberle, L; von Stengel, S

    2013-07-01

    In this meta-analysis, we evaluated the effect of exercise on fracture reduction in the elderly. Our results determined a significantly positive effect on overall fractures, whereas the possibility of a publication bias indicates the need for well-designed (multi-center) trials that generate enough power to focus on osteoporotic fractures. The preventive effect of exercise on fracture incidence has not been clearly determined yet. Thus, the purpose of this study is to evaluate the effectiveness of exercise in preventing overall and vertebral fractures in older adults by meta-analyses technique. This study followed the PRISMA recommendations for systematic reviews and meta-analyses. A systematic review of English articles between 1980 and March 2012 was performed. Terms used were: "exercise", "fractures", "bone", "falls", "osteoporosis", "BMD", "BMC", "bone turnover", while the search was limited to "clinical trial" and "humans". Controlled exercise trials that reported fracture number as endpoint or observation in subjects 45 years and older were included. Ten controlled exercise trials that reported overall fractures and three exercise trials that reported vertebral fractures met our inclusion criteria. Overall fracture number in the exercise group was 36 (n = 754) compared with 73 fractures in the CG (n = 670) (relative risk [RR] = 0.49; 95 % confidence interval [CI], 0.31-0.76). No significant heterogeneity of trial results (p = 0.28; I (2) = 17) was determined; however, there was some evidence to suggest a publication bias. The overall RR for vertebral fracture number (0.56; 95 % CI, 0.30-1.04) (EG: 19 fractures/103 subjects vs. CG: 31 fractures/102 subjects) was borderline non-significant while the heterogeneity of trial results also cannot be ruled out. Although there is evidence that exercise reduces overall and, to a lesser degree, vertebral fractures in the elderly, the possibility of publication bias weakens our result and demonstrates the imperative for large exercise studies with dedicated exercise protocols that focus on fractures as a primary endpoint.

  9. Integrating stimulation practices with geo-mechanical properties in liquid-rich plays of Eagle Ford Shale

    NASA Astrophysics Data System (ADS)

    Yusuf, Ahmed

    Many of the techniques for hydraulically fracturing design were attempted in the liquid-rich Eagle Ford developments. This study shows why different results were observed due to the variation of geomechanical stresses of the rock across a play and related reservoir properties. An optimum treatment for a liquids-rich objective is much different than that for a gas shale due primarily to the multiphase flow and higher viscosities encountered. This study presents a new treatment workflow for liquids-rich window of Eagle Ford Shale. Review and integration of data from multiple sets across the play are used as input to a 3D hydraulic fracture simulator to model key fracture parameters which control production enhancement. These results are then used within a production analysis and forecast, well optimization, and economic model to compare treatment designs with the best placement of proppant to deliver both high initial production and long term ultimate recoveries. A key focus for this workflow is to maximize proppant transport to achieve a continuous - optimum conductive - fracture half length. Often, due to the complexity of unconventional deposition, it is difficult to maintain complete connectivity of a proppant pack back to the wellbore. As a result, much of the potential of the fracture network is lost. Understanding the interaction of a hydraulic fracture and the rock fabric helps with designing this behavior to achieve the best results. These results are used to determine optimum well spacing to effectively develop within a selected reservoir acreage. Currently, numerous wells exist with over two years of production history in much of the Eagle Ford shale formation. Results from this study are used to compare values from field production to demonstrate the importance of employing a diligent workflow in integrating reservoir and operational parameters to the fracture design. A proper understanding and application of hydraulic fracturing modeling is achieved using the methodology presented in this study.

  10. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials.

    PubMed

    Su, Bin; Sheng, Hui; Zhang, Manna; Bu, Le; Yang, Peng; Li, Liang; Li, Fei; Sheng, Chunjun; Han, Yuqi; Qu, Shen; Wang, Jiying

    2015-02-01

    Traditional anti-diabetic drugs may have negative or positive effects on risk of bone fractures. Yet the relationship between the new class glucagon-like peptide-1 receptor agonists (GLP-1 RA) and risk of bone fractures has not been established. We performed a meta-analysis including randomized controlled trials (RCT) to study the risk of bone fractures associated with liraglutide or exenatide, compared to placebo or other active drugs. We searched MEDLINE, EMBASE, and clinical trial registration websites for published or unpublished RCTs comparing the effects of liraglutide or exenatide with comparators. Only studies with disclosed bone fracture data were included. Separate pooled analysis was performed for liraglutide or exenatide, respectively, by calculating Mantel-Haenszel odds ratio (MH-OR). 16 RCTs were identified including a total of 11,206 patients. Liraglutide treatment was associated with a significant reduced risk of incident bone fractures (MH-OR=0.38, 95% CI 0.17-0.87); however, exenatide treatment was associated with an elevated risk of incident bone fractures (MH-OR=2.09, 95% CI 1.03-4.21). Publication bias and heterogeneity between studies were not observed. Our study demonstrated a divergent risk of bone fractures associated with different GLP-1 RA treatments. The current findings need to be confirmed by future well-designed prospective or RCT studies.

  11. Improvements in osteoporosis testing and care are found following the wide scale implementation of the Ontario Fracture Clinic Screening Program: An interrupted time series analysis.

    PubMed

    Beaton, Dorcas E; Mamdani, Muhammad; Zheng, Hong; Jaglal, Susan; Cadarette, Suzanne M; Bogoch, Earl R; Sale, Joanna E M; Sujic, Rebeka; Jain, Ravi

    2017-12-01

    We evaluated a system-wide impact of a health intervention to improve treatment of osteoporosis after a fragility fracture. The intervention consisted of assigning a screening coordinator to selected fracture clinics to identify, educate, and follow up with fragility fracture patients and inform their physicians of the need to evaluate bone health. Thirty-seven hospitals in the province of Ontario (Canada) were assigned a screening coordinator. Twenty-three similar hospitals were control sites. All hospitals had orthopedic services and handled moderate-to-higher volumes of fracture patients. Administrative health data were used to evaluate the impact of the intervention.Fragility fracture patients (≥50 years; hip, humerus, forearm, spine, or pelvis fracture) were identified from administrative health records. Cases were fractures treated at 1 of the 37 hospitals assigned a coordinator. Controls were the same types of fractures at the control sites. Data were assembled for 20 quarters before and 10 quarters after the implementation (from January 2002 to March 2010). To test for a shift in trends, we employed an interrupted time series analysis-a study design used to evaluate the longitudinal effects of interventions, through regression modelling. The primary outcome measure was bone mineral density (BMD) testing. Osteoporosis medication initiation and persistence rates were secondary outcomes in a subset of patients ≥66 years of age.A total of 147,071 patients were used in the analysis. BMD testing rates increased from 17.0% pre-intervention to 20.9% post-intervention at intervention sites (P < .01) compared with no change at control sites (14.9% and 14.9%, P = .33). Medication initiation improved significantly at intervention sites (21.6-23.97%; P = .02) but not at control sites (17.5-18.5%; P = .27). Persistence with bisphosphonates decreased at all sites, from 59.9% to 56.4% at intervention sites (P = .02) and more so from 62.3% to 54.2% at control sites (P < .01) using 50% proportion of days covered (PDC 50).Significant improvements in BMD testing and treatment initiation were observed after the initiation of a coordinator-based screening program to improve osteoporosis management following fragility fracture.

  12. Improvements in osteoporosis testing and care are found following the wide scale implementation of the Ontario Fracture Clinic Screening Program

    PubMed Central

    Beaton, Dorcas E.; Mamdani, Muhammad; Zheng, Hong; Jaglal, Susan; Cadarette, Suzanne M.; Bogoch, Earl R.; Sale, Joanna E. M.; Sujic, Rebeka; Jain, Ravi

    2017-01-01

    Abstract We evaluated a system-wide impact of a health intervention to improve treatment of osteoporosis after a fragility fracture. The intervention consisted of assigning a screening coordinator to selected fracture clinics to identify, educate, and follow up with fragility fracture patients and inform their physicians of the need to evaluate bone health. Thirty-seven hospitals in the province of Ontario (Canada) were assigned a screening coordinator. Twenty-three similar hospitals were control sites. All hospitals had orthopedic services and handled moderate-to-higher volumes of fracture patients. Administrative health data were used to evaluate the impact of the intervention. Fragility fracture patients (≥50 years; hip, humerus, forearm, spine, or pelvis fracture) were identified from administrative health records. Cases were fractures treated at 1 of the 37 hospitals assigned a coordinator. Controls were the same types of fractures at the control sites. Data were assembled for 20 quarters before and 10 quarters after the implementation (from January 2002 to March 2010). To test for a shift in trends, we employed an interrupted time series analysis—a study design used to evaluate the longitudinal effects of interventions, through regression modelling. The primary outcome measure was bone mineral density (BMD) testing. Osteoporosis medication initiation and persistence rates were secondary outcomes in a subset of patients ≥66 years of age. A total of 147,071 patients were used in the analysis. BMD testing rates increased from 17.0% pre-intervention to 20.9% post-intervention at intervention sites (P < .01) compared with no change at control sites (14.9% and 14.9%, P = .33). Medication initiation improved significantly at intervention sites (21.6–23.97%; P = .02) but not at control sites (17.5–18.5%; P = .27). Persistence with bisphosphonates decreased at all sites, from 59.9% to 56.4% at intervention sites (P = .02) and more so from 62.3% to 54.2% at control sites (P < .01) using 50% proportion of days covered (PDC 50). Significant improvements in BMD testing and treatment initiation were observed after the initiation of a coordinator-based screening program to improve osteoporosis management following fragility fracture. PMID:29310418

  13. The EGS Collab Project: Stimulation Investigations for Geothermal Modeling Analysis and Validation

    NASA Astrophysics Data System (ADS)

    Blankenship, D.; Kneafsey, T. J.

    2017-12-01

    The US DOE's EGS Collab project team is establishing a suite of intermediate-scale ( 10-20 m) field test beds for coupled stimulation and interwell flow tests. The multiple national laboratory and university team is designing the tests to compare measured data to models to improve measurement and modeling toolsets available for use in field sites and investigations such as DOE's Frontier Observatory for Research in Geothermal Energy (FORGE) Project. Our tests will be well-controlled, in situexperiments focused on rock fracture behavior, seismicity, and permeability enhancement. Pre- and post-test modeling will allow for model prediction and validation. High-quality, high-resolution geophysical and other fracture characterization data will be collected, analyzed, and compared with models and field observations to further elucidate the basic relationships between stress, induced seismicity, and permeability enhancement. Coring through the stimulated zone after tests will provide fracture characteristics that can be compared to monitoring data and model predictions. We will also observe and quantify other key governing parameters that impact permeability, and attempt to understand how these parameters might change throughout the development and operation of an Enhanced Geothermal System (EGS) project with the goal of enabling commercial viability of EGS. The Collab team will perform three major experiments over the three-year project duration. Experiment 1, intended to investigate hydraulic fracturing, will be performed in the Sanford Underground Research Facility (SURF) at 4,850 feet depth and will build on kISMET Project findings. Experiment 2 will be designed to investigate hydroshearing. Experiment 3 will investigate changes in fracturing strategies and will be further specified as the project proceeds. The tests will provide quantitative insights into the nature of stimulation (e.g., hydraulic fracturing, hydroshearing, mixed-mode fracturing, thermal fracturing) in crystalline rock under reservoir-like stress conditions and generate high-quality, high-resolution, diverse data sets to be simulated allowing model validation. Monitoring techniques will also be evaluated under controlled conditions identifying technologies appropriate for deeper full-scale EGS sites.

  14. CERAMENT treatment of fracture defects (CERTiFy): protocol for a prospective, multicenter, randomized study investigating the use of CERAMENT™ BONE VOID FILLER in tibial plateau fractures

    PubMed Central

    2014-01-01

    Background Bone graft substitutes are widely used for reconstruction of posttraumatic bone defects. However, their clinical significance in comparison to autologous bone grafting, the gold-standard in reconstruction of larger bone defects, still remains under debate. This prospective, randomized, controlled clinical study investigates the differences in pain, quality of life, and cost of care in the treatment of tibia plateau fractures-associated bone defects using either autologous bone grafting or bioresorbable hydroxyapatite/calcium sulphate cement (CERAMENT™|BONE VOID FILLER (CBVF)). Methods/Design CERTiFy (CERament™ Treatment of Fracture defects) is a prospective, multicenter, controlled, randomized trial. We plan to enroll 136 patients with fresh traumatic depression fractures of the proximal tibia (types AO 41-B2 and AO 41-B3) in 13 participating centers in Germany. Patients will be randomized to receive either autologous iliac crest bone graft or CBVF after reduction and osteosynthesis of the fracture to reconstruct the subchondral bone defect and prevent the subsidence of the articular surface. The primary outcome is the SF-12 Physical Component Summary at week 26. The co-primary endpoint is the pain level 26 weeks after surgery measured by a visual analog scale. The SF-12 Mental Component Summary after 26 weeks and costs of care will serve as key secondary endpoints. The study is designed to show non-inferiority of the CBVF treatment to the autologous iliac crest bone graft with respect to the physical component of quality of life. The pain level at 26 weeks after surgery is expected to be lower in the CERAMENT bone void filler treatment group. Discussion CERTiFy is the first randomized multicenter clinical trial designed to compare quality of life, pain, and cost of care in the use of the CBVF and the autologous iliac crest bone graft in the treatment of tibia plateau fractures. The results are expected to influence future treatment recommendations. Trial registration number ClinicalTrials.gov: NCT01828905 PMID:24606670

  15. Fracture of Structural Materials under Dynamic Loading

    DTIC Science & Technology

    1981-03-25

    in character- izing the dynamic fracture resistance of materials, and in designing equipment and procedures for measuring dynamic fracture toughness...useful in assessing the safety of structures under dynamic loads, in characterizing the dyraamic fracture resistance of materials, and in designing ...I INTRODUCTION Structures used by the United States Air Force must be designed to resist catastrophic fracture when subjected ti dynamic loads. For

  16. Supracondylar fracture in children. Rehabilitation in occupational therapy. Yes or no?

    NASA Astrophysics Data System (ADS)

    Costa, Maria J.; Pires, Mafalda; Neves, Cassiano; Tavares, Delfin; Quintas, Alexandra M.; Ferreira, Ana I.; Espirito Santo, M. J.; Castro, Alexandra; Cabral, M. Salomé; João Gomes, J. F.

    2013-10-01

    The aim of this study was to evaluate the recovery time of elbow range of motion after treatment of Gartland's type II and III supracondylar fractures of distal humerus in children who attended a program of occupational therapy (OT). A randomized control design (RCD) was conducted to compare the two groups (OT group and Control group) and several statistical methodologies have been used to compare them. In all the cases the results point out to a faster recover in the OT group. All the analysis were performed using the package R version 3.0.1.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  18. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both Sierra Madre and the Bowen Basin span similar ranges, indicating that the factor of increase in frequency (F) for a doubling of aperture size (A) shows similar relationships and variability from both sites. Despite their limitations, we conclude that fracture aperture-frequency power-law relationships are valid and, when interpreted carefully, provide a useful basis for comparing rock fracture distributions across different sites.

  19. COMplex Fracture Orthopedic Rehabilitation (COMFORT) - Real-time visual biofeedback on weight bearing versus standard training methods in the treatment of proximal femur fractures in the elderly: study protocol for a multicenter randomized controlled trial.

    PubMed

    Raaben, Marco; Redzwan, Syaiful; Augustine, Robin; Blokhuis, Taco Johan

    2018-04-12

    Proximal femur fractures are a common injury after low energy trauma in the elderly. Most rehabilitation programs are based on restoring mobility and early resumption of weight-bearing. However, therapy compliance is low in patients following lower extremity fractures. Moreover, little is known about the relevance of gait parameters and how to steer the rehabilitation after proximal femur fractures in the elderly. Therefore, the aim of this prospective, randomized controlled trial is to gain insight in gait parameters and evaluate if real-time visual biofeedback can improve therapy compliance after proximal femur fractures in the elderly. This is a two-arm, parallel-design, prospective, randomized controlled trial. Inclusion criteria are age ≥ 60 years, a proximal femur fracture following low energy trauma, and unrestricted-weight bearing. Exclusion criteria are cognitive impairment and limited mobility before trauma. Participants are randomized into either the control group, which receives care as usual, or the intervention group, which receives real-time visual biofeedback about weight-bearing during gait in addition to care as usual. Spatiotemporal gait parameters will be measured in 94 participants per group during a 30-m walk with an ambulatory biofeedback system (SensiStep). The progress of rehabilitation will be evaluated by the primary outcome parameters maximum peak load and step duration in relation to the discharge date. Secondary outcome parameters include other spatiotemporal gait parameters in relation to discharge date. Furthermore, the gait parameters will be related to three validated clinical tests: Elderly Mobility Scale; Functional Ambulation Categories; and Visual Analogue Scale. The primary hypothesis is that participants in the intervention group will show improved and faster rehabilitation compared to the control group. The first aim of this multicenter trial is to investigate the normal gait patterns after proximal femur fractures in the elderly. The use of biofeedback systems during rehabilitation after proximal femur fractures in the elderly is promising; therefore, the second aim is to investigate the effect of real-time visual biofeedback on gait after proximal femur fractures in the elderly. This could lead to improved outcome. In addition, analysis of the population may indicate characteristics of subgroups that benefit from feedback, making a differentiated approach in rehabilitation strategy possible. TrialRegister.nl, NTR6794 . Registered on 31 October 2017.

  20. Randomized, controlled, two-arm, interventional, multicenter study on risk-adapted damage control orthopedic surgery of femur shaft fractures in multiple-trauma patients.

    PubMed

    Rixen, Dieter; Steinhausen, Eva; Sauerland, Stefan; Lefering, Rolf; Maegele, Marc G; Bouillon, Bertil; Grass, Guido; Neugebauer, Edmund A M

    2016-01-25

    Long bone fractures, particularly of the femur, are common in multiple-trauma patients, but their optimal management has not yet been determined. Although a trend exists toward the concept of "damage control orthopedics" (DCO), current literature is inconclusive. Thus, a need exists for a more specific controlled clinical study. The primary objective of this study was to clarify whether a risk-adapted procedure for treating femoral fractures, as opposed to an early definitive treatment strategy, leads to an improved outcome (morbidity and mortality). The study was designed as a randomized controlled multicenter study. Multiple-trauma patients with femur shaft fractures and a calculated probability of death of 20 to 60 % were randomized to either temporary fracture fixation with external fixation and defined secondary definitive treatment (DCO) or primary reamed nailing (early total care). The primary objective was to reduce the extent of organ failure as measured by the maximum sepsis-related organ failure assessment (SOFA) score. Thirty-four patients were randomized to two groups of 17 patients each. Both groups were comparable regarding sex, age, injury severity score, Glasgow Coma Scale, prothrombin time, base excess, calculated probability of death, and other physiologic variables. The maximum SOFA score was comparable (nonsignificant) between the groups. Regarding the secondary endpoints, the patients with external fixation required a significantly longer ventilation period (p = 0.049) and stayed on the intensive care significantly longer (p = 0.037), whereas the in-hospital length of stay was balanced for both groups. Unfortunately, the study had to be terminated prior to reaching the anticipated sample size because of unexpected low patient recruitment. Thus, the results of this randomized study reflect the ambivalence in the literature. No advantage of the damage control concept could be detected in the treatment of femur fractures in multiple-trauma patients. The necessity for scientific evaluation of this clinically relevant question remains. Current Controlled Trials ISRCTN10321620 Date assigned: 9 February 2007.

  1. Tectonic analysis of folds in the Colorado plateau of Arizona

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1975-01-01

    Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.

  2. Carotenoids and risk of fracture: a meta-analysis of observational studies

    PubMed Central

    Song, Xiaochao; Zhang, Xi; Li, Xinli

    2017-01-01

    To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture. PMID:27911854

  3. Carotenoids and risk of fracture: a meta-analysis of observational studies.

    PubMed

    Xu, Jiuhong; Song, Chunli; Song, Xiaochao; Zhang, Xi; Li, Xinli

    2017-01-10

    To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture.

  4. The Hip Impact Protection Project: Design and Methods

    PubMed Central

    Barton, Bruce A; Birge, Stanley J; Magaziner, Jay; Zimmerman, Sheryl; Ball, Linda; Brown, Kathleen M; Kiel, Douglas P

    2013-01-01

    Background Nearly 340,000 hip fractures occur each year in the U.S. With current demographic trends, the number of hip fractures is expected to double at least in the next 40 years. Purpose The Hip Impact Protection Project (HIP PRO) was designed to investigate the efficacy and safety of hip protectors in an elderly nursing home population. This paper describes the innovative clustered matched-pair research design used in HIP PRO to overcome the inherent limitations of clustered randomization. Methods Three clinical centers recruited 37 nursing homes to participate in HIP PRO. They were randomized so that the participating residents in that home received hip protectors for either the right or left hip. Informed consent was obtained from either the resident or the resident's responsible party. The target sample size was 580 residents with replacement if they dropped out, had a hip fracture, or died. One of the advantages of the HIP PRO study design was that each resident was his/her own case and control, eliminating imbalances, and there was no confusion over which residents wore pads (or on which hip). Limitations Generalizability of the findings may be limited. Adherence was higher in this study than in other studies because of: (1) the use of a run-in period, (2) staff incentives, and (3) the frequency of adherence assessments. The use of a single pad is not analogous to pad use in the real world and may have caused unanticipated changes in behavior. Fall assessment was not feasible, limiting the ability to analyze fractures as a function of falls. Finally, hip protector designs continue to evolve so that the results generated using this pad may not be applicable to other pad designs. However, information about factors related to adherence will be useful for future studies. Conclusions The clustered matched-pair study design avoided the major problem with previous cluster-randomized investigations of this question – unbalanced risk factors between the experimental group and the control group. Because each resident served as his/her own control, the effects of unbalanced risk factors on treatment effect were virtually eliminated. In addition, the use of frequent adherence assessments allowed us to study the effect of various demographic and environmental factors on adherence, which was vital for the assessment of efficacy. PMID:18697849

  5. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses.

    PubMed

    Sagsoz, N Polat; Yanıkoglu, N

    2018-04-01

    The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P < 0.001). It is seen that cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.

  6. A Multi-Parameter Approach for Calculating Crack Instability

    NASA Technical Reports Server (NTRS)

    Zanganeh, M.; Forman, R. G.

    2014-01-01

    An accurate fracture control analysis of spacecraft pressure systems, boosters, rocket hardware and other critical low-cycle fatigue cases where the fracture toughness highly impacts cycles to failure requires accurate knowledge of the material fracture toughness. However, applicability of the measured fracture toughness values using standard specimens and transferability of the values to crack instability analysis of the realistically complex structures is refutable. The commonly used single parameter Linear Elastic Fracture Mechanics (LEFM) approach which relies on the key assumption that the fracture toughness is a material property would result in inaccurate crack instability predictions. In the past years extensive studies have been conducted to improve the single parameter (K-controlled) LEFM by introducing parameters accounting for the geometry or in-plane constraint effects]. Despite the importance of the thickness (out-of-plane constraint) effects in fracture control problems, the literature is mainly limited to some empirical equations for scaling the fracture toughness data] and only few theoretically based developments can be found. In aerospace hardware where the structure might have only one life cycle and weight reduction is crucial, reducing the design margin of safety by decreasing the uncertainty involved in fracture toughness evaluations would result in lighter hardware. In such conditions LEFM would not suffice and an elastic-plastic analysis would be vital. Multi-parameter elastic plastic crack tip field quantifying developments combined with statistical methods] have been shown to have the potential to be used as a powerful tool for tackling such problems. However, these approaches have not been comprehensively scrutinized using experimental tests. Therefore, in this paper a multi-parameter elastic-plastic approach has been used to study the crack instability problem and the transferability issue by considering the effects of geometrical constraints as well as the thickness. The feasibility of the approach has been examined using a wide range of specimen geometries and thicknesses manufactured from 7075-T7351 aluminum alloy.

  7. Outlet strut fracture of Björk-Shiley convexo-concave valves: can valve-manufacturing characteristics explain the risk?

    PubMed

    Omar, R Z; Morton, L S; Beirne, M; Blot, W J; Lawford, P V; Hose, R; Taylor, K M

    2001-06-01

    Björk-Shiley 60 degrees convexo-concave prosthetic heart valves (Shiley, Inc, Irvine, Calif, a subsidiary of Pfizer, Inc) continue to be a concern for approximately 35,000 nonexplanted patients worldwide, with approximately 600 events reported to the manufacturer to date. Fractures of the outlet struts of the valves began to appear in the early 1980s and have continued to the present, but their causes are only partially understood. A matched case-control study was conducted evaluating manufacturing records for 52 valves with outlet strut fractures and 248 control subjects matched for age at implantation, valve size, and valve position. In addition to the risk factors recognized as determinants of outlet strut fracture, the United Kingdom case-control study has observed 7- to 9-fold increased risk with performance of multiple hook deflection tests. This test was performed more than once, usually after rework on the valve. Six valves in this study underwent multiple hook deflection tests, of which 4 experienced an outlet strut fracture. Cracks and further rework were noted for these valves. Significant associations were also observed between outlet strut fracture and disc-to-strut gap measurements taken before the attachment of the sewing ring. It is our view that a combination of factors related to valve design, manufacturing process, and patient characteristics are responsible for outlet strut fractures of Björk-Shiley convexo-concave valves. Multiple hook deflection tests have emerged as a potential new risk factor for outlet strut fracture in both The Netherlands and the United Kingdom. This factor appears to be correlated with the presence of other abnormalities. A further study is needed to investigate the factors correlated with multiple hook deflection tests. On confirmation of risk, the presence of multiple hook deflection tests may be added to equations, quantifying the risk of outlet strut fracture for comparison against risk of mortality and serious morbidity from explant operations.

  8. Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.

    PubMed

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2015-08-01

    Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

  9. Figure-of-eight bandage versus arm sling for treating middle-third clavicle fractures in adults: study protocol for a randomised controlled trial.

    PubMed

    Lenza, Mario; Taniguchi, Luiz Fabiano Presente; Ferretti, Mario

    2016-05-04

    Fracture of the clavicle is common, accounting for 2.6 to 4.0 % of all fractures, with an overall incidence of 36.5 to 64 per 100,000 per year. Around 80 % of clavicle fractures occur in the middle third of the clavicle. Randomised controlled trials comparing treatment interventions have failed to indicate the best therapeutic practices for these fractures. The objective of this study is to evaluate the effects (benefits and harms) of two commonly-used conservative interventions: the figure-of-eight bandage versus the arm sling as treatments of middle-third clavicle fractures. This project has been designed as a single-centre, two-arm randomised controlled trial that will compare two interventions: figure-of-eight bandage versus the arm sling. We propose to recruit 110 adults, aged 18 years or older, with an acute (less than 10 days since injury) middle-third clavicle fracture. The primary outcomes to be evaluated will be function and/or disability measured by the Disability of the Arm, Shoulder, and Hand (DASH) questionnaire. In order to assess the secondary outcomes, the Modified University of California at Los Angeles (modified - UCLA) Shoulder Rating Scale will be used. The occurrence of pain (Visual Analogue Scale for pain (VAS)), treatment failure, adverse events and the ability to return to previous activities will also be recorded and evaluated as secondary outcomes. the primary outcome DASH score and the secondary outcomes - modified UCLA and VAS scores - will be analysed graphically. We will apply generalised mixed models with the intervention groups (two levels), and time-point assessments (seven levels) as fixed effects and patients as a random effect. According to the current literature there is very limited evidence from two small trials regarding the effectiveness of different methods of conservative interventions for treating clavicle fractures. This is the first randomised controlled trial comparing the figure-of-eight bandage versus the arm sling for treating clavicle fractures that follows the CONSORT Statement guidelines. ClinicalTrials.gov NCT02398006 .

  10. Feasibility Study of an Earth Melting Penetrator System for Geoprospecting Tunnel Right-of-Ways

    DTIC Science & Technology

    1978-12-01

    anticipated to be negligible or nonexistent. 86. The degree of melt pressure induced fracturing will not be restricted for this design study although analyses...control system would employ a pressure reducing valve to ensure that the pressurizing air pressure is held safely below the fracturing pressure of...provided for the possibility of inadvertent steam or other volatile release from the portal area under high pressure . 6 Table 1 RequIrements Sumnar

  11. Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Singhal, S. N.; Chamis, C. C.

    1996-01-01

    This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.

  12. Effects of unipedal standing balance exercise on the prevention of falls and hip fracture among clinically defined high-risk elderly individuals: a randomized controlled trial.

    PubMed

    Sakamoto, Keizo; Nakamura, Toshitaka; Hagino, Hiroshi; Endo, Naoto; Mori, Satoshi; Muto, Yoshiteru; Harada, Atsushi; Nakano, Tetsuo; Itoi, Eiji; Yoshimura, Mitsuo; Norimatsu, Hiromichi; Yamamoto, Hiroshi; Ochi, Takahiro

    2006-10-01

    The aim of this study was to assess the effectiveness of the unipedal standing balance exercise for 1 min to prevent falls and hip fractures in high-risk elderly individuals with a randomized controlled trial. This control study was designed as a 6-month intervention trial. Subjects included 553 clinically defined high-risk adults who were living in residences or in the community. They were randomized to an exercise group and a control group. Randomization to the subjects was performed by a table of random numbers. A unipedal standing balance exercise with open eyes was performed by standing on each leg for 1 min three times per day. As a rule, subjects of the exercise group stood on one leg without holding onto any support, but unstable subjects were permitted to hold onto a bar during the exercise time. Falls and hip fractures were reported by nurses, physical therapists, or facility staff with a survey sheet every month. This survey sheet was required every month for both groups. Registered subjects were 553 persons ranging in age from 37 to 102 years (average, 81.6 years of age). Twenty-six subjects dropped out. The number of falls and hip fractures for the 6-month period after the trial for 527 of the 553 subjects for whom related data were available were assessed. The exercise group comprised 315 subjects and the control group included 212 subjects. The cumulative number of falls of the exercise group, with 1 multiple faller omitted, was 118, and the control group recorded 121 falls. A significant intergroup difference was observed. However, the cumulative number of hip fractures was only 1 case in both groups. This difference was not statistically significant. The unipedal standing balance exercise is effective to prevent falls but was not shown to be statistically significant in the prevention of hip fracture in this study.

  13. Pulsed Electromagnetic Fields in the treatment of fresh scaphoid fractures. A multicenter, prospective, double blind, placebo controlled, randomized trial

    PubMed Central

    2011-01-01

    Background The scaphoid bone is the most commonly fractured of the carpal bones. In the Netherlands 90% of all carpal fractures is a fracture of the scaphoid bone. The scaphoid has an essential role in functionality of the wrist, acting as a pivot. Complications in healing can result in poor functional outcome. The scaphoid fracture is a troublesome fracture and failure of treatment can result in avascular necrosis (up to 40%), non-union (5-21%) and early osteo-arthritis (up to 32%) which may seriously impair wrist function. Impaired consolidation of scaphoid fractures results in longer immobilization and more days lost at work with significant psychosocial and financial consequences. Initially Pulsed Electromagnetic Fields was used in the treatment of tibial pseudoarthrosis and non-union. More recently there is evidence that physical forces can also be used in the treatment of fresh fractures, showing accelerated healing by 30% and 71% reduction in nonunion within 12 weeks after initiation of therapy. Until now no double blind randomized, placebo controlled trial has been conducted to investigate the effect of this treatment on the healing of fresh fractures of the scaphoid. Methods/Design This is a multi center, prospective, double blind, placebo controlled, randomized trial. Study population consists of all patients with unilateral acute scaphoid fracture. Pregnant women, patients having a life supporting implanted electronic device, patients with additional fractures of wrist, carpal or metacarpal bones and pre-existing impairment in wrist function are excluded. The scaphoid fracture is diagnosed by a combination of physical and radiographic examination (CT-scanning). Proven scaphoid fractures are treated with cast immobilization and a small Pulsed Electromagnetic Fields bone growth stimulating device placed on the cast. Half of the devices will be disabled at random in the factory. Study parameters are clinical consolidation, radiological consolidation evaluated by CT-scanning, functional status of the wrist, including assessment by means of the patient rated wrist evaluation (PRWE) questionnaire and quality of life using SF-36 health survey questionnaire. Primary endpoint is number of scaphoid unions at six weeks, secondary endpoints are time interval to clinical and radiological consolidation, number of non-unions, functional status at 52 weeks and non-adherence to the treatment protocol. Trial registration Netherlands Trial Register (NTR): NTR2064 PMID:21548951

  14. Dementia Medications and Risk of Falls, Syncope, and Related Adverse Events Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Kim, Dae Hyun; Brown, Rebecca T.; Ding, Eric L.; Kiel, Douglas P.; Berry, Sarah D.

    2012-01-01

    Background Conflicting evidence exists on whether cholinesterase inhibitors and memantine increase the risk of falls, syncope, and related events, defined as fracture and accidental injury. Objectives To evaluate the effect of cholinesterase inhibitors and memantine on the risk of falls, syncope, and related events Design, Setting, Participants, and Intervention Meta-analysis of 54 placebo-controlled randomized trials and extension studies of cholinesterase inhibitors and memantine that reported falls, syncope, and related events in cognitively impaired older adults. Trials were identified from MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials (no language restriction, through July 2009), and manual search. Measurements Falls, syncope, fracture, and accidental injury Results Compared to placebo, cholinesterase inhibitor use was associated with an increased risk of syncope (odds ratio [95% confidence interval]: 1.53 [1.02-2.30]), but not with other events (falls: 0.88 [0.74-1.04]; fracture: 1.39 [0.75-2.56]; accidental injury: 1.13 [0.87-1.45]). Memantine use was associated with fewer fractures (0.21 [0.05-0.85]), but not with other events (fall: 0.92 [0.72-1.18]; syncope: 1.04 [0.35-3.04]; accidental injury: 0.80 [0.56-1.12]). There was no differential effect by type and severity of cognitive impairment, residential status, nor length of follow-up. However, due to underreporting and small number of events, a potential benefit or risk cannot be excluded. Conclusion Cholinesterase inhibitors may increase the risk of syncope, with no effects on falls, fracture, and accidental injury in cognitively impaired older adults. Memantine may have a favorable effect on fracture, with no effects on other events. More research is needed to confirm the reduction in fractures observed for memantine. PMID:21649634

  15. Cohesive fracture of elastically heterogeneous materials: An integrative modeling and experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Xia, Shuman

    2017-01-01

    A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.

  16. Sphenoid Sinus and Sphenoid Bone Fractures in Patients with Craniomaxillofacial Trauma

    PubMed Central

    Cantini Ardila, Jorge Ernesto; Mendoza, Miguel Ángel Rivera; Ortega, Viviana Gómez

    2013-01-01

    Background and Purpose Sphenoid bone fractures and sphenoid sinus fractures have a high morbidity due to its association with high-energy trauma. The purpose of this study is to describe individuals with traumatic injuries from different mechanisms and attempt to determine if there is any relationship between various isolated or combined fractures of facial skeleton and sphenoid bone and sphenoid sinus fractures. Methods We retrospectively studied hospital charts of all patients who reported to the trauma center at Hospital de San José with facial fractures from December 2009 to August 2011. All patients were evaluated by computed tomography scan and classified into low-, medium-, and high-energy trauma fractures, according to the classification described by Manson. Design This is a retrospective descriptive study. Results The study data were collected as part of retrospective analysis. A total of 250 patients reported to the trauma center of the study hospital with facial trauma. Thirty-eight patients were excluded. A total of 212 patients had facial fractures; 33 had a combination of sphenoid sinus and sphenoid bone fractures, and facial fractures were identified within this group (15.5%). Gender predilection was seen to favor males (77.3%) more than females (22.7%). The mean age of the patients was 37 years. Orbital fractures (78.8%) and maxillary fractures (57.5%) were found more commonly associated with sphenoid sinus and sphenoid bone fractures. Conclusions High-energy trauma is more frequently associated with sphenoid fractures when compared with medium- and low-energy trauma. There is a correlation between facial fractures and sphenoid sinus and sphenoid bone fractures. A more exhaustive multicentric case-control study with a larger sample and additional parameters will be essential to reach definite conclusions regarding the spectrum of fractures of the sphenoid bone associated with facial fractures. PMID:24436756

  17. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants.

    PubMed

    Qasim, M; Farinella, G; Zhang, J; Li, X; Yang, L; Eastell, R; Viceconti, M

    2016-09-01

    A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMDNeck, MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design.

  18. In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants.

    PubMed

    García-Roncero, Herminio; Caballé-Serrano, Jordi; Cano-Batalla, Jordi; Cabratosa-Termes, Josep; Figueras-Álvarez, Oscar

    2015-04-01

    In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.

  19. The Risk of Fractures Associated with Thiazolidinediones: A Self-controlled Case-Series Study

    PubMed Central

    Douglas, Ian J.; Evans, Stephen J.; Pocock, Stuart; Smeeth, Liam

    2009-01-01

    Background The results of clinical trials have suggested that the thiazolidinedione antidiabetic agents rosiglitazone and pioglitazone are associated with an increased risk of fractures, but such studies had limited power. The increased risk in these trials appeared to be limited to women and mainly involved fractures of the arm, wrist, hand, or foot: risk patterns that could not be readily explained. Our objective was to further investigate the risk of fracture associated with thiazolidinedione use. Methods and Findings The self-controlled case-series design was used to compare rates of fracture during thiazolidinedione exposed and unexposed periods and thus estimate within-person rate ratios. We used anonymised primary care data from the United Kingdom General Practice Research Database (GPRD). All patients aged 40 y or older with a recorded fracture and at least one prescription for a thiazolidinedione were included (n = 1,819). We found a within-person rate ratio of 1.43 (95% confidence interval [CI] 1.25–1.62) for fracture at any site comparing exposed with unexposed periods among patients prescribed any thiazolidinedione. This association was similar in men and women and in patients treated with either rosiglitazone or pioglitazone. The increased risk was also evident at a range of fracture sites, including hip, spine, arm, foot, wrist, or hand. The risk increased with increasing duration of thiazolidinedione exposure: rate ratio 2.00 (95% CI 1.48–2.70) for 4 y or more of exposure. Conclusion Within individuals who experience a fracture, fracture risk is increased during periods of exposure to thiazolidinediones (both rosiglitazone and pioglitazone) compared with unexposed periods. The increased risk is observed in both men and women and at a range of fracture sites. The risk also increases with longer duration of use. Please see later in the article for the Editors' Summary PMID:19787025

  20. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis.

    PubMed

    Song, Dawei; Meng, Bin; Gan, Minfeng; Niu, Junjie; Li, Shiyan; Chen, Hao; Yuan, Chenxi; Yang, Huilin

    2015-08-01

    Percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP) are minimally invasive and effective vertebral augmentation techniques for managing osteoporotic vertebral compression fractures (OVCFs). Recent meta-analyses have compared the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques or conservative treatment; however, the inclusions were not thorough and rigorous enough, and the effects of each technique on the incidence of secondary vertebral fractures remain unclear. To perform an updated systematic review and meta-analysis of the studies with more rigorous inclusion criteria on the effects of vertebral augmentation techniques and conservative treatment for OVCF on the incidence of secondary vertebral fractures. PubMed, MEDLINE, EMBASE, SpringerLink, Web of Science, and the Cochrane Library database were searched for relevant original articles comparing the incidence of secondary vertebral fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. Randomized controlled trials (RCTs) and prospective non-randomized controlled trials (NRCTs) were identified. The methodological qualities of the studies were evaluated, relevant data were extracted and recorded, and an appropriate meta-analysis was conducted. A total of 13 articles were included. The pooled results from included studies showed no statistically significant differences in the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques and conservative treatment. Subgroup analysis comparing different study designs, durations of symptoms, follow-up times, races of patients, and techniques were conducted, and no significant differences in the incidence of secondary fractures were identified (P > 0.05). No obvious publication bias was detected by either Begg's test (P = 0.360 > 0.05) or Egger's test (P = 0.373 > 0.05). Despite current thinking in the field that vertebral augmentation procedures may increase the incidence of secondary fractures, we found no differences in the incidence of secondary fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. © The Foundation Acta Radiologica 2014.

  1. Comparison of Hip Geometry, Strength, and Estimated Fracture Risk in Women With Anorexia Nervosa and Overweight/Obese Women

    PubMed Central

    Bachmann, Katherine Neubecker; Fazeli, Pouneh K.; Lawson, Elizabeth A.; Russell, Brian M.; Riccio, Ariana D.; Meenaghan, Erinne; Gerweck, Anu V.; Eddy, Kamryn; Holmes, Tara; Goldstein, Mark; Weigel, Thomas; Ebrahimi, Seda; Mickley, Diane; Gleysteen, Suzanne; Bredella, Miriam A.; Klibanski, Anne

    2014-01-01

    Context: Data suggest that anorexia nervosa (AN) and obesity are complicated by elevated fracture risk, but skeletal site-specific data are lacking. Traditional bone mineral density (BMD) measurements are unsatisfactory at both weight extremes. Hip structural analysis (HSA) uses dual-energy X-ray absorptiometry data to estimate hip geometry and femoral strength. Factor of risk (φ) is the ratio of force applied to the hip from a fall with respect to femoral strength; higher values indicate higher hip fracture risk. Objective: The objective of the study was to investigate hip fracture risk in AN and overweight/obese women. Design: This was a cross-sectional study. Setting: The study was conducted at a Clinical Research Center. Patients: Patients included 368 women (aged 19–45 y): 246 AN, 53 overweight/obese, and 69 lean controls. Main Outcome Measures: HSA-derived femoral geometry, peak factor of risk for hip fracture, and factor of risk for hip fracture attenuated by trochanteric soft tissue (φattenuated) were measured. Results: Most HSA-derived parameters were impaired in AN and superior in obese/overweight women vs controls at the narrow neck, intertrochanteric, and femoral shaft (P ≤ .03). The φattenuated was highest in AN and lowest in overweight/obese women (P < .0001). Lean mass was associated with superior, and duration of amenorrhea with inferior, HSA-derived parameters and φattenuated (P < .05). Mean φattenuated (P = .036), but not femoral neck BMD or HSA-estimated geometry, was impaired in women who had experienced fragility fractures. Conclusions: Femoral geometry by HSA, hip BMD, and factor of risk for hip fracture attenuated by soft tissue are impaired in AN and superior in obesity, suggesting higher and lower hip fracture risk, respectively. Only attenuated factor of risk was associated with fragility fracture prevalence, suggesting that variability in soft tissue padding may help explain site-specific fracture risk not captured by BMD. PMID:25062461

  2. Modelling of Local Necking and Fracture in Aluminium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.

    2007-05-17

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As anmore » accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.« less

  3. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.

  4. Fixation using alternative implants for the treatment of hip fractures (FAITH): design and rationale for a multi-centre randomized trial comparing sliding hip screws and cancellous screws on revision surgery rates and quality of life in the treatment of femoral neck fractures

    PubMed Central

    2014-01-01

    Background Hip fractures are a common type of fragility fracture that afflict 293,000 Americans (over 5,000 per week) and 35,000 Canadians (over 670 per week) annually. Despite the large population impact the optimal fixation technique for low energy femoral neck fractures remains controversial. The primary objective of the FAITH study is to assess the impact of cancellous screw fixation versus sliding hip screws on rates of revision surgery at 24 months in individuals with femoral neck fractures. The secondary objective is to determine the impact on health-related quality of life, functional outcomes, health state utilities, fracture healing, mortality and fracture-related adverse events. Methods/Design FAITH is a multi-centre, multi-national randomized controlled trial utilizing minimization to determine patient allocation. Surgeons in North America, Europe, Australia, and Asia will recruit a total of at least 1,000 patients with low-energy femoral neck fractures. Using central randomization, patients will be allocated to receive surgical treatment with cancellous screws or a sliding hip screw. Patient outcomes will be assessed at one week (baseline), 10 weeks, 6, 12, 18, and 24 months post initial fixation. We will independently adjudicate revision surgery and complications within 24 months of the initial fixation. Outcome analysis will be performed using a Cox proportional hazards model and likelihood ratio test. Discussion This study represents major international efforts to definitively resolve the treatment of low-energy femoral neck fractures. This trial will not only change current Orthopaedic practice, but will also set a benchmark for the conduct of future Orthopaedic trials. Trial registration The FAITH trial is registered at ClinicalTrials.gov (Identifier NCT00761813). PMID:24965132

  5. Designing, Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock

    DTIC Science & Technology

    2017-01-27

    FINAL REPORT Designing , Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock ESTCP...W912HQ-12-C-0062 Designing , Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock 5b. GRANT...31  5.0  TEST DESIGN

  6. The effect of whole body vibration on fracture healing - a systematic review.

    PubMed

    Wang, J; Leung, K S; Chow, S K; Cheung, W H

    2017-09-07

    This systematic review examines the efficacy and safety of whole body vibration (WBV) on fracture healing. A systematic literature search was conducted with relevant keywords in PubMed and Embase, independently, by two reviewers. Original animal and clinical studies about WBV effects on fracture healing with available full-text and written in English were included. Information was extracted from the included studies for review. In total, 19 articles about pre-clinical studies were selected. Various vibration regimes are reported; of those, the frequencies of 35 Hz and 50 Hz show better results than others. Most of the studies show positive effects on fracture healing after vibration treatment and the responses to vibration are better in ovariectomised (OVX) animals than non-OVX ones. However, several studies provide insufficient evidence to support an improvement of fracture healing after vibration and one study even reports disruption of fracture healing after vibration. In three studies, vibration results in positive effects on angiogenesis at the fracture site and surrounding muscles during fracture healing. No serious complications or side effects of vibration are found in these studies. WBV is suggested to be beneficial in improving fracture healing in animals without safety problem reported. In order to apply vibration on fractured patients, more well-designed randomised controlled clinical trials are needed to examine its efficacy, regimes and safety.

  7. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ...

  8. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ...

  9. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ...

  10. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ...

  11. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ...

  12. References and conference proceedings towards the understanding of fracture mechanics

    NASA Technical Reports Server (NTRS)

    Toor, P. M.; Hudson, C. M.

    1986-01-01

    A list of books, reports, periodicals, and conference proceedings, as well as individual papers, centered on specific aspects of fracture phenomenon has been compiled by the ASTM Committee E-24 on Fracture Testing. A list of basic references includes the articles on the development of fracture toughness, evaluation of stress intensity factors, fatigue crack growth, fracture testing, fracture of brittle materials, and fractography. Special attention is given to the references on application of fracture mechanics to new designs and on reevaluation of failed designs, many of them concerned with naval and aircraft structures.

  13. Epidemiology of Navicular Injury at the NFL Combine and Their Impact on an Athlete’s Prospective NFL Career

    PubMed Central

    Vopat, Bryan; Beaulieu-Jones, Brendin R.; Waryasz, Gregory; McHale, Kevin J.; Sanchez, George; Logan, Catherine A.; Whalen, James M.; DiGiovanni, Christopher W.; Provencher, Matthew T.

    2017-01-01

    Background: Navicular injuries can result in persistent pain, posttraumatic osteoarthritis, and diminished performance and function. Purpose: To determine the epidemiology of navicular fracture in players participating in the National Football League (NFL) Scouting Combine and evaluate the impact of a navicular injury on the NFL draft position and NFL game play compared with matched controls. Study Design: Cohort study; Level of evidence, 3. Methods: Data were collected on players who previously sustained a navicular injury and participated in the NFL Combine between 2009 and 2015. The epidemiology of navicular injury was determined through an evaluation of the number of injuries, surgeries, and collegiate games missed as well as the position played, a physical examination, the surgical technique, and imaging findings. Players with a previous navicular injury (2009-2013) were compared with a set of matched controls. NFL performance outcomes included the draft position, career length ≥2 years, and number of games played and started within the first 2 years. Results: Between 2009 and 2015, 14 of 2285 (0.6%) players were identified as having sustained a navicular injury. A total of 11 of 14 (79%) athletes had sustained an overt navicular fracture, while 3 of 14 (21%) were diagnosed with stress reactions on magnetic resonance imaging. Eight patients who sustained a navicular fracture underwent surgery. There was evidence of ipsilateral talonavicular arthritis in 75% of players with a navicular fracture versus only 60% in the uninjured foot (odds ratio, 1.3; P = .04). Fifty-seven percent of players with navicular injury (72.7% of fractures) were undrafted versus 30.9% in the control group (P = .001). Overall, 28.6% of players with navicular fracture played ≥2 years in the NFL compared with 69.6% in the control group (P = .02). Conclusion: A previous navicular fracture results in a greater risk of developing posttraumatic osteoarthritis. Although only a low prevalence of navicular injury in prospective NFL players was noted, players with these injuries had a greater probability of not being drafted and not competing in at least 2 NFL seasons when compared with matched controls without an injury history to the NFL Combine. PMID:28840151

  14. Ketorolac administration does not delay early fracture healing in a juvenile rat model: a pilot study.

    PubMed

    Cappello, Teresa; Nuelle, Julia A V; Katsantonis, Nicolas; Nauer, Rachel K; Lauing, Kristen L; Jagodzinski, Jason E; Callaci, John J

    2013-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective at controlling pain in children, especially in the treatment of fractures. Adult animal and adult clinical studies demonstrate conflicting evidence for the inhibitory relationship between NSAIDs and fracture healing. Published pediatric orthopaedic clinical studies do not demonstrate an inhibitory effect of ketorolac on bone healing. Little is known about the effects of any NSAID on bone formation in juvenile animals. This study investigates the effects of the NSAID ketorolac on fracture healing in a juvenile rat model. Unilateral surgically induced and stabilized tibial shaft fractures were created in 45 juvenile (3 to 4 wk old) male Sprague-Dawley rats. Either ketorolac (5 mg/kg; n=24) or saline (0.9% normal saline; n=21) was then administered to the rats 6 d/wk by intraperitoneal injections. Animals were then randomly assigned into time groups and euthanized at 7 days (n=8 ketorolac, n=7 saline), 14 days (n=8 ketorolac, n=7 saline), or 21 days (n=8 ketorolac, n=7 saline) postfracture. Biomechanical analysis was performed using a custom-designed 4-point bending loading apparatus. Statistics for tibial stiffness and strength data were performed using software package Systat 11. Specimens were also evaluated histologically using hematoxylin and eosin staining. Strength and stiffness of all fractured tibiae increased over time from day 7 to day 21 regardless of treatment type. No statistical difference was found between the fractured tibiae strength or stiffness in the ketorolac or control-treated specimens at the same time point. In addition, the quality of the fracture callus was similar in both groups at each of the time points. In this study of a juvenile rat model with a stabilized tibia fracture, fracture callus strength, stiffness, and histologic characteristics were not affected by the administration of ketorolac during the first 21 days of fracture healing. The absence of inhibitory effects of ketorolac on early juvenile rat fracture healing supports the clinical practice of utilizing NSAIDs for analgesia in children with long bone fractures.

  15. Ketorolac Administration Does Not Delay Early Fracture Healing in a Juvenile Rat Model

    PubMed Central

    Cappello, Teresa; Nuelle, Julia A.V.; Katsantonis, Nicolas; Nauer, Rachel K.; Lauing, Kristen L.; Jagodzinski, Jason E.; Callaci, John J.

    2014-01-01

    Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective at controlling pain in children, especially in the treatment of fractures. Adult animal and adult clinical studies demonstrate conflicting evidence for the inhibitory relationship between NSAIDs and fracture healing. Published pediatric orthopaedic clinical studies do not demonstrate an inhibitory effect of ketorolac on bone healing. Little is known about the effects of any NSAID on bone formation in juvenile animals. This study investigates the effects of the NSAID ketorolac on fracture healing in a juvenile rat model. Methods Unilateral surgically induced and stabilized tibial shaft fractures were created in 45 juvenile (3 to 4wk old) male Sprague-Dawley rats. Either ketorolac (5 mg/kg; n=24) or saline (0.9% normal saline; n=21) was then administered to the rats 6 d/wk by intraperitoneal injections. Animals were then randomly assigned into time groups and euthanized at 7 days (n=8 ketorolac, n=7 saline), 14 days (n=8 ketorolac, n=7 saline), or 21 days (n=8 ketorolac, n=7 saline) postfracture. Biomechanical analysis was performed using a custom-designed 4-point bending loading apparatus. Statistics for tibial stiffness and strength data were performed using software package Systat 11. Specimens were also evaluated histologically using hematoxylin and eosin staining. Results Strength and stiffness of all fractured tibiae increased over time from day 7 to day 21 regardless of treatment type. No statistical difference was found between the fractured tibiae strength or stiffness in the ketorolac or control-treated specimens at the same time point. In addition, the quality of the fracture callus was similar in both groups at each of the time points. Conclusions In this study of a juvenile rat model with a stabilized tibia fracture, fracture callus strength, stiffness, and histologic characteristics were not affected by the administration of ketorolac during the first 21 days of fracture healing. Clinical Relevance The absence of inhibitory effects of ketorolac on early juvenile rat fracture healing supports the clinical practice of utilizing NSAIDs for analgesia in children with long bone fractures. PMID:23653032

  16. 3D Modeling and Characterization of Hydraulic Fracture Efficiency Integrated with 4D/9C Time-Lapse Seismic Interpretations in the Niobrara Formation, Wattenberg Field, Denver Basin

    NASA Astrophysics Data System (ADS)

    Alfataierge, Ahmed

    Hydrocarbon recovery rates within the Niobrara Shale are estimated as low as 2-8%. These recovery rates are controlled by the ability to effectively hydraulic fracture stimulate the reservoir using multistage horizontal wells. Subsequent to any mechanical issues that affect production from lateral wells, the variability in production performance and reserve recovery along multistage lateral shale wells is controlled by the reservoir heterogeneity and its consequent effect on hydraulic fracture stimulation efficiency. Using identical stimulation designs on a number of wells that are as close as 600ft apart can yield variable production and recovery rates due to inefficiencies in hydraulic fracture stimulation that result from the variability in elastic rock properties and in-situ stress conditions. As a means for examining the effect of the geological heterogeneity on hydraulic fracturing and production within the Niobrara Formation, a 3D geomechanical model is derived using geostatistical methods and volumetric calculations as an input to hydraulic fracture stimulation. The 3D geomechanical model incorporates the faults, lithological facies changes and lateral variation in reservoir properties and elastic rock properties that best represent the static reservoir conditions pre-hydraulic fracturing. Using a 3D numerical reservoir simulator, a hydraulic fracture predictive model is generated and calibrated to field diagnostic measurements (DFIT) and observations (microseismic and 4D/9C multicomponent time-lapse seismic). By incorporating the geological heterogeneity into the 3D hydraulic fracture simulation, a more representative response is generated that demonstrate the variability in hydraulic fracturing efficiency along the lateral wells that will inevitability influence production performance. Based on the 3D hydraulic fracture simulation results, integrated with microseismic observations and 4D/9C time-lapse seismic analysis (post-hydraulic fracturing & post production), the variability in production performance within the Niobrara Shale wells is shown to significantly be affected by the lateral variability in reservoir quality, well and stage positioning relative to the target interval, and the relative completion efficiency. The variation in reservoir properties, faults, rock strength parameters, and in-situ stress conditions are shown to influence and control the hydraulic fracturing geometry and stimulation efficiency resulting in complex and isolated induced fracture geometries to form within the reservoir. This consequently impacts the effective drainage areas, production performance and recovery rates from inefficiently stimulated horizontal wells. The 3D simulation results coupled with the 4D seismic interpretations illustrate that there is still room for improvement to be made in optimizing well spacing and hydraulic fracturing efficiency within the Niobrara Formation. Integrated analysis show that the Niobrara reservoir is not uniformly stimulated. The vertical and lateral variability in rock properties control the hydraulic fracturing efficiency and geometry. Better production is also correlated to higher fracture conductivity. 4D seismic interpretation is also shown to be essential for the validation and calibration hydraulic fracture simulation models. The hydraulic fracture modeling also demonstrations that there is bypassed pay in the Niobrara B chalk resulting from initial Niobrara C chalk stimulation treatments. Forward modeling also shows that low pressure intervals within the Niobrara reservoir influence hydraulic fracturing and infill drilling during field development.

  17. Nurse case-manager vs multifaceted intervention to improve quality of osteoporosis care after wrist fracture: randomized controlled pilot study.

    PubMed

    Majumdar, S R; Johnson, J A; Bellerose, D; McAlister, F A; Russell, A S; Hanley, D A; Garg, S; Lier, D A; Maksymowych, W P; Morrish, D W; Rowe, B H

    2011-01-01

    Few outpatients with fractures are treated for osteoporosis in the years following fracture. In a randomized pilot study, we found a nurse case-manager could double rates of osteoporosis testing and treatment compared with a proven efficacious quality improvement strategy directed at patients and physicians (57% vs 28% rates of appropriate care). Few patients with fractures are treated for osteoporosis. An intervention directed at wrist fracture patients (education) and physicians (guidelines, reminders) tripled osteoporosis treatment rates compared to controls (22% vs 7% within 6 months of fracture). More effective strategies are needed. We undertook a pilot study that compared a nurse case-manager to the multifaceted intervention using a randomized trial design. The case-manager counseled patients, arranged bone mineral density (BMD) tests, and prescribed treatments. We included controls from our first trial who remained untreated for osteoporosis 1-year post-fracture. Primary outcome was bisphosphonate treatment and secondary outcomes were BMD testing, appropriate care (BMD test-treatment if bone mass low), and costs. Forty six patients untreated 1-year after wrist fracture were randomized to case-manager (n = 21) or multifaceted intervention (n = 25). Median age was 60 years and 68% were female. Six months post-randomization, 9 (43%) case-managed patients were treated with bisphosphonates compared with 3 (12%) multifaceted intervention patients (relative risk [RR] 3.6, 95% confidence intervals [CI] 1.1-11.5, p = 0.019). Case-managed patients were more likely than multifaceted intervention patients to undergo BMD tests (81% vs 52%, RR 1.6, 95%CI 1.1-2.4, p = 0.042) and receive appropriate care (57% vs 28%, RR 2.0, 95%CI 1.0-4.2, p = 0.048). Case-management cost was $44 (CDN) per patient vs $12 for the multifaceted intervention. A nurse case-manager substantially increased rates of appropriate testing and treatment for osteoporosis in patients at high-risk of future fracture when compared with a multifaceted quality improvement intervention aimed at patients and physicians. Even with case-management, nearly half of patients did not receive appropriate care. clinicaltrials.gov identifier: NCT00152321.

  18. Biomechanical comparison of straight and helical compression plates for fixation of transverse and oblique bone fractures: Modeling and experiments.

    PubMed

    Sezek, Sinan; Aksakal, Bunyamin; Gürger, Murat; Malkoc, Melih; Say, Y

    2016-08-12

    Total deformation and stability of straight and helical compression plates were studied by means of the finite element method (FEM) and in vitro biomechanical experiments. Fixations of transverse (TF) and oblique (45°) bone (OF) fractures have been analyzed on sheep tibias by designing the straight compression (SP) and Helical Compression Plate (HP) models. The effects of axial compression, bending and torsion loads on both plating systems were analyzed in terms of total displacements. Numerical models and experimental models suggested that under compression loadings, bone fracture gap closures for both fracture types were found to be in the favor of helical plate designs. The helical plate (HP) fixations provided maximum torsional resistance compared to the (SP) fixations. The fracture gap closure and stability of helical plate fixation for transverse fractures was determined to be higher than that found for the oblique fractures. The comparison of average compression stress, bending and torsion moments showed that the FEM and experimental results are in good agreement and such designs are likely to have a positive impact in future bone fracture fixation designs.

  19. Risk factors for distal radius fracture in postmenopausal women.

    PubMed

    Xu, Wenting; Ni, Cheng; Yu, Ren; Gu, Guoqing; Wang, Zheren; Zheng, Guoqing

    2017-05-01

    The aim of this work was to explore the risk factors for distal radius fracture in postmenopausal women. A total of 611 postmenopausal women with distal radius fractures were included. In all, 173 patients with unstable distal radius fractures were included (unstable fracture group), while there were 438 patients with stable distal radius fractures (stable fracture group). The control group comprised 800 postmenopausal women with no fracture. A questionnaire survey was conducted. Compared with the control group, the 611 postmenopausal women with distal radius fractures had a higher body mass index (BMI). Advanced age and higher BMI were more common in the unstable fracture group than in the stable fracture group (P <0.05). A higher proportion of the 611 postmenopausal women with a distal radius fracture had fallen in the last 12 months than in the control group. Comorbidities and the frequency of falls in the last 12 months were higher in the unstable fracture group than in the stable fracture group (P < 0.05). A higher proportion of the control group was taking calcium supplements, while the proportion taking calcium supplementation in the unstable fracture group was lower than that in the stable fracture group (P < 0.05). Osteoporosis in the two fracture groups (P < 0.05) was significantly higher than in the control group and was the highest in the unstable fracture group (P < 0.05). In postmenopausal women, obesity, falls, unknown osteoporosis status, and osteoporosis are associated with high risk of distal radius fracture. If comorbidities and advanced age are also present, this group of persons may be at higher risk for unstable distal radius fractures.

  20. Periprosthetic Occult Fractures of the Acetabulum Occur Frequently During Primary THA.

    PubMed

    Hasegawa, Kazuhiro; Kabata, Tamon; Kajino, Yoshitomo; Inoue, Daisuke; Tsuchiya, Hiroyuki

    2017-02-01

    Periprosthetic fractures of the acetabulum occurring during primary THA are rare. Periprosthetic occult fractures are defined as those not identified by the surgeon during the procedure which might be missed on a routine postoperative radiograph. However, it is unclear how frequently these fractures occur and whether their presence affects functional recovery. In this study, using routine CT scans that were obtained as part of another primary hip arthroplasty study protocol, we retrospectively assessed (1) the prevalence of occult fractures of the acetabulum occurring during primary THA, (2) the location of occult fractures of the acetabulum during THA, and (3) risk factors contributing to such occult fractures. Between 2004 and 2013, our institute performed 585 primary THAs (cementless or hybrid) in 494 patients with DICOM pre- and postoperative CT; during the period in question, all patients undergoing THA underwent CT before and after surgery. Preoperative CT images were taken as part of a CT-based three-dimensional templating software and navigation system. Postoperative CT images were taken an average of 1 week after surgery as part of a different protocol to evaluate cup position, restoration of leg length and offset, volume of postoperative hematoma to assess anticoagulation effects after THA, and fractures that were not found on routine postoperative radiographs (which we defined as occult fractures). Patients with a history of prior pelvic osteotomy, trauma, and infection were excluded (88 patients/99 hips); 406 patients (102 males and 304 females; 486 hips) form the basis of this report. The mean age of the patients was 60 ± 11 years, with a mean BMI of 23 ± 4 kg/m 2 . The mean followup of the patients with periprosthetic fracture of the acetabulum was 58 ± 28 months (range, 12-131 months). Potential risk factors for occult acetabular fracture including age, sex, BMI, preoperative diagnosis, additional dome screw fixation, composition and size of each cup, and acetabular design were examined in multivariate analysis. Acetabular component designs were categorized as true hemispheric, peripheral self-locking, and elliptical; during the period in question the indications for each cup design were based on the brand of stem used. Comparison between preoperative and postoperative CT images was done to detect the fractures. Patients with fractures identified during surgery were treated with additional dome screw fixation and a 3-week period of nonweightbearing. Patients with occult fractures in this series did not receive additional treatment as we had confirmed secure fixation of the cup during surgery. Occult fractures occurred in 41 hips (8.4%); periprosthetic fractures of the acetabulum were seen during surgery in an additional two hips (0.4%). The superolateral wall was the most frequent location for occult fractures of the acetabulum. After controlling for relevant confounding variables, only the use of peripheral self-locking cups was associated with an increased risk of occult fracture (odds ratio [OR], 2.6 compared with hemispheric cups; 95% CI, 1.2-5.6; p < 0.05). All patients with occult fractures showed bone ingrowth fixation at the final followup, without any additional surgical intervention. Periprosthetic occult fractures of the acetabulum may occur relatively frequently during press-fit impaction. We observed a higher rate of fractures associated with the use of peripheral self-locking components. Occult acetabular fractures not detected on routine postoperative plain films may be ignored if secure fixation of the cup has been confirmed during the operation. Level III, therapeutic study.

  1. Temporal variation of applied inter fragmentary displacement at a bone fracture in harmony with maturation of the fracture callus.

    PubMed

    Gardner, T N; Evans, M; Simpson, H

    1998-09-01

    The amplitude of inter fragmentary displacement in long bone fractures greatly influences the pattern and speed of healing. Unfortunately, the amplitude of natural cyclical displacement arising from patient activity is random because of the inherent flexibility of fixation devices under natural loading. Although fixators may be designed to control the amplitude of this displacement, the amplitudes most beneficial to healing have not been determined. Furthermore, the appropriate amplitude must vary during healing as the reparative tissue (callus) progresses histologically and stiffens during maturation. In this study on an experimental fracture, the amplitude of applied cyclical displacement is varied during healing to correspond with the inverse of the callus stiffness versus time curve. In vivo mechanical stiffness tests on the callus indicate that the end point of the fixation period is achieved more rapidly than with a constant level of applied displacement.

  2. Definition of infection after fracture fixation: A systematic review of randomized controlled trials to evaluate current practice.

    PubMed

    Metsemakers, W J; Kortram, K; Morgenstern, M; Moriarty, T F; Meex, I; Kuehl, R; Nijs, S; Richards, R G; Raschke, M; Borens, O; Kates, S L; Zalavras, C; Giannoudis, P V; Verhofstad, M H J

    2018-03-01

    One of the most challenging musculoskeletal complications in modern trauma surgery is infection after fracture fixation (IAFF). Although infections are clinically obvious in many cases, a clear definition of the term IAFF is crucial, not only for the evaluation of published research data but also for the establishment of uniform treatment concepts. The aim of this systematic review was to identify the definitions used in the scientific literature to describe infectious complications after internal fixation of fractures. The hypothesis of this study was that the majority of fracture-related literature do not define IAFF. A comprehensive search was performed in Embase, Cochrane, Google Scholar, Medline (OvidSP), PubMed publisher and Web-of-Science for randomized controlled trials (RCTs) on fracture fixation. Data were collected on the definition of infectious complications after fracture fixation used in each study. Study selection was accomplished through two phases. During the first phase, titles and abstracts were reviewed for relevance, and the full texts of relevant articles were obtained. During the second phase, full-text articles were reviewed. All definitions were literally extracted and collected in a database. Then, a classification was designed to rate the quality of the description of IAFF. A total of 100 RCT's were identified in the search. Of 100 studies, only two (2%) cited a validated definition to describe IAFF. In 28 (28%) RCTs, the authors used a self-designed definition. In the other 70 RCTs, (70%) there was no description of a definition in the Methods section, although all of the articles described infections as an outcome parameter in the Results section. This systematic review shows that IAFF is not defined in a large majority of the fracture-related literature. To our knowledge, this is the first study conducted with the objective to explore this important issue. The lack of a consensus definition remains a problem in current orthopedic trauma research and treatment and this void should be addressed in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fracture mechanics methodology: Evaluation of structural components integrity

    NASA Astrophysics Data System (ADS)

    Sih, G. C.; de Oliveira Faria, L.

    1984-09-01

    The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.

  4. Celiac disease and bone fractures: a systematic review and meta-analysis.

    PubMed

    Heikkilä, Katriina; Pearce, Jo; Mäki, Markku; Kaukinen, Katri

    2015-01-01

    Celiac disease, an autoimmune disease induced by dietary gluten, is associated with metabolic bone disorders, such as low bone mineral density. However, it is unclear whether this translates into an association between celiac disease and such hard clinical outcomes as bone fractures. To systematically review and pool the evidence for the relationship of celiac disease with prevalence and incidence of bone fractures. We systematically searched Pubmed, Scopus, Web of Science, and Cochrane Library in January 2014 for studies of celiac disease and bone fractures. Observational studies of any design, in which bone fracture outcomes were compared in individuals with and without celiac disease were included. Two investigators independently extracted results from eligible studies. In the meta-analyses of case-control and cross-sectional studies, bone fractures were almost twice as common in individuals with a clinically diagnosed celiac disease as in those without the disease. In the meta-analyses of prospective studies, celiac disease at baseline was associated with a 30% increase (95% confidence interval [CI]: 1.14, 1.50) in the risk of any fracture and a 69% increase in the risk of hip fracture (95% CI: 1.10, 2.59). The two studies of unrecognized celiac disease (elevated circulating concentrations of celiac disease-specific autoantibodies but no celiac disease diagnosis) had contradicting findings. Our findings suggest that clinically diagnosed celiac disease and bone fractures co-occur and that celiac disease was associated with an increased risk of hip fractures as well as fractures in general. Further research would be needed to determine whether unrecognized celiac disease is associated with the risk of bone fractures.

  5. Assessment of non‐vertebral fracture risk in postmenopausal women

    PubMed Central

    Roux, Christian; Briot, Karine; Horlait, Stéphane; Varbanov, Alex; Watts, Nelson B; Boonen, Steven

    2007-01-01

    Background Non‐vertebral (NV) fractures are responsible for a great amount of morbidity, mortality and cost attributable to osteoporosis. Objectives To identify risk factors for NV fractures in postmenopausal women with osteoporosis, and to design an assessment tool for prediction of these fractures. Methods 2546 postmenopausal women with osteoporosis included in the placebo groups of three risedronate controlled trials were included (mean age 72 years, mean femoral T‐score −2.5; 60% and 53% of patients with prevalent vertebral and NV fractures, respectively). Over 3 years, 222 NV fractures were observed. Baseline data on 14 risk factors were included in a logistic regression analysis. Results 6 risk factors were associated with NV fracture risk: prevalent NV fracture (p = 0.004), number of prevalent vertebral fractures (p<0.001), femoral T‐score (p = 0.031), serum level of 25‐hydroxyvitamin D (p<0.001), age (p = 0.012) and height (p = 0.037). An NV risk index was developed by converting the multivariate logistic equation into an additive score. In the group of women with a score ⩾2.1, the incidence of NV fracture was 13.2% (95% CI 11.1 to 15.3), 1.5 times higher than that of the general population. Conclusions The NV risk index is a convenient tool for selection of patients with osteoporosis with a high risk for NV fractures, and may help to choose from available treatments those with a proven efficacy for reduction of NV fracture risk. PMID:17314119

  6. Does Sitagliptin Affect the Rate of Osteoporotic Fractures in Type 2 Diabetes? Population-Based Cohort Study

    PubMed Central

    Josse, Robert G.; Lin, Mu; Eurich, Dean T.

    2016-01-01

    Context: Type 2 diabetes and osteoporosis are both common, chronic, and increase with age, whereas type 2 diabetes is also a risk factor for major osteoporotic fractures (MOFs). However, different treatments for type 2 diabetes can affect fracture risk differently, with metaanalyses showing some agents increase risk (eg, thiazolidinediones) and some reduce risk (eg, sitagliptin). Objective: To determine the independent association between new use of sitagliptin and MOF in a large population-based cohort study. Design, Setting, and Subjects: A sitagliptin new user study design employing a nationally representative Unites States claims database of 72 738 insured patients with type 2 diabetes. We used 90-day time-varying sitagliptin exposure windows and controlled confounding by using multivariable analyses that adjusted for clinical data, comorbidities, and time-updated propensity scores. Main Outcomes: We compared the incidence of MOF (hip, clinical spine, proximal humerus, distal radius) in new users of sitagliptin vs nonusers over a median 2.2 years follow-up. Results: At baseline, the median age was 52 years, 54% were men, and median A1c was 7.5%. There were 8894 new users of sitagliptin and 63 834 nonusers with a total 181 139 person-years of follow-up. There were 741 MOF (79 hip fractures), with 53 fractures (4.8 per 1000 person-years) among new users of sitagliptin vs 688 fractures (4.0 per 1000 person-years) among nonusers (P = .3 for difference). In multivariable analyses, sitagliptin was not associated with fracture (adjusted hazard ratio 1.1, 95% confidence interval 0.8–1.4; P = .7), although insulin (P < .001), sulfonylureas (P < .008), and thiazolidinedione (P = .019) were each independently associated with increased fracture risk. Conclusions: Even in a young population with type 2 diabetes, osteoporotic fractures were not uncommon. New use of sitagliptin was not associated with fracture, but other commonly used second-line agents for type 2 diabetes were associated with increased risk. These data should be considered when making treatment decisions for those with type 2 diabetes at particularly high risk of fractures. PMID:26930183

  7. Fracture probability assessed using FRAX® in elderly women with benign paroxysmal positional vertigo.

    PubMed

    Nakada, Takafumi; Teranishi, Masaaki; Ueda, Yukio; Sone, Michihiko

    2018-05-18

    Patients with benign paroxysmal positional vertigo (BPPV) can have vitamin D deficiency, which is a cause of abnormal bone turnover. Several studies have established a relationship between osteoporosis and BPPV. The World Health Organization Fracture Risk Assessment Tool, widely known as FRAX ® (http://www.shef.ac.uk/FRAX), is a computer-based algorithm for assessing fracture risk. No direct comparison has been made between the FRAX scores of patients with BPPV and controls. The purpose of this study was to determine whether women with BPPV are at high risk of fracture as assessed using FRAX. The study involved 40 postmenopausal women diagnosed with BPPV between July 2015 and April 2016, and 40 postmenopausal women as controls. The 10-year major osteoporotic and hip fracture risks were calculated using FRAX and were compared between BPPV patients and controls using Welch's t test and a general linear model. The 10-year major osteoporotic fracture risk was 20.4%±12.1% for BPPV patients (aged 72.4±8.6years) and 14.3%±6.5% for controls (aged 71.2±6.3years). The 10-year hip fracture risk was 9.0%±9.8% for BPPV patients and 5.0%±3.9% for controls. The BPPV group had significantly higher 10-year major risks of osteoporotic fracture (p=0.0069) and hip fracture (p=0.0202) compared with controls. Similarly, after adjustment for age, the BPPV group had significantly higher 10-year risks of major osteoporotic fracture (p=0.0007) and hip fracture (p=0.0092) compared with controls. Fracture risk calculated using FRAX was significantly higher in the BPPV group than in controls. Women with BPPV may need early intervention to prevent future fractures. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants

    PubMed Central

    2015-01-01

    PURPOSE In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants. PMID:25932315

  9. Tai Chi for osteopenic women: design and rationale of a pragmatic randomized controlled trial

    PubMed Central

    2010-01-01

    Background Post-menopausal osteopenic women are at increased risk for skeletal fractures. Current osteopenia treatment guidelines include exercise, however, optimal exercise regimens for attenuating bone mineral density (BMD) loss, or for addressing other fracture-related risk factors (e.g. poor balance, decreased muscle strength) are not well-defined. Tai Chi is an increasingly popular weight bearing mind-body exercise that has been reported to positively impact BMD dynamics and improve postural control, however, current evidence is inconclusive. This study will determine the effectiveness of Tai Chi in reducing rates of bone turnover in post-menopausal osteopenic women, compared with standard care, and will preliminarily explore biomechanical processes that might inform how Tai Chi impacts BMD and associated fracture risks. Methods/Design A total of 86 post-menopausal women, aged 45-70y, T-score of the hip and/or spine -1.0 and -2.5, have been recruited from primary care clinics of a large healthcare system based in Boston. They have been randomized to a group-based 9-month Tai Chi program plus standard care or to standard care only. A unique aspect of this trial is its pragmatic design, which allows participants randomized to Tai Chi to choose from a pre-screened list of community-based Tai Chi programs. Interviewers masked to participants' treatment group assess outcomes at baseline and 3 and 9 months after randomization. Primary outcomes are serum markers of bone resorption (C-terminal cross linking telopeptide of type I collagen), bone formation (osteocalcin), and BMD of the lumbar spine and proximal femur (dual-energy X-ray absorptiometry). Secondary outcomes include health-related quality-of-life, exercise behavior, and psychological well-being. In addition, kinetic and kinematic characterization of gait, standing, and rising from a chair are assessed in subset of participants (n = 16) to explore the feasibility of modeling skeletal mechanical loads and postural control as mediators of fracture risk. Discussion Results of this study will provide preliminary evidence regarding the value of Tai Chi as an intervention for decreasing fracture risk in osteopenic women. They will also inform the feasibility, value and potential limitations related to the use of pragmatic designs for the study of Tai Chi and related mind-body exercise. If the results are positive, this will help focus future, more in-depth, research on the most promising potential mechanisms of action identified by this study. Trial registration This trial is registered in Clinical Trials.gov, with the ID number of NCT01039012. PMID:20193083

  10. Gear Crack Propagation Path Studies-- Guidelines Developed for Ultrasafe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2002-01-01

    Effective gear designs balance strength, durability, reliability, size, weight, and cost. However, unexpected gear failures may occur even with adequate gear tooth design. To design an extremely safe system, the designer must ask and address the question "What happens when a failure occurs?" With regard to gear-tooth bending fatigue, tooth or rim fractures may occur. For aircraft, a crack that propagated through a rim would be catastrophic, leading to the disengagement of a rotor or propeller, the loss of an aircraft, and possible fatalities. This failure mode should be avoided. However, a crack that propagated through a tooth might or might not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode might be possible because of advances in modern diagnostic systems. An analysis was performed at the NASA Glenn Research Center to develop design guidelines to prevent catastrophic rim fracture failure modes in the event of gear-tooth bending fatigue. The finite element method was used with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear-tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth and rim fracture modes, including the effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant-pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 degree pressure angle teeth increased the occurrence of tooth fractures over rim fractures in comparison to 20 pressure angle teeth. For gears with a constant number of teeth or for gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.

  11. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  12. Assessment of fracture-induced anisotropy in the Austin Chalk Formation (Upper Cretaceous), central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.A.

    1990-05-01

    This study relates geophysical and geological data to the detection of fractures and their influence on the movement of fluid in the Atco Member of the Austin Chalk in central Texas. In areas of production, the Austin Chalk has very low matrix permeabilities, with hydrocarbons confined to zones of near-vertical, stress-aligned fractures. Horizontal drilling has been estimated to increase per well reserves in the Austin Chalk from 75,000 bbl and 82 mmcf to 500,000 bbl and 500 mmcf. The objective of deviated wells in the Austin Chalk is to intersect at right angles as many of the hydrocarbon-prone fracture zonesmore » as possible. Therefore, the detection and description of these fracture zones prior to drilling is critical. Fractures have been proven to influence the velocities of shear waves. To assess shear wave velocities in different directions, several shear wave refraction and three-component vertical seismic profiles have been acquired. These data provided a measure of the fracture-induced shear wave anisotropy and an indication of the dominant fracture trend. Other data, including azimuthal resistivity surveys, cores, and aerial photographs, provided additional control for evaluating the fractures. The final phase of the study compares the geophysical and geological interpretations to the result of shallow groundwater pumping tests. The pumping tests have been conducted in vertical boreholes and were designed to evaluate the influence of the fracturing on fluid movement.« less

  13. Effect of in-hospital comprehensive geriatric assessment (CGA) in older people with hip fracture. The protocol of the Trondheim Hip Fracture Trial

    PubMed Central

    2011-01-01

    Background Hip fractures in older people are associated with high morbidity, mortality, disability and reduction in quality of life. Traditionally people with hip fracture are cared for in orthopaedic departments without additional geriatric assessment. However, studies of postoperative rehabilitation indicate improved efficiency of multidisciplinary geriatric rehabilitation as compared to traditional care. This randomized controlled trial (RCT) aims to investigate whether an additional comprehensive geriatric assessment of hip fracture patients in a special orthogeriatric unit during the acute in-hospital phase may improve outcomes as compared to treatment as usual in an orthopaedic unit. Methods/design The intervention of interest, a comprehensive geriatric assessment is compared with traditional care in an orthopaedic ward. The study includes 401 home-dwelling older persons >70 years of age, previously able to walk 10 meters and now treated for hip fracture at St. Olav Hospital, Trondheim, Norway. The participants are enrolled and randomised during the stay in the Emergency Department. Primary outcome measure is mobility measured by the Short Physical Performance Battery (SPPB) at 4 months after surgery. Secondary outcomes measured at 1, 4 and 12 months postoperatively are place of residence, activities of daily living, balance and gait, falls and fear of falling, quality of life and depressive symptoms, as well as use of health care resources and survival. Discussion We believe that the design of the study, the randomisation procedure and outcome measurements will be of sufficient strength and quality to evaluate the impact of comprehensive geriatric assessment on mobility and other relevant outcomes in hip fracture patients. Trials registration ClinicalTrials.gov, NCT00667914 PMID:21510886

  14. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  15. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jing; Huang, Hai; Deo, Milind

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flowmore » in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of intrinsic reservoir heterogeneity caused by the rock fabric and mineralogy on fracture nucleation and propagation paths is examined through a three-layered reservoir. Finally, we apply the method to a realistic heterogeneous dataset.« less

  16. Effectiveness of multimodal pain management after bipolar hemiarthroplasty for hip fracture: a randomized, controlled study.

    PubMed

    Kang, Hyun; Ha, Yong-Chan; Kim, Jin-Yun; Woo, Young-Cheol; Lee, Jae-Sung; Jang, Eui-Chan

    2013-02-20

    Appropriate pain management affects outcome after hip fracture surgery. Although multimodal pain management is commonly used for pain control for patients undergoing elective surgery, few studies have evaluated its use in those undergoing hip fracture surgery. This prospective randomized study was designed to determine the clinical value of multimodal pain management with preemptive pain medication and intraoperative periarticular multimodal drug injections in patients undergoing bipolar hip hemiarthroplasty. Of eighty-two cognitively intact elderly patients about to undergo bipolar hemiarthroplasty after a hip fracture, forty-three were randomly assigned to receive preemptive pain medication and intraoperative periarticular injections (Group I) and thirty-nine were assigned to not receive preemptive medication and injections (Group II). These two groups were compared with regard to the pain level on postoperative days one, four, and seven; at discharge; and when they started walking and standing exercises. Total amounts of fentanyl used, the frequency of use of patient-controlled analgesia, patient satisfaction at discharge, and perioperative complications were recorded. Group I had a lower pain level than Group II on postoperative days one and four, but no intergroup difference in pain level was observed on postoperative day seven. The total amount of fentanyl used and the frequency of use of patient-controlled analgesia were also lower in Group I. Patient satisfaction at discharge was higher in Group I. No significant intergroup differences were found in the times until the patients walked or performed standing exercises or in the complications. Multimodal pain management provides additional pain relief until the fourth postoperative day, improves patient satisfaction at discharge, and reduces total narcotic consumption for postoperative pain management after hip hemiarthroplasty for hip fractures.

  17. Short-term effect of zoledronic acid upon fracture resistance of the mandibular condyle and femoral head in an animal model

    PubMed Central

    López-Jornet, Pía; Vicente-Hernández, Ascensión

    2013-01-01

    Objective: The aim of this study was to compare the effects in terms of resistance to fracture of the mandibular condyle and femoral head following different doses of zoledronic acid in an animal model. Study design: A total of 80 adult male Sprague-Dawley rats were included in a prospective randomized study. The animals were randomly divided into four groups of 20 rats each. Group 1 (control) received sterile saline solution, while groups 2, 3 and 4 received a accumulated dose of 0.2 mg, 0.4 mg and 0.6 mg of zoledronic acid, respectively. The animals were sacrificed 28 days after the last dose, and the right hemimandible and the right femur were removed. The fracture strength was measured (in Newtons) with a universal test machine using a 1 kN load connected to a metal rod with one end angled at 30 degrees. The cross-head speed was 1 mm/min. Later, the specimens were observed under a scanning electron microscope with backscattered electron imaging (SEM-BSE). At last, chemical analysis and elemental mapping of the mineral bone composition were generated using a microanalytical system based on energy-dispersive and X-ray spectrometry (EDX). Results: A total of 160 fracture tests were performed. The fracture resistance increased in mandible and femur with a higher accumulated dose of zoledronic acid. Statistically significant differences were recorded versus the controls with all the studies groups. The chemical analysis in mandible showed a significantly increased of calcium and phosphorous to compare the control with all of the study groups; however, in femur no statistically significant differences between the four study groups were observed. Conclusions: The administration of bisphosphonates increases the fracture resistance in mandible and femur. Key words:Zoledronic acid, bisphosphonates, animal experimentation, fracture test. PMID:23524420

  18. Return to Play and Performance After Jones Fracture in National Basketball Association Athletes

    PubMed Central

    Begly, John P.; Guss, Michael; Ramme, Austin J.; Karia, Raj; Meislin, Robert J.

    2015-01-01

    Background: Basketball players are at risk for foot injuries, including Jones fractures. It is unknown how this injury affects the future play and performance of athletes. Hypothesis: National Basketball Association (NBA) players who sustain Jones fractures of the base of the fifth metatarsal have high rates of return to play and do not experience a decrease in performance on return to competition when compared with preinjury and with control-matched peers. Study Design: Retrospective cohort study. Level of Evidence: Level 5. Methods: Data on 26 elite basketball players with Jones fractures over 19 NBA seasons (1994-1995 to 2012-2013) were obtained from injury reports, press releases, player profiles, and online public databases. Variables included age, body mass index (BMI), player position, experience, and surgical treatment. Individual season statistics pre- and postinjury were collected. Twenty-six controls were identified by matched player position, age, and performance statistics. Results: The mean age at the time of injury was 24.8 years, mean BMI was 24.7 kg/m2, and the mean experience prior to injury was 4.1 NBA seasons. Return to previous level of competition was achieved by 85% of athletes. There was no change in player efficiency rating (PER) when pre- and postinjury performance was compared. When compared with controls, no decline in PER measured performance was identified. Conclusion: The majority of NBA players sustaining a Jones fracture return to their preinjury level of competition. These elite athletes demonstrate no decrease in performance on their return to play. Clinical Relevance: Jones fractures are well-studied injuries in terms of etiology, diagnosis, and management. However, the effect of these injuries on future performance of athletes is unknown. Using the findings of our study, orthopaedic surgeons may be better prepared to counsel and educate elite athletes who sustain a Jones fracture. PMID:26627111

  19. Numerical Simulation Applications in the Design of EGS Collab Experiment 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; White, Mark D.; Fu, Pengcheng

    The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less

  20. Exercise and fall prevention self-management to reduce mobility-related disability and falls after fall-related lower limb fracture in older people: protocol for the RESTORE (Recovery Exercises and STepping On afteR fracturE) randomised controlled trial.

    PubMed

    Sherrington, Catherine; Fairhall, Nicola; Kirkham, Catherine; Clemson, Lindy; Howard, Kirsten; Vogler, Constance; Close, Jacqueline C T; Moseley, Anne M; Cameron, Ian D; Mak, Jenson; Sonnabend, David; Lord, Stephen R

    2016-02-02

    Lasting disability and further falls are common and costly problems in older people following fall-related lower limb and pelvic fractures. Exercise interventions can improve mobility after fracture and reduce falls in older people, however the optimal approach to rehabilitation after fall-related lower limb and pelvic fracture is unclear. This randomised controlled trial aims to evaluate the effects of an exercise and fall prevention self-management intervention on mobility-related disability and falls in older people following fall-related lower limb or pelvic fracture. Cost-effectiveness of the intervention will also be investigated. A randomised controlled trial with concealed allocation, assessor blinding for physical performance tests and intention-to-treat analysis will be conducted. Three hundred and fifty people aged 60 years and over with a fall-related lower limb or pelvic fracture, who are living at home or in a low care residential aged care facility and have completed active rehabilitation, will be recruited. Participants will be randomised to receive a 12-month intervention or usual care. The intervention group will receive ten home visits from a physiotherapist to prescribe an individualised exercise program with motivational interviewing, plus fall prevention education through individualised advice from the physiotherapist or attendance at the group based "Stepping On" program (seven two-hour group sessions). Participants will be followed for a 12-month period. Primary outcome measures will be mobility-related disability and falls. Secondary outcomes will include measures of balance and mobility, falls risk, physical activity, walking aid use, frailty, pain, nutrition, falls efficacy, mood, positive and negative affect, quality of life, assistance required, hospital readmission, and health-system and community-service contact. This study will determine the effect and cost-effectiveness of this exercise self management intervention on mobility-related disability and falls in older people who have recently sustained a fall-related lower limb or pelvic fracture. The results will have implications for the design and implementation of interventions for older people with fall related lower limb fractures. The findings of this study will be disseminated in peer-reviewed journals and through professional and scientific conferences. Australian New Zealand Clinical Trials Registry: ACTRN12610000805077.

  1. Baseline Serum Estradiol and Fracture Reduction During Treatment With Hormone Therapy: The Women’s Health Initiative Randomized Trial

    PubMed Central

    Cauley, Jane A.; LaCroix, Andrea Z.; Robbins, John A.; Larson, Joseph; Wallace, Robert; Wactawski-Wende, Jean; Chen, Zhao; Bauer, Douglas C.; Cummings, Steven R.; Jackson, Rebecca

    2009-01-01

    Purpose To test the hypothesis that the reduction in fractures with hormone therapy (HT) is greater in women with lower estradiol levels. Methods We conducted a nested case-control study within the Women’s Health Initiative HT Trials. The sample included 231 hip fracture case-control pairs and a random sample of 519 all fracture case-control pairs. Cases and controls were matched for age, ethnicity, randomization date, fracture history and hysterectomy status. Hormones were measured prior to randomization. Incident cases of fracture identified over an average follow-up of 6.53 years. Results There was no evidence that the effect of HT on fracture differed by baseline estradiol (E2) or sex hormone binding globulin (SHBG). Across all quartiles of E2 and SHBG, women randomized to HT had about a 50% lower risk of fracture including hip fracture, compared to placebo. Conclusion The effect of HT on fracture reduction is independent of estradiol and SHBG levels. PMID:19436934

  2. Effect of Once-Yearly Zoledronic Acid Five Milligrams on Fracture Risk and Change in Femoral Neck Bone Mineral Density

    PubMed Central

    Eastell, Richard; Black, Dennis M.; Boonen, Steven; Adami, Silvano; Felsenberg, Dieter; Lippuner, Kurt; Cummings, Steven R.; Delmas, Pierre D.; Palermo, Lisa; Mesenbrink, Peter; Cauley, Jane A.

    2016-01-01

    Context In the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly – Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg significantly reduced fracture risk. Objective The aim of the study was to identify factors associated with greater efficacy during ZOL 5 mg treatment. Design, Setting, and Patients We conducted a subgroup analysis (preplanned and post hoc) of a multicenter, double-blind, placebo-controlled, 36-month trial in 7765 women with postmenopausal osteoporosis. Intervention A single infusion of ZOL 5 mg or placebo was administered at baseline, 12, and 24 months. Main Outcome Measures Primary endpoints were new vertebral fracture and hip fracture. Secondary endpoints were nonvertebral fracture and change in femoral neck bone mineral density (BMD). Baseline risk factor subgroups were age, BMD T-score and vertebral fracture status, total hip BMD, race, weight, geographical region, smoking, height loss, history of falls, physical activity, prior bisphosphonates, creatinine clearance, body mass index, and concomitant osteoporosis medications. Results Greater ZOL induced effects on vertebral fracture risk were seen with younger age (treatment-by-subgroup interaction, P =0.05), normal creatinine clearance (P =0.04), and body mass index ≥ 25 kg/m2 (P = 0.02). There were no significant treatment–factor interactions for hip or nonvertebral fracture or for change in BMD. Conclusions ZOL appeared more effective in preventing vertebral fracture in younger women, overweight/obese women, and women with normal renal function. ZOL had similar effects irrespective of fracture risk factors or femoral neck BMD. PMID:19567517

  3. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.

    PubMed

    Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

    2012-01-01

    Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Analysis of foot structure in athletes sustaining proximal fifth metatarsal stress fracture.

    PubMed

    Hetsroni, Iftach; Nyska, Meir; Ben-Sira, David; Mann, Gideon; Segal, Ofer; Maoz, Guy; Ayalon, Moshe

    2010-03-01

    In the past, several studies provided anecdotal descriptions of high-arched feet in individuals sustaining proximal fifth metatarsal stress fractures. This relationship has never been supported by scientific evidence. Our objective was to examine whether athletes who sustained this injury had an exceptional static foot structure or dynamic loading pattern. Ten injured professional soccer players who regained full professional activity following a unilateral proximal fifth metatarsal stress fracture and ten control soccer players were examined. Independent variables included static evaluation of foot and arch structure, followed by dynamic plantar foot pressure evaluation. Each variable was compared between injured, contra-lateral uninjured, and control feet. Static measurements of foot and arch structure did not reveal differences among the groups. However, plantar pressure evaluation revealed relative unloading of the fourth metatarsal in injured and uninjured limbs of injured athletes compared with control, while the fifth metatarsal revealed pressure reduction only in the injured limbs of injured athletes. Athletes who sustained proximal fifth metatarsal stress fracture were not characterized by an exceptional static foot structure. Dynamically, lateral metatarsal unloading during stance may either play a role in the pathogenesis of the injury, or alternately represent an adaptive process. Footwear fabrication for previously injured athletes should not categorically address cushioning properties designed for high-arch feet, but rather focus on individual dynamic evaluation of forefoot loading, with less attention applied to static foot and arch characteristics.

  5. Fracture resistance of retreated roots using different retreatment systems.

    PubMed

    Er, Kursat; Tasdemir, Tamer; Siso, Seyda Herguner; Celik, Davut; Cora, Sabri

    2011-08-01

    This study was designed to evaluate the fracture resistance of retreated roots using different rotary retreatment systems. Forty eight freshly extracted human canine teeth with single straight root canals were instrumented sequentially increasing from size 30 to a size 55 using K-files whit a stepback technique. The teeth were randomly divided into three experimental and one control groups of 12 specimens each. The root canals were filled using cold lateral compaction of gutta-percha and AH Plus (Dentsply Detrey, Konstanz, Germany) sealer in experimental groups. Removal of gutta-percha was performed with the following devices and techniques: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), R-Endo (Micro-Mega, Besançon, France), and Mtwo (Sweden & Martina, Padova, Italy) rotary retreatment systems. Control group specimens were only instrumented, not filled or retreated. The specimens were then mounted in copper rings, were filled with a self-curing polymethylmethacrylate resin, and the force required to cause vertical root fracture was measured using a universal testing device. The force of fracture of the roots was recorded and the results in the various groups were compared. Statistical analysis was accomplished by one-way ANOVA and a post hoc Tukey tests. There were statistically significant differences between the control and experimental groups (P<.05). However, there were no significant differences among the experimental groups. Based on the results, all rotary retreatment techniques used in this in vitro study produced similar root weakness.

  6. In Vitro Analysis of the Fracture Resistance of CAD/CAM Denture Base Resins.

    PubMed

    Steinmassl, Otto; Offermanns, Vincent; Stöckl, Wolfgang; Dumfahrt, Herbert; Grunert, Ingrid; Steinmassl, Patricia-Anca

    2018-03-08

    Computer-aided design and computer-aided manufacturing (CAD/CAM) denture base manufacturers claim to produce their resin pucks under high heat and pressure. Therefore, CAD/CAM dentures are assumed to have enhanced mechanical properties and, as a result, are often produced with lower denture base thicknesses than conventional, manually fabricated dentures. The aim of this study was to investigate if commercially available CAD/CAM denture base resins have more favourable mechanical properties than conventionally processed denture base resins. For this purpose, a series of three-point bending tests conforming to ISO specifications were performed on a total of 80 standardised, rectangular CAD/CAM denture base resin specimens from five different manufacturers (AvaDent, Baltic Denture System, Vita VIONIC, Whole You Nexteeth, and Wieland Digital Dentures). A heat-polymerising resin and an autopolymerising resin served as the control groups. The breaking load, fracture toughness, and the elastic modulus were assessed. Additionally, the fracture surface roughness and texture were investigated. Only one CAD/CAM resin showed a significantly increased breaking load. Two CAD/CAM resins had a significantly higher fracture toughness than the control groups, and all CAD/CAM resins had higher elastic moduli than the controls. Our results indicate that CAD/CAM denture base resins do not generally have better mechanical properties than manually processed resins. Therefore, the lower minimum denture base thicknesses should be regarded with some caution.

  7. In Vitro Analysis of the Fracture Resistance of CAD/CAM Denture Base Resins

    PubMed Central

    Stöckl, Wolfgang; Dumfahrt, Herbert; Grunert, Ingrid

    2018-01-01

    Computer-aided design and computer-aided manufacturing (CAD/CAM) denture base manufacturers claim to produce their resin pucks under high heat and pressure. Therefore, CAD/CAM dentures are assumed to have enhanced mechanical properties and, as a result, are often produced with lower denture base thicknesses than conventional, manually fabricated dentures. The aim of this study was to investigate if commercially available CAD/CAM denture base resins have more favourable mechanical properties than conventionally processed denture base resins. For this purpose, a series of three-point bending tests conforming to ISO specifications were performed on a total of 80 standardised, rectangular CAD/CAM denture base resin specimens from five different manufacturers (AvaDent, Baltic Denture System, Vita VIONIC, Whole You Nexteeth, and Wieland Digital Dentures). A heat-polymerising resin and an autopolymerising resin served as the control groups. The breaking load, fracture toughness, and the elastic modulus were assessed. Additionally, the fracture surface roughness and texture were investigated. Only one CAD/CAM resin showed a significantly increased breaking load. Two CAD/CAM resins had a significantly higher fracture toughness than the control groups, and all CAD/CAM resins had higher elastic moduli than the controls. Our results indicate that CAD/CAM denture base resins do not generally have better mechanical properties than manually processed resins. Therefore, the lower minimum denture base thicknesses should be regarded with some caution. PMID:29518022

  8. 4D synchrotron X-ray imaging to understand porosity development in shales during exposure to hydraulic fracturing fluid

    NASA Astrophysics Data System (ADS)

    Kiss, A. M.; Bargar, J.; Kohli, A. H.; Harrison, A. L.; Jew, A. D.; Lim, J. H.; Liu, Y.; Maher, K.; Zoback, M. D.; Brown, G. E.

    2016-12-01

    Unconventional (shale) reservoirs have emerged as the most important source of petroleum resources in the United States and represent a two-fold decrease in greenhouse gas emissions compared to coal. Despite recent progress, hydraulic fracturing operations present substantial technical, economic, and environmental challenges, including inefficient recovery, wastewater production and disposal, contaminant and greenhouse gas pollution, and induced seismicity. A relatively unexplored facet of hydraulic fracturing operations is the fluid-rock interface, where hydraulic fracturing fluid (HFF) contacts shale along faults and fractures. Widely used, water-based fracturing fluids contain oxidants and acid, which react strongly with shale minerals. Consequently, fluid injection and soaking induces a host of fluid-rock interactions, most notably the dissolution of carbonates and sulfides, producing enhanced or "secondary" porosity networks, as well as mineral precipitation. The competition between these mechanisms determines how HFF affects reactive surface area and permeability of the shale matrix. The resultant microstructural and chemical changes may also create capillary barriers that can trap hydrocarbons and water. A mechanistic understanding of the microstructure and chemistry of the shale-HFF interface is needed to design new methodologies and fracturing fluids. Shales were imaged using synchrotron micro-X-ray computed tomography before, during, and after exposure to HFF to characterize changes to the initial 3D structure. CT reconstructions reveal how the secondary porosity networks advance into the shale matrix. Shale samples span a range of lithologies from siliceous to calcareous to organic-rich. By testing shales of different lithologies, we have obtained insights into the mineralogic controls on secondary pore network development and the morphologies at the shale-HFF interface and the ultimate composition of produced water from different facies. These results show that mineral texture is a major control over secondary porosity network morphology.

  9. Optimizing hydraulic fracture design in the diatomite formation, Lost Hills Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, D.G.; Klins, M.A.; Manrique, J.F.

    1996-12-31

    Since 1988, over 1.3 billion pounds of proppant have been placed in the Lost Hills Field of Kern County. California in over 2700 hydraulic fracture treatments involving investments of about $150 million. In 1995, systematic reevaluation of the standard, field trial-based fracture design began. Reservoir, geomechanical, and hydraulic fracture characterization; production and fracture modeling; sensitivity analysis; and field test results were integrated to optimize designs with regard to proppant volume, proppant ramps, and perforating strategy. The results support a reduction in proppant volume from 2500 to 1700 lb/ft which will save about $50,000 per well, totalling over $3 million permore » year. Vertical coverage was found to be a key component of fracture quality which could be optimized by eliminating perforations from lower stress intervals, reducing the total number of perforations, and reducing peak slurry loading from 16 to 12 ppa. A relationship between variations in lithology, pore pressure, and stress was observed. Point-source, perforating strategies were investigated and variable multiple fracture behavior was observed. The discussed approach has application in areas where stresses are variable; pay zones are thick; hydraulic fracture design is based primarily on empirical, trial-and-error field test results; and effective, robust predictive models involving real-data feedback have not been incorporated into the design improvement process.« less

  10. Ankle Injury Management (AIM): design of a pragmatic multi-centre equivalence randomised controlled trial comparing Close Contact Casting (CCC) to Open surgical Reduction and Internal Fixation (ORIF) in the treatment of unstable ankle fractures in patients over 60 years

    PubMed Central

    2014-01-01

    Background Ankle fractures account for 9% of all fractures with a quarter of these occurring in adults over 60 years. The short term disability and long-term consequences of this injury can be considerable. Current opinion favours open reduction and internal fixation (ORIF) over non-operative treatment (fracture manipulation and the application of a standard moulded cast) for older people. Both techniques are associated with complications but the limited published research indicates higher complication rates of fracture malunion (poor position at healing) with casting. The aim of this study is to compare ORIF with a modification of existing casting techniques, Close Contact Casting (CCC). We propose that CCC may offer an equivalent functional outcome to ORIF and avoid the risks associated with surgery. Methods/Design This study is a pragmatic multi-centre equivalence randomised controlled trial. 620 participants will be randomised to receive ORIF or CCC after sustaining an isolated displaced unstable ankle fracture. Participants will be recruited from a minimum of 20 National Health Service (NHS) acute hospitals throughout England and Wales. Participants will be aged over 60 years and be ambulatory prior to injury. Follow-up will be at six weeks and six months after randomisation. The primary outcome is the Olerud & Molander Ankle Score, a functional patient reported outcome measure, at 6 months. Follow-up will also include assessments of mobility, ankle range of movement, health related quality of life and complications. The six-month follow-up will be conducted face-to-face by an assessor blinded to the allocated intervention. A parallel economic evaluation will consider both a health service and a broader societal perspective including the individual and their family. In order to explore patient experience of their treatment and recovery, a purposive sample of 40 patients will also be interviewed using a semi-structured interview schedule between 6-10 weeks post treatment. Discussion This multicentre study was open to recruitment July 2010 and recruitment is due to be completed in December 2013. Trial registration Current Controlled Trials ISRCTN04180738. PMID:24621174

  11. Optimizing for Large Planar Fractures in Multistage Horizontal Wells in Enhanced Geothermal Systems Using a Coupled Fluid and Geomechanics Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred

    Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injectionmore » well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.« less

  12. Application of Fracture Mechanics to Specify the Proof Load Factor for Clamp Band Systems of Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Singaravelu, J.; Sundaresan, S.; Nageswara Rao, B.

    2013-04-01

    This article presents a methodology for evaluation of the proof load factor (PLF) for clamp band system (CBS) made of M250 Maraging steel following fracture mechanics principles.CBS is most widely used as a structural element and as a separation system. Using Taguchi's design of experiments and the response surface method (RSM) the compact tension specimens were tested to establish an empirical relation for the failure load ( P max) in terms of the ultimate strength, width, thickness, and initial crack length. The test results of P max closely matched with the developed RSM empirical relation. Crack growth rates of the maraging steel in different environments were examined. Fracture strength (σf) of center surface cracks and through-crack tension specimens are evaluated utilizing the fracture toughness ( K IC). Stress induced in merman band at flight loading conditions is evaluated to estimate the higher load factor and PLF. Statistical safety factor and reliability assessments were made for the specified flaw sizes useful in the development of fracture control plan for CBS of launch vehicles.

  13. Vitamin K and bone health.

    PubMed

    Hamidi, Maryam S; Gajic-Veljanoski, Olga; Cheung, Angela M

    2013-01-01

    Vitamin K has been purported to play an important role in bone health. It is required for the gamma-carboxylation of osteocalcin (the most abundant noncollagenous protein in bone), making osteocalcin functional. There are 2 main forms (vitamin K1 and vitamin K2), and they come from different sources and have different biological activities. Epidemiologic studies suggest a diet high in vitamin K is associated with a lower risk of hip fractures in aging men and women. However, randomized controlled trials of vitamin K1 or K2 supplementation in white populations did not increase bone mineral density at major skeletal sites. Supplementation with vitamin K1 and K2 may reduce the risk of fractures, but the trials that examined fractures as an outcome have methodological limitations. Large well-designed trials are needed to compare the efficacies of vitamin K1 and K2 on fractures. We conclude that currently there is not enough evidence to recommend the routine use of vitamin K supplements for the prevention of osteoporosis and fractures in postmenopausal women. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  14. The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application.

    PubMed

    Weaver, Aaron S; Su, Yu-Ping; Begun, Dana L; Miller, Joshua D; Alford, Andrea I; Goldstein, Steven A

    2010-07-01

    The local mechanical environment and the availability of mesenchymal stem cells (MSC) have both been shown to be important factors in bone fracture healing. This study was designed to investigate how the timing of an applied axial displacement across a healing fracture affects callus properties as well as the migration of systemically introduced MSC. Bilateral osteotomies were created in male, Sprague-Dawley rats. Exogenous MSC were injected via the tail vein, and a controlled micro-motion was applied to one defect starting 0, 3, 10, or 24 days after surgery. The results showed that fractures stimulated 10 days after surgery had more mineral, less cartilage, and greater mechanical properties at 48 days than other groups. Populations of MSC were found in osteotomies 48 days after surgery, with the exception of the group that was stimulated 10 days after surgery. These results demonstrate that the timing of mechanical stimulation affects the physical properties of the callus and the migration of MSC to the fracture site. Published by Elsevier Inc.

  15. Genetic predisposition for femoral neck stress fractures in military conscripts.

    PubMed

    Korvala, Johanna; Hartikka, Heini; Pihlajamäki, Harri; Solovieva, Svetlana; Ruohola, Juha-Petri; Sahi, Timo; Barral, Sandra; Ott, Jürg; Ala-Kokko, Leena; Männikkö, Minna

    2010-10-21

    Stress fractures are a significant problem among athletes and soldiers and may result in devastating complications or even permanent handicap. Genetic factors may increase the risk, but no major susceptibility genes have been identified. The purpose of this study was to search for possible genetic factors predisposing military conscripts to femoral neck stress fractures. Eight genes involved in bone metabolism or pathology (COL1A1, COL1A2, OPG, ESR1, VDR, CTR, LRP5, IL-6) were examined in 72 military conscripts with a femoral neck stress fracture and 120 controls. The risk of femoral neck stress fracture was significantly higher in subjects with low weight and body mass index (BMI). An interaction between the CTR (rs1801197) minor allele C and the VDR C-A haplotype was observed, and subjects lacking the C allele in CTR and/or the C-A haplotype in VDR had a 3-fold higher risk of stress fracture than subjects carrying both (OR = 3.22, 95% CI 1.38-7.49, p = 0.007). In addition, the LRP5 haplotype A-G-G-C alone and in combination with the VDR haplotype C-A was associated with stress fractures through reduced body weight and BMI. Our findings suggest that genetic factors play a role in the development of stress fractures in individuals subjected to heavy exercise and mechanical loading. The present results can be applied to the design of future studies that will further elucidate the genetics of stress fractures.

  16. Chronic Pancreatitis and Fracture: A Retrospective, Population-Based Veterans Administration Study.

    PubMed

    Munigala, Satish; Agarwal, Banke; Gelrud, Andres; Conwell, Darwin L

    2016-03-01

    There is increasing evidence that chronic pancreatitis (CP) is a risk factor for osteoporotic fracture, but data on males with CP and fracture prevalence are sparse. We determined the association of sex and age using a large Veterans Administration database. This was a retrospective analysis (1998-2007). Patients with CP (International Classification of Diseases code 577.1) and control subjects (without CP) were identified after exclusions and fracture prevalence (vertebral, hip, and wrist) were recorded. 453,912 Veterans Administration patients were identified (control subjects: 450,655 and patients with CP: 3257). Mean ages of control subjects and CP were 53.6 and 54.2 years (P < 0.014). Patients with CP had higher odds ratios of total fractures (2.35; 95% confidence interval [CI], 2.00-2.77), vertebral fracture 2.11 (95% CI, 1.44-3.01), hip fracture 3.49 (95% CI, 2.78-4.38), and wrist fracture 1.68 (95% CI, 1.29-2.18) when compared with control subjects. After adjusting for age group and etiology, patients with CP had increased odds of total fractures, vertebral fractures, and hip fractures (P < 0.05). In this male-predominate Veterans Administration study, patients with CP were at increased risk of osteoporotic fractures. The risk was higher for hip fracture (>3 times) in patients with CP compared with control subjects. All patients with CP older than 45 years, irrespective of sex, should be screened for bone mineral density loss.

  17. Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trials and observational studies

    PubMed Central

    2010-01-01

    Background Vitamin D supplementation for fracture prevention is widespread despite conflicting interpretation of relevant randomised controlled trial (RCT) evidence. This study summarises quantitatively the current evidence from RCTs and observational studies regarding vitamin D, parathyroid hormone (PTH) and hip fracture risk. Methods We undertook separate meta-analyses of RCTs examining vitamin D supplementation and hip fracture, and observational studies of serum vitamin D status (25-hydroxyvitamin D (25(OH)D) level), PTH and hip fracture. Results from RCTs were combined using the reported hazard ratios/relative risks (RR). Results from case-control studies were combined using the ratio of 25(OH)D and PTH measurements of hip fracture cases compared with controls. Original published studies of vitamin D, PTH and hip fracture were identified through PubMed and Web of Science databases, searches of reference lists and forward citations of key papers. Results The seven eligible RCTs identified showed no significant difference in hip fracture risk in those randomised to cholecalciferol or ergocalciferol supplementation versus placebo/control (RR = 1.13[95%CI 0.98-1.29]; 801 cases), with no significant difference between trials of <800 IU/day and ≥800 IU/day. The 17 identified case-control studies found 33% lower serum 25(OH)D levels in cases compared to controls, based on 1903 cases. This difference was significantly greater in studies with population-based compared to hospital-based controls (χ21 (heterogeneity) = 51.02, p < 0.001) and significant heterogeneity was present overall (χ216 (heterogeneity) = 137.9, p < 0.001). Serum PTH levels in hip fracture cases did not differ significantly from controls, based on ten case-control studies with 905 cases (χ29 (heterogeneity) = 149.68, p < 0.001). Conclusions Neither higher nor lower dose vitamin D supplementation prevented hip fracture. Randomised and observational data on vitamin D and hip fracture appear to differ. The reason for this is unclear; one possible explanation is uncontrolled confounding in observational studies. Post-fracture PTH levels are unrelated to hip fracture risk. PMID:20540727

  18. The Role of Forethought and Serendipity in Designing a Successful Hydrogeological Research Site

    NASA Astrophysics Data System (ADS)

    Shapiro, A. M.; Hsieh, P. A.

    2008-12-01

    Designing and implementing a successful hydrogeologic field research observatory requires careful planning among a multidisciplinary group of research scientists. In addition, a small team of research coordinators needs to assume responsibility for smoothly integrating the multidisciplinary experimental program and promoting the explanation of results across discipline boundaries. A narrow interpretation of success at these hydrogeologic observatories can be viewed as the completion of the field-based experiments and the reporting of results for the field site under investigation. This alone is no small task, given the financial and human resources that are needed to develop and maintain field infrastructure, as well as developing, maintaining, and sharing data and interpretive results. Despite careful planning, however, unexpected or serendipitous results can occur. Such serendipitous results can lead to new understanding and revision of original hypotheses. To fully evaluate such serendipitous results, the field program must collect a broad range of scientifically robust data-beyond what is needed to examine the original hypotheses. In characterizing ground water flow and chemical transport in fractured crystalline rock in the Mirror Lake watershed in central New Hampshire, unexpected effects of scale were observed for hydraulic conductivity and matrix diffusion. Contrary to existing theory, hydraulic conductivity at the site did not increase with scale, whereas the effective coefficient of matrix diffusion was found to increase with scale. These results came to light only after examination of extensive data from carefully designed hydraulic and chemical transport experiments. Experiments were conducted on rock cores, individual fractures and volumes of fractured rock over physical dimensions from meters to kilometers. The interpretation of this data yielded new insight into the effect of scale on chemical transport and hydraulic conductivity of fractured rock. Subsequent evaluation of experiments conducted at other fractured rock sites have showed similarities in hydraulic and chemical transport responses, allowing broader conclusions to be reached concerning geologic controls on ground water flow and chemical transport in fractured rock aquifers.

  19. The development of a comprehensive multidisciplinary care pathway for patients with a hip fracture: design and results of a clinical trial.

    PubMed

    Flikweert, Elvira R; Izaks, Gerbrand J; Knobben, Bas A S; Stevens, Martin; Wendt, Klaus

    2014-05-30

    Hip fractures frequently occur in older persons and severely decrease life expectancy and independence. Several care pathways have been developed to lower the risk of negative outcomes but most pathways are limited to only one aspect of care. The aim of this study was therefore to develop a comprehensive care pathway for older persons with a hip fracture and to conduct a preliminary analysis of its effect. A comprehensive multidisciplinary care pathway for patients aged 60 years or older with a hip fracture was developed by a multidisciplinary team. The new care pathway was evaluated in a clinical trial with historical controls. The data of the intervention group were collected prospectively. The intervention group included all patients with a hip fracture who were admitted to University Medical Center Groningen between 1 July 2009 and 1 July 2011. The data of the control group were collected retrospectively. The control group comprised all patients with a hip fracture who were admitted between 1 January 2006 and 1 January 2008. The groups were compared with the independent sample t-test, the Mann-Whitney U-test or the Chi-squared test (Phi test). The effect of the intervention on fasting time and length of stay was adjusted by linear regression analysis for differences between the intervention and control group. The intervention group included 256 persons (women, 68%; mean age (SD), 78 (9) years) and the control group 145 persons (women, 72%; mean age (SD), 80 (10) years). Median preoperative fasting time and median length of hospital stay were significantly lower in the intervention group: 9 vs. 17 hours (p < 0.001), and 7 vs. 11 days (p < 0.001), respectively. A similar result was found after adjustment for age, gender, living condition and American Society of Anesthesiologists (ASA) classification. In-hospital mortality was also lower in the intervention group: 2% vs. 6% (p < 0.05). There were no statistically significant differences in other outcome measures. The new comprehensive care pathway was associated with a significant decrease in preoperative fasting time and length of hospital stay.

  20. Methodological Challenges of Multiple-Component Intervention: Lessons Learned from a Randomized Controlled Trial of Functional Recovery After Hip Fracture

    PubMed Central

    Peterson, Margaret G.E.; Cornell, Charles N.; MacKenzie, C. Ronald; Robbins, Laura; Horton, Roberta; Ganz, Sandy B.; Ruchlin, Hirsch S.; Russo, Pamela Williams; Paget, Stephen A.; Charlson, Mary E.

    2006-01-01

    We conducted a randomized controlled trial to assess the efficacy and safety of a multiple-component intervention designed to improve functional recovery after hip fracture. One hundred seventy-six patients who underwent surgery for a primary unilateral hip fracture were assigned randomly to receive usual care (control arm, n = 86) or a brief motivational videotape, supportive peer counseling, and high-intensity muscle-strength training (intervention arm, n = 90). Between-group differences on the physical functioning, role-physical, and social functioning domains of the SF-36 were assessed postoperatively at 6 months. At the end of the trial, 32 intervention and 27 control patients (34%) completed the 6-month outcome assessment. Although patient compliance with all three components of the intervention was uneven, over 90% of intervention patients were exposed to the motivational videotape. Intervention patients experienced a significant (P = 0.03) improvement in the role-physical domain (mean change, −11 ± 33) compared to control patients (mean change, −37 ± 41). Change in general health (P = 0.2) and mental health (P = 0.1) domain scores was also directionally consistent with the study hypothesis. Although our findings are consistent with previous reports of comprehensive rehabilitation efforts for hip fracture patients, the trial was undermined by high attrition and the possibility of self-selection bias at 6-month follow-up. We discuss the methodological challenges and lessons learned in conducting a randomized controlled trial that sought to implement and assess the impact of a complex intervention in a population that proved difficult to follow up once they had returned to the community. PMID:18751772

  1. A case-control study of quality of life and functional impairment in women with long-standing vertebral osteoporotic fracture.

    PubMed

    Hall, S E; Criddle, R A; Comito, T L; Prince, R L

    1999-01-01

    There have been several studies of the impact of vertebral osteoporotic fracture on the quality of life and functionality of individual subjects. To date, however, no direct comparisons with age-matched normal subjects without vertebral fracture have been made. The radiographs of 145 female clinic patients with vertebral fractures were reviewed by the study physicians. The controls were recruited from the electoral role and by media appeal. One hundred and sixty-seven women had radiographs taken to determine those without vertebral fracture. Fracture subjects and controls had to be ambulant and were excluded if they had significant radiologic evidence of degenerative disk or joint disease of the spine. One hundred cases and one hundred controls were matched by 5-year age groups. The number, position and severity of the vertebral fracture on the lateral radiographs of the cases was recorded. Quality of life was measured using the Short Form-36 (SF-36) (maximum score 100) and a utility score calculated from these results (maximum score 1). Two measurements of functionality were employed: the Modified Barthel Index (MBI) to assess the activities of daily living (maximum score 100) and the Timed 'Up & Go' (TUG) that measured the time taken for the subject to rise from sitting in a chair, walk 3 m along a line, return to the chair and sit down. The fracture subjects had 2.9 +/- 1.6 (mean +/- SD) vertebral fractures and the time since last fracture was 5.1 +/- 4.8 years. The SF-36 physical function component summary index results were: fracture subjects 36 +/- 11, controls 48 +/- 9 (p < 0.001). The SF-36 mental health component summary index results were: fracture subjects 50 +/- 11, controls 54 +/- 8 (p < 0.05). The utility scores were: fracture subjects 0.64 +/- 0.08, controls 0.72 +/- 0.07 (p < 0.001). The MBI results were: fracture subjects 97 +/- 5, controls 99 +/- 1 (p < 0.01). The TUG results were: fracture subjects 13.8 +/- 7.3 s, controls 10.1 +/- 4.1 s (p < 0.01). TUG and MBI scores correlated well with SF-36 scores; however, no domain of the SF-36 or functional measure correlated with either the number of vertebral fractures or the time since last vertebral fracture. Thus, clinically reported vertebral fractures impair both the quality of life and functionality of these subjects. The adverse impact of vertebral fracture on quality of life and functionality needs to be recognized by medical practitioners, subjects and the community, so that adequate health resources can be devoted to the prevention and treatment of this debilitating condition condition.

  2. Scaphoid Waist Internal Fixation for Fractures Trial (SWIFFT) protocol: a pragmatic multi-centre randomised controlled trial of cast treatment versus surgical fixation for the treatment of bi-cortical, minimally displaced fractures of the scaphoid waist in adults.

    PubMed

    Dias, Joseph; Brealey, Stephen; Choudhary, Surabhi; Cook, Liz; Costa, Matthew; Fairhurst, Caroline; Hewitt, Catherine; Hodgson, Stephen; Jefferson, Laura; Jeyapalan, Kanagaratnam; Keding, Ada; Leighton, Paul; Rangan, Amar; Richardson, Gerry; Rothery, Claire; Taub, Nicholas; Thompson, John; Torgerson, David

    2016-06-04

    A scaphoid fracture is the most common type of carpal fracture affecting young active people. The optimal management of this fracture is uncertain. When treated with a cast, 88 to 90 % of these fractures unite; however, for the remaining 10-12 % the non-union almost invariably leads to arthritis. The alternative is surgery to fix the scaphoid with a screw at the outset. We will conduct a randomised controlled trial (RCT) of 438 adult patients with a "clear" and "bicortical" scaphoid waist fracture on plain radiographs to evaluate the clinical effectiveness and cost-effectiveness of plaster cast treatment (with fixation of those that fail to unite) versus early surgical fixation. The plaster cast treatment will be immobilisation in a below elbow cast for 6 to 10 weeks followed by mobilisation. If non-union is confirmed on plain radiographs and/or Computerised Tomogram at 6 to 12 weeks, then urgent surgical fixation will be performed. This is being compared with immediate surgical fixation with surgeons using their preferred technique and implant. These treatments will be undertaken in trauma units across the United Kingdom. The primary outcome and end-point will be the Patient Rated Wrist Evaluation (a patient self-reported assessment of wrist pain and function) at 52 weeks and also measured at 6, 12, 26 weeks and 5 years. Secondary outcomes include an assessment of radiological union of the fracture; quality of life; recovery of wrist range and strength; and complications. We will also qualitatively investigate patient experiences of their treatment. Scaphoid fractures are an important public health problem as they predominantly affect young active individuals in the more productive working years of their lives. Non-union, if untreated, can lead to arthritis which can disable patients at a very young age. There is a rapidly increasing trend for immediate surgical fixation of these fractures but there is insufficient evidence from existing RCTs to support this. The SWIFFT Trial is a rigorously designed and adequately powered study which aims to contribute to the evidence-base to inform clinical decisions for the treatment of this common fracture in adults. The trial is registered with the International Standard Randomised Controlled Trial Register ( ISRCTN67901257 ). Date registration assigned was 13/02/2013.

  3. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhu, Deyu; Luo, Qun; Liu, Luofu; Liu, Dongdong; Yan, Lin; Zhang, Yunzhao

    2017-09-01

    Natural fractures in seven wells from the Middle Permian Lucaogou Formation in the Junggar Basin were evaluated in light of regional structural evolution, tight reservoir geochemistry (including TOC and mineral composition), carbon and oxygen isotopes of calcite-filled fractures, and acoustic emission (AE). Factors controlling the development of natural fractures were analyzed using qualitative and/or semi-quantitative techniques, with results showing that tectonic factors are the primary control on fracture development in the Middle Permian Lucaogou Formation of the Junggar Basin. Analyses of calcite, dolomite, and TOC show positive correlations with the number of fractures, while deltaic lithofacies appear to be the most favorable for fracture development. Mineral content was found to be a major control on tectonic fracture development, while TOC content and sedimentary facies mainly control bedding fractures. Carbon and oxygen isotopes vary greatly in calcite-filled fractures (δ13C ranges from 0.87‰ to 7.98‰, while δ18O ranges from -12.63‰ to -5.65‰), indicating that fracture development increases with intensified tectonic activity or enhanced diagenetic alteration. By analyzing the cross-cutting relationships of fractures in core, as well as four Kaiser Effect points in the acoustic emission curve, we observed four stages of tectonic fracture development. First-stage fractures are extensional, and were generated in the late Triassic, with calcite fracture fills formed between 36.51 °C and 56.89 °C. Second-stage fractures are shear fractures caused by extrusion stress from the southwest to the northeast, generated by the rapid uplift of the Tianshan in the Middle and Late Jurassic; calcite fracture fills formed between 62.91 °C and 69.88 °C. Third-stage fractures are NNW-trending shear fractures that resulted from north-south extrusion and thrusting in a foreland depression along the front of the Early Cretaceous Bogda Mountains. Calcite fracture fills formed between 81.74 °C and 85.43 °C. Fourth-stage fractures inherited the tectonic framework of the third stage, resulting in fractures with the same orientation, but without calcite filling. By differentiating the various stages of fracture development, we were able to better understand the origin of fractures in tight oil reservoirs and their significance for exploration and development.

  4. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  5. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    NASA Astrophysics Data System (ADS)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better geologic understanding of the stratigraphic heterogeneity and material property attributes of shale can have a direct effect on the engineering design of wellbores and stimulation treatments.

  6. How reactive fluids alter fracture walls and affect shale-matrix accessibility

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Deng, H.; Peters, C. A.

    2014-12-01

    Predictions of mass transfer across fracture boundaries and fluid flow in fracture networks provide fundamental inputs into risk and life cycle assessments of geologic energy technologies including oil and gas extraction, geothermal energy systems and geologic CO2 storage. However, major knowledge gaps exist due to the lack of experimental observations of how reactive fluids alter the pore structures and accessible surface area within fracture boundaries that control the mass transfer of organics, metals and salts, and influence fluid flow within the fracture. To investigate the fracture and rock matrix properties governing fracture boundary alteration, we developed a new flow-through cell that enables time-dependent 2D x-ray imaging of mineral dissolution and/or precipitation at a fracture surface. The parallel plate design provides an idealized fracture geometry to investigate the relationship between flow rate, reaction rate, and mineral spatial heterogeneity and variation. In the flow-cell, a carbonate-rich sample of Eagle Ford shale was reacted with acidified brine. The extent and rate of mineral dissolution were correlated with calcite abundance relative to less soluble silicate minerals. Three-dimensional x-ray tomography of the reacted fracture wall shows how calcite dissolution left behind a porous network of silicate minerals. And while this silicate network essentially preserved the location of the initial fracture wall, the pore network structures within the fracture boundary were dramatically altered, such that the accessible surface area of matrix components increased significantly. In a second set of experiments with a limestone specimen, however, the extent of dissolution and retreat of the fracture wall was not strictly correlated with the occurrence of calcite. Instead, the pattern and extent of dissolution suggested secondary causes such as calcite morphology, the presence of argillaceous minerals and other diagenetic features. Our experiments show that while calcite dissolution is the primary geochemical driver of fracture wall alterations, hydrodynamic properties and matrix accessibility within fracture boundaries evolve based on a complex relationship between mineral spatial heterogeneity and variation, fluid chemistry and flow rate.

  7. Assessment of bone in Ehlers Danlos syndrome by ultrasound and densitometry.

    PubMed

    Dolan, A L; Arden, N K; Grahame, R; Spector, T D

    1998-10-01

    Ehlers Danlos syndrome (EDS) is an inherited disorder of connective tissue characterised by hyperextensible skin, joint laxity, and easy bruising. There are phenotypic similarities with osteogenesis imperfecta, but in EDS a tendency to fracture or altered bone mass has not previously been considered to be a cardinal feature. This case-control design study investigates whether 23 patients with EDS had differences in fracture rates, bone mass, and calcaneal ultrasound parameters compared with age and sex matched controls. 23 cases of EDS (mean (SD) age 38.5 (15.5)) were compared with 23 controls (mean age 37.8 (14.5)). A significant reduction in bone density measured by dual energy x ray absorptiometry was found at the neck of femur by 0.9 SD, p = 0.05, and lumbar spine by 0.74 SD, p = 0.02. At the calcaneum, broad band ultrasound attenuation and speed of sound were significantly reduced compared with controls by 0.95 SD (p = 0.004) and 0.49 SD (p = 0.004) for broad band ultrasound attenuation and speed of sound respectively. Broad band ultrasound attenuation and speed of sound remained significantly reduced after adjusting for bone mineral density (BMD). After adjusting for functional status (HAQ), age and sex, hypermobility was inversely correlated with broad band ultrasound attenuation and SOS, but not BMD at hip or spine. Previous fracture was 10 times more common in EDS (p < 0.001), with 86.9% of patients reporting a total of 47 low impact fractures, compared with 8.7% of controls. This study has identified a tendency of EDS patients to fracture, have low bone mass and abnormal bone structure. The aetiology is likely to be multifactorial, with an inherited structural element, accentuated by immobility or reduced exercise. This is one of the first clinical studies to suggest ultrasound can detect structural differences in bone, independent of dual energy x ray absorptiometry.

  8. Prescribing by general practitioners after an osteoporotic fracture.

    PubMed

    Torgerson, D J; Dolan, P

    1998-06-01

    Osteoporosis is a major cause of morbidity and cost. Patients sustaining one osteoporotic fracture are at increased risk of having another fracture. The objective of this study was to examine the use of "bone drugs" for the prevention of further osteoporotic fractures among patients who have had a "typical" osteoporotic fracture. This study took a random sample of 300 women aged 50 and over who had sustained either a vertebral, hip or Colles fracture in 1995 from the General Practice Research Database (GPRD) and compared their use of bone drugs with 300 age and practice matched controls. Compared with age and practice matched control patients only vertebral fracture patients showed a statistically significant increase in the use of bone drugs in the year after fracture (39% and 2% for cases and controls respectively; 95% CI of difference 27% to 47%). Etidronate was the most commonly used compound. The majority of patients sustaining an osteoporotic fracture are not prescribed any pharmaceutical agents for the secondary prevention of fracture one year after a primary fracture.

  9. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    PubMed

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Steroidal contraceptives and bone fractures in women: evidence from observational studies.

    PubMed

    Lopez, Laureen M; Chen, Mario; Mullins Long, Sarah; Curtis, Kathryn M; Helmerhorst, Frans M

    2015-07-21

    Age-related decline in bone mass increases the risk of skeletal fractures, especially those of the hip, spine, and wrist. Steroidal contraceptives have been associated with changes in bone mineral density in women. Whether such changes affect the risk of fractures later in life is unclear. Hormonal contraceptives are among the most effective and most widely-used contraceptives. Concern about fractures may limit the use of these effective contraceptives. Observational studies can collect data on premenopausal contraceptive use as well as fracture incidence later in life. We systematically reviewed the evidence from observational studies of hormonal contraceptive use for contraception and the risk of fracture in women. Through June 2015, we searched for observational studies. The databases included PubMed, POPLINE, Cochrane Central Register of Controlled Trials (CENTRAL), LILACS, EMBASE, CINAHL, and Web of Science. We also searched for recent clinical trials through ClinicalTrials.gov and the ICTRP. For other studies, we examined reference lists of relevant articles and wrote to investigators for additional reports. We included cohort and case-control studies of hormonal contraceptive use. Interventions included comparisons of a hormonal contraceptive with a non-hormonal contraceptive, no contraceptive, or another hormonal contraceptive. The primary outcome was the risk of fracture. Two authors independently extracted the data. One author entered the data into RevMan, and a second author verified accuracy. We examined the quality of evidence using the Newcastle-Ottawa Quality Assessment Scale (NOS), developed for case-control and cohort studies. Sensitivity analysis included studies of moderate or high quality based on our assessment with the NOS.Given the need to control for confounding factors in observational studies, we used adjusted estimates from the models as reported by the authors. Where we did not have adjusted analyses, we calculated the odds ratio (OR) with 95% confidence interval (CI). Due to varied study designs, we did not conduct meta-analysis. We included 14 studies (7 case-control and 7 cohort studies). These examined oral contraceptives (OCs), depot medroxyprogesterone acetate (DMPA), and the hormonal intrauterine device (IUD). This section focuses on the sensitivity analysis with six studies that provided moderate or high quality evidence.All six studies examined oral contraceptive use. We noted few associations with fracture risk. One cohort study reported OC ever-users had increased risk for all fractures (RR 1.20, 95% CI 1.08 to 1.34). However, a case-control study with later data from a subset reported no association except for those with 10 years or more since use (OR 1.55, 95% CI 1.03 to 2.33). Another case-control study reported increased risk only for those who had 10 or more prescriptions (OR 1.09, 95% CI 1.03 to 1.16). A cohort study of postmenopausal women found no increased fracture risk for OC use after excluding women with prior fracture. Two other studies found little evidence of association between OC use and fracture risk. A cohort study noted increased risk for subgroups, such as those with longer use or specific intervals since use. A case-control study reported increased risk for any fracture only among young women with less than average use.Two case-control studies also examined progestin-only contraceptives. One reported increased fracture risk for DMPA ever-use (OR 1.44, 95% CI 1.01 to 2.06), more than four years of use (OR 2.16, 95% CI 1.32 to 3.53), and women over 50 years old. The other reported increased risk for any past use, including one or two prescriptions (OR 1.17, 95% CI 1.07 to 1.29) and for current use of 3 to 9 prescriptions (OR 1.36, 95% CI 1.15 to 1.60) or 10 or more (OR 1.54, 95% CI 1.33 to 1.78). For the levonorgestrel-releasing IUD, one study reported reduced fracture risk for ever-use (OR 0.75, 95% CI 0.64 to 0.87) and for longer use. Observational studies do not indicate an overall association between oral contraceptive use and fracture risk. Some reported increased risk for specific user subgroups. DMPA users may have an increased fracture risk. One study indicated hormonal IUD use may be associated with decreased risk. Observational studies need adjusted analysis because the comparison groups usually differ. Investigators should be clear about the variables examined in multivariate analysis.

  11. Field Evaluation of Fracture Control in Tunnel Blasting

    DOT National Transportation Integrated Search

    1979-12-01

    The objective of this research was to implement fracture control procedures in a tunnel project and to assess the practicality, advantages, disadvantages, performance and cost effectiveness of fracture control methods against smooth blasting procedur...

  12. Gear Crack Propagation Path Studies: Guidelines for Ultra-Safe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    Design guidelines have been established to prevent catastrophic rim fracture failure modes when considering gear tooth bending fatigue. Analysis was performed using the finite element method with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth/rim fracture modes including effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 deg pressure angle teeth had an increased occurrence of tooth fractures over rim fractures when compared to 20 deg pressure angle teeth. For gears with constant number of teeth or gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.

  13. Surgery versus conservative treatment in patients with type A distal radius fractures, a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Fractures of the distal radius are common and account for an estimated 17% of all fractures diagnosed. Two-thirds of these fractures are displaced and require reduction. Although distal radius fractures, especially extra-articular fractures, are considered to be relatively harmless, inadequate treatment may result in impaired function of the wrist. Initial treatment according to Dutch guidelines consists of closed reduction and plaster immobilisation. If fracture redisplacement occurs, surgical treatment is recommended. Recently, the use of volar locking plates has become more popular. The aim of this study is to compare the functional outcome following surgical reduction and fixation with a volar locking plate with the functional outcome following closed reduction and plaster immobilisation in patients with displaced extra-articular distal radius fractures. Design This single blinded randomised controlled trial will randomise between open reduction and internal fixation with a volar locking plate (intervention group) and closed reduction followed by plaster immobilisation (control group). The study population will consist of all consecutive adult patients who are diagnosed with a displaced extra-articular distal radius fracture, which has been adequately reduced at the Emergency Department. The primary outcome (functional outcome) will be assessed by means of the Disability Arm Shoulder Hand Score (DASH). Secondary outcomes comprise the Patient-Rated Wrist Evaluation score (PRWE), quality of life, pain, range of motion, radiological parameters, complications and cross-overs. Since the treatment allocated involves a surgical procedure, randomisation status will not be blinded. However, the researcher assessing the outcome at one year will be unaware of the treatment allocation. In total, 90 patients will be included and this trial will require an estimated time of two years to complete and will be conducted in the Academic Medical Centre Amsterdam and its partners of the regional trauma care network. Dicussion Ideally, patients would be randomised before any kind of treatment has been commenced. However, we deem it not patient-friendly to approach possible participants before adequate reduction has been obtained. Trial registration This study is registered at the Netherlands Trial Register (NTR3113) and was granted permission by the Medical Ethical Review Committee of the Academic Medical Centre on 01-10-2012. PMID:24642190

  14. Mechanical stratigraphic controls on natural fracture spacing and penetration

    NASA Astrophysics Data System (ADS)

    McGinnis, Ronald N.; Ferrill, David A.; Morris, Alan P.; Smart, Kevin J.; Lehrmann, Daniel

    2017-02-01

    Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as unconventional hydrocarbon reservoirs. Fracturing - both natural and induced - is extremely important for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed between fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into the vertically adjacent mudrock beds. In contrast, fractures in the mudrock beds rarely penetrate beyond the bed boundaries into the adjacent carbonate beds. Consequently, natural bed-perpendicular fracture connectivity through the mechanically layered sequence generally is poor. Fracture connectivity strongly influences permeability architecture, and fracture prediction should consider thin bed-scale control on fracture heights and the strong lithologic control on fracture spacing.

  15. Orbital fractures due to domestic violence: an epidemiologic study.

    PubMed

    Goldberg, Stuart H.; McRill, Connie M.; Bruno, Christopher R.; Ten Have, Tom; Lehman, Erik

    2000-09-01

    Domestic violence is an important cause of orbital fractures in women. Physicians who treat patients with orbital fractures may not suspect this mechanism of injury. The purpose of this study was to assess the association between domestic violence and orbital fractures. A medical center-based case-control study with matching on age and site of admission was done. Medical center databases were searched using ICD-9 codes to identify all cases of orbital fractures encountered during a three-year period. Medical records of female patients age 13 and older were reviewed along with those of age, gender and site of admission matched controls. A stratified exact test was employed to test the association between domestic violence and orbital fracture. Among 41 adult female cases with orbital fractures treated at our medical center, three (7.3%) reported domestic violence compared to zero among the matched controls (p = 0.037). We believe that domestic violence may be under-reported in both orbital fracture cases and controls. This may result in an underestimate of the orbital fracture versus domestic violence association. Domestic violence is a serious women's health and societal problem. Domestic violence may have a variety of presentations, including illnesses and injuries. Orbital fracture is an identifiable manifestation of domestic violence. Domestic violence is more likely to be detected in adult female hospital patients with orbital fracture than in matched controls with any other diagnosis. Physicians who treat patients with orbital fractures should be familiar with this mechanism of injury.

  16. Design of a Model of Forearm Bone Fractures for Educational Purposes

    ERIC Educational Resources Information Center

    Jastaniah, Saddig; Hamdan, Abdulrahman; Alhadrami, Abdullah; Almatrafi, Talal; Arif, Ahmed; Almalki, Hassan

    2016-01-01

    This work explores a new approach to demonstrate possible forearm fractures in humans as an educating means for student radiographers. The Design of abnormal bones are not normally available as phantoms; the manufacturer usually produces normal human musculoskeletal models for educational purposes. Hence fractures and abnormalities are usually…

  17. VITAL-Bone Health: rationale and design of two ancillary studies evaluating the effects of vitamin D and/or omega-3 fatty acid supplements on incident fractures and bone health outcomes in the VITamin D and OmegA-3 TriaL (VITAL)

    PubMed Central

    LeBoff, Meryl S.; Yue, Amy Y.; Copeland, Trisha; Cook, Nancy R.; Buring, Julie E.; Manson, JoAnn E.

    2015-01-01

    Rationale Although vitamin D is widely used to promote skeletal health, definitive data on benefits and risks of supplemental vitamin D alone on bone are lacking. Results from large, randomized controlled trials in the general population are sparse. Data on the effects of supplemental omega-3 fatty acids (FAs) on bone are also limited. Design The VITamin D and OmegA-3 TriaL (VITAL) is a double-blind, placebo-controlled trial assessing the role of vitamin D3 (2000 IU/d) and omega-3 FA (1 g/d) supplements in reducing risks of cancer and cardiovascular disease among U.S. men aged ≥50 and women aged ≥55. To comprehensively test effects of supplemental vitamin D and/or omega-3 FAs on skeletal health, the VITAL: Effects on Fractures ancillary study is determining the effects of these supplements on incident fractures among 25,875 participants enrolled in the parent trial. Study investigators adjudicate fractures through detailed review of medical records and radiological images (hip and femur). In a complementary ancillary, VITAL: Effects on Structure and Architecture is determining the effects of supplemental vitamin D and/or omega-3 FAs on bone with detailed phenotyping during in-person visits. Comprehensive assessments of bone density, turnover, structure/architecture, body composition, and physical performance are being performed at baseline and 2 years post-randomization. Conclusion Results from these studies will clarify the relationship between supplemental vitamin D and/or omega-3 FAs on bone health outcomes, and inform clinical care and public health guidelines on the use of supplemental vitamin D for the primary prevention of fractures in women and men. PMID:25623291

  18. Fracture mechanics technology for optimum pressure vessel design.

    NASA Technical Reports Server (NTRS)

    Bjeletich, J. G.; Morton, T. M.

    1973-01-01

    A technique has been developed to design a maximum efficiency reliable pressure vessel of given geometry and service life. The technique for ensuring reliability of the minimum weight vessel relies on the application of linear elastic fracture mechanics and fracture mechanics concepts. The resultant design incorporates potential fatigue and stress corrosion crack extension during service of a worst case initial flaw. Maximum stress for safe life is specified by the design technique, thereby minimizing weight. Ratios of pressure and toughness parameters are employed to avoid arbitrary specification of design stress level which would lead to a suboptimum design.

  19. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field

    NASA Astrophysics Data System (ADS)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John

    2017-08-01

    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  20. Neonatal vitamin D status from archived dried blood spots and future risk of fractures in childhood: results from the D-tect study, a population-based case-cohort study.

    PubMed

    Händel, Mina Nicole; Frederiksen, Peder; Cohen, Arieh; Cooper, Cyrus; Heitmann, Berit Lilienthal; Abrahamsen, Bo

    2017-07-01

    Background: Whether antenatal and neonatal vitamin D status have clinical relevance in fracture prevention has not been examined extensively, although observational studies indicate that fetal life may be a sensitive period in relation to bone growth and mineralization during childhood. Objective: We examined whether 25-hydroxyvitamin D 3 [25(OH)D 3 ] concentrations in stored neonatal dried blood spot (DBS) samples are associated with pediatric fracture risk. We hypothesized that in particular, low neonatal vitamin D status may be a risk factor for fracture incidence among children. Design: In a register-based case-cohort study design, the case group was composed of 1039 individuals who were randomly selected from a total of 82,154 individuals who were born during 1989-1999 and admitted to a Danish hospital with a fracture of the forearm, wrist, scaphoid bone, clavicle, or ankle at age 6-13 y. The subcohort was composed of 1600 individuals randomly selected from all Danish children born during 1989-1999. The neonatal 25(OH)D 3 concentrations in DBS samples were assessed by using highly sensitive chromatography-tandem mass spectrometry. Results: The mean ± SD 25(OH)D 3 concentration for all subjects was 27.7 ± 18.9 nmol/L [median (IQR): 23.5 nmol/L (13.3, 37.3 nmol/L)] and showed significant monthly variation ( P < 0.0001) with the highest values in July and August. Individuals in the middle quintile of neonatal 25(OH)D 3 had lower odds of sustaining a fracture than did those in the lowest quintile (adjusted OR: 0.75; 95% CI: 0.58, 0.96), but a global test did not show any significant overall association (adjusted P = 0.13). Conclusions: This study suggested that neonatal vitamin D status does not influence subsequent fracture risk in childhood. This is in accordance with studies that report no association between antenatal maternal vitamin D status and childhood fractures. Further studies are needed to examine fracture risk in relation to prenatal vitamin D status in a randomized controlled setting. © 2017 American Society for Nutrition.

  1. Prevalence of overweight in children with bone fractures: a case control study.

    PubMed

    Valerio, Giuliana; Gallè, Francesca; Mancusi, Caterina; Di Onofrio, Valeria; Guida, Pasquale; Tramontano, Antonino; Ruotolo, Edoardo; Liguori, Giorgio

    2012-10-22

    Children's fractures have been enlisted among orthopaedics complaints of childhood obesity. Unhealthy lifestyle behaviours may contribute to increased risk. This study described the prevalence of overweight/obesity in children and adolescents reporting a recent fracture in relation to gender, dynamic of trauma, and site of fracture. Four-hundred-forty-nine children and adolescents with fracture and 130 fracture-free controls were recruited from a large children's hospital. The interaction between overweight and gender, dynamic of trauma, site of fracture was explored. Sports participation, television viewing, and calcium intake were also investigated. Overweight/obesity rate was increased in girls with fracture either at the upper or the lower limb (p= 0.004), while it was increased only in boys with fracture at the lower limb (p <0.02). Overweight/obesity rate did not differ between groups with low or moderate trauma. TV viewing ≥ 2 hrs was more frequent in children with fractures than controls (61.5% vs 34.5%, p =0.015) in the overweight/obese group. The increased prevalence of overweight/obesity in children with fractures is related to gender and site of fracture. Higher levels of sedentary behaviours characterize overweight children reporting fractures.

  2. Prevalence of overweight in children with bone fractures: a case control study

    PubMed Central

    2012-01-01

    Background Children's fractures have been enlisted among orthopaedics complaints of childhood obesity. Unhealthy lifestyle behaviours may contribute to increased risk. This study described the prevalence of overweight/obesity in children and adolescents reporting a recent fracture in relation to gender, dynamic of trauma, and site of fracture. Methods Four-hundred-forty-nine children and adolescents with fracture and 130 fracture-free controls were recruited from a large children’s hospital. The interaction between overweight and gender, dynamic of trauma, site of fracture was explored. Sports participation, television viewing, and calcium intake were also investigated. Results Overweight/obesity rate was increased in girls with fracture either at the upper or the lower limb (p= 0.004), while it was increased only in boys with fracture at the lower limb (p <0.02). Overweight/obesity rate did not differ between groups with low or moderate trauma. TV viewing ≥ 2 hrs was more frequent in children with fractures than controls (61.5% vs 34.5%, p =0.015) in the overweight/obese group. Conclusions The increased prevalence of overweight/obesity in children with fractures is related to gender and site of fracture. Higher levels of sedentary behaviours characterize overweight children reporting fractures. PMID:23088687

  3. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.; Olson, R.; Wilkowski, O.G.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less

  4. Determination of Fracture Patterns in Glass and Glassy Polymers.

    PubMed

    Baca, Allison C; Thornton, John I; Tulleners, Frederic A

    2016-01-01

    The study of fractures of glass, glassy-type materials, and plastic has long been of interest to the forensic community. The focus of this interest has been the use of glass and polymer fractures to associate items of evidence under the assumption that each fracture is different. Generally, it is well-accepted that deviations exist; however, the emphasis has been on classifying and predicting fracture rather than determining that each fracture is different. This study documented the controlled fracture patterns of 60 glass panes, 60 glass bottles, and 60 plastic tail light lens covers using both dynamic impact and static pressure methods under closely controlled conditions. Each pattern was intercompared, and based on the limited specimens tested in this study, the results illustrate that the fracture patterns are different. Further repetitive studies, under controlled conditions, will be needed to provide more statistical significance to the theory that each fracture forms a nonreproducible fracture pattern. © 2015 American Academy of Forensic Sciences.

  5. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers.

    PubMed

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (P<0.05) between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS(®) (1,806±165 N) and e.max(®) ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM(®) 9 (1,849±150 N) demonstrated the highest mean fracture values. The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures.

  6. Proceedings of the Army Symposium on Solid Mechanics, 1976 - Composite Materials: The Influence of Mechanics of Failure on Design

    DTIC Science & Technology

    1976-09-01

    SOFTENING STRIP DESIGN CONCEPTS Initial studies of softening strip design concepts were presented by Eisenmann (8) in boron/epoxy laminates. His...Metals," Foreign Object Impact Damage to Composites, ASTM-STP-568, 1974. 8. Eisenmann , J. R., and Kaminski, B. E., "Fracture Control for Composite...REFERENCES 1. Waddoups, M.E., Eisenmann , J.R., and Kaminski, B.E., Journal of Composite Materials, Vol. 5, October 1971, pp. 446-454. 2. Whitney

  7. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laubach, S.E.; Marrett, R.; Rossen, W.

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less

  8. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study.

    PubMed

    Aktas, Guliz; Yerlikaya, Hatice; Akca, Kivanc

    2018-04-01

    To evaluate the effect of different silica-based ceramic materials on the mechanical failure behavior of endocrowns used in the restoration of endodontically treated mandibular molar teeth. Thirty-six intact mandibular molar teeth extracted because of a loss of periodontal support received root canal treatment. The teeth were prepared with a central cavity to support the endocrowns, replacing the occlusal surface with mesial-lingual-distal walls. Data acquisition of the prepared tooth surfaces was carried out digitally with a powder-free intraoral scanner. Restoration designs were completed on manufactured restorations from three silicate ceramics: alumina-silicate (control), zirconia-reinforced (Zr-R), and polymer-infiltrated (P-I). Following adhesive cementation, endocrowns were subjected to thermal aging, and then, each specimen was obliquely loaded to record the fracture strength and define the mechanical failure. For the failure definition, the fracture type characteristics were identified, and further analytic measurements were made on the fractured tooth and ceramic structure. Load-to-fracture failure did not differ significantly, and the calculated mean values were 1035.08 N, 1058.33 N, and 1025.00 N for control, Zr-R, and P-I groups, respectively; however, the stiffness of the restoration-tooth complex was significantly higher than that in both test groups. No statistically significant correlation was established in paired comparisons of the failure strength, restorative stiffness, and fractured tooth distance parameters. The failure mode for teeth restored with zirconia-reinforced glass ceramics was identified as non-restorable. The resin interface in the control and P-I groups presented similar adhesive failure behavior. Mechanical failure of endocrown restorations does not significantly differ for silica-based ceramics modified either with zirconia or polymer. © 2016 by the American College of Prosthodontists.

  9. Production enhancement through aggressive flowback procedures in the Codell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A.J.; Ashton, P.J.N.; Lang, J.

    1996-12-31

    Proppant flowback following fracture stimulation treatments continues to be a major concern in many wells around the world. The current trend towards more tip screen out (TSO) and reverse screenout designs has increased the need for better control of proppant flowback under increasingly severe drag force conditions. Recent studies in the Codell formation have indicated a correlation between load water and polymer recovery on fracture cleanup and subsequent gas production. This paper describes a subsequent twenty-five well study of the specific effects of combining forced closure/reverse gravel packs along with varying flowback rates and choke schedules on load water recoverymore » and normalized gas and condensate production. One of the key issues addressed is the use of aggressive flowback schedules while maintaining proppant flowback control.« less

  10. Discussion of examination of a cored hydraulic fracture in a deep gas well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolte, K.G.

    Warpinski et al. document information found from a core through a formation after a hydraulic fracture treatment. As they indicate, the core provides the first detailed evaluation of an actual propped hydraulic fracture away from the well and at a significant depth, and this evaluation leads to findings that deviate substantially from the assumptions incorporated into current fracturing models. In this discussion, a defense of current fracture design assumptions is developed. The affirmation of current assumptions, for general industry applications, is based on an assessment of the global impact of the local complexity found in the core. The assessment leadsmore » to recommendations for the evolution of fracture design practice.« less

  11. Maxillofacial injuries among trauma patients undergoing head computerized tomography; A Ugandan experience.

    PubMed

    Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane

    2017-01-01

    The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18-80) years and 18-27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Good matched case-control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures.

  12. Bone loss from the hand in women following distal forearm fracture.

    PubMed

    Ingle, B M; Eastell, R

    2001-01-01

    Bone loss occurs after distal forearm fracture, but it is unclear if this bone loss is fully recovered. We designed a cross-sectional study to evaluate the time course of the bone loss from the hand after distal forearm fracture. We identified 40 women who had a fracture of the distal forearm within the previous 4.5 years. Their ages ranged from 42 to 81 (mean 64 years) and time since fracture 6 to 54 (mean 28 months). These were compared with 95 women (mean age 67, range 57 to 80 years) from a population-based cohort. Lumbar spine (LS) and hand bone mineral density (BMD) were measured in all subjects using a Hologic QDR 1000/W densitometer. Ultrasound of the fingers of both hands was measured in the forearm fracture group using a DBM Sonic 1200 R model. Compared to controls, LS BMD was decreased by 6.4% (p<0.001), non-fractured hand by 3.2% (p<0.001) and the fractured hand by 6.1% (p<0.001) in the forearm fracture group. The mean difference in bone density between the fractured and non-fractured hand was 0.0207 g/cm2, the average value for the non-fractured hand being 0.304 g/cm2. The decement in hand BMD was equivalent to 6.2% (p<0.0001). The difference in hand BMD between the fractured and non-fractured side was greatest when the time since fracture was short; there was no further difference in hand BMD after 2 years. Ultrasound showed a mean difference of 18.7 m/s in amplitude-dependent speed of sound (AD-SoS) with the average value being 1893 m/s. A 1.0% decrease was observed in the fractured hand AD-SoS (p<0.05). A strong relationship was observed between AD-SoS and BMD in both hands (r = 0.70, p<0.001). We conclude that distal forearm fracture results in a significant decrease in hand BMD that is partially reversible. The decrease in hand BMD is reflected in the ultrasound properties of the finger phalanx.

  13. Fracture resistance of pulpless teeth restored with post-cores and crowns.

    PubMed

    Hayashi, Mikako; Takahashi, Yutaka; Imazato, Satoshi; Ebisu, Shigeyuki

    2006-05-01

    The present study was designed to test the null hypothesis that there is no difference in the fracture resistance of pulpless teeth restored with different types of post-core systems and full coverage crowns. Extracted human upper premolars were restored with a fiber post, prefabricated metallic post or cast metallic post-core. Teeth with full crown preparations without post-core restorations served as a control. All teeth were restored with full coverage crowns. A 90-degree vertical or 45-degree oblique load was applied to the restored teeth with a crosshead speed of 0.5 mm/min, and the fracture loads and mode of fracture were recorded. Under the condition of vertical loading, the fracture load of teeth restored with the cast metallic post-cores was greatest among the groups (two-factor factorial ANOVA and Scheffe's F test, P<0.05). All fractures in teeth restored with all types of post-core systems propagated in the middle portions of roots, including the apices of the posts. Under the condition of oblique loading, the fracture load of teeth restored with pre-fabricated metallic posts was significantly smaller than that in other groups. Two-thirds of fractures in the fiber post group propagated within the cervical area, while most fractures in other groups extended beyond the middle of the roots. From the results of the present investigations, it was concluded that under the conditions of vertical and oblique loadings, the combination of a fiber post and composite resin core with a full cast crown is most protective of the remaining tooth structure.

  14. Genetic predisposition for femoral neck stress fractures in military conscripts

    PubMed Central

    2010-01-01

    Background Stress fractures are a significant problem among athletes and soldiers and may result in devastating complications or even permanent handicap. Genetic factors may increase the risk, but no major susceptibility genes have been identified. The purpose of this study was to search for possible genetic factors predisposing military conscripts to femoral neck stress fractures. Results Eight genes involved in bone metabolism or pathology (COL1A1, COL1A2, OPG, ESR1, VDR, CTR, LRP5, IL-6) were examined in 72 military conscripts with a femoral neck stress fracture and 120 controls. The risk of femoral neck stress fracture was significantly higher in subjects with low weight and body mass index (BMI). An interaction between the CTR (rs1801197) minor allele C and the VDR C-A haplotype was observed, and subjects lacking the C allele in CTR and/or the C-A haplotype in VDR had a 3-fold higher risk of stress fracture than subjects carrying both (OR = 3.22, 95% CI 1.38-7.49, p = 0.007). In addition, the LRP5 haplotype A-G-G-C alone and in combination with the VDR haplotype C-A was associated with stress fractures through reduced body weight and BMI. Conclusions Our findings suggest that genetic factors play a role in the development of stress fractures in individuals subjected to heavy exercise and mechanical loading. The present results can be applied to the design of future studies that will further elucidate the genetics of stress fractures. PMID:20961463

  15. A Randomized Educational Intervention Trial to Determine the Effect of Online Education on the Quality of Resident-Delivered Care.

    PubMed

    Dolan, Brigid M; Yialamas, Maria A; McMahon, Graham T

    2015-09-01

    There is limited research on whether online formative self-assessment and learning can change the behavior of medical professionals. We sought to determine if an adaptive longitudinal online curriculum in bone health would improve resident physicians' knowledge, and change their behavior regarding prevention of fragility fractures in women. We used a randomized control trial design in which 50 internal medicine resident physicians at a large academic practice were randomized to either receive a standard curriculum in bone health care alone, or to receive it augmented with an adaptive, longitudinal, online formative self-assessment curriculum delivered via multiple-choice questions. Outcomes were assessed 10 months after the start of the intervention. Knowledge outcomes were measured by a multiple-choice question examination. Clinical outcomes were measured by chart review, including bone density screening rate, calculation of the fracture risk assessment tool (FRAX) score, and rate of appropriate bisphosphonate prescription. Compared to the control group, residents participating in the intervention had higher scores on the knowledge test at the end of the study. Bone density screening rates and appropriate use of bisphosphonates were significantly higher in the intervention group compared with the control group. FRAX score reporting did not differ between the groups. Residents participating in a novel adaptive online curriculum outperformed peers in knowledge of fragility fracture prevention and care practices to prevent fracture. Online adaptive education can change behavior to improve patient care.

  16. A Randomized Educational Intervention Trial to Determine the Effect of Online Education on the Quality of Resident-Delivered Care

    PubMed Central

    Dolan, Brigid M.; Yialamas, Maria A.; McMahon, Graham T.

    2015-01-01

    Background There is limited research on whether online formative self-assessment and learning can change the behavior of medical professionals. Objective We sought to determine if an adaptive longitudinal online curriculum in bone health would improve resident physicians' knowledge, and change their behavior regarding prevention of fragility fractures in women. Methods We used a randomized control trial design in which 50 internal medicine resident physicians at a large academic practice were randomized to either receive a standard curriculum in bone health care alone, or to receive it augmented with an adaptive, longitudinal, online formative self-assessment curriculum delivered via multiple-choice questions. Outcomes were assessed 10 months after the start of the intervention. Knowledge outcomes were measured by a multiple-choice question examination. Clinical outcomes were measured by chart review, including bone density screening rate, calculation of the fracture risk assessment tool (FRAX) score, and rate of appropriate bisphosphonate prescription. Results Compared to the control group, residents participating in the intervention had higher scores on the knowledge test at the end of the study. Bone density screening rates and appropriate use of bisphosphonates were significantly higher in the intervention group compared with the control group. FRAX score reporting did not differ between the groups. Conclusions Residents participating in a novel adaptive online curriculum outperformed peers in knowledge of fragility fracture prevention and care practices to prevent fracture. Online adaptive education can change behavior to improve patient care. PMID:26457142

  17. Fracture Resistance of Retreated Roots Using Different Retreatment Systems

    PubMed Central

    Er, Kursat; Tasdemir, Tamer; Siso, Seyda Herguner; Celik, Davut; Cora, Sabri

    2011-01-01

    Objectives: This study was designed to evaluate the fracture resistance of retreated roots using different rotary retreatment systems. Methods: Forty eight freshly extracted human canine teeth with single straight root canals were instrumented sequentially increasing from size 30 to a size 55 using K-files whit a stepback technique. The teeth were randomly divided into three experimental and one control groups of 12 specimens each. The root canals were filled using cold lateral compaction of gutta-percha and AH Plus (Dentsply Detrey, Konstanz, Germany) sealer in experimental groups. Removal of gutta-percha was performed with the following devices and techniques: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), R-Endo (Micro-Mega, Besançon, France), and Mtwo (Sweden & Martina, Padova, Italy) rotary retreatment systems. Control group specimens were only instrumented, not filled or retreated. The specimens were then mounted in copper rings, were filled with a self-curing polymethylmethacrylate resin, and the force required to cause vertical root fracture was measured using a universal testing device. The force of fracture of the roots was recorded and the results in the various groups were compared. Statistical analysis was accomplished by one-way ANOVA and a post hoc Tukey tests. Results: There were statistically significant differences between the control and experimental groups (P<.05). However, there were no significant differences among the experimental groups. Conclusions: Based on the results, all rotary retreatment techniques used in this in vitro study produced similar root weakness. PMID:21912497

  18. [Damage Control Surgery in Polytrauma Patients with Pelvic Fractures. Is It Possible to Use Internal Fixation?

    PubMed

    Havlůj, L; Džupa, V; Gürlich, R

    2017-01-01

    Current polytrauma management is multidisciplinary, with Damage Control Surgery (DCS), Damage Control Orthopaedics (DCO) and Damage Control Resuscitation (DCR) being applied in the first few hours after injury. The most severe group of polytrauma patients are those with circulatory instability and massive blood loss as a consequence of unstable pelvic fractures. In treating these patients, of crucial importance is the speed and quality of stabilisation of pelvic fracture fragments. The authors present two case reports of polytrauma patients with unstable pelvic fractures, in whom open reduction and internal fixation was performed on the anterior fracture segment through extended laparotomy in order to stop bleeding into the abdominopelvic cavity as part of the DCS approach. Key words: exsanguination, polytrauma, unstable pelvic fracture, plate fixation.

  19. The risk-stratified osteoporosis strategy evaluation study (ROSE): a randomized prospective population-based study. Design and baseline characteristics.

    PubMed

    Rubin, Katrine Hass; Holmberg, Teresa; Rothmann, Mette Juel; Høiberg, Mikkel; Barkmann, Reinhard; Gram, Jeppe; Hermann, Anne Pernille; Bech, Mickael; Rasmussen, Ole; Glüer, Claus C; Brixen, Kim

    2015-02-01

    The risk-stratified osteoporosis strategy evaluation study (ROSE) is a randomized prospective population-based study investigating the effectiveness of a two-step screening program for osteoporosis in women. This paper reports the study design and baseline characteristics of the study population. 35,000 women aged 65-80 years were selected at random from the population in the Region of Southern Denmark and-before inclusion-randomized to either a screening group or a control group. As first step, a self-administered questionnaire regarding risk factors for osteoporosis based on FRAX(®) was issued to both groups. As second step, subjects in the screening group with a 10-year probability of major osteoporotic fractures ≥15% were offered a DXA scan. Patients diagnosed with osteoporosis from the DXA scan were advised to see their GP and discuss pharmaceutical treatment according to Danish National guidelines. The primary outcome is incident clinical fractures as evaluated through annual follow-up using the Danish National Patient Registry. The secondary outcomes are cost-effectiveness, participation rate, and patient preferences. 20,904 (60%) women participated and included in the baseline analyses (10,411 in screening and 10,949 in control group). The mean age was 71 years. As expected by randomization, the screening and control groups had similar baseline characteristics. Screening for osteoporosis is at present not evidence based according to the WHO screening criteria. The ROSE study is expected to provide knowledge of the effectiveness of a screening strategy that may be implemented in health care systems to prevent fractures.

  20. A Cohort Study of Thiazolidinediones and Fractures in Older Adults with Diabetes

    PubMed Central

    Solomon, Daniel H.; Cadarette, Suzanne M.; Choudhry, Niteesh K.; Canning, Claire; Levin, Raisa; Stürmer, Til

    2009-01-01

    Context: Thiazolidenediones (TZDs) are selective ligands of peroxisome-proliferator-activated receptor-γ and have been shown to reduce bone mineral density. Recent results from several randomized controlled trials find an increased risk of fracture with TZDs compared with other oral antidiabetic agents. Objective: The aim of the study was to determine the association between TZD use and fracture risk among older adults with diabetes. Design: We conducted a cohort study. Participants: Medicare beneficiaries with at least one diagnosis of diabetes initiating monotherapy for an oral hypoglycemic agent participated in the study. Main Outcome: We measured the incidence of fracture within the cohort. Results: Among the 20,964 patients with diabetes eligible for this study, 686 (3.3%) experienced a fracture during the median follow-up of approximately 10 months. Although not statistically significant, patients using only a TZD were more likely to experience a fracture than those using metformin (adjusted relative risk, 1.31; 95% confidence interval, 0.98–1.77; P = 0.071) or a sulfonylurea (adjusted relative risk, 1.21; 95% confidence interval, 0.94–1.55; P = 0.12). Each individual TZD was associated with an increased risk, with confidence intervals overlapping unity, compared with both metformin and sulfonylureas. The adjusted risk of any fracture associated with TZD use compared with metformin was elevated for non-insulin-using patients, women and men. If TZD use is associated with fractures, the number needed for one excess fracture when comparing TZD users to sulfonylurea users was 200, and the number was 111 when comparing TZDs with metformin. Conclusions: As has been found with other analyses, our data suggest that TZDs may be associated with an increased risk of fractures compared with oral sulfonylureas and metformin. PMID:19470635

  1. Fixation using alternative implants for the treatment of hip fractures (FAITH): design and rationale for a multi-centre randomized trial comparing sliding hip screws and cancellous screws on revision surgery rates and quality of life in the treatment of femoral neck fractures.

    PubMed

    2014-06-26

    Hip fractures are a common type of fragility fracture that afflict 293,000 Americans (over 5,000 per week) and 35,000 Canadians (over 670 per week) annually. Despite the large population impact the optimal fixation technique for low energy femoral neck fractures remains controversial. The primary objective of the FAITH study is to assess the impact of cancellous screw fixation versus sliding hip screws on rates of revision surgery at 24 months in individuals with femoral neck fractures. The secondary objective is to determine the impact on health-related quality of life, functional outcomes, health state utilities, fracture healing, mortality and fracture-related adverse events. FAITH is a multi-centre, multi-national randomized controlled trial utilizing minimization to determine patient allocation. Surgeons in North America, Europe, Australia, and Asia will recruit a total of at least 1,000 patients with low-energy femoral neck fractures. Using central randomization, patients will be allocated to receive surgical treatment with cancellous screws or a sliding hip screw. Patient outcomes will be assessed at one week (baseline), 10 weeks, 6, 12, 18, and 24 months post initial fixation. We will independently adjudicate revision surgery and complications within 24 months of the initial fixation. Outcome analysis will be performed using a Cox proportional hazards model and likelihood ratio test. This study represents major international efforts to definitively resolve the treatment of low-energy femoral neck fractures. This trial will not only change current Orthopaedic practice, but will also set a benchmark for the conduct of future Orthopaedic trials. The FAITH trial is registered at ClinicalTrials.gov (Identifier NCT00761813).

  2. Are Locking Constructs in Distal Femoral Fractures Always Best? A Prospective Multicenter Randomized Controlled Trial Comparing the Less Invasive Stabilization System With the Minimally Invasive Dynamic Condylar Screw System.

    PubMed

    2016-01-01

    The purpose of this clinical study is to determine whether the rate of fracture healing and fracture union, repaired with a locked device, will be as good as or better than standard nonlocking bicortical fixation in distal femoral fractures. Institutional review board-approved, multicenter prospective randomized controlled trial. Seven level 1 trauma centers across Canada. Fifty-two patients with distal femoral fractures (AO/OTA 33A1 to 33C2) were enrolled in the randomized trial. Twelve AO/OTA 33C3 fractures were excluded from the randomized trial but followed up as a nonrandomized cohort. Patients were treated through a standardized minimally invasive approach. Fractures were randomized 1:1 to treatment with the locked Less Invasive Stabilization System (LISS; Synthes, Paoli, PA) or the dynamic condylar screw (DCS). The nonrandomized cohort was treated at the surgeon's discretion. Primary outcomes were time to radiological union and number of delayed/nonunions at 12 months. Secondary outcomes were postoperative function and complications. Fifty-two patients were randomized including 34 women and 18 men. The mean age was 59 years. Twenty-eight patients were treated with the LISS and 24 with the DCS. There was no statistically significant difference between the LISS and the DCS in terms of the number of fractures healed, time to union, or functional scores. Complications and revisions were more common in the LISS group. There were 7 reoperations in the LISS group and one in the DCS group. Only 52% of the LISS group healed without intervention by 12 months compared with 91% in the DCS group. There was no advantage to the locking plate design in the management of distal femoral fractures in this study. The higher cost of the locking plates, challenges in technique, and lack of superiority have led the authors to discontinue the use of this lateral unicortical locking device in favor of other devices that allow locked or nonlocked bicortical fixation, articular compression, and bridging of the comminuted fracture segments. The cost-effective treatment for a subgroup or periarticular fractures may be a fixed-angle nonlocked device in patients with reasonable bone quality. Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.

  3. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study.

    PubMed

    Rousseau, Catherine; Jean, Sonia; Gamache, Philippe; Lebel, Stéfane; Mac-Way, Fabrice; Biertho, Laurent; Michou, Laëtitia; Gagnon, Claudia

    2016-07-27

     To investigate whether bariatric surgery increases the risk of fracture.  Retrospective nested case-control study.  Patients who underwent bariatric surgery in the province of Quebec, Canada, between 2001 and 2014, selected using healthcare administrative databases.  12 676 patients who underwent bariatric surgery, age and sex matched with 38 028 obese and 126 760 non-obese controls.  Incidence and sites of fracture in patients who had undergone bariatric surgery compared with obese and non-obese controls. Fracture risk was also compared before and after surgery (index date) within each group and by type of surgery from 2006 to 2014. Multivariate conditional Poisson regression models were adjusted for fracture history, number of comorbidities, sociomaterial deprivation, and area of residence.  Before surgery, patients undergoing bariatric surgery (9169 (72.3%) women; mean age 42 (SD 11) years) were more likely to fracture (1326; 10.5%) than were obese (3065; 8.1%) or non-obese (8329; 6.6%) controls. A mean of 4.4 years after surgery, bariatric patients were more susceptible to fracture (514; 4.1%) than were obese (1013; 2.7%) and non-obese (3008; 2.4%) controls. Postoperative adjusted fracture risk was higher in the bariatric group than in the obese (relative risk 1.38, 95% confidence interval 1.23 to 1.55) and non-obese (1.44, 1.29 to 1.59) groups. Before surgery, the risk of distal lower limb fracture was higher, upper limb fracture risk was lower, and risk of clinical spine, hip, femur, or pelvic fractures was similar in the bariatric and obese groups compared with the non-obese group. After surgery, risk of distal lower limb fracture decreased (relative risk 0.66, 0.56 to 0.78), whereas risk of upper limb (1.64, 1.40 to 1.93), clinical spine (1.78, 1.08 to 2.93), pelvic, hip, or femur (2.52, 1.78 to 3.59) fractures increased. The increase in risk of fracture reached significance only for biliopancreatic diversion.  Patients undergoing bariatric surgery were more likely to have fractures than were obese or non-obese controls, and this risk remained higher after surgery. Fracture risk was site specific, changing from a pattern associated with obesity to a pattern typical of osteoporosis after surgery. Only biliopancreatic diversion was clearly associated with fracture risk; however, results for Roux-en-Y gastric bypass and sleeve gastrectomy remain inconclusive. Fracture risk assessment and management should be part of bariatric care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCTstudy

    PubMed Central

    Määttä, M.; Macdonald, H. M.; Mulpuri, K.

    2016-01-01

    Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041

  5. Frequency of and risk factors for symptomatic bone fractures in patients with systemic lupus erythematosus.

    PubMed

    Ekblom-Kullberg, S; Kautiainen, H; Alha, P; Leirisalo-Repo, M; Julkunen, H

    2013-01-01

    To study risk factors for symptomatic bone fractures in patients with systemic lupus erythematosus (SLE) and to compare the frequency of fractures between SLE patients and population controls. The study included 222 SLE patients [mean age 47.0 years, disease duration 13.1 years, 204 (92%) women] and 720 population controls living in the metropolitan area of Helsinki. The history of symptomatic bone fractures in SLE patients and controls was recorded by interview, and demographic and clinical data of SLE patients were obtained by interview, clinical examination, and chart review. A history of at least one symptomatic bone fracture was recorded in 93 (42%) of all 222 patients with SLE. The risk of any fracture in 204 women with SLE compared to controls was 1.8 [95% confidence interval (CI) 1.3-2.4] and fractures in the ankle, hip, and vertebral column were more common than in female controls, with odds ratios (ORs) of 2.0 (95% CI 1.1-3.7), 5.1 (95% CI 1.2-21.5), and 4.0 (95% CI 1.8-8.6), respectively. In 18 men with SLE, compared to male controls, no difference in the frequency of fractures was observed (OR 0.7, 95% CI 0.3-2.0). Risk factors for bone fractures in women with SLE were age (p = 0.008), comorbidity (p = 0.050), and the duration of corticosteroid use (p = 0.025). Symptomatic bone fractures, especially in the ankle, hip, and vertebral column, are common in women with SLE. Special attention should be paid to preventing fractures in elderly female patients with comorbidities and a long duration of corticosteroid use.

  6. A close examination of healthcare expenditures related to fractures.

    PubMed

    Kilgore, Meredith L; Curtis, Jeffrey R; Delzell, Elizabeth; Becker, David J; Arora, Tarun; Saag, Kenneth G; Morrisey, Michael A

    2013-04-01

    This study evaluated reasons for healthcare expenditures both before and after the occurrence of fractures among Medicare beneficiaries. In a previous study we examined healthcare expenditures in the 6 months before and after fractures. The difference-"incremental" expenditures-provides one estimate of the potentially avoidable costs associated with fractures. We constructed a second estimate of the cost burden-"attributable" expenditures-using only those costs recorded in claims with fracture diagnosis codes. Attributable expenditures accounted for only 24% to 60% of incremental expenditures, depending on the fracture site. We examined health care expenditures between 1999 and 2005 among Medicare beneficiaries who experienced fractures (cases) and among beneficiaries who did not experience fractures (controls), matched to cases on age, race, and sex. We also examined healthcare expenditures for cases and controls for 24 months prior to the fracture index date. When expenditures associated with diagnoses for aftercare, joint pain, and osteoporosis, other musculoskeletal diagnoses, pneumonia, and pressure ulcers were included, the proportion of incremental costs directly attributable to fracture care rose to 72% to 88%. Expenditures prior to fracture were higher for cases than controls, and the rate of increase accelerated over the 12 months prior to the hip fracture. Our findings confirm that the original incremental cost analysis constituted a satisfactory method for estimating avoidable costs associated with fractures. We also conclude that those with fractures had much higher and growing healthcare expenditures in the 12 months prior to the event, compared with age-, race-, and sex-matched controls. This suggests that patterns of healthcare services utilization may provide a means to improve fracture prediction rules. Copyright © 2013 American Society for Bone and Mineral Research.

  7. Mode-I Fracture Toughness Testing and Coupled Cohesive Zone Modeling at In Situ P, T, and Chemical (H2O-CO2-NaCl) Conditions

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Choens, R. C., II; Regueiro, R. A.; Eichhubl, P.; Bryan, C. R.; Rinehart, A. J.; Su, J. C.; Heath, J. E.

    2017-12-01

    Propagation of mode I cracks is fundamental to subsurface engineering endeavors, but the majority of fracture toughness measurements are performed at ambient conditions. A novel testing apparatus was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and fracture toughness in analogs for reservoir rock and caprock lithologies at temperature and pressure conditions relevant to geologic carbon storage. Samples of Boise Sandstone and Marcellus Shale were subject to fracture propagation via a novel short rod fracture toughness tester composed of titanium and Hastelloy® and designed to fit inside a pressure vessel. The tester is controlled by a hydraulically-driven ram and instrumented with a LVDT to monitor displacement. We measure fracture toughness under conditions of dry supercritical CO2 (scCO2), scCO2-saturated brine, and scCO2 with varying water content ( 25%, 90%, and 100% humidity) at 13.8 MPa and 70oC. Water film development as a function of humidity is determined in situ during the experiments with a quartz crystal microbalance. Two orientations of the Marcellus are included in the testing matrix. Dry CO2 has a negligible to slightly strengthening effect compared to a control, however hydrous scCO2 can decrease the fracture toughness, and the effect increases with increasing humidity, which likely is due to capillary condensation of reactive water films at nascent crack tips and associated subcritical weakening. A 2D poromechanical finite element model with cohesive surface elements (CSEs) and a chemo-plasticity phenomenology is being used to describe the chemical weakening/softening effects observed in the testing. The reductions in fracture toughness seen in this study could be important in considerations of borehole stability, in situ stress measurements, changes in fracture gradient, and reservoir caprock integrity during CO2 injection and storage. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  8. Fracture Risk and Areal Bone Mineral Density in Adolescent Females with Anorexia Nervosa

    PubMed Central

    Faje, Alexander T.; Fazeli, Pouneh K.; Miller, Karen K.; Katzman, Debra K.; Ebrahimi, Seda; Lee, Hang; Mendes, Nara; Snelgrove, Deirdre; Meenaghan, Erinne; Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Objective To (i) compare fracture prevalence in adolescent females with anorexia nervosa (AN) vs. normal-weight controls and (ii) examine whether reductions in areal bone mineral density (aBMD) predict fracture risk in females with AN. Methods 418 females (310 with active AN and 108 normal-weight controls) 12–22 years old were studied cross-sectionally. Lifetime fracture history was recorded by a physician during participant interviews. Body composition and aBMD measurements of the whole body, whole body less head, lumbar spine, and hip were assessed by dual-energy x-ray absorptiometry (DXA), and bone mineral apparent density (BMAD) was calculated for the lumbar spine. Results Participants with AN and normal-weight controls did not differ for chronological age, sexual maturity, or height. The lifetime prevalence of prior fracture was 59.8% higher in those with AN compared to controls (31.0 % versus 19.4 %, p = 0.02), and the fracture incidence rate peaked in our cohort after the diagnosis of AN. Lower aBMD and lumbar BMAD were not associated with a higher prevalence of fracture in the AN or control group on univariate or multivariate analyses. Compared to controls, fracture prevalence was significantly higher in the subgroup of girls with AN who had normal aBMD or only modest reductions of aBMD (Z-scores > −1 or −1.5). Discussion This is the first study to show that the risk of fracture during childhood and adolescence is significantly higher in patients with AN than in normal-weight controls. Fracture prevalence is increased in this cohort of subjects with AN even without significant reductions in aBMD. PMID:24430890

  9. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa.

    PubMed

    Faje, Alexander T; Fazeli, Pouneh K; Miller, Karen K; Katzman, Debra K; Ebrahimi, Seda; Lee, Hang; Mendes, Nara; Snelgrove, Deirdre; Meenaghan, Erinne; Misra, Madhusmita; Klibanski, Anne

    2014-07-01

    To (i) compare fracture prevalence in adolescent females with anorexia nervosa (AN) versus normal-weight controls and (ii) examine whether reductions in areal bone mineral density (aBMD) predict fracture risk in females with AN. Four-hundred eighteen females (310 with active AN and 108 normal-weight controls) 12- to 22-years-old were studied cross-sectionally. Lifetime fracture history was recorded by a physician during participant interviews. Body composition and aBMD measurements of the whole body, whole body less head, lumbar spine, and hip were assessed by dual-energy X-ray absorptiometry, and bone mineral apparent density (BMAD) was calculated for the lumbar spine. Participants with AN and normal-weight controls did not differ for chronological age, sexual maturity, or height. The lifetime prevalence of prior fracture was 59.8% higher in those with AN as compared to controls (31.0% vs. 19.4%, p = 0.02), and the fracture incidence rate peaked in our cohort after the diagnosis of AN. Lower aBMD and lumbar BMAD were not associated with a higher prevalence of fracture in the AN or control group on univariate or multivariate analyses. Compared to controls, fracture prevalence was significantly higher in the subgroup of girls with AN who had normal aBMD or only modest reductions of aBMD (Z-scores > -1 or -1.5). This is the first study to show that the risk of fracture during childhood and adolescence is significantly higher in patients with AN than in normal-weight controls. Fracture prevalence is increased in this cohort of participants with AN even without significant reductions in aBMD. © 2014 Wiley Periodicals, Inc.

  10. No dose-dependent increase in fracture risk after long-term exposure to high doses of retinol or beta-carotene.

    PubMed

    Ambrosini, G L; Bremner, A P; Reid, A; Mackerras, D; Alfonso, H; Olsen, N J; Musk, A W; de Klerk, N H

    2013-04-01

    Uncertainty remains over whether or not high intakes of retinol or vitamin A consumed through food or supplements may increase fracture risk. This intervention study found no increase in fracture risk among 2,322 adults who took a controlled, high-dose retinol supplement (25,000 IU retinyl palmitate/day) for as long as 16 years. There was some evidence that beta-carotene supplementation decreased fracture risk in men. There is conflicting epidemiological evidence regarding high intakes of dietary or supplemental retinol and an increased risk for bone fracture. We examined fracture risk in a study administering high doses of retinol and beta-carotene (BC) between 1990 and 2007. The Vitamin A Program was designed to test the efficacy of retinol and BC supplements in preventing malignancies in persons previously exposed to blue asbestos. Participants were initially randomised to 7.5 mg retinol equivalents (RE)/day as retinyl palmitate, 30 mg/day BC or 0.75 mg/day BC from 1990 to 1996; after which, all participants received 7.5 mg RE/day. Fractures were identified by questionnaire and hospital admission data up until 2006. Risk of any fracture or osteoporotic fracture according to cumulative dose of retinol and BC supplementation was examined using conditional logistic regression models adjusting for age, sex, smoking, body mass index, medication use and previous fracture. Supplementation periods ranged from 1 to 16 years. Of the 2,322 (664 females and 1,658 males) participants, 187 experienced 237 fractures. No associations were observed between cumulative dose of retinol and risk for any fracture (OR per 10 g RE=0.83; 95% CI, 0.63-1.08) or osteoporotic fracture (OR per 10 g RE=0.95; 95% CI 0.64-1.40). Among men, cumulative dose of BC was associated with a slightly reduced risk of any fracture (OR per 10 g=0.89; 95% CI 0.81-0.98) and osteoporotic fracture (OR per 10 g=0.84; 95% CI 0.72-0.97). This study observed no increases in fracture risk after long-term supplementation with high doses of retinol and/or beta-carotene.

  11. Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems.

    PubMed

    Bilgin, Mehmet Selim; Erdem, Ali; Dilber, Erhan; Ersoy, İbrahim

    2016-01-01

    The purpose of this study was to compare the fracture resistance of Co-Cr post-cores fabricated with 3 different techniques: traditional casting (TC), computer-aided design and manufacturing (CAD/CAM) milling (CCM) and direct metal laser sintering (DMLS). Forty intact human mandibular premolar were endodontically treated. The roots were then randomly divided into four groups according to the post systems: the control group was only filled with gutta percha. Co-Cr metal posts were fabricated with TC, CCM and DMLS in the other three groups. The posts were luted with a resin cement and subjected to compression test at a crosshead speed of 1mm/min. The statistical analysis of the data was performed using one-way analysis of variance (ANOVA) and multiple comparison post hoc Tukey tests (α=.05). The samples were examined under a stereomicroscope with ×20 magnification for the evaluation of the fracture types. The mean fracture loads were 432.69 N for control, 608.89 N for TC, 689.40 N for DMLS and 959.26 N for CCM. One-way ANOVA revealed significant difference between the groups (p<0.01). In the post hoc Tukey test, there were significant differences between groups except DMLS and TC. While Co-Cr posts fabricated by TC and DMLS systems performed similarly in terms of fracture resistance, posts fabricated by CCM techniques showed higher fracture resistance values. Co-Cr metal posts fabricated by CCM and DMLS could be an alternative to TC processing in daily clinical application. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Is Surgery for Displaced, Midshaft Clavicle Fractures in Adults Cost-Effective? Results Based on a Multicenter Randomized Controlled Trial

    PubMed Central

    2010-01-01

    Objectives To determine the cost-effectiveness of open reduction internal fixation (ORIF) of displaced, midshaft clavicle fractures in adults. Design Formal cost-effectiveness analysis based on a prospective, randomized controlled trial. Setting Eight hospitals in Canada (seven university affiliated and one community hospital) Patients/Participants 132 adults with acute, completely displaced, midshaft clavicle fractures Intervention Clavicle ORIF versus nonoperative treatment Main Outcome Measurements Utilities derived from SF-6D Results The base-case cost per quality adjusted life year (QALY) gained for ORIF was $65,000. Cost-effectiveness improved to $28,150/QALY gained when the functional benefit from ORIF was assumed to be permanent, with cost per QALY gained falling below $50,000 when the functional advantage persisted for 9.3 years or more. In other sensitivity analyses, the cost per QALY gained for ORIF fell below $50,000 when ORIF cost less than $10,465 (base case cost $13,668) or the long-term utility difference between nonoperative treatment and ORIF was greater than 0.034 (base-case difference 0.014). Short-term disutility associated with fracture healing also affected cost-effectiveness, with the cost per QALY gained for ORIF falling below $50,000 when the utility of a fracture treated nonoperatively prior to union was less than 0.617 (base-case utility 0.706) or when nonoperative treatment increased the time to union by 20 weeks (base-case difference 12 weeks). Conclusions The cost-effectiveness of ORIF after acute clavicle fracture depended on the durability of functional advantage for ORIF compared to nonoperative treatment. When functional benefits persisted for more than 9 years, ORIF had favorable value compared with many accepted health interventions. PMID:20577073

  13. Design for progressive fracture in composite shell structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Murthy, Pappu L. N.

    1992-01-01

    The load carrying capability and structural behavior of composite shell structures and stiffened curved panels are investigated to provide accurate early design loads. An integrated computer code is utilized for the computational simulation of composite structural degradation under practical loading for realistic design. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Progressive fracture investigations providing design insight for several classes of composite shells are presented. Results demonstrate the significance of local defects, interfacial regions, and stress concentrations on the structural durability of composite shells.

  14. The Role of Organic Proteins on the Crack Growth Resistance of Human Enamel

    PubMed Central

    Yahyazadehfar, Mobin; Arola, Dwayne

    2015-01-01

    With only 1% protein by weight, tooth enamel is the most highly mineralized tissue in mammals. The focus of this study was to evaluate contributions of the proteins on the fracture resistance of this unique structural material. Sections of enamel were obtained from the cusps of human molars and the crack growth resistance was quantified using a conventional fracture mechanics approach with complementary finite element analysis. In selected specimens the proteins were extracted using a potassium hydroxide treatment. Removal of the proteins resulted in approximately 40% decrease in the fracture toughness with respect to the fully proteinized control. The loss of organic content was most detrimental to the extrinsic toughening mechanisms, causing over 80% reduction in their contribution to the total energy to fracture. This degradation occurred by embrittlement of the unbroken bridging ligaments and consequent reduction in the crack closure stress. Although the organic content of tooth enamel is very small, it is essential to crack growth toughening by facilitating the formation of unbroken ligaments and in fortifying their potency. Replicating functions of the organic content will be critical to the successful development of bio-inspired materials that are designed for fracture resistance. PMID:25805107

  15. Fracture healing: a consensus report from the International Osteoporosis Foundation Fracture Working Group.

    PubMed

    Silverman, S L; Kupperman, E S; Bukata, S V

    2016-07-01

    We used the RAND UCLA appropriateness method to decide appropriateness of use of osteoporosis medication after incident fracture and potential for fracture healing and make suggestions for trial design for clinical and preclinical research. To develop appropriateness criteria to assist in the use and study of osteoporosis medications in patients with recent fracture and in the potential use of osteoporosis medications to enhance delayed fracture healing. To promote further research by suggesting preclinical and clinical trial design for studies where fracture healing is the endpoint. RAND/UCLA appropriateness method (RUAM). A panel of experts, both members and non-members of the International Osteoporosis Foundation Fracture Working Group, were identified consisting of geriatricians, rheumatologists, orthopedists, endocrinologists, and internists. This resulted in a round 1 panel of 15 panelists, round 2 panel of 15 members, and a round 3 panel of 14 members. Agreement on statements and scenarios using RUAM. Three rounds of voting by panelists took place. Agreement in a third round was reached for 111 statements and scenarios, measured by median panel ratings and the amount of dispersion of panel ratings, based on the interpercentile range. An expert panel validated a set of statements and scenarios about the use of osteoporosis medications after incident fracture and use of these medications to enhance delayed fracture healing and made recommendations for study designs to investigate the effect of osteoporosis medications on fracture healing. The result of this exercise is intended to assist in improving patient care by identifying the appropriateness of use of osteoporosis medications after fracture and in fracture healing and to make suggestions for further preclinical and clinical research.

  16. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers

    PubMed Central

    Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele

    2016-01-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio. Future trials are planned to determine additional respirable dust and RCS concentration reductions achieved through these design changes. PMID:27003622

  17. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  18. Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Lapene, A.; Pauget, L.

    2012-12-01

    During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible. Karimi-Fard et al. [2] have developed an upscaling technique based on DFM representation. The original version of this technique was developed to construct a dual-porosity model from a discrete fracture description. This technique has been extended and generalized so it can be applied to a wide range of problems from reservoirs with a few or no fracture to highly fractured reservoirs. In this work, we present the application of these techniques to two three-dimensional fractured reservoirs constructed using real data. The first model contains more than 600 medium and large scale fractures. The fractures are not always connected which requires a general modeling technique. The reservoir has 50 wells (injectors and producers) and water flooding simulations are performed. The second test case is a larger reservoir with sparsely distributed faults. Single-phase simulations are performed with 5 producing wells. [1] Karimi-Fard M., Durlofsky L.J., and Aziz K. 2004. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE Journal, 9(2): 227-236. [2] Karimi-Fard M., Gong B., and Durlofsky L.J. 2006. Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research, 42(10): W10423.

  19. Use of Organic Nitrates and the Risk of Hip Fracture: A Population-Based Case-Control Study

    PubMed Central

    Pouwels, Sander; Lalmohamed, Arief; van Staa, Tjeerd; Cooper, Cyrus; Souverein, Patrick; Leufkens, Hubertus G.; Rejnmark, Lars; de Boer, Anthonius; Vestergaard, Peter; de Vries, Frank

    2010-01-01

    Context: Use of organic nitrates has been associated with increased bone mineral density. Moreover, a large Danish case-control study reported a decreased fracture risk. However, the association with duration of nitrate use, dose frequency, and impact of discontinuation has not been extensively studied. Objective: Our objective was to evaluate the association between organic nitrates and hip fracture risk. Methods: A case-control study was conducted using the Dutch PHARMO Record Linkage System (1991–2002, n = 6,763 hip fracture cases and 26,341 controls). Cases had their first admission for hip fracture, whereas controls had not sustained any fracture after enrollment. Current users of organic nitrates were patients who had received a prescription within 90 d before the index date. The analyses were adjusted for disease and drug history. Results: Current use of nitrates was not associated with a decreased risk of hip fracture [adjusted odds ratio (OR) = 0.93; 95% confidence interval (CI) = 0.83–1.04]. Those who used as-needed medication only had a lower risk of hip fracture (adjusted OR = 0.83; 95% CI = 0.63–1.08) compared with users of maintenance medication only (adjusted OR = 1.17; 95% CI = 0.97–1.40). No association was found between duration of nitrate use and fracture risk. Conclusions: Our overall analyses showed that risk of a hip fracture was significantly lower among users of as-needed organic nitrates, when compared with users of maintenance medication. Our analyses of hip fracture risks with duration of use did not further support a beneficial effect of organic nitrates on hip fracture, although residual confounding may have masked beneficial effects. PMID:20130070

  20. Use of organic nitrates and the risk of hip fracture: a population-based case-control study.

    PubMed

    Pouwels, Sander; Lalmohamed, Arief; van Staa, Tjeerd; Cooper, Cyrus; Souverein, Patrick; Leufkens, Hubertus G; Rejnmark, Lars; de Boer, Anthonius; Vestergaard, Peter; de Vries, Frank

    2010-04-01

    Use of organic nitrates has been associated with increased bone mineral density. Moreover, a large Danish case-control study reported a decreased fracture risk. However, the association with duration of nitrate use, dose frequency, and impact of discontinuation has not been extensively studied. Our objective was to evaluate the association between organic nitrates and hip fracture risk. A case-control study was conducted using the Dutch PHARMO Record Linkage System (1991-2002, n = 6,763 hip fracture cases and 26,341 controls). Cases had their first admission for hip fracture, whereas controls had not sustained any fracture after enrollment. Current users of organic nitrates were patients who had received a prescription within 90 d before the index date. The analyses were adjusted for disease and drug history. Current use of nitrates was not associated with a decreased risk of hip fracture [adjusted odds ratio (OR) = 0.93; 95% confidence interval (CI) = 0.83-1.04]. Those who used as-needed medication only had a lower risk of hip fracture (adjusted OR = 0.83; 95% CI = 0.63-1.08) compared with users of maintenance medication only (adjusted OR = 1.17; 95% CI = 0.97-1.40). No association was found between duration of nitrate use and fracture risk. Our overall analyses showed that risk of a hip fracture was significantly lower among users of as-needed organic nitrates, when compared with users of maintenance medication. Our analyses of hip fracture risks with duration of use did not further support a beneficial effect of organic nitrates on hip fracture, although residual confounding may have masked beneficial effects.

  1. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    DOE PAGES

    Wang, John Jy-An; Ren, Fei; Tan, Tin; ...

    2014-12-19

    Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed in the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to many catastrophic failures. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, special testing apparatus were designed to facilitate in situ fracture testing in H 2. A torsional fixture was developed tomore » utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H 2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.« less

  2. Do bisphosphonates inhibit direct fracture healing?: A laboratory investigation using an animal model.

    PubMed

    Savaridas, T; Wallace, R J; Salter, D M; Simpson, A H R W

    2013-09-01

    Fracture repair occurs by two broad mechanisms: direct healing, and indirect healing with callus formation. The effects of bisphosphonates on fracture repair have been assessed only in models of indirect fracture healing. A rodent model of rigid compression plate fixation of a standardised tibial osteotomy was used. Ten skeletally mature Sprague-Dawley rats received daily subcutaneous injections of 1 µg/kg ibandronate (IBAN) and ten control rats received saline (control). Three weeks later a tibial osteotomy was rigidly fixed with compression plating. Six weeks later the animals were killed. Fracture repair was assessed with mechanical testing, radiographs and histology. The mean stress at failure in a four-point bending test was significantly lower in the IBAN group compared with controls (8.69 Nmm(-2) (sd 7.63) vs 24.65 Nmm(-2) (sd 6.15); p = 0.017). On contact radiographs of the extricated tibiae the mean bone density assessment at the osteotomy site was lower in the IBAN group than in controls (3.7 mmAl (sd 0.75) vs 4.6 mmAl (sd 0.57); p = 0.01). In addition, histological analysis revealed progression to fracture union in the controls but impaired fracture healing in the IBAN group, with predominantly cartilage-like and undifferentiated mesenchymal tissue (p = 0.007). Bisphosphonate treatment in a therapeutic dose, as used for risk reduction in fragility fractures, had an inhibitory effect on direct fracture healing. We propose that bisphosphonate therapy not be commenced until after the fracture has united if the fracture has been rigidly fixed and is undergoing direct osteonal healing.

  3. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Todd,; Steven, N [Rio Rancho, NM; Polisar, Stephen [Albuquerque, NM; Hughs, Chance [Tijeras, NM

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  4. Effects of medication reviews performed by a physician on treatment with fracture-preventing and fall-risk-increasing drugs in older adults with hip fracture-a randomized controlled study.

    PubMed

    Sjöberg, Christina; Wallerstedt, Susanna M

    2013-09-01

    To investigate whether medication reviews increase treatment with fracture-preventing drugs and decrease treatment with fall-risk-increasing drugs. Randomized controlled trial (1:1). Departments of orthopedics, geriatrics, and medicine at Sahlgrenska University Hospital, Gothenburg, Sweden. One hundred ninety-nine consecutive individuals with hip fracture aged 65 and older. Medication reviews, based on assessments of risks of falls and fractures, regarding fracture-preventing and fall-risk-increasing drugs, performed by a physician, conveyed orally and in written form to hospital physicians during the hospital stay, and to general practitioners after discharge. Primary outcomes were changes in treatment with fracture-preventing and fall-risk-increasing drugs 12 months after discharge. Secondary outcomes were falls, fractures, deaths, and physicians' attitudes toward the intervention. At admission, 26% of intervention and 29% of control participants were taking fracture-preventing drugs, and 12% and 11%, respectively, were taking bone-active drugs, predominantly bisphosphonates. After 12 months, 77% of intervention and 58% of control participants were taking fracture-preventing drugs (P = .01), and 29% and 15%, respectively, were taking bone-active drugs (P = .04). Mean number of fall-risk-increasing drugs per participants was 3.1 (intervention) and 3.1 (control) at admission and 2.9 (intervention) and 3.1 (control) at 12 months (P = .62). No significant differences in hard endpoints were found. The responding physicians (n = 65) appreciated the intervention; on a scale from 1 (very bad) to 6 (very good), the median rating was 5 (interquartile range (IQR) 4-6) for the oral part and 5 (IQR 4-5.5) for the text part. Medication reviews performed and conveyed by a physician increased treatment with fracture-preventing drugs but did not significantly decrease treatment with fall-risk-increasing drugs in older adults with hip fracture. Prescribing physicians appreciated this intervention. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  5. Rib fractures in trauma patients: does operative fixation improve outcome?

    PubMed

    Majak, Peter; Næss, Pål A

    2016-12-01

    Renewed interest in surgical fixation of rib fractures has emerged. However, conservative treatment is still preferred at most surgical departments. We wanted to evaluate whether operative treatment of rib fractures may benefit severely injured patients. Several studies report a reduction in mechanical ventilation time, ICU length of stay (LOS), hospital LOS, pneumonia, need for tracheostomy, pain and costs in operatively treated patients with multiple rib fractures compared with patients treated nonoperatively. Although patient selection and timing of the operation seem crucial for successful outcome, no consensus exists. Mortality reduction has only been shown in a few studies. Most studies are retrospective cohort and case-control studies. Only four randomized control trials exist. Conservative treatment, consisting of respiratory assistance and pain control, is still the treatment of choice in the vast majority of patients with multiple rib fractures. In selected patients, operative fixation of fractured ribs within 72 h postinjury may lead to better outcome. More randomized control trials are needed to further determine who benefits from surgical fixation of rib fractures.

  6. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  7. Does regional loss of bone density explain low trauma distal forearm fractures in men (the Mr F study)?

    PubMed

    Hanusch, B C; Tuck, S P; McNally, R J Q; Wu, J J; Prediger, M; Walker, J; Tang, J; Piec, I; Fraser, W D; Datta, H K; Francis, R M

    2017-10-01

    The pathogenesis of low trauma wrist fractures in men is not fully understood. This study found that these men have lower bone mineral density at the forearm itself, as well as the hip and spine, and has shown that forearm bone mineral density is the best predictor of wrist fracture. Men with distal forearm fractures have reduced bone density at the lumbar spine and hip sites, an increased risk of osteoporosis and a higher incidence of further fractures. The aim of this case-control study was to investigate whether or not there is a regional loss of bone mineral density (BMD) at the forearm between men with and without distal forearm fractures. Sixty-one men with low trauma distal forearm fracture and 59 age-matched bone healthy control subjects were recruited. All subjects underwent a DXA scan of forearm, hip and spine, biochemical investigations, health questionnaires, SF-36v2 and Fracture Risk Assessment Tool (FRAX). The non-fractured arm was investigated in subjects with fracture and both forearms in control subjects. BMD was significantly lower at the ultradistal forearm in men with fracture compared to control subjects, in both the dominant (mean (SD) 0.386 g/cm 2 (0.049) versus 0.436 g/cm 2 (0.054), p < 0.001) and non-dominant arm (mean (SD) 0.387 g/cm 2 (0.060) versus 0.432 g/cm 2 (0.061), p = 0.001). Fracture subjects also had a significantly lower BMD at hip and spine sites compared with control subjects. Logistic regression analysis showed that the best predictor of forearm fracture was ultradistal forearm BMD (OR = 0.871 (0.805-0.943), p = 0.001), with the likelihood of fracture decreasing by 12.9% for every 0.01 g/cm 2 increase in ultradistal forearm BMD. Men with low trauma distal forearm fracture have significantly lower regional BMD at the ultradistal forearm, which contributes to an increased forearm fracture risk. They also have generalised reduction in BMD, so that low trauma forearm fractures in men should be considered as indicator fractures for osteoporosis.

  8. Ovariectomized Rats with Established Osteopenia have Diminished Mesenchymal Stem Cells in the Bone Marrow and Impaired Homing, Osteoinduction and Bone Regeneration at the Fracture Site.

    PubMed

    Tewari, Deepshikha; Khan, Mohd Parvez; Sagar, Nitin; China, Shyamsundar P; Singh, Atul K; Kheruka, Subhash C; Barai, Sukanta; Tewari, Mahesh C; Nagar, Geet K; Vishwakarma, Achchhe L; Ogechukwu, Omeje E; Bellare, Jayesh R; Gambhir, Sanjay; Chattopadhyay, Naibedya

    2015-04-01

    We investigated deleterious changes that take place in mesenchymal stem cells (MSC) and its fracture healing competence in ovariectomy (Ovx)-induced osteopenia. MSC from bone marrow (BM) of ovary intact (control) and Ovx rats was isolated. (99m)Tc-HMPAO (Technitium hexamethylpropylene amine oxime) labeled MSC was systemically transplanted to rats and fracture tropism assessed by SPECT/CT. PKH26 labeled MSC (PKH26-MSC) was bound in scaffold and applied to fracture site (drill-hole in femur metaphysis). Osteoinduction was quantified by calcein binding and microcomputed tomography. Estrogen receptor (ER) antagonist, fulvestrant was used to determine ER dependence of osteo-induction by MSC. BM-MSC number was strikingly reduced and doubling time increased in Ovx rats compared to control. SPECT/CT showed reduced localization of (99m)Tc-HMPAO labeled MSC to the fracture site, 3 h post-transplantation in Ovx rats as compared with controls. Post-transplantation, Ovx MSC labeled with PKH26 (Ovx PKH26-MSC) localized less to fracture site than control PKH26-MSC. Transplantation of either control or Ovx MSC enhanced calcein binding and bone volume at the callus of control rats over placebo group however Ovx MSC had lower efficacy than control MSC. Fulvestrant blocked osteoinduction by control MSC. When scaffold bound MSC was applied to fracture, osteoinduction by Ovx PKH26-MSC was less than control PKH26-MSC. In Ovx rats, control MSC/E2 treatment but not Ovx MSC showed osteoinduction. Regenerated bone was irregularly deposited in Ovx MSC group. In conclusion, Ovx is associated with diminished BM-MSC number and its growth, and Ovx MSC displays impaired engraftment to fracture and osteoinduction besides disordered bone regeneration.

  9. 3D printing application and numerical simulations in a fracture system

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Martinez, M. J.

    2017-12-01

    The hydrogeological and mechanical properties in fractured and porous media are fundamental to predicting coupled multiphysics processes in the subsurface. Recent advances in experimental methods and multi-scale imaging capabilities have revolutionized our ability to quantitatively characterize geomaterials and digital counterparts are now routinely used for numerical simulations to characterize petrophysical and mechanical properties across scales. 3D printing is a very effective and creative technique that reproduce the digital images in a controlled way. For geoscience applications, 3D printing can be co-opted to print reproducible porous and fractured structures derived from CT-imaging of actual rocks and theoretical algorithms for experimental testing. In this work we used a stereolithography (SLA) method to create a single fracture network. The fracture in shale was first scanned using a microCT system and then the digital fracture network was printed into two parts and assembled. Aperture ranges from 0.3 to 1 mm. In particular, we discuss the design of single fracture network and the progress of printing practices to reproduce the fracture network system. Printed samples at different scales are used to measure the permeability and surface roughness. Various numerical simulations including (non-)reactive transport and multiphase flow cases are performed to study fluid flow characterization. We will also discuss the innovative advancement of 3D printing techniques applicable for coupled processes in the subsurface. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  10. Bone mineral loss in young women with amenorrhoea.

    PubMed Central

    Davies, M C; Hall, M L; Jacobs, H S

    1990-01-01

    OBJECTIVE--To examine the impact of amenorrhoea on bone mineral density in women of reproductive age. DESIGN--Cross sectional study of 200 amenorrhoeic women compared with normally menstruating controls. SETTING--Teaching hospital outpatient clinic specialising in reproductive medicine. SUBJECTS--200 Women aged 16-40 with a past or current history of amenorrhoea from various causes and of a median duration of three years, and a control group of 57 age matched normal volunteers with no history of menstrual disorder. MAIN OUTCOME MEASURE--Bone mineral density in the lumbar spine (L1-L4) as measured by dual energy x ray absorptiometry. RESULTS--The amenorrhoeic group showed a mean reduction in bone mineral density of 15% (95% confidence interval 12% to 18%) as compared with controls (mean bone mineral density 0.89 (SD 0.12) g/cm2 v 1.05 (0.09) g/cm2 in controls). Bone loss was related to the duration of amenorrhoea and the severity of oestrogen deficiency rather than to the underlying diagnosis. Patients with a history of fracture had significantly lower bone density than those without a history of fracture. Ten patients had suffered an apparently atraumatic fracture. CONCLUSIONS--Amenorrhoea in young women should be investigated and treated to prevent bone mineral loss. Menopausal women with a past history of amenorrhoea should be considered to be at high risk of osteoporosis. PMID:2224267

  11. The utility of dual-energy X-ray absorptiometry, calcaneal quantitative ultrasound, and fracture risk indices (FRAX® and Osteoporosis Risk Assessment Instrument) for the identification of women with distal forearm or hip fractures: A pilot study.

    PubMed

    Esmaeilzadeh, Sina; Cesme, Fatih; Oral, Aydan; Yaliman, Ayse; Sindel, Dilsad

    2016-08-01

    Dual-energy X-ray absorptiometry (DXA) is considered the "gold standard" in predicting osteoporotic fractures. Calcaneal quantitative ultrasound (QUS) variables are also known to predict fractures. Fracture risk assessment tools may also guide us for the detection of individuals at high risk for fractures. The aim of this case-control study was to evaluate the utility of DXA bone mineral density (BMD), calcaneal QUS parameters, FRAX® (Fracture Risk Assessment Tool), and Osteoporosis Risk Assessment Instrument (ORAI) for the discrimination of women with distal forearm or hip fractures. This case-control study included 20 women with a distal forearm fracture and 18 women with a hip fracture as cases and 76 age-matched women served as controls. BMD at the spine, proximal femur, and radius was measured using DXA and acoustic parameters of bone were obtained using a calcaneal QUS device. FRAX® 10-year probability of fracture and ORAI scores were also calculated in all participants. Receiver operating characteristic (ROC) analysis was used to assess fracture discriminatory power of all the tools. While all DXA BMD, and QUS variables and FRAX® fracture probabilities demonstrated significant areas under the ROC curves for the discrimination of hip-fractured women and those without, only 33% radius BMD, broadband ultrasound attenuation (BUA), and FRAX® major osteoporotic fracture probability calculated without BMD showed significant discriminatory power for distal forearm fractures. It can be concluded that QUS variables, particularly BUA, and FRAX® major osteoporotic fracture probability without BMD are good candidates for the identification of both hip and distal forearm fractures.

  12. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of thismore » project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.« less

  13. 2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physicalmore » models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.« less

  14. Functional recovery of older people with hip fracture: does malnutrition make a difference?

    PubMed

    Li, Hsiao-Juan; Cheng, Huey-Shinn; Liang, Jersey; Wu, Chi-Chuan; Shyu, Yea-Ing Lotus

    2013-08-01

    To report a study of the effects of protein-energy malnutrition on the functional recovery of older people with hip fracture who participated in an interdisciplinary intervention. It is not clear whether protein-energy malnutrition is associated with worse functional outcomes or it affects the interdisciplinary intervention program on the functional recovery of older people with hip fracture. A randomized experimental design. Data were collected between 2002-2006 from older people with hip fracture (N = 162) in Taiwan. The generalized estimating equations approach was used to evaluate the effect of malnutrition on the functional recovery of older people with hip fracture. The majority of older patients with hip fracture were malnourished (48/80, 60% in the experimental group vs. 55/82, 67% in the control group) prior to hospital discharge. The results of the generalized estimating equations analysis demonstrated that subjects suffering from protein-energy malnutrition prior to hospital discharge appeared to have significantly worse performance trajectories for their activities of daily living, instrumental activities of daily living, and recovery of walking ability compared with those without protein-energy malnutrition. In addition, it was found that the intervention is more effective on the performance of activities of daily living and recovery of walking ability in malnourished patients than in non-malnourished patients. Healthcare providers should develop a nutritional assessment/management system in their interdisciplinary intervention program to improve the functional recovery of older people with hip fracture. © 2012 Blackwell Publishing Ltd.

  15. Effectiveness of acute in-hospital physiotherapy with knee-extension strength training in reducing strength deficits in patients with a hip fracture: A randomised controlled trial

    PubMed Central

    2017-01-01

    Question Is acute in-hospital physiotherapy with additional progressive knee-extension strength training (ST) of the fractured limb more effective in reducing knee-extension strength deficit at follow-up compared to physiotherapy without strength training in patients with a hip fracture? Design Assessor blinded, randomised controlled trial with intention-to-treat analysis. Participants 90 patients with a hip fracture admitted to an acute orthopaedic Hip Fracture Unit at a university hospital between October 2013 and May 2015. Intervention Daily physiotherapy with or without progressive knee-extension strength training (10RM), 3 x 10 repetitions, of the fractured limb using ankle weight cuffs conducted by ward physical therapists during hospital stay. Outcome measures Primary outcome was the change in maximal isometric knee-extension strength in the fractured limb in percentage of the non-fractured limb from inclusion to postoperative day 10 or discharge (follow-up). Secondary outcome was Timed Up and Go test measured early after surgery and at follow-up. Results In the intention-to-treat analysis of between-group differences, the primary outcome improved 8.1% (95% CI -2.3; 18.4) by additional strength training from baseline to follow-up. In the per-protocol analysis of non-missing data, significant between-group improvements by 10.5% (95% CI 0.3; 20.7) were found in favour of additional ST. No significant between-group differences were found in any secondary outcome. Conclusion Physiotherapy with addition of 5 sessions of ST yielded no additional improvements compared to physiotherapy without strength training in reducing the knee-extension strength deficit at follow-up in patients with a hip fracture. It is debatable whether larger improvements than the observed 8–10% can be expected given that only five exercise sessions, on average, were completed. In fragile patients with a hip fracture in the acute phase, where the ability to participate in functional exercise is compromised, we still consider early strength training a possibility to improve outcomes of clinical importance, given the results of the per-protocol analysis. The present data provides an important basis and call for future investigations including longer term interventions. Trial registration Clinicaltrials.gov NCT00848913 PMID:28662153

  16. [Preliminary evaluation of clinical effect of computer aided design and computer aided manufacture zirconia crown].

    PubMed

    Wang, Yu-guang; Xing, Yan-xi; Sun, Yu-chun; Zhao, Yi-jiao; Lü, Pei-jun; Wang, Yong

    2013-06-01

    To evaluate clinical effects of computer aided design and computer aided manufacturing (CAD/CAM) milled zirconia crown in three aspects: aesthetic, contact wear and fracture. Sixty patients were divided into two groups.In one group, 35 full contour CAD/CAM zirconia crown were made on molars of 30 patients. The manufacturing process of zirconia crown was as follow. First, the three dimensional(3-D) data of working models, antagonist impression and check records were acquired by 3-D laser scanning Dental wings S50. Then full contour zirconia crowns, which had functional occlusal contacts with antagonistic teeth, and appropriate contact with adjacent teeth were designed with Zeno-CAD(V4.2.5.5.12919) software. ZENOSTAR Zr pure zirconia material was milled in digital controlled machine WIELAND 4030 M1.In the end, the zirconia crown were completed with the method of second sintering and polishing. After clinical try-in, the crown was cemented.In the control group, thirty gold alloy full crown were made and cemented on molars of 30 patients. According to the modified U S Public Health Service Criteria(USPHS) evaluation standard, all crowns were evaluated on the same day, at three months, half a year, one year and two years following delivery. There were three aspects we were focusing on in the evaluation: aesthetic, contact wear(restoration and antagonist), and fracture. In all the prosthesis we evaluated during the 24 months, no fracture was found. Contact wear of crowns varies according to different antagonist teeth. The zirconia crowns show privilege in aesthesis, toughness and anti-wearing.However, there is contact wear on antagonistic natural teeth. Thus it is a good choice when full zirconia crowns are indicated on two antagonistic teeth in both jaws.

  17. A likely-universal model of fracture density and scaling justified by both data and theory. Consequences for crustal hydro-mechanics

    NASA Astrophysics Data System (ADS)

    Davy, P.; Darcel, C.; Le Goc, R.; Bour, O.

    2011-12-01

    We discuss the parameters that control fracture density on the Earth. We argue that most of fracture systems are spatially organized according to two main regimes. The smallest fractures can grow independently of each others, defining a "dilute" regime controlled by nuclei occurrence rate and individual fracture growth law. Above a certain length, fractures stop growing due to mechanical interactions between fractures. For this "dense" regime, we derive the fracture density distribution by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of kilometers for faults systems, and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on both flow and mechanical properties. In the dense regime, networks appears to be very close to a critical state.

  18. [Is Mapuche ethnicity a risk factor for hip fracture in aged?].

    PubMed

    Sapunar, Jorge; Bravo, Paulina; Schneider, Hermann; Jiménez, Marcela

    2003-10-01

    Ethnic factors are involved in the risk for osteoporosis and hip fracture. To assess the effect of Mapuche ethnicity on the risk of hip fracture. A case control study. Cases were subjects over 55 years of age admitted, during one year, for hip fracture not associated to major trauma or tumors. Controls were randomly chosen from other hospital services and paired for age with cases. The magnitude of the association between ethnicity and hip fracture was expressed as odds ratio in a logistic regression model. In the study period, 156 cases with hip fracture were admitted. The proportion of subjects with Mapuche origin was significantly lower among cases than controls (11.8 and 26.5% respectively, p < 0.001). In the logistic regression model, Mapuche ethnicity was associated with hip fracture with an odds radio of 0.14 (p = 0.03, 95% CI 0.03-0.8). In this sample, Mapuche ethnicity is a protective factor for hip fracture.

  19. External versus internal fixation for bicondylar tibial plateau fractures: systematic review and meta-analysis.

    PubMed

    Metcalfe, David; Hickson, Craig J; McKee, Lesley; Griffin, Xavier L

    2015-12-01

    It is uncertain whether external fixation or open reduction internal fixation (ORIF) is optimal for patients with bicondylar tibial plateau fractures. A systematic review using Ovid MEDLINE, Embase Classic, Embase, AMED, the Cochrane Library, Open Grey, Orthopaedic Proceedings, WHO International Clinical Trials Registry Platform, Current Controlled Trials, US National Institute for Health Trials Registry, and the Cochrane Central Register of Controlled Trials. The search was conducted on 3rd October 2014 and no language limits were applied. Inclusion criteria were all clinical study designs comparing external fixation with open reduction internal fixation of bicondylar tibial plateau fractures. Studies of only one treatment modality were excluded, as were those that included unicondylar tibial plateau fractures. Treatment effects from studies reporting dichotomous outcomes were summarised using odds ratios. Continuous outcomes were converted to standardized mean differences to assess the treatment effect, and inverse variance methods used to combine data. A fixed effect model was used for meta-analyses. Patients undergoing external fixation were more likely to have returned to preinjury activities by six and twelve months (P = 0.030) but not at 24 months follow-up. However, external fixation was complicated by a greater number of infections (OR 2.59, 95 % CI 1.25-5.36, P = 0.01). There were no statistically significant differences in the rates of deep infection, venous thromboembolism, compartment syndrome, or need for re-operation between the two groups. Although external fixation and ORIF are associated with different complication profiles, both are acceptable strategies for managing bicondylar tibial plateau fractures.

  20. Combination fracturing/gravel-packing completion technique on the Amberjack, Mississippi Canyon 109 field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannah, R.R.; Park, E.I.; Porter, D.A.

    1994-11-01

    This paper describes a one-step fracturing/gravel-pack (frac-and-pack) completion procedure conducted on the BP Exploration Amberjack platform beginning in early 1992. This platform is 35 miles southwest of Venice, LA. The first four completions on this platform had an average positive skin values of 21. The goal of the frac-and-pack procedure was to reduce these skins to nearly zero. In total, 24 frac-and-pack operations were performed. Details of the fracture design, prefracture testing, fracture design and execution, and production response and a continuing optimization program are discussed. The fractures were performed with the screens in place with the gravel pack aftermore » the fracturing operation. The treatments were designed for the tip screenout technique to create wide fractures and to provide proppant loadings exceeding 8 lbm/ft. This paper presents the trend of the declining skin values, along with a discussion of time-dependent skins. The changes in fluids, breakers, and proppants are also presented. The average skin on 14 frac-and-pack completions was 5.3. The average skin on the final eight completions was 0.2.« less

  1. Rap system of stress stimulation can promote bone union after lower tibial bone fracture: a clinical research.

    PubMed

    Yao, Jian-fei; Shen, Jia-zuo; Li, Da-kun; Lin, Da-sheng; Li, Lin; Li, Qiang; Qi, Peng; Lian, Ke-jian; Ding, Zhen-qi

    2012-01-01

    Lower tibial bone fracture may easily cause bone delayed union or nonunion because of lacking of dynamic mechanical load. Research Group would design a new instrument as Rap System of Stress Stimulation (RSSS) to provide dynamic mechanical load which would promote lower tibial bone union postoperatively. This clinical research was conducted from January 2008 to December 2010, 92 patients(male 61/female 31, age 16-70 years, mean 36.3 years) who suffered lower tibial bone closed fracture were given intramedullary nail fixation and randomly averagely separated into experimental group and control group(according to the successively order when patients went for the admission procedure). Then researchers analysed the clinical healing time, full weight bearing time, VAS (Visual Analogue Scales) score and callus growth score of Lane-Sandhu in 3,6,12 months postoperatively. The delayed union and nonunion rates were compared at 6 and 12 months separately. All the 92 patients had been followed up (mean 14 months). Clinical bone healing time in experimental group was 88.78±8.80 days but control group was 107.91±9.03 days. Full weight bearing time in experimental group was 94.07±9.81 days but control group was 113.24±13.37 days respectively (P<0.05). The delayed union rate in 6 months was 4.3% in experimental group but 10.9% in control group(P<0.05). The nonunion rate in 12 months was 6.5% in experimental group but 19.6% in control group(P<0.05). In 3, 6, 12 months postoperatively, VAS score and Lane-Sandhu score in experimental group had more significantly difference than them in control group. RSSS can intermittently provide dynamic mechanical load and stimulate callus formation, promote lower tibial bone union, reduce bone delayed union or nonunion rate. It is an adjuvant therapy for promoting bone union after lower tibial bone fracture.

  2. Recommendations for the clinical evaluation of agents for treatment of osteoporosis: consensus of an expert panel representing the American Society for Bone and Mineral Research (ASBMR), the International Society for Clinical Densitometry (ISCD), and the National Osteoporosis Foundation (NOF).

    PubMed

    Silverman, Stuart L; Cummings, Steven R; Watts, Nelson B

    2008-01-01

    A panel of experts representing ASBMR, NOF, and ISCD reviewed evidence and reached consensus that regulatory approval of treatments for osteoporosis should be based on trials with fracture endpoints, lasting 18-24 mo, and extending treatment to 5 yr; other indications could be approved based on BMD and turnover markers. In response to an FDA request for clinical trial guidance in osteoporosis, an expert panel was convened with representatives from the American Society of Bone and Mineral Research, the International Society of Clinical Densitometry, and the National Osteoporosis Foundation. The panel used a validated evidence-based expert panel process (the Rand Appropriateness Method) to address issues of trial duration, trial design, use of intermediate endpoints as outcomes, and use of placebo-controlled trials in high-risk patients. The panel concluded that placebo-controlled trials with fracture endpoints are appropriate and, with informed consent, are ethical for registration of new compounds. Trials may be 18-24 mo in duration for efficacy, assuming longer duration to 5 yr for safety and demonstration of sustained fracture reduction. Once fracture efficacy has been established for a particular agent, intermediate endpoints (e.g., BMD and bone turnover markers) may be used as outcomes for new indications other than corticosteroid-induced osteoporosis.

  3. Air Vehicle Integration and Technology Research (AVIATR). Delivery Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Demonstration

    DTIC Science & Technology

    2009-08-01

    K/sigma vs a file Selected design load and material Full scale test results IAT Actual Fracture toughness distribution Selected material...update data from 5.3.4 a vs T file Selected design load and material Full scale test results IAT Actual Max stress Gumbel Dist. (loads exceedance... altitude ; Mach number; control surface positions; selected strain measurements; ground loads; aerodynamic excitations; etc. Data shall also be

  4. Design, analysis, fabrication and test of the Space Shuttle solid rocket booster motor case

    NASA Technical Reports Server (NTRS)

    Kapp, J. R.

    1978-01-01

    The motor case used in the solid propellant booster for the Space Shuttle is unique in many respects, most of which are indigenous to size and special design requirements. The evolution of the case design from initial requirements to finished product is discussed, with increased emphasis of reuse capability, special design features, fracture mechanics and corrosion control. Case fabrication history and the resulting procedure are briefly reviewed with respect to material development, processing techniques and special problem areas. Case assembly, behavior and performance during the DM-1 static firing are reviewed, with appropriate comments and conclusions.

  5. Mechanical properties of hollow and water-filled graphyne nanotube and carbon nanotube hybrid structure.

    PubMed

    Lei, Guangping; Zhang, Yayun; Liu, Hantao; Song, Fenhong

    2018-05-11

    By performing molecular dynamics simulations, a GNT/CNT hybrid structure constructed via combing (6, 6) graphyne nanotube (GNT) with (6, 6) carbon nanotube (CNT) has been designed and investigated. The mechanical properties induced by the percentage of GNT, water content and electric field were examined. Calculation results reveal that the fracture strain and strength of hollow hybrid structure are remarkably smaller than that of perfect (6, 6) CNT. In addition, the Young's modulus decreases monotonously with the increase of percentage of GNT. More importantly, the tunable mechanical properties of hybrid structure can be achieved through filling with water molecules and applying an electric field along tensile direction. Specifically, increasing water content from 0.0 to 8.70 mmol g -1 in the absence of electric field could result in fracture strain and strength reducing by 15.09% and 12.87%, respectively. Besides, enhancing fracture strain and strength of water-filled hybrid structure with water content of 8.70 mmol g -1 can also be obtained with rising electric field intensity. These findings would provide a valuable theoretical basis for designing and fabricating a nanodevice with controllable mechanical performances.

  6. Mechanical properties of hollow and water-filled graphyne nanotube and carbon nanotube hybrid structure

    NASA Astrophysics Data System (ADS)

    Lei, Guangping; Zhang, Yayun; Liu, Hantao; Song, Fenhong

    2018-05-01

    By performing molecular dynamics simulations, a GNT/CNT hybrid structure constructed via combing (6, 6) graphyne nanotube (GNT) with (6, 6) carbon nanotube (CNT) has been designed and investigated. The mechanical properties induced by the percentage of GNT, water content and electric field were examined. Calculation results reveal that the fracture strain and strength of hollow hybrid structure are remarkably smaller than that of perfect (6, 6) CNT. In addition, the Young’s modulus decreases monotonously with the increase of percentage of GNT. More importantly, the tunable mechanical properties of hybrid structure can be achieved through filling with water molecules and applying an electric field along tensile direction. Specifically, increasing water content from 0.0 to 8.70 mmol g-1 in the absence of electric field could result in fracture strain and strength reducing by 15.09% and 12.87%, respectively. Besides, enhancing fracture strain and strength of water-filled hybrid structure with water content of 8.70 mmol g-1 can also be obtained with rising electric field intensity. These findings would provide a valuable theoretical basis for designing and fabricating a nanodevice with controllable mechanical performances.

  7. Maxillofacial injuries among trauma patients undergoing head computerized tomography; A Ugandan experience

    PubMed Central

    Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane

    2017-01-01

    Aim: The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. Methods: CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. Results: A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18–80) years and 18–27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Conclusions: Good matched case–control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures. PMID:29291177

  8. In Vitro Comparative Analysis of Fracture Resistance in Inlay Restoration Prepared with CAD-CAM and Different Systems in the Primary Teeth

    PubMed Central

    Derelioglu, Sera

    2016-01-01

    Objective. The aim of this study was to compare to fracture resistance test of inlay restorations prepared using direct inlay technique (Gradia® Direct Composite) and Indirect Restoration System® (Gradia Indirect Composite) and CAD/CAD system (Vita Enamic® Block). Study Design. 48 noncarious extracted maxillary second primary molars were randomly divided into 4 groups with 12 in each group. All the teeth were prepared based on inlay class II preparations except for the control group. Other groups were restored with Gradia Direct Composite, Gradia Indirect Composite, and Vita Enamic Block, respectively. All restorations were cemented self-adhesive dual cure resin (3M Espe, RelyX™ Unicem Aplicap). A fracture test was performed using a compressive load. Results were analyzed using one-way analysis of variance and Duncan's post hoc multiple comparison tests (α = 0.05). Results. Vita Enamic Block and Gradia Indirect Composite showed significantly higher fracture resistance than Gradia Direct Composite (p < 0.05). There was no significant difference fracture resistance between Vita Enamic Block and Gradia Indirect Composite (p > 0.05). All restorations tested led to a significant reduction in fracture resistance (p < 0.05). Conclusion. In inlay restorations, Indirect Restoration Systems and CAD/CAM systems were applied successfully together with the self-adhesive dual cure resin cements in primary molars. PMID:27830145

  9. Displaced Proximal Humerus Fractures: is a Sling as Good as a Plate?

    PubMed

    Steinhaus, Michael E; Dare, David M; Gulotta, Lawrence V

    2016-10-01

    The treatment of displaced proximal humerus fractures is challenging and complex, as its success is predicated on multiple factors. While it is clear that a majority of proximal humerus fractures may be treated nonoperatively, it is less clear which patients benefit from surgical management. The PROFHER trial, a randomized controlled study, used patient-reported outcomes to compare surgical to nonsurgical management of displaced proximal humerus fractures. The purpose of this review is to highlight the strengths and weaknesses of the PROFHER trial and to assess the validity of its conclusion in the context of existing literature. The authors found no difference in the Oxford Shoulder Score (OSS) between the surgical and nonsurgical groups. Additionally, no difference was found between groups in any of the secondary outcomes, which included the Short-Form 12 (SF-12) health survey, surgical and fracture-related complications, additional surgery or therapy, inpatient medical complications, and mortality. They concluded that the recent increase in surgical management of proximal humerus fractures is perhaps unwarranted. While the randomization was successful and the pragmatic design may enable greater generalizability, this study possesses numerous flaws inherent in such an ambitious endeavor, including an inability to identify specific factors which explain the lack of superiority of surgical management. Despite its weaknesses, this study is a valuable datapoint which encourages surgeons to reexamine their surgical indications for this injury.

  10. Relationship between the Mediterranean dietary pattern and musculoskeletal health in children, adolescents, and adults: systematic review and evidence map

    PubMed Central

    Craig, Jean V; Bunn, Diane K; Hayhoe, Richard P; Appleyard, Will O; Lenaghan, Elizabeth A; Welch, Ailsa A

    2017-01-01

    Context: An understanding of the modifiable effects of diet on bone and skeletal muscle mass and strength over the life course will help inform strategies to reduce age-related fracture risk. The Mediterranean diet is rich in nutrients that may be important for optimal musculoskeletal health. Objective: The aim of this systematic review was to investigate the relationship between a Mediterranean diet and musculoskeletal outcomes (fracture, bone density, osteoporosis, sarcopenia) in any age group. Data Sources: Ten electronic databases were searched. Study Selection: Randomized controlled trials and prospective cohort studies that investigated a traditional Mediterranean diet, published in any language, were eligible. Studies using other designs or other definitions of the Mediterranean diet were collated separately in an evidence map. Data Extraction: Details on study design, methods, population, dietary intervention or exposure, length of follow-up, and effect on or association with musculoskeletal outcomes were extracted. Results: The search yielded 1738 references. Data from eligible randomized controlled trials (n = 0) and prospective cohort studies (n = 3) were synthesized narratively by outcome for the systematic review. Two of these studies reported on hip fracture incidence, but results were contradictory. A third study found no association between the Mediterranean diet and sarcopenia incidence. Conclusions: Overall, the systematic review and evidence map demonstrate a lack of research to understand the relationship between the Mediterranean diet and musculoskeletal health in all ages. Systematic Review Registration: PROSPERO registration number IDCRD42016037038. PMID:29028268

  11. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity.

    PubMed

    Wang, Ching-Jen; Liu, Hao-Chen; Fu, Te-Hu

    2007-02-01

    High-energy long bone fractures of the lower extremity are at risk of poor fracture healing and high rate of non-union. Extracorporeal shockwave was shown effective to heal non-union of long bone fracture. However, the effect of shockwave on acute fractures is unknown. The purpose of this study was to investigate the effects of shockwave on acute high-energy fractures of the lower extremity. Between January and October 2004, 56 patients with 59 acute high-energy fractures were enrolled in this study. Patients were randomly divided into two groups with 28 patients with 28 fractures in the study group and 28 patients with 31 fractures in the control group. Both groups showed similar age, gender, type of fracture and follow-up time. Patients in the study group received open reduction and internal fixation and shockwave treatment immediately after surgery on odd-numbered days of the week, whereas, patients in the control group received open reduction and internal fixation without shockwave treatment on even-numbered days of the week. Postoperative managements were similarly performed in both groups including crutch walking with non-weight bearing on the affected limb until fracture healing shown on radiographs. The evaluation parameters included clinical assessments of pain score and weight bearing status of the affected leg and serial radiographs at 3, 6 and 12 months. The primary end-point is the rate of non-union at 12 months, and the secondary end point is the rate of fracture healing at 3, 6 and 12 months. At 12 months, the rate of non-union was 11% for the study group versus 20% for the control group (P < 0.001). Significantly, better rate of fracture healing was noted in the study group than the control group at 3, 6 and 12 months (P < 0.001). Extracorporeal shockwave is effective on promoting fracture healing and decreasing the rate of non-union in acute high-energy fractures of the lower extremity.

  12. Is sonic Hedgehog involved in human fracture healing? --a prospective study on local and systemic concentrations of SHH.

    PubMed

    Eipeldauer, Stefan; Thomas, Anita; Hoechtl-Lee, Leonard; Kecht, Mathias; Binder, Harald; Koettstorfer, Julia; Gregori, Markus; Sarahrudi, Kambiz

    2014-01-01

    Sonic Hedgehog (SHH) is a new signalling pathway in bone repair. Evidence exist that SHH pathway plays a significant role in vasculogenesis and limb development during embryogenesis. Some in vitro and animal studies has already proven its potential for bone regeneration. However, no data on the role of SHH in the human fracture healing have been published so far. Seventy-five patients with long bone fractures were included into the study and divided in 2 groups. First group contained 69 patients with normal fracture healing. Four patients with impaired fracture healing formed the second group. 34 volunteers donated blood samples as control. Serum samples were collected over a period of 1 year following a standardized time schedule. In addition, SHH levels were measured in fracture haematoma and serum of 16 patients with bone fractures. Fracture haematoma and patients serum both contained lower SHH concentrations compared to control serum. The comparison between the patients' serum SHH level and the control serum revealed lower levels for the patients at all measurement time points. Significantly lower concentrations were observed at weeks 1 and 2 after fracture. SHH levels were slightly decreased in patients with impaired fracture healing without statistical significance. This is the first study to report local and systemic concentration of SHH in human fracture healing and SHH serum levels in healthy adults. A significant reduction of the SHH levels during the inflammatory phase of fracture healing was found. SHH concentrations in fracture haematoma and serum were lower than the concentration in control serum for the rest of the healing period. Our findings indicate that there is no relevant involvement of SHH in human fracture healing. Fracture repair process seem to reduce the SHH level in human. Further studies are definitely needed to clarify the underlying mechanisms.

  13. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model.

    PubMed

    Bradley, Amanda L; Swain, Michael V; Neil Waddell, J; Das, Raj; Athens, Josie; Kieser, Jules A

    2014-05-01

    Forensic biomechanics is increasingly being used to explain how observed injuries occur. We studied infant rib fractures from a biomechanical and morphological perspective using a porcine model. We used 24, 6th ribs of one day old domestic pigs Sus scrofa, divided into three groups, desiccated (representing post-mortem trauma), fresh ribs with intact periosteum (representing peri-mortem trauma) and those stored at -20°C. Two experiments were designed to study their biomechanical behaviour fracture morphology: ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and Scanning Electron Microscopy (SEM). During axial compression fresh ribs did not fracture because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening and visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. Frozen then thawed bone showed similar patterns to fresh bone. Morphologically, fresh ribs showed extensive periosteal damage to the tensile surface with areas of collagen fibre pull-out along the tensile surface. While all dry ribs fractured precipitously, with associated fibre pull-out, the latter feature was absent in thawed ribs. Our study highlights the fact that under controlled loading, fresh piglet ribs (representing perimortem trauma) did not fracture through bone, but was associated with periosteal tearing. These results suggest firstly, that complete lateral rib fracture in infants may in fact not result from pure compression as has been previously assumed; and secondly, that freezing of bone during storage may affect its fracture behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Pathogenesis of Fifth Metatarsal Fractures in College Soccer Players

    PubMed Central

    Fujitaka, Kohei; Taniguchi, Akira; Isomoto, Shinji; Kumai, Tsukasa; Otuki, Shingo; Okubo, Mamoru; Tanaka, Yasuhito

    2015-01-01

    Background: The pathogenesis of fifth metatarsal stress fractures remains uncertain. Hypothesis: Physical characteristics and environmental factors, which have received limited attention in the literature thus far, might be involved in the development of fifth metatarsal stress fractures. Study Design: Case-control study; Level of evidence, 3. Methods: To test the study hypothesis, a medical examination and survey of the living environment of collegiate soccer players was conducted and correlated with the existence of fifth metatarsal stress fractures. The survey and measurements were conducted in 273 male athletes from the same college soccer team between 2005 and 2013. A medical examination comprising assessment of stature, body weight, body mass index, foot–arch height ratio, toe-grip strength, quadriceps angle, leg-heel angle, functional reach test, single-leg standing time with eyes closed, straight-leg raise angle, finger-floor distance, heel-buttock distance, ankle joint range of motion, and a general joint laxity test were performed once a year, along with a questionnaire survey. The survey was also repeated when a fifth metatarsal stress fracture was diagnosed. The study participants were separated into a fifth metatarsal stress fracture injury group and a noninjury group. The measurement items and survey items were compared, and the association between the factors and the presence or absence of injuries was analyzed. Results: Toe-grip strength was significantly weaker in the injury group compared with the noninjury group, suggesting that weak toe-grip is associated with fifth metatarsal stress fracture (P < .05). In addition, fifth metatarsal stress fractures were more common in the nondominant leg (P < .05). Between-group comparisons of the other items showed no statistically significant differences. Conclusion: The association between weak toe-grip strength and fifth metatarsal fracture suggests that weak toe-grip may lead to an increase in the load applied onto the lateral side of the foot, resulting in stress fracture. The finding of stress fracture being more common in the nondominant leg needs further study. PMID:26535399

  15. Fundamental differences in axial and appendicular bone density in stress fractured and uninjured Royal Marine recruits--a matched case-control study.

    PubMed

    Davey, Trish; Lanham-New, Susan A; Shaw, Anneliese M; Cobley, Rosalyn; Allsopp, Adrian J; Hajjawi, Mark O R; Arnett, Timothy R; Taylor, Pat; Cooper, Cyrus; Fallowfield, Joanne L

    2015-04-01

    Stress fracture is a common overuse injury within military training, resulting in significant economic losses to the military worldwide. Studies to date have failed to fully identify the bone density and bone structural differences between stress fractured personnel and controls due to inadequate adjustment for key confounding factors; namely age, body size and physical fitness; and poor sample size. The aim of this study was to investigate bone differences between male Royal Marine recruits who suffered a stress fracture during the 32 weeks of training and uninjured control recruits, matched for age, body weight, height and aerobic fitness. A total of 1090 recruits were followed through training and 78 recruits suffered at least one stress fracture. Bone mineral density (BMD) was measured at the lumbar spine (LS), femoral neck (FN) and whole body (WB) using Dual X-ray Absorptiometry in 62 matched pairs; tibial bone parameters were measured using peripheral Quantitative Computer Tomography in 51 matched pairs. Serum C-terminal peptide concentration was measured as a marker of bone resorption at baseline, week-15 and week-32. ANCOVA was used to determine differences between stress fractured recruits and controls. BMD at the LS, WB and FN sites was consistently lower in the stress fracture group (P<0.001). Structural differences between the stress fracture recruits and controls were evident in all slices of the tibia, with the most prominent differences seen at the 38% tibial slice. There was a negative correlation between the bone cross-sectional area and BMD at the 38% tibial slice. There was no difference in serum CTx concentration between stress fracture recruits and matched controls at any stage of training. These results show evidence of fundamental differences in bone mass and structure in stress fracture recruits, and provide useful data on bone risk factor profiles for stress fracture within a healthy military population. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  16. Evolution of Friction and Permeability in a Propped Fracture under Shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengshou; Fang, Yi; Elsworth, Derek

    We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less

  17. Evolution of Friction and Permeability in a Propped Fracture under Shear

    DOE PAGES

    Zhang, Fengshou; Fang, Yi; Elsworth, Derek; ...

    2017-12-04

    We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less

  18. Supera self-expanding stents for endovascular treatment of femoropopliteal disease: a review of the clinical evidence

    PubMed Central

    Bishu, Kalkidan; Armstrong, Ehrin J

    2015-01-01

    Femoropopliteal lesions account for a significant proportion of endovascular interventions for peripheral artery disease in patients with disabling claudication or chronic limb ischemia. The femoropopliteal artery crosses two joint structures (hip and knee joints) and courses through the muscular adductor canal in the thigh, which places the artery at increased biomechanical stress. There is a critical need for stent platforms with a reduced risk of stent fracture while maintaining patency during long-term follow-up. The Supera peripheral stent system has a braided nickel–titanium alloy stent designed to withstand the unique stressors along the course of the femoropopliteal artery. This design may be associated with improved patency in association with reduced stent fracture rates on short- and medium-term follow-up. Further studies, including randomized controlled studies, comparing the Supera interwoven nickel–titanium alloy stent system with other stent platforms and angioplasty alone are needed. PMID:26203255

  19. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-10-01

    Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.

  20. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading.

    PubMed

    Im, So-Min; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2017-02-01

    The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture ( P <.05) and the control group ( P <.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

  1. Experiment 2033. Injection Test of Upper EE-3 Fracture Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigsby, Charles O.

    1983-09-12

    This experiment is designed to investigate the apparent lithologic boundary between the low-opening-pressure fracture system (upper EE-3 fracture and Phase I system) and the high-opening-pressure fracture system (lower fracture in EE-3 and in EE-2). The experiment will test for resistence to breakthrough into the lower EE-2 fracture system at relatively low pressure and will define the veting behavior of the low pressure system.

  2. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We developed a general non-dimensionalization of the problem and a perturbation analysis to show that there is always an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the total reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients and initial concentrations of the two species.

  3. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    NASA Astrophysics Data System (ADS)

    Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John

    2013-04-01

    In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores <100 km away, thus offering an ideal opportunity to 1) evaluate the distribution and characteristics of opening mode fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity progressively decreases from the faulted cores of mesoscopic folds to their forelimbs, with lowest intensities within relatively undeformed backlimb strata. Fracture apertures locally increase adjacent to reverse faults without an overall increase in fracture frequency. Fluid inclusion analyses of crack-seal quartz cement indicate both aqueous and methane-rich inclusions are present. Homogenization temperatures of two-phase inclusions indicate synkinematic fracture cement precipitation and fracture opening under conditions at or near maximum burial of 190-210°C in core samples, and 120-160°C in outcrop samples. In comparison with the fracture evolution in other, less deformed tight-gas sandstone reservoirs such as the Piceance and East Texas basins where fracture opening is primarily controlled by gas generation, gas charge, and pore fluid pressure, these results suggest a strong control of regional tectonic processes on fracture generation. In conjunction with timing and rate of gas charge, rates of fracture cement growth, and stratigraphic-lithological controls, these processes determine the overall distribution of open fractures in these reservoirs.

  4. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    NASA Astrophysics Data System (ADS)

    Ukar, E.; Eichhubl, P.; Fall, A.; Hooker, J. N.

    2012-12-01

    In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores <100 km away, thus offering an ideal opportunity to 1) evaluate the distribution and characteristics of opening mode fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity progressively decreases from the faulted cores of mesoscopic folds to their forelimbs, with lowest intensities within relatively undeformed backlimb strata. Fracture apertures locally increase adjacent to reverse faults without an overall increase in fracture frequency. Fluid inclusion analyses of crack-seal quartz cement indicate both aqueous and methane-rich inclusions are present. Homogenization temperatures of two-phase inclusions indicate synkinematic fracture cement precipitation and fracture opening under conditions at or near maximum burial of 190-210°C in core samples, and 120-160°C in outcrop samples. In comparison with the fracture evolution in other, less deformed tight-gas sandstone reservoirs such as the Piceance and East Texas basins where fracture opening is primarily controlled by gas generation, gas charge, and pore fluid pressure, these results suggest a strong control of regional tectonic processes on fracture generation. In conjunction with timing and rate of gas charge, rates of fracture cement growth, and stratigraphic-lithological controls, these processes determine the overall distribution of open fractures in these reservoirs.

  5. A trial assessing N-3 as treatment for injury-induced cachexia (ATLANTIC trial): does a moderate dose fish oil intervention improve outcomes in older adults recovering from hip fracture?

    PubMed Central

    2010-01-01

    Background Proximal femoral fractures are associated with increased morbidity and mortality. Pre-existing malnutrition and weight loss amongst this patient group is of primary concern, with conventional nutrition support being largely ineffective. The inflammatory response post proximal femoral fracture surgery and the subsequent risk of cachexia may explain the inability of conventional high energy high protein management to produce an anabolic response amongst these patients. Omega-3 fatty acids derived from fish oils have been extensively studied for their anti-inflammatory benefits. Due to their anti-inflammatory properties, the benefit of fish oil combined with individualized nutrition support amongst proximal femoral fracture patients post surgery is an attractive potential therapeutic strategy. The aim of the ATLANTIC trial is to assess the potential benefits of an anti-inflammatory dose of fish oil within the context of a 12 week individualised nutrition program, commencing seven days post proximal femoral fracture surgery. Methods/Design This randomized controlled, double blinded trial, will recruit 150 community dwelling elderly patients aged ≥65 years, within seven days of surgery for proximal femoral fracture. Participants will be randomly allocated to receive either a 12 week individualized nutrition support program complemented with 20 ml/day anti-inflammatory dose fish oil (~3.6 g eicosapentaenoic acid, ~2.4 g docosahexanoic acid; intervention), or, a 12 week individualized nutrition support program complemented with 20 ml/day low dose fish oil (~0.36 g eicosapentaenoic acid, ~0.24 g docosahexanoic acid; control). Discussion The ATLANTIC trial is the first of its kind to provide fish oil combined with individualized nutrition therapy as an intervention to address the inflammatory response experienced post proximal femoral fracture surgery amongst elderly patients. The final outcomes of this trial will assist clinicians in the development of effective and alternative treatment methods post proximal femoral fracture surgery which may ultimately result in a reduction in systemic inflammation, loss of weight and lean muscle and improvements in nutritional status, mobility, independence and quality of life among elderly patients. Trial Registration ACTRN12609000241235 PMID:20964865

  6. Comparative evaluation of fracture resistance of Ceramic Veneer with three different incisal design preparations - An In-vitro Study.

    PubMed

    Jankar, Ajit S; Kale, Yogesh; Kangane, Suresh; Ambekar, Anand; Sinha, Manish; Chaware, Sachin

    2014-02-01

    Ceramic veneer fracture has occurred mainly at the incisal edge of the veneer because of greater stress. This study compares and evaluates the fracture resistance ceramic veneers with three different incisal preparations. 15 human permanent maxillary central incisor extracted were selected which were divided into three groups of 5 each having a different Incial design Preparation. Group 1: No Incisal reduction with facio- incisal bevel, Group 2 : 1 mm incisal reduction with butt joint, Group 3 : 1 mm incisal reduction with 1 mm height of Palatal chamfer. It was found that Group III had greater fracture resistance as compared to Group I and Group II. Group I had least fracture resistance as compared to Group II and III. Group II had greater fracture resistance as compared to Group I but less than Group III. Ceramic veneer with 1mm incisal reduction with 1mm height of palatal chamfer showed highest fracture resistance as compared to 1mm incisal reduction with butt joint and no incisal reduction with facial-incisal bevel, in order to achieve better esthetic and functional results. The palatal chamfer margin results in preservation of some peripheral enamel layer, which eliminates the micro leakage at the palatal margin-restoration interface and also effectively counteracting shear stress. This design provides a definite seat for cementation. How to cite the article: Jankar AS, Kale Y, Kangane S, Ambekar A, Sinha M, Chaware S. Comparative evaluation of fracture resistance of Ceramic Veneer with three different incisal design preparations - An In-vitro Study. J Int Oral Health 2014;6(1):48-54.

  7. Modeling OPC complexity for design for manufacturability

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong

    2005-11-01

    Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data from OPC and mask data preparation runs, we build models of FC as function of OPC tolerances and layout parameters.

  8. Fracture epidemiology and control in a developmental center.

    PubMed Central

    Lohiya, G S; Crinella, F M; Tan-Figueroa, L; Caires, S; Lohiya, S

    1999-01-01

    During 3.5 years, 182 fractures occurred among 994 residents of a developmental center. The fracture rate was 5.2 per 100 person-years (1.7 times greater than the rate in the US population). Fracture rate was significantly greater in residents with: epilepsy, older age, male gender, white race, independent ambulation, osteoporosis, and residence in intermediate care (versus skilled nursing) units; it was not affected by severity of mental retardation. Hand and foot bones were fractured in 58% of cases. Femur fracture occurred in 13 cases (7%). Fracture was caused by a fall in 41 cases (23%); its cause was indeterminable in 105 cases (58%). Fractures, occurring without significant injury, may be an important cause of preventable disability in this population. Control measures are suggested. Images Figure 1. Figure 2. PMID:10344173

  9. AN INTEGRATED VIEW OF GROUNDWATER FLOW CHARACTERIZATION AND MODELING IN FRACTURED GEOLOGIC MEDIA

    EPA Science Inventory

    The particular attributes of fractured geologic media pertaining to groundwater flow characterization and modeling are presented. These cover the issues of fracture network and hydraulic control of fracture geometry parameters, major and minor fractures, heterogeneity, anisotrop...

  10. Secondary confounders of osteoporotic hip fractures in patients admitted to a geriatric acute care department.

    PubMed

    Dovjak, Peter; Föger-Samwald, Ursula; Konrad, Maarit; Bichler, Bernhard; Pietschmann, Peter

    2015-10-01

    With respect to the pathogenesis of osteoporosis, primary and secondary forms of the disease can be distinguished. It has been recognized that the incidence of primary and secondary osteoporosis differs in women and men. The aim of the present study was to assess the incidence and gender distribution of factors contributing to osteoporosis in older hip fracture patients. In this cross-sectional study 404 patients with hip fractures and controls referred to an acute geriatric care department over a period of 15 months were included. The medical history was recorded and blood samples were analyzed for routine laboratory parameters. A total of 249 patients with hip fractures and 155 matched controls were studied. The Tinetti test and the Barthel index were found to show highly significant differences in both groups mainly because of the postoperative state of patients with fractures. Vitamin D deficiency was found in 94.1% of male fracture patients and 94.6% of female fracture patients. On average 2.4 secondary contributors of osteoporosis were present in male fracture patients versus 2.9 in male controls and 2.3 in female fracture patients versus 2.3 in female controls. For most parameters no significant gender differences of possible secondary contributors to osteoporosis were found. Secondary osteoporosis was diagnosed in all male fracture patients and in 56.2% of all female fracture patients. Based on the findings of this study it is recommended that hip fracture patients should be assessed for secondary contributors of osteoporosis. Although the overall distribution of secondary contributors was similar in women and men, the prevalence of secondary osteoporosis was higher in men.

  11. Fracture resistance and marginal discrepancy of porcelain laminate veneers influenced by preparation design and restorative material in vitro.

    PubMed

    Lin, Tai-Min; Liu, Perng-Ru; Ramp, Lance C; Essig, Milton E; Givan, Daniel A; Pan, Yu-Hwa

    2012-03-01

    The purpose of this investigation is to evaluate marginal discrepancy and fracture resistance of two veneering materials using two preparation designs. Two veneer preparation designs (full and traditional) were restored with leucite-reinforced ceramic (ProCAD, Ivoclar Vivadent, Amherst, NY) milled by CAD/CAM (Cerec 3D milling system, Serona Dental Systems), and conventional sintered feldspathic porcelain (Noritake Super Porcelain EX3, Noritake Dental Supply Co). Forty-eight specimens were analysed with a sample size of n=12 per group. The thickness of each veneer was measured on four specific surfaces. Marginal discrepancy was evaluated with a replica technique and cross-sectional view using a digital microscope. The fracture resistance of veneers cemented on standardised composite resin dies was evaluated using a universal testing machine. Results were analysed with ANOVA, Tukey-Kramer post hoc testing, and linear regression. The results of this investigation revealed no correlation between the thickness and marginal discrepancy of the veneers. The full preparation design with ProCAD and the traditional preparation design with feldspathic porcelain manifested smaller gap. Fracture resistance was decreased for the full preparation design with feldspathic porcelain. In terms of marginal discrepancy and fracture resistance, the most favourable combination was a traditional veneer preparation design with conventional sintered feldspathic porcelain. For the full veneer preparation, a stronger ceramic material such as ProCAD is suggested. Published by Elsevier Ltd.

  12. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT

    PubMed Central

    Burns, Joseph E.; Yao, Jianhua; Muñoz, Hector

    2016-01-01

    Purpose To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). Materials and Methods This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14–88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Results Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). Conclusion The fully automated computer system detects and anatomically localizes vertebral body fractures in the thoracic and lumbar spine on CT images with a high sensitivity and a low false-positive rate. © RSNA, 2015 Online supplemental material is available for this article. PMID:26172532

  13. Crack growth and fracture toughness of amorphous Li-Si anodes: Mechanisms and role of charging/discharging studied by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Khosrownejad, S. M.; Curtin, W. A.

    2017-10-01

    Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve KI vs. Δa) are performed at LixSi compositions x = 0.5 , 1.0 , 1.5 for as-quenched/relaxed samples and at x = 0.5 , 1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness KIc ≈ 1.0 MPa√{ m} decreases slightly but the initial fracture energy JIc ≈ 10.5J/m2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at KIc ≈ 1.9 MPa√{ m} across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts JIc = ασy D where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of LixSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging/discharging. These findings indicate that the mechanical behavior (flow and fracture) of lithiated Si must be interpreted within a fully rate- and history-dependent framework.

  14. Risk factors for falls with severe fracture in elderly people living in a middle-income country: a case control study.

    PubMed

    Coutinho, Evandro S F; Fletcher, Astrid; Bloch, Katia V; Rodrigues, Laura C

    2008-08-26

    Fracture after falling has been identified as an important problem in public health. Most studies of risk factors for fractures due to falls have been carried out in developed countries, although the size of the elderly population is increasing fast in middle income countries. The objective of this paper is to identify risk factors for fall related to severe fractures in those aged 60 or more in a middle-income country. A case-control study was carried out in Rio de Janeiro-Brazil based general hospitals between 2002-2003. Two hundred-fifty hospitalised cases of fracture were matched with 250 community controls by sex, age group and living area. Data were collected for socio-demographic variables, health status and drugs used before the fall. A conditional logistic regression model was fitted to identify variables associated with the risk of fall related severe fracture. Low body mass index, cognitive impairment, stroke and lack of urine control were associated with increased risk of severe fall related fractures. Benzodiazepines and muscle relaxants were also related to an increased risk of severe fractures while moderate use of alcohol was associated with reduced risk. Although the association between benzodiazepines and fractures due to fall has been consistently demonstrated for old people, this has not been the case for muscle relaxant drugs. The decision to prescribe muscle relaxants for elderly people should take into account the risk of severe fracture associated with these drugs.

  15. Anomalous Induced Seismicity due to Hydraulic Fracturing. Case of study in the Montney Formation, Northeast British Columbia.

    NASA Astrophysics Data System (ADS)

    Longobardi, M.; Bustin, A. M. M.; Johansen, K.; Bustin, R. M.

    2017-12-01

    One of our goals is to investigate the variables and processes controlling the anomalous induced seismicity and its associated ground motions, to better understand the anomalous induced seismicity (AIS) due to hydraulic fracturing in Northeast British Columbia. Our other main objective is to optimize-completions and well design. Although the vast majority of earthquakes that occur in the world each year have natural causes, some of these earthquakes and a number of lesser magnitude seismic events are induced by human activities. The recorded induced seismicity resulting from the fluid injection during hydraulic fracturing is generally small in magnitude (< M 1). Shale gas operations in Northeast British Columbia (BC) have induced the largest recorded occurrence and magnitude of AIS because of hydraulic fracturing. Anomalous induced seismicity have been recorded in seven clusters within the Montney area, with magnitudes up to ML 4.6. Five of these clusters have been linked to hydraulic fracturing. To analyse our AIS data, we first have calculated the earthquakes hypocenters. The data was recorded on an array of real-time accelerometers. We built the array based on our modified design from the early earthquake detectors installed in BC schools for the Earthquake Early Warning System for British Columbia. We have developed a new technique for locating hypocenters and applied it to our dataset. The technique will enable near real-time event location, aiding in both mitigating induced events and adjusting completions to optimize the stimulation. Our hypocenter program assumes to consider a S wave speed, fitting the arrival times to the hypocenter, and using an "amoebae method" multivariate. We have used this method because it is well suited to minimizing of the chi-squared function of the arrival time deviation. We show some preliminary results on the Montney dataset.

  16. The role of organic proteins on the crack growth resistance of human enamel.

    PubMed

    Yahyazadehfar, Mobin; Arola, Dwayne

    2015-06-01

    With only 1% protein by weight, tooth enamel is the most highly mineralized tissue in mammals. The focus of this study was to evaluate contributions of the proteins on the fracture resistance of this unique structural material. Sections of enamel were obtained from the cusps of human molars and the crack growth resistance was quantified using a conventional fracture mechanics approach with complementary finite element analysis. In selected specimens the proteins were extracted using a potassium hydroxide treatment. Removal of the proteins resulted in approximately 40% decrease in the fracture toughness with respect to the fully proteinized control. The loss of organic content was most detrimental to the extrinsic toughening mechanisms, causing over 80% reduction in their contribution to the total energy to fracture. This degradation occurred by embrittlement of the unbroken bridging ligaments and consequent reduction in the crack closure stress. Although the organic content of tooth enamel is very small, it is essential to crack growth toughening by facilitating the formation of unbroken ligaments and in fortifying their potency. Replicating functions of the organic content will be critical to the successful development of bio-inspired materials that are designed for fracture resistance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. A Novel Computer-Aided Approach for Parametric Investigation of Custom Design of Fracture Fixation Plates.

    PubMed

    Chen, Xiaozhong; He, Kunjin; Chen, Zhengming

    2017-01-01

    The present study proposes an integrated computer-aided approach combining femur surface modeling, fracture evidence recover plate creation, and plate modification in order to conduct a parametric investigation of the design of custom plate for a specific patient. The study allows for improving the design efficiency of specific plates on the patients' femur parameters and the fracture information. Furthermore, the present approach will lead to exploration of plate modification and optimization. The three-dimensional (3D) surface model of a detailed femur and the corresponding fixation plate were represented with high-level feature parameters, and the shape of the specific plate was recursively modified in order to obtain the optimal plate for a specific patient. The proposed approach was tested and verified on a case study, and it could be helpful for orthopedic surgeons to design and modify the plate in order to fit the specific femur anatomy and the fracture information.

  18. Depressive symptoms are associated with reduced neutrophil function in hip fracture patients☆

    PubMed Central

    Duggal, Niharika Arora; Upton, Jane; Phillips, Anna C.; Hampson, Peter; Lord, Janet M.

    2013-01-01

    Hip fracture is a common trauma in older adults with a high incidence of depression, which relates to poorer prognosis including increased risk of infection. Ageing is accompanied by reduced immunity, termed immunesenescence, resulting in increased susceptibility to infection. We examined whether physical trauma (hip fracture) and psychological distress (depressive symptoms) had additive effects upon the aged immune system that might contribute to poor outcomes after injury. Neutrophil function was assessed in 101 hip fracture patients (81 female) 6 weeks and 6 months after injury and 43 healthy age-matched controls (28 female). Thirty eight fracture patients had depressive symptoms at 6 weeks. No difference in neutrophil phagocytosis of Escherichia coli was observed between controls and hip fracture patients, but superoxide production was significantly reduced in hip fracture patients with depressive symptoms compared with patients without symptoms (p = .001) or controls (p = .004) at 6 weeks. Superoxide production improved 6 months following fracture to the level seen in controls. We detected elevated serum cortisol, reduced dehydroepiandrosterone sulphate (DHEAS) and an increased cortisol:DHEAS ratio in fracture patients with depressive symptoms compared with patients without depressive symptoms or controls at 6 weeks and 6 months after injury. Serum IL6, TNFα and IL10 were higher among patients with depressive symptoms at 6 weeks. The cortisol:DHEAS ratio and IL6 levels related to depressive symptom scores but not to neutrophil function. In conclusion, depressive symptoms related to poorer neutrophil function after hip fracture, but this was not driven by changes in stress hormone or cytokine levels. PMID:23876747

  19. Revision of a Fractured Uncemented Revision Stem Using a Custom Designed Punch and Retrograde Through-Knee Approach

    PubMed Central

    Nasr, P. J.; Keene, G. S.

    2015-01-01

    We report a unique case of a fractured modular cobalt chromium connection taper Revitan (Zimmer, Warsaw, IN) revision prosthesis. Macroscopic examination revealed a fracture at the diaphyseal-metaphyseal junction of this modular component. This report highlights that fractures can still occur with modern modular prostheses. We are not aware of any published failures of the Revitan revision prosthesis. We also describe a unique method of retrieval for a broken well fixed uncemented femoral stem, using a custom designed extraction instrument via a through-knee approach. PMID:25793134

  20. Experimental Investigation on the Basic Law of Directional Hydraulic Fracturing Controlled by Dense Linear Multi-Hole Drilling

    NASA Astrophysics Data System (ADS)

    Zhao, Xinglong; Huang, Bingxiang; Wang, Zhen

    2018-06-01

    Directional rupture is a significant and routine problem for ground control in mines. Directional hydraulic fracturing controlled by dense linear multi-hole drilling was proposed. The physical model experiment, performed by the large-scale true triaxial hydraulic fracturing experimental system, aims to investigate the basic law of directional hydraulic fracturing controlled by dense linear multi-hole drilling, the impact of three different pumping modes on the initiation and propagation of hydraulic fractures among boreholes are particular investigated. The experimental results indicated that there are mutual impacts among different boreholes during crack propagation, which leads to a trend of fracture connection. Furthermore, during propagation, the fractures not only exhibit an overall bias toward the direction in which the boreholes are scattered but also partially offset against the borehole axes and intersect. The directional fracturing effect of equivalent pumping rate in each borehole is better than the other two pumping modes. In practical applications, because of rock mass heterogeneity, there may be differences in terms of filtration rate and effective input volume in different boreholes; thus, water pressure increase and rupture are not simultaneous in different boreholes. Additionally, if the crack initiation directions of different boreholes at different times are not consistent with each other, more lamellar failure planes will occur, and the mutual influences of these lamellar failure planes cause fractures to extend and intersect.

  1. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture.

    PubMed

    Milner, Clare E; Hamill, Joseph; Davis, Irene S

    2010-02-01

    Cross-sectional controlled laboratory study. To investigate the kinematics of the hip, knee, and rearfoot in the frontal and transverse planes in female distance runners with a history of tibial stress fracture. Tibial stress fractures are a common overuse injury in runners, accounting for up to half of all stress fractures. Abnormal kinematics of the lower extremity may contribute to abnormal musculoskeletal load distributions, leading to an increased risk of stress fractures. Thirty female runners with a history of tibial stress fracture were compared to 30 age-matched and weekly-running-distance-matched control subjects with no previous lower extremity bony injuries. Kinematic and kinetic data were collected using a motion capture system and a force platform, respectively, as subjects ran in the laboratory. Selected variables of interest were compared between the groups using a multivariate analysis of variance (MANOVA). Peak hip adduction and peak rearfoot eversion angles were greater in the stress fracture group compared to the control group. Peak knee adduction and knee internal rotation angles and all joint angles at impact peak were similar between the groups. Runners with a previous tibial stress fracture exhibited greater peak hip adduction and rearfoot eversion angles during the stance phase of running compared to healthy controls. A consequence of these mechanics may be altered load distribution within the lower extremity, predisposing individuals to stress fracture.

  2. Laser-induced damage and fracture in fused silica vacuum windows

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hurst, Patricia A.; Heggins, Dwight D.; Steele, William A.; Bumpas, Stanley E.

    1997-05-01

    Laser induced damage, that initiates catastrophic fracture, has been observed in large, fused silica lenses that also serve as vacuum barriers in high-fluence positions on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lens. The damage can lead to catastrophic crack growth if the flaw size exceeds the critical flaw size for SiO2. If the elastic stored energy in the lens in high enough, the lens will fracture into many pieces resulting in an implosion. The consequences of such an implosion can be severe, particularly for large vacuum systems. Three parameters control the degree of fracture in the vacuum barrier window: (1) the elastic stored energy, (2) the ratio of the window thickness to flaw depth and (3) secondary crack propagation. Fracture experiments have ben carried our on 15-cm diameter fused silica windows that contain surface flaws caused by laser damage. The results of these experiments, combined with data from window failures on Beamlet and Nova have been sued to develop design criteria for a 'fail-safe' lens. Specifically the window must be made thick enough such that the peak tensile stress is less than 500 psi and the corresponding ratio of the thickness to critical flaw size is less than 6. Under these conditions a properly mounted window, upon failure, will break into only tow pieces and will not implode. One caveat to these design criteria is that the air leak through the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments 'lock' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase leading to further crack growth.

  3. Damage control and intramedullary nailing for long bone fractures in polytrauma patients.

    PubMed

    Patka, Peter

    2017-06-01

    The early fracture treatment in patients with multiple injuries should be focused on damage control. The fracture type and its location, local soft tissue condition as well as the patient's physiological condition shall determine the time and type of fracture treatment. Prevention of local and systemic complications must be immediately considered and included in the treatment planning. The use of external fixator (ExFix), which will be replaced by IM-implants in most cases at a later stage, provides adequate temporary fracture stabilization with less collateral damage. Good clinical results can be expected in patients with long bone fractures if the principles of damage control surgery are applied and local complications are prevented through proper reduction, firm fixation, early soft tissue reconstruction, and early rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair. PMID:28243388

  5. Vitamin D status among patients with hip fracture and elderly control subjects in Yekaterinburg, Russia.

    PubMed

    Bakhtiyarova, S; Lesnyak, O; Kyznesova, N; Blankenstein, M A; Lips, P

    2006-01-01

    Vitamin D deficiency leads to secondary hyperparathyroidism and osteomalacia, and both conditions are associated with fractures, the most severe being hip fracture. The serum 25-hydroxyvitamin D level depends on latitude and season. Yekaterinburg is situated at a high latitude and the duration of winter is about 5 months. In this study, the serum 25(OH)D and PTH concentrations, and the prevalence of hypovitaminosis D in elderly people, inhabitants of Yekaterinburg, were investigated. The study was performed on 63 people with hip fracture (mean age, 68.8 years) and 97 independently living elderly people (mean age, 70.2 years). Serum 25(OH)D (mean+/-SD) in the hip fracture group was 22.4+/-11.4 nmol/L, significantly lower than in control group, which was 28.1+/-10.1 nmol/L. The percentage of patients with severe hypovitaminosis D (<25 nmol/L) in the hip fracture group was 65%, compared to 47% in the control group (p<0.05). The prevalence of hypovitaminosis D among hip fracture patients, as well as among independently living elderly people in Yekaterinburg, was high. Supplementation of vitamin D in elderly people with and without fracture might prevent secondary hyperparathyroidism, osteomalacia and fractures.

  6. Ankle Injury Management (AIM): design of a pragmatic multi-centre equivalence randomised controlled trial comparing Close Contact Casting (CCC) to Open surgical Reduction and Internal Fixation (ORIF) in the treatment of unstable ankle fractures in patients over 60 years.

    PubMed

    Willett, Keith; Keene, David J; Morgan, Lesley; Gray, Bridget; Handley, Robert; Chesser, Tim; Pallister, Ian; Tutton, Elizabeth; Knox, Christopher; Lall, Ranjit; Briggs, Andrew; Lamb, Sarah E

    2014-03-12

    Ankle fractures account for 9% of all fractures with a quarter of these occurring in adults over 60 years. The short term disability and long-term consequences of this injury can be considerable. Current opinion favours open reduction and internal fixation (ORIF) over non-operative treatment (fracture manipulation and the application of a standard moulded cast) for older people. Both techniques are associated with complications but the limited published research indicates higher complication rates of fracture malunion (poor position at healing) with casting. The aim of this study is to compare ORIF with a modification of existing casting techniques, Close Contact Casting (CCC). We propose that CCC may offer an equivalent functional outcome to ORIF and avoid the risks associated with surgery. This study is a pragmatic multi-centre equivalence randomised controlled trial. 620 participants will be randomised to receive ORIF or CCC after sustaining an isolated displaced unstable ankle fracture. Participants will be recruited from a minimum of 20 National Health Service (NHS) acute hospitals throughout England and Wales. Participants will be aged over 60 years and be ambulatory prior to injury. Follow-up will be at six weeks and six months after randomisation. The primary outcome is the Olerud & Molander Ankle Score, a functional patient reported outcome measure, at 6 months. Follow-up will also include assessments of mobility, ankle range of movement, health related quality of life and complications. The six-month follow-up will be conducted face-to-face by an assessor blinded to the allocated intervention. A parallel economic evaluation will consider both a health service and a broader societal perspective including the individual and their family. In order to explore patient experience of their treatment and recovery, a purposive sample of 40 patients will also be interviewed using a semi-structured interview schedule between 6-10 weeks post treatment. This multicentre study was open to recruitment July 2010 and recruitment is due to be completed in December 2013. Current Controlled Trials ISRCTN04180738.

  7. Self-Reported Fractures in Dermatitis Herpetiformis Compared to Coeliac Disease

    PubMed Central

    Pasternack, Camilla; Mansikka, Eriika; Kaukinen, Katri; Hervonen, Kaisa; Reunala, Timo; Collin, Pekka; Mattila, Ville M.

    2018-01-01

    Dermatitis herpetiformis (DH) is a cutaneous manifestation of coeliac disease. Increased bone fracture risk is known to associate with coeliac disease, but this has been only scantly studied in DH. In this study, self-reported fractures and fracture-associated factors in DH were investigated and compared to coeliac disease. Altogether, 222 DH patients and 129 coeliac disease-suffering controls were enrolled in this study. The Disease Related Questionnaire and the Gastrointestinal Symptom Rating Scale and Psychological General Well-Being questionnaires were mailed to participants; 45 out of 222 (20%) DH patients and 35 out of 129 (27%) of the coeliac disease controls had experienced at least one fracture (p = 0.140). The cumulative lifetime fracture incidence did not differ between DH and coeliac disease patients, but the cumulative incidence of fractures after diagnosis was statistically significantly higher in females with coeliac disease compared to females with DH. The DH patients and the coeliac disease controls with fractures reported more severe reflux symptoms compared to those without, and they also more frequently used proton-pump inhibitor medication. To conclude, the self-reported lifetime bone fracture risk is equal for DH and coeliac disease. After diagnosis, females with coeliac disease have a higher fracture risk than females with DH. PMID:29538319

  8. Manufacture of fiber-epoxy test specimens: Including associated jigs and instrumentation

    NASA Technical Reports Server (NTRS)

    Mathur, S. B.; Felbeck, D. K.

    1980-01-01

    Experimental work on the manufacture and strength of graphite-epoxy composites is considered. The correct data and thus a true assessment of the strength properties based on a proper and scientifically modeled test specimen with engineered design, construction, and manufacture has led to claims of a very broad spread in optimized values. Such behavior is in the main due to inadequate control during manufacture of test specimen, improper curing, and uneven scatter in the fiber orientation. The graphite fibers are strong but brittle. Even with various epoxy matrices and volume fraction, the fracture toughness is still relatively low. Graphite-epoxy prepreg tape was investigated as a sandwich construction with intermittent interlaminar bonding between the laminates in order to produce high strength, high fracture toughness composites. The quality and control of manufacture of the multilaminate test specimen blanks was emphasized. The dimensions, orientation and cure must be meticulous in order to produce the desired mix.

  9. A Theoretical Model for Predicting Fracture Strength and Critical Flaw Size of the ZrB2-ZrC Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo

    2018-06-01

    This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.

  10. Reamed versus unreamed intramedullary nailing for the treatment of femoral fractures

    PubMed Central

    Li, A-Bing; Zhang, Wei-Jiang; Guo, Wei-Jun; Wang, Xin-Hua; Jin, Hai-Ming; Zhao, You-Ming

    2016-01-01

    Abstract Background and objective: Intramedullary nailing is commonly used for treating femoral shaft fractures, one of the most common long bone fractures in adults. The reamed intramedullary nail is considered the standard implant for femoral fractures. This meta-analysis was performed to verify the superiority of reamed intramedullary nailing over unreamed intramedullary nailing in fractures of the femoral shaft in adults. Subgroup analysis of implant failure and secondary procedure was also performed. Methods: Electronic literature databases were used to identify relevant publications and included MEDLINE (Ovid interface), EMBASE (Ovid interface), and the Cochrane Central Register of Controlled Trials (CENTRAL; Wiley Online Library). The versions available on January 30, 2016, were utilized. Only human studies, which were designed as randomized controlled clinical trials, were included. Two authors independently evaluated the quality of original research publications and extracted data from the studies that met the criteria. Results: Around 8 randomized controlled trials involving 1078 patients were included. Reamed intramedullary nailing was associated with shorter time to consolidation of the fracture (SMD = –0.62, 95% CI = –0.89 to –0.35, P < 0.00001), lower secondary procedure rate (OR = 0.25, 95% CI 0.10–0.62, P = 0.003), lower nonunion rate (OR = 0.14, 95% CI = 0.05–0.40, P < 0.01), and lower delayed-union rate (OR = 0.19, 95% CI = 0.07–0.49, P < 0.01) compared to unreamed intramedullary nailing. The 2 groups showed no significant differences in risk of implant failure (OR = 0.50, 95% CI 0.14–1.74, P = 0.27), mortality risk (OR = 0.94, 95% CI 0.19–4.68, P = 0.94), risk of acute respiratory distress syndrome (ARDS; OR = 1.55, 95% CI 0.36–6.57, P = 0.55), or blood loss (SMD = 0.57, 95% CI = –0.22 to 1.36, P = 0.15). Conclusion: Reamed intramedullary nailing is correlated with shorter time to union and lower rates of delayed-union, nonunion, and reoperation. Reamed intramedullary nailing did not increase blood loss or the rates of ARDS, implant failure, and mortality compared to unreamed intramedullary nailing. Therefore, the treatment of femoral fractures using reamed intramedullary nailing is recommended. PMID:27442651

  11. A Multicenter Evaluation of Emergency Department Pain Care Across Different Types of Fractures

    PubMed Central

    Belland, Laura; Rivera-Reyes, Laura; Handel, Daniel; Yadav, Kabir; Heard, Kennon; Eisenberg, Amanda; Khelemsky, Yury

    2017-01-01

    Objectives. To identify differences in emergency department (ED) pain-care based on the type of fracture sustained and to examine whether fracture type may influence the more aggressive analgesic use previously demonstrated in older patients. Design. Secondary analysis of retrospective cohort study. Setting. Five EDs (four academic, one community) in the United States. Participants. Patients (1,664) who presented in January, March, July, and October 2009 with a final diagnosis of fracture (774 long bone [LBF], 890 shorter bone [SBF]). Measurements. Primary-predictor was type of fracture (LBF vs. SBF). Pain-care process outcomes included likelihood of analgesic administration, opioid-dose, and time to first analgesic. General estimating equations were used to control for age, gender, race, baseline pain score, triage acuity, comorbidities and ED crowding. Subgroup analyses were conducted to analyze age-based differences in pain care by fracture type. Results. A larger proportion of patients with LBF (30%) were older (>65 years old) compared to SBF (13%). Compared with SBF, patients with LBF were associated with greater likelihood of analgesic-administration (OR = 2.03; 95 CI = 1.58 to 2.62; P < 0.001) and higher opioid-doses (parameter estimate = 0.268; 95 CI = 0.239 to 0.297; P < 0.001). When LBF were examined separately, older-patients had a trend to longer analgesic wait-times (99 [55–163] vs. 76 [35–149] minutes, P = 0.057), but no other differences in process outcomes were found. Conclusion. Long bone fractures were associated with more aggressive pain care than SBF. When fracture types were examined separately, older patients did not appear to receive more aggressive pain care. This difference should be accounted for in further research. PMID:27245631

  12. Fracture resistance and reliability of new zirconia posts.

    PubMed

    Oblak, Cedomir; Jevnikar, Peter; Kosmac, Tomaz; Funduk, Nenad; Marion, Ljubo

    2004-04-01

    The radicular portion of zirconia endodontic posts often need to be reshaped to achieve a definitive form and may be airborne-particle abraded to improve adhesion during luting. Therefore, the surface of the tetragonal zirconia ceramics may be transformed and damaged, influencing the mechanical properties of the material. This study compared the fracture resistance of prefabricated zirconia posts with a new retentive post-head after different surface treatments. Experimental zirconia posts of 2 different diameters, 1.3 mm and 1.5 mm, were produced from commercially available zirconia powder. A cylindro-conical outline form was used for the root portion of the system and a post-head with 3 retentive rings was designed. Sixty posts of each diameter were divided into 3 groups (n=20). Group 1 was ground with a coarse grit diamond bur; Group 2 was airborne-particle abraded with 110-microm fused alumina particles, and Group 3 was left as-received (controls). Posts were luted into the root-shaped artificial canals with the Clearfil adhesive system and Panavia 21 adhesive resin luting agent. The posts were loaded in a universal testing machine at an inclination of 45 degrees with the constant cross-head speed of 1 mm/min. The fracture load (N) necessary to cause post fracture was recorded, and the statistical significance of differences among groups was analyzed with 1-way ANOVA followed by the Fischer LSD test (alpha=.05). The variability was analyzed using Weibull statistics. Load to fracture values of all zirconia posts depended primarily on post diameter. Mean fracture loads (SD) in Newtons were 518.4 (+/-101.3), 993.6 (+/-224.1), and 622.7 (+/-110.3) for Groups 1 through 3, respectively, for thicker posts, and 385.9 (+/-110.3), 627.0 (+/-115.1), and 451.2 (+/-81.4) for Groups 1 through 3, respectively, for thinner posts. Airborne-particle-abraded posts exhibited significantly higher resistance to fracture (P<.05) than those in the other 2 groups for diameters 1.3 mm and 1.5 mm. Grinding reduced Weibull modulus compared with controls, and the values were 4.1 and 6.5 for thicker and thinner posts, respectively. Within the limitations of this study, the results suggest that grinding leads to a significant drop in load to fracture of zirconia posts, whereas airborne-particle abrasion increased the fracture load.

  13. Efficacy and Safety of a Once-Yearly Intravenous Zoledronic Acid 5 mg for Fracture Prevention in Elderly Postmenopausal Women with Osteoporosis Aged 75 and Older

    PubMed Central

    Boonen, Steven; Black, Dennis M.; Colón-Emeric, Cathleen S.; Eastell, Richard; Magaziner, Jay S.; Eriksen, Erik Fink; Mesenbrink, Peter; Haentjens, Patrick; Lyles, Kenneth W.

    2013-01-01

    OBJECTIVES To determine the efficacy of once-yearly intravenous zoledronic acid (ZOL) 5 mg in reducing risk of clinical vertebral, nonvertebral, and any clinical fractures in elderly osteoporotic postmenopausal women. DESIGN A post hoc subgroup analysis of pooled data from the Health Outcome and Reduced Incidence with Zoledronic Acid One Yearly (HORIZON) Pivotal Fracture Trial and the HORIZON Recurrent Fracture Trial. SETTING Multicenter, randomized, double-blind, placebo-controlled trials. PARTICIPANTS Postmenopausal women (aged ≥75) with documented osteoporosis (T-score ≤ −2.5 at femoral neck or ≥1 prevalent vertebral or hip fracture) or a recent hip fracture. INTERVENTION Patients were randomized to receive an intravenous infusion of ZOL 5 mg (n =1,961) or placebo (n =1,926) at baseline and 12 and 24 months. MEASUREMENTS Primary endpoints were incidence of clinical vertebral and nonvertebral and any clinical fracture after treatment. RESULTS At 3 years, incidence of any clinical, clinical vertebral, and nonvertebral fracture were significantly lower in the ZOL group than in the placebo group (10.8% vs 16.6%, 1.1% vs 3.7%, and 9.9% vs 13.7%, respectively) (hazard ratio (HR) =0.65, 95% confidence interval (CI) =0.54–0.78, P<.001; HR =0.34, 95% CI =0.21–0.55, P<.001; and HR =0.73, 95% CI =0.60–0.90, P =.002, respectively). The incidence of hip fracture was lower with ZOL but did not reach statistical significance. The incidence rate of postdose adverse events were higher with ZOL, although the rate of serious adverse events and deaths was comparable between the two groups. CONCLUSION Once-yearly intravenous ZOL 5 mg was associated with a significant reduction in the risk of new clinical fractures (vertebral and nonvertebral) in elderly postmenopausal women with osteroporosis. PMID:20070415

  14. PERFECTED enhanced recovery (PERFECT-ER) care versus standard acute care for patients admitted to acute settings with hip fracture identified as experiencing confusion: study protocol for a feasibility cluster randomized controlled trial.

    PubMed

    Hammond, Simon P; Cross, Jane L; Shepstone, Lee; Backhouse, Tamara; Henderson, Catherine; Poland, Fiona; Sims, Erika; MacLullich, Alasdair; Penhale, Bridget; Howard, Robert; Lambert, Nigel; Varley, Anna; Smith, Toby O; Sahota, Opinder; Donell, Simon; Patel, Martyn; Ballard, Clive; Young, John; Knapp, Martin; Jackson, Stephen; Waring, Justin; Leavey, Nick; Howard, Gregory; Fox, Chris

    2017-12-04

    Health and social care provision for an ageing population is a global priority. Provision for those with dementia and hip fracture has specific and growing importance. Older people who break their hip are recognised as exceptionally vulnerable to experiencing confusion (including but not exclusively, dementia and/or delirium and/or cognitive impairment(s)) before, during or after acute admissions. Older people experiencing hip fracture and confusion risk serious complications, linked to delayed recovery and higher mortality post-operatively. Specific care pathways acknowledging the differences in patient presentation and care needs are proposed to improve clinical and process outcomes. This protocol describes a multi-centre, feasibility, cluster-randomised, controlled trial (CRCT) to be undertaken across ten National Health Service hospital trusts in the UK. The trial will explore the feasibility of undertaking a CRCT comparing the multicomponent PERFECTED enhanced recovery intervention (PERFECT-ER), which acknowledges the differences in care needs of confused older patients experiencing hip fracture, with standard care. The trial will also have an integrated process evaluation to explore how PERFECT-ER is implemented and interacts with the local context. The study will recruit 400 hip fracture patients identified as experiencing confusion and will also recruit "suitable informants" (individuals in regular contact with participants who will complete proxy measures). We will also recruit NHS professionals for the process evaluation. This mixed methods design will produce data to inform a definitive evaluation of the intervention via a large-scale pragmatic randomised controlled trial (RCT). The trial will provide a preliminary estimate of potential efficacy of PERFECT-ER versus standard care; assess service delivery variation, inform primary and secondary outcome selection, generate estimates of recruitment and retention rates, data collection difficulties, and completeness of outcome data and provide an indication of potential economic benefits. The process evaluation will enhance knowledge of implementation delivery and receipt. ISRCTN, 99336264 . Registered on 5 September 2016.

  15. Modeling Staphylococcus epidermidis-Induced Non-Unions: Subclinical and Clinical Evidence in Rats

    PubMed Central

    Lovati, Arianna Barbara; Romanò, Carlo Luca; Bottagisio, Marta; Monti, Lorenzo; De Vecchi, Elena; Previdi, Sara; Accetta, Riccardo; Drago, Lorenzo

    2016-01-01

    S. epidermidis is one of the leading causes of orthopaedic infections associated with biofilm formation on implant devices. Open fractures are at risk of S. epidermidis transcutaneous contamination leading to higher non-union development compared to closed fractures. Although the role of infection in delaying fracture healing is well recognized, no in vivo models investigated the impact of subclinical low-grade infections on bone repair and non-union. We hypothesized that the non-union rate is directly related to the load of this commonly retrieved pathogen and that a low-grade contamination delays the fracture healing without clinically detectable infection. Rat femurs were osteotomized and stabilized with plates. Fractures were infected with a characterized clinical-derived methicillin-resistant S. epidermidis (103, 105, 108 colony forming units) and compared to uninfected controls. After 56 days, bone healing and osteomyelitis were clinically assessed and further evaluated by micro-CT, microbiological and histological analyses. The biofilm formation was visualized by scanning electron microscopy. The control group showed no signs of infection and a complete bone healing. The 103 group displayed variable response to infection with a 67% of altered bone healing and positive bacterial cultures, despite no clinical signs of infection present. The 105 and 108 groups showed severe signs of osteomyelitis and a non-union rate of 83–100%, respectively. The cortical bone reaction related to the periosteal elevation in the control group and the metal scattering detected by micro-CT represented limitations of this study. Our model showed that an intra-operative low-grade S. epidermidis contamination might prevent the bone healing, even in the absence of infectious signs. Our findings also pointed out a dose-dependent effect between the S. epidermidis inoculum and non-union rate. This pilot study identifies a relevant preclinical model to assess the role of subclinical infections in orthopaedic and trauma surgery and to test specifically designed diagnostic, prevention and therapeutic strategies. PMID:26796958

  16. Design and testing of the Space Station Freedom Propellant Tank Assembly

    NASA Technical Reports Server (NTRS)

    Dudley, D. D.; Thonet, T. A.; Goforth, A. M.

    1992-01-01

    Propellant storage and management functions for the Propulsion Module of the U.S. Space Station Freedom are provided by the Propellant Tank Assembly (PTA). The PTA consists of a surface-tension type propellant acquisition device contained within a welded titanium pressure vessel. The PTA design concept was selected with high reliability and low program risk as primary goals in order to meet stringent NASA structural, expulsion, fracture control and reliability requirements. The PTA design makes use of Shuttle Orbital Maneuvering System and Peacekeeper Propellant Storage Assembly design and analysis techniques. This paper summarizes the PTA design solution and discusses the underlying detailed analyses. In addition, design verification and qualification test activities are discussed.

  17. Evaluation of an improved prototype mini-baghouse to control the release of respirable crystalline silica from sand movers.

    PubMed

    Alexander, Barbara M; Esswein, Eric J; Gressel, Michael G; Kratzer, Jerry L; Feng, H Amy; Miller, Arthur L; Cauda, Emanuele; Heil, Graeham

    2018-01-01

    The OSHA final rule on respirable crystalline silica (RCS) will require hydraulic fracturing companies to implement engineering controls to limit workers' exposure to RCS. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. Chronic inhalation of RCS can lead to serious disease, including silicosis and lung cancer. NIOSH research identified at least seven sources where RCS aerosols were generated at hydraulic fracturing sites. NIOSH researchers developed an engineering control to address one of the largest sources of RCS aerosol generation, RCS escaping from thief hatches on the top of sand movers. The control, the NIOSH Mini-Baghouse Retrofit Assembly (NMBRA), mounts on the thief hatches. Unlike most commercially available engineering controls, the NMBRA has no moving parts and requires no power source. This article details the results of an evaluation of generation 3 of the NMBRA at a sand mine in Arkansas from May 19-21, 2015. During the evaluation, 168 area air samples were collected at 12 locations on and around a sand mover with and without the NMBRA installed. Analytical results for respirable dust and RCS indicated the use of the NMBRA effectively reduced concentrations of both respirable dust and RCS downwind of the thief hatches. Reductions of airborne respirable dust were estimated at 99+%; reductions in airborne RCS ranged from 98-99%. Analysis of bulk samples of the dust showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Use of an improved filter fabric and a larger area of filter cloth led to substantial improvements in filtration and pressures during these trials, as compared to the generation 2 NMBRA. Planned future design enhancements, including a weather cover, will increase the performance and durability of the NMBRA. Future trials are planned to evaluate the long-term operability of the technology.

  18. Upper-limb motor and sensory function in patients with hip fracture: Comparison with community-dwelling older adults.

    PubMed

    Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki

    2017-11-06

    Upper-limb function is important in patients with hip fracture so they can perform activities of daily living and participate in leisure activities. Upper-limb function of these patients, however, has not been thoroughly investigated. The aim of this study was to evaluate the upper-limb motor and sensory functions in patients with hip fracture by comparing these functions with those of community-dwelling older adults (control group). We compared the results of motor and sensory function tests of upper-limb function - range of motion, strength, sensibility, finger dexterity, comprehensive hand function - between patients with hip fracture (n= 32) and the control group (n= 32). Patients with hip fracture had significantly reduced grip strength, pinch strength, finger dexterity, and comprehensive hand function compared with the control group. Most upper-limb functions are impaired in the patients with hip fracture. Thus, upper-limb function of patients with hip fracture should be considered during treatment.

  19. Comparison of fracture resistance and fracture characterization of bilayered zirconia/fluorapatite and monolithic lithium disilicate all ceramic crowns.

    PubMed

    Altamimi, Abdulaziz M; Tripodakis, Aris Petros; Eliades, George; Hirayama, Hiroshi

    2014-01-01

    To compare the fracture resistance between bilayered zirconia/ fluorapatite and monolithic lithium disilicate heat-pressed crowns and characterize the mode of fracture failure. Thirty crown samples were sequentially fitted on a mandibular right first molar metal replica of an ivory prepared molar tooth. The crown specimens were divided in three groups (A, B, and C; n = 10 for each group). Group A consisted of bilayered zirconia/fluorhapatite pressed-over crowns with standard design crown copings (0.7 mm uniform thickness), Group B of bilayered zirconia/fluorhapatite with anatomical design crown copings, and Group C of lithium disilicate monolithic crowns. The samples were then dynamically loaded under water for 100,000 cycles with a profile of 250 N maximum load at 1,000 N/s rate and 2.0 Hz frequency. Loading was performed with a steel ball (5 mm in diameter) coming into contact with the test crown, loading to maximum, holding for 0.2 s, unloading and lifting off 0.5 mm. The samples were then fractured under static loading, in order to determine the ultimate crown strength. Analysis of the recorded fracture load values was carried out with one-way analysis of variance (ANOVA) followed by Tukey tests. Fractured specimens were examined by stereomicroscopy and scanning electron microscopy. The fracture loads measured were (N, means and standard deviations): Group A: 561.87 (72.63), Group B: 1,014.16 (70.18) and Group C: 1,360.63 (77.95). All mean differences were statistically significant (P < 0.001). Catastrophic fractures occurred in Group C, whereas mainly veneer fractures were observed in Groups A and B. In the present study, the heat-pressed monolithic lithium-disilicate crowns showed more fracture resistance than zirconia/fluorapatite pressed-over crowns. Within the bilayered groups, the anatomical zirconia coping design presented increased ceramic fracture resistance.

  20. Initiation and propagation of mixed mode fractures in granite and sandstone

    NASA Astrophysics Data System (ADS)

    Rück, Marc; Rahner, Roman; Sone, Hiroki; Dresen, Georg

    2017-10-01

    We investigate mixed mode fracture initiation and propagation in experimentally deformed granite and sandstone. We performed a series of asymmetric loading tests to induce fractures in cylindrical specimens at confining pressures up to 20 MPa. Loading was controlled using acoustic emission (AE) feedback control, which allows studying quasi-static fracture propagation for several hours. Location of acoustic emissions reveals distinct differences in spatial-temporal fracture evolution between granite and sandstone samples. Before reaching peak stress in experiments performed on granite, axial fractures initiate first at the edge of the indenter and then propagate through the entire sample. Secondary inclined fractures develop during softening of the sample. In sandstone, inclined shear fractures nucleate at peak stress and propagate through the specimen. AE source type analysis shows complex fracturing in both materials with pore collapse contributing significantly to fracture growth in sandstone samples. We compare the experimental results with numerical models to analyze stress distribution and energy release rate per unit crack surface area in the samples at different stages during fracture growth. We thereby show that for both rock types the energy release rate increases approximately linearly during fracture propagation. The study illuminates how different material properties modify fracture initiation direction under similar loading conditions.

  1. Population screening for osteoporosis risk: a randomised control trial of medication use and fracture risk.

    PubMed

    Barr, R J; Stewart, A; Torgerson, D J; Reid, D M

    2010-04-01

    Randomised control trial of osteoporosis screening in 4,800 women aged 45-54 years was carried out. Screened group observed an increase of 7.9% in hormone replacement therapy (HRT) use (p < 0.001), 15% in other osteoporosis treatments (p < 0.001) and a 25.9% reduction in fracture risk compared with control. Screening for osteoporosis significantly increases treatment use and reduces fracture incidence. Population screening programmes can identify menopausal women with low bone mineral density (BMD) and elevated risk of future fracture but require to be proven effective by a randomised control trial. A total of 4,800 women, 45-54 years, were randomised in equal numbers to screening or no screening (control) groups. Following screening, those in the lowest quartile of BMD were advised to consider HRT. Nine years later, the effect of screening on the uptake of treatment and the incidence of fractures were assessed by postal questionnaire. Categorical differences were assessed using chi(2) test. Cox regression was used to assess hazard ratio (HR). Of the screened and the control groups, 52.4% vs 44.5%, respectively, reported taking HRT (p < 0.001). In addition, 36.6% of the screened vs 21.6% of the control groups reported the use of vitamin D, calcium, alendronate, etidronate or raloxifene (p < 0.001). In a per protocol analysis of verified incident fractures, a 25.9% reduction in risk of fractures (of any site) in the screened group was observed (HR = 0.741, 95% CI = 0.551-0.998 adjusted age, weight and height). Screening for osteoporosis as assessed by low bone density significantly increases the use of HRT and other treatments for osteoporosis and reduces fracture incidence.

  2. Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Jarrahi, Miad; Holländer, Hartmut

    2017-04-01

    The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.

  3. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    NASA Astrophysics Data System (ADS)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  4. Designing a monitoring network for contaminated ground water in fractured chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nativ, R.; Adar, E.M.; Becker, A.

    1999-01-01

    One of the challenges of monitoring network design in a fractured rock setting is the heterogeneity of the rocks. This paper summarizes the activities and problems associated with the monitoring of contaminated groundwater in porous, low-permeability fractured chalk in the Negev Desert, Israel. Preferential flow documented in the study area required siting the monitoring boreholes in the predominant fracture systems. Lineaments traced from aerial photographs were examined in the field to sort out the large-extension, through-going, multilayer fracture systems crossing the study area. At each proposed drilling site, these fractures were exposed below the sediment cover using trenches. Slanted boreholesmore » were drilled at a distance from the fracture systems so that each borehole would intersect the targeted fracture plane below the water table. Based on their short recovery period and contaminated ground water, these newly drilled, fracture-oriented boreholes appeared to be better connected to preferential flowpaths crossing the industrial site than the old boreholes existing on site. Other considerations concerning the drilling and logging of monitoring boreholes in a fractured media were: (1) coring provides better documentation of the vertical fracture distribution, but dry augering is less costly and enables immediate ground water sampling and the sampling of vadose rock for contaminant analysis; (2) caliper and TV camera logs appear to provide only partial information regarding the vertical fracture distribution; and (3) the information gained by deepening the monitoring boreholes and testing fractures crossing their uncased walls has to be carefully weighed against the risk of potential cross-contamination through the monitoring boreholes, which is enhanced in fractured media.« less

  5. Systemic Delivery of Free Chitosan Accelerates Femur Fracture Healing in Rats.

    PubMed

    Shao, Peng; Wei, Yongzhong; Dass, Crispin R; Zhang, Guoying; Wu, Zhisheng

    2018-01-01

    Chitosan-containing compounds have been shown to be suitable for bone replacement, but few studies demonstrate the impact of the chitosan as a free drug on the fracture.In this study, we aimed to evaluate possible effects of free chitosan on fracture healing. Thirty adult male Sprague-Dawley rats with a mean body weight of 205 g (range from 200g to 210g) were randomly and equally divided into two groups. Standardized femur fractures were created in all rats. Treatments were administered intraperitoneally twice weekly at 1 mg chitosan per injection and the controls were administered physiological saline. The site of the fracture was compared with the control group at 1, 2 and 4 weeks after surgery (n=5 in each group). The weight, activity and reaction of the rats were observed at all the timepoints. Anterior-posterior radiographs and micro-CT scans of all fractures were taken after surgery, and the parameters included: the volume of callus that was calculated using the Perkins volume formula, BV/TV, BV, BMD of cortical bone, cortical thickness, and cortical number at the fracture sites. After sacrifice, fractured femurs from rats were dissected and carefully cleaned of muscle around the fracture callus to preserve callus integrity. Sections were stained with haematoxylin and eosin for histological evaluation of healing. Radiological (X-ray and micro-CT) evaluation showed that fracture healing of the experimental group was better than control group at the second week and fourth week. Histological evaluation revealed fracture healing of the experimental group was better than control group at the same time. There was no statistically significant difference in fracture healing between the two groups at the first week. Systemic delivery of free chitosan can accelerate the bone healing process in rat femur fracture at the early-middle stage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Increased risk of bone fracture among patients with urinary calculi: a nationwide longitudinal population-based study.

    PubMed

    Ou, S-M; Chen, Y-T; Shih, C-J; Tarng, D-C

    2015-04-01

    Urinary calculi were associated with higher risk of vertebral and upper limb fracture. Therefore, patients with urinary calculi should be evaluated carefully because they may have a higher risk of subsequent fracture later in life. The contribution of urinary calculi to reduced bone mineral density has been recognized. However, the association of urinary calculi with the risk of fracture remains inconclusive. The aim of the study was to determine the risk of overall fracture and fractures at different anatomic sites in patients with urinary calculi. The records of inpatients and outpatients with urinary calculi were retrieved from the Taiwan National Health Insurance Database from 2000 to 2010. Among patients with urinary calculi at the cohort entry, controls were matched using propensity scores on a 1:1 ratio. All subjects were followed up from the date of enrollment until fracture occurrence, death, or December 31, 2010. There were 46,243 Medicare beneficiaries with a diagnosis of urinary calculi and 46,243 controls without calculi enrolled. Among these patients, 6005 patients with a diagnosis of urinary calculi and 5339 controls developed fractures during a median follow-up period of 5.3 years. Patients with urinary calculi had a higher incidence of fracture compared with controls (23.9 versus 22.1 per 1000 person-years) and a greater risk of overall fractures (adjusted hazard ratio [aHR] 1.08, 95 % confidence interval [CI], 1.04-1.12), mainly located at the vertebrae (aHR 1.15, 95 % CI, 1.06-1.25) and upper limb (aHR 1.07, 95 % CI, 1.01-1.14), but the risk for hip fracture was not increased (aHR 1.09, 95 % CI, 0.96-1.22). Urinary calculus is independently associated with higher risk of subsequent fracture. Patients with urinary calculi should pay attention to the future vertebral and upper limb fractures.

  7. Probabilistic Assessment of Fracture Progression in Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon; Mauget, Bertrand; Huang, Dade; Addi, Frank

    1999-01-01

    This report describes methods and corresponding computer codes that are used to evaluate progressive damage and fracture and to perform probabilistic assessment in built-up composite structures. Structural response is assessed probabilistically, during progressive fracture. The effects of design variable uncertainties on structural fracture progression are quantified. The fast probability integrator (FPI) is used to assess the response scatter in the composite structure at damage initiation. The sensitivity of the damage response to design variables is computed. The methods are general purpose and are applicable to stitched and unstitched composites in all types of structures and fracture processes starting from damage initiation to unstable propagation and to global structure collapse. The methods are demonstrated for a polymer matrix composite stiffened panel subjected to pressure. The results indicated that composite constituent properties, fabrication parameters, and respective uncertainties have a significant effect on structural durability and reliability. Design implications with regard to damage progression, damage tolerance, and reliability of composite structures are examined.

  8. Histopathological evaluation of the effect of locally administered strontium on healing time in mandibular fractures: An experimental study.

    PubMed

    Durmuş, Kasım; Turgut, Nergiz Hacer; Doğan, Mehtap; Tuncer, Ersin; Özer, Hatice; Altuntaş, Emine Elif; Akyol, Melih

    2017-10-01

    Mandibular fractures are the most common facial fractures. They can be treated by conservative techniques or by surgery. The authors hypothesized that the application of a single local dose of strontium chloride would accelerate the healing of subcondylar mandibular fractures, shorten the recovery time and prevent complications. The aim of the present pilot study was to evaluate the effects of a single local dose of strontium chloride on the healing of subcondylar mandibular fractures in rats. This randomized experimental study was carried out on 24 male Wistar albino rats. The rats were randomly divided into 3 groups: experimental group 1, receiving 3% strontium chloride; experimental group 2, receiving 5% strontium chloride; and the control group. A full thickness surgical osteotomy was created in the subcondylar area. A single dose of strontium solution (0.3 cc/site) was administered locally by injection on the bone surfaces of the fracture line created. Nothing was administered to the control group. The mandibles were dissected on postoperative day 21. The fractured hemimandibles were submitted to histopathological examination. The median bone fracture healing score was 9 (range: 7-9) in experimental group 1; 8 (range: 7-10) in experimental group 2; and 7.50 (range: 7-8) in the control group. When the groups were compared in terms of bone healing scores, there was a statistically significant difference between experimental group 1 and the control group (p < 0.05). This study is the first to show that local strontium may have positive effects on the healing of subcondylar mandibular fractures. In the authors' opinion, 3% strontium was beneficial for accelerating facial skeleton consolidation and bone regeneration in rat subcondylar mandibular fractures. This treatment procedure may be combined with closed fracture treatment or a conservative approach.

  9. Women with previous stress fractures show reduced bone material strength

    PubMed Central

    Duarte Sosa, Daysi; Fink Eriksen, Erik

    2016-01-01

    Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443

  10. Polypharmacy correlates with increased risk for hip fracture in the elderly: a population-based study.

    PubMed

    Lai, Shih-Wei; Liao, Kuan-Fu; Liao, Chien-Chang; Muo, Chih-Hsin; Liu, Chiu-Shong; Sung, Fung-Chang

    2010-09-01

    Few studies have addressed the association between polypharmacy and hip fracture using population data. We conducted a population-based case-control study to investigate whether polypharmacy increases the risk for hip fracture in the elderly. We used insurance claims data from the Taiwan Bureau of National Health Insurance, a universal insurance program with a coverage rate of more than 98% of the population in Taiwan. We identified 2328 elderly patients with newly diagnosed hip fracture during the period 2005-2007. We randomly selected 9312 individuals without hip fracture to serve as the control group. Patient characteristics, drugs prescribed by physicians, and all types of hip fracture were ascertained. The odds ratio (OR) of hip fracture in association with the number of medications used per day in previous years was assessed.We found that patients were older than controls, predominantly female, and more likely to use 5 or more drugs (22.2% vs. 9.3%, p < 0.0001). The OR of hip fracture increased with the number of medications used per day and with age. Multivariate logistic regression analysis revealed that the overall OR for patients using 10 or more drugs was 8.42 (95% confidence interval [CI], 4.73-15.0) compared with patients who used 0-1 drug per day. However, age-specific analysis revealed that the risk for hip fracture was 23 times greater for patients aged > or = 85 years who used 10 or more drugs than for those aged 65-74 years who used 0-1 drug after controlling for covariates (OR, 23.0; 95% CI, 3.77-140).We conclude that the risk of hip fracture in older people increases with the number of medications used, especially in women. Age interacts with the daily medications for the risk of hip fracture.

  11. Engineering criteria for fracture flowback procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barree, R.D.; Mukherjee, H.

    1995-12-31

    Post treatment fracture flowback procedures during closure are often critical to the retention of fracture conductivity near the wellbore. Postfrac production performance largely depends on this conductivity. The importance of proper flowback procedure has been documented in the fracture industry, but definitive guidelines for flowback design have never been established. As a result, many misconceptions exist regarding the physics of proppant flowback and its effects on the final proppant distribution in the fracture. This paper presents a rigorous study of fracture flowback and proppant migration during closure using a fully three-dimensional fracture geometry simulator (GOHFER). The effects of rate ofmore » flowback, location of the perforation interval, final proppant concentration, and the fracture geometry prior to flowback on the retained post closure proppant concentration are discussed. Consideration is given to the fluid velocity field in the created fracture resulting from the flowback, and its effects on proppant movement and localized fracture closure. These studies illustrate the difference between ``forced closure`` and ``reverse screenout`` concepts in flowback design. Other effects such as crossflow between multiple perforated layers are also studied. Simulation studies indicate that selection of a desirable flowback rate is very sensitive to crossflow effects resulting from induced fractures in multiple stress layers. This crossflow can result in significant overflushing of proppant in the lower stress zones, if not countered by properly applied flowback procedures.« less

  12. Qualitative assessment of bone density at the distal articulating surface of the third metacarpal in Thoroughbred racehorses with and without condylar fracture.

    PubMed

    Loughridge, A B; Hess, A M; Parkin, T D; Kawcak, C E

    2017-03-01

    Changes in subchondral bone density, induced by the repetitive cyclical loading of exercise, may potentiate fatigue damage and the risk of fracture. To use computed tomography (CT) to characterise bone density patterns at the articular surface of the third metacarpal bone in racehorses with and without lateral condylar fractures. Case control METHODS: Computed tomographic images of the distal articulating surface of the third metacarpal bone were obtained from Thoroughbred racehorses subjected to euthanasia in the UK. Third metacarpal bones were divided into 3 groups based on lateral condyle status; fractured (FX, n = 42), nonfractured contralateral condyle (NFX, n = 42) and control condyles from horses subjected to euthanasia for reasons unrelated to the third metacarpal bone (control, n = 94). Colour CT images were generated whereby each colour represented a range of pixel values and thus a relative range of bone density. A density value was calculated qualitatively by estimating the percentage of each colour within a specific region. Subchondral bone density was assessed in 6 regions from dorsal to palmar and 1 mm medial and lateral to the centre of the lateral parasagittal groove in NFX and control condyles and 1 mm medial and lateral to the fracture in FX condyles. Bone density was significantly higher in the FX and NFX condyles compared with control condyles for all 6 regions. A significantly higher bone density was observed in FX condyles relative to NFX condyles in the lateral middle and lateral palmar regions. Fractured condyles had increased heterogeneity in density among the 6 regions of interest compared with control and NFX condyles. Adjacent to the fracture, a focal increase in bone density and increased heterogeneity of density were characteristic of limbs with lateral condylar fractures compared with control and NFX condyles. These differences may represent pathological changes in bone density that increase the risk for lateral condylar fractures in racehorses. © 2015 EVJ Ltd.

  13. High prevalence of radiological vertebral fractures in HIV-infected males.

    PubMed

    Torti, Carlo; Mazziotti, Gherardo; Soldini, Pier Antonio; Focà, Emanuele; Maroldi, Roberto; Gotti, Daria; Carosi, Giampiero; Giustina, Andrea

    2012-06-01

    Age-related co-morbidities including osteoporosis are relevant in patients responding to combination antiretroviral therapy (cART). Vertebral fractures are common osteoporotic fractures and their diagnosis is useful for managing at-risk individuals. However, there are few data from HIV-infected patients. Therefore, the aim of this study was to determine the prevalence of and factors associated with vertebral fractures in a population of HIV-infected males. A cross-sectional study of 160 HIV-infected patients with available chest X-rays was conducted from 1998 to 2010. One hundred and sixty-three males with comparable age and with no history of HIV infection were recruited as controls. Semi-quantitative evaluation of vertebral heights in lateral chest X-rays and quantitative morphometry assessment of centrally digitized images using dedicated morphometry software were utilized to detect prevalent vertebral fractures. The result showed that the vertebral fractures were detected in 43/160 (26.9%) HIV-infected patients and in 21/163 (12.9%) controls (P = 0.002). In HIV-infected patients with fractures, 27 had two or more fractures and ten patients had severe fractures. The prevalence of any fractures and multiple fractures in HIV-infected patients receiving cART (29.6 and 20.0%) was slightly higher than in HIV-infected patients not exposed to cART (17.1 and 5.7%), but significantly higher than control subjects (12.9 and 3.7%). At multivariable analyses, body mass index and diabetes mellitus were independently correlated with vertebral fractures in HIV-infected patients. We concluded that a significant proportion of HIV-infected males receiving cART showed vertebral fractures. Furthermore, proactive diagnosis of vertebral fragility fractures is particularly relevant in patients who are overweight or suffer from diabetes.

  14. Tibial tunnel aperture irregularity after drilling with 5 reamer designs: a qualitative micro-computed tomography analysis.

    PubMed

    Geeslin, Andrew G; Jansson, Kyle S; Wijdicks, Coen A; Chapman, Mark A; Fok, Alex S; LaPrade, Robert F

    2011-04-01

    There is limited information in the literature on comparisons of antegrade versus retrograde reaming techniques and the effect on the creation of anterior cruciate ligament (ACL) tibial tunnel entry and exit apertures. Proximal and distal apertures of ACL tibial tunnels, as created with different reamers, will be affected by type of reamer design. Controlled laboratory study. Forty skeletally mature porcine tibias with bone mineral density values comparable with a young athletic population were included in this study. Five 9-mm reamer models were used (3 antegrade: A1, smooth-bore reamer; A2, acorn-head reamer; A3, flat-head reamer; 2 retrograde: R1, retrograde acorn reamer; R2, single-blade retrograde reamer), and a new reamer was used for each tibia (8 reamer-tibia pairs per reamer model). All specimens underwent micro-computed tomography scanning, and images were reconstructed and analyzed using 3-dimensional image analysis software. Aperture rim fractures were graded on a 0-IV scale that described the proportion of the fractured aperture circumference. Specimens with incomplete apertures were also recorded. Because of the unique characteristics of various tunnels, intratunnel characteristics were observed and recorded. In sum, 1 proximal and 7 distal aperture rim fractures were found; 3, 0, and 4 distal aperture rim fractures were found with groups A1, A2, and A3, respectively. Incomplete apertures were more commonly found at the distal aperture (n = 15) than the proximal aperture (n = 8); there were no tibias with this finding at both apertures. All incomplete distal apertures occurred with the retrograde technique, and all incomplete proximal apertures occurred with the antegrade technique, most commonly with reamer design A3. An added finding of tunnel curvature at the distal aspect of the tunnel was observed in all 8 tibias with R1 reamers and 5 tibias with R2 reamers. This phenomenon was not observed in any of the tibias reamed with the antegrade technique. Anterior cruciate ligament tibial tunnel aperture characteristics were highly dependent on reamer design. Optimal proximal aperture characteristics were produced by the retrograde reamers, whereas optimal distal aperture characteristics were obtained with the antegrade reamers. In addition, a phenomenon of tunnel curvature in retrograde-type reamers was found, which may have effects on ACL graft or screw fixation. Differences in tunnel aperture shapes and fractures depend on reamer design. This information is important for the creation of ACL reconstruction tunnels with different reamer designs.

  15. Investigation of Weibull statistics in fracture analysis of cast aluminum

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.; Zaretsky, Erwin V.

    1989-01-01

    The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. The applicability of three-parameter Weibull analysis was also investigated. A design methodology based on the combination of elementary stress analysis and Weibull statistical analysis is advanced and applied to the design of a spherical pressure vessel shell. The results from this design methodology are compared with results from the applicable ASME pressure vessel code.

  16. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  17. Controlled shear/tension fixture

    DOEpatents

    Hsueh, Chun-Hway [Knoxville, TN; Liu, Chain-tsuan [Knoxville, TN; George, Easo P [Knoxville, TN

    2012-07-24

    A test fixture for simultaneously testing two material test samples is provided. The fixture provides substantially equal shear and tensile stresses in each test specimens. By gradually applying a load force to the fixture only one of the two specimens fractures. Upon fracture of the one specimen, the fixture and the load train lose contact and the second specimen is preserved in a state of upset just prior to fracture. Particular advantages of the fixture are (1) to control the tensile to shear load on the specimen for understanding the effect of these stresses on the deformation behavior of advanced materials, (2) to control the location of fracture for accessing localized material properties including the variation of the mechanical properties and residual stresses across the thickness of advanced materials, (3) to yield a fractured specimen for strength measurement and an unfractured specimen for examining the microstructure just prior to fracture.

  18. UK DRAFFT - A randomised controlled trial of percutaneous fixation with kirschner wires versus volar locking-plate fixation in the treatment of adult patients with a dorsally displaced fracture of the distal radius

    PubMed Central

    2011-01-01

    Background Fractures of the distal radius are extremely common injuries in adults. However, the optimal management remains controversial. In general, fractures of the distal radius are treated non-operatively if the bone fragments can be held in anatomical alignment by a plaster cast or orthotic. However, if this is not possible, then operative fixation is required. There are several operative options but the two most common in the UK, are Kirschner-wire fixation (K-wires) and volar plate fixation using fixed-angle screws (locking-plates). The primary aim of this trial is to determine if there is a difference in the Patient-Reported Wrist Evaluation one year following K-wire fixation versus locking-plate fixation for adult patients with a dorsally-displaced fracture of the distal radius. Methods/design All adult patients with an acute, dorsally-displaced fracture of the distal radius, requiring operative fixation are potentially eligible to take part in this study. A total of 390 consenting patients will be randomly allocated to either K-wire fixation or locking-plate fixation. The surgery will be performed in trauma units across the UK using the preferred technique of the treating surgeon. Data regarding wrist function, quality of life, complications and costs will be collected at six weeks and three, six and twelve months following the injury. The primary outcome measure will be wrist function with a parallel economic analysis. Discussion This pragmatic, multi-centre trial is due to deliver results in December 2013. Trial registration Current Controlled Trials ISRCTN31379280 UKCRN portfolio ID 8956 PMID:21914196

  19. Comprehensive evaluation of fracture critical bridges.

    DOT National Transportation Integrated Search

    2014-02-01

    Two-girder steel bridges are classified as fracture critical bridges based on the definition given in the AASHTO LRFD Bridge Design Specifications. In a fracture critical bridge a failure of a tension member leads to collapse of the bridge. However, ...

  20. Levothyroxine treatment and occurrence of fracture of the hip.

    PubMed

    Sheppard, Michael C; Holder, Roger; Franklyn, Jayne A

    2002-02-11

    Levothyroxine sodium is widely prescribed and has been implicated as a cause of reduction in bone mineral density and, therefore, suggested to be a major contributor to the risk of osteoporotic fractures. To investigate whether levothyroxine use increases the risk of developing osteoporotic fractures. We conducted a population-based, case-control analysis of the risk of a femur fracture in a large cohort of patients who had been prescribed levothyroxine. We used the United Kingdom General Practice (primary care) Research Database to identify 23,183 patients who had been prescribed long-term thyroid hormone therapy and to identify for each patient taking levothyroxine 4 controls matched for age, sex, primary care practice, and duration of registration on the database. The number of patients who had sustained a fracture of the proximal femur was ascertained for each group, together with drug therapies and medical diagnoses likely to affect fracture risk. Of the 23,183 patients prescribed thyroid hormone, a mean +/- SE of 1.61% +/- 0.08% had sustained a fracture of the femur, compared with 1.44% +/- 0.04% of 92,732 controls (P =.06). When analyzed according to sex, a significant difference in rate of fracture between patients taking levothyroxine and controls was found in males (P =.008). Compared with controls, patients taking levothyroxine had higher reported rates of medical diagnoses and therapies, potentially confounding the fracture risk. Independent predictors of the occurrence of fracture after adjustment for other factors were age (adjusted odds ratio [AOR], 1.11; 95% confidence interval [CI], 1.10-1.11; P<.001), medical diagnoses including rheumatoid arthritis (AOR in females, 1.69; 95% CI, 1.27-2.26; P<.001), excessive use of alcohol (AOR in females, 3.05; 95% CI, 1.94-4.76; P<.001), and prescription of drugs (eg, anticonvulsants; AOR in females, 2.49; 95% CI, 2.00-3.09; P<.001). Prescription of levothyroxine was an independent predictor of fracture occurrence in males (AOR, 1.69; 95% CI, 1.12-2.56; P =.01) but not females (AOR, 1.03; 95% CI, 0.92-1.16; P =.60). The lack of association between fracture and levothyroxine prescription in the whole cohort is reassuring, although an independent association between levothyroxine prescription and fracture occurrence in male patients suggests that levothyroxine may contribute to fracture risk in this specific group.

  1. A unified technology plan for fatigue and fracture design

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1973-01-01

    An integrated research program is proposed that seeks to improve the technology of designing against fatigue and fracture and to develop a computerized capability for assessing the adequacy of a given design. Both fatigue life prediction and damage tolerance considerations are incorporated. The research for each of these considerations is organized to account for material behavior, the effect of structural configurations, the cumulative effects of the operating loadings, and for the effects of environment - temperature and corrosion. The goal is to achieve a viable fatigue and fracture design procedure for any practical problem. The overall program is outlined, assessments are made of the state of the art, subgoals are proposed, and means for achieving them are suggested.

  2. A new approach to fracture modelling in reservoirs using deterministic, genetic and statistical models of fracture growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawnsley, K.; Swaby, P.

    1996-08-01

    It is increasingly acknowledged that in order to understand and forecast the behavior of fracture influenced reservoirs we must attempt to reproduce the fracture system geometry and use this as a basis for fluid flow calculation. This article aims to present a recently developed fracture modelling prototype designed specifically for use in hydrocarbon reservoir environments. The prototype {open_quotes}FRAME{close_quotes} (FRActure Modelling Environment) aims to provide a tool which will allow the generation of realistic 3D fracture systems within a reservoir model, constrained to the known geology of the reservoir by both mechanical and statistical considerations, and which can be used asmore » a basis for fluid flow calculation. Two newly developed modelling techniques are used. The first is an interactive tool which allows complex fault surfaces and their associated deformations to be reproduced. The second is a {open_quotes}genetic{close_quotes} model which grows fracture patterns from seeds using conceptual models of fracture development. The user defines the mechanical input and can retrieve all the statistics of the growing fractures to allow comparison to assumed statistical distributions for the reservoir fractures. Input parameters include growth rate, fracture interaction characteristics, orientation maps and density maps. More traditional statistical stochastic fracture models are also incorporated. FRAME is designed to allow the geologist to input hard or soft data including seismically defined surfaces, well fractures, outcrop models, analogue or numerical mechanical models or geological {open_quotes}feeling{close_quotes}. The geologist is not restricted to {open_quotes}a priori{close_quotes} models of fracture patterns that may not correspond to the data.« less

  3. Dentin-like versus Rigid Endodontic Post: 11-year Randomized Controlled Pilot Trial on No-wall to 2-wall Defects.

    PubMed

    Naumann, Michael; Sterzenbach, Guido; Dietrich, Thomas; Bitter, Kerstin; Frankenberger, Roland; von Stein-Lausnitz, Manja

    2017-11-01

    This is the first long-term randomized controlled trial to evaluate dentin-like glass fiber posts (GFPs) compared with rather rigid titanium posts (TPs) for post-endodontic restoration of severely damaged endodontically treated teeth with 2 or fewer remaining cavity walls. Ninety-one subjects in need of post-endodontic restorations were randomly assigned to receive either a tapered GFP (n = 45) or TP (n = 46). Posts were adhesively luted by using self-adhesive resin cement, followed by composite core build-up and preparation of 2-mm ferrule design. Primary end point was loss of restoration for any reason. Kaplan-Meier curves were constructed, and log-rank test was calculated (P < .05). After a follow-up of 132 months, 17 GFP and 20 TP restorations survived, and 19 failed (12 GFP, 7 TP). Failure modes for GFP were root fracture (n = 4), core fracture (n = 1), secondary caries (n = 1), endodontic failure (n = 2), extraction because of tooth mobility grade III associated with insufficient design of removable partial denture (n = 1), tooth fracture (n = 1), and changes in treatment plan (n = 2); failure modes for TP were endodontic failure (n = 5), root fracture (n = 1), and 1 extraction for other reasons. Cumulative survival probability was 58.7% for GFP and 74.2% for TP. When using self-adhesively luted prefabricated posts, resin composite core build-up, and 2-mm ferrule to reconstruct severely damaged endodontically treated teeth, tooth survival is not influenced by post rigidity. Survival decreased rapidly after 8 years of observation in both groups. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Long-term use of nerve block catheters in paediatric patients with cancer related pathologic fractures

    PubMed Central

    BURGOYNE, L. L.; PEREIRAS, L. A.; BERTANI, L. A.; KADDOUM, R. N.; NEEL, M.; FAUGHNAN, L. G.; ANGHELESCU, D. L.

    2013-01-01

    SUMMARY We report three cases of children with osteosarcoma and pathologic fractures treated with long-term continuous nerve blocks for preoperative pain control. One patient with a left distal femoral diaphysis fracture had a femoral continuous nerve block catheter for 41 days without complications. Another with a fractured left proximal femoral shaft had three femoral continuous nerve block catheters for 33, 26 and 22 days respectively. The third patient, whose right proximal humerus was fractured, had a brachial plexus continuous nerve block catheter for 36 days without complication. In our experience, prolonged use of continuous nerve block is safe and effective in children with pathologic fractures for preoperative pain control. PMID:22813501

  5. Composite Structures Damage Tolerance Analysis Methodologies

    NASA Technical Reports Server (NTRS)

    Chang, James B.; Goyal, Vinay K.; Klug, John C.; Rome, Jacob I.

    2012-01-01

    This report presents the results of a literature review as part of the development of composite hardware fracture control guidelines funded by NASA Engineering and Safety Center (NESC) under contract NNL04AA09B. The objectives of the overall development tasks are to provide a broad information and database to the designers, analysts, and testing personnel who are engaged in space flight hardware production.

  6. Drilling and production aspects of horizontal wells in the Austin Chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikholeslami, B.A.; Scholhman, B.W.; Seidel, F.A.

    1991-07-01

    This paper discusses testing of horizontal technology for use in the highly fractured Giddings oil field. Three short-and seven medium-radius wells were drilled successfully in the Austin Chalk formation. The paper discusses well plans, bottomhole assemblies, trajectory control, telemetry, mud systems, hydraulics, hole cleaning, casing design, cementing, problems encountered, formation evaluation, completions, and reservoir response.

  7. Fracture resistance of the implant-abutment connection in implants with internal hex and internal conical connections under oblique compressive loading: an in vitro study.

    PubMed

    Coppedê, Abílio Ricciardi; Bersani, Edmilson; de Mattos, Maria da Gloria Chiarello; Rodrigues, Renata Cristina Silveira; Sartori, Ivete Aparecida de Mattias; Ribeiro, Ricardo Faria

    2009-01-01

    The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments.

  8. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    PubMed

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  9. Study on application of aerospace technology to improve surgical implants

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Youngblood, J. L.

    1982-01-01

    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.

  10. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    NASA Astrophysics Data System (ADS)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions contribute less to the image quality as fracture zone azimuth increases. Our optimization methodology is best suited for designing future field surveys with a favorable benefit-cost ratio in areas with significant à priori knowledge. Moreover, our optimization workflow is valuable for selecting useful subsets of acquired data for optimum target-oriented processing.

  11. Does self-efficacy mediate functional change in older adults participating in an exercise program after hip fracture? A randomized control trial

    PubMed Central

    Latham, Nancy K.; Ni, Pengsheng; Jette, Alan M.

    2015-01-01

    Objectives This study examined whether self-efficacy mediated the effect of the HIP Rehab exercise program on activity limitations in older adults after hip fracture, and whether the mediation effect was different between different gender and age groups. Design Randomized controlled trial (RCT) Setting Community Participants Two hundred and thirty two participants aged 79±9.4 years with hip fracture were randomly assigned to intervention (n=120) or attention control (n=112) groups. Interventions The 6-month intervention, the HIP Rehab, is a functionally-oriented, home-based exercise program. Data was collected at baseline, post-intervention (6 months), and follow-up (9 months). Main outcome measure Activity Measure for Post-Acute Care (AM-PAC) Results The mediation effect of the HIP Rehab exercise program on Basic Mobility function through self-efficacy for exercise was significant at 9 months (βindirect=0.21). Similarly, the mediation effect of the intervention on Daily Activity function through self-efficacy for exercise was significant at 9 months (βindirect=0.49). In subgroup analyses, the mediation effect was significant at 9 months in the younger group (≤79 years old) in comparison to the older group, and was significant in females in comparison to males. Conclusion Self-efficacy may play a partial mediating role for the effect on some longer-term functional outcomes in the HIP Rehab intervention. The results suggest that program components that target self-efficacy should be incorporated in the future hip fracture rehabilitation interventions. Age and gender of the targeted participants may also need to be considered when developing interventions. PMID:25701101

  12. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  13. Bone density of the radius, spine, and proximal femur in osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Barden, H.; Ettinger, M.

    1988-02-01

    Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry (/sup 153/Gd), whereas the radius shaft measurement used single-photon absorptiometry (/sup 125/I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory;more » their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture.« less

  14. Are distal radius fractures due to fragility or to falls? A consecutive case-control study of bone mineral density, tendency to fall, risk factors for osteoporosis, and health-related quality of life.

    PubMed

    Nordvall, Helena; Glanberg-Persson, Gunhild; Lysholm, Jack

    2007-04-01

    A fracture of the distal radius is considered to indicate an increased risk of future fractures, especially a hip fracture. The main causes may be osteoporosis or a tendency to fall, separately or in combination. 93 women and 5 men with a recent radius fracture and the same number of controls were measured with a heel-DXL and asked to complete one questionnaire on their quality of life (SF-36), and one on risk factors. The mean T-score of the patients was -2.1, and for the controls it was -1.9 (p = 0.3). The patients aged over 64 years had a history of falling more often than the corresponding controls (p = 0.01), but there was no difference in T-score. By contrast, patients 45-64 years of age showed a non-significant, lower T-score (p = 0.09), but there was no difference concerning their history of falling. For all other risk factors, no differences were found between the patients and the controls. There were significant differences between the patients and the controls in some of the functions in the SF-36, due to the radius fracture. This study indicates that the underlying cause of a distal radius fracture may be different in patients aged 45-64 years and those who are more than 64 years old.

  15. Distinct Element Method modelling of fold-related fractures in a multilayer sequence

    NASA Astrophysics Data System (ADS)

    Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2017-04-01

    Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.

  16. [Effects of Surgically Treated Pelvic Ring and Acetabular Fractures on Postural Control].

    PubMed

    Lang, P; Schnegelberger, A; Riesner, H-J; Stuby, F; Friemert, B; Palm, H-G

    2016-04-01

    The aim of surgical treatment of pelvic ring and acetabular fractures is to allow rapid mobilisation of patients in order to restore stance and gait stability (postural control), as this significantly correlates with a positive outcome. The regulation of postural stability is mainly controlled by transmission of proprioceptive stimuli. In addition, the pelvis serves as a connection between the legs and the spine and thus is also of great importance for mechanical stabilisation. It remains unclear whether surgical treatment of pelvic ring and acetabular fractures affects the regulation of postural control. Therefore, the aim of this study was to examine the impact of surgically treated pelvic ring and acetabular fractures on postural stability by means of computerised dynamic posturography (CDP) after a mean of 35 months and to compare the results with a healthy control group. A retrospective case control study of 38 patients with surgically treated pelvic ring and acetabular fractures and 38 healthy volunteers was carried out using CDP. The average time of follow-up was 35 (12-78) months. The most important outcome parameter in this investigation was the overall stability index (OSI). Hip joint mobility, the health-related quality of life (SF-12) and pain were supplementary outcome parameters. It was found that surgically treated pelvic ring and acetabular fractures had no influence on postural stability. The OSI was 2.1 ° in the patient group and 1.9 ° in the control group. There was no significant difference between the groups in hip joint mobility. A total of 52 % of patients showed no or only mild pain. Mean health-related quality of life was the same as in the total population. Surgically treated pelvic ring and acetabular fractures do not lead to deterioration in postural control in the mid term. This is of high prognostic importance for rapid mobilisation of the patients. Therefore no increase in the risk of falling is expected after successfully treatment of fractures. Georg Thieme Verlag KG Stuttgart · New York.

  17. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less

  18. Diabetes, bone and glucose-lowering agents: clinical outcomes.

    PubMed

    Schwartz, Ann V

    2017-07-01

    Older adults with diabetes are at higher risk of fracture and of complications resulting from a fracture. Hence, fracture risk reduction is an important goal in diabetes management. This review is one of a pair discussing the relationship between diabetes, bone and glucose-lowering agents; an accompanying review is provided in this issue of Diabetologia by Beata Lecka-Czernik (DOI 10.1007/s00125-017-4269-4 ). Specifically, this review discusses the challenges of accurate fracture risk assessment in diabetes. Standard tools for risk assessment can be used to predict fracture but clinicians need to be aware of the tendency for the bone mineral density T-score and the fracture risk assessment tool (FRAX) to underestimate risk in those with diabetes. Diabetes duration, complications and poor glycaemic control are useful clinical markers of increased fracture risk. Glucose-lowering agents may also affect fracture risk, independent of their effects on glycaemic control, as seen with the negative skeletal effects of the thiazolidinediones; in this review, the potential effects of glucose-lowering medications on fracture risk are discussed. Finally, the current understanding of effective fracture prevention in older adults with diabetes is reviewed.

  19. Cyclic activity at silicic volcanoes: A response to dynamic permeability variations

    NASA Astrophysics Data System (ADS)

    Lamur, Anthony; Lavallée, Yan; Kendrick, Jackie; Eggertsson, Gudjon; Ashworth, James; Wall, Richard

    2017-04-01

    Silicic volcanoes exhibit cyclic eruptive activity characterised by effusive (dome growth) to quiescent periods punctuated by short explosive episodes. The latter, characterised by fast emissions of gas and ash into the atmosphere, results from stress release through fracturing and causes significant hazards to the surrounding environment. Understanding the formation, development and closure of fractures as well as their impact on the volcanic system is hence vital for better constraining current models. Here, we present the results of two sets of experiments designed to understand first, the development of permeability through fracturing and second, the timescale over which these fractures can persist in magmas. To characterise the influence of a macro-fracture, the permeability of intact volcanic rocks with a wide porosity range (1-41%) was measured at varying effective pressures (-0.001-30 MPa). We then fractured each sample using the Brazilian disc method to induce a tensile macro-fracture, before measuring the permeability under the same conditions. While our results for intact samples are consistent with previous studies, the results for fractured samples display a distinct permeability-porosity relationship. We show that low porosity samples (<18%) suffer a net increase in permeability of up to 4 orders of magnitude upon fracturing, compared to high porosity samples (>18%) that show a less than 1 order of magnitude increase. This suggests that a macro-fracture has the ability to efficiently localise the flow in low porosity rocks by becoming the prevailing structure in a previously micro-fracture-dominated porous network, whereas at higher porosities fluid flow remains controlled by pore connectivity, irrespective of the presence of a fracture. To assess the longevity of fractures in magmas we developed a novel experimental set-up, in which two glass rods were placed in contact for different timescales at high temperatures before being pulled apart to test the tensile strength recovery of the fracture. We show that fracture healing starts within timescales 50-100 times longer than the structural relaxation time of the melt and that that full healing can be achieved within only a few hours of contact (timescale decreasing with decreasing viscosities) at magmatic temperatures. These results are important for understanding the permeability decrease associated with annealing. We postulate that rapid permeability evolution due to fracturing or fracture healing may be the cause of observed cyclicity at silicic volcanoes, whereby "instantaneous" increases in permeability occur through the development of macro-fractures drives explosions. We propose that the timescale for this cyclicity is governed by the competition between stress build up through gas accumulation under a relatively impervious plug until failure and fracture healing through annealing or, as shown in other studies, mineral precipitation and sintering of particulate material in fractures.

  20. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales

    DOE PAGES

    Chon, Michael J.; Daly, Matthew; Wang, Bin; ...

    2017-06-10

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less

  1. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales.

    PubMed

    Chon, Michael J; Daly, Matthew; Wang, Bin; Xiao, Xianghui; Zaheri, Alireza; Meyers, Marc A; Espinosa, Horacio D

    2017-12-01

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this study, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration, reaching up to ~ 25kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. The results of this study are expected to be useful as design principles for high performance biomimetic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chon, Michael J.; Daly, Matthew; Wang, Bin

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less

  3. Impact of admissions for bone fractures on the dependency ratio of adults over 65 years of age in Southern Spain.

    PubMed

    Calero-García, Maria José; Ortega, Ana Raquel; Navarro, Elena; Jimenez, Carmen; Calero, María Dolores

    2012-01-01

    Hospital admission for acute illness, as in the case of bone fractures, means for some elderly people a loss of autonomy, not always associated with the illness causing hospitalization. The factors and/or modulators contributing to this situation have not been sufficiently studied. The aim of this study was to describe the characteristics of hospitalized elderly patients diagnosed with bone fractures, after surgery is carried out, and to establish the associated variables to their cognitive and functional dependency at discharge. The outcomes show that functional deterioration significantly correlates (positively) to anxiety self-control at discharge and knowledge about the therapy at discharge and inversely (negatively), to the patient's age, polypharmacy, and length of inpatient stay until surgery. From our outcomes we conclude the need to design and apply actions leading toward a reduction of the pre-surgery inpatient stay, immediate mobilization programs as well as training and information about therapeutic procedures. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. A Multiphase Design Strategy for Dealing with Participation Bias

    PubMed Central

    Haneuse, S.; Chen, J.

    2012-01-01

    Summary A recently funded study of the impact of oral contraceptive use on the risk of bone fracture employed the randomized recruitment scheme of Weinberg and Wacholder (1990, Biometrics 46, 963–975). One potential complication in the bone fracture study is the potential for differential response rates between cases and controls; participation rates in previous, related studies have been around 70%. Although data from randomized recruitment schemes may be analyzed within the two-phase study framework, ignoring potential differential participation may lead to biased estimates of association. To overcome this, we build on the two-phase framework and propose an extension by introducing an additional stage of data collection aimed specifically at addressing potential differential participation. Four estimators that correct for both sampling and participation bias are proposed; two are general purpose and two are for the special case where covariates underlying the participation mechanism are discrete. Because the fracture study is ongoing, we illustrate the methods using infant mortality data from North Carolina. PMID:20377576

  5. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    DOE PAGES

    Lee, Seok Woo; Lee, Hyun -Wook; Ryu, Ill; ...

    2015-06-26

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Here, we demonstrate physical and mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics somore » that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of lithiated Si by lessening the tensile stress concentrations in Si structures. Lastly, this study will contribute to improved design of Si structures at the electrode level for high-performance Li-ion batteries.« less

  6. Crack growth induced by thermal-mechanical loading

    NASA Astrophysics Data System (ADS)

    John, R.; Hartman, G. A.; Gallagher, J. P.

    1992-06-01

    Advanced aerospace structures are often subjected to combined thermal and mechanical loads. The fracture-mechanics behavior of the structures may be altered by the thermal state existing around the crack. Hence, design of critical structural elements requires the knowledge of stress-intensity factors under both thermal and mechanical loads. This paper describes the development of an experimental technique to verify the thermal-stress-intensity factor generated by a temperature gradient around the crack. Thin plate specimens of a model material (AISI-SAE 1095 steel) were used for the heat transfer and thermal-mechanical fracture tests. Rapid thermal loading was achieved using high-intensity focused infrared spot heaters. These heaters were also used to generate controlled temperature rates for heat-transfer verification tests. The experimental results indicate that thermal loads can generate stress-intensity factors large enough to induce crack growth. The proposed thermal-stress-intensity factors appear to have the same effect as the conventional mechanical-stress-intensity factors with respect to fracture.

  7. Impact of Oxidative Dissolution on Black Shale Fracturing: Implication for Shale Fracturing Treatment Design

    NASA Astrophysics Data System (ADS)

    You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.

    2017-12-01

    Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.

  8. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women.

    PubMed

    Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul

    2010-11-01

    The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p < 0.001) whereas body weight was still positively related to BMD of all sites (p < 0.001). Percentage body fat and waist circumference were much higher in the fracture group than the non-fracture group (p = 0.0383, 0.082 respectively). Serum glucose levels were positively correlated to lumbar BMD (p = 0.016), femoral neck BMD (p = 0.0335), and femoral trochanter BMD (p = 0.0082). Serum high density lipoprotein cholesterol (HDLC) was positively related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.

  9. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    NASA Astrophysics Data System (ADS)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  10. Operative Fixation of Rib Fractures Indications, Techniques, and Outcomes.

    PubMed

    Galos, David; Taylor, Benjamin; McLaurin, Toni

    2017-01-01

    Rib fractures are extremely common injuries and vary in there severity from single nondisplaced fractures to multiple segmental fractures resulting in flail chest and respiratory compromise. Historically, rib fractures have been treated conservatively with pain control and respiratory therapy. However this method may not be the best treatment modality in all situations. Operative fixation of select rib fractures has been increasing in popularity especially in patients with flail chest and respiratory compromise. Newer techniques use muscle sparing approaches and precontoured locking plate technology to obtain stable fixation and allow improved respiration. Current reports shows that rib fracture fixation offers the benefits of improved respiratory mechanics and improved pain control in the severe chest wall injury with resultant improvement in patient outcomes by decreasing time on the ventilator, time in the intensive care unit, and overall hospital length of stay.

  11. Non-linear relationship between serum 25-hydroxyvitamin D concentration and subsequent hip fracture.

    PubMed

    de Koning, L; Henne, D; Hemmelgarn, B R; Woods, P; Naugler, C

    2013-07-01

    Serum 25-OH vitamin D levels were compared in 254 hip fracture subjects and 2,402 matched control subjects. There was a significant inverse association between 25-OH vitamin D and hip fracture only between 0 and 70 nmol/L. Vitamin D is integral to bone metabolism, however the utility of serum 25-OH vitamin D as a risk marker for hip fractures is controversial. We conducted a case-control study of patients admitted to the hospitals with hip fractures in Calgary, Alberta, (catchment population 1.4 million) between January 1, 2007 and August 31, 2011. We searched the laboratory information system of Calgary Laboratory Services for serum 25-OH vitamin D levels within 6 months prior to admission on patients admitted to hospital with hip fractures. Cases were identified through the Calgary Laboratory Services laboratory information system and were matched to controls for age, sex, and month of testing. The hip fracture-25-OH vitamin D association was examined using multiple linear and spline regression. Of 305 subjects initially identified with hip fractures, serum 25-OH vitamin D levels were available for 254 (83 %). These were matched to 2,402 control subjects. We observed a significant (p < 0.01) non-linear relationship such that 25-OH vitamin D was inversely associated with hip fracture only below 70 nmol/L (odds ratio = 0.81 per 10 nmol/L increase; 95 % CI 0.86-0.93). The utility of 25-OH vitamin D level as a risk marker for hip fracture depends on the cut-off level used and was of potential use only for lower levels of 25-OH vitamin D.

  12. Use of acid-suppressive drugs and risk of fracture: a meta-analysis of observational studies.

    PubMed

    Eom, Chun-Sick; Park, Sang Min; Myung, Seung-Kwon; Yun, Jae Moon; Ahn, Jeong-Soo

    2011-01-01

    Previous studies have reported inconsistent findings regarding the association between the use of acid-suppressive drugs such as proton pump inhibitors (PPIs) and histamine 2 receptor antagonists (H(2)RAs) and fracture risk. We investigated this association using meta-analysis. We searched MEDLINE (PubMed), EMBASE, and the Cochrane Library from inception through December 2010 using common key words. We included case-control, nested case-control, and cohort studies. Two evaluators independently reviewed and selected articles. We determined pooled effect estimates by using random-effects meta-analysis, because of heterogeneity. Of 1,809 articles meeting our initial inclusion criteria, 5 case-control studies, 3 nested case-control studies, and 3 cohort studies were included in the final analyses. The pooled odds ratio (OR) for fracture was 1.29 (95% confidence interval [CI], 1.18-1.41) with use of PPIs and 1.10 (95% CI, 0.99-1.23) with use of H(2)RAs when compared with nonuse of the respective medications. Long-term use of PPIs increased the risk of any fracture (adjusted OR = 1.30; 95% CI, 1.15-1.48) and hip fracture risk (adjusted OR = 1.34; 95% CI, 1.09-1.66), whereas long-term H(2)RA use was not significantly associated with fracture risk. We found possible evidence linking PPI use to an increased risk of fracture, but no association between H(2)RA use and fracture risk. Widespread use of PPIs with the potential risk of fracture is of great importance to public health. Clinicians should carefully consider their decision to prescribe PPIs for patients already having an elevated risk of fracture because of age or other factors.

  13. Greater Polar Moment of Inertia at the Tibia in Athletes Who Develop Stress Fractures.

    PubMed

    Weidauer, Lee A; Binkley, Teresa; Vukovich, Matt; Specker, Bonny

    2014-07-01

    Several previous investigations have determined potential risk factors for stress fractures in athletes and military personnel. To determine factors associated with the development of stress fractures in female athletes. Case-control study; Level of evidence, 3. A total of 88 female athletes (cross-country, n = 29; soccer, n = 15; swimming, n = 9; track and field, n = 14; volleyball, n = 12; and basketball, n = 9) aged 18 to 24 years were recruited to participate in a longitudinal bone study and had their left distal tibia at the 4%, 20%, and 66% sites scanned by peripheral quantitative computed tomography (pQCT). Patients included 23 athletes who developed stress fractures during the following year (cases). Whole body, hip, and spine scans were obtained using dual-energy x-ray absorptiometry (DXA). Analysis of covariance was used to determine differences in bone parameters between cases and controls after adjusting for height, lower leg length, lean mass, fat mass, and sport. No differences were observed between cases and controls in any of the DXA measurements. Cases had significantly greater unadjusted trabecular bone mineral content (BMC), greater polar moment of inertia (PMI) at the 20% site, and greater cortical BMC at the 66% site; however, after adjusting for covariates, the differences became nonsignificant. When analyses were repeated using all individuals who had ever had a stress fracture as cases (n = 31) and after controlling for covariates, periosteal circumference was greater in the cases than the controls (71.1 ± 0.7 vs 69.4 ± 0.5 mm, respectively; P = .04). A history of stress fractures is associated with larger bones. These findings are important because larger bones were previously reported to be protective against fractures and stress fractures, but study findings indicate that may not always be true. One explanation could be that individuals who sustain stress fractures have greater loading that results in greater periosteal circumference but also results in the development of stress fractures.

  14. Hip fracture patients in India have vitamin D deficiency and secondary hyperparathyroidism.

    PubMed

    Dhanwal, D K; Sahoo, S; Gautam, V K; Saha, R

    2013-02-01

    This study evaluated the parameters of bone mineral homeostasis including 25(OH)D and PTH in 90 Indian patients with hip fracture and 90 controls. Hypovitaminosis D, secondary hyperparathyroidism, and biochemical osteomalacia was present in 77, 69, and 50 % patients, respectively, significantly higher compared to controls. Vitamin D deficiency is an important risk factor for hip fracture. The prevalence of vitamin D deficiency is not well known in hip fracture patients from India. Therefore, the present study was conducted to evaluate the parameters of bone mineral homeostasis including 25(OH)D and intact PTH in hip fracture from North India. Ninety consecutive patients with hip fracture and similar number of age- and sex-matched controls were enrolled in the study. The fasting venous samples were analyzed for 25-hydroxyvitamin D (25-OHD), intact parathyroid hormone (PTH), alkaline phosphatase (ALP), calcium, and phosphorus. Vitamin D deficiency was defined as serum 25-OHD of <20 ng/dl. The mean age of hip fracture subjects was 65.9 ± 12.6 which was comparable in men and women. Majority of study subjects were women (70 women and 20 men). The serum 25(OH)D and calcium levels were significantly lower, whereas the intact PTH and ALP levels were significantly higher in patients compared to controls. There was significant negative correlation between serum 25(OH)D and PTH. In the hip fracture group, 76.7 % of the subjects had vitamin D deficiency, and 68.9 % had secondary hyperparathyroidism. In the control group, vitamin D deficiency and elevated PTH levels were seen in 32.3 and 42.2 %, respectively. About three fourths of hip fracture patients have vitamin D deficiency, and two thirds have secondary hyperparathyroidism. Therefore, the serum 25-OHD level may be a useful index for the assessment of risk of hip fracture in India.

  15. Site-Dependent Reference Point Microindentation Complements Clinical Measures for Improved Fracture Risk Assessment at the Human Femoral Neck.

    PubMed

    Jenkins, Thomas; Coutts, Louise V; D'Angelo, Stefania; Dunlop, Douglas G; Oreffo, Richard O C; Cooper, Cyrus; Harvey, Nicholas C; Thurner, Phillipp J

    2016-01-01

    In contrast to traditional approaches to fracture risk assessment using clinical risk factors and bone mineral density (BMD), a new technique, reference point microindentation (RPI), permits direct assessment of bone quality; in vivo tibial RPI measurements appear to discriminate patients with a fragility fracture from controls. However, it is unclear how this relates to the site of the most clinically devastating fracture, the femoral neck, and whether RPI provides information complementary to that from existing assessments. Femoral neck samples were collected at surgery after low-trauma hip fracture (n = 46; 17 male; aged 83 [interquartile range 77-87] years) and compared, using RPI (Biodent Hfc), with 16 cadaveric control samples, free from bone disease (7 male; aged 65 [IQR 61-74] years). A subset of fracture patients returned for dual-energy X-ray absorptiometry (DXA) assessment (Hologic Discovery) and, for the controls, a micro-computed tomography setup (HMX, Nikon) was used to replicate DXA scans. The indentation depth was greater in femoral neck samples from osteoporotic fracture patients than controls (p < 0.001), which persisted with adjustment for age, sex, body mass index (BMI), and height (p < 0.001) but was site-dependent, being less pronounced in the inferomedial region. RPI demonstrated good discrimination between fracture and controls using receiver-operating characteristic (ROC) analyses (area under the curve [AUC] = 0.79 to 0.89), and a model combining RPI to clinical risk factors or BMD performed better than the individual components (AUC = 0.88 to 0.99). In conclusion, RPI at the femoral neck discriminated fracture cases from controls independent of BMD and traditional risk factors but dependent on location. The clinical RPI device may, therefore, supplement risk assessment and requires testing in prospective cohorts and comparison between the clinically accessible tibia and the femoral neck. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  16. Use of a case manager to improve osteoporosis treatment after hip fracture: results of a randomized controlled trial.

    PubMed

    Majumdar, Sumit R; Beaupre, Lauren A; Harley, Charles H; Hanley, David A; Lier, Douglas A; Juby, Angela G; Maksymowych, Walter P; Cinats, John G; Bell, Neil R; Morrish, Donald W

    2007-10-22

    Patients who survive hip fracture are at high risk of recurrent fractures, but rates of osteoporosis treatment 1 year after sustaining a fracture are less than 10% to 20%. We have developed an osteoporosis case manager intervention. The case manager educated patients, arranged bone mineral density tests, provided prescriptions, and communicated with primary care physicians. The intervention was compared with usual care in a randomized controlled trial. We recruited from all hospitals that participate in the Capital Health system (Alberta, Canada), including patients 50 years or older who had sustained a hip fracture and excluding those who were receiving osteoporosis treatment or who lived in a long-term care facility. Primary outcome was bisphosphonate therapy 6 months after fracture; secondary outcomes included bone mineral density testing, appropriate care (bone mineral density testing and treatment if bone mass was low), and intervention costs. We screened 2219 patients and allocated 220, as follows: 110 to the intervention group and 110 to the control group. Median age was 74 years, 60% were women, and 37% reported having had previous fractures. Six months after hip fracture, 56 patients in the intervention group (51%) were receiving bisphosphonate therapy compared with 24 patients in the control group (22%) (adjusted odds ratio, 4.7; 95% confidence interval, 2.4-8.9; P < .001). Bone mineral density tests were performed in 88 patients in the intervention group (80%) vs 32 patients in the control group (29%) (P < .001). Of the 120 patients who underwent bone mineral density testing, 25 (21%) had normal bone mass. Patients in the intervention group were more likely to receive appropriate care than were patients in the control group (67% vs 26%; P < .001). The average intervention cost was $50.00 per patient. For a modest cost, a case manager was able to substantially increase rates of osteoporosis treatment in a vulnerable elderly population at high risk of future fractures.

  17. RSRM nozzle actuator bracket/lug fracture mechanics qualification test

    NASA Technical Reports Server (NTRS)

    Kelley, Peggy

    1993-01-01

    This is the final report for the actuator bracket/lug fracture mechanics qualification test. The test plan (CTP-0071) outlined a two-phase test program designed to answer questions about the fracture criticality of the redesigned solid rocket motor (RSRM) nozzle actuator bracket. An analysis conducted using the NASA/FLAGRO fracture mechanics computer program indicated that the actuator bracket might be a fracture critical component. In the NASA/FLAGRO analysis, a simple lug model was used to represent the actuator bracket. It was calculated that the bracket would fracture if subjected to an actuator stall load in the presence of a 0.10 in. corner crack at the actuator attachment hole. The 0.10 in. crack size corresponds to the nondestructive inspection detectability limit for the actuator bracket. The inspection method used is the dye penetrant method. The actuator stall load (103,424 lb) is the maximum load which the actuator bracket is required to withstand during motor operation. This testing was designed to establish the accuracy of the analytical model and to directly determine whether the actuator bracket is capable of meeting fracture mechanics safe-life requirements.

  18. Drugs With Anticholinergic Potential and Risk of Falls With Hip Fracture in the Elderly Patients: A Case-Control Study.

    PubMed

    Machado-Duque, Manuel E; Castaño-Montoya, Juan Pablo; Medina-Morales, Diego A; Castro-Rodríguez, Alejandro; González-Montoya, Alexandra; Machado-Alba, Jorge E

    2018-03-01

    To determine the association between the use of anticholinergic drugs and the risk of falls with hip fracture in a population older than 60 years. A case-control study in patients older than 60 years with a diagnosis of hip fracture. All drugs dispensed during the previous 30 days were identified. Sociodemographic, clinical, pharmacological (drugs according to the Anticholinergic Risk Scale [ARS]), and polypharmacy variables were analyzed. Falls with hip fracture and type of drug according to the ARS. A total of 300 patients with hip fracture and 600 controls were included. The mean age was 81.6 ± 8.9 years, with female predominance (71.3%). The use of drugs with moderate (odds ratio [OR]: 1.97, 95% confidence interval [CI]: 1.19-3.27) or high ARS scores (OR: 1.83, 95% CI: 1.13-2.96) increased the probability of fracture. There was an association between the use of drugs with anticholinergic properties and the probability of hip fracture in elderly patients and it was possible to establish the level of risk.

  19. Impact of a community-based osteoporosis and fall prevention program on fracture incidence.

    PubMed

    Grahn Kronhed, Ann-Charlotte; Blomberg, Carina; Karlsson, Nadine; Löfman, Owe; Timpka, Toomas; Möller, Margareta

    2005-06-01

    Associations between a 10-year community-based osteoporosis and fall prevention program and fracture incidence amongst middle-aged and elderly residents in an intervention community are studied, and comparisons are made with a control community. A health-education program was provided to all residents in the intervention community, which addressed dietary intake, physical activity, smoking habits and environmental risk factors for osteoporosis and falls. Both communities are small, semi-rural and situated in Ostergotland County in southern Sweden. The analysis is based on incidences of forearm fractures in the population 40 years of age or older, and hip fractures in the population 50 years of age or older. Data for three 5-year periods (pre-, early and late intervention) are accumulated and compared. In the intervention community, forearm fracture incidence decreased in women. There are also tendencies towards decreasing forearm fracture incidence in men, and towards decreasing trochanteric hip fracture incidences in women and in men in the late intervention period. No such changes in fracture incidences are found in the control community. Cervical hip fracture incidence did not change in the intervention and the control communities. Although the reported numbers of fractures are small (a total of 451 forearm and 357 hip fractures), the numbers are based on total community populations and thus represent a true difference. The decrease in forearm fracture incidence among women, and the tendency towards decreasing trochanteric hip fractures, in contrast to the absence of change in cervical hip fractures, might be mainly due to a more rapid effect of fall preventive measures than an increase in bone strength in the population. For the younger age groups an expected time lag between intervention and effect might invalidate the short follow-up period for outcome measurements. Thus, the effect of the 10-year intervention program on fracture incidence should be followed during an extended post-intervention period.

  20. Vitamin D and Fracture Risk in Early Childhood: A Case-Control Study

    PubMed Central

    Anderson, Laura N.; Heong, Sze Wing; Chen, Yang; Thorpe, Kevin E.; Adeli, Khosrow; Howard, Andrew; Sochett, Etienne; Birken, Catherine S.; Parkin, Patricia C.; Maguire, Jonathon L.; Abdullah, Kawsari; Anderson, Laura N.; Birken, Catherine S.; Borkhoff, Cornelia M.; Carsley, Sarah; Chen, Yang; Katz-Lavigne, Mikael; Kavikondala, Kanthi; Kowal, Christine; Maguire, Jonathon L.; Mason, Dalah; Omand, Jessica; Parkin, Patricia C.; Persaud, Navindra; van den Heuvel, Meta; Baker, Jillian; Barozzino, Tony; Bonifacio, Joey; Campbell, Douglas; Cheema, Sohail; Chisamore, Brian; Danayan, Karoon; Das, Paul; Derocher, Mary Beth; Do, Anh; Dorey, Michael; Freeman, Sloane; Fung, Keewai; Guiang, Charlie; Handford, Curtis; Hatch, Hailey; Jacobson, Sheila; Kiran, Tara; Knowles, Holly; Kwok, Bruce; Lakhoo, Sheila; Lam-Antoniades, Margarita; Lau, Eddy; Leung, Fok-Han; Loo, Jennifer; Mahmoud, Sarah; Moodie, Rosemary; Morinis, Julia; Naymark, Sharon; Neelands, Patricia; Owen, James; Peer, Michael; Perlmutar, Marty; Persaud, Navindra; Pinto, Andrew; Porepa, Michelle; Ramji, Nasreen; Ramji, Noor; Rosenthal, Alana; Saunderson, Janet; Saxena, Rahul; Sgro, Michael; Shepherd, Susan; Smiltnieks, Barbara; Taylor, Carolyn; Weisdors, Thea; Wijayasinghe, Sheila; Wong, Peter; Ying, Ethel; Young, Elizabeth

    2017-01-01

    Abstract The objective of this study was to evaluate the association of vitamin D intake and serum levels with fracture risk in children under 6 years of age. A case-control study was conducted in Toronto, Ontario, Canada. Cases were recruited from the fracture clinic at the Hospital for Sick Children, and matched controls were obtained from the TARGet Kids! primary-care research network. Controls were matched to cases on age, sex, height, and season. Fracture risk was estimated from conditional logistic regression, with adjustment for skin type, fracture history, waist circumference, outdoor free play, neighborhood income, soda consumption, and child's birth weight. A total of 206 cases were recruited during May 2009–April 2013 and matched to 343 controls. Serum 25-hydroxyvitamin D concentration (per 10-nmol/L increment: adjusted odds ratio (aOR) = 0.95, 95% confidence interval (CI): 0.88, 1.03) and intake of cow's milk (<2 cups/day vs. 2 cups/day: aOR = 0.95 (95% CI: 0.60, 1.52); >2 cups/day vs. 2 cups/day: aOR = 1.39 (95% CI: 0.85, 2.23)) were not significantly associated with reduced odds of fracture. A statistically significant association was observed between child use of vitamin D supplements and decreased odds of fracture (yes vs. no: aOR = 0.42, 95% CI: 0.25, 0.69). Vitamin D supplementation, but not serum 25-hydroxyvitamin D level or milk intake, was associated with reduced fracture risk among these healthy young children. PMID:28459987

  1. [The randomized controlled trial of the treatment for clavicular fracture by rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation].

    PubMed

    Bi, Hong-zheng; Yang, Mao-qing; Tan, Yuan-chao; Fu, Song

    2008-07-01

    To study the curative effect and safety of rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation in treating clavicular fracture. All 201 cases of clavicular fractures were randomly divided into treatment group (101 cases) and control group (100 cases). The treatment group was treated by rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation. The control group was treated by open reduction and internal fixation with Kirschner pin. All cases were followed up for 4 to 21 months (mean 10.6 months). SPSS was used to analyze clinic healing time of fracture and shoulder-joint function in both two groups. After operation, 101 cases of treatment group achieved union of fracture and the clinical healing time was 28 to 49 days (mean 34.5+/-2.7 days). In control group,there were 4 cases with nonunion of fracture,the other 96 cases were union,the clinical healing time was 36 to 92 days (mean 55.3+/-4.8 days). The excellent and good rate of shoulder-joint function was 100% in treatment group and 83% in control group. By t-test and chi2-test, there was significant difference between the two groups in curative effect (P<0.05). Rotatory manual reduction with forceps holder and retrograde pinning transfixation can be used in various kinds of clavicular shaft fracture, with many virtues such as easy operation, reliable fixation, short union time of fracture, good functional recovery of shoulder-joint and no incision scar affecting appearance.

  2. Effect of framework design on crown failure.

    PubMed

    Bonfante, Estevam A; da Silva, Nelson R F A; Coelho, Paulo G; Bayardo-González, Daniel E; Thompson, Van P; Bonfante, Gerson

    2009-04-01

    This study evaluated the effect of core-design modification on the characteristic strength and failure modes of glass-infiltrated alumina (In-Ceram) (ICA) compared with porcelain fused to metal (PFM). Premolar crowns of a standard design (PFMs and ICAs) or with a modified framework design (PFMm and ICAm) were fabricated, cemented on dies, and loaded until failure. The crowns were loaded at 0.5 mm min(-1) using a 6.25 mm tungsten-carbide ball at the central fossa. Fracture load values were recorded and fracture analysis of representative samples were evaluated using scanning electron microscopy. Probability Weibull curves with two-sided 90% confidence limits were calculated for each group and a contour plot of the characteristic strength was obtained. Design modification showed an increase in the characteristic strength of the PFMm and ICAm groups, with PFM groups showing higher characteristic strength than ICA groups. The PFMm group showed the highest characteristic strength among all groups. Fracture modes of PFMs and of PFMm frequently reached the core interface at the lingual cusp, whereas ICA exhibited bulk fracture through the alumina core. Core-design modification significantly improved the characteristic strength for PFM and for ICA. The PFM groups demonstrated higher characteristic strength than both ICA groups combined.

  3. [Research on the relationship between populations' long-term exposure to fluoride in drinking water and bone fracture in China].

    PubMed

    Liang, C; Ji, R; Cao, J; Cheng, X

    2001-09-01

    There are contradictory reports on the prevalence of bone fractures associated with long-term fluoride exposure from drinking water. The prevalence of bone fracture in six rural areas of China and the exposure of fluoride in drinking water was investigated. The data including medical history and demographic information, bone fractures, fluoride content in drinking water, physical activity, cigarette smoking, alcohol consumption and dietary intakes were collected. A retrospective epidemiological study by using the same design, method, quality control and the same questionnaire was conducted. A total of 8266 male and female over 50 years of age were divided into 6 groups by the fluoride concentrations in drinking water. The subjects in each group exposed to different levels of fluoride (0.25-0.34, 0.58-0.73, 1.00-1.06, 1.45-2.19, 2.62-3.58 and 4.32-7.97 mg/L) were 1363, 1407, 1370, 1574, 1051 and 1501 respectively. It has been confirmed that drinking water was the only major source of fluoride exposure in the studied populations. The total bone fracture rates were 7.41%, 6.40%, 5.11%, 6.04%, 6.09% and 7.40% in each group. Natural bone fracture rates in each group were 3.01%, 2.21%, 1.31%, 1.65%, 1.43% and 3.66% respectively. The prevalence of bone fracture and water fluoride level appeared a U-shaped relationship. The prevalence of total bone fracture and natural bone fracture in the population with fluoride 1.00-1.06 mg/L in drinking water was the lowest, compared with the groups exposed to fluoride higher than 4.32 mg/L and lower than 0.73 mg/L. The highest prevalence of hip fracture was in the group with higher water fluoride (4.32-7.97 mg/L) exposure. In general, the prevalence of hip fracture was lower and stable up to 1.06 mg/L of fluoride in drinking water, and then it appeared to rise. Based on the data collected in this investigation, it is concluded that the long-term fluoride exposure from drinking water higher than 4.32 mg/L might increase the risk of overall fractures as well as hip fractures. The risk of overall fractures and natural fractures might be lower while the water fluoride level is at 1.00-1.06 mg/L, however, no protective benefits of fluoride for the risk of hip fracture was observed.

  4. Mineback Stimulation Research Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    The objective of the Mineback Stimulation Research Experiments is to improve hydraulic fracture stimulation technology by providing an in situ laboratory where basic processes and mechanisms that control and influence fracture propagation can be observed, measured and understood. While previous tests have been instrumental in providing an understanding of the mechanisms controlling fracture height, current experiments are focused on fluid flow through the created fracture and the associated pressure drops and crack widths. Work performed, accomplishments and future plans are presented. 7 refs., 2 figs.

  5. The yerba mate intake has a neutral effect on bone: A case-control study in postmenopausal women.

    PubMed

    da Veiga, Denise T A; Bringhenti, Raísa; Bolignon, Aline A; Tatsh, Etiane; Moresco, Rafael N; Comim, Fabio V; Premaor, Melissa O

    2018-01-01

    Nutritional factors have been associated with osteoporosis and fractures. The intake of coffee may increase the risk of fracture whereas the intake of black and green tea is associated with its reduction. Recently, consumption of yerba mate was associated with increased bone mineral density in postmenopausal women. Nonetheless, its influence on fracture is not known. The aim of this study was to evaluate the effect of yerba mate tea intake on fractures, bone markers, calcium homeostasis, and oxidative stress in postmenopausal women. A case-control study was carried out in South Brazil, 46 women with fractures and 49 controls completed the study. There was no significant difference between the frequency of fractures in women who drank mate tea and women who did not (48.3% vs. 48.5%, p = .99). Moreover, there was no significant difference concerning the serum levels of total calcium, phosphorus, PTH, vitamin D, P1NP, and CTX in the subjects with the history of yerba mate use when compared to controls. Higher serum levels of NOx were found in women who drank the yerba mate infusion. In conclusion, the yerba mate intake is not associated with fracture, and it appears to have a neutral effect on the bone metabolism. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Hierarchy of evidence: differences in results between non-randomized studies and randomized trials in patients with femoral neck fractures.

    PubMed

    Bhandari, Mohit; Tornetta, Paul; Ellis, Thomas; Audige, Laurent; Sprague, Sheila; Kuo, Jonathann C; Swiontkowski, Marc F

    2004-01-01

    There have been a number of non-randomized studies comparing arthroplasty with internal fixation in patients with femoral neck fractures. However, there remains considerable debate about whether the results of non-randomized studies are consistent with the results of randomized, controlled trials. Given the economic burden of hip fractures, it remains essential to identify therapies to improve outcomes; however, whether data from non-randomized studies of an intervention should be used to guide patient care remains unclear. We aimed to determine whether the pooled results of mortality and revision surgery among non-randomized studies were similar to those of randomized trials in studies comparing arthroplasty with internal fixation in patients with femoral neck fractures. We conducted a Medline search from 1969 to June 2002, identifying both randomized and non-randomized studies comparing internal fixation with arthroplasty in patients with femoral neck fractures. Additional strategies to identify relevant articles included Cochrane database, SCISEARCH, textbooks, annual meeting programs, and content experts. We abstracted information on mortality and revision rates in each study and compared the pooled results between non-randomized and randomized studies. In addition, we explored potential reasons for dissimilar results between the two study designs. We identified 140 citations that addressed the general topic of comparison of arthroplasty and internal fixation for hip fracture. Of these, 27 studies met the eligibility criteria, 13 of which were non-randomized studies and 14 of which were randomized trials. Mortality data was available in all 13 non-randomized studies ( n=3108 patients) and in 12 randomized studies ( n=1767 patients). Non-randomized studies overestimated the risk of mortality by 40% when compared with the results of randomized trials (relative risk 1.44 vs 1.04, respectively). Information on revision risk was available in 9 non-randomized studies ( n=2764 patients) and all 14 randomized studies ( n=1901 patients). Both estimates from non-randomized and randomized studies revealed a significant reduction in the risk of revision surgery with arthroplasty compared with internal fixation (relative risk 0.38 vs 0.23, respectively). The reduction in the risk of revision surgery with arthroplasty compared with internal fixation was 62% for non-randomized studies and 77% for randomized trials. Thus, non-randomized studies underestimated the relative benefit of arthroplasty by 19.5%. Non-randomized studies with point estimates of relative risk similar to the pooled estimate for randomized trials all controlled for patient age, gender, and fracture displacement in their comparisons of mortality. We were unable to identify reasons for differences in the revision rate results between the study designs. Similar to other reports in medical subspecialties, non-randomized studies provided results dissimilar to randomized trials of arthroplasty vs internal fixation for mortality and revision rates in patients with femoral neck fractures. Investigators should be aware of these discrepancies when evaluating the merits of alternative surgical interventions, especially when both randomized trials and non-randomized comparative studies are available.

  7. 75 FR 35023 - Informational Public Meetings for Hydraulic Fracturing Research Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Fracturing Research Study AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The... its proposed plan to study the relationship between hydraulic fracturing and drinking water. The... Agency's preliminary plans for study scope and design, and EPA will receive public comments on the...

  8. Mechanical evaluation of hip pads to protect against fracture of elderly femurs in falls.

    PubMed

    Tadano, Shigeru; Nakatsuchi, Hiroki; Goto, Naoko; Fujisaki, Kazuhiro; Nakatsuchi, Yukio

    2011-01-01

    Hip fracture in the aged easily occurs by falls and may cause these persons to become bedridden. Hip pads are effective in protecting hip fracture as they directly deflect and absorb the impact forces by falls. It is necessary for the material and the structure of hip pads to be designed to realize both high impact absorption and compliance (comfort during wearing). In this report, an impact testing system was developed to test the impact absorbing performance of hip pad with air cushions designed by the research group. The impact absorbing performance was evaluated by the impact load, collision time, and maximum load. To confirm the effectiveness in protecting against hip fracture, an impact force was applied to the greater trochanter of the human femur and the degree of fracture was measured by X-ray examination. As a result, the hip pad with air cushions had a high impact absorbing performance and was sufficiently effective to protect against hip fracture.

  9. Fracture stimulation treatment design optimization: What can the NPV vs X{sub f} plot tell us?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, C.H.; Harkrider, J.D.; Thompson, R.S.

    1996-12-31

    Fracture stimulation production response coupled with the hydrocarbon sales price determines the value of a fracture stimulation treatment. Many factors can significantly effect the production response of a fracture stimulated well. Some examples include stimulation fluid selection, proppant selection, pumping rates, rock properties, reservoir fluid properties, in-situ stresses, stress variations, on-site execution, post-treatment stimulation fluid recovery, and operating practices. The production response in economic terms portrays the net effect of these variables. This paper presents a case study that demonstrates how post-treatment evaluations expressed in economic terms can be used to assess the performance of stimulations and to guide futuremore » design choices.« less

  10. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  11. The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS)--quality of life during the first 4 months after fracture.

    PubMed

    Borgström, F; Lekander, I; Ivergård, M; Ström, O; Svedbom, A; Alekna, V; Bianchi, M L; Clark, P; Curiel, M D; Dimai, H P; Jürisson, M; Kallikorm, R; Lesnyak, O; McCloskey, E; Nassonov, E; Sanders, K M; Silverman, S; Tamulaitiene, M; Thomas, T; Tosteson, A N A; Jönsson, B; Kanis, J A

    2013-03-01

    The quality of life during the first 4 months after fracture was estimated in 2,808 fractured patients from 11 countries. Analysis showed that there were significant differences in the quality of life (QoL) loss between countries. Other factors such as QoL prior fracture and hospitalisation also had a significant impact on the QoL loss. The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS) was initiated in 2007 with the objective of estimating costs and quality of life related to fractures in several countries worldwide. The ICUROS is ongoing and enrols patients in 11 countries (Australia, Austria, Estonia, France, Italy, Lithuania, Mexico, Russia, Spain, UK and the USA). The objective of this paper is to outline the study design of ICUROS and present results regarding the QoL (measured using the EQ-5D) during the first 4 months after fracture based on the patients that have been thus far enrolled ICUROS. ICUROS uses a prospective study design where data (costs and quality of life) are collected in four phases over 18 months after fracture. All countries use the same core case report forms. Quality of life was collected using the EQ-5D instrument and a time trade-off questionnaire. The total sample for the analysis was 2,808 patients (1,273 hip, 987 distal forearm and 548 vertebral fracture). For all fracture types and countries, the QoL was reduced significantly after fracture compared to pre-fracture QoL. A regression analysis showed that there were significant differences in the QoL loss between countries. Also, a higher level of QoL prior to the fracture significantly increased the QoL loss and patients who were hospitalised for their fracture also had a significantly higher loss compared to those who were not. The findings in this study indicate that there appear to be important variations in the QoL decrements related to fracture between countries.

  12. Spatially offset raman spectroscopy for non-invasive assessment of fracture healing

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Lu, Guijin; West, Christopher; Gogola, Gloria; Kellam, James; Ambrose, Catherine; Bi, Xiaohong

    2016-02-01

    Fracture non-unions and bone re-fracture are common challenges for post-fracture management. To achieve better prognosis and treatment evaluation, it is important to be able to assess the quality of callus over the time course of healing. This study evaluated the potential of spatially offset Raman spectroscopy for assessing the fracture healing process in situ. We investigated a rat model of fracture healing at two weeks and 4 weeks post fracture with a fractured femur and a contralateral control in each animal. Raman spectra were collected from the depilated thighs on both sides transcutaneously in situ with various source/detection offsets. Bone signals were recovered from SORS spectra, and then compared with those collected from bare bones. The relative intensity of mineral from fractured bone was markedly decreased compared to the control. The fractured bones demonstrated lower mineral and carbonate level and higher collagen content in the callus at the early time point. Compared to week 2, collagen mineralization and mineral carbonation increased at 4 weeks post fracture. Similarly, the material properties of callus determined by reference point indentation also increased in the 4-week group, indicating improved callus quality with time. The results from Raman analysis are in agreement with radiographic and material testing, indicating the potential of this technique in assessing fracture healing in vivo.

  13. Seismic Characterizations of Fractures: Dynamic Diagnostics

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.

    2017-12-01

    Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  14. [Petrous bone fracture. Our experience: 1999-2004].

    PubMed

    Ramírez Sabio, J B; de Paula Vernetta, C; García Sanchís, J M; Callejo García, F J; Cortés Andrés, O; Quilis Quesada, V; Dualde Beltrán, D; Marco Algarra, J

    2006-12-01

    To review the petrous bone fractures during the last five years (1999-2004) in our hospital, its manage, control, and analysis onf the associated factors. To analyse the managing protocoles and current bibliography. We review 266 temporal bone fractures, 74 with petrous bone association. We analyse these fractures by sex distribution, injurie severity, otorhinolaryngological clinical findings, production mechanism and radiological findings. The cases are discussed and compared with current bibliography. Petrous bone fractures must be always suspected in patients with head trauma, specially if it associates severity and otorrhagia. It is necessary a deep colaboration between neurosurgeons, radiologists and otorhinolaryngologists to obtain a good management, control and follow up of the patients.

  15. Women’s Health Initiative Clinical Trials: Interaction of calcium plus vitamin D and Hormone Therapy

    PubMed Central

    Robbins, John A; Aragaki, Aaron; Crandall, Carolyn J; Manson, Joann E; Carbone, Laura; Jackson, Rebecca; Lewis, Cora E.; Johnson, Karen C.; Sarto, Gloria; Stefanick, Marcia L; Wactawski-Wende, Jean

    2013-01-01

    Objective To test the added value of Calcium and vitamin D (CaD) for fracture prevention among women taking postmenopausal hormone therapy (HT). Methods A prospective, partial-factorial design, randomized controlled double blind trial amongst Women’s Health Initiative post-menopausal participants, ages 50–79, at 40 centers in the US, with 7.1 years average follow-up. 27,347 women were randomized to HT (conjugated estrogen 0.625 mg alone, or CEE 0.625 mg daily plus medroxyprogesterone acetate 2.5mg) and 36,282 women randomized to either 1000mg elemental calcium (carbonate) plus 400 IU of vitamin D3 daily each compared to placebo. A total of 16,089 women were in both arms. The predefined outcomes were adjudicated hip fractures and measured bone mineral density. Results Interaction between HT and CaD on hip fracture (P-interaction = 0.01) was shown. The effect of CaD was stronger among women assigned to HT (HR, 0.59; 95%CI, 0.38–0.93) than placebo (HR, 1.20; 95%CI, 0.85, 1.69). The effect of HT on hip fracture was stronger among women assigned to active CaD (HR, 0.43; 0.28–0.66) than placebo (HR, 0.87; 95%CI, 0.60–1.26). CaD supplementation enhanced the anti-fracture effect of the HT at all levels of personal calcium intake. There was no interaction of HT and CaD on change in hip or spine BMD. Conclusions Postmenopausal women at normal risk of hip fracture on HT, supplementation with CaD significantly reduced incident hip fracture beyond HT alone; at all levels of personal baseline total calcium intake. PMID:23799356

  16. Is intramedullary nailing more effective than non-operative treatment in adults with displaced middle-third clavicle fractures?

    PubMed

    Hill, Christopher Edward

    2014-09-01

    Clavicle fractures are common, accounting for 5-12 % of all fractures. Traditionally, displaced middle-third clavicle fractures have been managed non-operatively but the associated displacement often leads to mal-union with shortening, cosmetic deformity and occasionally non-union, with clinicians looking towards alternative operative methods such as intramedullary nailing (IMN). However, such methods have their own complications. In order to ascertain the effectiveness of IMN in the management of middle-third clavicle fractures compared with non-operative treatment, analysis of recent evidence is required and this review aims to achieve that, focusing on relevant, contemporary randomised-control trials. Essential search-terms identified from the research question were used to formulate a search strategy. A systematic search of multiple databases was then performed from 1966 until present and appropriate papers for appraisal identified. Thirteen papers were identified, with 10 excluded using appropriate eligibility criteria. The remaining papers were then critically appraised. With regards shoulder function, all papers demonstrated an association between IMN and a significantly (P < 0.05) superior shoulder function score, but no consensus with regards to complication rates. However, all have identified limitations; therefore, their overall findings must be considered conservatively. Further, high-quality research, ideally in the form of well-designed, multi-centre RCTs is required to allow acceptable implementation of IMN of middle-third clavicle fractures into widespread practice. However, early results demonstrate that in young patients with displaced middle-third clavicle fractures, who are motivated to return to work, IMN provides superior functional results and should be considered. However, the importance of considering each patient individually as to their suitability for each management option, before coming to an informed decision with the patient rather than having a blanket approach to MTCF is essential. Level 1.

  17. Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

    PubMed Central

    Nawafleh, Noor; Öchsner, Andreas; George, Roy

    2018-01-01

    PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716

  18. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less

  19. Biologic disease-modifying anti-rheumatic drugs and the risk of non-vertebral osteoporotic fractures in patients with rheumatoid arthritis aged 50 years and over.

    PubMed

    Roussy, J-P; Bessette, L; Bernatsky, S; Rahme, E; Lachaine, J

    2013-09-01

    Prevention of bone mineral density loss in rheumatoid arthritis (RA) has been associated with use of biologic disease-modifying anti-rheumatic drugs (DMARDs). However, in this study, we could not demonstrate a reduction in the risk of non-vertebral fractures. Additional research is required to clarify the impact of biologic DMARDs on fracture risk in RA. Small studies have suggested biologic DMARDs preserve bone mineral density at 6-12 months. Our objective was to determine the association between biologic DMARD use and the risk of non-vertebral osteoporotic fractures in RA subjects aged ≥50 years. A nested case-control study was conducted using Quebec physician billing and hospital discharge data. RA subjects were identified from International Classification of Disease-9/10 codes in billing and hospitalisation data and followed from cohort entry until the earliest of non-vertebral osteoporotic fracture, death, or end of study period. Controls were matched to cases (4:1 ratio) on age, sex, and date of cohort entry. Biologic DMARD exposure was defined as being on treatment for ≥180 days pre-fracture (index). Conditional logistic regression was used, adjusting for indicators of RA severity, comorbidity, drugs influencing fracture risk, and measures of health care utilisation. Over the study period, 1,515 cases were identified (6,023 controls). The most frequent fracture site was hip/femur (42.3%). In total, 172 subjects (49 cases and 123 controls) were exposed to biologic DMARDs. The median duration of exposure was 735 (interquartile range (IQR), 564) and 645 (IQR, 903) days in cases and controls, respectively. We were unable to demonstrate an association between biologic DMARDs and fracture risk (odds ratio, 1.03; 95% confidence interval, 0.42-2.53). RA duration significantly increased the fracture risk. Despite the positive impact of biologic DMARDs on bone remodelling observed in small studies, we were unable to demonstrate a reduction in the risk of non-vertebral osteoporotic fractures in older adults with RA.

  20. Structural Design Parameters for Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon; Rogers, Richard; Baker, Eric

    2017-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.

  1. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial.

    PubMed Central

    Sinclair, S.; James, S.; Singer, M.

    1997-01-01

    OBJECTIVES: To assess whether intraoperative intravascular volume optimisation improves outcome and shortens hospital stay after repair of proximal femoral fracture. DESIGN: Prospective, randomised controlled trial comparing conventional intraoperative fluid management with repeated colloid fluid challenges monitored by oesophageal Doppler ultrasonography to maintain maximal stroke volume throughout the operative period. SETTING: Teaching hospital, London. SUBJECTS: 40 patients undergoing repair of proximal femoral fracture under general anaesthesia. INTERVENTIONS: Patients were randomly assigned to receive either conventional intraoperative fluid management (control patients) or additional repeated colloid fluid challenges with oesophageal Doppler ultrasonography used to maintain maximal stroke volume throughout the operative period (protocol patients). MAIN OUTCOME MEASURES: Time declared medically fit for hospital discharge, duration of hospital stay (in acute bed; in acute plus long stay bed), mortality, perioperative haemodynamic changes. RESULTS: Intraoperative intravascular fluid loading produced significantly greater changes in stroke volume (median 15 ml (95% confidence interval 10 to 21 ml)) and cardiac output (1.2 l/min (0.1 to 2.3 l/min)) than in the conventionally managed group (-5 ml (-10 to 1 ml) and -0.4 l/min (-1.0 to 0.2 l/min)) (P < 0.001 and P < 0.05, respectively). One protocol patient and two control patients died in hospital. In the survivors, postoperative recovery was significantly faster in the protocol patients, with shorter times to being declared medically fit for discharge (median 10 (9 to 15) days v 15 (11 to 40) days, P < 0.05) and a 39% reduction in hospital stay (12 (8 to 13) days v 20 (10 to 61) days, P < 0.05). CONCLUSIONS: Proximal femoral fracture repair constitutes surgery in a high risk population. Intraoperative intravascular volume loading to optimal stroke volume resulted in a more rapid postoperative recovery and a significantly reduced hospital stay. PMID:9361539

  2. Malnutrition in hip fracture patients: an intervention study.

    PubMed

    Olofsson, Birgitta; Stenvall, Michael; Lundström, Maria; Svensson, Olle; Gustafson, Yngve

    2007-11-01

    To investigate whether a nutritional intervention in older women and men with femoral neck fracture had an effect on postoperative complications during hospitalization and on nutritional status at a four-month follow-up. The design was a randomized controlled trial. The present study sample consisted of 157 patients aged 70 years and above with femoral neck fracture. The nutritional intervention included, among other things, a nutritional journal to detect nutrition deficiencies and protein-enriched meals for at least four days postoperatively. Further, at least two nutritional and protein drinks were served each day during the whole hospitalization and other factors that would influence the patient's nutrition were also considered and dealt with. Postoperative complications were registered and patients were assessed using the Mini Nutritional Assessment (MNA) scale, including body mass index (BMI), on admission and at a four-month follow-up. Malnutrition was common and low MNA scores were associated with postoperative complications such as delirium and decubitus ulcers. There were significantly fewer days of delirium in the intervention group, seven patients in the intervention group developed decubitus ulcers vs. 14 patients in the control group and the total length of hospitalization was shorter. There were no detectable significant improvements regarding nutritional parameters between the intervention and the control group at the four-month follow-up but men improved their mean BMI, body weight and MNA scores in both the intervention and the control groups while women deteriorated in both groups. Malnutrition was common among older people with hip fractures admitted to hospital. The nutritional intervention might have contributed to the patients suffering fewer days with delirium, fewer decubitus ulcers and shorter hospitalization but did not improve the long-term nutritional status, at least not in women. This nutritional intervention, which was included in a multifactorial multidisciplinary intervention, is inexpensive and relatively easy to implement. It has significant effects on complications but no long-term effect on nutritional parameters, at least not in women.

  3. Evaluation of production tests in oil wells stimulated by massive acid fracturing offshore Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, S.W.

    This paper presents the evaluation of pressure-buildup data from production tests in wells that have been stimulated by massive acid fracturing. Fracture type curves are used in combination with conventional semilog analysis techniques. Fracture characteristics are calculated from a match of the early-time pressure data with the type curves, and reservoir characteristics are calculated from a conventional semilog plot of late-time data. Unexpectedly high formation permeabilities are evaluated, and fracture half-lengths are much shorter than design values.

  4. Hyponatremia Is Associated With Increased Osteoporosis and Bone Fractures in a Large US Health System Population.

    PubMed

    Usala, Rachel L; Fernandez, Stephen J; Mete, Mihriye; Cowen, Laura; Shara, Nawar M; Barsony, Julianna; Verbalis, Joseph G

    2015-08-01

    The significance of studies suggesting an increased risk of bone fragility fractures with hyponatremia through mechanisms of induced bone loss and increased falls has not been demonstrated in large patient populations with different types of hyponatremia. This matched case-control study evaluated the effect of hyponatremia on osteoporosis and fragility fractures in a patient population of more than 2.9 million. Osteoporosis (n = 30 517) and fragility fracture (n = 46 256) cases from the MedStar Health database were matched on age, sex, race, and patient record length with controls without osteoporosis (n = 30 517) and without fragility fractures (n = 46 256), respectively. Cases without matched controls or serum sodium (Na(+)) data or with Na(+) with a same-day blood glucose greater than 200 mg/dL were excluded. Incidence of diagnosis of osteoporosis and fragility fractures of the upper or lower extremity, pelvis, and vertebrae were the outcome measures. Multivariate conditional logistic regression models demonstrated that hyponatremia was associated with osteoporosis and/or fragility fractures, including chronic [osteoporosis: odds ratio (OR) 3.97, 95% confidence interval (CI) 3.59-4.39; fracture: OR 4.61, 95% CI 4.15-5.11], recent (osteoporosis: OR 3.06, 95% CI 2.81-3.33; fracture: OR 3.05, 95% CI 2.83-3.29), and combined chronic and recent hyponatremia (osteoporosis: OR 12.09, 95% CI 9.34-15.66; fracture: OR 11.21, 95% CI 8.81-14.26). Odds of osteoporosis or fragility fracture increased incrementally with categorical decrease in median serum Na(+). These analyses support the hypothesis that hyponatremia is a risk factor for osteoporosis and fracture. Additional studies are required to evaluate whether correction of hyponatremia will improve patient outcomes.

  5. Controls on fracture distribution in the Giddings Austin Chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.T.

    1990-09-01

    Fracture distribution in the Giddings Austin Chalk is controlled by both structure and the stratigraphy of the Austin Group. Parameters that most affect reservoir performance include fracture width, height, and spacing, as well as the number of fracture sets and their orientations. Lateral variance of these parameters is a function of structural position, while vertical change is related to stratigraphy. The Austin Chalk productive trend is thought to coincide with the hingeline of the Gulf Coast basin, where extension has been concentrated during subsidence of the basin. Fracturing is attributed to a number of mechanisms including normal faulting, bending overmore » buried structures, gravity creep, differential compaction, and aquathermal pressuring. A change in structural style from faulting to flexure takes place from west to east across the Giddings field, accompanied by a change in fracture distribution. In the west, fractures develop only in close proximity to faults whereas in the east they are more widely distributed over broad warps. Stratigraphic controls include lithology, porosity, bed thickness, and ductility contrast between adjacent beds. The Austin Chalk consists of sparse biomicrite interbedded with marls, shales, and clay seams. In general, thin beds are more highly fractured than thick beds, and clean limestone is more highly fractured than marl or shale. Where the more ductile marls and clays exceed a critical thickness, fractures tend to terminate within individual chalk beds, resulting in barriers to vertical flow within the reservoir.« less

  6. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.

  7. Recent developments in analysis of crack propagation and fracture of practical materials. [stress analysis in aircraft structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.

    1978-01-01

    The limitations of linear elastic fracture mechanics in aircraft design and in the study of fatigue crack propagation in aircraft structures are discussed. NASA-Langley research to extend the capabilities of fracture mechanics to predict the maximum load that can be carried by a cracked part and to deal with aircraft design problems are reported. Achievements include: (1) improved stress intensity solutions for laboratory specimens; (2) fracture criterion for practical materials; (3) crack propagation predictions that account for mean stress and high maximum stress effects; (4) crack propagation predictions for variable amplitude loading; and (5) the prediction of crack growth and residual stress in built-up structural assemblies. These capabilities are incorporated into a first generation computerized analysis that allows for damage tolerance and tradeoffs with other disciplines to produce efficient designs that meet current airworthiness requirements.

  8. Directionality and Orientation Effects on the Resistance to Propagating Shear Failure

    NASA Astrophysics Data System (ADS)

    Leis, B. N.; Barbaro, F. J.; Gray, J. M.

    Hydrocarbon pipelines transporting compressible products like methane or high-vapor-pressure (HVP) liquids under supercritical conditions can be susceptible to long-propagating failures. As the unplanned release of such hydrocarbons can lead to significant pollution and/or the horrific potential of explosion and/or a very large fire, design criteria to preclude such failures were essential to environmental and public safety. Thus, technology was developed to establish the minimum arrest requirements to avoid such failures shortly after this design concern was evident. Soon after this technology emerged in the early 1970sit became evident that its predictions were increasinglynon-conservative as the toughness of line-pipe steel increased. A second potentially critical factor for what was a one-dimensional technology was that changes in steel processing led to directional dependence in both the flow and fracture properties. While recognized, this dependence was tacitly ignored in quantifying arrest, as were early observations that indicated propagating shear failure was controlled by plastic collapse rather than by fracture processes.

  9. Source Physics Experiment: Research in Support of Verification and Nonproliferation

    DTIC Science & Technology

    2011-09-01

    designed to provide a carefully controlled seismic and strong motion data set from buried explosions at the Nevada National Security Site (NNSS). The...deposition partitioned into internal (heat and plastic strain) and kinetic (e.g., radiated seismic ) energy, giving more confidence in predicted free...ample information to study dry and water-saturated fractures, local lithology and topography on the radiated seismic wavefield. Spallation on

  10. Environmental Durability of Adhesively Bonded Joints

    DTIC Science & Technology

    1997-10-14

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 07040188 Public reporting burden for tis collection of information isestimated to average 1 hour per...transmittance and reflectance spectroscopy was performed using Nicolet’s OMNIC software for the set-up, control, and analysis of spectroscopic scans... publications inciudc: JAhIN’. W S. iind Butjkus, L.M., "Considetring E~nvironmental Condjitions ill the Design ()’ Bonded Structures: A Fracture

  11. Bioinspired design and interfacial failure of biomedical systems

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima

    The deformation mechanism of nacre as a model biological material is studied in this project. A numerical model is presented which consists of tensile pillars, shear pillars, asperities and aragonite platelets. It has been shown that the tensile pillars are the main elements that control the global stiffness of the nacre structure. Meanwhile, ultimate strength of the nacre structure is controlled by asperities and their behavior and the ratio of L/2D which is itself a function of the geometry of the platelets. Protein/shear pillars provide the glue which holds the assembly of entire system together, particularly in the direction normal to the platelets main axis. This dissertation also presents the results of a combined theoretical/computational and experimental effort to develop crack resistant dental multilayers that are inspired by the functionally graded dento-enamel junction (DEJ) structure that occurs between dentin and enamel in natural teeth. The complex structures of natural teeth and ceramic crowns are idealized using at layered configurations. The potential effects of occlusal contact are then modeled using finite element simulations of Hertzian contact. The resulting stress distributions are compared for a range of possible bioinspired, functionally graded architecture. The computed stress distributions show that the highest stress concentrations in the top ceramic layer of crown structures are reduced significantly by the use of bioinspired functionally graded architectures. The reduced stresses are shown to be associated with significant improvements (30%) in the pop-in loads over a wide range of clinically-relevant loading rates. The implications of the results are discussed for the design of bioinspired dental ceramic crown structures. The results of a combined experimental and computational study of mixed mode fracture in glass/cement and zirconia/cement interfaces that are relevant to dental restorations is also presented. The interfacial fracture is investigated using Brazil-nut specimens. The kinking in-and-out of the interface that occurs between glass/cement and zirconia/cement interfaces, is also shown to be consistent with predictions from a microstructure-based finite element model. The predictions are later verified using focused ion beam and scanning electron microscopy images. Finally, the adhesion between layers that are relevant to drug-eluting stents is explored. Brazil disk specimens were used to measure the interfacial fracture energies between the layers of a model drug eluting stent over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.

  12. Are bi-axial proximal sesamoid bone fractures in the British Thoroughbred racehorse a bone fatigue related fracture? A histological study.

    PubMed

    Kristoffersen, M; Hetzel, U; Parkin, T D H; Singer, E R

    2010-01-01

    To investigate whether microfractures and alterations in the trabecular bone area are associated with catastrophic bi-axial proximal sesamoid bone fractures (PSBF). Proximal sesamoid bones (PSB) from 10 racehorses with PSBF and from 10 control racehorses without musculoskeletal injury were examined using the bulk basic fuchsin method. Bone histomorphometric and microfracture analysis was performed, and cases and controls compared using two-sample t-test, paired t-test, and Mann-Whitney U test. There was no significant difference in the microfracture density and the trabecular bone area between bones from case and control horses, and between fractured and non-fractured bones in case horses. Microfracture density was low in the areas of the PSB examined. Microfracture density was not significantly different between groups, indicating that propagation of micro-cracks is an unlikely predisposing pathologic alteration in PSBF in British racehorses. There was no significant difference in the bone surface area between groups, which one would expect if modelling, adaptation and an increase in bone density were associated with PSBF fracture in the case horses. Therefore, PSBF in the British racehorse does not appear to be associated with microfractures of the trabecular bone of the PSB. The PSB fractures might represent an acute monotonic fracture; however, the aetiology of the fractures remains unknown with additional research required.

  13. OPG and sRANKL serum levels and incident hip fracture in postmenopausal Caucasian women in the Women's Health Initiative Observational Study.

    PubMed

    LaCroix, Andrea Z; Jackson, Rebecca D; Aragaki, Aaron; Kooperberg, Charles; Cauley, Jane A; Chen, Zhao; Leboff, Meryl S; Duggan, David; Wactawski-Wende, Jean

    2013-10-01

    The osteoprotogerin/receptor activator of NF-kappa β/receptor activator of NF-kappa β ligand (OPG/RANK/RANKL) pathway plays a critical role in bone remodeling. This study investigated associations between serum levels of OPG, soluble RANKL (sRANKL), and the ratio of OPG/sRANKL to risk of incident hip fracture. A nested case-control study was conducted among postmenopausal, Caucasian women aged 50-79 at baseline (1993-1998), followed for hip fracture through March 2005 in the Women's Health Initiative Observational Study. 400 incident hip fracture cases were selected and individually matched to 400 controls with no prior fracture or incident hip fracture. Matching factors were baseline age, enrollment date and hormone therapy (HT) exposure. Baseline serum OPG and sRANKL levels were measured using high sensitivity ELISA. Odds ratios were computed for quartiles of each biomarker adjusting for matching factors and hip fracture risk factors. Serum OPG was significantly associated with older age, low physical activity and poorer physical function in control women. sRANKL was inversely associated with total calcium intake in control women, but not associated with age or other fracture risk factors. The odds ratio for hip fracture comparing the highest to lowest quartiles of OPG was 2.28 (95% confidence interval (CI), 1.45-3.61) after adjusting for the matching variables (p-value for linear trend <0.001), and 1.87 (95% CI, 1.15-3.04; p for linear trend=0.02) after adjusting for self-rated health status, physical activity and physical functioning. No significant associations between sRANKL or the ratio of OPG/sRANKL and hip fracture risk were observed. Serum OPG levels were independently associated with a nearly twofold increased risk of hip fracture in postmenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. OPG and sRANKL serum levels and incident hip fracture in postmenopausal Caucasian women in the Women's Health Initiative Observational Study

    PubMed Central

    LaCroix, Andrea Z.; Jackson, Rebecca D.; Aragaki, Aaron; Kooperberg, Charles; Cauley, Jane A.; Chen, Zhao; LeBoff, Meryl S.; Duggan, David; Wactawski-Wende, Jean

    2013-01-01

    Purpose The osteoprotogerin/receptor activator of NF-kappa β/receptor activator of NF-kappa β ligand (OPG/RANK/RANKL) pathway plays a critical role in bone remodeling. This study investigated associations between serum levels of OPG, soluble RANKL (sRANKL), and the ratio of OPG/sRANKL to risk of incident hip fracture. Methods A nested case–control study was conducted among postmenopausal, Caucasian women aged 50–79 at baseline (1993–1998), followed for hip fracture through March 2005 in the Women's Health Initiative Observational Study. 400 incident hip fracture cases were selected and individually matched to 400 controls with noprior fracture or incident hip fracture. Matching factors were baseline age, enrollment date and hormone therapy (HT) exposure. Baseline serum OPG and sRANKL levels were measured using high sensitivity ELISA. Odds ratios were computed for quartiles of each biomarker adjusting for matching factors and hip fracture risk factors. Results Serum OPG was significantly associated with older age, low physical activity and poorer physical function in control women. sRANKL was inversely associated with total calcium intake in control women, but not associated with age or other fracture risk factors. The odds ratio for hip fracture comparing the highest to lowest quartiles of OPG was 2.28 (95% confidence interval (CI), 1.45–3.61) after adjusting for the matching variables (p-value for linear trend <0.001), and 1.87 (95% CI, 1.15–3.04; p for linear trend = 0.02) after adjusting for self-rated health status, physical activity and physical functioning. No significant associations between sRANKL or the ratio of OPG/sRANKL and hip fracture risk were observed. Conclusion Serum OPG levels were independently associated with a nearly twofold increased risk of hip fracture in postmenopausal women. PMID:23735608

  15. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study.

    PubMed

    Keyak, J H; Sigurdsson, S; Karlsdottir, G S; Oskarsdottir, D; Sigmarsdottir, A; Kornak, J; Harris, T B; Sigurdsson, G; Jonsson, B Y; Siggeirsdottir, K; Eiriksdottir, G; Gudnason, V; Lang, T F

    2013-11-01

    Proximal femoral (hip) strength computed by subject-specific CT scan-based finite element (FE) models has been explored as an improved measure for identifying subjects at risk of hip fracture. However, to our knowledge, no published study has reported the effect of loading condition on the association between incident hip fracture and hip strength. In the present study, we performed a nested age- and sex-matched case-control study in the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. Baseline (pre-fracture) quantitative CT (QCT) scans of 5500 older male and female subjects were obtained. During 4-7years follow-up, 51 men and 77 women sustained hip fractures. Ninety-seven men and 152 women were randomly selected as controls from a pool of age- and sex-matched subjects. From the QCT data, FE models employing nonlinear material properties computed FE-strength of the left hip of each subject in loading from a fall onto the posterolateral (FPL), posterior (FP) and lateral (FL) aspects of the greater trochanter (patent pending). For comparison, FE strength in stance loading (FStance) and total femur areal bone mineral density (aBMD) were also computed. For all loading conditions, the reductions in strength associated with fracture in men were more than twice those in women (p≤0.01). For fall loading specifically, posterolateral loading in men and posterior loading in women were most strongly associated with incident hip fracture. After adjusting for aBMD, the association between FP and fracture in women fell short of statistical significance (p=0.08), indicating that FE strength provides little advantage over aBMD for identifying female hip fracture subjects. However, in men, after controlling for aBMD, FPL was 424N (11%) less in subjects with fractures than in controls (p=0.003). Thus, in men, FE models of posterolateral loading include information about incident hip fracture beyond that in aBMD. © 2013.

  16. Use of proton pump inhibitors is associated with fractures in young adults: a population-based study.

    PubMed

    Freedberg, D E; Haynes, K; Denburg, M R; Zemel, B S; Leonard, M B; Abrams, J A; Yang, Y-X

    2015-10-01

    Proton pump inhibitors (PPIs) are associated with risk for fracture in osteoporotic adults. In this population-based study, we found a significant association between PPIs and fracture in young adults, with evidence of a dose-response effect. Young adults who use PPIs should be cautioned regarding risk for fracture. Proton pump inhibitors (PPIs) are associated with fracture in adults with osteoporosis. Because PPI therapy may interfere with bone accrual and attainment of peak bone mineral density, we studied the association between use of PPIs and fracture in children and young adults. We conducted a population-based, case-control study nested within records from general medical practices from 1994 to 2013. Participants were 4-29 years old with ≥ 1 year of follow-up who lacked chronic conditions associated with use of long-term acid suppression. Cases of fracture were defined as the first incident fracture at any site. Using incidence density sampling, cases were matched with up to five controls by age, sex, medical practice, and start of follow-up. PPI exposure was defined as 180 or more cumulative doses of PPIs. Conditional logistic regression was used to estimate the odds ratio and confidence interval for use of PPIs and fracture. We identified 124,799 cases and 605,643 controls. The adjusted odds ratio for the risk of fracture associated with PPI exposure was 1.13 (95% CI 0.92 to 1.39) among children aged < 18 years old and 1.39 (95% CI 1.26 to 1.53) among young adults aged 18-29 years old. In young adults but not children, we observed a dose-response effect with increased total exposure to PPIs (p for trend <0.001). PPI use was associated with fracture in young adults, but overall evidence did not support a PPI-fracture relationship in children. Young adults who use PPIs should be cautioned regarding potentially increased risk for fracture, even if they lack traditional fracture risk factors.

  17. Minimally invasive plate osteosynthesis technique for displaced midshaft clavicular fracture using the clavicle reductor.

    PubMed

    Zhang, Tao; Chen, Wei; Sun, Jiayuan; Zhang, Qi; Zhang, Yingze

    2017-08-01

    This study aims to introduce a self-designed clavicle reductor and to test the effectivity of a alternative minimally invasive plate osteosynthesis technique (MIPO) for displaced midshaft clavicular fractures (DMCFs) with the application of our self-designed clavicle reductor. From October 2012 to February 2013, 27 male patients who suffered with unilateral displaced midshaft clavicular fracture (DMCFs) were included into our study. Patients were treated by minimally invasive plate osteosynthesis (MIPO) technique with the application of our self-designed clavicle reductor and followed up regularly. Constant-Murley score was employed to test the functional outcomes at one year's follow up. The average follow-up time for the 27 patients was 15.8 months (range, 13-18 months). The average age of all patients was 32.6 (range, 21 to 48). According to OTC system, 12 cases were simple fractures (15-B1), ten cases were wedge fractures (15-B2) and five cases were comminuted fractures (15-B3). With the application of the clavicle reductor, minimally invasive plate osteosynthesis technique can be performed without any barrier in all of the 27 cases. Operative duration was 48.1 minutes (range, 35-65 minutes) and average fluoroscopy time was 12.8 seconds (range, from 7 to 22 seconds). All of the 27 cases healed from four to six months post-operatively. The average Constant-Murley-score of the 27 patients was 92.7 ± 5.88 (range, 80 to 100). No complications were noted. The self-designed clavicle reductor can effectively pave the way for the application of MIPO technique in the treatment of DMCFs. MIPO technique with locking reconstruction plate is a feasible and worthwhile alternative for displaced midshaft clavicular fractures (DMCFs).

  18. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication.

    PubMed

    Yang, Long; Shang, Xian-Wen; Fan, Jian-Nan; He, Zhi-Xu; Wang, Jian-Ji; Liu, Miao; Zhuang, Yong; Ye, Chuan

    2016-01-01

    To evaluate the effect of 3D printing in treating trimalleolar fractures and its roles in physician-patient communication, thirty patients with trimalleolar fractures were randomly divided into the 3D printing assisted-design operation group (Group A) and the no-3D printing assisted-design group (Group B). In Group A, 3D printing was used by the surgeons to produce a prototype of the actual fracture to guide the surgical treatment. All patients underwent open reduction and internal fixation. A questionnaire was designed for doctors and patients to verify the verisimilitude and effectiveness of the 3D-printed prototype. Meanwhile, the operation time and the intraoperative blood loss were compared between the two groups. The fracture prototypes were accurately printed, and the average overall score of the verisimilitude and effectiveness of the 3D-printed prototypes was relatively high. Both the operation time and the intraoperative blood loss in Group A were less than those in Group B (P < 0.05). Patient satisfaction using the 3D-printed prototype and the communication score were 9.3 ± 0.6 points. A 3D-printed prototype can faithfully reflect the anatomy of the fracture site; it can effectively help the doctors plan the operation and represent an effective tool for physician-patient communication.

  19. Hand grip strength and its correlation with vitamin D in Indian patients with hip fracture.

    PubMed

    Dhanwal, Dinesh K; Dharmshaktu, Pramila; Gautam, V K; Gupta, N; Saxena, Alpana

    2013-01-01

    This case-control study was performed to evaluate 25-hydroxyvitamin D [25(OH)D] deficiency and its correlation with hand grip strength in 95 Indian hip fracture subjects and 95 controls. 25(OH)D deficiency was found in 88.4 % of hip fracture subjects that was significantly higher as compared to controls. Hand grip strength as measured by hand held dynamometer was significantly lower in patients, and there was a significant positive correlation between 25(OH)D and hand grip strength. The present study was conducted to assess correlation between 25(OH) D and hand grip strength in hip fracture subjects residing in North India. Ninety-five patients with hip fracture and similar number of controls were enrolled in the study. Fasting venous samples were analyzed for 25(OH)D, intact parathyroid hormone (PTH), alkaline phosphatase, calcium, and phosphate. Hand grip strength of study subjects was measured using Jamar dynamometer. Correlation between vitamin D levels and hand grip strength was analyzed in study population. The mean age of hip fracture subjects was 61.4 ± 12.6 years which was comparable in men and women. Out of 95 subjects, 57 were men and 38 were women. Mean 25(OH)D levels were significantly lower whereas intact PTH levels were significantly higher in patient group compared controls (10.29 ± 6.53 vs 13.6 ± 4.01 ng/ml; 62.6 ± 59.3 vs 37.7 ± 28.8 pg/ml, respectively). The number of subjects with 25(OH)D deficiency and secondary hyperparathyroidism was significantly higher in hip fracture group. The mean hand grip strength among hip fracture subjects was significantly lower compared to that of controls (16.57 ± 5.74 vs 26.74 ± 5.23 kg). There was a significant positive correlation between 25(OH)D and hand grip strength ( r = 0.482, p value <0.01) in hip fracture population. Majority of hip fracture patients in India have vitamin D deficiency, secondary hyperparathyroidism, and lower hand grip strength compared to controls. Further, there is significant positive correlation between 25(OH)D and hand grip strength.

  20. Fracture Design in Horizontal Shale Wells: Data Gathering to Implementation, March 10th - 11th, 2011

    EPA Pesticide Factsheets

    This presentation focuses on general fracture design in horizontal shale plays across the U.S. with an emphasis on the data taken into consideration for each frac job and a brief discussion of how that data is obtained and used.

  1. Evaluation of a multidisciplinary rehabilitation programme for elderly patients with hip fracture: A prospective cohort study.

    PubMed

    Cheung, Wing-Hoi; Shen, Wan-Yiu; Dai, David Lok-Kwan; Lee, Kin Bong; Zhu, Tracy Y; Wong, Ronald Man-Yeung; Leung, Kwok-Sui

    2018-02-28

    To investigate the effectiveness and cost of an 18-month multi-disciplinary Comprehensive Fragility Fracture Management Program (CFFMP) for fragility hip fracture patients. Prospective cohort study. Elderly patients with hip fracture were recruited at their first postoperative follow-up in 2 district hospitals. The intervention group comprised patients from the hospital undergoing CFFMP, and the control group comprised patients from another hospital undergoing conventional care. CFFMP provided geri-orthopaedic co-management, physician consultations, group-exercise and vibration-therapy. Timed-up-and-go test (TUG), Elderly Mobility Scale (EMS), Berg Balance Scale (BBS) and fall risk screening (FS) were used to assess functional performance. Incidences of falls and secondary fractures, the cost of the programme and related healthcare resources were recorded. A total of 76 patients were included in the intervention group (mean age 77.9 years ((standard deviation; SD) 6.1) ) and 77 in the control group (79.9 (SD 7.2)), respectively. The re-fracture rate in the control group (10.39%) was significantly higher than in the intervention group (1.32%) (p = 0.034). The intervention group improved significantly in TUG, EMS and FS after a 1-year programme. The overall healthcare costs per patient in the intervention and control groups were US$22,450 and US$25,313, respectively. Multi-disciplinary CFFMP is effective, with reduced overall cost, reduced length of hospital stay and reduced secondary fracture rate. The rehabilitation community service favours rehabilitation and improved quality of life of hip fracture patients.

  2. The prevention of hip fracture with risedronate and ergocalciferol plus calcium supplementation in elderly women with Alzheimer disease: a randomized controlled trial.

    PubMed

    Sato, Yoshihiro; Kanoko, Tomohiro; Satoh, Kei; Iwamoto, Jun

    A high incidence of fractures, particularly of the hip, represents an important problem in patients with Alzheimer disease (AD), who are prone to falls and have osteoporosis. We previously found that deficiency of 25-hydroxyvitamin D and compensatory hyperparathyroidism cause reduced bone mineral density in female patients with AD. We address the possibility that treatment with risedronate sodium and ergocalciferol plus calcium supplementation may reduce the incidence of nonvertebral fractures in elderly women with AD. A total of 500 elderly women with AD were randomly assigned to daily treatment with 2.5 mg of risedronate sodium or a placebo, combined with 1000 IU of ergocalciferol and 1200 mg of elementary calcium, and followed up for 18 months. At baseline, patients of both groups showed 25-hydroxyvitamin D deficiency with compensatory hyperparathyroidism. During the study period, bone mineral density in the risedronate group increased by 4.1% and decreased by 0.9% in the control group. Vertebral fractures occurred in 29 patients (24 hip fractures) in the control group and 8 patients (5 hip fractures) in the risedronate group. The relative risk in the risedronate group compared with the control group was 0.28 (95% confidence interval, 0.13-0.59). Elderly patients with AD hypovitaminosis D are at increased risk for hip fracture. Treatment with risedronate and ergocalciferol may be safe and effective in reducing the risk of a fracture in elderly patients with AD.

  3. Tea consumption may decrease the risk of osteoporosis: an updated meta-analysis of observational studies.

    PubMed

    Guo, Ming; Qu, Hua; Xu, Lin; Shi, Da-Zhuo

    2017-06-01

    Several epidemiological investigations have evaluated the correlation between tea consumption and risk of osteoporosis, but the results are inconsistent. Therefore, we conducted an updated meta-analysis of observational studies to assess this association. We searched for all relevant studies including cohort, cross-sectional, and case-control studies published from database inception to July 15, 2016, using MEDLINE EMBASE, and Cochrane Library. Polled odds ratios (ORs) were calculated using the random-effect model. Fourteen articles (16 studies) that examined 138523 patients were included in this meta-analysis. Seven studies concerning bone mineral density (BMD) showed an increase in BMD with tea consumption, including 4 cross-sectional studies (OR, 0.04, 95% confidence interval [CI], 0.01-0.08) and 3 cohort studies (OR, 0.01; 95% CI, 0.01-0.01). The remaining 9 studies concerning fracture, including 6 case-control studies and 3 cohort studies, showed no association between tea consumption and osteoporotic fracture (OR, 0.86; 95% CI, 0.74-1.01). This updated meta-analysis demonstrates that tea consumption could increase BMD, but the association with osteoporotic fracture requires further investigation. Together, the results highlight the need for future, high-quality-designed clinical trials on tea consumption and osteoporosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Displaced intra-articular calcaneal fractures.

    PubMed

    Bajammal, Sohail; Tornetta, Paul; Sanders, David; Bhandari, Mohit

    2005-01-01

    Calcaneal fractures comprise 1 to 2 percent of all fractures. Approximately 75% of calcaneal fractures are intra-articular. The management of intra-articular calcaneal fractures remains controversial. Nonoperative treatment options include elevation, ice, early mobilization, and cyclic compression of the plantar arch. Operative treatment options include closed reduction and percutaneous pin fixation, open reduction and internal fixation, and arthrodesis. The effect of operative versus nonoperative treatment has been the focus of several comparative studies. This study was designed to determine the effect of operative treatment compared with nonoperative treatment on the rate of union, complications, and functional outcome after intra-articular calcaneal fracture in adults.

  5. Stress fractures in elite cross-country athletes.

    PubMed

    Laker, Scott R; Saint-Phard, Deborah; Tyburski, Mark; Van Dorsten, Brent

    2007-04-01

    This retrospective and comparative survey investigates an unusual number of stress fractures seen within a Division I college cross-country team. An anonymous questionnaire-designed to observe factors known to increase stress fracture incidence-was distributed to members of the current and previous seasons' teams. Running surface, sleep hours, intake of calcium, and shoe type were among the factors investigated. Eleven lower extremity stress fractures were found in nine athletes. Athletes with stress fractures reported significantly fewer workouts per week on the new track. All other study parameters had no statistically significant effect on stress fractures in these athletes.

  6. MINERAL METABOLISM OF FRACTURES OF THE TIBIA IN MAN STUDIED WITH EXTERNAL COUNTING OF Sr$sup 8$$sup 5$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendberg, B.

    1961-01-01

    A study was made of 51 adult patients with tibial fractures by external counting with scintillation detectors over the thighs, knees, and tibias during a 14-day period after intravenous injection of 25 to 50 mu c Sr/sup 85/. The pattern of activity curves recorded over the fractured leg compared to those recorded over the control leg varied significantly with the age of the fracture (2 days to 9 yr). Increased uptake of Sr/sup 85/ was observed in all cases. The activity ratio fracture/control tibia obtained 14 days after injection rose during the 1st months after fracture to reach a peakmore » value 6 to 8 months after fracture. The mean 14-day fracture/ control ratios obtained 5 to 10 months after fracture was 15.5 plus or minus 7.2; then it dropped. Even 6 to 9 yr after fracture the counting rate over the fracture was higher than that over the intact tibia. No differences in activity uptake were observed between normally healing fractures and fractures showing delayed or nonunion. Activity curves obtained over the thigh, knee, and tibia of the fractured and intact legs 1 to l4 days after injection of Sr/sup 85/ could be simulated on the basis of a 2-compartment model for the kinetics of Sr in the body. Based on this kinetic analysis the externally recorded Sr/sup 85/ activity values may be interpreted as follows: The activity ratios fractured/intact leg obtained during early intervals after injection are mainly related to differences in the size of the exchangeable mineral spaces under the detector. The 14-day activity ratio of 2 anatomically comparable locations may be used as a relative index of the difference in the accretion rate (rate of irreversible deposition of bone mineral) in these locations, but is somewhat lower than the absolute dfference in the accretion rate. The bone salt laid down in the fracture callus is derived from the body fluids. The accretion rate in the fracture region is increased within a week of the fracture. It rapidly increases during the first months after fracture to reach a peak value at 6 to 8 months after fracture. The accretion rate in the entire fractured leg is increased some months after fracture. The traumatic osteopenia is caused by increased resorption and not by decreased accretion. (H.H.D.)« less

  7. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  8. Environmental controls on micro fracture processes in shelf ice

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  9. Fracture Reactivation in Chemically Reactive Rock Systems

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2) variations in the degree of fracture cement infill in fractures of same orientation, allowing fractures to reactivate at times when adjacent, more cemented fractures remain dormant. The observed interaction of chemical and mechanical fracture growth and sealing processes in this chemically reactive and heavily deformed rock unit results in a complex fracture network geometry not generally observed in less chemically reactive, shallower crustal environments.

  10. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.

  11. Comparison of our self-designed rotary self-locking intramedullary nail and interlocking intramedullary nail in the treatment of long bone fractures

    PubMed Central

    2014-01-01

    Objective The purpose of this study is to compare the clinical effects of our self-designed rotary self-locking intramedullary nail (RSIN) and interlocking intramedullary nail (IIN) for long bone fractures. Methods A retrospective study was performed in 1,704 patients who suffered bone fractures and underwent RSIN or IIN operation in our hospital between March 1999 and March 2013, including 494 with femoral fractures, 572 with humeral fractures, and 638 with tibial fractures. Among them, 634 patients were followed up for more than 1 year. The operative time, intraoperative blood loss, postoperative complications, healing rate, and the excellent and good rate of functional recovery were compared between two groups. Results Compared with IIN group, RSIN group exhibited significantly shorter operative time and less intraoperative blood loss no matter for humeral, femoral, or tibial fractures (all p < 0.001). The healing rate in patients with more than 1 year follow-up was significantly higher in RSIN group for femoral and tibial fractures (both p < 0.05). In RSIN group, no nail breakage or loosening occurred, but radial nerve injury and incision infection were respectively observed in one patient with humeral fracture. In IIN group, nail breakage or loosening occurred in 7 patients with femoral fractures and 16 patients with tibial fractures, radial nerve injury was observed in 8 patients with humeral fractures, and incision infection was present in 2 patients with humeral fractures and 1 patient with femoral fracture. The complication rate of IIN group was significantly higher than that of RSIN group (p < 0.05). However, there were no significant differences in the excellent and good rate of shoulder, elbow, knee, and ankle joint functional recovery between RSIN group and IIN group. Conclusion RSIN may be a reliable and practical alternative method for the treatment of long bone fractures. PMID:25047454

  12. Comparison of our self-designed rotary self-locking intramedullary nail and interlocking intramedullary nail in the treatment of long bone fractures.

    PubMed

    Liu, Bailian; Xiong, Ying; Deng, Hong; Gu, Shao; Jia, Fu; Li, Qunhui; Wang, Daxing; Gan, Xuewen; Liu, Wei

    2014-07-21

    The purpose of this study is to compare the clinical effects of our self-designed rotary self-locking intramedullary nail (RSIN) and interlocking intramedullary nail (IIN) for long bone fractures. A retrospective study was performed in 1,704 patients who suffered bone fractures and underwent RSIN or IIN operation in our hospital between March 1999 and March 2013, including 494 with femoral fractures, 572 with humeral fractures, and 638 with tibial fractures. Among them, 634 patients were followed up for more than 1 year. The operative time, intraoperative blood loss, postoperative complications, healing rate, and the excellent and good rate of functional recovery were compared between two groups. Compared with IIN group, RSIN group exhibited significantly shorter operative time and less intraoperative blood loss no matter for humeral, femoral, or tibial fractures (all p < 0.001). The healing rate in patients with more than 1 year follow-up was significantly higher in RSIN group for femoral and tibial fractures (both p < 0.05). In RSIN group, no nail breakage or loosening occurred, but radial nerve injury and incision infection were respectively observed in one patient with humeral fracture. In IIN group, nail breakage or loosening occurred in 7 patients with femoral fractures and 16 patients with tibial fractures, radial nerve injury was observed in 8 patients with humeral fractures, and incision infection was present in 2 patients with humeral fractures and 1 patient with femoral fracture. The complication rate of IIN group was significantly higher than that of RSIN group (p < 0.05). However, there were no significant differences in the excellent and good rate of shoulder, elbow, knee, and ankle joint functional recovery between RSIN group and IIN group. RSIN may be a reliable and practical alternative method for the treatment of long bone fractures.

  13. Resolving controversies in hip fracture care: the need for large collaborative trials in hip fractures.

    PubMed

    Bhandari, Mohit; Sprague, Sheila; Schemitsch, Emil H

    2009-07-01

    Hip fractures are a significant cause of morbidity and mortality worldwide and the burden of disability associated with hip fractures globally vindicate the need for high-quality research to advance the care of patients with hip fractures. Historically, large, multi-centre randomized controlled trials have been rare in the orthopaedic trauma literature. Similar to other medical specialties, orthopaedic research is currently undergoing a paradigm shift from single centre initiatives to larger collaborative groups. This is evident with the establishment of several collaborative groups in Canada, in the United States, and in Europe, which has proven that multi-centre trials can be extremely successful in orthopaedic trauma research.Despite ever increasing literature on the topic of his fractures, the optimal treatment of hip fractures remains unknown and controversial. To resolve this controversy large multi-national collaborative randomized controlled trials are required. In 2005, the International Hip Fracture Research Collaborative was officially established following funding from the Canadian Institute of Health Research International Opportunity Program with the mandate of resolving controversies in hip fracture management. This manuscript will describe the need, the information, the organization, and the accomplishments to date of the International Hip Fracture Research Collaborative.

  14. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  15. Experimental Analysis of the Role of Fluid Transport Properties in Fluid-Induced Fracture Initiation and Propagation

    NASA Astrophysics Data System (ADS)

    Boutt, D.; McPherson, B. J.; Cook, B. K.; Goodwin, L. B.; Williams, J. R.; Lee, M. Y.; Patteson, R.

    2003-12-01

    It is well known that pore fluid pressure fundamentally influences a rock's mechanical response to stress. However, most measures of the mechanical behavior of rock (e.g. shear strength, Young's modulus) do not incorporate, either explicitly or implicitly, pore fluid pressure or transport properties of rock. Current empirical and theoretical criteria that define the amount of stress a given body of rock can support before fracturing also lack a direct connection between fluid transport and mechanical properties. Our research goal is to use laboratory experimental results to elucidate correlations between rock transport properties and fracture behavior under idealized loading conditions. In strongly coupled fluid-solid systems the evolution of the solid framework is influenced by the fluid and vice versa. These couplings often result in changes of the bulk material properties (i.e. permeability and failure strength) with respect to the fluid's ability to move through the solid and the solids ability to transmit momentum. Feedbacks between fluid and solid framework ultimately play key roles in understanding the spatial and temporal evolution of the coupled fluid-solid system. Discretely coupled models of fluid and solid mechanics were developed a priori to design an experimental approach for testing the role of fluid transport parameters in rock fracture. The experimental approach consists of first loading a fluid saturated cylindrical rock specimen under hydrostatic conditions and then applying a differential stress such that the maximum stress is perpendicular to the cylinder long axis. At the beginning of the test the minimum stress and the fluid pressure are dropped at the same time such that the resulting difference in the initial fluid pressure and the final fluid pressure is greater than the final minimum stress. These loading conditions should produce a fluid driven tensile fracture that is perpendicular to the cylinder long axis. Initial analyses using numerical simulations with similar boundary conditions suggest that resulting fracture propagation rates and fracture spacing are controlled by the rocks hydraulic diffusivity. Modeled rocks with higher permeability had fractures with larger apertures, more localized deformation, and greater fracture spacing. Intuitively, these results are consistent with permeability controlling the time required for pressure to come to equilibrium with the new boundary conditions. Finally, more general goals of this research include using these core-scale experimental data and discrete simulation results to calibrate larger-scale, more traditional continuum models of geologic deformation.

  16. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure and reduction of fracture length and productivity. The results also suggest that a fracturing fluid with appropriately designed salinity can minimize the chemically induced tensile damage and, thus, maximize the productivity from the created hydraulic fractures.

  17. Hairline fractures following volar plating of the distal radius: a recently recognized hardware-related complication.

    PubMed

    Otremski, Hila; Dolkart, Oleg; Atlan, Franck; Hutt, Dan; Segev, Elad; Pritsch, Tamir; Rosenblatt, Yishai

    2018-06-01

    Intraoperative hairline longitudinal fractures were recently reported in association with distal radius volar plating. Our aim was to further analyze this newly described complication. A retrospective radiographic and chart review was performed on 225 patients who underwent distal radius plating between June 2013 and June 2015. The Acu-Loc/Acu-Loc2© plating system (Acumed, Hillsboro, OR, USA) was used in 208 cases, and the VariAx© plating system (Stryker, Kalamazoo, MI, USA) was used in 17 cases. Three independent reviewers performed a blind evaluation of all relevant radiographs for the occurrence of longitudinal fractures around the plate, and validity was considered only when there was agreement among all three of them. Hairline longitudinal fractures were identified in 57 cases (25%), 55 with the Acu-Loc/Acu-Loc2© system and 2 with the VariAx© system. All fractures occurred with volar plating. Fracture occurrence was associated with age over 59 years, female gender, extra-articular fractures, and the use of Hexalobe screws (Acu-Loc/Acu-Loc2© system). We believe that the source of fracture occurrence lies within the screw design and that better screw design and possibly tapping in patients at risk may reduce the occurrence of intraoperative hairline longitudinal fractures. Further clinical and biomechanical research is needed to better understand this newly reported complication.

  18. Comparison of trabecular bone score and hip structural analysis with FRAX® in postmenopausal women with type 2 diabetes mellitus.

    PubMed

    Bonaccorsi, Gloria; Fila, Enrica; Messina, Carmelo; Maietti, Elisa; Ulivieri, Fabio Massimo; Caudarella, Renata; Greco, Pantaleo; Guglielmi, Giuseppe

    2017-10-01

    To evaluate (a) the performance in predicting the presence of bone fractures of trabecular bone score (TBS) and hip structural analysis (HSA) in type 2 diabetic postmenopausal women compared to a control group and (b) the fracture prediction ability of TBS versus Fracture Risk Calculator (FRAX ® ) as well as whether TBS can improve the fracture prediction ability of FRAX ® in diabetic women. Eighty diabetic postmenopausal women were matched with 88 controls without major diseases for age and body mass index. The individual 10-year fracture risk was assessed by FRAX ® tool for Europe-Italy; bone mineral density (BMD) at lumbar spine, femoral neck and total hip was evaluated through dual-energy X-ray absorptiometry; TBS measurements were taken using the same region of interest as the BMD measurements; HSA was performed at proximal femur with the HSA software. Regarding variables of interest, the only significant difference between diabetic and control groups was observed for the value of TBS (median value: 1.215; IQR 1.138-1.285 in controls vs. 1.173; IQR 1.082-1.217 in diabetic; p = 0.002). The prevalence of fractures in diabetic women was almost tripled than in controls (13.8 vs. 3.4 %; p = 0.02). The receiver operator characteristic curve analysis showed that TBS alone (AUC = 0.71) had no significantly lower discriminative power for fracture prediction in diabetic women than FRAX major adjusted for TBS (AUC = 0.74; p = 0.65). In diabetic postmenopausal women TBS is an excellent tool in identifying fragility fractures.

  19. Dipyrone has no effects on bone healing of tibial fractures in rats

    PubMed Central

    Gali, Julio Cesar; Sansanovicz, Dennis; Ventin, Fernando Carvalho; Paes, Rodrigo Henrique; Quevedo, Francisco Carlos; Caetano, Edie Benedito

    2014-01-01

    OBJECTIVE: To evaluate the effect of dipyrone on healing of tibial fractures in rats. METHODS: Fourty-two Wistar rats were used, with mean body weight of 280g. After being anesthetized, they were submitted to closed fracture of the tibia and fibula of the right posterior paw through manual force. The rats were randomly divided into three groups: the control group that received a daily intraperitoneal injection of saline solution; group D-40, that received saline injection containing 40mg/Kg dipyrone; and group D-80, that received saline injection containing 80mg/Kg dipyrone. After 28 days the rats were sacrificed and received a new label code that was known by only one researcher. The fractured limbs were then amputated and X-rayed. The tibias were disarticulated and subjected to mechanical, radiological and histological evaluation. For statistical analysis the Kruskal-Wallis test was used at a significance level of 5%. RESULTS: There wasn't any type of dipyrone effect on healing of rats tibial fractures in relation to the control group. CONCLUSION: Dipyrone may be used safely for pain control in the treatment of fractures, without any interference on bone healing. Level of Evidence II, Controlled Laboratory Study. PMID:25246852

  20. Post-fracture care: do we need to educate patients rather than doctors? The PREVOST randomized controlled trial.

    PubMed

    Merle, B; Chapurlat, R; Vignot, E; Thomas, T; Haesebaert, J; Schott, A-M

    2017-05-01

    We conducted a multicenter, randomized controlled trial to evaluate the impact of a population-based patient-centered post-fracture care program with a dedicated case manager, PREVention of OSTeoporosis (PREVOST), on appropriate post-fracture osteoporosis management. We showed that, compared to usual care, BMD investigation post-fracture was significantly improved (+20%) by our intervention program. Our study aims to evaluate the impact of a population-based patient-centered post-fracture care program, PREVOST, on appropriate post-fracture care. Multicenter, randomized controlled trial enrolling 436 women aged 50 to 85 years and attending a French hospital, for a low-energy fracture of the wrist or humerus. Randomization was stratified by age, hospital department, and site of fracture. The intervention was performed by a trained case manager who interacted only with the patients, with repeated oral and written information about fragility fractures and osteoporosis management, and prompting them to visit their primary care physicians. Control group received usual care. The primary outcome was the initiation of an appropriate post-fracture care defined by Bone Mineral Density (BMD) and/or anti-osteoporotic treatment prescription at 6 months. At 6 months, 53% of women in intervention group initiated a post-fracture care versus 33% for usual care (adjOR 2.35, 95%CI [1.58-3.50], p < 0.001). Post-fracture care was more frequent after wrist than humerus fracture (adjOR 1.93, 95%CI [1.14-3.30], p = 0.015) and decreased with age (adjOR for 10 years increase 0.76, 95%CI [0.61-0.96], p = 0.02). The intervention resulted in BMD prescription in 50% of patients (adjOR 2.10, 95%CI [1.41-3.11], p < 0.001) and in BMD performance in 41% of patients (adjOR 2.12, 95%CI [1.40-3.20], p < 0.001) versus 33 and 25% for usual care, respectively. Having performed a BMD increased treatment prescription; however, only 46% of women with a low BMD requiring a treatment according to the French guidelines received a prescription. A patient-centered care program with a dedicated case manager can significantly improve post-fracture BMD investigation.

  1. Absorbable scaphoid screw development: a comparative study on biomechanics

    PubMed Central

    Wang, Yi; Song, Muguo; Xu, Yongqing; He, Xiaoqing; Zhu, YueLiang

    2016-01-01

    Background The scaphoid is critical for maintaining the stability and movement of the wrist joints. This study aimed to develop a new internal fixator absorbable scaphoid screw (ASS) for fixation of the scaphoid waist after fracture and to test the biomechanical characteristics of ASS. Materials and methods An ASS was prepared using polylactic acids and designed based on scaphoid measurements and anatomic features. Twenty fractured scaphoid waist specimens were randomly divided into experimental and control groups (n=10/group). Reduction and internal fixation of the scaphoid were achieved with either Kirschner wires (K-wires) or ASS. A moving target simulator was used to test palmar flexion and dorsal extension, with the range of testing (waist movement) set from 5° of palmar flexion to 25° of dorsal extension. Flexion and extension were repeated 2,000 times for each specimen. Fracture gap displacements were measured with a computerized tomography scanning. Scaphoid tensile and bending strengths were measured by using a hydraulic pressure biomechanical system. Results Prior to biomechanical fatigue testing, fracture gap displacements were 0.16±0.02 mm and 0.22±0.02 mm in the ASS and K-wire groups, respectively. After fatigue testing, fracture gap displacements in the ASS and the K-wire groups were 0.21±0.03 mm and 1.52±0.07 mm, respectively. The tensile strengths for the ASS and K-wire groups were 0.95±0.02 MPa and 0.63±0.02 MPa, respectively. Conclusion Fixation using an ASS provided sufficient mechanical support for the scaphoid after fracture. PMID:27217756

  2. Self-healing polymer cement composites for geothermal wellbore applications

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.

    2017-12-01

    Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.

  3. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5more » samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.« less

  4. Effect of Control Mode and Test Rate on the Measured Fracture Toughness of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2018-01-01

    The effects of control mode and test rate on the measured fracture toughness of ceramics were evaluated by using chevron-notched flexure specimens in accordance with ASTM C1421. The use of stroke control gave consistent results with about 2% (statistically insignificant) variation in measured fracture toughness for a very wide range of rates (0.005 to 0.5 mm/min). Use of strain or crack mouth opening displacement (CMOD) control gave approx. 5% (statistically significant) variation over a very wide range of rates (1 to 80 µm/m/s), with the measurements being a function of rate. However, the rate effect was eliminated by use of dry nitrogen, implying a stress corrosion effect rather than a stability effect. With the use of a nitrogen environment during strain controlled tests, fracture toughness values were within about 1% over a wide range of rates (1 to 80 micons/m/s). CMOD or strain control did allow stable crack extension well past maximum force, and thus is preferred for energy calculations. The effort is being used to confirm recommendations in ASTM Test Method C1421 on fracture toughness measurement.

  5. Hip fracture risk in patients with alcoholic cirrhosis: A population-based study using English and Danish data.

    PubMed

    Otete, Harmony; Deleuran, Thomas; Fleming, Kate M; Card, Tim; Aithal, Guru P; Jepsen, Peter; West, Joe

    2018-04-17

    Cirrhosis, the prevalence of which is increasing, is a risk factor for osteoporosis and fractures. However, little is known of the actual risk of hip fractures in patients with alcoholic cirrhosis. Using linked primary and secondary care data from the English and Danish nationwide registries, we quantified the hip fracture risk in two national cohorts of patients with alcoholic cirrhosis. We followed 3,706 English and 17,779 Danish patients with a diagnosis of alcoholic cirrhosis, and we identified matched controls from the general populations. We estimated hazard ratios (HR) of hip fracture for patients vs. controls, adjusted for age, sex and comorbidity. The five-year hip fracture risk was raised both in England (2.9% vs. 0.8% for controls) and Denmark (4.6% vs. 0.9% for controls). With confounder adjustment, patients with cirrhosis had fivefold (adjusted HR 5.5; 95% CI 4.3-6.9), and 8.5-fold (adjusted HR 8.5; 95% CI 7.8-9.3) increased rates of hip fracture, in England and Denmark, respectively. This association between alcoholic cirrhosis and risk of hip fracture showed significant interaction with age (p <0.001), being stronger in younger age groups (under 45 years, HR 17.9 and 16.6 for English and Danish patients, respectively) than in patients over 75 years (HR 2.1 and 2.9, respectively). In patients with alcoholic cirrhosis, 30-day mortality following a hip fracture was 11.1% in England and 10.0% in Denmark, giving age-adjusted post-fracture mortality rate ratios of 2.8(95% CI 1.9-3.9) and 2.0(95% CI 1.5-2.7), respectively. Patients with alcoholic cirrhosis have a markedly increased risk of hip fracture and post-hip fracture mortality compared with the general population. These findings support the need for more effort towards fracture prevention in this population, to benefit individuals and reduce the societal burden. Alcoholic cirrhosis creates a large public health burden and is a risk factor for bone fractures. Based on data from England and Denmark, we found that hip fractures occur more than five times more frequently in people with alcoholic cirrhosis than in people without the disease. Additionally, the aftermath of the hip fracture is severe, such that up to 11% of patients with alcoholic cirrhosis die within 30 days after their hip fracture. These results suggest that efforts directed towards fracture prevention in people with alcoholic cirrhosis could be beneficial. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. American Society of Biomechanics Journal of Biomechanics Award 2013: Cortical bone tissue mechanical quality and biological mechanisms possibly underlying atypical fractures

    PubMed Central

    Geissler, Joseph R.; Bajaj, Devendra; Fritton, J. Christopher

    2015-01-01

    The biomechanics literature contains many well-understood mechanisms behind typical fracture types that have important roles in treatment planning. The recent association of “atypical” fractures with long-term use of drugs designed to prevent osteoporosis has renewed interest in the effects of agents on bone tissue-level quality. While this class of fracture was recognized prior to the introduction of the anti-resorptive bisphosphonate drugs and recently likened to stress fractures, the mechanism(s) that lead to atypical fractures have not been definitively identified. Thus, a causal relationship between these drugs and atypical fracture has not been established. Physicians, bioengineers and others interested in the biomechanics of bone are working to improve fracture-prevention diagnostics, and the design of treatments to avoid this serious side-effect in the future. This review examines the mechanisms behind the bone tissue damage that may produce the atypical fracture pattern observed increasingly with long-term bisphosphonate use. Our recent findings and those of others reviewed support that the mechanisms behind normal, healthy excavation and tunnel filling by bone remodeling units within cortical tissue strengthen mechanical integrity. The ability of cortical bone to resist the damage induced during cyclic loading may be altered by the reduced remodeling and increased tissue age resulting from long-term bisphosphonate treatment. Development of assessments for such potential fractures would restore confidence in pharmaceutical treatments that have the potential to spare millions in our aging population from the morbidity and death that often follow bone fracture. PMID:25683519

  7. Bone Parameters in Anorexia Nervosa and Athletic Amenorrhea: Comparison of Two Hypothalamic Amenorrhea States.

    PubMed

    Kandemir, Nurgun; Slattery, Meghan; Ackerman, Kathryn E; Tulsiani, Shreya; Bose, Amita; Singhal, Vibha; Baskaran, Charumathi; Ebrahimi, Seda; Goldstein, Mark; Eddy, Kamryn; Klibanski, Anne; Misra, Madhusmita

    2018-04-05

    We have reported low bone mineral density (BMD), impaired bone structure, and increased fracture risk in anorexia nervosa (AN) and normal-weight, oligo-amenorrheic athletes (OA). However, data directly comparing compartment-specific bone parameters in AN, OA and controls are lacking. 426 females 14-21.9 years old were included; 231 AN, 94 OA and 101 normal-weight eumenorrheic controls. Dual energy x-ray absorptiometry was used to assess areal BMD (aBMD) of the whole body less head (WBLH), spine, and hip. High resolution peripheral quantitative CT was used to assess volumetric BMD (vBMD), bone geometry and structure at the non-weight bearing distal radius and weight-bearing distal tibia. AN had lower WBLH and hip aBMD Z-scores than OA and controls (p<0.0001). AN and OA had lower spine aBMD Z-scores than controls (p<0.01). At the radius, total and cortical vBMD, percent cortical area and thickness were lower in AN and OA vs. controls (p≤0.04); trabecular vBMD was lower in AN than controls. At the tibia, AN had lower measures for most parameters vs. OA and controls (p<0.05); OA had lower cortical vBMD than controls (p=0.002). AN and OA had higher fracture rates vs. controls. Stress fracture prevalence was highest in OA (p<0.0001); non-stress fracture prevalence was highest in AN (p<0.05). AN is deleterious to bone at all sites and both bone compartments. A high stress fracture rate in OA, who have comparable WBLH and hip aBMD measures to controls, indicates that BMD in these women may need to be even higher to avoid fractures.

  8. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (02-24-2012)

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  9. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  10. Fracture behaviors of ceramic tissue scaffolds for load bearing applications

    NASA Astrophysics Data System (ADS)

    Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing

    2016-07-01

    Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.

  11. A 3-dimensional-printed patient-specific guide system for minimally invasive plate osteosynthesis of a comminuted mid-diaphyseal humeral fracture in a cat.

    PubMed

    Oxley, Bill

    2018-04-01

    To report the use of a 3-dimensional (3D)-printed patient-specific reduction guide system to facilitate minimally invasive plate osteosynthesis (MIPO) of a humeral fracture in a cat. Case report. A 9-year-old male neutered domestic short hair cat weighing 4.4 kg. A 9-year-old male domestic short hair cat was presented with a comminuted, mid-diaphyseal left humeral fracture. Computed tomographic data were processed to yield 3D mesh representations of both humeri and subsequently manipulated in computer-aided design software. The mirrored, intact humerus was used as a template for appropriate spatial orientation of the major proximal and distal fracture fragments. Patient-specific Ellis pin orientation guides and a reduction guide were designed and 3D printed. The guide system was used intraoperatively to align the major fracture fragments before application of locking internal fixation via standard MIPO surgical portals. Internal fixation of the fracture resulted in appropriate bone alignment. Recovery was uncomplicated, with early return to normal limb function and radiographic evidence of advanced fracture healing after 4 months. A 3D-printed patient-specific reduction guide system facilitated accurate alignment of a comminuted humeral fracture during MIPO without intraoperative imaging. © 2018 The American College of Veterinary Surgeons.

  12. Smart cities, healthy kids: the association between neighbourhood design and children's physical activity and time spent sedentary.

    PubMed

    Esliger, Dale W; Sherar, Lauren B; Muhajarine, Nazeem

    2012-07-26

    To determine whether, and to what extent, a relation exists between neighbourhood design and children's physical activity and sedentary behaviours in Saskatoon. Three neighbourhood designs were assessed: 1) core neighbourhoods developed before 1930 that follow a grid pattern, 2) fractured-grid pattern neighbourhoods that were developed between the 1930s and mid-1960s, and 3) curvilinear-pattern neighbourhoods that were developed between the mid-1960s through to 1998. Children aged 10-14 years (N=455; mean age 11.7 years), grouped by the neighbourhoods they resided in, had their physical activity and sedentary behaviour objectively measured by accelerometry for 7 days. ANCOVA and MANCOVA (multivariate analysis of covariance) models were used to assess group differences (p<0.05). Group differences were apparent on weekdays but not on weekend days. When age, sex and family income had been controlled for, children living in fractured-grid neighbourhoods had, on average, 83 and 55 fewer accelerometer counts per minute on weekdays than the children in the core and curvilinear-pattern neighbourhoods, respectively. Further analyses showed that the children in the fractured-grid neighbourhoods accumulated 15 and 9 fewer minutes of moderate-to-vigorous physical activity per day and had a greater time spent in sedentary behaviour (23 and 17 minutes) than those in core and curvilinear-pattern neighbourhoods, respectively. These data suggest that in Saskatoon there is a relation between neighbourhood design and children's physical activity and sedentary behaviours. Further work is needed to tease out which features of the built environments have the greatest impact on these important lifestyle behaviours. This information, offered in the context of ongoing development of neighbourhoods, as we see in Saskatoon, is critical to an evidence-informed approach to urban development and planning.

  13. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.

    PubMed

    Zhang, Zhaobin; Li, Xiao

    2016-08-23

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  14. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    PubMed Central

    Zhang, Zhaobin; Li, Xiao

    2016-01-01

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network. PMID:28773834

  15. Whole-body vibration improves fracture healing and bone quality in rats with ovariectomy-induced osteoporosis.

    PubMed

    Butezloff, Mariana Maloste; Zamarioli, Ariane; Leoni, Graziela Bianchi; Sousa-Neto, Manoel Damião; Volpon, Jose Batista

    2015-11-01

    To investigate the effect of vibration therapy on the bone callus of fractured femurs and the bone quality of intact femurs in ovariectomized rats. Fifty-six rats aged seven weeks were divided into four groups: control with femoral fracture (CON, n=14), ovariectomized with femoral fracture (OVX, n=14), control with femoral fracture plus vibration therapy (CON+VT, n=14), and ovariectomized with femoral fracture plus vibration therapy (OVX+VT, n=14). Three months after ovariectomy or sham surgery, a complete fracture was produced at the femoral mid-diaphysis and stabilized with a 1-mm-diameter intramedullary Kirschner wire. X-rays confirmed the fracture alignment and fixation. Three days later, the VT groups underwent vibration therapy (1 mm, 60 Hz for 20 minutes, three times per week for 14 or 28 days). The bone and callus quality were assessed by densitometry, three-dimensional microstructure, and mechanical test. Ovariectomized rats exhibited a substantial loss of bone mass and severe impairment in bone microarchitecture, both in the non-fractured femur and the bone callus. Whole-body vibration therapy exerted an important role in ameliorating the bone and fracture callus parameters in the osteoporotic bone. Vibration therapy improved bone quality and the quality of the fracture bone callus in ovariectomized rats.

  16. Femoral neck shaft angle in men with fragility fractures.

    PubMed

    Tuck, S P; Rawlings, D J; Scane, A C; Pande, I; Summers, G D; Woolf, A D; Francis, R M

    2011-01-01

    Introduction. Femoral neck shaft angle (NSA) has been reported to be an independent predictor of hip fracture risk in men. We aimed to assess the role of NSA in UK men. Methods. The NSA was measured manually from the DXA scan printout in men with hip (62, 31 femoral neck and 31 trochanteric), symptomatic vertebral (91), and distal forearm (67) fractures and 389 age-matched control subjects. Age, height, weight, and BMD (g/cm(2): lumbar spine, femoral neck, and total femur) measurements were performed. Results. There was no significant difference in mean NSA between men with femoral neck and trochanteric hip fractures, so all further analyses of hip fractures utilised the combined data. There was no difference in NSA between those with hip fractures and those without (either using the combined data or analysing trochanteric and femoral neck shaft fractures separately), nor between fracture subjects as a whole and controls. Mean NSA was smaller in those with vertebral fractures (129.2° versus 131°: P = 0.001), but larger in those with distal forearm fractures (129.8° versus 128.5°: P = 0.01). Conclusions. The conflicting results suggest that femoral NSA is not an important determinant of hip fracture risk in UK men.

  17. A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutledge, J. T.; Phillips, W. S.

    In May and July, 1997, a consortia of operators and service companies conducted a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker, 1997). Microseismic data were collected and processed for six hydraulic fracture treatments in two wells (3 completion intervals per well) (Mayerhofer et al., 2000). One well was completed with gel-proppant treatments in which a viscous crosslink gel was injected to entrain high concentrations of sand proppant into formation. The second well was completed using treated water and very low proppant concentrations (waterfracs). Waterfracs have been shown to be justmore » as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost. Mayerhofer and Meehan (1998) suggest two possible reasons why waterfracs are successful: (1) Induced shear displacement along natural and hydraulic fractures results in self-propping (shear dilation enhanced by fracture branching, proppant and spalled rock fragments), and (2) Fracture extension and cleanup is easier to achieve with low-viscosity fluids. With improved source location precision and focal mechanism determination (fracture plane orientation and sense of slip), we have reexamined the Cotton Valley data, comparing the seismicity induced by water and gel-proppant treatments at common depth intervals. We have improved the location precision and computed focal mechanism of microearthquakes induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas. Conventional gel-proppant treatments and treatments using treated water and very low proppant concentrations (waterfracs) were monitored. Waterfracs have been shown to be just as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost (Mayerhofer and Meehan, 1998). Comparison of the seismicity induced by the two treatment types show similar distributions of event locations and focal mechanisms for common depth intervals. We interpret the induced seismicity to be primarily controlled by the natural fracture geometry and independent of treatment design. By implication, we expect the effectiveness of shear-induced fracture propping to be independent of the treatment fluid in Cotton Valley reservoirs.« less

  18. Hydro-fracture in the laboratory: matching diagnostic seismic signals to fracture networks

    NASA Astrophysics Data System (ADS)

    Gehne, S.; Benson, P. M.; Koor, N.; Dobson, K. J.; Enfield, M.; Barber, A.

    2017-12-01

    Hydraulic fracturing is a key process in both natural (e.g. dyke intrusion) and engineered environments (e.g. shale gas). To better understand this process, we present new data from simulated hydraulic fracturing in a controlled laboratory environment in order to track fracture nucleation (location) and propagation (velocity) in space and time to assess the fracture mechanics and developing fracture network. Fluid overpressure is used to generate a permeable network of micro tensile fractures in an anisotropic sandstone and a highly anisotropic shale. A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from a pre-defined zone inside the sample. Acoustic emission location is used to record and map the nucleation and development of the micro-fracture network. For both rock types, fractures progresses parallel to the bedding plane (short-transverse) if the bedding plane is aligned with the direction of σ1 requiring breakdown pressures of approximately 7 and 13MPa respectively at a confining pressure of 8MPa. The data also indicates a more ductile behaviour of the shale than expected. We use X-Ray Computed Tomography (CT) to evaluate the evolved fracture network in terms of fracture pattern and aperture. Hydraulic fracturing produces very planar fractures in the shale, with axial fractures over the entire length of the sample broadly following the bedding. In contrast, fractures in the sandstone are more diffuse, linking pore spaces as they propagate. However, secondary micro cracking, branching of the main fracture, are also observed. These new experiments suggest that fracture pattern, fracture propagation trajectories, and fracturing fluid pressures are predominantly controlled by the interaction between the anisotropic mechanical properties of the rock and the anisotropic stress environment.

  19. Bipolar disorder and the risk of fracture: A nationwide population-based cohort study.

    PubMed

    Su, Jian-An; Cheng, Bi-Hua; Huang, Yin-Cheng; Lee, Chuan-Pin; Yang, Yao-Hsu; Lu, Mong-Liang; Hsu, Chung-Yao; Lee, Yena; McIntyre, Roger S; Chin Lin, Tzu; Chin-Hung Chen, Vincent

    2017-08-15

    The co-primary aims are: 1) to compare the risk of fracture between adults with bipolar disorder and those without bipolar disorder; and 2) to assess whether lithium, anticonvulsants and antipsychotics reduce risk of fracture among individuals with bipolar disorder. The analysis herein is a population-based retrospective cohort study, utilizing the National Health Insurance (NHI) medical claims data collected between 1997 and 2013 in Taiwan. We identified 3705 cases with incident diagnoses of bipolar disorder during study period and 37,050 matched controls without bipolar diagnoses. Incident diagnosis of fracture was operationalized as any bone fracture after the diagnosis of bipolar disorder or after the matched index date for controls. Bipolar patients had significantly higher risk of facture when compared to matched controls (17.6% versus 11.7%, respectively p<0.001). The hazard ratio (HR) was 1.33 (95% confidence interval [CI]=1.23-1.48, p<0.001) after adjusting for covariates. Persons with bipolar disorder and a prior history of psychiatric hospitalization were had higher risk for bone fracture than those without prior history of psychiatric hospitalization when compared to match controls. Higher cumulative dose of antipsychotics or mood stabilizers did not increase the risk of fracture. The diagnoses of bipolar disorder were not confirmed with structured clinical interview. Drug adherence, exact exposure dosage, smoking, lifestyle, nutrition and exercise habits were unable to be assessed in our dataset. Bipolar disorder is associated with increased risk of fracture, and higher cumulative dose of mood stabilizers and antipsychotics did not further increase the risk of fracture. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Controls of Fluid Chemistry on Fracture Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruton, C; Knauss, K; Viani, B

    2007-02-26

    During this two year project (the original proposal requested 3 years funding) we developed and tested a new design for a mini-bending jig for the hydrothermal atomic force microscope (HAFM) and a modified design for the HAFM itself. These new capabilities now permit study of the connection between stress and mineral dissolution and growth, as well as sub-critical crack growth (SCG). We demonstrated the successful design by imaging SCG of glass in situ, in real time in the HAFM, as a function of changing solution pH. We generated a movie of the SCG process. We successfully accomplished our project objectivesmore » through year 2.« less

  1. Management of mandibular fractures in a developing country: a review of 314 cases from two urban centers in Nigeria.

    PubMed

    Adeyemo, Wasiu L; Iwegbu, Innocent O; Bello, Seidu A; Okoturo, Eyituoyo; Olaitan, Ademola A; Ladeinde, Akinola L; Ogunlewe, Mobolanle O; Adepoju, Adegbenga A; Taiwo, Olanrewaju A

    2008-12-01

    This study was designed to establish the current demographic and treatment patterns of mandibular fractures in two urban centers (Lagos University Teaching Hospital, Lagos, and National Hospital, Abuja) in Nigeria. All cases of mandibular fractures diagnosed and treated at the Department of Oral and Maxillofacial Surgery, Lagos University Teaching Hospital, Lagos (1998-2007) and Department of Oral and Maxillofacial Surgery, National Hospital, Abuja, Nigeria (2001-2007) were reviewed. Data collected included age, sex, etiology of fracture, anatomic site of fracture, associated maxillofacial fracture, types of treatment, and postoperative complications. The highest incidence of mandibular fractures (49.3%) occurred in the age group 21-30 years and the lowest in the age group 0-10 years, with male preponderance in nearly all age groups. Road traffic crashes (RTC) were the leading cause (67.5%), followed by assault (18.8%), and gunshot. Of the RTC cases, 85 (40%) were sustained from motorcycle-related crashes. The commonest site of fracture was the body of the mandible (n = 137), followed by the angle (n = 114). The majority (83.1%) were treated by closed reduction using intermaxillary fixation, 13.1% by open reduction and internal fixation, and 3.8% had conservative treatment. Mandibular fractures are commonest during the third decade of life and in men, with almost half of the cases due to of road traffic crashes. RTC was the leading cause of mandibular fractures in all age groups. Motorcycle-related mandibular fractures seem to be increasing in Nigeria. There is a need to enforce legislation designed to prevent RTC to reduce maxillofacial fractures in Nigeria.

  2. Measurement of width and pressure in a propagating hydraulic fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at DOE's Nevada Test Site. This was accomplished by creating an instrumented fracture at a tunnel complex (at a depth of 1400 ft) where realistic in situ conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory and currently in use in models today. This is apparently due to the tortuosity of the fracture path, multiplemore » fracture strands, roughness and sharp turns (corners) in the flow path due to natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated.« less

  3. The evolution of fracture surface roughness and its dependence on slip

    NASA Astrophysics Data System (ADS)

    Wells, Olivia L.

    Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.

  4. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  5. Comparison of drilling reports and detailed geophysical analysis of ground-water production in bedrock wells

    USGS Publications Warehouse

    Paillet, Frederick; Duncanson, Russell

    1994-01-01

    The most extensive data base for fractured bedrock aquifers consists of drilling reports maintained by various state agencies. We investigated the accuracy and reliability of such reports by comparing a representative set of reports for nine wells drilled by conventional air percussion methods in granite with a suite of geophysical logs for the same wells designed to identify the depths of fractures intersecting the well bore which may have produced water during aquifer tests. Production estimates reported by the driller ranged from less than 1 to almost 10 gallons per minute. The moderate drawdowns maintained during subsequent production tests were associated with approximately the same flows as those measured when boreholes were dewatered during air percussion drilling. We believe the estimates of production during drilling and drawdown tests were similar because partial fracture zone dewatering during drilling prevented larger inflows otherwise expected from the steeper drawdowns during drilling. The fractures and fracture zones indicated on the drilling report and the amounts of water produced by these fractures during drilling generally agree with those identified from the geophysical log analysis. Most water production occurred from two fractured and weathered zones which are separated by an interval of unweathered granite. The fractures identified in the drilling reports show various depth discrepancies in comparison to the geophysical logs, which are subject to much better depth control. However, the depths of the fractures associated with water production on the drilling report are comparable to the depths of the fractures shown to be the source of water inflow in the geophysical log analysis. Other differences in the relative contribution of flow from fracture zones may by attributed to the differences between the hydraulic conditions during drilling, which represent large, prolonged drawdowns, and pumping tests, which consisted of smaller drawdowns maintained over shorter periods. We conclude that drilling reports filed by experienced well drillers contain useful information about the depth, thickness, degree of weathering, and production capacity of fracture zones supplying typical domestic water wells. The accuracy of this information could be improved if relatively simple and inexpensive geophysical well logs such as gamma, caliper, and normal resistivity logs were routinely run in conjunction with bedrock drilling projects.

  6. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments

    NASA Astrophysics Data System (ADS)

    Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens

    2017-11-01

    This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.

  7. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Hannemann, P F W; Mommers, E H H; Schots, J P M; Brink, P R G; Poeze, M

    2014-08-01

    The aim of this systematic review and meta-analysis was to evaluate the best currently available evidence from randomized controlled trials comparing pulsed electromagnetic fields (PEMF) or low-intensity pulsed ultrasound (LIPUS) bone growth stimulation with placebo for acute fractures. We performed a systematic literature search of the medical literature from 1980 to 2013 for randomized clinical trials concerning acute fractures in adults treated with PEMF or LIPUS. Two reviewers independently determined the strength of the included studies by assessing the risk of bias according to the criteria in the Cochrane Handbook for Systematic Reviews of Interventions. Seven hundred and thirty-seven patients from 13 trials were included. Pooled results from 13 trials reporting proportion of nonunion showed no significant difference between PEMF or LIPUS and control. With regard to time to radiological union, we found heterogeneous results that significantly favoured PEMF or LIPUS bone growth stimulation only in non-operatively treated fractures or fractures of the upper limb. Furthermore, we found significant results that suggest that the use of PEMF or LIPUS in acute diaphyseal fractures may accelerate the time to clinical union. Current evidence from randomized trials is insufficient to conclude a benefit of PEMF or LIPUS bone growth stimulation in reducing the incidence of nonunions when used for treatment in acute fractures. However, our systematic review and meta-analysis suggest that PEMF or LIPUS can be beneficial in the treatment of acute fractures regarding time to radiological and clinical union. PEMF and LIPUS significantly shorten time to radiological union for acute fractures undergoing non-operative treatment and acute fractures of the upper limb. Furthermore, PEMF or LIPUS bone growth stimulation accelerates the time to clinical union for acute diaphyseal fractures.

  8. Use of Proton Pump inhibitors is Associated with Fractures in Young Adults: A Population-Based Study

    PubMed Central

    Freedberg, Daniel E.; Haynes, Kevin; Denburg, Michelle R.; Zemel, Babette S.; Leonard, Mary B.; Abrams, Julian A.; Yang, Yu-Xiao

    2015-01-01

    Purpose Proton pump inhibitors (PPIs) are associated with fracture in adults with osteoporosis. Because PPI therapy may interfere with bone accrual and attainment of peak bone mineral density, we studied the association between use of PPIs and fracture in children and young adults. Methods We conducted a population-based, case-control study nested within records from general medical practices from 1994 to 2013. Participants were 4–29 years old with ≥1 year of follow-up who lacked chronic conditions associated with use of long-term acid suppression. Cases of fracture were defined as the first incident fracture at any site. Using incidence density sampling, cases were matched with up to 5 controls by age, sex, medical practice, and start of follow-up. PPI exposure was defined as 180 or more cumulative doses of PPIs. Conditional logistic regression was used to estimate the odds ratio and confidence interval for use of PPIs and fracture. Results We identified 124,799 cases and 605,643 controls. The adjusted odds ratio for the risk of fracture associated with PPI exposure was 1.13 (95% CI 0.92 to 1.39) among children aged < 18 years old and 1.39 (95% CI 1.26 to 1.53) among young adults aged 18–29 years old. In young adults but not children, we observed a dose-response effect with increased total exposure to PPIs (p for trend <.001). Conclusions PPI use was associated with fracture in young adults but overall evidence did not support a PPI-fracture relationship in children. Young adults who use PPIs should be cautioned regarding potentially increased risk for fracture, even if they lack traditional fracture risk factors. PMID:25986385

  9. Fourier Transformed Infra-Red Imaging of Femoral Neck Bone: Reduced Heterogeneity of Mineral-to-Matrix and Carbonate-to-Phosphate and more Variable Crystallinity in Treatment-Naïve Fracture Cases compared to Fracture-Free Controls

    PubMed Central

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L.

    2012-01-01

    After age 60 hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier Transform Infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and non-fractured bones. Whole femoral neck cross sections, divided into quadrants along the neck’s axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed Tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared to controls. While our treatment-naïve patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone’s toughness as a material. PMID:22865771

  10. Biochemical Predictors of Low Bone Mineral Density and Fracture Susceptibility in Maltese Postmenopausal Women.

    PubMed

    Formosa, Melissa M; Xuereb-Anastasi, Angela

    2016-01-01

    Osteoporosis and fractures are complex conditions influenced by an interplay of genetic and environmental factors. The aim of the study was to investigate three biochemical parameters including total serum calcium, total serum alkaline phosphatase (sALP) and albumin in relation to bone mineral density (BMD) at the lumbar spine and femoral neck (FN), and with all-type of low-trauma fractures in Maltese postmenopausal women. Levels were also correlated with age and physical activity. A case-control study of 1045 women was performed. Women who suffered a fracture were classified as cases whereas women without a fracture history were included as controls subdivided into normal, osteopenic, or osteoporotic according to their BMD measurements. Blood specimens were collected following good standard practice and testing was performed by spectrophotometry. Calcium and sALP levels were weakly correlated with FN BMD levels (calcium: r = -0.111, p = 0.002; sALP: r = 0.089, p = 0.013). Fracture cases had the lowest serum levels of calcium, sALP and albumin relative to all other control groups, which decreased with increasing age, possibly increasing fracture risk. Biochemical levels were lowest in women who sustained a hip fracture and more than one fracture. Biochemical parameters decreased with reduced physical activity; however, this was most evident for fracture cases. Reduced physical activity was associated with lower BMD levels at the hip, and to a lower extent at the spine. In conclusion, results suggest that levels of serum calcium and albumin could be indicative of fracture risk, whereas calcium levels and to lower extent sALP levels could be indicators of hip BMD.

  11. Antipsychotic treatment and the risk of hip fracture in subjects with schizophrenia: a 10-year population-based case-control study.

    PubMed

    Wu, Chi-Shin; Chang, Chia-Ming; Tsai, Yu-Ting; Huang, Ya-Wen; Tsai, Hui-Ju

    2015-09-01

    To investigate the association between antipsychotic treatment and risk of hip fracture in subjects with schizophrenia. Among patients with schizophrenia (ICD-9-CM code 295), 605 cases with hip fracture and 2,828 matched controls were identified from 2002 to 2011 using the National Health Insurance Research Database in Taiwan. The authors conducted a nested case-control study to investigate the association between antipsychotic treatment and risk of hip fracture in subjects with schizophrenia. The modifiable effects of age and gender were evaluated by stratified analysis. In addition, the effects of antipsychotic use, antipsychotic classes, and receptor-binding profiles of antipsychotics, individually, on hip fracture were estimated, and potential confounding factors were adjusted in subsequent analysis. Conditional logistic regressions were applied to determine the effect of antipsychotic treatment on hip fracture. Current antipsychotic use was associated with an increased risk for hip fracture (adjusted odds ratio [AOR] = 1.61; 95% CI, 1.24-2.10). Among current users, new users had a higher risk of hip fracture (AOR = 4.28; 95% CI, 1.76-10.36) than past users (AOR = 1.11; 95% CI, 0.79-1.56). In addition, a significant increased risk of hip fracture was noted in schizophrenia subjects with first-generation antipsychotic use (AOR = 1.59; 95%CI, 1.15-2.20) but not in those with second-generation antipsychotic use (AOR = 1.16; 95% CI, 0.91-1.48). These results extend previous findings and demonstrate an increased risk of hip fracture associated with antipsychotic use in schizophrenia subjects. Further investigation is needed to dissect the underlying mechanisms related to the effect of antipsychotic use on hip fracture in subjects at risk. © Copyright 2015 Physicians Postgraduate Press, Inc.

  12. Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Châteauguay River Basin, a U.S.-Canada transborder aquifer

    NASA Astrophysics Data System (ADS)

    Morin, Roger; Godin, RéJean; Nastev, Miroslav; Rouleau, Alain

    2007-04-01

    The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.

  13. Increasing Kyphosis Predicts Worsening Mobility in Older Community-Dwelling Women: A Prospective Cohort Study

    PubMed Central

    Katzman, Wendy B.; Vittinghoff, Eric; Ensrud, Kris; Black, Dennis M.; Kado, Deborah M.

    2013-01-01

    OBJECTIVES To determine whether increasing kyphosis angle was independently associated with poorer mobility as measured according to the Timed Up and Go Test (TUG), after controlling for other established risk factors. DESIGN Prospective cohort study. SETTING Eleven clinical centers in the United States. PARTICIPANTS Two thousand seven hundred seventy-seven women aged 55 to 80 randomized to the placebo arms of the Fracture Intervention Trial, a randomized controlled trial of the effect of alendronate on risk for osteoporotic fractures. MEASUREMENTS The primary predictor was change in kyphosis angle, measured using the Debrunner Kyphometer; the outcome was change in mobility, measured as performance time on the TUG. Covariates were baseline age, kyphosis angle, body mass index (BMI), self-reported health status, grip strength, change in total hip bond mineral density (BMD), and number of vertebral fractures over a mean of 4.4 years. RESULTS Greater kyphosis angle predicted longer mobility performance times (P<.001), independent of other significant predictors of worsening mobility including age, baseline kyphosis, health status, grip strength, BMI, change in hip BMD, and new vertebral fractures. TUG performance times increased by 0.02 seconds (95% confidence interval (CI) =0.01–0.03) for every 5° increase in kyphosis angle, more than the increase in mobility time of 0.01 seconds (95% CI =0.005–0.03) over 1 year observed in this cohort. CONCLUSION Increasing kyphosis angle is independently associated with worsening mobility. Interventions are needed to prevent or reduce increasing kyphosis and mobility decline. PMID:21198460

  14. Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Chateauguay River Basin, a U.S.-Canada transborder aquifer

    USGS Publications Warehouse

    Morin, Roger H.; Godin, Rejean; Nastev, Miroslav; Rouleau, Alain

    2007-01-01

    [1] The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.

  15. Fractures and Channels

    NASA Image and Video Library

    2013-01-22

    This image from NASA 2001 Mars Odyssey spacecraft of the Claritas Fossae region illustrates how fractures affect other features. In this instance, the fractures control the path of several channels from upper right towards lower left.

  16. Prevalent fragility fractures as risk factor for skeletal muscle function deficit and dysmobility syndrome in post-menopausal women.

    PubMed

    Iolascon, Giovanni; Moretti, Antimo; Giamattei, Maria Teresa; Migliaccio, Silvia; Gimigliano, Francesca

    2015-10-01

    Fragility fractures are a major burden for health and social care in elderly people. In order to identify earlier the "frail elders", new concepts of "dysmobility syndrome" and skeletal muscle function deficit (SMFD), including sarcopenia, osteoporosis, obesity, and mobility limitation, leading to a higher risk of fractures, have been recently introduced. There are very few studies investigating the association between fragility fractures and both the dysmobility syndrome and the SMFD. The objective of our study is to investigate the role of previous fragility fractures as a risk factor in determining the dysmobility syndrome and/or the SMFD in post-menopausal women. In this case-control study, we retrospectively examined data from the medical records of post-menopausal women aged 50 or older. We divided the study population in two groups. The first group includes women with a previous fragility fracture (cases) and the other group includes women without any previous osteoporotic fracture (controls). We identified the subjects with "dysmobility syndrome", "dynapenic SMFD", "sarcopenic SMFD", and "mixed SMFD" in both groups. Data collected refer to a 6-month period. We retrieved data of 121 post-menopausal women, 77 (63.64%) had already sustained a fragility fracture at any site (cases). The risk for dysmobility syndrome was significantly higher (adjusted OR for age and serum 25-OH vitamin D3 of 2.46) in the cases compared with the controls. An early diagnosis of conditions limiting mobility, including dysmobility syndrome, might be useful to identify, among patients with osteoporotic fractures, those who might have a higher risk of a new fragility fracture.

  17. Celiac disease is not increased in women with hip fractures and low vitamin D levels.

    PubMed

    Leboff, M S; Cobb, H; Gao, L Y; Hawkes, W; Yu-Yahiro, J; Kolatkar, N S; Magaziner, J

    2013-01-01

    Celiac disease is associated with decreased bone density; however, the risk of fractures in celiac disease patients is unclear. We compared the prevalence of celiac disease between a group of women with hip fractures and a group of women undergoing elective joint replacement surgery and the association between celiac disease and vitamin D levels. Two hundred eight community dwelling and postmenopausal women were recruited from Boston, MA (n=81) and Baltimore, MD (n=127). We measured tissue transglutaminase IgA by ELISA to diagnose celiac disease and 25-hydroxyvitamin D (25(OH)D) levels by radioimmunoassay in both women with hip fractures (n=157) and a control group (n=51) of total hip replacement subjects from Boston. Subjects were excluded if they took any medications or had medical conditions that might affect bone. Median serum 25(OH)D levels were significantly lower (p< 0.0001) in the hip fracture cohorts compared to the elective joint replacement cohort (14.1 ng/ml vs. 21.3 ng/ml, respectively). There were no differences in the percentage of subjects with a positive tissue transglutaminase in the women with hip fractures versus the control group (1.91% vs. 1.96%, respectively). Vitamin D levels are markedly reduced in women with hip fractures, however hip fracture patients did not show a higher percentage of positive tissue transglutaminase levels compared with controls. These data suggest that routine testing for celiac disease among hip fracture patients may not be necessary in the absence of clinical signs and symptoms, although data from larger studies among hip fracture subjects are needed.

  18. Design of high temperature ceramic components against fast fracture and time-dependent failure using cares/life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.

    1995-08-01

    A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less

  19. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density

    PubMed Central

    Jin, A.; Cobb, J.; Hansen, U.; Bhattacharya, R.; Reinhard, C.; Vo, N.; Atwood, R.; Li, J.; Karunaratne, A.; Wiles, C.

    2017-01-01

    Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1. PMID:29066534

  20. Fracture Fluid Additive and Formation Degradations

    EPA Pesticide Factsheets

    This presentation is on reactions that describe the degradation of fracturing fluids & formations during the hydraulic fracturing process & the clean‐up period. It contains a description of primary chemical reaction controls, & common degradation reactions

  1. Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial.

    PubMed

    Shepstone, Lee; Lenaghan, Elizabeth; Cooper, Cyrus; Clarke, Shane; Fong-Soe-Khioe, Rebekah; Fordham, Richard; Gittoes, Neil; Harvey, Ian; Harvey, Nick; Heawood, Alison; Holland, Richard; Howe, Amanda; Kanis, John; Marshall, Tarnya; O'Neill, Terence; Peters, Tim; Redmond, Niamh; Torgerson, David; Turner, David; McCloskey, Eugene

    2018-02-24

    Despite effective assessment methods and medications targeting osteoporosis and related fractures, screening for fracture risk is not currently advocated in the UK. We tested whether a community-based screening intervention could reduce fractures in older women. We did a two-arm randomised controlled trial in women aged 70-85 years to compare a screening programme using the Fracture Risk Assessment Tool (FRAX) with usual management. Women were recruited from 100 general practitioner (GP) practices in seven regions of the UK: Birmingham, Bristol, Manchester, Norwich, Sheffield, Southampton, and York. We excluded women who were currently on prescription anti-osteoporotic drugs and any individuals deemed to be unsuitable to enter a research study (eg, known dementia, terminally ill, or recently bereaved). The primary outcome was the proportion of individuals who had one or more osteoporosis-related fractures over a 5-year period. In the screening group, treatment was recommended in women identified to be at high risk of hip fracture, according to the FRAX 10-year hip fracture probability. Prespecified secondary outcomes were the proportions of participants who had at least one hip fracture, any clinical fracture, or mortality; and the effect of screening on anxiety and health-related quality of life. This trial is registered with the International Standard Randomised Controlled Trial registry, number ISRCTN 55814835. 12 483 eligible women were identified and participated in the trial, and 6233 women randomly assigned to the screening group between April 15, 2008, and July 2, 2009. Treatment was recommended in 898 (14%) of 6233 women. Use of osteoporosis medication was higher at the end of year 1 in the screening group compared with controls (15% vs 4%), with uptake particularly high (78% at 6 months) in the screening high-risk subgroup. Screening did not reduce the primary outcome of incidence of all osteoporosis-related fractures (hazard ratio [HR] 0·94, 95% CI 0·85-1·03, p=0·178), nor the overall incidence of all clinical fractures (0·94, 0·86-1·03, p=0·183), but screening reduced the incidence of hip fractures (0·72, 0·59-0·89, p=0·002). There was no evidence of differences in mortality, anxiety levels, or quality of life. Systematic, community-based screening programme of fracture risk in older women in the UK is feasible, and could be effective in reducing hip fractures. Arthritis Research UK and Medical Research Council. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Reduced Bone Material Strength is Associated with Increased Risk and Severity of Osteoporotic Fractures. An Impact Microindentation Study.

    PubMed

    Sosa, Daysi Duarte; Eriksen, Erik Fink

    2017-07-01

    The aim of the study was to test, whether bone material strength differs between different subtypes of osteoporotic fracture and assess whether it relates to vertebral fracture severity. Cortical bone material strength index (BMSi) was measured by impact microindentation in 66 women with osteoporotic fracture and 66 age- and sex-matched controls without fracture. Bone mineral density (BMD) and bone turnover markers were also assessed. Vertebral fracture severity was graded by semiquantitative (SQ) grading. Receiver operator characteristic (ROC) curves were used to examine the ability of BMSi to discriminate fractures. Subjects with osteoporotic fractures exhibited lower BMSi than controls (71.5 ± 7.3 vs. 76.4 ± 6.2, p < 0.001). After adjusting for age and hip BMD, a significant negative correlation was seen between BMSi and vertebral fracture severity (r 2  = 0.19, p = 0.007). A decrease of one standard deviation (SD) in BMSi was associated with increased risk of fracture (OR 2.62; 95% CI 1.35, 5.10, p = 0.004). ROC curve areas under the curve (AUC) for BMSi in subjects with vertebral fracture (VF), hip fracture (HF), and non-vertebral non-hip fracture (NVNHFx), (mean; 95% CI) were 0.711 (0.608; 0.813), 0.712 (0.576; 0.843), 0.689 (0.576; 0.775), respectively. Combining BMSi and BMD provided further improvement in the discrimination of fractures with AUC values of 0.777 (0.695; 0.858), 0.789 (0.697; 0.882), and 0.821 (0.727; 0.914) for VFx, HFx, and NVNHFx, respectively. Low BMSi of the tibial cortex is associated with increased risk of all osteoporotic fractures and severity of vertebral fractures.

  3. The prevention of hip fracture with menatetrenone and risedronate plus calcium supplementation in elderly patients with Alzheimer disease: a randomized controlled trial.

    PubMed

    Sato, Yoshihiro; Honda, Yoshiaki; Umeno, Kazuo; Hayashida, Norimasa; Iwamoto, Jun; Takeda, Tsuyoshi; Matsumoto, Hideo

    2011-01-01

    A high incidence of fractures, particularly of the hip, represents an important problem in patients with Alzheimer disease (AD), who are prone to falls and have osteoporosis. We previously found that vitamin K deficiency and low 25-hydroxyvitamin D (25-OHD) with compensatory hyperparathyroidism cause reduced bone mineral density (BMD) in female patients with AD. This may modifiable by intervention with menatetrenone (vitamin K2) and risedronate sodium; we address the possibility that treatment with menatetrenone, risedronate and calcium may reduce the incidence of nonvertebral fractures in elderly patients with AD. A total of 231 elderly patients with AD were randomly assigned to daily treatment with 45 mg of menatetrenone or a placebo combined with once weekly risedronate sodium, and followed up for 12 months. At baseline, patients of both groups showed high undercarboxylated osteocalcin (ucOC) and low 25-OHD insufficiency with compensatory hyperparathyroidism. During the study period, BMD in the treatment group increased by 5.7% and increased by 2.1% in the control group. Nonvertebral fractures occurred in 15 patients (10 hip fractures) in the control group and 5 patients (2 hip fractures) in the treatment group. The relative risk in the treatment group compared with the control group was 0.31 (95% confidence interval, 0.12-0.81). Elderly AD patients with hypovitaminosis K and D are at increased risk for hip fracture. The study medications were well tolerated with relatively few adverse events and effective in reducing the risk of a fracture in elderly patients with AD.

  4. Damage Tolerant Design Handbook. A Compilation of Fracture and Crack- Growth Data for High-Strength Alloys. Volume 4

    DTIC Science & Technology

    1983-12-01

    DAMAGTE (aduiTOLEATDSG ANBO.A TYPE OF REPORT 6 PERIOD COVERED DAMAE TLERAT DSIG HANBOO. ACOMPILATION OF FRACTURE AND CRACK GROWTH...4 Volumes (No copies furnished by DTIC) 13 KEY WORDS (Conitnue ate reverse side it necessa.ry and idenn’fy by. black flueoebr) * Fracture (Mechanics...Handbooks, *Titanium Alloys, *Nickel Alloys, *Stainless Steel, *Aluminum Alloys, High Strength Alloys, Structural Steel, Fracture Toughness, Damage

  5. Fracture Behavior of Ceramics Under Displacement Controlled Loading

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Brewer, David; Ghosn, Louis

    1994-01-01

    A Mode I fracture specimen and loading method has been developed which permits the observation of stable crack extension in monolithic and in situ toughened ceramics. The developed technique was used to conduct room temperature tests on commercial grade alumina (Coors' AD-995) and silicon nitride (Norton NC-132). The results of these tests are reported. Crack growth for the alumina remained subcritical throughout testing revealing possible effects of environmental stress corrosion. The crack growth resistance curve for the alumina is presented. The silicon nitride tests displayed a series of stable (slow) crack growth segments interrupted by dynamic (rapid) crack extension. Crack initiation and arrest stress intensity factors, K(sub Ic) and K(sub Ia), for silicon nitride are reported. The evolution of the specimen design through testing is briefly discussed.

  6. Mechanical properties and radiopacity of experimental glass-silica-metal hybrid composites.

    PubMed

    Jandt, Klaus D; Al-Jasser, Abdullah M O; Al-Ateeq, Khalid; Vowles, Richard W; Allen, Geoff C

    2002-09-01

    Experimental glass-silica-metal hybrid composites (polycomposites) were developed and tested mechanically and radiographically in this fundamental pilot study. To determine whether mechanical properties of a glass-silica filled two-paste dental composite based on a Bis-GMA/polyglycol dimethacrylate blend could be improved through the incorporation of titanium (Ti) particles (particle size ranging from 1 to 3 microm) or silver-tin-copper (Ag-Sn-Cu) particles (particle size ranging from 1 to 50 microm) we measured the diametral tensile strength, fracture toughness and radiopacity of five composites. The five materials were: I, the original unmodified composite (control group); II, as group I but containing 5% (wt/wt) of Ti particles; III, as group II but with Ti particles treated with 4-methacryloyloxyethyl trimellitate anhydride (4-META) to promote Ti-resin bonding; IV, as group I but containing 5% (wt/wt) of Ag-Sn-Cu particles; and V, as group IV but with the metal particles treated with 4-META. Ten specimens of each group were tested in a standard diametral tensile strength test and a fracture toughness test using a single-edge notched sample design and five specimens of each group were tested using a radiopacity test. The diametral tensile strength increased statistically significantly after incorporation of Ti treated with 4-META, as tested by ANOVA (P=0.004) and Fisher's LSD test. A statistically significant increase of fracture toughness was observed between the control group and groups II, III and V as tested by ANOVA (P=0.003) and Fisher's LSD test. All other groups showed no statistically significant increase in diametral tensile strength and fracture toughness respectively when compared to their control groups. No statistically significant increase in radiopacity was found between the control group and the Ti filled composite, whereas a statistically significant increase in radiopacity was found between the control group and the Ag-Sn-Cu filled composite as tested by ANOVA (P=0.000) and Fisher's LSD procedure. The introduction of titanium and silver-tin-copper fillers has potential as added components in composites to provide increased mechanical strength and radiopacity, for example for use in core materials.

  7. The force required to fracture endodontically roots restored with various materials as intra-orifice barriers.

    PubMed

    Yasa, E; Arslan, H; Yasa, B; Akcay, M; Alsancak, M; Hatirli, H

    2017-10-01

    To evaluate the effect of various materials as intra-orifice barriers on the force required fracture roots. One hundred-thirty five mandibular premolars were decoronated and prepared up to size #40. The root canals were filled and randomly divided into two control and seven experimental groups (n = 15), as follows: Positive control group (the intra-orifice barrier cavity was not prepared), negative control group (the intra-orifice barrier cavity was prepared, but not filled), filling using glass ionomer cement, nano-hybrid composite resin, short fiber-reinforced composite, bulk-fill flowable composite, MTA Angelus, Micro Mega MTA or Biodentine. A fracture strength test was performed, and the data were analyzed using one-way ANOVA and Tukey's post hoc tests. Nano-hybrid composite, short fiber-reinforced composite, bulk-fill flow able composite, and glass ionomer cement increased the force required fracture the roots compared to the positive and negative control groups (P < 0.05). While MTA groups did not increase the force required fracture the roots compared to the control groups, Biodentine increased significantly. Within the limitations of the present study, the use of nano-hybrid composite, short fiber-reinforced composite, bulk-fill flowable composite, and glass ionomer cement as an intra-orifice barrier may be useful in reinforcing roots. MTA placement (MTA Angelus or Micro Mega MTA) did not significantly increase the fracture resistance of endodontically treated roots compared to the control groups, however Biodentine did.

  8. Outcome of limb fracture repair in rabbits: 139 cases (2007-2015).

    PubMed

    Sasai, Hiroshi; Fujita, Daisuke; Seto, Eiko; Denda, Yuki; Imai, Yutaro; Okamoto, Kanako; Okamura, Kensaku; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi

    2018-02-15

    OBJECTIVE To evaluate outcome of limb fracture repair in rabbits. DESIGN Retrospective case series. ANIMALS 139 client-owned rabbits with limb fractures treated between 2007 and 2015. PROCEDURES Medical records were reviewed for information on fracture location, fracture treatment, and time to fracture healing. RESULTS 25 rabbits had fractures involving the distal aspects of the limbs (ie, metacarpal or metatarsal bones, phalanges, and calcaneus or talus). Fractures were treated in 23 of these 25 rabbits (external coaptation, n = 17; external skeletal fixation, 4; and intramedullary pinning, 2) and healed in all 23, with a median healing time of 28 days (range, 20 to 45 days). One hundred ten rabbits had long bone fractures, and fractures were treated in 100 of the 110 (external skeletal fixation, n = 89; bone plating, 1; intramedullary pinning, 3; and external coaptation, 7). The percentage of fractures that healed was significantly lower for open (14/18) than for closed (26/26) tibial fractures and was significantly lower for femoral (19/26) and treated humeral (4/6) fractures than for radial (23/24) or closed tibial (26/26) fractures. Micro-CT was used to assess fracture realignment during external skeletal fixator application and to evaluate fracture healing. CONCLUSIONS AND CLINICAL RELEVANCE The prognosis for rabbits with limb fractures was good, with fractures healing in most rabbits following fracture repair (109/123). Micro-CT was useful in assessing fracture realignment and evaluating fracture healing.

  9. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study.

    PubMed

    Ma, Deqiong; Jones, Graeme

    2003-11-01

    The effect of physical activity on upper limb fractures was examined in this population-based case control study with 321 age- and gender-matched pairs. Sports participation increased fracture risk in boys and decreased risk in girls. Television viewing had a deleterious dose response association with wrist and forearm fractures while light physical activity was protective. The aim of this population-based case control study was to examine the association between television, computer, and video viewing; types and levels of physical activity; and upper limb fractures in children 9-16 years of age. A total of 321 fracture cases and 321 randomly selected individually matched controls were studied. Television, computer, and video viewing and types and levels of physical activity were determined by interview-administered questionnaire. Bone strength was assessed by DXA and metacarpal morphometry. In general, sports participation increased total upper limb fracture risk in boys and decreased risk in girls. Gender-specific risk estimates were significantly different for total, contact, noncontact, and high-risk sports participation as well as four individual sports (soccer, cricket, surfing, and swimming). In multivariate analysis, time spent television, computer, and video viewing in both sexes was positively associated with wrist and forearm fracture risk (OR 1.6/category, 95% CI: 1.1-2.2), whereas days involved in light physical activity participation decreased fracture risk (OR 0.8/category, 95% CI: 0.7-1.0). Sports participation increased hand (OR 1.5/sport, 95% CI: 1.1-2.0) and upper arm (OR 29.8/sport, 95% CI: 1.7-535) fracture risk in boys only and decreased wrist and forearm fracture risk in girls only (OR 0.5/sport, 95% CI: 0.3-0.9). Adjustment for bone density and metacarpal morphometry did not alter these associations. There is gender discordance with regard to sports participation and fracture risk in children, which may reflect different approaches to sport. Importantly, television, computer, and video viewing has a dose-dependent association with wrist and forearm fractures, whereas light physical activity is protective. The mechanism is unclear but may involve bone-independent factors, or less likely, changes in bone quality not detected by DXA or metacarpal morphometry.

  10. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures.

    PubMed

    Patsch, Janina M; Li, Xiaojuan; Baum, Thomas; Yap, Samuel P; Karampinos, Dimitrios C; Schwartz, Ann V; Link, Thomas M

    2013-08-01

    The goal of this magnetic resonance (MR) imaging study was to quantify vertebral bone marrow fat content and composition in diabetic and nondiabetic postmenopausal women with fragility fractures and to compare them with nonfracture controls with and without type 2 diabetes mellitus. Sixty-nine postmenopausal women (mean age 63 ± 5 years) were recruited. Thirty-six patients (47.8%) had spinal and/or peripheral fragility fractures. Seventeen fracture patients were diabetic. Thirty-three women (52.2%) were nonfracture controls. Sixteen women were diabetic nonfracture controls. To quantify vertebral bone marrow fat content and composition, patients underwent MR spectroscopy (MRS) of the lumbar spine at 3 Tesla. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry (DXA) of the hip and lumbar spine (LS) and quantitative computed tomography (QCT) of the LS. To evaluate associations of vertebral marrow fat content and composition with spinal and/or peripheral fragility fractures and diabetes, we used linear regression models adjusted for age, race, and spine volumetric bone mineral density (vBMD) by QCT. At the LS, nondiabetic and diabetic fracture patients had lower vBMD than controls and diabetics without fractures (p = 0.018; p = 0.005). However, areal bone mineral density (aBMD) by DXA did not differ between fracture and nonfracture patients. After adjustment for age, race, and spinal vBMD, the prevalence of fragility fractures was associated with -1.7% lower unsaturation levels (confidence interval [CI] -2.8% to -0.5%, p = 0.005) and +2.9% higher saturation levels (CI 0.5% to 5.3%, p = 0.017). Diabetes was associated with -1.3% (CI -2.3% to -0.2%, p = 0.018) lower unsaturation and +3.3% (CI 1.1% to 5.4%, p = 0.004) higher saturation levels. Diabetics with fractures had the lowest marrow unsaturation and highest saturation. There were no associations of marrow fat content with diabetes or fracture. Our results suggest that altered bone marrow fat composition is linked with fragility fractures and diabetes. MRS of spinal bone marrow fat may therefore serve as a novel tool for BMD-independent fracture risk assessment. Copyright © 2013 American Society for Bone and Mineral Research.

  11. Fracture development within a stratovolcano: The Karaha-Telaga Bodas geothermal field, Java volcanic arc

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.

    2004-01-01

    Karaha-Telaga Bodas, a vapour-dominated geothermal system located in an active volcano in western Java, is penetrated by more than two dozen deep geothermal wells reaching depths of 3 km. Detailed paragenetic and fluid-inclusion studies from over 1000 natural fractures define the liquid-dominated, transitional and vapour-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by ashallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures that developed were filled with carbonates at shallow depths, and by quartz, epidote and actinolite at depths and temperatures over 1 km and 300??C. The system underwent numerous cycles of overpressuring, documented by subhorizontal tensile fractures, anastomosing tensile fracture patterns and implosion breccias. The development of the liquidsystem was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were selectively deposited in fractures that had the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapour-dominated conditions were initiated at this time within a vertical chimney overlying the still hot intrusion. As pressures declined, these conditions spread outward to form the marginal vapour-dominated region encountered in the drill holes. Downward migration of the chimney, accompanied by growth of the marginal vapour-dominated regime, occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. As the liquids boiled off, condensate that formed at the top of the vapour-dominated zone percolated downward and low-salinity meteoric water entered the marginal parts of the system. Calcite, anhydrite and fluorite precipitated in fractures on heating. Progressive sealing of the fractures resulted in the downward migration of the cap rock. In response to decreased pore pressure in the expanding vapour zone, walls of the fracture system within the vapour-dominated reservoir progressively collapsed. It left only residual permeability in the remaining fracture volume, with apertures supported only by asperities or propping breccia. In places where normal stresses acting on the fracture walls exceeded the compressive strength of the wall rock, the fractures have completely collapsed. Fractures within the present-day cap rock include strike- and oblique-slip faults, normal faults and tensile fractures, all controlled by a strike-slip stress regime. The reservoir is characterized by normal faults and tensile fractures controlled by a normal-fault stress regime. The fractures show no evidence that the orientation of the stress field has changed since fracture propagation began. Fluid migration in the lava and pyroclastic flows is controlled by fractures. Matrix permeability controls fluid flow in the sedimentary sections of the reservoir. Productive fractures are typically roughly perpendicular to the minimum compressive stress, ??3, and are prone to slip and dilation within the modern stress regime. ?? The Geological Society of London 2004.

  12. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery.

    PubMed

    Merema, B J; Kraeima, J; Ten Duis, K; Wendt, K W; Warta, R; Vos, E; Schepers, R H; Witjes, M J H; IJpma, F F A

    2017-11-01

    An innovative procedure for the development of 3D patient-specific implants with drilling guides for acetabular fracture surgery is presented. By using CT data and 3D surgical planning software, a virtual model of the fractured pelvis was created. During this process the fracture was virtually reduced. Based on the reduced fracture model, patient-specific titanium plates including polyamide drilling guides were designed, 3D printed and milled for intra-operative use. One of the advantages of this procedure is that the personalised plates could be tailored to both the shape of the pelvis and the type of fracture. The optimal screw directions and sizes were predetermined in the 3D model. The virtual plan was translated towards the surgical procedure by using the surgical guides and patient-specific osteosynthesis. Besides the description of the newly developed multi-disciplinary workflow, a clinical case example is presented to demonstrate that this technique is feasible and promising for the operative treatment of complex acetabular fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study.

    PubMed

    Heikkilä, Jouni T; Kukkonen, Juha; Aho, Allan J; Moisander, Susanna; Kyyrönen, Timo; Mattila, Kimmo

    2011-04-01

    Purpose of this study was to compare bioactive glass and autogenous bone as a bone substitute material in tibial plateau fractures. We designed a prospective, randomized study consisting of 25 consecutive operatively treated patients with depressed unilateral tibial comminuted plateau fracture (AO classification 41 B2 and B3).14 patients (7 females, 7 males, mean age 57 years, range 25-82) were randomized in the bioglass group (BG) and 11 patients (6 females, 5 males, mean age 50 years, range 31-82) served as autogenous bone control group (AB). Clinical examination of the patients was performed at 3 and 12 months, patients' subjective and functional results were evaluated at 12 months. Radiological analysis was performed preoperatively, immediately postoperatively and at 3 and 12 months. The postoperative redepression for both studied groups was 1 mm until 3 months and remained unchanged at 12 months. No differences were identified in the subjective evaluation, functional tests and clinical examination between the two groups during 1 year follow-up. We conclude that bioactive glass granules can be clinically used as filler material instead of autogenous bone in the lateral tibial plateau compression fractures.

  14. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  15. In vivo effect of shock-waves on the healing of fractured bone.

    PubMed

    Augat, P; Claes, L; Suger, G

    1995-10-01

    In a controlled animal experiment we attempted to clarify the question of whether there is a stimulating effect of extracorporeal shock-waves on the repair process of fractured long bones. As a fracture model we used an osteotomy in the diaphysis of the ovine tibia and an external fixation device. Shock-wave treatment at two levels of intensity and with four different numbers of applied shocks was performed with an electromagnetic acoustic source. Healing of the osteotomized bone was evaluated by biomechanical and radiological investigations on the whole bone as well as on bone sections from areas of the fracture gap and the periosteal fracture callus. We found a non-significant tendency to deterioration of the fracture healing with increasing shock-wave intensities. The study of treatment parameters led neither to significantly different biomechanical outcomes nor to altered radiological results in comparison to the untreated control group. RELEVANCE:--While we cannot comment upon the effectiveness of extracorporeal shock-waves in the delayed treatment of fractures or pseudarthrosis, our results suggest that shock-waves have no beneficial effect in acute fracture repair.

  16. Use of monocortical miniplates for the intraoral treatment of mandibular fractures.

    PubMed

    Chiodo, Thomas A; Milles, Maano

    2009-03-01

    Fixation of mandibular fractures using rigid hardware has gained wide acceptance over the past 3 decades. The goal of rigid internal fixation is to allow for fracture healing with limited, or no, time in maxillo-mandibular fixation. There has been significant evolution in plate and screw materials and design over the past 30 years. The term miniplate is used to describe a fracture plate with a screw diameter of 2.0 mm or less. With correct diagnosis and understanding of the forces affecting mandible fractures, miniplates can be applied transorally in various situations, allowing for less invasive treatment with open reduction of mandible fractures. This article describes the use of monocortical miniplates for the intraoral treatment of mandibular fractures.

  17. Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness

    NASA Technical Reports Server (NTRS)

    Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.

    2003-01-01

    Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.

  18. [Clinical observation on the influence of earthquake crush injury on postoperative wound healing of extremity fractures].

    PubMed

    Chen, Fu-hong; Chen, Ze; Duan, Heng-qiong; Wan, Zhong-xian

    2008-10-01

    To observe the influence of earthquake crush injury on postoperative wound healing of extremity fractures. The study involved 85 patients with extremities fracture underwent internal fixation operation in 3 group, including 28 earthquake casualties with crush injuries in observation group, 27 earthquake casualties without crush injuries in control I group and 30 local patients during the same period in control II group. Urine routine, blood creatine kinase (CK) and wound conditions of patients in 3 groups were observed respectively. There was no significant difference in Urine routine and blood CK between 3 groups and was significant difference in wound conditions between observation group and each control group. Earthquake crush injuries can influence the postoperative wound healing of extremity fractures.

  19. Analysis of horse race videos to identify intra-race risk factors for fatal distal limb fracture.

    PubMed

    Parkin, T D H; Clegg, P D; French, N P; Proudman, C J; Riggs, C M; Singer, E R; Webbon, P M; Morgan, K L

    2006-04-17

    The objective of this study was to identify risk factors, during racing, associated with imminent fatal distal limb fracture in Thoroughbreds. One hundred and nine cases of fatal distal limb fracture were identified from all 59 UK racecourses over a 2-year period (February 1999-January 2001). Three uninjured control horses were randomly selected from the same race as the case horse. Videos of races in which fractures occurred were viewed using a defined protocol. Fractures in flat races occurred at any time during the race, whereas 74% (45/61) of cases in national hunt type races occurred in the second half of races. More than 75% (79/103) of cases were spontaneous, i.e. there was no obvious external influence such as a fall at a fence or collision with another horse. Sixty-six percent (44/67) of horses, sustaining a forelimb fracture, fractured the forelimb they were using as lead leg at the time of fracture. When case and control horses were compared, horses that were: (a) making good progress through the race, (b) reluctant to start and (c) received encouragement in the final 10s before the time of fracture, were more likely to sustain a fracture.

  20. WITHDRAWN: Resorbable versus titanium plates for facial fractures.

    PubMed

    Dorri, Mojtaba; Oliver, Richard

    2018-05-23

    Rigid internal fixation of the jaw bones is a routine procedure for the management of facial fractures. Titanium plates and screws are routinely used for this purpose. The limitations of this system has led to the development of plates manufactured from bioresorbable materials which, in some cases, omits the necessity for the second surgery. However, concerns remain about the stability of fixation and the length of time required for their degradation and the possibility of foreign body reactions. To compare the effectiveness of bioresorbable fixation systems with titanium systems for the management of facial fractures. We searched the following databases: The Cochrane Oral Health Group's Trials Register (to 20th August 2008), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2008, Issue 3), MEDLINE (1950 to 20th August 2008), EMBASE (from 1980 to 20th August 2008), http://www.clinicaltrials.gov/ and http://www.controlled-trials.com (to 20th August 2008). Randomised controlled trials comparing resorbable versus titanium fixation systems used for facial fractures. Retrieved studies were independently screened by two review authors. Results were to be expressed as random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals. Heterogeneity was to be investigated including both clinical and methodological factors. The search strategy retrieved 53 potentially eligible studies. None of the retrieved studies met our inclusion criteria and all were excluded from this review. One study is awaiting classification as we failed to obtain the full text copy. Three ongoing trials were retrieved, two of which were stopped before recruiting the planned number of participants. In one study, the excess complications in the resorbable arm was declared as the reason for stopping the trial. This review illustrates that there are no published randomised controlled clinical trials relevant to this review question. There is currently insufficient evidence for the effectiveness of resorbable fixation systems compared with conventional titanium systems for facial fractures. The findings of this review, based on the results of the aborted trials, do not suggest that resorbable plates are as effective as titanium plates. In future, the results of ongoing clinical trials may provide high level reliable evidence for assisting clinicians and patients for decision making. Trialists should design their studies accurately and comprehensively to meet the aims and objectives defined for the study.

  1. Influence of fracture extension on in-situ stress in tight reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Yongping; Wei, Xu; Zhang, Ye; Xing, Libo; Xu, Jianjun

    2018-01-01

    Currently, hydraulic fracturing is an important way to develop low permeability reservoirs. The fractures produced during the fracturing process are the main influencing factors of changing in-situ stress. In this paper, the influence of fracture extension on in-situ stress is studied by establishing a mathematical model to describe the relationship between fracture length and in-situ stress. The results show that the growth rate gradually decreases after the fracture reaches a certain length with the increase of fracturing time; the continuous extension of the fracture is the main factor to change the in-situ stress. In order to reduce the impact on the subsequent fracture extension due to the changing of in-situ stress, controlling fracturing time and fracture length without affecting the stimulated reservoir effect is an important way. The results presented in this study can effectively reduce the impact of changing of in-situ stress on subsequent fracturing construction.

  2. Evaluation of selective vs. point-source perforating for hydraulic fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, P.J.; Kerley, L.

    1996-12-31

    This paper is a case history comparing and evaluating the effects of fracturing the Reef Ridge Diatomite formation in the Midway-Sunset Field, Kern County, California, using {open_quotes}select-fire{close_quotes} and {open_quotes}point-source{close_quotes} perforating completions. A description of the reservoir, production history, and fracturing techniques used leading up to this study is presented. Fracturing treatment analysis and production history matching were used to evaluate the reservoir and fracturing parameters for both completion types. The work showed that single fractures were created with the point-source (PS) completions, and multiple fractures resulted from many of the select-fire (SF) completions. A good correlation was developed between productivitymore » and the product of formation permeability, net fracture height, bottomhole pressure, and propped fracture length. Results supported the continued development of 10 wells using the PS concept with a more efficient treatment design, resulting in substantial cost savings.« less

  3. Measurement of width and pressure in a propagating hydraulic fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at the U.S. DOE's Nevada test site. This was accomplished by creating an ''instrumented fracture'' at a tunnel complex (at a depth of 1,400 ft (425 m)) where realistic insitu conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory, which currently is used in models. This apparently is caused by the tortuosity of the fracturemore » path, multiple fracture strands, roughness, and sharp turns (corners) in the flow path resulting from natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated.« less

  4. Measurement of width and pressure in a propagating hydraulic fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at DOE's Nevada Test Site. This was accomplished by creating an ''instrumented fracture'' at a tunnel complex (at a depth of 1400 ft) where realistic in-situ conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory and currently in use in models today. This is apparently due to the tortuosity of the fracture path, multiple fracturemore » strands, roughness and sharp turns (corners) in the flow path due to natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated.« less

  5. A controlled trial of glutamine effects on bone healing.

    PubMed

    Polat, Onur; Kilicoglu, Sibel Serin; Erdemli, Esra

    2007-01-01

    Glutamine is considered a nonessential amino acid, but it may be conditionally essential in patients with catabolic conditions. For centuries, researchers have looked for ways to promote and accelerate fracture healing. This controlled animal study examines the effects of glutamine on fracture healing. The left tibias of 10 standardized albino rats were broken at the distal third to produce a closed fracture. L-glutamine/L-alanyl solution (2.0 mL/kg) was administered through the tail veins of half the rats for the first 7 d, and physiologic serum alone was given to the control group. On the 21st day, all rats were euthanized and their left legs removed; after histologic observation, the tibias were examined under light microscopy. In the glutamine-injected group, development of primary callus was quicker and more regular than in the control group. The control group produced insufficient fibrous callus, and the glutamine group attained formed cartilaginous callus. Glutamine was noted to have positive effects on healing of traumatically fractured bone through attainment of positive nitrogen balance. This effect was minimal in enhancing the quality of fracture healing under conditions of stress, but some effect was noted on the speed of healing. Further research is needed in this area.

  6. Postmenopausal women with osteopenia and a healed wrist fracture have reduced physical function and quality of life compared to a matched, healthy control group with no fracture

    PubMed Central

    2014-01-01

    Background Fractures lead to reduced physical function and quality of life (QOL), but little is known about postmenopausal women with osteopenia and a healed wrist fracture. The purpose was to evaluate physical function in terms of quadriceps strength, dynamic balance, physical capacity and QOL in postmenopausal women with osteopenia and a healed wrist fracture compared to a matched, healthy control group with no previous fracture. Methods Eighteen postmenopausal women with osteopenia (patients) (mean age 59.1 years, range 54 – 65) and a healed wrist fracture were matched to 18 healthy control subjects on age (mean age 58.5 years, range 51 – 65), height, weight and body mass index (BMI). We measured quadriceps strength at 60°/sec and at 180°/sec with Biodex 6000, dynamic balance with the Four Square Step Test (FSST), physical capacity with the six-minute walk test (6MWT) followed by the Borg’s scale (BS), and QOL with the Short Form 36 (SF-36), bone mineral density (BMD) with dual x-ray absorptiometry (DXA) and physical activity level with the Physical Activity Scale for the Elderly. Results The patients had 17.6% lower quadriceps strength at 60°/sec (p = 0.025) at left limb and 18.5% at 180°/sec (p = 0.016) at right limb, and 21% lower at 180°/sec (p = 0.010) at left limb compared to the controls. Impaired performance for the patients was found with 2.4 seconds (p = 0.002) on the FSST, 74 metres (p < 0.001) on the 6MWT, and 1.4 points (p = 0.003) on the BS compared to the controls. The patients scored lower on the sub-scales on the SF-36 role limitations-physical (p = 0.014), bodily pain (p = 0.025) and vitality (p = 0.015) compared to the controls. Conclusions The patients with osteopenia and a healed wrist fracture scored significantly lower on quadriceps strength, dynamic balance, physical capacity and QOL compared to the matched controls. Greater focus should be put on this patient group in terms of rehabilitation and early prevention of subsequent fractures. PMID:25086601

  7. Retardation of organo-bromides in a fractured chalk aquitard.

    PubMed

    Ezra, Shai; Feinstein, Shimon; Yakirevich, Alex; Adar, Eilon; Bilkis, Itzhak

    2006-08-10

    This study investigates the mechanisms controlling the distribution of 3-bromo-2,2-bis(bromomethyl)propanol (TBNPA) and 2,2-bis(bromomethyl)propan-1,3-diol (DBNPG) in a fractured chalk aquitard. An extensive monitoring program showed a systematic decrease in the TBNPA/DBNPG ratio with distance from the contamination source. Sorption of TBNPA on the white and/or gray chalks comprising the aquitard is approximately one order of magnitude greater than that of DBNPG. This results in more efficient removal of TBNPA from the fracture into the porous matrix and thus decreases the TBNPA/DBNPG ratio in the fracture water. Mathematical modeling of solute transport in the fracture domain illustrates the probable importance of sorption in controlling the spatial variation in TBNPA and DBNPG ratio.

  8. Bioinspired toughening mechanism: lesson from dentin.

    PubMed

    An, Bingbing; Zhang, Dongsheng

    2015-07-09

    Inspired by the unique microstructure of dentin, in which the hard peritubular dentin surrounding the dentin tubules is embedded in the soft intertubular dentin, we explore the crack propagation in the bioinspired materials with fracture process zone possessing a dentin-like microstructure, i.e. the composite structure consisting of a soft matrix and hard reinforcements with cylindrical voids. A micromechanical model under small-scale yielding conditions is developed, and numerical simulations are performed, showing that the rising resistant curve (R-curve) is observed for crack propagation caused by the plastic collapse of the intervoid ligaments in the fracture process zone. The dentin-like microstructure in the fracture process zone exhibits enhanced fracture toughness, compared with the case of voids embedded in the homogeneous soft matrix. Further computational simulations show that the dentin-like microstructure can retard void growth, thereby promoting fracture toughness. The typical fracture mechanism of the bioinspired materials with fracture process zone possessing the dentin-like structure is void by void growth, while it is the multiple void interaction in the case of voids in the homogeneous matrix. Based on the results, we propose a bioinspired material design principle, which is that the combination of a hard inner material encompassing voids and a soft outer material in the fracture process zone can give rise to exceptional fracture toughness, achieving damage tolerance. It is expected that the proposed design principle could shed new light on the development of novel man-made engineering materials.

  9. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, S.; Zhoi, Y.X.; Bailey, M.

    2009-08-15

    Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, havemore » to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.« less

  10. Incidence of low and high-energy fractures in persons with and without HIV infection: a Danish population-based cohort study.

    PubMed

    Hansen, Ann-Brit E; Gerstoft, Jan; Kronborg, Gitte; Larsen, Carsten S; Pedersen, Court; Pedersen, Gitte; Obel, Niels

    2012-01-28

    To compare fracture risk in persons with and without HIV infection and to examine the influence of highly active antiretroviral therapy (HAART) initiation on risk of fracture. Population-based nationwide cohort study using Danish registries. Outcome measures were time to first fracture at any site, time to first low-energy and high-energy fracture in HIV-infected patients (n = 5306) compared with a general population control cohort (n = 26 530) matched by sex and age during the study period 1995-2009. Cox regression analyses were used to estimate incidence rate ratios (IRRs). HIV-infected patients had increased risk of fracture [IRR 1.5, 95% confidence interval (CI) 1.4-1.7] compared with population controls. The relative risk was lower in HIV-monoinfected patients (IRR 1.3, 95% CI 1.2-1.4) than in HIV/hepatitis C virus (HCV)-coinfected patients (IRR 2.9, 95% CI 2.5-3.4).Both HIV-monoinfected and HIV/HCV-coinfected patients had increased risk of low-energy fracture, IRR of 1.6 (95% CI 1.4-1.8) and 3.8 (95% CI 3.0-4.9). However, only HIV/HCV-coinfected patients had increased risk of high-energy fracture, IRR of 2.4 (95% CI 2.0-2.9). Among HIV-monoinfected patients the risk of low-energy fracture was only significantly increased after HAART exposure, IRR of 1.8 (95% CI 1.5-2.1). The increased risk in HAART-exposed patients was not associated with CD4 cell count, prior AIDS, tenofovir or efavirenz exposure, but with comorbidity and smoking. HIV-infected patients had increased risk of fracture compared with population controls. Among HIV-monoinfected patients the increased risk was observed for low-energy but not for high-energy fractures, and the increased risk of low-energy fracture was only observed in HAART-exposed patients.

  11. Sedimentological and Stratigraphic Controls on Natural Fracture Distribution in Wajid Group, SW Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Hariri, Mustafa; Abdullatif, Osman; Makkawi, Mohammed; Korvin, Gabor

    2016-04-01

    The Cambro-Permian Wajid Group, SW Saudi Arabia, is the main groundwater aquifer in Wadi Al-Dawasir and Najran areas. In addition, it has a reservoir potentiality for oil and natural gas in Rub' Al-Khali Basin. Wajid Group divided into four formations, ascending Dibsiyah, Sanamah, Khussyayan and Juwayl. They are mainly sandstone and exposed in an area extend from Wadi Al-Dawasir southward to Najran city and deposited within fluvial, shallow marine and glacial environments. This study aims to investigate the sedimentological and stratigraphic controls on the distribution of natural fractures within Wajid Group outcrops. A scanline sampling method was used to study the natural fracture network within Wajid Group outcrops, where the natural fractures were measured and characterized in 12 locations. Four regional natural fracture sets were observed with mean strikes of 050o, 075o, 345o, and 320o. Seven lithofacies characterized the Wajid Group at these locations and include fine-grained sandstone, coarse to pebbly sandstone, cross-bedded sandstone, massive sandstone, bioturbated sandstone, conglomerate sandstone, and conglomerate lithofacies. We found that the fine-grained and small scale cross-bedded sandstones lithofacies are characterized by high fracture intensity. In contrast, the coarse-grained sandstone and conglomerate lithofacies have low fracture intensity. Therefore, the relative fracture intensity and spacing of natural fractures within Wajid Group in the subsurface can be predicted by using the lithofacies and their depositional environments. In terms of stratigraphy, we found that the bed thickness and the stratigraphic architecture are the main controls on fractures intensity. The outcomes of this study can help to understand and predict the natural fracture distribution within the subsurface fractured sandstone hosting groundwater and hydrocarbon in Wajid and Rub' Al-Khali Basins. Hence, the finding of this study might help to explore and develop the groundwater and hydrocarbon resources in the subsurface.

  12. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials.

    PubMed

    Hald, Jannie D; Evangelou, Evangelos; Langdahl, Bente L; Ralston, Stuart H

    2015-05-01

    Bisphosphonates are widely used off-label in the treatment of patients with osteogenesis imperfecta (OI) with the intention of reducing the risk of fracture. Although there is strong evidence that bisphosphonates increase bone mineral density in osteogenesis imperfecta, the effects on fracture occurrence have been inconsistent. The aim of this study was to gain a better insight into the effects of bisphosphonate therapy on fracture risk in patients with osteogenesis imperfecta by conducting a meta-analysis of randomized controlled trials in which fractures were a reported endpoint. We searched Medline, Embase, and the Cochrane Central Register of Controlled Trials in which the effects of bisphosphonates on fracture risk in osteogenesis imperfecta were compared with placebo and conducted a meta-analysis of these studies using standard methods. Heterogeneity was assessed using the I2 statistic. Six eligible studies were identified involving 424 subjects with 751 patient-years of follow-up. The proportion of patients who experienced a fracture was not significantly reduced by bisphosphonate therapy (Relative Risk [RR] = 0.83 [95% confidence interval 0.69-1.01], p = 0.06) with no heterogeneity between studies (I2  = 0). The fracture rate was reduced by bisphosphonate treatment when all studies were considered (RR = 0.71 [0.52-0.96], p = 0.02), but with considerable heterogeneity (I2  = 36%) explained by one study where a small number of patients in the placebo group experienced a large number of fractures. When this study was excluded, the effects of bisphosphonates on fracture rate was not significant (RR = 0.79 [0.61-1.02], p = 0.07, I2  = 0%). We conclude that the effects of bisphosphonates on fracture prevention in osteogenesis imperfecta are inconclusive. Adequately powered trials with a fracture endpoint are needed to further investigate the risks and benefits of bisphosphonates in this condition. © 2014 American Society for Bone and Mineral Research.

  13. Does morbid obesity negatively affect the hospital course of patients undergoing treatment of closed, lower-extremity diaphyseal long-bone fractures?

    PubMed

    Baldwin, Keith D; Matuszewski, Paul E; Namdari, Surena; Esterhai, John L; Mehta, Samir

    2011-01-03

    Obesity is prevalent in the developed world and is associated with significant costs to the health care system. The effect of morbid obesity in patients operatively treated for long-bone fractures of the lower extremity is largely unknown. The National Trauma Data Bank was accessed to determine if morbidly obese patients (body mass index >40) with lower extremity fractures have longer length of hospital stay, higher cost, greater rehabilitation admission rates, and more complications than nonobese patients. We identified patients with operatively treated diaphyseal femur (6920) and tibia (5190) fractures. Polytrauma patients and patients younger than 16 years were excluded. Morbidly obese patients were identified by ICD-9 and database comorbidity designation (femur, 131 morbidly obese; tibia, 75 morbidly obese). Patients meeting these criteria who were not morbidly obese were used as controls. Sensitivity analyses were performed to analyze patients with isolated trauma to the tibia or femur. Morbidly obese patients were more likely to be admitted to a subacute facility. Length of stay trended higher in morbidly obese patients. There was no significant relationship between obesity and inpatient mortality or inpatient complications. These trends held true when considering patients with multiple injuries and patients who had isolated long-bone injuries. Our study showed that morbidly obese patients may have greater rehabilitation needs following long-bone fractures in the lower extremity. Our study showed no difference in mortality or complications, although further studies are needed to confirm these findings. Copyright 2011, SLACK Incorporated.

  14. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    USGS Publications Warehouse

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  15. The Metacarpal Locked Intramedullary Nail: Comparative Biomechanical Evaluation of New Implant Design for Metacarpal Fractures.

    PubMed

    Boonyasirikool, Chinnakart; Tanakeatsakul, Sakkarin; Niempoog, Sunyarn

    2015-04-01

    The optimal fixation of metacarpal fracture should provide sufficient stability to permit early functionfor all types of fracture. However; it must preserve surrounding soft tissue during application and not require secondary removal due to its prominence. The prototype of metacarpal locked intramedullary nail (MCLN) was designed by our institute aiming to achieve those allfeatures. To biomechanically test our newly designed, locked metacarpal nail and compare with common current available fixation methods. Thirty chicken humeri were devided into 3 groups (n = 1 per group) according tofixation techniques: MCLN, 1.5 mm miniplate (Synthes), and Kirschner wire. After complete fixation, all specimens were osteotomized at mid-shaft creating transverse fractures. Five specimens from each group were tested by load of failure under axial compression, and another five under bending force. In axial compression model, the loads tofailure in MCLN group was greatest (460 ± 17 N), which was significant higher than the Kirschner wire group. The MCLN group also showed the highest load to failure in bending test (341 ± 10 N). This value reaches statistical significance when compared with plate and Kirschner wire groups. The MCLN construct provided higher stability than miniplate and Kirschner wire fixation both in axial and bending mode. Together with the minimally invasive and soft tissue-friendly design concept, this study suggests that MCLN is promising fixation option for metacarpal fracture.

  16. Topological design of all-ceramic dental bridges for enhancing fracture resistance.

    PubMed

    Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing

    2016-06-01

    Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Fracture mechanics evaluation of heavy welded structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprung, I.; Ericksson, C.W.; Zilberstein, V.A.

    1982-05-01

    This paper describes some applications of nondestructive examination (NDE) and engineering fracture mechanics to evaluation of flaws in heavy welded structures. The paper discusses not only widely recognized linear elastic fracture mechanics (LEFM) analysis, but also methods of the elastic-plastic fracture mechanics (EPFM), such as COD, J-integral, and Failure Assessment Diagram. Examples are given to highlight the importance of interaction between specialists providing input and the specialists performing the analysis. The paper points out that the critical parameters for as-welded structures when calculated by these methods are conservative since they are based on two pessimistic assumptions: that the magnitude ofmore » residual stress is always at the yield strength level, and that the residual stress always acts in the same direction as the applied (mechanical) stress. The suggestion is made that it would be prudent to use the COD or the FAD design curves for a conservative design. The appendix examines a J-design curve modified to include residual stresses.« less

  18. A unifying strain criterion for fracture of fibrous composite laminates

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1983-01-01

    Fibrous composite materials, such as graphite/epoxy, are light, stiff, and strong. They have great potential for reducing weight in aircraft structures. However, for a realization of this potential, designers will have to know the fracture toughness of composite laminates in order to design damage tolerant structures. In connection with the development of an economical testing procedure, there is a great need for a single fracture toughness parameter which can be used to predict the stress-intensity factor (K(Q)) for all laminates of interest to the designer. Poe and Sova (1980) have derived a general fracture toughness parameter (Qc), which is a material constant. It defines the critical level of strains in the principal load-carryng plies. The present investigation is concerned with the calculation of values for the ratio of Qc and the ultimate tensile strain of the fibers. The obtained data indicate that this ratio is reasonably constant for layups which fail largely by self-similar crack extension.

  19. Hip fractures: incidence, risk factors, energy absorption, and prevention.

    PubMed

    Lauritzen, J B

    1996-01-01

    The present review summarizes the pathogenic mechanisms leading to hip fracture based on epidemiological, experimental, and controlled clinical studies. The estimated lifetime risk of hip fracture is about 14% in postmenopausal women and 6% in men. The incidence of hip fractures increases exponentially with aging, but the time trend in increasing age-specific incidence may finally reach a plateau. Postmenopausal women suffering earlier non-hip fractures have an increased risk of later hip fracture. The relative risk is highest within the first years following the fracture. Nursing home residents have a high risk of hip fracture (annual rate of 5-6%), and their incidence of falls is about 1.5 falls/person per year. Most hip fractures are a result of a direct trauma against the hip. The incidence of falls on the hip among nursing home residents is about 0.29 falls/person per year and about 20% of these traumas lead to hip fracture. Women with hip fractures have a lower body weight compared with controls, and they may also have less soft tissue covering the hip, even when adjusted for body mass index, indicating a more android body habitus. Experimental studies show that the passive energy absorption in soft tissue covering the hip may influence the risk of hip fracture and be an important determinant for the development of hip fracture, perhaps even more important than bone strength. External hip protectors were developed and tested in an open randomized nursing home study. The rate of hip fracture was reduced by 50%, corresponding to 9 of 247 residents saved from sustaining a hip fracture. This review points to the essentials in the development of hip fracture: risk of fall; type of fall; type of impact; energy absorption; and last, bone strength, which is the final permissive factor leading to hip fracture. Risk estimation and prevention of hip fracture may prove realistic when these issues are taken into consideration.

  20. Candidate-penetrative-fracture mapping of the Grand Canyon area, Arizona, from spatial correlation of deep geophysical features and surficial lineaments

    USGS Publications Warehouse

    Gettings, Mark E.; Bultman, Mark W.

    2005-01-01

    Some aquifers of the southwestern Colorado Plateaus Province are deeply buried and overlain by several impermeable shale layers, and so recharge to the aquifer probably is mainly by seepage down penetrative-fracture systems. The purpose of this 2-year study, sponsored by the U.S. National Park Service, was to map candidate deep penetrative fractures over a 120,000-km2 area, using gravity and aeromagnetic-anomaly data together with surficial-fracture data. The study area was on the Colorado Plateau south of the Grand Canyon and west of Black Mesa; mapping was carried out at a scale of 1:250,000. The resulting database constitutes a spatially registered estimate of deep-fracture locations. Candidate penetrative fractures were located by spatial correlation of horizontal- gradient and analytic-signal maximums of gravity and magnetic anomalies with major surficial lineaments obtained from geologic, topographic, side-looking-airborne-radar, and satellite imagery. The maps define a subset of candidate penetrative fractures because of limitations in the data coverage and the analytical technique. In particular, the data and analytical technique used cannot predict whether the fractures are open or closed. Correlations were carried out by using image-processing software, such that every pixel on the resulting images was coded to uniquely identify which datasets are correlated. The technique correctly identified known and many new deep fracture systems. The resulting penetrative-fracture-distribution maps constitute an objectively obtained, repeatable dataset and a benchmark from which additional studies can begin. The maps also define in detail the tectonic fabrics of the southwestern Colorado Plateaus Province. Overlaying the correlated lineaments on the normalized-density-of-vegetation-index image reveals that many of these lineaments correlate with the boundaries of vegetation zones in drainages and canyons and so may be controlling near-surface water availability in some places. Many derivative products can be produced from the database, such as fracture-density-estimate maps, and maps with the number of correlations color-coded to estimate the possible quality of correlation. The database contained in this report is designed to be used in a geographic information system and image-processing systems, and most data layers are in georeferenced tagged image format (Geotiff) or ARC grids. The report includes 163 map plates and various metadata, supporting, and statistical diagram files.

Top