McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.
1997-01-01
The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.
Fracture Characterization in the Astor Pass Geothermal Field, Nevada
NASA Astrophysics Data System (ADS)
Walsh, D. C.; Reeves, D. M.; Pohll, G.; Lyles, B. F.; Cooper, C. A.
2011-12-01
The Astor Pass geothermal field, near Pyramid Lake, NV, is under study as a site of potential geothermal energy production. Three wells have been completed in the graben of this typical Basin and Range geologic setting. Lithologies include a layer of unconsolidated sediment (basin fill) underlain by various tertiary volcanic units and granodiorite and metavolcanic basement rock. Characterization of fractures within the relatively impermeable rock matrix is being conducted for the three wells. Statistical analysis of fracture orientation, densities, and spacing obtained from borehole imaging logs is used to determine stress orientation and to generate a statistically equivalent Discrete Fracture Network (DFN) model. Fractures at depth are compared to fracture data collected in nearby outcrops of the same lithologic stratigraphy. Fracture geometry and density is correlated to mechanically discrete layers within the stratigraphy to test whether variations in fracturing can be attributed to variations in Young's modulus. Correlation of fracture geometry and densities with spinner flowmeter logs and distributed temperature sensor records are made in an effort to identify potential flowing fracture zones intersecting the borehole. Mean fracture aperture is obtained from open fracture counts and reservoir-scale transmissivity values (computed from a 30 day pump test) in the absence of readily available aperture data. The goal of this thorough fracture characterization is to create a physically relevant model which may be coupled with a multipurpose fluid flow and thermal simulator for investigation of geothermal reservoir behavior, particularly at the borehole scale.
The Role of Active Fractures on Borehole Breakout Development
NASA Astrophysics Data System (ADS)
Sahara, D.; Kohl, T.; Schoenball, M.; Müller, B.
2013-12-01
The properties of georeservoirs are strongly related to the stress field and their interpretation is a major target in geotechnical management. Borehole breakouts are direct indicators of the stress field as they develop due to the concentration of the highest compressional stress toward the minimum horizontal stress direction. However, the interaction with fractures might create local perturbations. Such weakened zones are often observed by localized anomalies of the borehole breakout orientation. We examined high-quality acoustic borehole televiewer (UBI) logs run in the entire granite sections at the deep well GPK4 at Soultz-sous-Forêts, France. The borehole is moderately inclined (15° - 35°) in its middle section. Detailed analysis of 1221 borehole elongation pairs in the vicinity of 1871 natural fractures observed in GPK4 well is used to infer the role of fractures on the borehole breakouts shape and orientation. Patterns of borehole breakout orientation in the vicinity of active fractures suggest that the wavelength of the borehole breakout orientation anomalies in this granite rock depend on the scale of the fracture while the rotation amplitude and direction is strongly influenced by the fracture orientation. In the upper and middle part of the well even a linear trend between fracture and breakout orientations could be established. In addition to the rotation, breakouts typically are found to be asymmetrically formed in zones of high fracture density. We find that major faults tend to create a systematic rotation of borehole breakout orientation with long spatial wavelength while abrupt changes are often observed around small fractures. The finding suggest that the borehole breakout heterogeneities are not merely governed by the principal stress heterogeneities, but that the effect of mechanical heterogeneities like elastic moduli changes, rock strength anisotropy and fracturing must be taken into account. Thus, one has to be careful to infer the principal stress orientation from borehole breakout data observed in fractured rock.
NASA Astrophysics Data System (ADS)
Mendieta, A. L.; Bradford, J.; Liberty, L. M.; McNamara, J. P.
2016-12-01
Granitic based terrains often have complex hydrogeological systems. It is often assumed that the bedrock is impermeable, unless it is fractured. If the bedrock is fractured this can greatly affect fluid flow, depending on fracture density and orientation. Recently there has been a substantial increase in the number of geophysical studies designed to investigate hydrologic processes in mountain watersheds, however few of these studies have taken fracture induced geophysical and hydraulic anisotropy into consideration. Vertically oriented fractures with a preferred orientation produce azimuthal anisotropy in the electrical resistivity, the seismic primary wave (P-wave) velocity, and the hydraulic permeability. By measuring the electrical and seismic anisotropy we can estimate fracture orientation and density which improves our understanding of hydraulic properties. Despite numerous previous studies of the hydrologic system, the subsurface hydraulic system at the Dry Creek Experimental Watershed (DCEW), located near Boise, Idaho, is not completely understood. This is particularly true of the deep (>5m) system which is difficult to study using conventional hydrologic measurements, particularly in rugged and remote mountain environments. From previous studies, it is hypothesized that there is a system of fractures that may be aligned according to the local stress field. To test for the preferential alignment, ergo the direction of preferential water flow, we collected seismic and electrical resistivity profiles along different azimuths. The preliminary results show an azimuthal dependence of the P-wave velocities in the bedrock, at depths greater than 18 m; P-wave velocities range from 3500 to 4100 m/s, which represents a 17.5 % difference. We interpret this difference to be caused by fractures present in the bedrock. At the same location, we measured an electric resistivity value of 29 ohm-m, and we expect a difference of 37 %, if the fractures are fully saturated. Future studies will include coincident multi-azimuthal electrical resistivity surveys both to verify the results of the seismic study and to improve our understanding of the hydraulic properties.
NASA Astrophysics Data System (ADS)
Maestro-González, A.; Bárcenas, P.; Vázquez, J. T.; Díaz-Del-Río, V.
2008-02-01
Fractures associated with volcanic rock outcrops on the inner shelf of Alboran Island, Western Mediterranean, were mapped on the basis of a side-scan sonar mosaic. Absolute maximum fracture orientation frequency is NW SE to NNW SSE, with several sub-maxima oriented NNE SSW, NE SW and ENE WSW. The origin of the main fracture systems in Neogene and Quaternary rocks of the Alboran Basin (south Spain) appears to be controlled by older structures, namely NE SW and WNW ESE to NW SE faults which cross-cut the basement. These faults, pre-Tortonian in origin, have been reactivated since the early Neogene in the form of strike-slip and extensional movements linked to the recent stress field in this area. Fracture analysis of volcanic outcrops on the inner continental shelf of Alboran Island suggests that the shelf has been deformed into a narrow shear zone limited by two NE SW-trending, sub-parallel high-angle faults, the main orientation and density of which have been influenced by previous WNW ESE to NW SE basement fractures.
NASA Astrophysics Data System (ADS)
Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven
2018-04-01
Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone
that forms at shallow depths. The distinct < 160 m wide interval of widely oriented gouge-filled fractures constitutes an inner damage zone.
This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is consistent with fault zone flower structure models.
An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.
Doctor, Daniel H.; Doctor, Katarina Z.
2012-01-01
In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.
NASA Astrophysics Data System (ADS)
Davy, P.; Darcel, C.; Le Goc, R.; Bour, O.
2011-12-01
We discuss the parameters that control fracture density on the Earth. We argue that most of fracture systems are spatially organized according to two main regimes. The smallest fractures can grow independently of each others, defining a "dilute" regime controlled by nuclei occurrence rate and individual fracture growth law. Above a certain length, fractures stop growing due to mechanical interactions between fractures. For this "dense" regime, we derive the fracture density distribution by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of kilometers for faults systems, and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on both flow and mechanical properties. In the dense regime, networks appears to be very close to a critical state.
FracPaQ: a MATLAB™ Toolbox for the Quantification of Fracture Patterns
NASA Astrophysics Data System (ADS)
Healy, D.; Rizzo, R. E.; Cornwell, D. G.; Timms, N.; Farrell, N. J.; Watkins, H.; Gomez-Rivas, E.; Smith, M.
2016-12-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying the fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The method presented is inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. Planned future releases will incorporate multi-scale analyses based on a wavelet method to look for scale transitions, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern.
NASA Astrophysics Data System (ADS)
Bobek, Kinga; Jarosiński, Marek; Stadtmuller, Marek; Pachytel, Radomir; Lis-Śledziona, Anita
2016-04-01
Natural fractures in gas-bearing shales has significant impact on reservoir stimulation and increase of exploitation. Density of natural fractures and their orientation in respect to the maximum horizontal stress are crucial for propagation of technological hydraulic fractures. Having access to continuous borehole core profile and modern geophysical logging from several wells in the Pomeranian part of the Early Paleozoic Baltic Basin (Poland) we were able to compare the consistency of structural interpretation of several data sets. Although, final aim of our research is to optimize the method of fracture network reconstruction on a reservoir scale, at a recent stage we were focused on quantitative characterization of tectonic structures in a direct vicinity of boreholes. The data we have, cover several hundred meters long profiles of boreholes from the Ordovician and Silurian shale complexes. Combining different sets of data we broaden the scale of observation from borehole core (5 cm radius), through XRMI scan of a borehole wall (10 cm radius), up to penetration of a signal of an acoustic dipole logging (several tens of cm range). At the borehole core we examined the natural tectonic structures and mechanically significant features, like: mineral veins, fractured veins, bare fractures, slickensides, fault zones, stylolites, bedding plane and mechanically contrasting layers. We have also noticed drilling-induced features like centerline fractures and core disking, controlled by a recent tectonic stress. We have measured the orientation of fractures, their size, aperture and spacing and also describe the character of veins and tried to determine the stress regime responsible for fault slippage and fracture propagation. Wide range of analyzed features allowed us to discriminate fracture sets and reconstruct tectonic evolution of the complex. The most typical for analyzed shale complexes are steep and vertical strata-bound fractures that create an orthogonal joint system, which is locally disturbed by small-scale faults and fractures, associated with them. For regular joints, observed on borehole core, we have calculated variation of mean height and area and volume of mineralization for veins. Fracture density variation reveals good correlation with lithological shale formations which are comparable with Consistent Mechanical Units differentiated based on detailed lithological profiling and geophysical data (see Pachytel et al., this issue).We have also proposed a new method of a rose diagram construction presenting strike of fractures taking into account their size and angular error bar in strike determination. Each fracture was weighted with its length or aperture and an angular error was included by blurring the less credible records. This allowed for more precise adjustment of fracture sets direction in comparison to conventional diagrams without weighting procedure. Recently, we are processing acoustic dipole logs for anisotropy analyses aiming in comparison with density of fracture sets. Our study, which is conducted in the frame of ShaleMech Project (within Blue Gas Program) is in progress, thus the presented results should be considered as preliminary.
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; Farrell, N. J.
2017-12-01
We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.
EBSD and Nanoindentation-Correlated Study of Delamination Fracture in Al-Li Alloy 2090
NASA Technical Reports Server (NTRS)
Tayon, Wesley A.; Crooks, Roy E.; Domack, Marcia S.; Wagner, John A.; Elmustafa, A. A.
2008-01-01
Al-Li alloys offer attractive combinations of high strength and low density. However, a tendency for delamination fracture has limited their use. A better understanding of the delamination mechanisms may identify methods to control delaminations through processing modifications. A combination of new techniques has been used to evaluate delamination fracture in Al-Li alloys. Both high quality electron backscattered diffraction (EBSD) information and valid nanoindentation measurements were obtained from fractured test specimens. Correlations were drawn between nano-scale hardness variations and local texture along delaminating boundaries. Intriguing findings were observed for delamination fracture through the combined analysis of grain orientation, Taylor factor, and kernel average misorientation.
NASA Astrophysics Data System (ADS)
Jin, G.
2016-12-01
Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.
FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern expressed as a 2nd rank crack tensor.
NASA Astrophysics Data System (ADS)
Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.
2015-12-01
Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.
A likely universal model of fracture scaling and its consequence for crustal hydromechanics
NASA Astrophysics Data System (ADS)
Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.
2010-10-01
We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.
NASA Astrophysics Data System (ADS)
McCall, N.; Gulick, S. P. S.; Morgan, J. V.; Hall, B. J.; Jones, L.; Expedition 364 Science Party, I. I.
2017-12-01
During Expedition 364, IODP/ICDP drilled the peak ring of the Chicxulub impact crater at Site M0077, recovering core from 505.7 to 1334.7 mbsf. The core has been imaged via X-ray Computer Tomography (CT) as a noninvasive method to create a 3-dimensional model of the core, providing information on the density and internal structure at a 0.3 mm resolution. Results from the expedition show that from 748 mbsf and deeper the peak ring is largely composed of uplifted and fractured granitic basement rocks originally sourced from approximately 8-10 km depth. Impact crater modeling suggests the peak ring was formed through dynamic collapse of a rebounding central peak within 10 minutes of impact, requiring the target rocks to temporarily behave as a viscous fluid. The newly recovered core provides a rare opportunity to investigate the cratering process, specifically how the granite was weakened, as well as the extent of the hydrothermal system created after the impact. Based on the CT data, we identify four classes of fractures based on their CT facies deforming the granitoids: pervasive fine fractures, discrete fine fractures, discrete filled fractures, and discrete open fractures. Pervasive fine fractures were most commonly found proximal to dikes and impact melt rock. Discrete filled fractures often displayed a cataclastic texture. We present density trends for the different facies and compare these to petrophysical properties (density, NGR, P-wave seismic velocity). Fractured areas have a lower density than the surrounding granite, as do most filled fractures. This reduction suggests that fluid migrating through the peak ring in the wake of the impact either deposited lower density minerals within the fractures and/or altered the original fracture fill. The extent and duration of fluid flow recorded in these fractures will assist in the characterization of the post-impact hydrothermal system. Future work includes combining information from CT images with thin sections and plug samples at similar depths, refinement of CT facies characterization, examining cross-cutting relationships to determine timing constraints of deformation processes, and measurement of the orientation of the fractures.
NASA Astrophysics Data System (ADS)
Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.
2011-12-01
The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.
FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto E.; Cornwell, David G.; Farrell, Natalie J. C.; Watkins, Hannah; Timms, Nick E.; Gomez-Rivas, Enrique; Smith, Michael
2017-02-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, and spatial distributions often exhibit some kind of order. In detail, relationships may exist among the different fracture attributes, e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture attributes and patterns. This paper describes FracPaQ, a new open source, cross-platform toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on previously published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales, rock types and tectonic settings. The implemented methods presented are inherently scale independent, and a key task where applicable is analysing and integrating quantitative fracture pattern data from micro-to macro-scales. The toolbox was developed in MATLAB™ and the source code is publicly available on GitHub™ and the Mathworks™ FileExchange. The code runs on any computer with MATLAB installed, including PCs with Microsoft Windows, Apple Macs with Mac OS X, and machines running different flavours of Linux. The application, source code and sample input files are available in open repositories in the hope that other developers and researchers will optimise and extend the functionality for the benefit of the wider community.
Percolation in three-dimensional fracture networks for arbitrary size and shape distributions
NASA Astrophysics Data System (ADS)
Thovert, J.-F.; Mourzenko, V. V.; Adler, P. M.
2017-04-01
The percolation threshold of fracture networks is investigated by extensive direct numerical simulations. The fractures are randomly located and oriented in three-dimensional space. A very wide range of regular, irregular, and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. The results are rationalized in terms of a dimensionless density. A simple model involving a new shape factor is proposed, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy in monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions.
NASA Astrophysics Data System (ADS)
Gross, Lutz; Tyson, Stephen
2015-04-01
Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J.; Huang, H.; Deo, M.
2016-03-01
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Zhou; H. Huang; M. Deo
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
NASA Astrophysics Data System (ADS)
Bobek, Kinga; Jarosiński, Marek; Pachytel, Radomir
2017-04-01
Structural analysis of borehole core and microresistivity images yield an information about geometry of natural fracture network and their potential importance for reservoir stimulation. Density of natural fractures and their orientation in respect to the maximum horizontal stress has crucial meaning for hydraulic fractures propagation in unconventional reservoirs. We have investigated several hundred meters of continuous borehole core and corresponding microresistivity images (mostly XRMI) from six boreholes in the Pomeranian part of the Early Paleozoic Baltic Basin. In general, our results challenge the question about representatives of statistics based on structural analyses on a small shale volume represented by borehole core or borehole wall images and credibility of different sets of data. Most frequently, fractures observed in both XRMI and cores are steep, small strata-bound fractures and veins with minor mechanical aperture (0,1 mm in average). These veins create an orthogonal joint system, locally disturbed by fractures associated with normal or by gently dipping thrust faults. Mean fractures' height keeps in a range between 30-50 cm. Fracture density differs significantly among boreholes and Consistent Lithological Units (CLUs) but the most frequent means falls in a range 2-4 m-1. We have also payed an attention to bedding planes due to their expected coupling with natural fractures and their role as structural barriers for vertical fracture propagation. We aimed in construction for each CLU the so-called "mean brick", which size is limited by an average distance between two principal joint sets and between bedding fractures. In our study we have found out a discrepancy between structural profiles based on XRMI and core interpretation. For some CLUs joint fractures densities, are higher in cores than in XRMI. In this case, numerous small fractures were not recorded due to the limits of XRMI resolution. However, the most veins with aperture 0,1 mm, cemented with calcite, were clearly visible in scanner image. We have also observed significantly lower density of veins in core than in the XRMI that occurs systematically in one formation enriched with carbonate and dolomite. In this case, veins are not fractured in core and obliterated for bare eye by dolomitization, but are still contrastive in respect of electric resistance. Calculated density of bedding planes per 1 meter reveals systematically higher density of fractures observed on core than in the XRMI (depicted automatically by interpretation program). This difference may come from additional fracking due to relaxation of borehole core while recovery. Comparison of vertical joint fractures density with thickness of mechanical beds shows either lack of significant trends or a negative correlation (greater density of bedding fractures correspond to lower density of joints). This result, obtained for shale complexes contradict that derived for sandstone or limestone. Boundary between CLUs are visible on both: joint and bedding fracture density profiles. Considering small-scale faults and slickensides we have obtained good agreement between results of core and scanner interpretation. This study in the frame of ShaleMech Project funded by Polish Committee for Scientific Research is in progress and the results are preliminary.
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.
Percolation of fracture networks and stereology
NASA Astrophysics Data System (ADS)
Thovert, Jean-Francois; Mourzenko, Valeri; Adler, Pierre
2017-04-01
The overall properties of fractured porous media depend on the percolative character of the fracture network in a crucial way. The most important examples are permeability and transport. In a recent systematic study, a very wide range of regular, irregular and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. A simple and new model involving a dimensionless density and a new shape factor is proposed for the percolation threshold, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy to monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions. Moreover, and this is crucial for practical applications, the relevant quantities which are present in the expression of the percolation threshold can all be determined from trace maps. An exact and complete set of relations can be derived when the fractures are assumed to be Identical, Isotropically Oriented and Uniformly Distributed (I2OUD). Therefore, the dimensionless density of such networks can be derived directly from the trace maps and its percolating character can be a priori predicted. These relations involve the first five moments of the trace lengths. It is clear that the higher order moments are sensitive to truncation due to the boundaries of the sampling domain. However, it can be shown that the truncation effect can be fully taken into account and corrected, for any fracture shape, size and orientation distributions, if the fractures are spatially uniformly distributed. Systematic applications of these results are made to real fracture networks that we previously analyzed by other means and to numerically simulated networks. It is important to know if the stereological results and their applications can be extended to networks which are not I2OUD. In other words, for a given trace map, an equivalent I2OUD network is defined whose percolating character and permeability are readily deduced. The conditions under which these predicted properties are not too far from the real properties are under investigation.
Acoustic Monitoring of Gravity-Driven Controls on CaCO3 Precipitates in a Fracture
NASA Astrophysics Data System (ADS)
Xu, Z.; Sheets, J.; Zhang, L.; Kim, D.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.
2017-12-01
Sealing fractures by mineral precipitation is an important process for improving caprock integrity in subsurface reservoirs. In this study, the ability to monitor precipitate distribution in fractures with buoyant fluids was examined. Fractures with uniform aperture distributions of 0.5, 1.0 and 2.0 mm were created from acrylic plates to enable direct imaging of precipitate formation over time. CaCO3 precipitation was induced in a fracture from invasion of 1M CaCl2 and 0.3M Na2CO3 solutions. During chemical invasion, a fracture plane was oriented either parallel or perpendicular to gravity. Acoustic (P) wave transmission ( 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. Precipitate particle sizes during formation were determined using SAXS and WAXS. In both horizontal and vertical fractures, the density contrast between the two solutions affected the spatial distribution of precipitation. In vertical fractures, the denser CaCl2 solution almost completely displaced the NaCO3 solution, causing strong localization of precipitates. However, in the horizontal fractures, flow stratification occurred in the 2 mm aperture fractures, with the less dense Na2CO3 flowing over the CaCl2 solution, resulting in a more even distribution of precipitates cross the fracture plane. P-wave amplitudes increased up to 8% and the arrival time decreased with precipitate accumulation in the horizontal fracture. This is consistent with a three-layered approach as the seismic impedance inside the fracture increases. The initial contact between the two was observed as a decrease in the P-wave amplitude. As precipitates accumulated, the amplitude recovered and increased, with greater increases observed along the mixing flow path. Fractures in the subsurface may seal differently depending on the orientation thus affecting the ability of a fracture to self-heal if oriented vertically. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231
NASA Astrophysics Data System (ADS)
Hanzel, Jason
The use of lidar (light detection and ranging), a remote sensing tool based on principles of laser optometry, in mapping complex, multi-scale fracture networks had not been rigorously tested prior to this study despite its foreseeable utility in interpreting rock fabric with imprints of complex tectonic evolution. This thesis demonstrates lidar-based characterization of the Woodford Shale where intense fracturing could be due to both tectonism and mineralogy. The study area is the McAlister Shale Pit in south-central Oklahoma where both the upper and middle sections of the Woodford Shale are exposed and can be lidar-mapped. Lidar results are validated using hand-measured strike and dips of fracture planes, thin sections and mineral chemistry of selected samples using X-ray diffraction (XRD). Complexity of the fracture patterns as well as inaccessibility of multiple locations within the shale pit makes hand-measurement prone to errors and biases; lidar provides an opportunity for less biased and more efficient field mapping. Fracture mapping with lidar is a multi-step process. The lidar data are converted from point clouds into a mesh through triangulation. User-defined parameters such as size and orientation of the individual triangular elements are then used to group similar elements into surfaces. The strike and dip attribute of the simulated surfaces are visualized in an equal area lower hemisphere projection stereonet. Three fracture sets were identified in the upper and middle sections with common orientation but substantially different spatial density. Measured surface attributes and spatial density relations from lidar were validated using their hand-measured counterparts. Thin section analysis suggests that high fracture density in the upper Woodford measured by both the lidar and the hand-measured data could be due to high quartz. A significant finding of this study is the reciprocal relation between lidar intensity and gamma-ray (GR), which is generally used to infer outcrop mineralogy. XRD analysis of representative samples along the common profiles show that both GR and lidar intensity were influenced by the same minerals in essentially opposite ways. Results strongly suggest that the lidar cannot only remotely map the geomorphology, but also the relative mineralogical variations to the first order of approximation.
NASA Astrophysics Data System (ADS)
Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark
2017-04-01
The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.
NASA Astrophysics Data System (ADS)
Zimmerman, R. W.; Leung, C. T.
2009-12-01
Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.
Size-dependent fracture mode transition in copper nanowires.
Peng, Cheng; Zhan, Yongjie; Lou, Jun
2012-06-25
In situ uni-axial tensile tests of single-crystalline copper nanowires are performed using a micromechanical device inside a scanning electron microscope chamber. The single-crystalline copper nanowires are synthesized by solvothermal processes, and the growth direction along the wire axis is the <110> orientation as confirmed by transmission electron microscopy (TEM) selected area diffraction (SAD) analysis. The fracture strengths of copper nanowires are found to be much higher than that of bulk copper. More interestingly, both ductile and brittle-like fracture modes are found in the same batch of fabricated nanowires, and the fracture modes appear to be dependent on the diameters of tested nanowires. From the analysis of fracture surfaces, sample morphologies and corresponding stress-strain curves, the competition between deformation and fracture mechanisms controlled by initial defects density and by the probability of dislocation interactions is attributed to this intriguing size-dependent fracture mode transition. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms
Hohenwarter, A.; Pippan, R.
2013-01-01
The fracture behaviour of pure iron deformed by equal-channel angular pressing via route A was examined. The fracture toughness was determined for different specimen orientations and measured in terms of the critical plane strain fracture toughness, KIC, the critical J integral, JIC, and the crack opening displacement for crack initiation, CODi. The results demonstrate that the crack plane orientation has a pronounced effect on the fracture toughness. Different crack plane orientations lead to either crack deflection or delamination, resulting in increased fracture resistance in comparison to one remarkably weak specimen orientation. The relation between the microstructure typical for the applied deformation route and the enormous differences in the fracture toughness depending on the crack plane orientation will be analyzed in this paper. PMID:23645995
Spatial organization of seismicity and fracture pattern at the boundary between Alps and Dinarides
NASA Astrophysics Data System (ADS)
Bressan, Gianni; Ponton, Maurizio; Rossi, Giuliana; Urban, Sandro
2016-04-01
The paper affords the study of the spatial organization of seismicity in the easternmost region of the Alps (Friuli, in NE Italy and W Slovenia), dominated by the interference between the Alpine and the Dinaric tectonic systems. Two non-conventional methods of spatial analysis are used: fractal analysis and principal component analysis (PCA). The fractal analysis helps to discriminate the cases in which hypocentres clearly define a plane, from the ones in which hypocenter distribution tends to the planarity, without reaching it. The PCA analysis is used to infer the orientation of planes fitting through earthquake foci, or the direction of propagation of the hypocentres. Furthermore, we study the spatial seismicity pattern at the shallow depths in the context of a general damage model, through the crack density distribution. The results of the three methods concur to a complex and composite model of fracturing in the region. The hypocentre pattern fills only partially a plane, i.e. has a fractal dimension close to 2. The three exceptions regard planes with Dinaric trend, without interference with Alpine lineaments. The shallowest depth range (0-10 km depth) is characterized by the activation of planes with variable orientations, reflecting the interference between the Dinaric and the Alpine tectonic structures, and closely bound to the variation of the mechanical properties of the crust. The seismicity occurs mostly in areas characterized by a variation from low to moderate crack density, indicating the sharp transition from zones of low damage to zones of moderate damage. Low crack density indicates the presence of more competent rocks capable of sustaining high strain energy while high crack density areas pertain to highly fractured rocks that cannot store high strain energy. Brittle failure, i.e. seismic activity, is favoured within the sharp transitions from low to moderate crack density zones. The orientation of the planes depicting the seismic activity, indeed, coincides with the orientation of the faults generated along the flanks of past carbonate platforms both in Friuli and western Slovenia. In the deepest depth range (10-20-km depth), on the contrary, the study evidences the dominance of the tectonic Dinaric system to the NW of the External Dinarides, in depth. This depth interval is characterized by a more organized pattern of seismicity. Seismic events mainly locate on the Dinaric lineaments in the northern and eastern parts of the region considered, while on Alpine thrusts in the western and southern parts.
NASA Astrophysics Data System (ADS)
Mastouri, Raja; Guerin, Antoine; Marchant, Robin; Derron, Marc-Henri; Boulares, Achref; Lazzez, Marzouk; Marillier, François; Jaboyedoff, Michel; Bouaziz, Samir
2015-04-01
It is usually not possible to study in situ fractures and faults of oil reservoirs. Then outcropping reservoir analogues are used instead. For this purpose, Terrestrial Laser Scanning (TLS) has been increasingly used for some years in the petroleum sector. The formations El Garia and Reineche make the Eocene oil reservoir of Eastern Tunisia. The fracturing of these formations has been analyzed on the surface by TLS on a reservoir analogue outcrop and in the depth by 3D seismic data. TLS datasets provide clear information on fracture geometry distribution (spacing and persistence), connectivity and joint orientation. These results were then compared to structures observed in depth with seismic data. The reservoir analogues are the Ousselat cliff (formation El Garia) and the Damous quarry (formation Reineche). Those two sites are made of marine limestone rich in large foraminifers, gastropods and nummulites. Fieldwork, TLS acquisitions and high-resolution GigaPan panoramas were put together to create digital outcrop models. A total of 9 scans at 3 different survey positions were carried out. Firstly, the data processing (cleaning, alignment and georeferencing of the raw point clouds) was carried out using the Polyworks software. Secondly, we draped Gigapixel pictures on the triangular mesh generated with 3DReshaper to produce relief shading. This process produces a photorealistic model that gives a 3D representation of the outcrop. Finally, Coltop3D was used to identify the different sets of discontinuities and to measure their orientations. Furthermore, we used some 3D seismic attribute data to interpret approximately 60 fractures and faults at the top of the Eocene reservoir. The Coltop3D analysis of the Ousselat cliff shows 5 sets of joints and fractures, with different dips and dip directions. They all strike in directions NW-SE, NNE-SSW, NE-SW and ENE-WSW. Using the photorealistic model, we measured approximately 120 fracture spacings ranging from 1.75m to 10m. For Reineche formation outcrop, the structural analog indicates 8 sets of joints and fractures. In Total, we measured 150 fracture spacings. The most part of fracture spacings range from 0.05m to 1m. The results show that many joints of the quarry rocks are interconnected with other small-scale fractures. The comparison between the stereonets obtained by Coltop3D and the seismic attributes indicated that fractures striking NW-SE to NNW-SSE and NE-SW to NNE-SSW are represented in all surveys position. The majority of the faults and fractures observed in TLS data and 3D seismic data can be explained by a combination of extension and shear. Moreover, in this study, we found that there is no correlation between fractures density or fracture distribution and lithology. Finally, the density and the geometry of the fractures have been also interpreted at the outcrop level and in depth, this comparison allows to better characterize the relationship between permeability, secondary porosity and fracture density of the Eocene reservoir.
NASA Astrophysics Data System (ADS)
Mynatt, I.; Hilley, G. E.; Pollard, D. D.
2006-12-01
Understanding and predicting the characteristics of folding induced fracturing is an important and intriguing structural problem. Folded sequences of sedimentary rock at depth are common traps for hydrocarbons and water and fractures can strongly effect (both positively and negatively) this trapping capability. For these reasons fold-fracture relationships are well studied, but due to the complex interactions between the remote tectonic stress, rheologic properties, underlying fault geometry and slip, and pre-existing fractures, fracture characteristics can vary greatly from fold to fold. Additionally, examination of the relationships between fundamental characteristics such as fold geometry and fracture density are difficult even in thoroughly studied producing fields as measurements of fold shape are hampered by the low resolution of seismic surveying and measurements of fractures are limited to sparse well-bore locations. Due to the complexity of the system, the limitations of available data and small number of detailed case studies, prediction of fracture characteristics, e.g. the distribution of fracture density, are often difficult to make for a particular fold. We suggest a combination of mechanical and numerical modeling and analysis combined with detailed field mapping can lead to important insights into fold-fracture relationships. We develop methods to quantify both fold geometry and fracture characteristics, and summarize their relationships for an exhumed analogue reservoir case study. The field area is Raplee Monocline, a Laramide aged, N-S oriented, ~14-km long fold exposed in the Monument Upwarp of south-eastern Utah and part of the larger Colorado Plateau geologic province. The investigation involves three distinct parts: 1) Field based characterization and mapping of the fractures on and near the fold; 2) Development of accurate models of the fold geometry using high resolution data including ~3.5x107 x, y, z topographic points collected using Airborne Laser Swath Mapping (ALSM); and 3) Analysis of the fold shape and fracture patterns using the concepts of differential geometry and fracture mechanics. Field documentation of fracture characteristics enables the classification of distinct pre- and syn- folding fracture sets and the development of conceptual models of multiple stages of fracture evolution. Numerical algorithms, visual methods and field mapping techniques are used to extract the geometry of specific stratigraphic bedding surfaces and interpolate fold geometry between topographic exposures, thereby creating models of the fold geometry at several stratigraphic levels. Geometric characteristics of the fold models, such as magnitudes and directions of maximum and minimum normal curvature and fold limb dip, are compared to the observed fracture characteristics to identify the following relationships: 1) Initiation of folding related fractures at ten degrees of limb dip and increasing fracture density with increasing dip and 2) No correlation between absolute maximum fold curvature and fracture density.
Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koestler, A.G.; Reksten, K.
1995-09-01
Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m.more » In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.« less
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
2016-03-09
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
NASA Astrophysics Data System (ADS)
Spalding, Jennifer; Schneider, David
2016-04-01
Intra-cratonic regions are generally characterized by tectonic stability and low seismicity. In southern Ontario, Canada, moderate levels of seismicity have been recorded over the last few decades reaching magnitudes of 5 MN, indicating that the geosphere is not as stable as predicted. The stratigraphy of the region consists of Ordovician limestone with a thickness of ~200 m that unconformably overlays the Mesoproterozoic crystalline Grenville Province. Subsequent tectonism including repeated Paleozoic orogenies and rifting along the east coast of North America has reactivated Proterozoic structures that have propagated into the overlying carbonate platform forming mesoscopic-scale brittle structures. Exposed along the shores of Lake Ontario are decameter-scale fracture zones, with a fracture spacing of 0.5 to 10 meters. The dominant fracture set trends E-W, and often forms conjugate sets with less prominent NNE-oriented fractures. More locally, an older NW-oriented fracture set is cross cut by the E-W and NNE oriented fractures. Regionally, there have been six directions of maximum horizontal stress in southern Ontario since the Precambrian, with the current orientation of maximum stress oriented ENE as a consequence of far field Atlantic ridge-push forces generated at distant plate boundaries. Calcite mineralization along fractured surfaces locally form sub-horizontal slickenside fabrics which are covered by a layer of euhedral calcite crystals, suggesting that fracture dilation (and fluid flow) occurred after fracture slip to allow the growth of calcite crystals. Due to the proximity of the carbonate units to the crystalline basement, we expect the calcitic veins to be enriched in rare earth elements and are presently conducting geochemical analyses. The calcite veins and surfaces vary from 2.5 cm to 1 mm thicknesses, often with larger calcite crystals in the center of the vein and smaller crystals at the vein boundaries, likely representing nucleation on small grains of the wall rock. Some veins show minor displacement, including the mm-scale with fractured and displaced fossil fragments, and cm-scale offsets at the outcrop. The calcite veins show evidence of low temperature deformation (~200°C) through undulous extinction, bulging grain boundaries, tension gashes structures, and extensive lamellar twinning. The width and density of twinning (twin planes/mm) provides information regarding the temperature of deformation. The calcite crystals show two populations of twinning: type I (>10 μm), and type II (tabular twinning) with an average thickness of 35 μm, and a maximum thickness of 81 μm. Twinning can only accommodate a limited amount of strain such that the calcite lamellar twinning is often kinked, broken and offset, suggesting reactivation of the calcite-filled fractures. U-Pb calcite ages from calcitic veins in the Ordovician units within the Ottawa graben are c. 400 Ma and within Devonian units at the edge of the Michigan Basin in Canada are c. 110 Ma. Additional geochronology on the calcite from southern Ontario will help resolve the timing of fracture reactivation and is an important factor in consideration of the location of a deep geological repository for Canada's nuclear waste.
Triangulation Based 3D Laser Imaging for Fracture Orientation Analysis
NASA Astrophysics Data System (ADS)
Mah, J.; Claire, S.; Steve, M.
2009-05-01
Laser imaging has recently been identified as a potential tool for rock mass characterization. This contribution focuses on the application of triangulation based, short-range laser imaging to determine fracture orientation and surface texture. This technology measures the distance to the target by triangulating the projected and reflected laser beams, and also records the reflection intensity. In this study, we acquired 3D laser images of rock faces using the Laser Camera System (LCS), a portable instrument developed by Neptec Design Group (Ottawa, Canada). The LCS uses an infrared laser beam and is immune to the lighting conditions. The maximum image resolution is 1024 x 1024 volumetric image elements. Depth resolution is 0.5 mm at 5 m. An above ground field trial was conducted at a blocky road cut with well defined joint sets (Kingston, Ontario). An underground field trial was conducted at the Inco 175 Ore body (Sudbury, Ontario) where images were acquired in the dark and the joint set features were more subtle. At each site, from a distance of 3 m away from the rock face, a grid of six images (approximately 1.6 m by 1.6 m) was acquired at maximum resolution with 20% overlap between adjacent images. This corresponds to a density of 40 image elements per square centimeter. Polyworks, a high density 3D visualization software tool, was used to align and merge the images into a single digital triangular mesh. The conventional method of determining fracture orientations is by manual measurement using a compass. In order to be accepted as a substitute for this method, the LCS should be capable of performing at least to the capabilities of manual measurements. To compare fracture orientation estimates derived from the 3D laser images to manual measurements, 160 inclinometer readings were taken at the above ground site. Three prominent joint sets (strike/dip: 236/09, 321/89, 325/01) were identified by plotting the joint poles on a stereonet. Underground, two main joint sets (strike/dip: 060/00, 114/86) were identified from 49 manual inclinometer measurements A stereonet of joint poles from the 3D laser data was generated using the commercial software Split-FX. Joint sets were identified successfully and their orientations correlated well with the hand measurements. However, Split-Fx overlays a simply 2D grid of equal-sized triangles onto the 3D surface and requires significant user input. In a more automated approach, we have developed a MATLAB script which directly imports the Polyworks 3D triangular mesh. A typical mesh is composed of over 1 million triangles of variable sizes: smooth regions are represented by large triangles, whereas rough surfaces are captured by several smaller triangles. Using the triangle vertices, the script computes the strike and dip of each triangle. This approach opens possibilities for statistical analysis of a large population of fracture orientation estimates, including surface texture. The methodology will be used to evaluate both synthetic and field data.
Hyperlipidemia affects multiscale structure and strength of murine femur.
Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce
2014-07-18
To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fracture detection logging tool
Benzing, William M.
1992-06-09
A method and apparatus by which fractured rock formations are identified and their orientation may be determined includes two orthogonal motion sensors which are used in conjunction with a downhole orbital vibrator. The downhole vibrator includes a device for orienting the sensors. The output of the sensors is displayed as a lissajou figure. The shape of the figure changes when a subsurface fracture is encountered in the borehole. The apparatus and method identifies fractures rock formations and enables the azimuthal orientation of the fractures to be determined.
NASA Astrophysics Data System (ADS)
Darcel, C.; Davy, P.; Le Goc, R.; Maillot, J.; Selroos, J. O.
2017-12-01
We present progress on Discrete Fracture Network (DFN) flow modeling, including realistic advanced DFN spatial structures and local fracture transmissivity properties, through an application to the Forsmark site in Sweden. DFN models are a framework to combine fracture datasets from different sources and scales and to interpolate them in combining statistical distributions and stereological relations. The resulting DFN upscaling function - size density distribution - is a model component key to extrapolating fracture size densities between data gaps, from borehole core up to site scale. Another important feature of DFN models lays in the spatial correlations between fractures, with still unevaluated consequences on flow predictions. Indeed, although common Poisson (i.e. spatially random) models are widely used, they do not reflect these geological evidences for more complex structures. To model them, we define a DFN growth process from kinematic rules for nucleation, growth and stopping conditions. It mimics in a simplified way the geological fracturing processes and produces DFN characteristics -both upscaling function and spatial correlations- fully consistent with field observations. DFN structures are first compared for constant transmissivities. Flow simulations for the kinematic and equivalent Poisson DFN models show striking differences: with the kinematic DFN, connectivity and permeability are significantly smaller, down to a difference of one order of magnitude, and flow is much more channelized. Further flow analyses are performed with more realistic transmissivity distribution conditions (sealed parts, relations to fracture sizes, orientations and in-situ stress field). The relative importance of the overall DFN structure in the final flow predictions is discussed.
Propagation of Gaussian wave packets in complex media and application to fracture characterization
NASA Astrophysics Data System (ADS)
Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu
2017-08-01
Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koestler, A.G.; Reksten, K.
1994-12-31
Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wallmore » was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.« less
Quasi-static analysis of elastic behavior for some systems having higher fracture densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.; Aydin, A.
2009-10-15
Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting whenmore » and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.« less
A numerical procedure for transient free surface seepage through fracture networks
NASA Astrophysics Data System (ADS)
Jiang, Qinghui; Ye, Zuyang; Zhou, Chuangbing
2014-11-01
A parabolic variational inequality (PVI) formulation is presented for the transient free surface seepage problem defined for a whole fracture network. Because the seepage faces are specified as Signorini-type conditions, the PVI formulation can effectively eliminate the singularity of spillpoints that evolve with time. By introducing a continuous penalty function to replace the original Heaviside function, a finite element procedure based on the PVI formulation is developed to predict the transient free surface response in the fracture network. The effects of the penalty parameter on the solution precision are analyzed. A relative error formula for evaluating the flow losses at steady state caused by the penalty parameter is obtained. To validate the proposed method, three typical examples are solved. The solutions for the first example are compared with the experimental results. The results from the last two examples further demonstrate that the orientation, extent and density of fractures significantly affect the free surface seepage behavior in the fracture network.
Are Geotehrmal Reservoirs Stressed Out?
NASA Astrophysics Data System (ADS)
Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.
2017-12-01
Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the correlation between the reservoir geometry and models of the local stress state.
NASA Astrophysics Data System (ADS)
Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.
2017-08-01
ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.
Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds
NASA Astrophysics Data System (ADS)
Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.
2016-04-01
A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and principal vector similarity criteria. Poles to points are assigned to individual discontinuity objects using easy custom vector clustering and Jaccard distance approaches, and each object is segmented into planar clusters using an improved version of the DBSCAN algorithm. Modal set orientations are then recomputed by cluster-based orientation statistics to avoid the effects of biases related to cluster size and density heterogeneity of the point cloud. Finally, spacing values are measured between individual discontinuity clusters along scanlines parallel to modal pole vectors, whereas individual feature size (persistence) is measured using 3D convex hull bounding boxes. Spacing and size are provided both as raw population data and as summary statistics. The tool is optimized for parallel computing on 64bit systems, and a Graphic User Interface (GUI) has been developed to manage data processing, provide several outputs, including reclassified point clouds, tables, plots, derived fracture intensity parameters, and export to modelling software tools. We present test applications performed both on synthetic 3D data (simple 3D solids) and real case studies, validating the results with existing geomechanical datasets.
Acetabular fractures: anatomic and clinical considerations.
Lawrence, David A; Menn, Kirsten; Baumgaertner, Michael; Haims, Andrew H
2013-09-01
Classifying acetabular fractures can be an intimidating topic. However, it is helpful to remember that there are only three basic types of acetabular fractures: column fractures, transverse fractures, and wall fractures. Within this framework, acetabular fractures are classified into two broad categories: elementary or associated fractures. We will review the osseous anatomy of the pelvis and provide systematic approaches for reviewing both radiographs and CT scans to effectively evaluate the acetabulum. Although acetabular fracture classification may seem intimidating, the descriptions and distinctions discussed and shown in this article hopefully make the topic simpler to understand. Approach the task by recalling that there are only three basic types of acetabular fractures: column fractures (coronally oriented on CT images), transverse fractures (sagittally oriented on CT images), and wall fractures (obliquely oriented on CT images). We have provided systematic approaches for reviewing both conventional radiographs and CT scans to effectively assess the acetabulum. The clinical implications of the different fracture patterns have also been reviewed because it is critically important to include pertinent information for our clinical colleagues to provide the most efficient and timely clinical care.
Dentinal tubules revealed with X-ray tensor tomography.
Jud, Christoph; Schaff, Florian; Zanette, Irene; Wolf, Johannes; Fehringer, Andreas; Pfeiffer, Franz
2016-09-01
Dentin is a mineralized material making up most of the tooth bulk. A system of microtubules, so called dentinal tubules, transverses it radially from the pulp chamber to the outside. This highly oriented structure leads to anisotropic mechanical properties directly connected to the tubules orientation and density: the ultimate tensile strength as well as the fracture toughness and the shear strength are largest perpendicular to dentinal tubules. Consequently, the fatigue strength depends on the direction of dentinal tubules, too. However, none of the existing techniques used to investigate teeth provide access to orientation and density of dentinal tubules for an entire specimen in a non-destructive way. In this paper, we measure a third molar human tooth both with conventional micro-CT and X-ray tensor tomography (XTT). While the achievable resolution in micro-CT is too low to directly resolve the dentinal tubules, we provide strong evidence that the direction and density of dentinal tubules can be indirectly measured by XTT, which exploits small-angle X-ray scattering to retrieve a 3D map of scattering tensors. We show that the mean directions of scattering structures correlate to the orientation of dentinal tubules and that the mean effective scattering strength provides an estimation of the relative density of dentinal tubules. Thus, this method could be applied to investigate the connection between tubule orientation and fatigue or tensile properties of teeth for a full sample without cutting one, non-representative peace of tooth out of the full sample. Copyright © 2016 The Academy of Dental Materials. All rights reserved.
Method for selectively orienting induced fractures in subterranean earth formations
Shuck, Lowell Z.
1977-02-01
The orientation of hydraulically-induced fractures in relatively deep subterranean earth formations is normally confined to vertical projections along a plane parallel to the maximum naturally occurring (tectonic) compressive stress field. It was found that this plane of maximum compressive stress may be negated and, in effect, re-oriented in a plane projecting generally orthogonal to the original tectonic stress plane by injecting liquid at a sufficiently high pressure into a wellbore fracture oriented in a plane parallel to the plane of tectonic stress for the purpose of stressing the surrounding earth formation in a plane generally orthogonal to the plane of tectonic stress. With the plane of maximum compressive stress re-oriented due to the presence of the induced compressive stress, liquid under pressure is injected into a second wellbore disposed within the zone influenced by the induced compressive stress but at a location in the earth formation laterally spaced from the fracture in the first wellbore for effecting a fracture in the second wellbore along a plane generally orthogonal to the fracture in the first wellbore.
NASA Astrophysics Data System (ADS)
Williams, J. N.; Toy, V.; Massiot, C.; Mcnamara, D. D.; Wang, T.
2015-12-01
X-ray computer tomography (CT) scans of core recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through the Alpine Fault provide an excellent opportunity to analyse brittle deformation around the fault. In particular, assessment can be made of the heavily fractured protolith constituting the damage zone. Damage zone structures are divided into two types that result from two distinct processes: (1) "off fault damage" formed by stress changes induced by the passage of a seismic rupture and (2) "off fault deformation" that represent structures, which accommodate strain around the fault that was not localised on the principal slip zone (PSZ). The distribution of these damage zones structures within CT scans of the recovered core was measured along a scanline parallel to the core axis and assessed using a weighted moving average technique to account for orientation bias. The results of this analysis reveal that within the part of the fault rocks sampled by DFDP-1 there is no increase in density of these structures towards the PSZ. This is in agreement with independent analysis using Borehole Televiewer Data of the DFDP-1B borehole. Instead, we consider the density of these structures to be controlled to the first order by lithology, which modulates the mechanical properties of the fault rocks such as its frictional strength and cohesion. Comparisons of fracture density to p-wave velocities obtained from wireline logs indicate they are independent of each other, therefore, for the cores sampled in this study fractures impart no influence on the elastic properties of the rock. This is consistent with the observation from core that the majority of fractures are cemented. We consider how this might influence future rupture dynamics.
A statistical approach to the brittle fracture of a multi-phase solid
NASA Technical Reports Server (NTRS)
Liu, W. K.; Lua, Y. I.; Belytschko, T.
1991-01-01
A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.
Lee, Sang Ki; Hwang, Yoon Sub; Choy, Won Sik
2014-03-01
Conventional operative treatments of patella fractures are frequently associated with implant failure or displacement. Recent biomechanical studies showed that the orientation of the wire loop and the site of the wire twist can affect the fixation strength. The purpose of this study was to compare the clinical outcome of the tension band technique with loops in different orientations and different knot positions. For this retrospective study, 72 patella fractures (71 patients) were fixed with figure-of-eight configurations in combination with 2 K-wires. Patients were divided into 3 groups according to the orientation of tension band construct. A total of 40 patella fractures were placed with figure-of-eight configurations in a vertical orientation either with 1 wire twist (group 1; 16 patella fractures) or with 2 wire twists at the adjacent corners (group 2; 24 patella fractures). Thirty-two patella fractures were placed with figure-of-eight configurations in a horizontal orientation with 2 wire twists at the adjacent corners (group 3). Range of motion, complication rates, and knee scoring scales (Hospital for Special Surgery and Lysholm) were assessed during serial follow-up. Satisfactory reductions were achieved in all groups, but functional results in the early stage were different. Group 3 had better Hospital for Special Surgery and Lysholm scores at 3 months postoperatively; however, at 6 months and 1 year postoperatively, all groups had similar scores. At the 1-year follow-up, all groups achieved acceptable flexion and range of motion. The overall complication rate was lower in the horizontal group (12.5%). Placing the figure-of-eight tension band construct in a horizontal orientation can provide functional benefits in the early stage after patella fractures. Copyright 2014, SLACK Incorporated.
Stein, Emily M; Kepley, Anna; Walker, Marcella; Nickolas, Thomas L; Nishiyama, Kyle; Zhou, Bin; Liu, X Sherry; McMahon, Donald J; Zhang, Chiyuan; Boutroy, Stephanie; Cosman, Felicia; Nieves, Jeri; Guo, X Edward; Shane, Elizabeth
2014-01-01
The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity.Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius.In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls,despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel
2011-12-01
This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.
NASA Astrophysics Data System (ADS)
Sullivan, Walter A.; Peterman, Emily M.
2017-08-01
Granite from a 50-200-m-wide damage zone adjacent to the brittle-ductile Kellyland Fault Zone contains healed fracture networks that exhibit almost all of the characteristics of dynamically pulverized rocks. Fracture networks exhibit only weak preferred orientations, are mutually cross-cutting, separate jigsaw-like interlocking fragments, and are associated with recrystallized areas likely derived from pervasively comminuted material. Fracture networks in samples with primary igneous grain shapes further indicate pulverization. Minimum fracture densities in microcline are ∼100 mm/mm2. Larger fractures in microcline and quartz are sometimes marked by neoblasts, but most fractures are optically continuous with host grains and only visible in cathodoluminescence images. Fractures in plagioclase are crystallographically controlled and typically biotite filled. Petrologic observations and cross-cutting relationships between brittle structures and mylonitic rocks show that fracturing occurred at temperatures of 400 °C or more and pressures of 200 MPa. These constraints extend the known range of pulverization to much higher temperature and pressure conditions than previously thought possible. The mutually cross-cutting healed fractures also provide the first record of repeated damage in pulverized rocks. Furthermore, pulverization must have had a significant but transient effect on wall-rock porosity, and biotite-filled fracture networks in plagioclase form weak zones that could accommodate future strain localization.
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; De Siena, L.
2015-12-01
The success of any model prediction is largely dependent on the accuracy with which its parameters are known. In characterising fracture networks in naturally fractured rocks, the main issues are related with the difficulties in accurately up- and down-scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (fracture lengths, apertures, orientations and densities) represents a fundamental step which can aid the estimation of permeability and fluid flow, which are of primary importance in a number of contexts ranging from hydrocarbon production in fractured reservoirs and reservoir stimulation by hydrofracturing, to geothermal energy extraction and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. This work focuses on linking fracture data collected directly from outcrops to permeability estimation and fracture network modelling. Outcrop studies can supplement the limited data inherent to natural fractured systems in the subsurface. The study area is a highly fractured upper Miocene biosiliceous mudstone formation cropping out along the coastline north of Santa Cruz (California, USA). These unique outcrops exposes a recently active bitumen-bearing formation representing a geological analogue of a fractured top seal. In order to validate field observations as useful analogues of subsurface reservoirs, we describe a methodology of statistical analysis for more accurate probability distribution of fracture attributes, using Maximum Likelihood Estimators. These procedures aim to understand whether the average permeability of a fracture network can be predicted reducing its uncertainties, and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-10-02
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-01-01
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597
Finkbeiner, T.; Barton, C.A.; Zoback, M.D.
1997-01-01
We used borehole televiewer (BHTV) data from four wells within the onshore and offshore Santa Maria basin, California, to investigate the relationships among fracture distribution, orientation, and variation with depth and in-situ stress. Our analysis of stress-induced well-bore breakouts shows a uniform northeast maximum horizontal stress (SH max) orientation in each well. This direction is consistent with the SH max direction determined from well-bore breakouts in other wells in this region, the northwest trend of active fold axes, and kinematic inversion of nearby earthquake focal plane mechanisms. In contrast to the uniformity of the stress field, fracture orientation, dip, and frequency vary considerably from well to well and within each well. With depth, fractures can be divided into distinct subsets on the basis of fracture frequency and orientation, which correlate with changes of lithology and physical properties. Although factors such as tectonic history, diagenesis, and structural variations obviously have influenced fracture distribution, integration of the in-situ stress and fracture data sets indicates that many of the fractures, faults, and bedding planes are active, small-scale strike-slip and reverse faults in the current northeast-trending transpressive stress field. In fact, we observed local breakout rotations in the wells, providing kinematic evidence for recent shear motion along fracture and bedding-parallel planes. Only in the onshore well do steeply dipping fractures strike parallel to SHmax. Drill-stem tests from two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the wells where fractures are favorably oriented for shear failure in the modern stress field. Thus, relatively small-scale active faults provide important conduits along which fluids migrate.
Optimizing the Terzaghi Estimator of the 3D Distribution of Rock Fracture Orientations
NASA Astrophysics Data System (ADS)
Tang, Huiming; Huang, Lei; Juang, C. Hsein; Zhang, Junrong
2017-08-01
Orientation statistics are prone to bias when surveyed with the scanline mapping technique in which the observed probabilities differ, depending on the intersection angle between the fracture and the scanline. This bias leads to 1D frequency statistical data that are poorly representative of the 3D distribution. A widely accessible estimator named after Terzaghi was developed to estimate 3D frequencies from 1D biased observations, but the estimation accuracy is limited for fractures at narrow intersection angles to scanlines (termed the blind zone). Although numerous works have concentrated on accuracy with respect to the blind zone, accuracy outside the blind zone has rarely been studied. This work contributes to the limited investigations of accuracy outside the blind zone through a qualitative assessment that deploys a mathematical derivation of the Terzaghi equation in conjunction with a quantitative evaluation that uses fractures simulation and verification of natural fractures. The results show that the estimator does not provide a precise estimate of 3D distributions and that the estimation accuracy is correlated with the grid size adopted by the estimator. To explore the potential for improving accuracy, the particular grid size producing maximum accuracy is identified from 168 combinations of grid sizes and two other parameters. The results demonstrate that the 2° × 2° grid size provides maximum accuracy for the estimator in most cases when applied outside the blind zone. However, if the global sample density exceeds 0.5°-2, then maximum accuracy occurs at a grid size of 1° × 1°.
Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating
Crouse, Dustin; Simon, John; Schulte, Kevin L.; ...
2018-01-31
Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less
Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouse, Dustin; Simon, John; Schulte, Kevin L.
Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less
Muscle Fiber Orientation Angle Dependence of the Tensile Fracture Behavior of Frozen Fish Muscle
NASA Astrophysics Data System (ADS)
Hagura, Yoshio; Okamoto, Kiyoshi; Suzuki, Kanichi; Kubota, Kiyoshi
We have proposed a new cutting method for frozen fish named "cryo-cutting". This method applied tensile fracture force or bending fracture force to the frozen fish at appropriate low temperatures. In this paper, to clarify cryo-cutting mechanism, we analyzed tensile fracture behavior of the frozen fish muscle. In the analysis, the frozen fish muscle was considered unidirectionally fiber-reinforced composite material which consisted of fiber (muscle fiber) and matrix (connective tissue). Fracture criteria (maximum stress criterion, Tsai-Hill criterion) for the unidirectionally fiber-reinforced composite material were used. The following results were obtained: (1) By using Tsai-Hill criterion, muscle fiber orientation angle dependence of the tensile fracture stress could be calculated. (2) By using the maximum stress theory jointly with Tsai-Hill criterion, muscle fiber orientation angle dependence of the fracture mode of the frozen fish muscle could be estimated.
Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet
NASA Technical Reports Server (NTRS)
Sutton, M. A.; Dawicke, D. S.; Newman, J. C., Jr.
1994-01-01
Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested on the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10 percent lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7 degrees after 2-3mm of crack extension and the L-T tests reached a value of 6 degrees. The fracture surfaces of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45 degree slant fracture after about 2-3mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape while, the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45 degree slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.
Fracture Anisotropy and Toughness in the Mancos Shale: Implications for crack-growth geometry
NASA Astrophysics Data System (ADS)
Chandler, M. R.; Meredith, P. G.; Brantut, N.; Crawford, B. R.
2013-12-01
The hydraulic fracturing of gas-shales has drawn attention to the fundamental fracture properties of shales. Fracture propagation is dependent on a combination of the in-situ stress field, the fracturing fluid and pressure, and the mechanical properties of the shale. However, shales are strongly anisotropic, and there is a general paucity of available experimental data on the anisotropic mechanical properties of shales in the scientific literature. The mode-I stress intensity factor, KI, quantifies the concentration of stress at crack tips. The Fracture Toughness of a linear elastic material is then defined as the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, shales display significant non-linearity, which produces hysteresis during experimental cyclic loading. This allows for the calculation of a ductility coefficient using the residual displacement after successive loading cycles. From this coefficient, a ductility corrected Fracture Toughness value, KIcc can be determined. In the Mancos Shale this ductility correction can be as large as 60%, giving a Divider orientation KIcc value of 0.8 MPa.m0.5. Tensile strength and mode-I Fracture Toughness have been experimentally determined for the Mancos Shale using the Brazil Disk and Short-Rod methodologies respectively. The three principal fracture orientations; Arrester, Divider and Short-Transverse were all analysed. A significant anisotropy is observed in the tensile strength, with the Arrester value being 1.5 times higher than the Short-Transverse value. Even larger anisotropy is observed in the Fracture Toughness, with KIcc in the Divider and Arrester orientations being around 1.8 times that in the Short-Transverse orientation. For both tensile strength and fracture toughness, the Short-Transverse orientation, where the fracture propagates in the bedding plane in a direction parallel to the bedding, is found to have significantly lower values than the other two orientations. This anisotropy and variability in fracture properties is seen to cause deviation of the fracture direction during experiments on Arrester and Short-Transverse oriented samples, and can be expected to influence the geometry of propagating fractures. A comparison between the anisotropic tensile strength of the material and the crack-tip stress field in a transversely isotropic material has been used to develop a crack-tip deflection criterion in terms of the elasticity theory of cracks. This criterion suggests that a small perturbation in the incident angle of a mode-I crack propagating perpendicular to the bedding is likely to lead to a substantial deflection towards bedding-parallel (Short-Transverse) propagation. Further experimental work is currently underway on anisotropic Fracture Toughness measurements at elevated pressures and temperatures, simulating conditions in Shale Gas reservoirs at depths up to around 4km.
Hansen, Bruce P.; Stone, Janet Radway; Lane, John W.
1999-01-01
Surface and borehole geophysical methods were used to determine fracture orientation in crystalline bedrock at the Eastern Surplus Superfund Site in Meddybemps, Maine. Fracture-orientation information is needed to address concerns about the fate of contaminants in ground water at the site. Azimuthal square-array resistivity surveys were conducted at 3 locations at the site, borehole-acoustic televiewer and borehole-video logs were collected in 10 wells, and single-hole directional radar surveys were conducted in 9 wells. Borehole-video logs were used to supplement the results of other geophysical techniques and are not described in this report. Analysis of azimuthal square-array resistivity data indicated that high-angle fracturing generally strikes northeast-southwest at the three locations. Borehole-acoustic televiewer logs detected one prominent low-angle and two prominent high-angle fracture sets. The low-angle fractures strike generally north-northeast and dip about 20 degrees west-northwest. One high-angle fracture set strikes north-northeast and dips east-southeast; the other high-angle set strikes east-northeast and dips south-southeast. Single-hole directional radar surveys identified two prominent fracture sets: a low-angle set striking north-northeast, dipping west-northwest; and a high-angle fracture set striking north-northeast, dipping east-southeast. Two additional high-angle fracture sets are defined weakly, one striking east-west, dipping north; and a second striking east-west, dipping south. Integrated results from all of the geophysical surveys indicate the presence of three primary fracture sets. A low-angle set strikes north-northeast and dips west-northwest. Two high-angle sets strike north-northeast and east-northeast and dip east-southeast and south-southeast. Statistical correction of the fracture data for orientation bias indicates that high-angle fractures are more numerous than observed in the data but are still less numerous than the low-angle fractures. The orientation and distribution of water-yielding fractures sets were determined by correlating the fracture data from this study with previously collected borehole-flowmeter data. The water-yielding fractures are generally within the three prominent fracture sets observed for the total fracture population. The low-angle water-yielding fractures primarily strike north-northeast to west-northwest and dip west-northwest to south-southwest. Most of the high-angle water-yielding fractures strike either north-northeast or east-west and dip east-southeast or south. The spacing between water-yielding fractures varies but the probable average spacing is estimated to be 30 feet for low-angle fractures; 27 feet for the east-southeast dipping, high-angle fractures; and 43 feet for the south-southeast dipping, high-angle fractures. The median estimated apparent transmissivity of individual water-yielding fractures or fracture zones was 0.3 feet squared per day and ranged from 0.01 to 382 feet squared per day. Ninety-five percent of the water-yielding fractures or fracture zones had an estimated apparent transmissivity of 19.5 feet squared per day or less. The orientation, spacing, and hydraulic properties of water-yielding fractures identified during this study can be used to help estimate recharge, flow, and discharge of ground water contaminants. High-angle fractures provide vertical pathways for ground water to enter the bedrock, interconnections between low-angle fractures, and, subsequently, pathways for water flow within the bedrock along fracture planes. Low-angle fractures may allow horizontal ground-water flow in all directions. The orientation of fracturing and the hydraulic properties of each fracture set strongly affect changes in ground-water flow under stress (pumping) conditions.
NASA Astrophysics Data System (ADS)
Odling, Noelle E.; Roden, Julie E.
1997-09-01
Some results from numerical models of flow and contaminant transport in fractured permeable rocks, where fractures are more conductive than rock matrix, are described. The 2D flow field in the fractured and permeable rock matrix is calculated using a finite difference, 'conductance mesh' method, and the contaminant transport is simulated by particle tracking methods using an advection-biased, random walk technique. The model is applied to simulated and naturally occurring fracture patterns. The simulated pattern is an en echelon array of unconnected fractures, as an example of a common, naturally occurring fracture geometry. Two natural fracture patterns are used: one of unconnected, sub-parallel fractures and one with oblique fracture sets which is well connected. Commonly occurring matrix permeability and fracture aperture values are chosen. The simulations show that the presence of fractures creates complex and heterogeneous flow fields and contaminant distribution in the permeable rock matrix. The modelling results have shown that some effects are non-intuitive and therefore difficult to foresee without the help of a model. With respect to contaminant transport rates and plume heterogeneity, it was found that fracture connectivity (crucial when the matrix is impermeable) can play a secondary role to fracture orientation and density. Connected fracture systems can produce smooth break-through curves of contaminants summed over, for example, a bore-hole length, whereas in detail the contaminant plume is spatially highly heterogeneous. Close to a constant-pressure boundary (e.g. an extraction bore-hole), flow and contaminants can be channelled by fractures. Thus observations at a bore-hole may suggest that contaminants are largely confined to the fracture system, when, in fact, significant contamination resides in the matrix.
NASA Technical Reports Server (NTRS)
Kah, L. C.; Stack, K; Siebach, K.; Grotzinger, J.; Summer, D.; Farien, A.; Oehler, D.; Schieber, J.; Leville, R.; Edgar, L;
2014-01-01
Multiple diagenetic features have been observed in clay-bearing mudstone exposed within Yellowknife Bay, Gale Crater, Mars. These features occurred during at least two separate episodes: an early generation of spheroidal concretions that co-occur with a dense networks of mineralized fractures, and a later generation of mineralized veins. Concretions consist of mm-sized spheroids (0.4 to 8.0 mm, mean diameter of 1.2 mm) that are distinctly more resistant than the encompassing mudstone. Dissected spheroids suggest an origin via compaction and incipient lithification of the substrate at the perimeter of syndepositional void space. Concretions are generally patchy in their distribution within clay--bearing mudstone, but in places can be the dominant fabric element. Locally dense networks of mineralized fractures occur in regions of low concretion abundance. These consist of short (< 50 cm), curvilinear to planar mineralized voids that occur across a range of orientations from vertical to subhorizontal. Fractures are filled by multi-phase cement consisting of two isopachous, erosionally resistant outer bands, and a central less resistant fill. Physical relationships suggests that original fractures may have formed as both interconnected voids and as discrete cross--cutting features. Co--occurrence of early diagenetic concretions and fracture networks suggests a common origin via gas release within a subaqueous, shallow substrate. We suggest that gas release within weakly cohesive subsurface sediments resulted in substrate dewatering and an increase in the cohesive strength of the substrate. Local differences in substrate strength and rate of gas production would have result in formation of either discrete voids or fracture networks. A second generation of mineralized veins is characterized by a regionally low spatial density, predominantly vertical or horizontal orientations, and a single phase of Ca--sulfate mineral fill. These veins cross-cut the early diagenetic elements and intersect a greater thickness of stratigraphy within Yellowknife Bay, suggesting a later--diagenetic origin via hydraulic fracturing.
Daswani, Bhavna; Desai, Meena; Mitra, Sumegha; Gavali, Shubhangi; Patil, Anushree; Kukreja, Subhash; Khatkhatay, M Ikram
2016-03-01
Fracture risk assessment tool® calculations can be performed with or without addition of bone mineral density; however, the impact of this addition on fracture risk assessment tool® scores has not been studied in Indian women. Given the limited availability and high cost of bone mineral density testing in India, it is important to know the influence of bone mineral density on fracture risk assessment tool® scores in Indian women. Therefore, our aim was to assess the contribution of bone mineral density in fracture risk assessment tool® outcome in Indian women. Apparently healthy postmenopausal Indian women (n = 506), aged 40-72 years, without clinical risk factors for bone disease, were retrospectively selected, and their fracture risk assessment tool® scores calculated with and without bone mineral density were compared. Based on WHO criteria, 30% women were osteoporotic, 42.9% were osteopenic and 27.1% had normal bone mineral density. Fracture risk assessment tool® scores for risk of both major osteoporotic fracture and hip fracture significantly increased on including bone mineral density (P < 0.0001). When criteria of National Osteoporosis Foundation, US was applied number of participants eligible for medical therapy increased upon inclusion of bone mineral density, (for major osteoporotic fracture risk number of women eligible without bone mineral density was 0 and with bone mineral density was 1, P > 0.05, whereas, for hip fracture risk number of women eligible without bone mineral density was 2 and with bone mineral density was 17, P < 0.0001). Until the establishment of country-specific medication intervention thresholds, bone mineral density should be included while calculating fracture risk assessment tool® scores in Indian women. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Hardebol, N. J.; Maier, C.; Nick, H.; Geiger, S.; Bertotti, G.; Boro, H.
2015-12-01
A fracture network arrangement is quantified across an isolated carbonate platform from outcrop and aerial imagery to address its impact on fluid flow. The network is described in terms of fracture density, orientation, and length distribution parameters. Of particular interest is the role of fracture cross connections and abutments on the effective permeability. Hence, the flow simulations explicitly account for network topology by adopting Discrete-Fracture-and-Matrix description. The interior of the Latemar carbonate platform (Dolomites, Italy) is taken as outcrop analogue for subsurface reservoirs of isolated carbonate build-ups that exhibit a fracture-dominated permeability. New is our dual strategy to describe the fracture network both as deterministic- and stochastic-based inputs for flow simulations. The fracture geometries are captured explicitly and form a multiscale data set by integration of interpretations from outcrops, airborne imagery, and lidar. The deterministic network descriptions form the basis for descriptive rules that are diagnostic of the complex natural fracture arrangement. The fracture networks exhibit a variable degree of multitier hierarchies with smaller-sized fractures abutting against larger fractures under both right and oblique angles. The influence of network topology on connectivity is quantified using Discrete-Fracture-Single phase fluid flow simulations. The simulation results show that the effective permeability for the fracture and matrix ensemble can be 50 to 400 times higher than the matrix permeability of 1.0 · 10-14 m2. The permeability enhancement is strongly controlled by the connectivity of the fracture network. Therefore, the degree of intersecting and abutting fractures should be captured from outcrops with accuracy to be of value as analogue.
Inclusion-based effective medium models for the field-scale permeability of 3D fractured rock masses
NASA Astrophysics Data System (ADS)
Ebigbo, Anozie; Lang, Philipp S.; Paluszny, Adriana; Zimmerman, Robert W.
2016-04-01
Fractures that are more permeable than their host rock can act as preferential, or at least additional, pathways for fluid to flow through the rock. The additional transmissivity contributed by these fractures will be of great relevance in several areas of earth science and engineering, such as radioactive waste disposal in crystalline rock, exploitation of fractured hydrocarbon and geothermal reservoirs, or hydraulic fracturing. In describing or predicting flow through fractured rock, the effective permeability of the rock mass, comprising both the rock matrix and a network of fractures, is a crucial parameter, and will depend on several geometric properties of the fractures/networks, such as lateral extent, aperture, orientation, and fracture density. This study investigates the ability of classical inclusion-based effective medium models (following the work of Sævik et al., Transp. Porous Media, 2013) to predict this permeability. In these models, the fractures are represented as thin, spheroidal inclusions, the interiors of which are treated as porous media having a high (but finite) permeability. The predictions of various effective medium models, such as the symmetric and asymmetric self-consistent schemes, the differential scheme, and Maxwell's method, are tested against the results of explicit numerical simulations of mono- and polydisperse isotropic fracture networks embedded in a permeable rock matrix. Comparisons are also made with the Hashin-Shrikman bounds, Snow's model, and Mourzenko's heuristic model (Mourzenko et al., Phys. Rev. E, 2011). This problem is characterised mathematically by two small parameters, the aspect ratio of the spheroidal fractures, α, and the ratio between matrix and fracture permeability, κ. Two different regimes can be identified, corresponding to α/κ < 1 and α/κ > 1. The lower the value of α/κ, the more significant is flow through the matrix. Due to differing flow patterns, the dependence of effective permeability on fracture density differs in the two regimes. When α/κ > 1, a distinct percolation threshold is observed, whereas for α/κ < 1, the matrix is sufficiently transmissive that a percolation-like transition is not observed. The self-consistent effective medium methods show good accuracy for both mono- and polydisperse isotropic fracture networks. Mourzenko's equation is also found to be very accurate, particularly for monodisperse networks. Finally, it is shown that Snow's model essentially coincides with the Hashin-Shtrikman upper bound.
NASA Astrophysics Data System (ADS)
Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.
2016-12-01
The Gole Larghe Fault Zone (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault zone over a continuous area > 1.5 km2, the fault zone architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault zone strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic, resulting in a marked channelling of fluid flow in the inner part of the fault zone. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, a fundamental mechanical parameter in the energy balance of earthquakes.
NASA Astrophysics Data System (ADS)
Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio
2016-04-01
Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.
Barton, Christopher C.; Page, William R.; Morgan, Terrance L.
1989-01-01
Fractures on outcrops in the vicinity of drill hole USW G-4, Yucca Mountain, Nevada, were studied in order to contribute to characterization of fractures for hydrologjc, geomechanical, and tectonic modeling of the Yucca Mountain block and to characterize fractures prior to the excavation of a proposed exploratory shaft located near USW G-4. Yucca Mountain is a prospective site for the construction of an underground repository for high-level nuclear waste.Measurements were taken and recorded on 5,000 fractures at 50 outcrop stations primarily in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paintbrush Tuff. Fracture orientation and surface roughness were recorded for each fracture. Additionally, notes were taken on fracture abutting, crossing, and offsetting relations, swarming, curvature, brecciation, slickensides, and fracture fillings. Frequency distributions of orientation and roughness were plotted and analyzed. Fractures with low roughness coefficients (0-4) group tightly into two sets based on orientation. We conclude that such fractures are cooling joints and that all other fractures are tectonic. The development of small-scale fractures adjacent, subparallel, and possibly related to the Ghost Dance fault has been addressed in a preliminary way based on data collected in this study. Such sympathetic fractures are abundant in the upper cliff unit but not in the upper lithophysal unit.
Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys
NASA Astrophysics Data System (ADS)
Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.
2018-04-01
Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.
NASA Astrophysics Data System (ADS)
Mahler, Michael; Gaganidze, Ermile; Aktaa, Jarir
2018-04-01
The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, C.A.; Conant, R.A.; Golich, G.M.
1995-12-31
This paper summarizes the (preliminary) findings from extensive field studies of hydraulic fracture orientation in diatomite waterfloods and related efforts to monitor the induced surface subsidence. Included are case studies from the Belridge and Lost Hills diatomite reservoirs. The primary purpose of the paper is to document a large volume of tiltmeter hydraulic fracture orientation data that demonstrates waterflood-induced fracture reorientation--a phenomenon not previously considered in waterflood development planning. Also included is a brief overview of three possible mechanisms for the observed waterflood fracture reorientation. A discussion section details efforts to isolate the operative mechanism(s) from the most extensive casemore » study, as well as suggesting a possible strategy for detecting and possibly mitigating some of the adverse effects of production/injection induced reservoir stress changes--reservoir compaction and surface subsidence as well as fracture reorientation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawnsley, K.; Swaby, P.
1996-08-01
It is increasingly acknowledged that in order to understand and forecast the behavior of fracture influenced reservoirs we must attempt to reproduce the fracture system geometry and use this as a basis for fluid flow calculation. This article aims to present a recently developed fracture modelling prototype designed specifically for use in hydrocarbon reservoir environments. The prototype {open_quotes}FRAME{close_quotes} (FRActure Modelling Environment) aims to provide a tool which will allow the generation of realistic 3D fracture systems within a reservoir model, constrained to the known geology of the reservoir by both mechanical and statistical considerations, and which can be used asmore » a basis for fluid flow calculation. Two newly developed modelling techniques are used. The first is an interactive tool which allows complex fault surfaces and their associated deformations to be reproduced. The second is a {open_quotes}genetic{close_quotes} model which grows fracture patterns from seeds using conceptual models of fracture development. The user defines the mechanical input and can retrieve all the statistics of the growing fractures to allow comparison to assumed statistical distributions for the reservoir fractures. Input parameters include growth rate, fracture interaction characteristics, orientation maps and density maps. More traditional statistical stochastic fracture models are also incorporated. FRAME is designed to allow the geologist to input hard or soft data including seismically defined surfaces, well fractures, outcrop models, analogue or numerical mechanical models or geological {open_quotes}feeling{close_quotes}. The geologist is not restricted to {open_quotes}a priori{close_quotes} models of fracture patterns that may not correspond to the data.« less
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Nicol, Andrew; Townend, John; McNamara, David D.; Garcia-Sellés, David; Conway, Chris E.; Archibald, Garth
2017-07-01
Permeability hosted in andesitic lava flows is dominantly controlled by fracture systems, with geometries that are often poorly constrained. This paper explores the fracture system geometry of an andesitic lava flow formed during its emplacement and cooling over gentle paleo-topography, on the active Ruapehu volcano, New Zealand. The fracture system comprises column-forming and platy fractures within the blocky interior of the lava flow, bounded by autobreccias partially observed at the base and top of the outcrop. We use a terrestrial laser scanner (TLS) dataset to extract column-forming fractures directly from the point-cloud shape over an outcrop area of ∼3090 m2. Fracture processing is validated using manual scanlines and high-resolution panoramic photographs. Column-forming fractures are either steeply or gently dipping with no preferred strike orientation. Geometric analysis of fractures derived from the TLS, in combination with virtual scanlines and trace maps, reveals that: (1) steeply dipping column-forming fracture lengths follow a scale-dependent exponential or log-normal distribution rather than a scale-independent power-law; (2) fracture intensities (combining density and size) vary throughout the blocky zone but have similar mean values up and along the lava flow; and (3) the areal fracture intensity is higher in the autobreccia than in the blocky zone. The inter-connected fracture network has a connected porosity of ∼0.5 % that promote fluid flow vertically and laterally within the blocky zone, and is partially connected to the autobreccias. Autobreccias may act either as lateral permeability connections or barriers in reservoirs, depending on burial and alteration history. A discrete fracture network model generated from these geometrical parameters yields a highly connected fracture network, consistent with outcrop observations.
NASA Astrophysics Data System (ADS)
Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.
2017-12-01
After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.
Estimating the hydraulic conductivity of two-dimensional fracture networks
NASA Astrophysics Data System (ADS)
Leung, C. T.; Zimmerman, R. W.
2010-12-01
Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our explanation is that the conductivities of the bonds that meet at a given node in a fracture network do not satisfy the usual assumption of being uncorrelated; rather, the conductances of at least two of these bonds are highly correlated, as they represent the incoming and outgoing branches of the same fracture. The effective conductance of our idealized “equivalent network” is then trivial to calculate. We find that this estimate of the hydraulic conductivity agrees very closely with the numerically computed value, essentially for all fracture densities that are not too close to the percolation threshold. Moreover, the same methodology applies regardless of whether the fracture lengths are distributed lognormally, or according to a power law.
A magnetic method for determining the geometry of hydraulic fractures
Byerlee, J.D.; Johnston, M.J.S.
1976-01-01
We propose a method that may be used to determine the spatial orientation of the fracture plane developed during hydraulic fracture. In the method, magnetic particles are injected into the crack with the fracturing fluid so as to generate a sheet of magnetized material. Since the magnetization of a body with extreme dimension ratios, such as a crack, exceeds that of an equidimensional body and since this magnetization is sensitive both to orientation and geometry, this could be used to obtain information about the crack. By measuring the vertical and horizontal components of the magnetic field and field gradients at the earth's surface surrounding the injection well with superconducting magnetometers having 10-4 gamma sensitivity and also by measuring field direction within the well itself, it should be possible to calculate the orientation and perhaps infer the approximate geometry of the fracture surface. Experiments on electric field potential operated in conjunction with this experiment could further constrain estimates of shape and orientation. ?? 1976 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Raziperchikolaee, S.; Kelley, M. E.; Burchwell, A.
2017-12-01
Understanding petrophysical and geomechanical parameters of shale formations and their variations across the basin are necessary to optimize the design of a hydraulic fracturing program aimed at enhancing long term oil/gas production from unconventional wells. Dipole sonic logging data (compressional-wave and shear-wave slowness) from multiple wells across the study area, coupled with formation bulk density log data, were used to calculate dynamic elastic parameters, including shear modulus, bulk modulus, Poisson's ratio, and Young's modulus for the shale formations. The individual-well data were aggregated into a single histogram for each parameter to gain an understanding of the variation in the properties (including brittleness) of the Utica Point-Pleasant formations across the entire study area. A crossplot of the compressional velocity and bulk density and a crossplot between the compressional velocity, the shear velocity, and depth of the measurement were used for a high level petrophysical characterization of the Utica Point-Pleasant. Detailed interpretation of drilling induced fractures recorded in image logs, and an analysis of shear wave anisotropy using multi-receiver sonic logs were also performed. Orientation of drilling induced fractures was measured to determine the maximum horizontal stress azimuth. Also, an analysis of shear wave anisotropy to predict stress anisotropy around the wellbore was performed to determine the direction of maximum horizontal stress. Our study shows how the detailed interpretation of borehole breakouts, drilling induced fractures, and sonic wave data can be used to reduce uncertainty and produce a better hydraulic fracturing design in the Utica Point Pleasant formations across the northern Appalachian Basin region of Ohio.
NASA Astrophysics Data System (ADS)
Forbes Inskip, N.; Meredith, P. G.; Gudmundsson, A.
2017-12-01
While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through sedimentary rocks composed of layers with different mechanical and elastic properties remains poor. Yet the mechanical layering is a key parameter controlling the propagation of fractures in sedimentary sequences. Here we report measurements of the contrasting properties of the Lower Lias at Nash Point, South Wales, which comprises a sequence of interbedded shale and limestone layers, and how those properties influence fracture propagation. The static Young's modulus (Estat) of both rock types has been measured parallel and normal to bedding. The shale is highly anisotropic, with Estat varying from 2.4 GPa, in the bedding-normal orientation, to 7.9 GPa, in the bedding-parallel orientation, yielding an anisotropy of 107%. By contrast the limestone has a very low anisotropy of 8%, with Estat values varying from 28.5 GPa, in the bedding-normal orientation, to 26.3 GPa in the bedding-parallel orientation. It follows that for a vertical fracture propagating in this sequence the modulus contrast is by a factor of about 12. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. Preliminary numerical modelling results (using a finite element modelling software) of induced fractures at Nash Point demonstrate a rotation of the maximum principal compressive stress across interfaces but also the concentration of tensile stress within the more competent (high Estat) limestone layers. The tensile strength (σT), using the Brazil-disk technique, and fracture toughness (KIc), using the semi-circular bend methodology, of both rock types have been measured. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Again, values for the shale show a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but much lower values in the Short-Transverse orientation. σT and KIc values for the limestone are considerably higher than those for the shale and exhibit no significant anisotropy.
NASA Astrophysics Data System (ADS)
Thomas, R. N.; Ebigbo, A.; Paluszny, A.; Zimmerman, R. W.
2016-12-01
The macroscopic permeability of 3D anisotropic geomechanically-generated fractured rock masses is investigated. The explicitly computed permeabilities are compared to the predictions of classical inclusion-based effective medium theories, and to the permeability of networks of randomly oriented and stochastically generated fractures. Stochastically generated fracture networks lack features that arise from fracture interaction, such as non-planarity, and termination of fractures upon intersection. Recent discrete fracture network studies include heuristic rules that introduce these features to some extent. In this work, fractures grow and extend under tension from a finite set of initial flaws. The finite element method is used to compute displacements, and modal stress intensity factors are computed around each fracture tip using the interaction integral accumulated over a set of virtual discs. Fracture apertures emerge as a result of simulations that honour the constraints of stress equilibrium and mass conservation. The macroscopic permeabilities are explicitly calculated by solving the local cubic law in the fractures, on an element-by-element basis, coupled to Darcy's law in the matrix. The permeabilities are then compared to the estimates given by the symmetric and asymmetric versions of the self-consistent approximation, which, for randomly fractured volumes, were previously demonstrated to be most accurate of the inclusion-based effective medium methods (Ebigbo et al., Transport in Porous Media, 2016). The permeabilities of several dozen geomechanical networks are computed as a function of density and in situ stresses. For anisotropic networks, we find that the asymmetric and symmetric self-consistent methods overestimate the effective permeability in the direction of the dominant fracture set. Effective permeabilities that are more strongly dependent on the connectivity of two or more fracture sets are more accurately captured by the effective medium models.
Reliability analysis of structural ceramics subjected to biaxial flexure
NASA Technical Reports Server (NTRS)
Chao, Luen-Yuan; Shetty, Dinesh K.
1991-01-01
The reliability of alumina disks subjected to biaxial flexure is predicted on the basis of statistical fracture theory using a critical strain energy release rate fracture criterion. Results on a sintered silicon nitride are consistent with reliability predictions based on pore-initiated penny-shaped cracks with preferred orientation normal to the maximum principal stress. Assumptions with regard to flaw types and their orientations in each ceramic can be justified by fractography. It is shown that there are no universal guidelines for selecting fracture criteria or assuming flaw orientations in reliability analyses.
In situ grain fracture mechanics during uniaxial compaction of granular solids
NASA Astrophysics Data System (ADS)
Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.
2018-03-01
Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.
Approach for computing 1D fracture density: application to fracture corridor characterization
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette
2016-04-01
Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.
Paillet, Frederick L.; Hess, A.E.; Cheng, C.H.; Hardin, E.
1987-01-01
The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors
Carten, R.B.; Geraghty, E.P.; Walker, B.M.
1988-01-01
The Henderson porphyry molybdenum deposit was formed by the superposition of coupled alteration and mineralization events, of varying intensity and size, that were associated with each of at least 11 intrusions. Deposition of molybdenite was accompanied by time-equivalent silicic and potassic alteration. High-temperature alteration and mineralization are spatially and temporally linked to the crystallization of compositionally zoned magma in the apex of stocks. Differences in hydrothermal features associated with each intrusion (e.g., mass of ore, orientation and type of veins, density of veins, and intensity of alteration) correlate with differences in primary igneous features (e.g., composition, texture, morphology, and size). The systematic relations between hydrothermal and magmatic features suggest that primary magma compositions, including volatile contents, largely control the geometry, volume, level of emplacement, and mechanisms of crystallization of stocks. These elements in turn govern the orientations and densities of fractures, which ultimately determine the distribution patterns of hydrothermal alteration and mineralization. -from Authors
Experimental Study of Hybrid Fractures and the Transition From Joints to Faults
NASA Astrophysics Data System (ADS)
Ramsey, J. M.; Chester, F. M.
2003-12-01
Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.
Shock fabrics in fine-grained micrometeorites
NASA Astrophysics Data System (ADS)
Suttle, M. D.; Genge, M. J.; Russell, S. S.
2017-10-01
The orientations of dehydration cracks and fracture networks in fine-grained, unmelted micrometeorites were analyzed using rose diagrams and entropy calculations. As cracks exploit pre-existing anisotropies, analysis of their orientation provides a mechanism with which to study the subtle petrofabrics preserved within fine-grained and amorphous materials. Both uniaxial and biaxial fabrics are discovered, often with a relatively wide spread in orientations (40°-60°). Brittle deformation cataclasis and rotated olivine grains are reported from a single micrometeorite. This paper provides the first evidence for impact-induced shock deformation in fine-grained micrometeorites. The presence of pervasive, low-grade shock features in CM chondrites and CM-like dust, anomalously low-density measurements for C-type asteroids, and impact experiments which suggest CM chondrites are highly prone to disruption all imply that CM parent bodies are unlikely to have remained intact and instead exist as a collection of loosely aggregated rubble-pile asteroids, composed of primitive shocked clasts.
Osteoporosis: Are we measuring what we intend to measure? In search of the ideal bone strength study
NASA Astrophysics Data System (ADS)
de Riese, Cornelia
2006-02-01
In 1991 the World Health Organization (WHO) defined osteoporosis as a "loss of bone mass and micro architectural deterioration of the skeleton leading to increased risk of fracture." 1,2 Since microarchitecture can not be measured directly, a panel of the WHO recommended that the diagnosis be made according to a quantifiable surrogate marker, calcium mineral, in bone. Subsequently in 1994, the definition focused on the actual bone "density," giving densitometric technology a central place in establishing the diagnosis of osteoporosis. 3,4 But soon it became obvious that there was only limited correlation between bone mineral density (BMD) and actual occurrence of fractures and that decreases in bone mass account for only about 50% of the deterioration of bone strength with aging. In other words only about 60% of bone strength is related to BMD. 5 Recent developments in bone research have shown that bone mineral density in itself is not sufficient to accurately predict fracture risk. Bone is composed of inorganic calcium apatite crystals that mineralize an organic type I collagen matrix. The degree of mineralization, the properties of the collagen matrix, crystal size, trabecular orientation, special distribution of the different components and many more factors are all impacting bone strength. 6-14 Human cadaver studies have confirmed the correlation between bone density and bone. 26 strength. 5,15-20 Changes in cancellous bone morphology appear to lead to a disproportionate decrease in bone strength. 21-26 When postmenopausal women are stratified by age, obvious differences between BMD and actual fracture risk are observed. 24 Felsenberg eloquently summarizes what he calls the "Bone Quality Framework." In great detail he talks about the geometry and micro- architecture of bone and how the different components are related to functional stability. 27 Are our current testing modalities appropriately addressing these structural factors? Are we keeping in mind that in screening for osteoporosis the key variable is fragility, not bone density itself? All currently FDA approved and commercially available equipments for the evaluation of bone status claim that they - at least indirectly - assess the biological fracture risk. This review summarizes an extensive current literature research covering FDA approved as well as experimental devices for the evaluation of bone. The pros and cons of the different techniques are discussed in the context of diagnostic accuracies and practical implications.
Occurrence of springs in massifs of crystalline rocks, northern Portugal
NASA Astrophysics Data System (ADS)
Pacheco, Fernando António Leal; Alencoão, Ana Maria Pires
2002-02-01
An inventory of artesian springs emerging from fractures (fracture springs) was conducted in the Pinhão River Basin and Morais Massif, northern Portugal, comprising an area of approximately 650 km2. Over 1,500 springs were identified and associated with geological domains and fracture sets. Using cross-tabulation analysis, spring distributions by fracture sets were compared among geological environments, and the deviations related to differences in rock structure and, presumably, to differences in deformational histories. The relation between spring frequencies and rock structures was further investigated by spectral determination, the model introduced in this study. Input data are the spring frequencies and fracture lengths in each geological domain, in addition to the angles between fracture strikes and present-day stress-field orientation (θ). The model's output includes the so-called intrinsic densities, a parameter indexing spring occurrence to factors such as fracture type and associated deformational regime and age. The highest densities (12.2 springs/km of lineament) were associated with young shear fractures produced by brittle deformation, and the lowest (0.1) with old tensional and ductile fractures. Spectral determination also relates each orientation class to a dominant structural parameter: where spring occurrence is controlled by θ, the class is parallel to the present-day stress-field orientation; where the control is attributed to the length of fractures, the spring occurrence follows the strike of large-scale normal faults crossing the region. Résumé. Un inventaire des sources artésiennes émergeant de fractures (sources de fractures) a été réalisé dans le bassin de la rivière Pinhão et dans le massif de Morais, dans le nord du Portugal, dans une région couvrant environ 650 km2. Plus de 1,500 sources ont été identifiées et associées à des domaines géologiques et à des ensembles de fractures. Grâce à une analyse de tableaux croisés, les distributions des sources par ensemble de fractures ont été comparées aux situations géologiques et aux écarts liés aux différences dans les structures des roches et, probablement, aux différences dans leurs histoires de déformations. Les relations entre la fréquence des sources et la structure des roches ont été étudiées ensuite par détermination spectrale, modèle présenté dans cette étude. Les données d'entrée sont les fréquences des sources et les longueurs des fractures dans chaque domaine géologique, en plus des angles entre directions de fractures et orientation du champ de contraintes actuel (θ). La sortie du modèle donne les densités dites intrinsèques, un paramètre indexant l'existence d'une source à des facteurs tels que le type de fracture et le régime et l'âge associés de la déformation. Les densités les plus fortes (12,2 sources par km de linéament) ont été associées à des fractures jeunes produites par des déformations lentes, et les plus faibles (0,1) aux fractures anciennes ductiles et de tension. La détermination spectrale associe également chaque classe d'orientation à un paramètre structural dominant: quand la présence d'une source est contrôlée par θ, la classe est parallèle à l'orientation actuelle du champ de contrainte; lorsque le contrôle est attribué à la longueur des fractures, la présence de sources suit le plan des failles normales à grande échelle traversant la région. Resumen. Se ha llevado a cabo un inventario de manantiales emergentes de fracturas (manantiales de fracturas) en la cuenca del Río Pinhão y en el Macizo de Morais. El área estudiada ocupa unos 650 km2 y se halla al Norte de Portugal. Se ha identificado más de 1.500 manantiales, los cuales han sido asociados con dominios geológicos y conjuntos de fracturas. Mediante el Análisis de la Tabulación Cruzada, se ha comparado la distribución de los manantiales por conjuntos de fracturas entre ambientes geológicos, así como las desviaciones relacionadas con diferencias en la estructura de la roca y, presumiblemente, en las historias de deformación. Se profundizó en la relación entre la frecuencia de los manantiales y las estructuras de la roca por medio de la Determinación Espectral, que es un modelo introducido en el presente estudio. Los datos de entrada son las frecuencias de los manantiales y la longitud de las fracturas en cada dominio geológico, además de los ángulos entre las direcciones de las fracturas y la orientación actual del campo de tensiones. Los resultados del modelo incluyen las denominadas densidades intrínsecas, parámetro que cuantifica la existencia de manantiales en función de factores como el tipo de fractura y el régimen y edad de deformación asociados. Las densidades mayores (12,2 manantiales por kilómetro de lineamiento) fueron atribuidas a fracturas jóvenes de cizalla causadas por deformación frágil, y las menores (valor 0,1) con fracturas antiguas y dúctiles. La Determinación Espectral también relaciona cada clase de orientación con un parámetro estructural dominante: donde la existencia de fracturas está dominada por el campo actual de tensiones, la clase es paralela a la orientación presente de dicho campo; donde domina la longitud de las fracturas, sigue la dirección de las fallas normales de gran escala que atraviesan la región.
Fracture network topology and characterization of structural permeability
NASA Astrophysics Data System (ADS)
Hansberry, Rowan; King, Rosalind; Holford, Simon
2017-04-01
There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with other permeability indicators such as drilling fluid losses, and pore pressure measurements. Initial work with these techniques has led to new developments in our ability to image subsurface faults and fractures at a variety of scales from independent datasets. We establish a strong relationship between features identified using seismic attribute analysis and interpreted natural fractures. However, care must be taken to use these methods in a case-by-case basis, as controls on fracture distribution and orientation can vary significantly with both regional and local influences. These results outline and effective method by which structural permeability can be assessed with existing petroleum datasets. However, unlike the broad stress field, mapping fracture orientation and characteristics within the Australian Continent is complicated as the distribution, geometry, areal extent and connectivity of fracture networks can vary significantly.
NASA Astrophysics Data System (ADS)
Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina
2017-12-01
The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John
2017-08-01
Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.
Cummings, Steven R; Karpf, David B; Harris, Fran; Genant, Harry K; Ensrud, Kristine; LaCroix, Andrea Z; Black, Dennis M
2002-03-01
To estimate how much the improvement in bone mass accounts for the reduction in risk of vertebral fracture that has been observed in randomized trials of antiresorptive treatments for osteoporosis. After a systematic search, we conducted a meta-analysis of 12 trials to describe the relation between improvement in spine bone mineral density and reduction in risk of vertebral fracture in postmenopausal women. We also used logistic models to estimate the proportion of the reduction in risk of vertebral fracture observed with alendronate in the Fracture Intervention Trial that was due to improvement in bone mineral density. Across the 12 trials, a 1% improvement in spine bone mineral density was associated with a 0.03 decrease (95% confidence interval [CI]: 0.02 to 0.05) in the relative risk (RR) of vertebral fracture. The reductions in risk were greater than predicted from improvement in bone mineral density; for example, the model estimated that treatments predicted to reduce fracture risk by 20% (RR = 0.80), based on improvement in bone mineral density, actually reduce the risk of fracture by about 45% (RR = 0.55). In the Fracture Intervention Trial, improvement in spine bone mineral density explained 16% (95% CI: 11% to 27%) of the reduction in the risk of vertebral fracture with alendronate. Improvement in spine bone mineral density during treatment with antiresorptive drugs accounts for a predictable but small part of the observed reduction in the risk of vertebral fracture.
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.
2014-05-01
The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.
NASA Astrophysics Data System (ADS)
Figueiredo, Bruno; Tsang, Chin-Fu; Niemi, Auli; Lindgren, Georg
2016-11-01
Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. `Sparse channels' refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.
Thermal convection in three-dimensional fractured porous media
NASA Astrophysics Data System (ADS)
Mezon, C.; Mourzenko, V. V.; Thovert, J.-F.; Antoine, R.; Fontaine, F.; Finizola, A.; Adler, P. M.
2018-01-01
Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Sova, J. A.
1980-01-01
The fracture toughness of boron/aluminum laminates was measured on sheet specimens containing central slits of various lengths that represent cracks. The specimens were loaded axially and had various widths. The sheets were made with five laminate orientation. Fracture toughness was calculated for each laminate orientation. Specimens began failing at the ends of the slit with what appeared to be tensile failures of fibers in the primary load carrying laminae. A general fracture toughness parameter independent of laminate orientation was derived on the basis of fiber failure in the principal load carrying laminae. The value of this parameter was proportional to the critical value of the stress intensity factor. The constant of proportionality depended only on the elastic constants of the laminates.
Relationships between fractures
NASA Astrophysics Data System (ADS)
Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.
2018-01-01
Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.
Description and analysis of cored hydraulic fractures -- Lost Hills field, Kern County, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, R.E.; Murer, A.S.; Timmer, R.S.
1994-05-01
An inclined observation well was drilled in shallow (2,000 ft) Opal-A diatomite. Seven sand-propped hydraulic fractures were cored and recovered. The hydraulic fractures were found within 5[degree] of the azimuth measured with tilt meters and were tilted 15[degree] from vertical, oriented perpendicular to the formation bedding dip. Hydraulic fractures widths ranged from less than one sand grain (40/60 mesh) to 0.4 in. Scanning electron microscopy (SEM) examination of fracture faces showed no damage to the matrix from proppant embedment or compaction, and no evidence of guard residue was detected in the proppant pack or on the formation face. Fractures appearmore » to be considerably longer than modeled. Three closely spaced fractures are interpreted to be branches of a single hydraulic fracture treatment. This paper presents a description of the fractures recovered during coring in Well OO2. Findings related to fracture dimensions and orientations, fracture sources, fracture permeability measurements, and fracture characteristics (proppant embedment, presence of gel residue) are presented. Implications related to field development are discussed.« less
Seismic waves in rocks with fluids and fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.
2007-05-14
Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracturemore » parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.« less
Non-Newtonian fluid flow in 2D fracture networks
NASA Astrophysics Data System (ADS)
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
NASA Astrophysics Data System (ADS)
Harlow, J.
2016-12-01
Arabia Terra's (AT) pock-marked topography in the expansive upland region of Mars Northern Hemisphere has been assumed to be the result of impact crater bombardment. However, examination of several craters by researchers revealed morphologies inconsistent with neighboring craters of similar size and age. These 'craters' share features with terrestrial super-eruption calderas, and are considered a new volcanic construct on Mars called `plains-style' caldera complexes. Eden Patera (EP), located on the northern boundary of AT is a reference type for these calderas. EP lacks well-preserved impact crater morphologies, including a decreasing depth to diameter ratio. Conversely, Eden shares geomorphological attributes with terrestrial caldera complexes such as Valles Caldera (New Mexico): arcuate caldera walls, concentric fracturing/faulting, flat-topped benches, irregular geometric circumferences, etc. This study focuses on peripheral fractures surrounding EP to provide further evidence of calderas within the AT region. Scaled balloon experiments mimicking terrestrial caldera analogs have showcased fracturing/faulting patterns and relationships of caldera systems. These experiments show: 1) radial fracturing (perpendicular to caldera rim) upon inflation, 2) concentric faulting (parallel to sub-parallel to caldera rim) during evacuation, and 3) intersecting radial and concentric peripheral faulting from resurgence. Utilizing Mars Reconnaissance Orbiter Context Camera (CTX) imagery, peripheral fracturing is analyzed using GIS to study variations in peripheral fracture geometries relative to the caldera rim. Visually, concentric fractures dominate within 20 km, radial fractures prevail between 20 and 50 km, followed by gradation into randomly oriented and highly angular intersections in the fretted terrain region. Rose diagrams of orientation relative to north expose uniformly oriented mean regional stresses, but do not illuminate localized caldera stresses. Further examination of orientation relative to caldera rim reveals expected orientations of ±30° on rose diagrams, taking into account the geometric nature of concentric faulting. These results establish a quantitative geometric system to differentiate localized from regional faulting surrounding Eden Patera.
NASA Astrophysics Data System (ADS)
Lin, Ye; Zhang, Haijiang; Jia, Xiaofeng
2018-03-01
For microseismic monitoring of hydraulic fracturing, microseismic migration can be used to image the fracture network with scattered microseismic waves. Compared with conventional microseismic location-based fracture characterization methods, microseismic migration can better constrain the stimulated reservoir volume regardless of the completeness of detected and located microseismic sources. However, the imaging results from microseismic migration may suffer from the contamination of other structures and thus the target fracture zones may not be illuminated properly. To solve this issue, in this study we propose a target-oriented staining algorithm for microseismic reverse-time migration. In the staining algorithm, the target area is first stained by constructing an imaginary velocity field and then a synchronized source wavefield only concerning the target structure is produced. As a result, a synchronized image from imaging with the synchronized source wavefield mainly contains the target structures. Synthetic tests based on a downhole microseismic monitoring system show that the target-oriented microseismic reverse-time migration method improves the illumination of target areas.
NASA Astrophysics Data System (ADS)
Desroches, A.; Butler, K.
2009-05-01
The upper Saint John River valley represents an economically important agricultural region that suffers from high nitrate levels in the groundwater as a result of fertilizer use. This study focuses on the fractured bedrock aquifer beneath the Black Brook Watershed, near Saint-Andre (Grand Falls), New Brunswick, where prediction of nitrate migration is limited by a lack of knowledge of the bedrock fracture characteristics. Bedrock consists of a fine-grained, siliciclastic unit of the Grog Brook Group gradationally overlain by a carbonate unit assigned to the Matapédia Group. Groundwater flow through the fractured bedrock is expected to be primarily influenced by the distribution and orientation of fractures in these rock units. This study demonstrates the effectiveness of the select suite of borehole-geophysical tools used to identify and describe the fractured bedrock characteristics, and assists in understanding the migration pathways of agrochemical leachate from farm fields. Fracture datasets were acquired from five new vertical boreholes that ranged from 50 to 140 metres in depth, and from three outcrop locations along the new Trans-Canada Highway, approximately two kilometres away. The borehole-geophysical methods used included natural gamma ray (GR), single point resistance (SPR), spontaneous potential (SP), slim-hole optical borehole televiewer (OBI) and acoustic borehole televiewer (ABI). The ABI and OBI tools delivered high-resolution oriented images of the borehole walls, and enabled visualization of fractures in situ, and provided accurate information on the location, orientation, and aperture. The GR, SPR and SP logs identified changes in lithology, bed thickness and conductive fracture zones. Detailed inspection of the borehole televiewer images identified 390 fractures. Equal-area stereographic and rose diagrams of fracture planes have been used to identify three discrete fracture sets: 1) steeply dipping fractures that strike 068o/248o, with fracture subsets dipping roughly 70o to 80o towards the N-NW and S-SE; 2) steeply dipping fractures that strike towards 156o/336o, with fracture subsets dipping roughly 70o to 80o towards the NE and SW; and 3) primary set of moderately dipping fractures that strike 074o/254o and dip roughly 30o to 40o towards the SE. The strike of the steeply dipping fracture sets are oriented roughly perpendicular to each other, reflecting two distinct fracture generation events. The low-angle fractures are most common and correspond to openings along bedding planes that dip roughly 38o towards 164o. This is a result of penetrating only one limb of a fold; presumably a similar set of bedding-plane openings occur along the adjacent limb of the fold, with resultant fracture dips towards the northwest. Fractures exposed in outcrops along the Trans-Canada Highway exhibit a similar orientation distribution to that observed in the boreholes. However, as expected, these exposures show a greater proportion of fractures with dips between 80o and 90o, compared to the vertical boreholes. A Terzaghi fracture probability correction was applied to the boreholes in order to account for this bias. The combined fracture datasets provide valuable information towards understanding groundwater flow and migration pathways of fertilizer leachate into the bedrock aquifer, and will lead to the development of more complex hydrogeological models.
Biver, E; Durosier, C; Chevalley, T; Herrmann, F R; Ferrari, S; Rizzoli, R
2015-08-01
In a cross-sectional analysis in postmenopausal women, prior ankle fractures were associated with lower areal bone mineral density (BMD) and trabecular bone alterations compared to no fracture history. Compared to women with forearm fractures, microstructure alterations were of lower magnitude. These data suggest that ankle fractures are another manifestation of bone fragility. Whether ankle fractures represent fragility fractures associated with low areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) and/or bone microstructure alterations remains unclear, in contrast to the well-recognised association between forearm fractures and osteoporosis. The objective of this study was to investigate aBMD, vBMD and bone microstructure in postmenopausal women with prior ankle fracture in adulthood, compared with women without prior fracture or with women with prior forearm fractures, considered as typically of osteoporotic origin. In a cross-sectional analysis in the Geneva Retirees Cohort study, 63 women with ankle fracture and 59 with forearm fracture were compared to 433 women without fracture (mean age, 65 ± 1 years). aBMD was measured by dual-energy X-ray absorptiometry; distal radius and tibia vBMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography. Compared with women without fracture, those with ankle fractures had lower aBMD, radius vBMD (-7.9%), trabecular density (-10.7%), number (-7.3%) and thickness (-4.6%) and higher trabecular spacing (+14.5%) (P < 0.05 for all). Tibia trabecular variables were also altered. For 1 standard deviation decrease in total hip aBMD or radius trabecular density, odds ratios for ankle fractures were 2.2 and 1.6, respectively, vs 2.2 and 2.7 for forearm fracture, respectively (P ≤ 0.001 for all). Compared to women with forearm fractures, those with ankle fractures had similar spine and hip aBMD, but microstructure alterations of lower magnitude. Women with ankle fractures have lower aBMD and vBMD and trabecular bone alterations, suggesting that ankle fractures are another manifestation of bone fragility.
The Effect of fluid buoyancy and fracture orientation on CaCO3 Formation in a Fracture
NASA Astrophysics Data System (ADS)
Xu, Z.; Li, Q.; Sheets, J.; Kneafsey, T. J.; Jun, Y. S.; Cole, D. R.; Pyrak-Nolte, L. J.
2016-12-01
Sealing fractures through mineral precipitation is a potential way for improving caprock integrity in subsurface reservoirs. We investigated the effect of buoyancy and fracture orientation on the amount and spatial distribution of calcium carbonate (CaCO3) precipitates in a fracture. To monitor mineral precipitation during reactive flow, transparent acrylic casts of an induced fracture in Austin chalk were used. To trigger CaCO3 precipitates, 1M CaCl2 with either 0.6M NaHCO3 solution (for surface adhering precipitation), or 0.3M Na2CO3 solution (for pore filling precipitation) were injected simultaneously into a saturated fracture. Experiments were performed with the fracture plane oriented either parallel or perpendicular to gravity. Acoustic wave transmission (compressional wave, 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. For the vertical fractures, the denser CaCl2 almost completely displaced the carbonate solution in the fracture and caused strong localization of the precipitates. The width of the precipitated region grew slowly over time. The horizontal fracture caused the less dense carbonate to flow over the CaCl2 solution thus resulting in more mixing and a more even distribution of precipitates throughout the fracture. The acoustic signatures depended on the type of precipitation that occurred. For pore filling experiments, the compressional wave amplitude increased by 5-20% and the velocity increased for both the vertical and horizontal fractures. However, the acoustic responses differed between the vertical and horizontal fractures for surface adhering experiments. Based on the acoustic response, surface adhering precipitation increased fracture specific stiffness more in the horizontal fracture than in the vertical fracture. The horizontal fracture enabled more mixing of the two solutions within the fracture than the vertical fracture. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231
NASA Astrophysics Data System (ADS)
Humair, Florian; Epard, Jean-Luc; Bauville, Arthur; Jaboyedoff, Michel; Pana, Dinu; Kaus, Boris; Schmalholz, Stefan
2016-04-01
The interpretation of fold-related joints and faults is of primary importance in terms of fluids prospection (e.g. water, oil, gas, C02) since anticlines are potential structural trap while fracturing can strongly influence the storage capacity as well as the migration pathways. Located at the front of the Foothills of the Rocky Mountains in Alberta (Canada), the Livingstone Range (LRA) is analogous to hydrocarbon reservoir that occur elsewhere in the Foothills (Cooley et al., 2011). The Livingstone Range fold system is related to the development of the Livingstone thrust that cuts around 1000m up-section from a regional decollement in the Palliser Formation (Devonian) to another in the Fernie Formation (Jurassic). Our study focuses on the detailed structural investigation of the Livingstone River anticline (northern part of the LRA). It aims at characterizing the anticline geometry as well as the fracturing pattern (orientation, mode, infilling, spacing, trace length, density, and cross-cutting relationships) in order to propose a kinematic interpretation of the fold-related fracturing genesis. The study area is investigated at different scales by combining field surveys with remote sensing (HR-Digital Elevation Model, Ground-based LiDAR, Gigapixel photography) and thin-sections analyses. In a second step we performed finite difference 3D numerical simulations in order to compute the evolution of local principal stress orientation during folding. We compared the fracture (or plastic bands) distribution in the field with 1) a dynamic numerical model of detachment folding; and 2) an instantaneous numerical model based on the final fold geometry. Cooley, M.A., Price, R.A., Dixon, J.M., Kyser, T.K. 2011. Along-strike variations and internal details of chevron-style flexural slip thrust-propagation folds within the southern Livingstone Range anticlinorium, a paleo-hydrocarbon reservoir in southern Alberta Foothills, Canada. AAPG bulletin, 95 (11), 1821-1849.
Metallurgical characterization of the fracture of several high strength aluminum alloys
NASA Technical Reports Server (NTRS)
Bhandarkar, M. D.; Lisagor, W. B.
1977-01-01
The fracture behavior for structural aluminum alloys (2024, 6061, 7075, and 7178) was examined in selected heat treatments. The investigation included tensile, shear, and precracked notch-bend specimens fractured at ambient temperature under monotonic loading. Specimens were obtained from thin sheets and thick plates and were tested in longitudinal and transverse orientations at different strain rates. Microstructures of alloys were examined using the optical microscope and the scanning electron microscope with associated energy dispersive X ray chemical analysis. Several different types of second phase particles, some not reported by other investigators, were identified in the alloys. Fracture morphology was related to microstructural variables, test variables, and type of commercial product. Specimen orientation examined in the present investigation had little effect on fracture morphology. Test strain rate changes resulted in some change in shear fracture morphology, but not in fracture morphology of tensile specimens.
NASA Astrophysics Data System (ADS)
Kim, Hanna; Xie, Linmao; Min, Ki-Bok; Bae, Seongho; Stephansson, Ove
2017-12-01
It is desirable to combine the stress measurement data produced by different methods to obtain a more reliable estimation of in situ stress. We present a regional case study of integrated in situ stress estimation by hydraulic fracturing, observations of borehole breakouts and drilling-induced fractures, and numerical modeling of a 1 km-deep borehole (EXP-1) in Pohang, South Korea. Prior to measuring the stress, World Stress Map (WSM) and modern field data in the Korean Peninsula are used to construct a best estimate stress model in this area. Then, new stress data from hydraulic fracturing and borehole observations is added to determine magnitude and orientation of horizontal stresses. Minimum horizontal principal stress is estimated from the shut-in pressure of the hydraulic fracturing measurement at a depth of about 700 m. The horizontal stress ratios ( S Hmax/ S hmin) derived from hydraulic fracturing, borehole breakout, and drilling-induced fractures are 1.4, 1.2, and 1.1-1.4, respectively, and the average orientations of the maximum horizontal stresses derived by field methods are N138°E, N122°E, and N136°E, respectively. The results of hydraulic fracturing and borehole observations are integrated with a result of numerical modeling to produce a final rock stress model. The results of the integration give in situ stress ratios of 1.3/1.0/0.8 ( S Hmax/ S V/ S hmin) with an average azimuth of S Hmax in the orientation range of N130°E-N136°E. It is found that the orientation of S Hmax is deviated by more than 40° clockwise compared to directions reported for the WSM in southeastern Korean peninsula.
Qasim, M; Farinella, G; Zhang, J; Li, X; Yang, L; Eastell, R; Viceconti, M
2016-09-01
A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMDNeck, MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design.
Buchanan, Drew; Ural, Ani
2010-08-01
Distal forearm fracture is one of the most frequently observed osteoporotic fractures, which may occur as a result of low energy falls such as falls from a standing height and may be linked to the osteoporotic nature of the bone, especially in the elderly. In order to prevent the occurrence of radius fractures and their adverse outcomes, understanding the effect of both extrinsic and intrinsic contributors to fracture risk is essential. In this study, a nonlinear fracture mechanics-based finite element model is applied to human radius to assess the influence of extrinsic factors (load orientation and load distribution between scaphoid and lunate) and intrinsic bone properties (age-related changes in fracture properties and bone geometry) on the Colles' fracture load. Seven three-dimensional finite element models of radius were created, and the fracture loads were determined by using cohesive finite element modeling, which explicitly represented the crack and the fracture process zone behavior. The simulation results showed that the load direction with respect to the longitudinal and dorsal axes of the radius influenced the fracture load. The fracture load increased with larger angles between the resultant load and the dorsal axis, and with smaller angles between the resultant load and longitudinal axis. The fracture load also varied as a function of the load ratio between the lunate and scaphoid, however, not as drastically as with the load orientation. The fracture load decreased as the load ratio (lunate/scaphoid) increased. Multiple regression analysis showed that the bone geometry and the load orientation are the most important variables that contribute to the prediction of the fracture load. The findings in this study establish a robust computational fracture risk assessment method that combines the effects of intrinsic properties of bone with extrinsic factors associated with a fall, and may be elemental in the identification of high fracture risk individuals as well as in the development of fracture prevention methods including protective falling techniques. The additional information that this study brings to fracture identification and prevention highlights the promise of fracture mechanics-based finite element modeling in fracture risk assessment.
Morin, Roger H.; Senior, Lisa A.; Decker, Edward R.
2000-01-01
The Brunswick Group and the underlying Lockatong Formation are composed of lithified Mesozoic sediments that constitute part of the Newark Basin in southeastern Pennsylvania. These fractured rocks form an important regional aquifer that consists of gradational sequences of shale, siltstone, and sandstone, with fluid transport occurring primarily in fractures. An extensive suite of geophysical logs was obtained in seven wells located at the borough of Lansdale, Pennsylvania, in order to better characterize the areal hydrogeologic system and provide guidelines for the refinement of numerical ground water models. Six of the seven wells are approximately 120 m deep and the seventh extends to a depth of 335 m. Temperature, fluid conductivity, and flowmeter logs are used to locate zones of fluid exchange and to quantify transmissivities. Electrical resistivity and natural gamma logs together yield detailed stratigraphic information, and digital acoustic televiewer data provide magnetically oriented images of the borehole wall from which almost 900 fractures are identified.Analyses of the geophysical data indicate that the aquifer penetrated by the deep well can be separated into two distinct structural domains, which may, in turn, reflect different mechanical responses to basin extension by different sedimentary units:1. In the shallow zone (above 125 m), the dominant fracture population consists of gently dipping bedding plane partings that strike N46°E and dip to the northwest at about 11 degrees. Fluid flow is concentrated in the upper 80 m along these subhorizontal fractures, with transmissivities rapidly diminishing in magnitude with depth.2. The zone below 125 m marks the appearance of numerous high-angle fractures that are orthogonal to the bedding planes, striking parallel but dipping steeply southeast at 77 degrees.This secondary set of fractures is associated with a fairly thick (approximately 60 m) high-resistivity, low-transmissivity sandstone unit that is abruptly terminated by a thin shale bed at a depth of 190 m. This lower contact effectively delineates the aquifer's vertical extent at this location because no detectable evidence of ground water movement is found below it. Thus, fluid flow is controlled by fractures, but fracture type and orientation are related to lithology. Finally, a transient thermal-conduction model is successfully applied to simulate observed temperature logs, thereby confirming the effects of ground-surface warming that occurred in the area as a result of urbanization at the turn of the century. The systematic warming of the upper 120 m has increased the transmissivity of this aquifer by almost 10%, simply due to changes in fluid viscosity and density.
NASA Astrophysics Data System (ADS)
Stigsson, Martin
2016-11-01
Many engineering applications in fractured crystalline rocks use measured orientations of structures such as rock contact and fractures, and lineated objects such as foliation and rock stress, mapped in boreholes as their foundation. Despite that these measurements are afflicted with uncertainties, very few attempts to quantify their magnitudes and effects on the inferred orientations have been reported. Only relying on the specification of tool imprecision may considerably underestimate the actual uncertainty space. The present work identifies nine sources of uncertainties, develops inference models of their magnitudes, and points out possible implications for the inference on orientation models and thereby effects on downstream models. The uncertainty analysis in this work builds on a unique data set from site investigations, performed by the Swedish Nuclear Fuel and Waste Management Co. (SKB). During these investigations, more than 70 boreholes with a maximum depth of 1 km were drilled in crystalline rock with a cumulative length of more than 34 km including almost 200,000 single fracture intercepts. The work presented, hence, relies on orientation of fractures. However, the techniques to infer the magnitude of orientation uncertainty may be applied to all types of structures and lineated objects in boreholes. The uncertainties are not solely detrimental, but can be valuable, provided that the reason for their presence is properly understood and the magnitudes correctly inferred. The main findings of this work are as follows: (1) knowledge of the orientation uncertainty is crucial in order to be able to infer correct orientation model and parameters coupled to the fracture sets; (2) it is important to perform multiple measurements to be able to infer the actual uncertainty instead of relying on the theoretical uncertainty provided by the manufacturers; (3) it is important to use the most appropriate tool for the prevailing circumstances; and (4) the single most important parameter to decrease the uncertainty space is to avoid drilling steeper than about -80°.
Loughridge, A B; Hess, A M; Parkin, T D; Kawcak, C E
2017-03-01
Changes in subchondral bone density, induced by the repetitive cyclical loading of exercise, may potentiate fatigue damage and the risk of fracture. To use computed tomography (CT) to characterise bone density patterns at the articular surface of the third metacarpal bone in racehorses with and without lateral condylar fractures. Case control METHODS: Computed tomographic images of the distal articulating surface of the third metacarpal bone were obtained from Thoroughbred racehorses subjected to euthanasia in the UK. Third metacarpal bones were divided into 3 groups based on lateral condyle status; fractured (FX, n = 42), nonfractured contralateral condyle (NFX, n = 42) and control condyles from horses subjected to euthanasia for reasons unrelated to the third metacarpal bone (control, n = 94). Colour CT images were generated whereby each colour represented a range of pixel values and thus a relative range of bone density. A density value was calculated qualitatively by estimating the percentage of each colour within a specific region. Subchondral bone density was assessed in 6 regions from dorsal to palmar and 1 mm medial and lateral to the centre of the lateral parasagittal groove in NFX and control condyles and 1 mm medial and lateral to the fracture in FX condyles. Bone density was significantly higher in the FX and NFX condyles compared with control condyles for all 6 regions. A significantly higher bone density was observed in FX condyles relative to NFX condyles in the lateral middle and lateral palmar regions. Fractured condyles had increased heterogeneity in density among the 6 regions of interest compared with control and NFX condyles. Adjacent to the fracture, a focal increase in bone density and increased heterogeneity of density were characteristic of limbs with lateral condylar fractures compared with control and NFX condyles. These differences may represent pathological changes in bone density that increase the risk for lateral condylar fractures in racehorses. © 2015 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Zakharova, N. V.; Goldberg, D.
2013-12-01
Induced seismicity has emerged as one of the primary concerns for large-volume underground injections, such as wastewater disposal and carbon sequestration. In order to mitigate potential seismic risks, detailed knowledge of reservoir geometry, occurrence of faults and fractures, and the distribution of in situ stresses is required to predict the effect of pore pressure increase on formation stability. We present a detailed analysis of in situ stress distribution at a potential carbon sequestration site in the northern Newark basin, and then consider fault and fracture stability under injection conditions taking into account the effects of localized stress perturbations, formation anisotropy and poroelasticity. The study utilizes borehole geophysical data obtained in a 2-km-deep well drilled into Triassic lacustrine sediments in Rockland County, NY. A complex pattern of local variations in the stress field with depth and at multiple scales is revealed by borehole breakouts, including: (i) gradual counter-clockwise rotation of horizontal stress orientation and decrease in relative magnitude with depth, (ii) pronounced rotations of the principal horizontal stresses at two depths, ~800 m and ~1200 m, and (iii) small-scale departures from mean orientation at the scale of meters to tens of meters. Localized stress drop near active faults may explain these observations. Seismic profiling in the vicinity of the borehole and along dip and strike of basin sediments suggests the presence of crosscutting, and potentially active, fault zones but their geometry cannot be accurately resolved. Borehole image data from the site indicates the presence of numerous fractures with increasing density over depth that roughly form two sets: high-angle fractures striking NE-SW and sub-horizontal fractures dipping NW. We perform iterative dislocation modeling for various fault orientations and slip distances to match the observed stress distribution in the borehole. Both intersecting and non-intersecting faults are modeled. Uncertainties introduced by unknown compressive rock strength and heterogeneous lithology are addressed using multivariate statistical analysis of the acquired log data, including elastic wave anisotropy. Our preliminary results suggest that shallow reservoirs (< 1 km depth) are critically stressed and are not viable candidates for underground injections; however, deeper reservoirs (> 1.2 km) may allow injection with up to 15 MPa pore pressure increase before the effective stress reaches the failure limit on critical faults.
Influence of dissolved hydrogen on aluminum-lithium alloy fracture behavior
NASA Technical Reports Server (NTRS)
Rivet, F. C.; Swanson, R. E.
1989-01-01
The objective of this work is to study the effects of dissolved hydrogen on the mechanical properties of 2090 and 2219 alloys. Prior to mechanical testing, potentiostatic and potentiodynamic tests were performed using NaCl/HCl solutions varying in pH from 1.5 to 7.5 (3.5 pct NaCl in deionized water). After analysis of the potentiodynamic curve for each solution, several potentiostatic experiments were conducted for various times (from 10 minutes to several hours) with a cathodic overpotential of 300 mV. These experiments were performed to select charging conditions. It is shown that the fracture of L-S and T-S orientations proceeds via slipping of layers in the S-T direction. The T-S and L-S orientations fractured with substantially higher propagation energy that the L-T and T-L orientations, due in large part to the extensive delamination propagation of the fracture.
Laboratory hydraulic fracturing experiments in intact and pre-fractured rock
Zoback, M.D.; Rummel, F.; Jung, R.; Raleigh, C.B.
1977-01-01
Laboratory hydraulic fracturing experiments were conducted to investigate two factors which could influence the use of the hydrofrac technique for in-situ stress determinations; the possible dependence of the breakdown pressure upon the rate of borehole pressurization, and the influence of pre-existing cracks on the orientation of generated fractures. The experiments have shown that while the rate of borehole pressurization has a marked effect on breakdown pressures, the pressure at which hydraulic fractures initiate (and thus tensile strength) is independent of the rate of borehole pressurization when the effect of fluid penetration is negligible. Thus, the experiments indicate that use of breakdown pressures rather than fracture initiation pressures may lead to an erroneous estimate of tectonic stresses. A conceptual model is proposed to explain anomalously high breakdown pressures observed when fracturing with high viscosity fluids. In this model, initial fracture propagation is presumed to be stable due to large differences between the borehole pressure and that within the fracture. In samples which contained pre-existing fractures which were 'leaky' to water, we found it possible to generate hydraulic fractures oriented parallel to the direction of maximum compression if high viscosity drilling mud was used as the fracturing fluid. ?? 1977.
NASA Astrophysics Data System (ADS)
Al-Jabr, Haytham M.
The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample orientation based on grain size and texture. The calculated DBTTs correlated well with the experimental values. The {001} and {113} components are the main preferred orientations that cause brittleness in the D direction, since their {001} planes make an angle less than 20° with the primary fracture plane of the samples oriented in the D direction. It was also concluded that delamination occurs due to banded bainite regions that were oriented such that their {001} planes make a small angle with the rolling plane leading to degradation in crack arrestability. The texture of the banded regions consisted of {001}, {113} or {111} orientations. It was concluded that the {001} and {113} orientations promote splitting because their fracture strengths in the normal direction are low. The {111} orientation has a calculated fracture strength more than twice the {001} and {113} orientations and therefore banded regions with the {111} texture are more susceptible to cleavage fracture perpendicular to the normal direction.
Laboratory research of fracture geometry in multistage HFF in triaxial state
NASA Astrophysics Data System (ADS)
Bondarenko, T. M.; Hou, B.; Chen, M.; Yan, L.
2017-05-01
Multistage hydraulic fracturing of formation (HFF) in wells with horizontal completion is an efficientmethod for intensifying oil extraction which, as a rule, is used to develop nontraditional collectors. It is assumed that the complicated character of HFF fractures significantly influences the fracture geometry in the rock matrix. Numerous theoretical models proposed to predict the fracture geometry and the character of interaction of mechanical stresses in the multistage HFF have not been proved experimentally. In this paper, we present the results of laboratory modeling of the multistage HFF performed on a contemporary laboratory-scale plant in the triaxial stress state by using a gel-solution as the HFF agent. As a result of the experiment, a fracturing pattern was formed in the cubic specimen of the model material. The laboratory results showed that a nearly plane fracture is formed at the firstHFF stage, while a concave fracture is formed at the second HFF stage. The interaction of the stress fields created by the two principal HFF fractures results in the growth of secondary fractures whose directions turned out to be parallel to the modeled well bore. But this stress interference leads to a decrease in the width of the second principal fracture. It is was discovered that the penny-shaped fracture model is more appropriate for predicting the geometry of HFF fractures in horizontal wells than the two-dimensional models of fracture propagation (PKN model, KGD model). A computational experiment based on the boundary element method was carried out to obtain the qualitative description of the multistage HFF processes. As a result, a mechanical model of fracture propagation was constructed,which was used to obtain the mechanical stress field (the stress contrast) and the fracture opening angle distribution over fracture length and fracture orientation direction. The conclusions made in the laboratory modeling of the multistage HFF technology agree well with the conclusions made in the computational experiment. Special attention must be paid to the design of the HFF stage spacing density in the implementation of the multistage HFF in wells with horizontal completion.
Onset of density-driven instabilities in fractured aquifers
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2018-04-01
Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.
Wright, D D; Gilbert, J L; Lautenschlager, E P
1999-08-01
A novel material, self-reinforced composite poly(methyl methacrylate) (SRC-PMMA) has been previously developed in this laboratory. It consists of high-strength PMMA fibers embedded in a matrix of PMMA derived from the fibers. As a composite material, uniaxial SRC-PMMA has been shown to have greatly improved flexural, tensile, fracture toughness and fatigue properties when compared to unreinforced PMMA. Previous work examined one empirically defined processing condition. This work systematically examines the effect of processing time and temperature on the thermal properties, fracture toughness and fracture morphology of SRC-PMMA produced by a hot compaction method. Differential scanning calorimetry (DSC) shows that composites containing high amounts of retained molecular orientation exhibit both endothermic and exothermic peaks which depend on processing times and temperatures. An exothermic release of energy just above Tg is related to the release of retained molecular orientation in the composites. This release of energy decreases linearly with increasing processing temperature or time for the range investigated. Fracture toughness results show a maximum fracture toughness of 3.18 MPa m1/2 for samples processed for 65 min at 128 degrees C. Optimal structure and fracture toughness are obtained in composites which have maximum interfiber bonding and minimal loss of molecular orientation. Composite fracture mechanisms are highly dependent on processing. Low processing times and temperatures result in more interfiber/matrix fracture, while higher processing times and temperatures result in higher ductility and more transfiber fracture. Excessive processing times result in brittle failure. Copyright 1999 Kluwer Academic Publishers
Bartl, R; Bartl, C
2015-12-01
Osteoporosis is still an underdiagnosed and insufficiently therapied widespread disease in Germany. Of the estimated 7 million osteoporosis patients only 1.5 million receive a guideline conform diagnosis and even less receive appropriate treatment. Some 90 % of patients are provided with analgesics but only 10 % receive an effective therapy, although efficacious, well-tested and affordable medications are available. In addition, approximately one half of the patients terminate treatment after only 1 year although according to the results of recent studies the duration of therapy should be at least 3-5 years. In view of the increasing average life expectancy, a consistent management for prevention of fractures associated with osteoporosis is always most important for society, even if only for reasons of costs. Achievement of this target depends on four circumstances: clarification of the origin of osteoporosis and fractures (bone consciousness), prophylaxis of bone loss and fractures (primary prevention), consistent guideline conform diagnostics and therapy (secondary and tertiary prevention) and cooperation of all disciplines in medicine (bone is everybody's business). This article describes the current state of diagnostics (bone density measurement with dual X-ray absorptiometry, FRAX®), prophylaxis of fractures (screening program) and therapy (use of economic and effective medications with low side effects). Novel medications are already undergoing clinical testing and a "healing" of bone reduction with restoration of the normal bone structure is to be expected.
Fracture of single crystals of the nickel-base superalloy PWA 1480E in helium at 22 C
NASA Technical Reports Server (NTRS)
Chen, P. S.; Wilcox, R. C.
1991-01-01
The fracture behavior and deformation of He-charged (at 22 C) single crystals of PWA 1480E Ni-base superalloy were investigated using SEM and TEM techniques to observe the behavior of tensile fractures in notched single crystals with seven different crystal growth orientations: 100-line, 110-line, 111-line, 013-line, 112-line, 123-line, and 223-line. To identify the cleavage plane orientation, a stereoscopic technique, combined with the use of planar gamma-prime morphologies, was applied. It was found that gamma-prime particles were orderly and closely aligned with edges along the 100-line, 010-line, and 001-line-oriented directions of the gamma matrix. Different crystal growth orientations were found not to affect the morphology of gamma-prime particles. The accumulation of dislocations around gamma/gamma-prime interfaces formed strong barriers to subsequent dislocation movement and was the primary strengthening mechanism at room temperature.
Geotechnical Site Investigation Using S-waves with Implications for Ground Motion Analysis
NASA Astrophysics Data System (ADS)
Hassan, Bilal; Butt, Stephen D.; Hurich, Charles A.
2017-12-01
Evaluation results of shear wave attenuation-based ground motion restricted by fracture orientation and rheology, from among those of an extended experimental study, are presented herein. The issues of competence of fractured bedrock dynamically disturbed multilaterally are assessed. Disturbance is primarily modelled by Sh and Sv stimulation, given fracture orientation, while subjected to direct fracture stress regime conditions varying in time. Hence, directionalities of polarisation and stress are taken into consideration simultaneously following simple site-specific non-erodetic approach. Comparison of spectral curves and spectral ratio curves of attenuation with respect to variations of direction and stress emphasise the amplification of the `seismic response' in one direction compared to the other, i.e. vertical vs. horizontal, in terms of weighing possibilities of or predicting structural integrity against failure. The composite analyses of multiple spectral curves not only enable determination of the orientation of the fracture set/s in space but also allow inferring the nature of more amplified response perpendicular to the crack surface compared to that of a response parallel to the crack surface.
Hydrogen induced fracture characteristics of single crystal nickel-based superalloys
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Wilcox, Roy C.
1990-01-01
A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.
Bilateral trampoline fracture of the proximal tibia in a child.
Arkink, Enrico B; van der Plas, Annelies; Sneep, Ruth W; Reijnierse, Monique
2017-12-01
Trampoline fractures are transversely oriented impaction fractures of the proximal tibia sustained by young children jumping on a trampoline. Unaware of the mechanism of this specific nontraumatic fracture, physicians may fail to detect these fractures on plain radiographs, as radiological findings may be very subtle. In this case report, we present a rare case of bilateral trampoline fractures with an explanation of the trauma mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Michael J.
This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steelmore » are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows that fracture toughness values of larger specimens are higher and more representative of the material’s fracture behavior in a fully constrained tritium reservoir. The toughness properties measured for sub-size specimens were about 65-75% of the values for larger specimens. While the data from sub-size specimens are conservative, they may be overly so. The fracture toughness properties from sub-size specimens are valuable in that they can be used for tritium effects studies and show the same trends and alloy differences as those seen from larger specimen data. Additional work is planned, including finite element modeling, to see if sub-size specimen data could be adjusted in some way to be more closely aligned with the actual material behavior in a fully constrained pressure vessel.« less
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Henkener, Julie A.
1990-01-01
A series of fracture mechanics tests, using the Be-Cu alloy CDA172 in the round rod product form, was conducted in a lab air environment at room temperature. Tensile data is presented in both the L and C directions and K sub Ic data in both the C-R and C-L orientations. Fracture toughness values were derived from M(T) (center cracked), PS(T) (surface cracked) and CC01 (corner cracked) specimens of varying thickness. Fatigue crack growth data were obtained for the C-R orientation at stress ratio of 0.1, 0.4, and 0.7 and for the C-L orientation at stress ratios of 0.1, 0.3, 0.4, and 0.7.
Method for describing fractures in subterranean earth formations
Shuck, Lowell Z.
1977-01-01
The configuration and directional orientation of natural or induced fractures in subterranean earth formations are described by introducing a liquid explosive into the fracture, detonating the explosive, and then monitoring the resulting acoustic emissions with strategically placed acoustic sensors as the explosion propagates through the fracture at a known rate.
Lin, Z L; Li, P F; Pang, Z H; Zheng, X H; Huang, F; Xu, H H; Li, Q L
2015-11-01
Hip fracture is a kind of osteoporotic fractures in elderly patients. Its important monitoring indicator is to measure bone mineral density (BMD) using DXA. The stress characteristics and material distribution in different parts of the bones can be well simulated by three-dimensional finite element analysis. Our previous studies have demonstrated a linear positive correlation between clinical BMD and the density of three-dimensional finite element model of the femur. However, the correlation between the density variation between intertrochanteric region and collum femoris region of the model and the fracture site has not been studied yet. The present study intends to investigate whether the regional difference in the density of three-dimensional finite element model of the femur can be used to predict hip fracture site in elderly females. The CT data of both hip joints were collected from 16 cases of elderly female patients with hip fractures. Mimics 15.01 software was used to reconstruct the model of proximal femur on the healthy side. Ten kinds of material properties were assigned. In Abaqus 6.12 software, the collum femoris region and intertrochanteric region were, respectively, drawn for calculating the corresponding regional density of the model, followed by prediction of hip fracture site and final comparison with factual fracture site. The intertrochanteric region/collum femoris region density was [(1.20 ± 0.02) × 10(6)] on the fracture site and [(1.22 ± 0.03) × 10(6)] on the non-fracture site, and the difference was statistically significant (P = 0.03). Among 16 established models of proximal femur on the healthy side, 14 models were consistent with the actual fracture sites, one model was inconsistent, and one model was unpredictable, with the coincidence rate of 87.5 %. The intertrochanteric region or collum femoris region with lower BMD is more prone to hip fracture of the type on the corresponding site.
Fracture process zone in granite
Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.
2000-01-01
In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Riahi, A.; Damjanac, B.
2013-12-01
Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid injection into the reservoir during stimulation phase was simulated using a fully coupled hydro-mechanical model. The heat production phase was simulated using a coupled thermo-hydro-mechanical model. In these simulations, both advective heat transfer by fluid flow and the conductive heat transfer within the rock blocks were modeled. The effect of temperature change on stresses and fracture aperture, and thus flow rates was considered. The response of formations with different DFN characteristics are analyzed by evaluating the production rate, produced power, and total energy extracted from the system over a period of five years. By simulating a full cycle of stimulation and production, the numerical modeling approach represents a realistic estimate of evolving permeability and evaluates how stimulation can be beneficial to the production phase. It is believed that these numerical sensitivity studies can provide valuable insight in evaluation of the potential of success of an EGS project, and can be used to better design the operational parameters in order to optimize heat production. Keywords: Numerical modeling, rock mechanics, discrete fracture network, stimulation, engineered geothermal reservoirs, heat production
New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
Carpenter, R Dana; Beaupré, Gary S; Lang, Thomas F; Orwoll, Eric S; Carter, Dennis R
2005-09-01
The influence of fall orientation on femur strength has important implications for understanding hip fracture risk. A new image analysis technique showed that the strength of the femoral neck in 37 males varied significantly along the neck axis and that bending strength varied by a factor of up to 2.8 for different loading directions. Osteoporosis is associated with decreased BMD and increased hip fracture risk, but it is unclear whether specific osteoporotic changes in the proximal femur lead to a more vulnerable overall structure. Nonhomogeneous beam theory, which is used to determine the mechanical response of composite structures to applied loads, can be used along with QCT to estimate the resistance of the femoral neck to axial forces and bending moments. The bending moment [My(theta)] sufficient to induce yielding within femoral neck sections was estimated for a range of bending orientations (theta) using in vivo QCT images of 37 male (mean age, 73 years; range, 65-87 years) femora. Volumetric BMD, axial stiffness, average moment at yield (M(y,avg)), maximum and minimum moment at yield (M(y,max) and M(y,min)), bone strength index (BSI), stress-strain index (SSI), and density-weighted moments of resistance (Rx and Ry) were also computed. Differences among the proximal, mid-, and distal neck regions were detected using ANOVA. My(theta) was found to vary by as much as a factor of 2.8 for different bending directions. Axial stiffness, M(y,avg), M(y,max), M(y,min), BSI, and Rx differed significantly between all femoral neck regions, with an overall trend of increasing axial stiffness and bending strength when moving from the proximal neck to the distal neck. Mean axial stiffness increased 62% between the proximal and distal neck, and mean M(y,avg) increased 53% between the proximal and distal neck. The results of this study show that femoral neck strength strongly depends on both fall orientation and location along the neck axis. Compressive yielding in the superior portion of the femoral neck is expected to initiate fracture in a fall to the side.
Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado
NASA Astrophysics Data System (ADS)
Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.
2015-02-01
Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpreted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.
Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble
NASA Astrophysics Data System (ADS)
Cheng, Yi; Wong, Louis Ngai Yuen
2018-01-01
Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.
Fracture line morphology of complex proximal humeral fractures.
Hasan, Afsana P; Phadnis, Joideep; Jaarsma, Ruurd L; Bain, Gregory I
2017-10-01
The aim of this study was to assess proximal humeral fracture patterns using 3-dimensional computed tomography images and relate them to the normal osseous landmarks and soft-tissue attachments. Forty-eight 3-dimensional computed tomography scans of proximal humeral fractures were retrospectively collected, and the fractures were transcribed onto proximal humeral templates. We analyzed the common location and orientation of the fracture lines, with a focus on fractures of the articular surface, tuberosities, metaphysis, and proximal diaphysis. These fractures were compared with the attachments of the rotator cuff and glenohumeral capsule. Fifty-two percent of the fractures involved the articular surface. No fractures passed through the bicipital groove, and fractures were more commonly found on the posterior lesser tuberosity and on the anterior greater tuberosity, coinciding with the intervals between the rotator cuff tendon insertions. Intracapsular fractures of the calcar were more common (68%) than extracapsular fractures (32%). On the anterolateral aspect of the proximal humerus, fractures radiated from the articular margin, vertically down through the tuberosity zone between the rotator cuff footprints, meeting horizontally oriented fractures in the metaphyseal zone. On the posterior aspect, vertical fractures from the tuberosity zone continued downward to the metaphyseal zone adjacent to the infraspinatus and teres minor footprints. Fractures of the proximal humerus follow characteristic patterns. Fractures frequently split the greater tuberosity and are closely related to the intervals of the rotator cuff attachments. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.
2018-03-01
Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Townend, John; Nicol, Andrew; McNamara, David D.
2017-08-01
Acoustic borehole televiewer (BHTV) logs provide measurements of fracture attributes (orientations, thickness, and spacing) at depth. Orientation, censoring, and truncation sampling biases similar to those described for one-dimensional outcrop scanlines, and other logging or drilling artifacts specific to BHTV logs, can affect the interpretation of fracture attributes from BHTV logs. K-means, fuzzy K-means, and agglomerative clustering methods provide transparent means of separating fracture groups on the basis of their orientation. Fracture spacing is calculated for each of these fracture sets. Maximum likelihood estimation using truncated distributions permits the fitting of several probability distributions to the fracture attribute data sets within truncation limits, which can then be extrapolated over the entire range where they naturally occur. Akaike Information Criterion (AIC) and Schwartz Bayesian Criterion (SBC) statistical information criteria rank the distributions by how well they fit the data. We demonstrate these attribute analysis methods with a data set derived from three BHTV logs acquired from the high-temperature Rotokawa geothermal field, New Zealand. Varying BHTV log quality reduces the number of input data points, but careful selection of the quality levels where fractures are deemed fully sampled increases the reliability of the analysis. Spacing data analysis comprising up to 300 data points and spanning three orders of magnitude can be approximated similarly well (similar AIC rankings) with several distributions. Several clustering configurations and probability distributions can often characterize the data at similar levels of statistical criteria. Thus, several scenarios should be considered when using BHTV log data to constrain numerical fracture models.
NASA Astrophysics Data System (ADS)
Lodge, R. W.; Lescinsky, D. T.
2006-12-01
Polygonal joints in lava flows ("columns") are commonly equant leading to a model of formation associated with cooling in an isotropic stress field. This model, however, does not explain rectangular columns, sheet-like fractures, fractures with crosscutting relationships, and fractures with orientations other than perpendicular to the cooling surface. These fracture patterns are often observed at glaciated volcanoes. The presence of preferential fracture orientations suggests an applied stress component likely due to environmental conditions such as the presence of glaciers or flow dynamics such as down-slope settling or flow margin inflation. During this study we investigated the formation and significance of these non-equant fracture patterns to propose a model for their formation. These `abnormal' fracture patterns have not been discussed in the literature and may be important to better understanding the cooling conditions of such lava flows. To test these possibilities we studied Kokostick Butte dacite flow, OR (near South Sister), and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these flows have well developed sheet-like fractures and display evidence of ice-contact during eruption and emplacement. Sheet fractures are long and continuous fractures that have perpendicular connecting fractures forming rectangular columns. The sheet-like fractures are largely parallel to each other on the exposure surface and the connecting fractures vary locally from primary fractures (associated with cooling toward flow interior) to secondary fractures (associated with cooling by water infiltration). Detailed measurements of fracture orientations and spacing were collected at Kokostick Butte and Mazama Ridge to examine the relationship between the sheet fractures and flow geometry. Preliminary results support this relationship and suggest these patterns likely form due to shear associated with small amounts of flow advance by the rapidly cooling lava. Laboratory studies have been undertaken to complement the field observations and measurements. Starch- water experiments have been proven a useful analogue for lava column formation. Various experimental setups involving different mixture thicknesses and compression of the mixture were utilized to simulate the stresses acting during ponding of lava against glacial ice and to produce different fracture morphologies and patterns. Initial results show that compression of the starch slurry results in non-equant fracture patterns with some sheet-like fracturing present.
NASA Astrophysics Data System (ADS)
Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.
2010-10-01
Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.
An Equivalent Fracture Modeling Method
NASA Astrophysics Data System (ADS)
Li, Shaohua; Zhang, Shujuan; Yu, Gaoming; Xu, Aiyun
2017-12-01
3D fracture network model is built based on discrete fracture surfaces, which are simulated based on fracture length, dip, aperture, height and so on. The interesting area of Wumishan Formation of Renqiu buried hill reservoir is about 57 square kilometer and the thickness of target strata is more than 2000 meters. In addition with great fracture density, the fracture simulation and upscaling of discrete fracture network model of Wumishan Formation are very intense computing. In order to solve this problem, a method of equivalent fracture modeling is proposed. First of all, taking the fracture interpretation data obtained from imaging logging and conventional logging as the basic data, establish the reservoir level model, and then under the constraint of reservoir level model, take fault distance analysis model as the second variable, establish fracture density model by Sequential Gaussian Simulation method. Increasing the width, height and length of fracture, at the same time decreasing its density in order to keep the similar porosity and permeability after upscaling discrete fracture network model. In this way, the fracture model of whole interesting area can be built within an accepted time.
Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey
Morin, R.H.; Carleton, G.B.; Poirier, S.
1997-01-01
The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure within this aquifer that is defined by fracture type and orientation. Fluid flow near the surface is controlled primarily by the highly transmissive, subhorizontal bedding-plane partings. As depth increases, the high-angle fractures apparently become more dominant hydrologically.The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84?? W and dip of 20?? N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79?? E and dip of 71?? S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally dimi
Enceladus Jet Orientations: Effects of Surface Structure
NASA Astrophysics Data System (ADS)
Helfenstein, P.; Porco, C.; DiNino, D.
2013-12-01
Jetting activity across the South Polar Terrain (SPT) of Enceladus is now known to erupt directly from tiger-stripe rifts and associated fracture systems. However, details of the vent conduit geometry are hidden below the icy surface. The three-dimensional orientations of the erupting jets may provide important clues. Porco et al. (2013, Lunar Planet. Sci. Conf. 44th, p.1775) surveyed jet locations and orientations as imaged at high resolution (< 1.3 km/pixel) by Cassini ISS from 2005 through May 2012. Ninety-eight (98) jets were identified either on the main trunks or branches of the 4 tiger-stripes. The azimuth angles of the jets are seen to vary across the SPT. Here, we use histogram analysis of the survey data to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Azimuths are measured positive counterclockwise with zero pointing along the fracture in the direction of the sub-Saturn hemisphere, and rosette histograms were binned in 30° increments. Overall, the jet azimuths are not random and only about 11% of them are co-aligned with the tiger stripe valley. There are preferred diagonal orientations between 105°-165° and again between 255°-345°. These trends are dominant along the Damascus and Baghdad tiger-stripes where more than half of the jets are found. Histograms for Cairo and Alexandria show less-distinct trends, fewer jets being measured there, but combining data from both suggests a different pattern of preferred orientations; from 45°-75° and 265°-280°. Many possible factors could affect the orientations of jets, for example, the conduit shape, the presence of obstacles like narrow medial ridges called 'shark-fins' along tiger-stripe valleys, the possibility that jets may breach the surface at some point other than the center of a tiger-stripe, and the presence of structural fabrics or mechanical weaknesses, such as patterns of cross-cutting fractures. The dominance of diagonally crossing azimuths for Damascus and Baghdad suggest that cross-cutting fractures may significantly control jet orientations. At the 100 m/pixel scale of our Enceladus basemap at least 24% of the jets have azimuth orientations that point along or parallel to nearby fractures or fabrics of parallel fractures that approach or intersect the tiger stripe. Structural control of jet orientations by local tectonism is especially suggested by a systematic pattern of jet orientations at the distal end of Damascus Sulcus where it bifurcates into a northern and a southern branch, respectively. The five most distal jets along the northern branch are nearly parallel and point northward while the three most distal jets along the southern branch are also nearly parallel, but they point in the opposite direction. Additional work is needed to show the extent to which jet orientations may be affected at smaller scales by quasi-parallel systems of cross-cutting gossamer fractures or by curving axial discontinuities along the tiger stripes (cf. Helfenstein et al. 2011, http://encfg.ciclops.org/reg/uploads/20110425220109_helfenstein_enceladus_workshop_2011.pdf).
NASA Astrophysics Data System (ADS)
Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry
2015-04-01
Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
The fracture criticality of crustal rocks
NASA Astrophysics Data System (ADS)
Crampin, Stuart
1994-08-01
The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before and after earthquakes, amongst others.
Intraoperative fluoroscopic evaluation of screw placement during pelvic and acetabular surgery.
Yi, Chengla; Burns, Sean; Hak, David J
2014-01-01
The surgical treatment of pelvic and acetabular fractures can be technically challenging. Various techniques are available for the reconstruction of pelvic and acetabular fractures. Less invasive percutaneous fracture stabilization techniques, with closed reduction or limited open reduction, have been developed and are gaining popularity in the management of pelvic and acetabular fractures. These techniques require knowledge and interpretation of various fluoroscopic images to ensure appropriate and safe screw placement. Given the anatomic complexity of the intrapelvic structures and the 2-dimensional nature of standard fluoroscopy, multiple images oriented in different planes are needed to assess the accuracy of guide wire and screw placement. This article reviews the fluoroscopic imaging of common screw orientations during pelvic and acetabular surgery.
NASA Technical Reports Server (NTRS)
Wagner, J. A.
1991-01-01
An extensive metallurgical study is presented which is intended to explain variations in the mechanical properties of Ni18 200 grade maraging steel in various product forms and orientations. Fracture toughness and Charpy impact values are found to decrease with decreasing temperature and be dependent on product form, specimen orientation, and metallurgical condition. Fatigue crack growth rates are dependent on temperature only. Fractographic analysis reveals that the decrease in toughness at -170 C is not associated with cleavage-type fracture morphology. Those specimens exhibiting low fracture toughness at room temperature or -170 C are found to have a significantly larger number of titanium-rich particles associated with dimple formation on the fracture surface.
Increased fracture risk and low bone mineral density in patients with loeys-dietz syndrome.
Tan, Eric W; Offoha, Roosevelt U; Oswald, Gretchen L; Skolasky, Richard L; Dewan, Ashvin K; Zhen, Gehua; Shapiro, Jay R; Dietz, Harry C; Cao, Xu; Sponseller, Paul D
2013-08-01
Loeys-Dietz syndrome is a recently recognized connective tissue disorder with widespread systemic involvement. Little is known about its skeletal phenotype. Our goal was to investigate the risk of fracture and incidence of low bone mineral density in patients with Loeys-Dietz syndrome. We performed a cross-sectional, descriptive, survey-based study with subsequent chart review from July 2011 to April 2012. Fifty-seven patients (26 men, 31 women) with Loeys-Dietz syndrome confirmed by genetic testing completed the survey (average age, 25.3 years; range, 0.9-79.6 years). There were a total of 51 fractures (33 patients): 35 fractures in the upper extremities, 14 in the lower extremities, and two in the spine. Fourteen patients (24.6%) reported two or more fractures. There was a 50% risk of fracture by age 14 years. The incidence of any fracture in this cohort was 3.86 per 100 person-years. Seventeen patients had dual-energy X-ray absorptiometry scans available for review, 11 (64.7%) of whom had at least one fracture. Thirteen included lumbar spine absorptiometry reports; eight (61.5%) indicated low or very low bone mineral density. In the left hip, ten of 14 participants (71.4%) had low or very low bone mineral density. In the left femoral neck, nine of 13 participants (69.2%) had low or very low bone mineral density. The lowest Z- and T-scores were not associated with an increased number of fractures. Patients with Loeys-Dietz syndrome have a high risk of fracture and a high incidence of low bone mineral density. Copyright © 2013 Wiley Periodicals, Inc.
Stockbrügger, R W; Schoon, E J; Bollani, S; Mills, P R; Israeli, E; Landgraf, L; Felsenberg, D; Ljunghall, S; Nygard, G; Persson, T; Graffner, H; Bianchi Porro, G; Ferguson, A
2002-08-01
A high prevalence of osteoporosis has been noted in Crohn's disease, but data about fractures are scarce. The relationship between low bone mineral density and the prevalence of vertebral fractures was studied in 271 patients with ileo-caecal Crohn's disease in a large European/Israeli study. One hundred and eighty-one currently steroid-free patients with active Crohn's disease (98 completely steroid-naive) and 90 steroid-dependent patients with inactive or quiescent Crohn's disease were investigated by dual X-ray absorptiometry scan of the lumbar spine, a standardized posterior/anterior and lateral X-ray of the thoracic and lumbar spine, and an assessment of potential risk factors for osteoporosis. Thirty-nine asymptomatic fractures were seen in 25 of 179 steroid-free patients (14.0%; 27 wedge, 12 concavity), and 17 fractures were seen in 13 of 89 steroid-dependent patients (14.6%; 14 wedge, three concavity). The prevalence of fractures in steroid-naive patients was 12.4%. The average bone mineral density, expressed as the T-score, of patients with fractures was not significantly different from that of those without fractures (-0.759 vs. -0.837; P=0.73); 55% of patients with fractures had a normal T-score. The bone mineral density was negatively correlated with lifetime steroids, but not with previous bowel resection or current disease activity. The fracture rate was not correlated with the bone mineral density (P=0.73) or lifetime steroid dose (P=0.83); in women, but not in men, the fracture rate was correlated with age (P=0.009). The lack of correlation between the prevalence of fractures on the one hand and the bone mineral density and lifetime steroid dose on the other necessitates new hypotheses for the pathogenesis of the former.
Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum
NASA Astrophysics Data System (ADS)
Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki
2018-01-01
Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.
Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, D.L.; Moore, J.N.; Clemente, W.C.
1996-12-31
The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine)more » deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite rite, epidote, anhydrite, adularia and wairakite. An {sup 39}Ar/{sup 40}Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.« less
1986-12-01
Prior to examination of LME fractures, liquid or solid metals were removed from fracture surfaces as follows: Mercury was evaporated from fractures in a...1 mm/s. Under these conditions, the appearance of fracture surfaces was identical to that produced by rapid fracture (-1 mm/s) in liquid mercury ...Furthermore, the appearance of fractures depended somewhat on the orientation of crystals but was the same in hydrogen and mercury environments for each
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-03-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
Mechanistic Study of Delamination Fracture in Al-Li Alloy C458 (2099)
NASA Technical Reports Server (NTRS)
Tayon, W. A.; Crooks, R. E.; Domack, M. S.; Wagner, J. A.; Beaudoin, A. J.; McDonald, R. J.
2009-01-01
Delamination fracture has limited the use of lightweight Al-Li alloys. In the present study, electron backscattered diffraction (EBSD) methods were used to characterize crack paths in Al-Li alloy C458 (2099). Secondary delamination cracks in fracture toughness samples showed a pronounced tendency for fracture between grain variants of the same deformation texture component. These results were analyzed by EBSD mapping methods and simulated with finite element analyses. Simulation procedures include a description of material anisotropy, local grain orientations, and fracture utilizing crystal plasticity and cohesive zone elements. Taylor factors computed for each grain orientation subjected to normal and shear stresses indicated that grain pairs with the largest Taylor factor differences were adjacent to boundaries that failed by delamination. Examination of matching delamination fracture surface pairs revealed pronounced slip bands in only one of the grains bordering the delamination. These results, along with EBSD studies, plasticity simulations, and Auger electron spectroscopy observations support a hypothesis that delamination fracture occurs due to poor slip accommodation along boundaries between grains with greatly differing plastic response.
Zhai, Qingshan; Springer, J.E.; Zoback, M.D.
1990-01-01
Fractures from a 500 m deep hole in the Red River fault zone were analyzed using an ultrasonic borehole televiewer. Four hundred and eighty individual fractures were identified between 19 m and 465 m depth. Fracture frequency had no apparent relation to the major stratigraphic units and did not change systematically with depth. Fracture orientation, however, did change with stratigraphic position. The borehole intersected 14 m of Cenozoic deposits, 363 m of lower Ordovician clastic sediments, and 106 m of older ultramafic intrusions. The clastic sequence was encountered again at a depth of 484 m, suggesting a large fault displacement. Fractures in the top 162 m of the sedimentary section appear randomly distributed. Below that depth, they are steeply dipping with northerly and north-westerly strikes, parallel to the major active faults in the region. Fractures in the ultramafic section strike roughly eastwest and are steeply dipping. These orientations are confined to the ultramafic section and are parallel to an older, inactive regional fault set. ?? 1990.
A parametric study of fracture toughness of fibrous composite materials
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1987-01-01
Impacts to fibrous composite laminates by objects with low velocities can break fibers giving crack-like damage. The damage may not extend completely through a thick laminate. The tension strength of these damage laminates is reduced much like that of cracked metals. The fracture toughness depends on fiber and matrix properties, fiber orientations, and stacking sequence. Accordingly, a parametric study was made to determine how fiber and matrix properties and fiber orientations affect fracture toughness and notch sensitivity. The values of fracture toughness were predicted from the elastic constants of the laminate and the failing strain of the fibers using a general fracture toughness parameter developed previously. For a variety of laminates, values of fracture toughness from tests of center-cracked specimens and values of residual strength from tests of thick laminates with surface cracks were compared to the predictions to give credibility to the study. In contrast to the usual behavior of metals, it is shown that both ultimate tensile strength and fracture toughness of composites can be increased without increasing notch sensitivity.
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-05-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
Interpretation of hip fracture patterns using areal bone mineral density in the proximal femur.
Hey, Hwee Weng Dennis; Sng, Weizhong Jonathan; Lim, Joel Louis Zongwei; Tan, Chuen Seng; Gan, Alfred Tau Liang; Ng, Jun Han Charles; Kagda, Fareed H Y
2015-12-01
Bone mineral density scans are currently interpreted based on an average score of the entire proximal femur. Improvements in technology now allow us to measure bone density in specific regions of the proximal femur. The study attempts to explain the pathophysiology of neck of femur (NOF) and intertrochanteric/basi-cervical (IT) fractures by correlating areal BMD (aBMD) scores with fracture patterns, and explore possible predictors for these fracture patterns. This is a single institution retrospective study on all patients who underwent hip surgeries from June 2010 to August 2012. A total of 106 patients (44 IT/basi-cervical, 62 NOF fractures) were studied. The data retrieved include patient characteristics and aBMD scores measured at different regions of the contralateral hip within 1 month of the injury. Demographic and clinical characteristic differences between IT and NOF fractures were analyzed using Fisher's Exact test and two-sample t test. Relationship between aBMD scores and fracture patterns was assessed using multivariable regression modeling. After adjusted multivariable analysis, T-Troc and T-inter scores were significantly lower in intertrochanteric/basi-cervical fractures compared to neck of femur fractures (P = 0.022 and P = 0.026, respectively). Both intertrochanteric/basi-cervical fractures (mean T.Tot -1.99) and neck of femur fractures (mean T.Tot -1.64) were not found to be associated with a mean T.tot less than -2.5. However, the mean aBMD scores were consistently less than -2.5 for both intertrochanteric/basi-cervical fractures and neck of femur fractures. Gender and calcium intake at the time of injury were associated with specific hip fracture patterns (P = 0.002 and P = 0.011, respectively). Hip fracture patterns following low energy trauma may be influenced by the pattern of reduced bone density in different areas of the hip. Intertrochanteric/basi-cervical fractures were associated with significantly lower T-Troc and T-Inter scores compared to neck of femur fractures, suggesting that the fracture traversed through the areas with the lowest bone density in the proximal femur. In the absence of reduced T.Troc and T.Inter, neck of femur fractures occurred more commonly. T-Total scores may underestimate the severity of osteoporosis/osteopenia and measuring T-score at the neck of femur may better reflect the severity of osteoporosis and likelihood of a fragility fracture.
Stumm, Frederick; Chu, Anthony; Lange, Andrew D.; Paillet, Frederick L.; Williams, John H.; Lane, John W.
2001-01-01
Advanced borehole geophysical methods were used to assess the geohydrology of crystalline bedrock along the course of a new water tunnel for New York City. The logging methods include natural gamma, spontaneous potential, single-point resistance, mechanical and acoustic caliper, focused electromagnetic induction, electromagnetic resistivity, magnetic susceptibility, borehole-fluid temperature and conductance, differential temperature, heat-pulse flowmeter, acoustic televiewer, borehole deviation, optical televiewer, and borehole radar. Integrated interpretation of the geophysical logs from an 825-foot borehole (1) provided information on the extent, orientation, and structure (foliation and fractures) within the entire borehole, including intensely fractured intervals from which core recovery may be poor; (2) delineated transmissive fracture zones intersected by the borehole and provided estimates of their transmissivity and hydraulic head; and (3) enabled mapping of the location and orientation of structures at distances as much as 100 ft from the borehole.Analyses of the borehole-wall image and the geophysical logs from the borehole on Crescent Street, in northern Queens County, are presented here to illustrate the application of the methods. The borehole penetrates gneiss and other crystalline bedrock that has predominantly southeastward dipping foliation and nearly horizontal and southeastward-dipping fractures. The heat-pulse flowmeter logs obtained under pumping and nonpumping conditions, together with the other geophysical logs, indicate five transmissive fracture zones. More than 90 percent of the open-hole transmissivity is associated with a fracture zone 272 feet BLS (below land surface). A transmissive zone at 787 feet BLS that consists of nearly parallel fractures lies within the projected tunnel path; here the hydraulic head is 12 to 15 feet lower than that of transmissive zones above the 315-foot depth. The 60-megahertz directional borehole radar logs indicate the location and orientation of two closely spaced radar reflectors that would intersect the projection of the borehole below its drilled depth.Subsequent excavation of the tunnel past the borehole allowed comparison of the log analysis with conditions observed in the tunnel. The tunnel was found to intersect gneiss with southeastward dipping foliation; many nearly horizontal fractures; and a southeastward dipping fracture zone whose location, character, and orientation was consistent with that of the mapped radar reflectors. The fracture zone produced inflow to the tunnel at a rate of 50 to 100 gallons per minute. All conditions indicated by the logging methods were consistent with those observed within the tunnel.
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales
Chon, Michael J.; Daly, Matthew; Wang, Bin; ...
2017-06-10
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales.
Chon, Michael J; Daly, Matthew; Wang, Bin; Xiao, Xianghui; Zaheri, Alireza; Meyers, Marc A; Espinosa, Horacio D
2017-12-01
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this study, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration, reaching up to ~ 25kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. The results of this study are expected to be useful as design principles for high performance biomimetic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chon, Michael J.; Daly, Matthew; Wang, Bin
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-01-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner. PMID:26549935
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-03-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
Predicting Fluid Flow in Stressed Fractures: A Quantitative Evaluation of Methods
NASA Astrophysics Data System (ADS)
Weihmann, S. A.; Healy, D.
2015-12-01
Reliable estimation of fracture stability in the subsurface is crucial to the success of exploration and production in the petroleum industry, and also for wider applications to earthquake mechanics, hydrogeology and waste disposal. Previous work suggests that fracture stability is related to fluid flow in crystalline basement rocks through shear or tensile instabilities of fractures. Our preliminary scoping analysis compares the fracture stability of 60 partly open (apertures 1.5-3 cm) and electrically conductive (low acoustic amplitudes relative to matrix) fractures from a 16 m section of a producing zone in a basement well in Bayoot field, Yemen, to a non-producing zone in the same well (also 16 m). We determine the Critically Stressed Fractures (CSF; Barton et al., 1995) and dilatation tendency (Td; Ferrill et al., 1999). We find that: 1. CSF (Fig. 1) is a poor predictor of high fluid flow in the inflow zone; 88% of the fractures are predicted to be NOT critically stressed and yet they all occur within a zone of high fluid flow rate 2. Td (Fig. 2) is also a poor predictor of high fluid flow in the inflow zone; 67% of the fractures have a LOW Td(< 0.6) 3. For the non-producing zone CSF is a very reliable predictor (100% are not critically stressed) whereas the values of Tdare consistent with their location in non-producing interval (81% are < 0.6) (Fig. 3 & 4). In summary, neither method correlates well with the observed abundance of hydraulically conductive fractures within the producing zone. Within the non-producing zone CSF and Td make reasonably accurate predictions. Fractures may be filled or partially filled with drilling mud or a lower density and electrically conductive fill such as clay in the producing zone and therefore appear (partly) open. In situ stress, fluid pressure, rock properties (friction, strength) and fracture orientation data used as inputs for the CSF and Td calculations are all subject to uncertainty. Our results suggest that scope exists to systematically quantify and explore the impacts of these uncertainties for better predictions of geomechanical stability and fluid conductivity in the subsurface.
Associations of Parity, Breastfeeding, and Fractures in the Women's Health Observational Study.
Crandall, Carolyn J; Liu, Jingmin; Cauley, Jane; Newcomb, Polly A; Manson, JoAnn E; Vitolins, Mara Z; Jacobson, Lisette T; Rykman, Kelli K; Stefanick, Marcia L
2017-07-01
To examine associations of several aspects of parity and history of lactation with incident hip fractures and clinical fractures and, in a subset of women, with bone mineral density. In this observational study, we analyzed data from 93,676 postmenopausal women participating in the Women's Health Initiative Observational Study and all bone density data from the subset of participants who underwent bone density testing at three clinical centers. At baseline, participants were aged 50-79 years. Using Cox proportional hazards regression analysis, we examined associations of fracture incidence and bone density with several aspects of parity (number of pregnancies, age at first pregnancy lasting 6 months or greater, and number of pregnancies lasting 6 months or greater) and breastfeeding (number of episodes of breastfeeding for at least 1 month, number of children breastfed, age when first breastfed, age when last breastfed, total number of months breastfed). The mean baseline age (standard deviation) of participants was 64 (±7.4) years (mean follow-up 7.9 years). During follow-up, the incident rate of hip fracture was 1.27%. Ten percent of participants were nulligravid. In fully adjusted models, number of pregnancies, parity, age at first birth, number of children breastfed, age at first breastfeeding, age at last breastfeeding, and total duration of breastfeeding were not statistically significantly associated with hip fracture incidence. There were no consistent associations of parity or lactation characteristics with overall clinical fracture risk or bone density. However, compared with never breastfeeding, a history of breastfeeding for at least 1 month was associated with a decreased risk of hip fracture (yes compared with no, hazard ratio 0.84, 95% confidence interval 0.73-0.98). Patterns of parity and history of lactation were largely unrelated to fracture risk or bone density.
Tidal reorientation and the fracturing of Jupiter's moon Europa
NASA Technical Reports Server (NTRS)
Mcewen, A. S.
1986-01-01
The lineaments on Europa are discussed in terms of the orientation of the lineaments relative to the tensile stress trajectories due to tidal distortions and to nonsynchronous rotation. The cracks are noticeable by their darker albedo compared to the presumed water ice surrounding them. The stress trajectories for tidal distortion of a thin elastic shell are superimposed on Mercator projection maps of the lineaments. It is shown that the lineaments are mainly oriented at high angles to the tensile stress trajectories that would be expected for regularly occurring nonsynchronous rotation, i.e., extensional fractures would appear. The reorientation motions which would cause the fractures are estimated. It is suggested that the fractures occur episodically to release stresses built up on the tensile surface of the crust during the continuous nonsynchronous rotation of Europa.
Rock face stability analysis and potential rockfall source detection in Yosemite Valley
NASA Astrophysics Data System (ADS)
Matasci, B.; Stock, G. M.; Jaboyedoff, M.; Oppikofer, T.; Pedrazzini, A.; Carrea, D.
2012-04-01
Rockfall hazard in Yosemite Valley is especially high owing to the great cliff heights (~1 km), the fracturing of the steep granitic cliffs, and the widespread occurrence of surface parallel sheeting or exfoliation joints. Between 1857 and 2011, 890 documented rockfalls and other slope movements caused 15 fatalities and at least 82 injuries. The first part of this study focused on realizing a structural study for Yosemite Valley at both regional (valley-wide) and local (rockfall source area) scales. The dominant joint sets were completely characterized by their orientation, persistence, spacing, roughness and opening. Spacing and trace length for each joint set were accurately measured on terrestrial laser scanning (TLS) point clouds with the software PolyWorks (InnovMetric). Based on this fundamental information the second part of the study aimed to detect the most important failure mechanisms leading to rockfalls. With the software Matterocking and the 1m cell size DEM, we calculated the number of possible failure mechanisms (wedge sliding, planar sliding, toppling) per cell, for several cliffs of the valley. Orientation, spacing and persistence measurements directly issued from field and TLS data were inserted in the Matterocking calculations. TLS point clouds are much more accurate than the 1m DEM and show the overhangs of the cliffs. Accordingly, with the software Coltop 3D we developed a methodology similar to the one used with Matterocking to identify on the TLS point clouds the areas of a cliff with the highest number of failure mechanisms. Exfoliation joints are included in this stability analysis in the same way as the other joint sets, with the only difference that their orientation is parallel to the local cliff orientation and thus variable. This means that, in two separate areas of a cliff, the exfoliation joint set is taken into account with different dip direction and dip, but its effect on the stability assessment is the same. Areas with a high density of possible failure mechanisms are shown to be more susceptible to rockfalls, demonstrating a link between high fracture density and rockfall susceptibility. This approach enables locating the most probable future rockfall sources and provides key elements needed to evaluate the potential volume and run-out distance of rockfall blocks. This information is used to improve rockfall hazard assessment in Yosemite Valley and elsewhere.
NASA Astrophysics Data System (ADS)
McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.
2016-06-01
We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
Davatzes, Nicholas C.; Hickman, Stephen H.
2009-01-01
A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.
Fractures, Faults, and Hydrothermal Systems of Puna, Hawaii, and Montserrat, Lesser Antilles
NASA Astrophysics Data System (ADS)
Kenedi, Catherine Lewis
The focus of this work is to use geologic and geophysical methods to better understand the faults and fracture systems at Puna, in southeastern Hawaii, and southern Montserrat, in the Lesser Antilles. The particular interest is understanding and locating the deep fracture networks that are necessary for fluid circulation in hydrothermal systems. The dissertation first presents a study in which identification of large scale faulting places Montserrat into a tectonic context. Then follow studies of Puna and Montserrat that focus on faults and fractures of the deep hydrothermal systems. The first chapter consists of the results of the SEA-CALIPSO experiment seismic reflection data, recorded on a 48 channel streamer with the active source as a 2600 in3 airgun. This chapter discusses volcaniclastic debris fans off the east coast of Montserrat and faults off the west coast. The work places Montserrat in a transtensional environment (influenced by oblique subduction) as well as in a complex local stress regime. One conclusion is that the stress regime is inconsistent with the larger arc due to the influence of local magmatism and stress. The second chapter is a seismic study of the Puna hydrothermal system (PHS) along the Kilauea Lower East Rift Zone. The PHS occurs at a left step in the rift, where a fracture network has been formed between fault segments. It is a productive geothermal field, extracting steam and reinjecting cooled, condensed fluids. A network of eight borehole seismometers recorded >6000 earthquakes. Most of the earthquakes are very small (< M.2), and shallow (1-3 km depth), likely the result of hydrothermal fluid reinjection. Deeper earthquakes occur along the rift as well as along the south-dipping fault plane that originates from the rift zone. Seismic methods applied to the PHS data set, after the initial recording, picking, and locating earthquakes, include a tomographic inversion of the P-wave first arrival data. This model indicates a high seismic velocity under the field that is thought to be an intrusion and the heat source of the hydrothermal system. A shear wave splitting study suggested the PHS fracture system is largely oriented rift-parallel with some orthogonal fractures. Shear wave splitting data also were used in a tomographic inversion for fracture density. The fracture density is high in the PHS, which indicates high permeability and potential for extensive fluid circulation. This has been confirmed by high fluid flow and energy generation. The high fracture density is consistent with the interpretation of a transfer zone between the rift segments where a fracture mesh would be expected. In Puna the transfer zone is a relay ramp. The results from the PHS are used as an example to examine the proposed hydrothermal system at St. George's Hill, Montserrat. In southern Montserrat, hot springs and fumaroles suggest a deep hydrothermal system heated by local magmatism. A magnetotelluric study obtained resistivity data that suggest focused alteration under southeastern Montserrat that is likely to be along fault segments. Several faults intersect under SGH, making it the probable center of the hydrothermal system. At Puna, and also Krafla, Iceland, where faults interact is an area of increased permeability, acting as a model to be applied to southern Montserrat. The conclusion is that in both Puna and Montserrat large faults interact to produce local areas of stress transfer that lead to fracturing and permeable networks; these networks allow for high-temperature hydrothermal circulation.
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.
Anisotropic Tribological Properties of Silicon Carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.
Hanusch, B C; Tuck, S P; McNally, R J Q; Wu, J J; Prediger, M; Walker, J; Tang, J; Piec, I; Fraser, W D; Datta, H K; Francis, R M
2017-10-01
The pathogenesis of low trauma wrist fractures in men is not fully understood. This study found that these men have lower bone mineral density at the forearm itself, as well as the hip and spine, and has shown that forearm bone mineral density is the best predictor of wrist fracture. Men with distal forearm fractures have reduced bone density at the lumbar spine and hip sites, an increased risk of osteoporosis and a higher incidence of further fractures. The aim of this case-control study was to investigate whether or not there is a regional loss of bone mineral density (BMD) at the forearm between men with and without distal forearm fractures. Sixty-one men with low trauma distal forearm fracture and 59 age-matched bone healthy control subjects were recruited. All subjects underwent a DXA scan of forearm, hip and spine, biochemical investigations, health questionnaires, SF-36v2 and Fracture Risk Assessment Tool (FRAX). The non-fractured arm was investigated in subjects with fracture and both forearms in control subjects. BMD was significantly lower at the ultradistal forearm in men with fracture compared to control subjects, in both the dominant (mean (SD) 0.386 g/cm 2 (0.049) versus 0.436 g/cm 2 (0.054), p < 0.001) and non-dominant arm (mean (SD) 0.387 g/cm 2 (0.060) versus 0.432 g/cm 2 (0.061), p = 0.001). Fracture subjects also had a significantly lower BMD at hip and spine sites compared with control subjects. Logistic regression analysis showed that the best predictor of forearm fracture was ultradistal forearm BMD (OR = 0.871 (0.805-0.943), p = 0.001), with the likelihood of fracture decreasing by 12.9% for every 0.01 g/cm 2 increase in ultradistal forearm BMD. Men with low trauma distal forearm fracture have significantly lower regional BMD at the ultradistal forearm, which contributes to an increased forearm fracture risk. They also have generalised reduction in BMD, so that low trauma forearm fractures in men should be considered as indicator fractures for osteoporosis.
[Rehabilitation after Traumatic Fracture of Thoracic and Lumbar Spine].
Bork, Hartmut; Simmel, Stefan; Böhle, Eckhardt; Ernst, Ulrich; Fischer, Klaus; Fromm, Bernd; Glaesener, Jean-Jacques; Greitemann, Bernhard; Krause, P; Panning, S; Pullwitt, V; Schmidt, J; Veihelmann, Andreas; Vogt, Lutz
2018-05-18
On the basis of the S2-k guideline "Rehabilitation after traumatic fractures of the thoracic und lumbar spine without neurologic disorder", this article gives an overview of target-oriented rehabilitation of patients with minor fractures or those with column stability and unstable spinal fractures which are stabilised by surgery. To obtain early social and job related reintegration, outpatient or inpatient rehabilitation has to start immediately after treatment in hospital. Rehabilitation must be orientated towards the biopsychosocial model of ICF and has to be adapted for the patient. The overall goal of rehabilitation is functional restoration of patient health to enable participation in society, life and job. Individual goals may change during rehabilitation, because of differential progress in therapy. Pain management must be orientated towards individual requirements and mental health has to be tested early, especially in polytrauma patients. Disorders have to be treated by psychotherapy, because psychic stress supports chronification of pain. Generally early exercise and physiotherapy are recommended in the guideline, with patient education for health-seeking behavior. Otherwise an orthesis device is not really necessary for treatment of a stable fracture. To improve the outcome of rehabilitation aftercare, treatment has to be arranged during rehabilitation, especially for employed patients. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Dhansay, Taufeeq; Navabpour, Payman; de Wit, Maarten; Ustaszewski, Kamil
2017-10-01
Understanding the kinematics of pre-existing fractures under the present-day stress field is an indispensable prerequisite for hydraulically increasing fracture-induced rock permeability, i.e. through hydraulic stimulation, which forms the basis of economically viable exploitation of resources such as natural gas and geothermal energy. Predicting the likelihood of reactivating pre-existing fractures in a target reservoir at particular fluid injection pressures requires detailed knowledge of the orientations and magnitudes of the prevailing stresses as well as pore fluid pressures. In the absence of actual in-situ stress measurements, e.g. derived from boreholes, as is mostly the case in previously underexplored ;frontier areas;, such predictions are often difficult. In this study, the potential of reactivating pre-existing fractures in a likely exploration region of the southern Karoo of South Africa is investigated. The orientations of the present-day in-situ stresses were assessed from surrounding earthquake focal mechanisms, implying c. NW-SE oriented maximum horizontal stress and a stress regime changing between strike-slip and normal faulting. A comparison with paleo-stress axes derived from inverted fault-slip data suggests that the stress field very likely did not experience any significant reorientation since Cretaceous times. Maximum possible in-situ stress magnitudes are estimated by assuming that these are limited by frictional strength on pre-existing planes and subsequently, slip and dilation tendency calculations were performed, assuming hydrostatic pore fluid pressures of c. 32 MPa at targeted reservoir depth. The results suggest that prevalent E-W and NW-SE oriented sub-vertical fractures are likely to be reactivated at wellhead pressures exceeding hydrostatic pore fluid pressures by as little as 2-5 MPa, while less prevalent sub-horizontal and moderately inclined fractures require higher wellhead pressures that are still technically feasible. Importantly, actual in-situ stress measurements are essential to test these theoretical considerations and to guide the design of safe and effective exploration linked to fracture manipulation, such as shale gas recovery.
NASA Astrophysics Data System (ADS)
Kasch, N.; Ustaszewski, K. M.; Siegburg, M.; Navabpour, P.; Hesse, G.
2014-12-01
The Mid-German Crystalline Rise (MGCR) in Thuringia (central Germany) is part of the European Variscan orogen and hosts large extents of Visean granites (c. 350 Ma), locally overlain by up to 3 km of Early Permian to Mid-Triassic volcanic and sedimentary rocks. A geothermal gradient of 36°C km-1 suggests that such subsurface granites form an economically viable hot dry rock reservoir at > 4 km depth. In order to assess the likelihood of reactivating any pre-existing fractures during hydraulic reservoir stimulation, slip and dilation tendency analyses (Morris et al. 1996) were carried out. For this purpose, we determined orientations of pre-existing fractures in 14 granite exposures along the southern border fault of an MGCR basement high. Additionally, the strike of 192 Permian magmatic dikes affecting the granite was considered. This analysis revealed a prevalence of NW-SE-striking fractures (mainly joints, extension veins, dikes and subordinately brittle faults) with a maximum at 030/70 (dip azimuth/dip). Borehole data and earthquake focal mechanisms reveal a maximum horizontal stress SHmax trending N150°E and a strike-slip regime. Effective in-situ stress magnitudes at 4.5 km depth, assuming hydrostatic conditions and frictional equilibrium along pre-existing fractures with a friction coefficient of 0.85 yielded 230 and 110 MPa for SHmax and Shmin, respectively. In this stress field, fractures with the prevailing orientations show a high tendency of becoming reactivated as dextral strike-slip faults if stimulated hydraulically. To ensure that a stimulation well creates fluid connectivity on a reservoir volume as large as possible rather than dissipating fluids along existing fractures, it should follow a trajectory at the highest possible angle to the orientation of prevailing fractures, i.e. subhorizontal and NE-SW-oriented. References: Morris, A., D. A. Ferrill, and D. B. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24, 275-278.
Characterization of sintered SiC by using NDE
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1988-01-01
Capabilities of projection microfocus X-radiography and of ultrasonic velocity and attenuation for characterizing silicon carbide specimens were assessed. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room-temperature, four-point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined. Radiography proved useful in detecting high-density inclusions and isolated voids, but failed in detecting surface and subsurface agglomerates and large grains as fracture origins. Ultrasonic velocity dependency on density was evident. Attenuation dependency on density and mean pore size was clearly demonstrated. Understanding attenuation as a function of toughness was limited by shortcomings in K sub IC determination.
State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography
NASA Astrophysics Data System (ADS)
Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.
2017-12-01
Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a < 7 My rift sector in the Eastern rift, East Africa where geophysical imaging provides tight constraints on subsurface structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.
Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks
NASA Astrophysics Data System (ADS)
Cacciari, Pedro Pazzoto; Futai, Marcos Massao
2017-05-01
Discontinuity mapping and analysis are extremely important for modeling shallow tunnels constructed in fractured rock masses. However, the limited exposure and variability of rock face orientation in tunnels must be taken into account. In this paper, an automatic method is proposed to generate discrete fracture networks (DFNs) using terrestrial laser scanner (TLS) geological mapping and to continuously calculate the volumetric intensities ( P 32) along a tunnel. The number of fractures intersecting rectangular sampling planes with different orientations, fitted in tunnel sections of finite lengths, is used as the program termination criteria to create multiple DFNs and to calculate the mean P 32. All traces and orientations from three discontinuity sets of the Monte Seco tunnel (Vitória Minas Railway) were mapped and the present method applied to obtain the continuous variation in P 32 along the tunnel. A practical approach to creating single and continuous DFNs (for each discontinuity set), considering the P 32 variations, is also presented, and the results are validated by comparing the trace intensities ( P 21) from the TLS mapping and DFNs generated. Three examples of 3DEC block models generated from different sections of the tunnel are shown, including the ground surface and the bedrock topographies. The results indicate that the proposed method is a practical and powerful tool for modeling fractured rock masses of uncovered tunnels. It is also promising for application during tunnel construction when TLS mapping is a daily task (for as-built tunnel controls), and the complete geological mapping (traces and orientations) is available.
Kristoffersen, M; Hetzel, U; Parkin, T D H; Singer, E R
2010-01-01
To investigate whether microfractures and alterations in the trabecular bone area are associated with catastrophic bi-axial proximal sesamoid bone fractures (PSBF). Proximal sesamoid bones (PSB) from 10 racehorses with PSBF and from 10 control racehorses without musculoskeletal injury were examined using the bulk basic fuchsin method. Bone histomorphometric and microfracture analysis was performed, and cases and controls compared using two-sample t-test, paired t-test, and Mann-Whitney U test. There was no significant difference in the microfracture density and the trabecular bone area between bones from case and control horses, and between fractured and non-fractured bones in case horses. Microfracture density was low in the areas of the PSB examined. Microfracture density was not significantly different between groups, indicating that propagation of micro-cracks is an unlikely predisposing pathologic alteration in PSBF in British racehorses. There was no significant difference in the bone surface area between groups, which one would expect if modelling, adaptation and an increase in bone density were associated with PSBF fracture in the case horses. Therefore, PSBF in the British racehorse does not appear to be associated with microfractures of the trabecular bone of the PSB. The PSB fractures might represent an acute monotonic fracture; however, the aetiology of the fractures remains unknown with additional research required.
The stream net as an indicator of cryptic systematic fracturing in Louisiana
McCulloh, R.P.
2003-01-01
The stream net in many parts of Louisiana includes straight reaches with preferred alignment in a few directions, with some examples spanning tens of kilometers. In places the reaches form classic rectangular drainage patterns. These characteristics are obvious on maps at a variety of scales, and are recognizable on some portion of nearly every 7.5-minute quadrangle in the state, excepting those quadrangles situated entirely within the Ho??ocene coastal marshes or the Holocene flood plains of the larger rivers. Such patterns of lineaments are reminiscent of patterns associated with systematic fracturing in other regions. In Louisiana, however, verification and measurement of fractures that may exist in the vicinity of rectilinear drainage anomalies is problematic because surface deposits are comparatively young and sparsely exposed, and tend, especially near waterways, to be heavily weathered and vegetated. An indirect approach to evaluating the potential influence on drainage by fracturing involves evaluating the frequency distribution of stream-course orientations based on its degree of similarity with that of the strikes of previously mapped or reported fractures (faults and/or joints). A rose diagram of orientation frequencies for the stream net of the entire state, created utilizing a publicly available line dataset processed into 100-m segments (N 290,000), shows a nonrandom distribution with three visually identifiable trends: the strongest, oriented essentially N-S; a subsidiary trend oriented N20??-30??W; and a weak trend oriented N80??-90??W. The entire population of orientations yields a mean direction of N17.5??W ?? 4.2?? with a probability of 95 percent. The strike frequencies of mapped faults show little correspondence with these trends. This suggests, if mapped faults are at least representative of actual faults, that insofar as apparent lineaments reflect structure and not the influence of a south-southeasterly regional drainage gradient, they predominantly reveal the influence of joints. These could reflect either a Quaternary stress regime, or propagation in young sediment of a structural pattern in underlying older strata. The data available at present do not compel either interpretation, though in south Louisiana at least, where reactivated early Tertiary growth faults have surface expression that in places is juxtaposed with differently oriented drainage lineaments, propagation of a preexisting pattern from depth appears plausible. Widespread systematic fracturing in this predominantly Quaternary coastal-plain setting could have important implications for groundwater flow and for other processes that depend substantially on permeability.
The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness
Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.
2014-01-01
Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412
The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.
Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S
2014-05-01
Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.
Stumm, F.; Chu, A.; Joesten, P.K.; Lane, J.W.
2007-01-01
Advanced borehole-geophysical methods were used to assess the geohydrology of fractured crystalline bedrock in 31 of 64 boreholes on the southern part of Manhattan Island, NY in preparation of the construction of a new water tunnel. The study area is located in a highly urbanized part of New York City. The boreholes penetrated gneiss, schist, and other crystalline bedrock that has an overall southwest-to northwest-dipping foliation. Most of the fractures intersected are nearly horizontal or have moderate- to high-angle northwest or eastward dip azimuths. Heat-pulse flowmeter logs obtained under nonpumping (ambient) and pumping conditions, together with other geophysical logs, delineated transmissive fracture zones in each borehole. Water-level and flowmeter data suggest the fractured-rock ground-water-flow system is interconnected. The 60 MHz directional borehole-radar logs delineated the location and orientation of several radar reflectors that did not intersect the projection of the borehole. A total of 53 faults intersected by the boreholes have mean orientation populations of N12??W, 66??W and N11??W, 70??E. A total of 77 transmissive fractures delineated using the heat-pulse flowmeter have mean orientations of N11??E, 14??SE (majority) and N23??E, 57??NW (minority). The transmissivity of the bedrock boreholes ranged from 0.7 to 870 feet squared (ft2) per day (0.07 to 81 metres squared (m2) per day). ?? 2007 Nanjing Institute of Geophysical Prospecting.
Spatial analysis of fractured rock around fault zones based on photogrammetric data
NASA Astrophysics Data System (ADS)
Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.
2009-04-01
The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of photogrammetry in rock mechanics, petroleum geology, hydrogeology, and structural geology.
Barrett-Connor, Elizabeth; Nielson, Carrie M; Orwoll, Eric; Bauer, Douglas C; Cauley, Jane A
2010-03-15
To study the causes and consequences of radiologically confirmed rib fractures (seldom considered in the context of osteoporosis) in community dwelling older men. Prospective cohort study (Osteoporotic Fractures in Men (MrOS) Study). 5995 men aged 65 or over recruited in 2000-2 from six US sites; 99% answered mailed questionnaires about falls and fractures every four months for a mean 6.2 (SD 1.3) year follow-up. New fractures validated by radiology reports; multivariate Cox proportional hazard ratios were used to evaluate factors independently associated with time to incident rib fracture; associations between baseline rib fracture and incident hip and wrist fracture were also evaluated. The incidence of rib fracture was 3.5/1000 person years, and 24% (126/522) of all incident non-spine fractures were rib fractures. Nearly half of new rib fractures (48%; n=61) followed falling from standing height or lower. Independent risk factors for an incident rib fracture were age 80 or above, low bone density, difficulty with instrumental activities of daily living, and a baseline history of rib/chest fracture. Men with a history of rib/chest fracture had at least a twofold increased risk of an incident rib fracture (adjusted hazard ratio 2.71, 95% confidence interval 1.86 to 3.95), hip fracture (2.05, 1.33 to 3.15), and wrist fracture (2.06, 1.14 to 3.70). Only 14/82 of men reported being treated with bone specific drugs after their incident rib fracture. Rib fracture, the most common incident clinical fracture in men, was associated with classic risk markers for osteoporosis, including old age, low hip bone mineral density, and history of fracture. A history of rib fracture predicted a more than twofold increased risk of future fracture of the rib, hip, or wrist, independent of bone density and other covariates. Rib fractures should be considered to be osteoporotic fractures in the evaluation of older men for treatment to prevent future fracture.
Oxley, Bill
2018-04-01
To report the use of a 3-dimensional (3D)-printed patient-specific reduction guide system to facilitate minimally invasive plate osteosynthesis (MIPO) of a humeral fracture in a cat. Case report. A 9-year-old male neutered domestic short hair cat weighing 4.4 kg. A 9-year-old male domestic short hair cat was presented with a comminuted, mid-diaphyseal left humeral fracture. Computed tomographic data were processed to yield 3D mesh representations of both humeri and subsequently manipulated in computer-aided design software. The mirrored, intact humerus was used as a template for appropriate spatial orientation of the major proximal and distal fracture fragments. Patient-specific Ellis pin orientation guides and a reduction guide were designed and 3D printed. The guide system was used intraoperatively to align the major fracture fragments before application of locking internal fixation via standard MIPO surgical portals. Internal fixation of the fracture resulted in appropriate bone alignment. Recovery was uncomplicated, with early return to normal limb function and radiographic evidence of advanced fracture healing after 4 months. A 3D-printed patient-specific reduction guide system facilitated accurate alignment of a comminuted humeral fracture during MIPO without intraoperative imaging. © 2018 The American College of Veterinary Surgeons.
Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems
Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen
2016-01-30
Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less
NASA Astrophysics Data System (ADS)
Bogdanov, I.; Genthon, P.; Thovert, J.; Adler, P. M.
2006-12-01
The Loyauté Islands are a series of limestone karstified islands that are currently uplifted and deformed on the elastic bulge of the Australian plate before its subduction at the Vanuatu Trench (SW Pacific). As part of the SAGE program of the New Caledonian Province des Iles, they have been extensively surveyed for geology and hydrogeology. As part of this project, a map of fracturation deduced from aerial photos, and from SPOT4 and ENVISAT satellite data has been produced and a field trip allowed to verify that the main fracture orientations were also present on the most recent terranes bordering the islands. Since their formation during the Miocene, these islands are in a tectonically stable area. Thus, they provide a unique opportunity to study their fracture distribution in relation with their recent tectonic context. We will present the results of a statistical analysis of fracture distribution both in number and in fracture length and an attempt to model the fracture orientations as resulting from the elastic deformation of the Australian lithosphere before its subduction. Three main fracture families have been determined for the three island, with very few differences if fracture number of fracture length statistic is considered. These families are N62.5, N107.5, and N152.5 for Lifou, which is the largest and central island, which are further termed as F1, F2, F3. F2 is at least 5 times more important than F1 and F3, which are 45° apart on both sides of F2. The orientation of families F1-F3 are N 65, N110, and N155 in Maré, which located less than 100 km apart from the subduction zone, and N60, N105, and N150 in Ouvéa , which is the most distant island from the subduction and is only uplifted in its NorthEastern part. The main family F2 does not correspond either to the subduction zone orientation (N150) nor to that of the Loyauté ridge (N135) on which the three islands are located. Thus, the fracture pattern of the three island cannot be explained by a 2-dimensional bulging of the Australian plate approaching the Vanuatu subduction zone. We will present two new analytical models for the elastic deformation of the Australian lithosphere. The first one takes into account the curvature of the subduction zone while the second one introduces a punctual force which account the first stages of a collision between the Loyalty ridge and this subduction zone. The directions of principal stresses deduced from these models are compared to the deformation recorded in the fracture netword of the three islands
Fracture Reactivation in Chemically Reactive Rock Systems
NASA Astrophysics Data System (ADS)
Eichhubl, P.; Hooker, J. N.
2013-12-01
Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2) variations in the degree of fracture cement infill in fractures of same orientation, allowing fractures to reactivate at times when adjacent, more cemented fractures remain dormant. The observed interaction of chemical and mechanical fracture growth and sealing processes in this chemically reactive and heavily deformed rock unit results in a complex fracture network geometry not generally observed in less chemically reactive, shallower crustal environments.
Stress fluctuations in fracture networks from theoretical and numerical models
NASA Astrophysics Data System (ADS)
Davy, P.; Darcel, C.; Mas Ivars, D.; Le Goc, R.
2017-12-01
We analyze the spatial fluctuations of stress in a simple tridimensional model constituted by a population of disc-shaped fractures embedded in an elastic matrix with uniform and isotropic properties. The fluctuations arise from the classical stress enhancement at fracture tips and stress shadowing around fracture centers that are amplified or decreased by the interactions between close-by fractures. The distribution of local stresses is calculated at the elementary mesh scale with the 3DEC numerical program based on the distinct element method. As expected, the stress distributions vary with fracture density, the larger is the density, the wider is the distribution. For freely slipping fractures, it is mainly controlled by the percolation parameter p (i.e., the total volume of spheres surrounding fractures). For stresses smaller than the remote deviatoric stress, the distribution depends only on for the range of density that has been studied. For large stresses, the distribution decreases exponentially when increasing stress, with a characteristic stress that increases with entailing a widening of the stress distribution. We extend the analysis to fractures with plane resistance defined by an elastic shear stiffness ks and a slip Coulomb threshold. A consequence of the fracture plane resistance is to lower the stress perturbation in the surrounding matrix by a factor that depends on the ratio between ks and a fracture-matrix stiffness km mainly dependent on the ratio between Young modulus and fracture size. km is also the ratio between the remote shear stress and the displacement across the fracture plane in the case of freely slipping fractures. A complete analytical derivation of the expressions of the stress perturbations and of the fracture displacements is obtained and checked with numerical simulations. In the limit ks >> km, the stress perturbation tends to 0 and the stress state is spatially uniform. The analysis allows us to quantify the intensity of the stress fluctuations in fractured rocks as a function of both the fracture network characteristics (density and size distribution), and the mechanical properties (fracture shear stiffness vs matrix elastic properties).
Davies, P A; Randle, V
2001-10-01
The main aim of this paper is to report on recent experimental developments that have succeeded in combining electron back-scatter diffraction (EBSD) with stereo-photogrammetry, compared with two other methods for study of fracture surfaces, namely visual fractography analysis in the scanning electron microscope (SEM) and EBSD directly from facets. These approaches will be illustrated with data relating to the cleavage plane orientation analysis in a ferritic and C-Mn steel. It is demonstrated that the combined use of EBSD and stereo-photogrammetry represents a significant advance in the methodology for facet crystallography analysis. The results of point counting from fractograph characterization determined that the proportions of intergranular fracture in C-Mn and ferritic steels were 10.4% and 9.4%, respectively. The crystallographic orientation was determined directly from the fracture surface of a ferritic steel sample and produced an orientation distribution with a clear trend towards the [001] plane. A stereo-photogrammetry technique was validated using the known geometry of a Vickers hardness indent. The technique was then successfully employed to measure the macroscopic orientation of individual cleavage facets in the same reference frame as the EBSD measurements. Correlating the results of these measurements indicated that the actual crystallographic orientation of every cleavage facet identified in the steel specimens is [001].
NASA Astrophysics Data System (ADS)
Gao, Zhiwen; Zhou, Youhe
2015-04-01
Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.
Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul
2010-11-01
The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p < 0.001) whereas body weight was still positively related to BMD of all sites (p < 0.001). Percentage body fat and waist circumference were much higher in the fracture group than the non-fracture group (p = 0.0383, 0.082 respectively). Serum glucose levels were positively correlated to lumbar BMD (p = 0.016), femoral neck BMD (p = 0.0335), and femoral trochanter BMD (p = 0.0082). Serum high density lipoprotein cholesterol (HDLC) was positively related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.
The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics
Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.
2012-01-01
Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.
Vasilić, Branimir; Rajapakse, Chamith S; Wehrli, Felix W
2009-07-01
Trabecular bone microarchitecture is a significant determinant of the bone's mechanical properties and is thus of major clinical relevance in predicting fracture risk. The three-dimensional nature of trabecular bone is characterized by parameters describing scale, topology, and orientation of structural elements. However, none of the current methods calculates all three types of parameters simultaneously and in three dimensions. Here the authors present a method that produces a continuous classification of voxels as belonging to platelike or rodlike structures that determines their orientation and estimates their thickness. The method, dubbed local inertial anisotropy (LIA), treats the image as a distribution of mass density and the orientation of trabeculae is determined from a locally calculated tensor of inertia at each voxel. The orientation entropies of rods and plates are introduced, which can provide new information about microarchitecture not captured by existing parameters. The robustness of the method to noise corruption, resolution reduction, and image rotation is demonstrated. Further, the method is compared with established three-dimensional parameters including the structure-model index and topological surface-to-curve ratio. Finally, the method is applied to data acquired in a previous translational pilot study showing that the trabecular bone of untreated hypogonadal men is less platelike than that of their eugonadal peers.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Yang, Tianhong; Bohnhoff, Marco; Zhang, Penghai; Yu, Qinglei; Zhou, Jingren; Liu, Feiyue
2018-05-01
To quantitatively understand the failure process and failure mechanism of a rock mass during the transformation from open-pit mining to underground mining, the Shirengou Iron Mine was selected as an engineering project case study. The study area was determined using the rock mass basic quality classification method and the kinematic analysis method. Based on the analysis of the variations in apparent stress and apparent volume over time, the rock mass failure process was analyzed. According to the recent research on the temporal and spatial change of microseismic events in location, energy, apparent stress, and displacement, the migration characteristics of rock mass damage were studied. A hybrid moment tensor inversion method was used to determine the rock mass fracture source mechanisms, the fracture orientations, and fracture scales. The fracture area can be divided into three zones: Zone A, Zone B, and Zone C. A statistical analysis of the orientation information of the fracture planes orientations was carried out, and four dominant fracture planes were obtained. Finally, the slip tendency analysis method was employed, and the unstable fracture planes were obtained. The results show: (1) The microseismic monitoring and hybrid moment tensor analysis can effectively analyze the failure process and failure mechanism of rock mass, (2) during the transformation from open-pit to underground mining, the failure type of rock mass is mainly shear failure and the tensile failure is mostly concentrated in the roof of goafs, and (3) the rock mass of the pit bottom and the upper of goaf No. 18 have the possibility of further damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Michael; Ramos, Juan; Lao, Kang
Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less
Chan, Adrian C H; Adachi, Jonathan D; Papaioannou, Alexandra; Wong, Andy Kin On
Lower peripheral quantitative computed tomography (pQCT)-derived leg muscle density has been associated with fragility fractures in postmenopausal women. Limb movement during image acquisition may result in motion streaks in muscle that could dilute this relationship. This cross-sectional study examined a subset of women from the Canadian Multicentre Osteoporosis Study. pQCT leg scans were qualitatively graded (1-5) for motion severity. Muscle and motion streak were segmented using semi-automated (watershed) and fully automated (threshold-based) methods, computing area, and density. Binary logistic regression evaluated odds ratios (ORs) for fragility or all-cause fractures related to each of these measures with covariate adjustment. Among the 223 women examined (mean age: 72.7 ± 7.1 years, body mass index: 26.30 ± 4.97 kg/m 2 ), muscle density was significantly lower after removing motion (p < 0.001) for both methods. Motion streak areas segmented using the semi-automated method correlated better with visual motion grades (rho = 0.90, p < 0.01) compared to the fully automated method (rho = 0.65, p < 0.01). Although the analysis-reanalysis precision of motion streak area segmentation using the semi-automated method is above 5% error (6.44%), motion-corrected muscle density measures remained well within 2% analytical error. The effect of motion-correction on strengthening the association between muscle density and fragility fractures was significant when motion grade was ≥3 (p interaction <0.05). This observation was most dramatic for the semi-automated algorithm (OR: 1.62 [0.82,3.17] before to 2.19 [1.05,4.59] after correction). Although muscle density showed an overall association with all-cause fractures (OR: 1.49 [1.05,2.12]), the effect of motion-correction was again, most impactful within individuals with scans showing grade 3 or above motion. Correcting for motion in pQCT leg scans strengthened the relationship between muscle density and fragility fractures, particularly in scans with motion grades of 3 or above. Motion streaks are not confounders to the relationship between pQCT-derived leg muscle density and fractures, but may introduce heterogeneity in muscle density measurements, rendering associations with fractures to be weaker. Copyright © 2016. Published by Elsevier Inc.
OBSIFRAC: database-supported software for 3D modeling of rock mass fragmentation
NASA Astrophysics Data System (ADS)
Empereur-Mot, Luc; Villemin, Thierry
2003-03-01
Under stress, fractures in rock masses tend to form fully connected networks. The mass can thus be thought of as a 3D series of blocks produced by fragmentation processes. A numerical model has been developed that uses a relational database to describe such a mass. The model, which assumes the fractures to be plane, allows data from natural networks to test theories concerning fragmentation processes. In the model, blocks are bordered by faces that are composed of edges and vertices. A fracture can originate from a seed point, its orientation being controlled by the stress field specified by an orientation matrix. Alternatively, it can be generated from a discrete set of given orientations and positions. Both kinds of fracture can occur together in a model. From an original simple block, a given fracture produces two simple polyhedral blocks, and the original block becomes compound. Compound and simple blocks created throughout fragmentation are stored in the database. Several fragmentation processes have been studied. In one scenario, a constant proportion of blocks is fragmented at each step of the process. The resulting distribution appears to be fractal, although seed points are random in each fragmented block. In a second scenario, division affects only one random block at each stage of the process, and gives a Weibull volume distribution law. This software can be used for a large number of other applications.
NASA Astrophysics Data System (ADS)
Seifi, Mohsen; Dahar, Matthew; Aman, Ron; Harrysson, Ola; Beuth, Jack; Lewandowski, John J.
2015-03-01
This preliminary work documents the effects of test orientation with respect to build and beam raster directions on the fracture toughness and fatigue crack growth behavior of as-deposited EBM Ti-6Al-4V. Although ASTM/ISO standards exist for determining the orientation dependence of various mechanical properties in both cast and wrought materials, these standards are evolving for materials produced via additive manufacturing (AM) techniques. The current work was conducted as part of a larger America Makes funded project to begin to examine the effects of process variables on the microstructure and fracture and fatigue behavior of AM Ti-6Al-4V. In the fatigue crack growth tests, the fatigue threshold, Paris law slope, and overload toughness were determined at different load ratios, R, whereas fatigue precracked samples were tested to determine the fracture toughness. The as-deposited material exhibited a fine-scale basket-weave microstructure throughout the build, and although fracture surface examination revealed the presence of unmelted powders, disbonded regions, and isolated porosity, the resulting mechanical properties were in the range of those reported for cast and wrought Ti-6Al-4V. Remote access and control of testing was also developed at Case Western Reserve University to improve efficiency of fatigue crack growth testing.
Fracture of Composite Compact Tension Specimens
1975-01-01
E: lb/in.; X 10* M.: Fiber Volume, % 1002 S- glass /epoxy Unidirectional Crossply 6.9 4.7 2.3 4.7 1.0 1.1 0.28 0.14 55 MOD 1-5208...configuration used in most of the fracture experiments is shown in Fig. 1. In unidirectional S- glass /epoxy specimens the fiber direction with respect to...conducted only with 0° or 90° fiber orientation. Cross-ply specimens of both S- glass and graphite were tested with the outer plies oriented at 0°, 45
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; Farrell, N. J.; Smith, M.
2016-12-01
The analysis of images through two-dimensional (2D) continuous wavelet transforms makes it possible to acquire local information at different scales of resolution. This characteristic allows us to use wavelet analysis to quantify anisotropic random fields such as networks of fractures. Previous studies [1] have used 2D anisotropic Mexican hat wavelets to analyse the organisation of fracture networks from cm- to km-scales. However, Antoine et al. [2] explained that this technique can have a relatively poor directional selectivity. This suggests the use of a wavelet whose transform is more sensitive to directions of linear features, i.e. 2D Morlet wavelets [3]. In this work, we use a fully-anisotropic Morlet wavelet as implemented by Neupauer & Powell [4], which is anisotropic in its real and imaginary parts and also in its magnitude. We demonstrate the validity of this analytical technique by application to both synthetic - generated according to known distributions of orientations and lengths - and experimentally produced fracture networks. We have analysed SEM Back Scattered Electron images of thin sections of Hopeman Sandstone (Scotland, UK) deformed under triaxial conditions. We find that the Morlet wavelet, compared to the Mexican hat, is more precise in detecting dominant orientations in fracture scale transition at every scale from intra-grain fractures (µm-scale) up to the faults cutting the whole thin section (cm-scale). Through this analysis we can determine the relationship between the initial orientation of tensile microcracks and the final geometry of the through-going shear fault, with total areal coverage of the analysed image. By comparing thin sections from experiments at different confining pressures, we can quantitatively explore the relationship between the observed geometry and the inferred mechanical processes. [1] Ouillon et al., Nonlinear Processes in Geophysics (1995) 2:158 - 177. [2] Antoine et al., Cambridge University Press (2008) 192-194. [3] Antoine et al., Signal Processing (1993) 31:241 - 272. [4] Neupauer & Powell, Computer & Geosciences (2005) 31:456 - 471.
Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing
Sileny, J.; Hill, D.P.; Eisner, Leo; Cornet, F.H.
2009-01-01
We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.
Tensile Fracture of Ductile Materials. M.S. Thesis
NASA Technical Reports Server (NTRS)
Pai, D. M.
1984-01-01
For brittle materials, circular voids play an important role relative to fracture, intensifing both tensile and compressive stresses. A maximum intensified tensile stress failure criterion applies quite well to brittle materials. An attempt was made to explore the possibility of extending the approach to the tensile fracture of ductile materials. The three dimensional voids that exist in reality are modelled by circular holes in sheet metal. Mathematical relationships are sought between the shape and size of the hole, after the material is plastically deformed, and the amount of deformation induced. Then, the effect of hole shape, size and orientation on the mechanical properties is considered experimentally. The presence of the voids does not affect the ultimate tensile strength of the ductile materials because plastic flow wipes out the stress intensification caused by them. However, the shape and orientation of the defect is found to play an important role in affecting the strain at fracture.
Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies
Williams, J.H.; Johnson, C.D.
2004-01-01
Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.
Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.
Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie
2015-01-01
Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.
Impact fracture toughness evaluation for high-density polyethylene materials
NASA Astrophysics Data System (ADS)
Cherief, M. N. D.; Elmeguenni, M.; Benguediab, M.
2017-03-01
The impact fracture behavior of a high-density polyethylene (HDPE) material is investigated experimentally and theoretically. Single-edge notched bending (SENB) specimens are tested in experiments with three-point bending and in the Charpy impact tests. An energy model is proposed for evaluating the HDPE impact toughness, which provides a description of both brittle and ductile fracture.
Borehole geophysical investigation of a formerly used defense site, Machiasport, Maine, 2003-2006
Johnson, Carole D.; Mondazzi, Remo A.; Joesten, Peter K.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole geophysical logs in 18 boreholes and interpreted the data along with logs from 19 additional boreholes as part of an ongoing, collaborative investigation at three environmental restoration sites in Machiasport, Maine. These sites, located on hilltops overlooking the seacoast, formerly were used for military defense. At each of the sites, chlorinated solvents, used as part of defense-site operations, have contaminated the fractured-rock aquifer. Borehole geophysical techniques and hydraulic methods were used to characterize bedrock lithology, fractures, and hydraulic properties. In addition, each geophysical method was evaluated for effectiveness for site characterization and for potential application for further aquifer characterization and (or) evaluation of remediation efforts. Results of borehole geophysical logging indicate the subsurface is highly fractured, metavolcanic, intrusive, metasedimentary bedrock. Selected geophysical logs were cross-plotted to assess correlations between rock properties. These plots included combinations of gamma, acoustic reflectivity, electromagnetic induction conductivity, normal resistivity, and single-point resistance. The combined use of acoustic televiewer (ATV) imaging and natural gamma logs proved to be effective for delineating rock types. Each of the rock units in the study area could be mapped in the boreholes, on the basis of the gamma and ATV reflectivity signatures. The gamma and mean ATV reflectivity data were used along with the other geophysical logs for an integrated interpretation, yielding a determination of quartz monzonite, rhyolite, metasedimentary units, or diabase/gabbro rock types. The interpretation of rock types on the basis of the geophysical logs compared well to drilling logs and geologic mapping. These results may be helpful for refining the geologic framework at depth. A stereoplot of all fractures intersecting the boreholes indicates numerous fractures, a high proportion of steeply dipping fractures, and considerable variation in fracture orientation. Low-dip-angle fractures associated with unloading and exfoliation are also present, especially at a depth of less than 100 feet below the top of casing. These sub-horizontal fractures help to connect the steeply dipping fractures, making this a highly connected fracture network. The high variability in the fracture orientations also increases the connectivity of the fracture network. A preliminary comparison of all fracture data from all the boreholes suggests fracturing decreases with depth. Because all the boreholes were not drilled to the same depth, however, there is a clear sampling bias. Hence, the deepest boreholes are analyzed separately for fracture density. For the deepest boreholes in the study, the intensity of fracturing does not decline significantly with depth. It is possible the fractures observed in these boreholes become progressively tighter or closed with depth, but this is difficult to verify with the borehole methods used in this investigation. The fact that there are more sealed fractures at depth (observed in optical televiewer logs in some of the boreholes) may indicate less opening of the sealed fractures, less water moving through the rock, and less weathering of the fracture infilling minerals. Although the fracture orientation remained fairly constant with depth, differences in the fracture patterns for the three restoration sites indicate the orientation of fractures varies across the study area. The fractures in boreholes on Miller Mountain predominantly strike northwest-southeast, and to a lesser degree they strike northeast. The fractures on or near the summit of Howard Mountain strike predominantly east-west and dip north and south, and the fractures near the Transmitter Site strike northeast-southwest and dip northwest and southeast. The fracture populations for the boreholes on or near the summit of Howard Mountain show more variation than at the other two sites. This variation may be related to the proximity of the fault, which is northeast of the summit of Howard Mountain. In a side-by-side comparison of stereoplots from selected boreholes, there was no clear correspondence between fracture orientation and proximity to the fault. There is, however, a difference in the total populations of fractures for the boreholes on or near the summit of Howard Mountain and the boreholes near the Transmitter Site. Further to the southwest and further away from the fault, the fractures at the Transmitter Site predominantly strike northeast-southwest and northwest-southeast.Heat-pulse flowmeter (HPFM) logging was used to identify transmissive fractures and to estimate the hydraulic properties along the boreholes. Ambient downflow was measured in 13 boreholes and ambient upflow was measured in 9 boreholes. In nine other bedrock boreholes, the HPFM did not detect measurable vertical flow. The observed direction of vertical flow in the boreholes generally was consistent with the conceptual flow model of downward movement in recharge locations and upward flow in discharge locations or at breaks in the slope of land surface. Under low-rate pumping or injection rates [0.25 to 1 gallon per minute (gal/min)], one to three inflow zones were identified in each borehole. Two limitations of HPFM methods are (1) the HPFM can only identify zones within 1.5 to 2 orders of magnitude of the most transmissive zone in each borehole, and (2) the HPFM cannot detect flow rates less than 0.010 + or - 0.005 gal/min, which corresponds to a transmissivity of about 1 foot squared per day (ft2/d). Consequently, the HPFM is considered an effective tool for identifying the most transmissive fractures in a borehole, down to its detection level. Transmissivities below that cut-off must be measured with another method, such as packer testing or fluid-replacement logging. Where sufficient water-level and flowmeter data were available, HPFM results were numerically modeled. For each borehole model, the fracture location and measured flow rates were specified, and the head and transmissivity of each fracture zone were adjusted until a model fit was achieved with the interpreted ambient and stressed flow profiles. The transmissivities calculated by this method are similar to the results of an open-hole slug test; with the added information from the flowmeter, however, the head and transmissivity of discrete zones also can be determined. The discrete-interval transmissivities ranged from 0.16 to 330 ft2/d. The flowmeter-derived open-hole transmissivity, which is the combined total of each of the transmissive zones, ranged from 1 to 511 ft2/d. The whole-well open-hole transmissivity values determined with HPFM methods were compared to the results of open-hole hydraulic tests. Despite the fact that the flowmeter-derived transmissivities consistently were lower than the estimates derived from open-hole hydraulic tests alone, the correlation was very strong (with a coefficient of determination, R2, of 0.9866), indicating the HPFM method provides a reasonable estimate of transmissivities for the most transmissive fractures in the borehole. Geologic framework, fracture characterization, and estimates of hydraulic properties were interpreted together to characterize the fracture network. The data and interpretation presented in this report should provide information useful for site investigators as the conceptual site groundwater flow model is refined. Collectively, the results and the conceptual site model are important for evaluating remediation options and planning or implementing the design of a well field and borehole completions that will be adequate for monitoring flow, remediation efforts, groundwater levels, and (or) water quality. Similar kinds of borehole geophysical logging (specifically the borehole imaging, gamma, fluid logs, and HPFM) should be conducted in any newly installed boreholes and integrated with interpretations of any nearby boreholes. If boreholes are installed close to existing or other new boreholes, cross-hole flowmeter surveys may be appropriate and may help characterize the aquifer properties and connections between the boreholes.
Fracture Toughness of Polypropylene-Based Particulate Composites
Arencón, David; Velasco, José Ignacio
2009-01-01
The fracture behaviour of polymers is strongly affected by the addition of rigid particles. Several features of the particles have a decisive influence on the values of the fracture toughness: shape and size, chemical nature, surface nature, concentration by volume, and orientation. Among those of thermoplastic matrix, polypropylene (PP) composites are the most industrially employed for many different application fields. Here, a review on the fracture behaviour of PP-based particulate composites is carried out, considering the basic topics and experimental techniques of Fracture Mechanics, the mechanisms of deformation and fracture, and values of fracture toughness for different PP composites prepared with different particle scale size, either micrometric or nanometric.
NASA Technical Reports Server (NTRS)
Sinclair, J. H.
1980-01-01
Angelplied laminates of high modulus graphite fiber/epoxy were studied in several ply configurations at various tensile loading angles to the zero ply direction in order to determine the effects of ply orientations on tensile properties, fracture modes, and fracture surface characteristics of the various plies. It was found that fracture modes in the plies of angleplied laminates can be characterized by scanning electron microscope observation. The characteristics for a given fracture mode are similar to those for the same fracture mode in unidirectional specimens. However, no simple load angle range can be associated with a given fracture mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercadier, C.G.L.; Milatz, H.U.C.
1991-03-01
The Natih field reservoir comprises several distinct fractured limestone intervals which contain some 500 {times} 10{sup 6} m{sup 3} STOIIP. The field is being developed by gas-oil gravity drainage. Fracture orientations, dimensions, and spacings are critical to predict the effectiveness of this process. Statistically representative fracture data from Cretaceous Natih outcrop analogs in North Oman, core data, and electrical borehole imagery provided a realistic input for Natih field reservoir modeling and simulation. In the outcrops the fractures trend both cross-axially and longitudinally with dimensions and spacings varying with lithology, bed thickness, and curvature. Dimensions of matrix blocks in clean thicklymore » bedded limestones are an order of magnitude greater than in more argillaceous thinly bedded limestones. Subsurface data from the Natih reservoirs indicate that open cross-axial subvertical northeast-southwest-trending fractures dominate and strongly influence the reservoir flow pattern, but longitudinal fractures could not be identified. This is in line with the orientation of the present day, principal horizontal in situ stress that preferentially keeps open the cross-axial fracture set. Fracture apertures from borehole imagery have a range of 0.1 to 0.3 mm which is consistent with that derived from reservoir pressure behavior. Combining outcrop and well data results in a Natih reservoir fracture model with open cross-axial fractures that have a lithology dependent spacing of 0.1 to 2 m over the entire structure. From these data fracture porosities are calculated for each gridblock in the model. Longitudinal fractures probably exist in the vicinity of faults and in the northern part of the field where rapid down-warping occurs.« less
NASA Astrophysics Data System (ADS)
Emanuele Rizzo, Roberto; Healy, David; De Siena, Luca
2016-04-01
The success of any predictive model is largely dependent on the accuracy with which its parameters are known. When characterising fracture networks in fractured rock, one of the main issues is accurately scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (lengths, apertures, orientations and densities) is fundamental to the estimation of permeability and fluid flow, which are of primary importance in a number of contexts including: hydrocarbon production from fractured reservoirs; geothermal energy extraction; and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. Our work links outcrop fracture data to modelled fracture networks in order to numerically predict bulk permeability. We collected outcrop data from a highly fractured upper Miocene biosiliceous mudstone formation, cropping out along the coastline north of Santa Cruz (California, USA). Using outcrop fracture networks as analogues for subsurface fracture systems has several advantages, because key fracture attributes such as spatial arrangements and lengths can be effectively measured only on outcrops [1]. However, a limitation when dealing with outcrop data is the relative sparseness of natural data due to the intrinsic finite size of the outcrops. We make use of a statistical approach for the overall workflow, starting from data collection with the Circular Windows Method [2]. Then we analyse the data statistically using Maximum Likelihood Estimators, which provide greater accuracy compared to the more commonly used Least Squares linear regression when investigating distribution of fracture attributes. Finally, we estimate the bulk permeability of the fractured rock mass using Oda's tensorial approach [3]. The higher quality of this statistical analysis is fundamental: better statistics of the fracture attributes means more accurate permeability estimation, since the fracture attributes feed directly into the permeability calculations. The application of Maximum Likelihood Estimators can have important consequences, especially when we aim to predict the tendency of fracture attributes towards smaller and larger scales than those observed, in order to build consistent, useable models from outcrop observations. The procedures presented here aim to understand whether the average permeability of a fracture network can be predicted, reducing its uncertainties; and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models, which can then be easily up-scaled into larger areas or volumes. Gale et al. "Natural Fracture in shale: A review and new observations", AAPG Bulletin 98.11 (2014). Mauldon et al. "Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces", Journal of Structural Geology, 23 (2001). Oda "Permeability tensor for discontinuous rock masses", Geotechnique 35.4 (1985).
Fracture modes in notched angleplied composite laminates
NASA Technical Reports Server (NTRS)
Irvine, T. B.; Ginty, C. A.
1984-01-01
The Composite Durability Structural Analysis (CODSTRAN) computer code is used to determine composite fracture. Fracture modes in solid and notched, unidirectional and angleplied graphite/epoxy composites were determined by using CODSTRAN. Experimental verification included both nondestructive (ultrasonic C-Scanning) and destructive (scanning electron microscopy) techniques. The fracture modes were found to be a function of ply orientations and whether the composite is notched or unnotched. Delaminations caused by stress concentrations around notch tips were also determined. Results indicate that the composite mechanics, structural analysis, laminate analysis, and fracture criteria modules embedded in CODSTRAN are valid for determining composite fracture modes.
NASA Astrophysics Data System (ADS)
DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB
2018-03-01
Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.
Geometry of surface fractures along the Mervine Anticline in Kay County, north central Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, R.D.; Cemen, I.; Rizer, W.D.
1993-02-01
Surface fractures in the Lower Permian Barneston Formation are well exposed at three quarries in Kay County, north central Oklahoma. The three quarries are located along the Mervine Anticline which is a broad, assymmetric, low amplitude drape-like fold over a N20E trending sub-surface fault. The most northerly of the three quarries is at the axial surface trace of the anticline. The second quarry is one mile to the west and the third quarry is one-quarter mile to the east of the axial surface trace. In each quarry, a representative area of about 7,850 square feet was chosen for detailed mappingmore » of the surface fractures. In each representative area, the authors divided the surface fractures into what they termed as primary' and secondary' fractures. Traverse and area sampling methods were used to collect quantitative data on the joint orientation and frequency. The primary fractures are orthogonal and have a visible opening, while the secondary fractures have little or no opening. The primary fractures, the orthogonal sets, strike N30W and N75E. The secondary fractures show a slight preferred orientation along N65E although the overall distribution is random. These observations suggest that a similar fracture geometry exists in all three quarries. However, in one quarry the authors observed that fracture surfaces of the N30W striking set are inclined and their formation may have been influenced by movement along the proposed subsurface fault in the area.« less
Ji, Hong-Mei; Zhang, Wen-Qian; Wang, Xu; Li, Xiao-Wu
2015-01-01
The three-point bending strength and fracture behavior of single oriented crossed-lamellar structure in Scapharca broughtonii shell were investigated. The samples for bending tests were prepared with two different orientations perpendicular and parallel to the radial ribs of the shell, which corresponds to the tiled and stacked directions of the first-order lamellae, respectively. The bending strength in the tiled direction is approximately 60% higher than that in the stacked direction, primarily because the regularly staggered arrangement of the second-order lamellae in the tiled direction can effectively hinder the crack propagation, whereas the cracks can easily propagate along the interfaces between lamellae in the stacked direction. PMID:28793557
Mikula, A L; Hetzel, S J; Binkley, N; Anderson, P A
2017-05-01
Many osteoporosis-related vertebral fractures are unappreciated but their detection is important as their presence increases future fracture risk. We found height loss is a useful tool in detecting patients with vertebral fractures, low bone mineral density, and vitamin D deficiency which may lead to improvements in patient care. This study aimed to determine if/how height loss can be used to identify patients with vertebral fractures, low bone mineral density, and vitamin D deficiency. A hospital database search in which four patient groups including those with a diagnosis of osteoporosis-related vertebral fracture, osteoporosis, osteopenia, or vitamin D deficiency and a control group were evaluated for chart-documented height loss over an average 3 1/2 to 4-year time period. Data was retrieved from 66,021 patients (25,792 men and 40,229 women). A height loss of 1, 2, 3, and 4 cm had a sensitivity of 42, 32, 19, and 14% in detecting vertebral fractures, respectively. Positive likelihood ratios for detecting vertebral fractures were 1.73, 2.35, and 2.89 at 2, 3, and 4 cm of height loss, respectively. Height loss had lower sensitivities and positive likelihood ratios for detecting low bone mineral density and vitamin D deficiency compared to vertebral fractures. Specificity of 1, 2, 3, and 4 cm of height loss was 70, 82, 92, and 95%, respectively. The odds ratios for a patient who loses 1 cm of height being in one of the four diagnostic groups compared to a patient who loses no height was higher for younger and male patients. This study demonstrated that prospective height loss is an effective tool to identify patients with vertebral fractures, low bone mineral density, and vitamin D deficiency although a lack of height loss does not rule out these diagnoses. If significant height loss is present, the high positive likelihood ratios support a further workup.
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian
2018-02-01
Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.
Beyond Single Images: Combining the Geosciences in Geothermal Exploration
NASA Astrophysics Data System (ADS)
Malin, P. E.
2012-12-01
Geothermal exploration routinely includes a variety of field surveys, the interpretations of which are usually done separately and then combined in some ad hoc way. Instead, because these data share numerous constraints, combining them in a systematic, quantitative way is far preferable. Aside from the shared geological background, a "joint" analysis can dampen errors and noise in one data set by less sensitive responses in another. In this presentation case histories from several surveys will be used to illustrate these points. By way of background, an example of this type of integrated approach is the improvement in earthquake location when P-wave data are supplemented with S-wave data. These two waves share the effects of the S-wave velocity structure through its shear modulus, which the S-wave measures independent of the P-wave. Using only P-waves travel times for event location is thus equivalent to making the acoustic approximation for the elastic rock velocities. When earthquake location combines both phases, not only is this approximation improved, but errors in picking these times are reduced as well. The case histories include 1) mapping fracture orientations -primarily using seismic shear wave splitting and magnetotelluric polarization directions, but supplemented with surface geology and 2) deriving combined porosity and permeability from seismic velocity and resistivity. Shear wave splitting is routinely used to detect fracture orientation since S-waves propagate faster parallel to their direction. However shear wave splitting can also be caused by other features such as 2-D layering. Magnetotelluric polarizations can be the result of fracture orientation, but also with 3-D structural effects. However, combined, the non-fracture related effects are notably different between the two data types. As a result, detecting similar polarization effects in both makes the case for aligned fractures strong. In a similar vein, porosity and permeability play different roles in determining the relationships between seismic velocities and electrical conductivities. Velocities are more sensitive to rocks with different lithology and porosity while electrical conductivities are more sensitive to rocks with different permeability. Change in seismic velocity due to rock density or lithology have less of an effect on electrical conductivity as compared to a similar change in seismic velocity due to porosity. Similarly, a large fluctuation in electrical conductivity is more logically attributed to variation in permeability. The joint quantitative analysis of such data sets includes using, for example, simple linear and more advanced inversion schemes. Combining their inversion creates a subsurface map that is more robust than with either method alone. The combination of sensitivities helps constrain local fluctuations in these properties as well as background noise. The final test is of course in the drilling, recent results of which support the approach described here.
NASA Technical Reports Server (NTRS)
Kattenhorn, S. A.
2003-01-01
A commonly observed feature in faulted terrestrial rocks is the occurrence of secondary fractures alongside faults. Depending on exact morphology, such fractures have been termed tail cracks, wing cracks, kinks, or horsetail fractures, and typically form at the tip of a slipping fault or around small jogs or steps along a fault surface. The location and orientation of secondary fracturing with respect to the fault plane or the fault tip can be used to determine if fault motion is left-lateral or right-lateral.
Application of fractography to core and outcrop fracture investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulander, B.R.; Barton, C.C.; Dean, S.L.
1979-03-01
Purpose of this paper is to introduce geologists to the principles of fractography, especially those principles that govern the formation of fracture surface structures commonly observed in rocks. A knowledge of the inception mechanics governing the formation of a fracture's tendential and transient structures should provide geologists with a method to distinguish natural from coring-induced and handling-induced fractures in oriented core samples, and show how coring-induced fractures may be assisted in their formation by stresses that can be attributed to the drilling process. 118 figures.
Hanak, Viktor; Hartman, Thomas E; Ryu, Jay H
2005-07-01
To define the demographic, clinical, and radiological features of patients with cough-induced rib fractures and to assess potential risk factors. For this retrospective, single-center study, we identified all cases of cough-induced rib fractures diagnosed at the Mayo Clinic in Rochester, Minn, over a 9-year period between January 1, 1996, and January 31, 2005. Bone densitometry data from patients' medical records were analyzed, and T scores were used to classify patients into bone density categories. The mean +/- SD age of the 54 study patients at presentation was 55+/-17 years, and 42 patients (78%) were female. Patients presented with chest wall pain after onset of cough. Rib fracture was associated with chronic cough (> or =3 weeks' duration) in 85% of patients. Rib fractures were documented by chest radiography, rib radiography, computed tomography, or bone scan. Chest radiography had been performed in 52 patients and revealed rib fracture in 30 (58%). There were 112 fractured ribs in 54 patients. One half of patients had more than one fractured rib. Right-sided rib fractures alone were present in 17 patients (26 fractured ribs), left-sided in 23 patients (35 fractured ribs), and bilateral in 14 patients (51 fractured ribs). The most commonly fractured rib on both sides was rib 6. The fractures were most common at the lateral aspect of the rib cage. Bone densitometry was done in 26 patients and revealed osteopenia or osteoporosis in 17 (65%). Cough-induced rib fractures occur primarily in women with chronic cough. Middle ribs along the lateral aspect of the rib cage are affected most commonly. Although reduced bone density is likely a risk factor, cough-induced rib fractures can occur in the presence of normal bone density.
Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)
NASA Astrophysics Data System (ADS)
Siami-Irdemoosa, Elnaz
In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.
NASA Astrophysics Data System (ADS)
Hardebol, N. J.; Bertotti, G.
2013-04-01
This paper presents the development and use of our new DigiFract software designed for acquiring fracture data from outcrops more efficiently and more completely than done with other methods. Fracture surveys often aim at measuring spatial information (such as spacing) directly in the field. Instead, DigiFract focuses on collecting geometries and attributes and derives spatial information through subsequent analyses. Our primary development goal was to support field acquisition in a systematic digital format and optimized for a varied range of (spatial) analyses. DigiFract is developed using the programming interface of the Quantum Geographic Information System (GIS) with versatile functionality for spatial raster and vector data handling. Among other features, this includes spatial referencing of outcrop photos, and tools for digitizing geometries and assigning attribute information through a graphical user interface. While a GIS typically operates in map-view, DigiFract collects features on a surface of arbitrary orientation in 3D space. This surface is overlain with an outcrop photo and serves as reference frame for digitizing geologic features. Data is managed through a data model and stored in shapefiles or in a spatial database system. Fracture attributes, such as spacing or length, is intrinsic information of the digitized geometry and becomes explicit through follow-up data processing. Orientation statistics, scan-line or scan-window analyses can be performed from the graphical user interface or can be obtained through flexible Python scripts that directly access the fractdatamodel and analysisLib core modules of DigiFract. This workflow has been applied in various studies and enabled a faster collection of larger and more accurate fracture datasets. The studies delivered a better characterization of fractured reservoirs analogues in terms of fracture orientation and intensity distributions. Furthermore, the data organisation and analyses provided more independent constraints on the bed-confined or through-going nature of fractures relative to the stratigraphic layering.
A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software
NASA Technical Reports Server (NTRS)
Boppana, Abhishektha; Sefcik, Ryan; Myers, Jerry G.; Lewandowski, Beth
2016-01-01
Individuals who experience decreases in load-bearing bone densities can be subject to a higher risk of bone fracture during daily activity. Astronauts may lose up to nine percent of their load-bearing bone density for every month they spend in space [1]. Because of this, specialized countermeasures reduce percent loss in bone density and reduce fracture risk upon returning to Earth. Astronauts will typically not be at risk for fracture during spaceflight, because of the lesser loads experienced in microgravity conditions. However, once back on Earth, astronauts have an increased risk for bone fracture as a result of weakened bone and return to 1G conditions [2]. It is therefore important to understand the significance of any bone density loss in addition to developing exercises in an attempt to limit losses in bone strength. NASA seeks to develop a deeper understanding of fracture risk through the development of a computational bone strength model to assess the bone fracture risk of astronauts pre-flight and post-flight. This study addresses the several key processes needed to develop such strength analyses using medical image processing and finite element modeling.
Extending Topological Approaches to Microseismic-Derived 3D Fracture Networks
NASA Astrophysics Data System (ADS)
Urbancic, T.; Bosman, K.; Baig, A.; Ardakani, E. P.
2017-12-01
Fracture topology is important for determining the fluid-flow characteristics of a fracture network. In most unconventional petroleum applications, flow through subsurface fracture networks is the primary source of production, as matrix permeability is often in the nanodarcy range. Typical models of reservoir discrete fracture networks (DFNs) are constructed using fracture orientation and average spacing, without consideration of how the connectivity of the fracture network aids the percolation of hydrocarbons back to the wellbore. Topological approaches to DFN characterization have been developed and extensively used in analysis of outcrop data and aerial photography. Such study of the surface expression of fracture networks is straight-forward, and the physical form of the observed fractures is directly reflected in the parameters used to describe the topology. However, this analysis largely ignores the three-dimensional nature of natural fracture networks, which is difficult to define accurately in geological studies. SMTI analysis of microseismic event distributions can produce DFNs, where each event is represented by a penny-shaped crack with radius and orientation determined from the frequency content of the waveforms and assessment of the slip instability of the potential fracture planes, respectively. Analysis of the geometric relationships between a set of fractures can provide details of intersections between fractures, and thus the topological characteristics of the fracture network. Extension of existing 2D topology approaches to 3D fracture networks is non-trivial. In the 2D case, a fracture intersection is a single point (node), and branches connect adjacent nodes along fractures. For the 3D case, intersection "nodes" become lines, and connecting nodes to find branches becomes more complicated. There are several parameters defined in 2D topology to quantify the connectivity of the fracture network. Equivalent quantities must be defined and calibrated for the 3D case to provide a meaningful measurement of fracture network connectivity. We have developed an approach to analyze the topology of 3D fracture networks derived from microseismic moment tensors. We illustrate the utility of the approach with applications to example datasets from hydraulic fracturing completions.
Is the permeability of naturally fractured rocks scale dependent?
NASA Astrophysics Data System (ADS)
Azizmohammadi, Siroos; Matthäi, Stephan K.
2017-09-01
The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.
Phipps, K R; Orwoll, E S; Mason, J D; Cauley, J A
2000-10-07
To determine whether fluoridation influences bone mineral density and fractures in older women. Multicentre prospective study on risk factors for osteoporosis and fractures. Four community based centres in the United States. 9704 ambulatory women without bilateral hip replacements enrolled during 1986-8; 7129 provided information on exposure to fluoride. Bone mineral density of the lumbar spine, proximal femur, radius, and calcaneus plus incident fractures (fractures that occurred during the study) of vertebrae, hip, wrist, and humerus. Women were classified as exposed or not exposed or having unknown exposure to fluoride for each year from 1950 to 1994. Outcomes were compared in women with continuous exposure to fluoridated water for the past 20 years (n=3218) and women with no exposure during the past 20 years (n=2563). In women with continuous exposure mean bone mineral density was 2.6% higher at the femoral neck (0.017 g/cm(2), P<0.001), 2.5% higher at the lumbar spine (0.022 g/cm(2), P<0.001), and 1.9% lower at the distal radius (0.007 g/cm(2), P=0.002). In women with continuous exposure the multivariable adjusted risk of hip fracture was slightly reduced (risk ratio 0.69, 95% confidence interval 0.50 to 0.96, P=0.028) as was the risk of vertebral fracture (0.73, 0.55 to 0.97, P=0.033). There was a non-significant trend toward an increased risk of wrist fracture (1.32, 1.00 to 1.71, P=0.051) and no difference in risk of humerus fracture (0.85, 0.58 to 1.23, P=0.378). Long term exposure to fluoridated drinking water does not increase the risk of fracture.
Phipps, Kathy R; Orwoll, Eric S; Mason, Jill D; Cauley, Jane A
2000-01-01
Objective To determine whether fluoridation influences bone mineral density and fractures in older women. Design Multicentre prospective study on risk factors for osteoporosis and fractures. Setting Four community based centres in the United States. Participants 9704 ambulatory women without bilateral hip replacements enrolled during 1986-8; 7129 provided information on exposure to fluoride. Main outcome measures Bone mineral density of the lumbar spine, proximal femur, radius, and calcaneus plus incident fractures (fractures that occurred during the study) of vertebrae, hip, wrist, and humerus. Results Women were classified as exposed or not exposed or having unknown exposure to fluoride for each year from 1950 to 1994. Outcomes were compared in women with continuous exposure to fluoridated water for the past 20 years (n=3218) and women with no exposure during the past 20 years (n=2563). In women with continuous exposure mean bone mineral density was 2.6% higher at the femoral neck (0.017 g/cm2, P<0.001), 2.5% higher at the lumbar spine (0.022 g/cm2, P<0.001), and 1.9% lower at the distal radius (0.007 g/cm2, P=0.002). In women with continuous exposure the multivariable adjusted risk of hip fracture was slightly reduced (risk ratio 0.69, 95% confidence interval 0.50 to 0.96, P=0.028) as was the risk of vertebral fracture (0.73, 0.55 to 0.97, P=0.033). There was a non-significant trend toward an increased risk of wrist fracture (1.32, 1.00 to 1.71, P=0.051) and no difference in risk of humerus fracture (0.85, 0.58 to 1.23, P=0.378). Conclusions Long term exposure to fluoridated drinking water does not increase the risk of fracture. PMID:11021862
Endogenous hormones, muscle strength, and risk of fall-related fractures in older women.
Sipilä, Sarianna; Heikkinen, Eino; Cheng, Sulin; Suominen, Harri; Saari, Päivi; Kovanen, Vuokko; Alén, Markku; Rantanen, Taina
2006-01-01
Among older people, fracture-causing fall often leads to health deterioration. The role of endogenous hormone status and muscle strength on fall-related fracture risk is unclear. This study investigates if, after adjustment for bone density, endogenous hormones and muscle strength would predict fall-related limb fracture incidence in older community-dwelling women followed-up over 10 years. As a part of a prospective population-based study, 187 75-year-old women were investigated. Serum estradiol, testosterone, sex hormone binding globulin, and dehydroepiandrosterone sulfate concentrations were analyzed, and isometric muscle strength and bone mineral density were assessed. Fall-related limb fractures were gathered from patient records. Serum estradiol concentration was a significant predictor of fall-related limb fractures. Women with serum estradiol concentrations less than 0.022 nmol/L had a 3-fold risk (relative risk 3.05; 95% confidence interval, 1.26-7.36), and women with estradiol concentrations between 0.022 and 0.066 nmol/L doubled the risk (relative risk 2.24; 95% confidence interval, 0.97-5.19) of fall-related limb fracture compared to the women with estradiol concentrations ()above 0.066 nmol/L. Adjustment for muscle strength and bone mineral density did not materially change the risk estimates. High muscle strength was associated with a low incidence of fall-related limb fractures. This study showed that in 75-year-old women higher serum estradiol concentration and greater muscle strength were independently associated with a low incidence of fall-related limb fractures even after adjustment for bone density. Our results suggest that hormonal status and muscle strength have their own separate mechanisms protecting from fall-related fractures. This finding is of importance in developing preventive strategies, but calls for further study.
Langsetmo, Lisa; Nguyen, Tuan V.; Nguyen, Nguyen D.; Kovacs, Christopher S.; Prior, Jerilynn C.; Center, Jacqueline R.; Morin, Suzanne; Josse, Robert G.; Adachi, Jonathan D.; Hanley, David A.; Eisman, John A.
2011-01-01
Background A set of nomograms based on the Dubbo Osteoporosis Epidemiology Study predicts the five- and ten-year absolute risk of fracture using age, bone mineral density and history of falls and low-trauma fracture. We assessed the discrimination and calibration of these nomograms among participants in the Canadian Multicentre Osteoporosis Study. Methods We included participants aged 55–95 years for whom bone mineral density measurement data and at least one year of follow-up data were available. Self-reported incident fractures were identified by yearly postal questionnaire or interview (years 3, 5 and 10). We included low-trauma fractures before year 10, except those of the skull, face, hands, ankles and feet. We used a Cox proportional hazards model. Results Among 4152 women, there were 583 fractures, with a mean follow-up time of 8.6 years. Among 1606 men, there were 116 fractures, with a mean follow-up time of 8.3 years. Increasing age, lower bone mineral density, prior fracture and prior falls were associated with increased risk of fracture. For low-trauma fractures, the concordance between predicted risk and fracture events (Harrell C) was 0.69 among women and 0.70 among men. For hip fractures, the concordance was 0.80 among women and 0.85 among men. The observed fracture risk was similar to the predicted risk in all quintiles of risk except the highest quintile of women, where it was lower. The net reclassification index (19.2%, 95% confidence interval [CI] 6.3% to 32.2%), favours the Dubbo nomogram over the current Canadian guidelines for men. Interpretation The published nomograms provide good fracture-risk discrimination in a representative sample of the Canadian population. PMID:21173069
Gnudi, S; Sitta, E; Pignotti, E
2012-08-01
To compare hip fracture incidence in post-menopausal females who were differently stratified for the fracture risk according to bone mineral density and proximal femur geometry. In a 5 year follow-up study, the hip fracture incidence in 729 post-menopausal females (45 of whom suffered from incident hip fracture) was assessed and compared. Forward logistic regression was used to select independent predictors of hip fracture risk, including age, age at menopause, height, weight, femoral neck bone mineral density (FNBMD), neck-shaft angle (NSA), hip axis length, femoral neck diameter and femoral shaft diameter as covariates. Fracture incidence was then calculated for the categories of young/old age, high/low FNBMD and wide/narrow NSA, which were obtained by dichotomising each hip fracture independent predictor at the value best separating females with and without a hip fracture. The hip fracture incidence of the whole cohort was significantly higher in females with a wide NSA (8.52%) than in those with a narrow NSA (3.51%). The combination of wide NSA and low FNBMD had the highest hip fracture incidence in the whole cohort (17.61%) and each age category. The combinations of narrow/wide NSA with low/high FNBMD, respectively, gave a significantly higher fracture incidence in older than in younger women, whereas women with a combined wide NSA and low FNBMD had no significantly different fracture incidence in young (14.60%) or old age (21.62%). Our study showed that NSA is effective at predicting the hip fracture risk and that the detection in early post-menopause of a wide NSA together with a low FNBMD should identify females at high probability of incident hip fracture.
Gnudi, S; Sitta, E; Pignotti, E
2012-01-01
Objective To compare hip fracture incidence in post-menopausal females who were differently stratified for the fracture risk according to bone mineral density and proximal femur geometry. Methods In a 5 year follow-up study, the hip fracture incidence in 729 post-menopausal females (45 of whom suffered from incident hip fracture) was assessed and compared. Forward logistic regression was used to select independent predictors of hip fracture risk, including age, age at menopause, height, weight, femoral neck bone mineral density (FNBMD), neck–shaft angle (NSA), hip axis length, femoral neck diameter and femoral shaft diameter as covariates. Fracture incidence was then calculated for the categories of young/old age, high/low FNBMD and wide/narrow NSA, which were obtained by dichotomising each hip fracture independent predictor at the value best separating females with and without a hip fracture. Results The hip fracture incidence of the whole cohort was significantly higher in females with a wide NSA (8.52%) than in those with a narrow NSA (3.51%). The combination of wide NSA and low FNBMD had the highest hip fracture incidence in the whole cohort (17.61%) and each age category. The combinations of narrow/wide NSA with low/high FNBMD, respectively, gave a significantly higher fracture incidence in older than in younger women, whereas women with a combined wide NSA and low FNBMD had no significantly different fracture incidence in young (14.60%) or old age (21.62%). Conclusion Our study showed that NSA is effective at predicting the hip fracture risk and that the detection in early post-menopause of a wide NSA together with a low FNBMD should identify females at high probability of incident hip fracture. PMID:22096224
Natural thermal convection in fractured porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.
2015-12-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50
Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie
2012-02-01
Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia does develop in the injured limb during cast immobilization for fracture treatment. Further investigation is required to determine if the bone mineral mass will return to normal or if a permanent decrease is to be expected, which may constitute a hypothetical risk of sustaining a second fracture.
Fracture Behavior of a Stitched Warp-Knit Carbon Fabric Composite
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.; Reeder, James R.; Yuan, F. G.
2001-01-01
Tests were conducted on several types of fracture specimens made from a carbon/epoxy composite. The composite material was stitched prior to introducing epoxy resin. Boeing, used this material to develop a composite wing box for a transport aircraft in the NASA Advanced Composites Transport Program. The specimens included compact, extended compact, and center notched tension specimens. The specimens were cut from panels with three orientations in order to explore the effects of anisotropy. The panels were made with various thicknesses to represent a wing, skin from tip to root. All fractures were not self-similar depending on specimen type and orientation. Unnotched tension specimens were also tested to measure elastic constants and strengths. The normal and shear strains were calculated on fracture planes using a series representation of strain fields for plane anisotropic crack problems. The fracture parameters were determined using a finite element method. Characteristic distances for critical tension and shear strains were calculated for each specimen and a failure criterion based on the interaction of tension and shear strains was proposed.
Multiple fracturing experiments: propellant and borehole considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuderman, J F
1982-01-01
The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The presentmore » experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.« less
Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.
1988-01-01
The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.
Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu; Kawas, Neal P., E-mail: nealkawas@ucla.edu; Lutz, Andre, E-mail: andre.lutz@hotmail.de
2013-07-01
We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structuremore » varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.« less
Yingling, Vanessa R; Xiang, Yongqing; Raphan, Theodore; Schaffler, Mitchell; Koser, Karen; Malique, Rumena
2007-01-01
Accrual of bone mass and strength during development is imperative in order to reduce the risk of fracture later in life. Although delayed pubertal onset is associated with an increased incidence of stress fracture, evidence supports the concept of “catch up” growth. It remains unclear if deficits in bone mass associated with delayed puberty have long term effects on trabecular bone structure and strength. The purpose of this study was to use texture-based analysis and histomorphometry to investigate the effect of a delay in puberty on trabecular bone mass and structure immediately post-puberty and at maturity in female rats. Forty-eight female Sprague Dawley rats (25 days) were randomly assigned to one of four groups; 1) short-term control (C-ST), 2) long-term control (C-LT), 3) short-term GnRH antagonist (G-ST) and 4) long-term GnRH antagonist (G-LT). Injections of either saline or gonadotropin-releasing hormone antagonist (GnRH-a) (100 μg/day) (Cetrotide™, Serono, Inc) were given intraperitoneally for 18 days (day 35–42) to both ST and LT. The ST groups were sacrificed after the last injection (day 43) and the LT groups at 6 months of age. Pubertal and gonadal development was retarded by the GnRA antagonist injections as indicated by a delay in vaginal opening, lower ovarian and uterine weights and suppressed estradiol levels in the short-term experimental animals (G-ST). Delayed puberty caused a transient reduction in trabecular bone area as assessed by histomorphometry. Specifically, the significant deficit in bone area resulted from a decreased number of trabecula and an increase in trabecular separation. Texture analysis, a new method to assess bone density and structural anisotropy, correlated well with the standard histomorphometry and measured significant deficits in the density measure (MDensity) in the G-ST group that remained at maturity (6 months). The texture energy deficit in the G-ST group was primarily in the 0° orientation (−13.2 %), which measures the longitudinal trabeculae in the proximal tibia. However, the deficit in the G-LT group was in the 45° and 135° orientations. These results suggest that any “catch-up” growth following the cessation of the GnRH-antagonist injection protocol may be directed in trabeculae oriented perpendicular to 0° at the expense of trabeculae in other orientations. PMID:16979963
Jubel, A; Schiffer, G; Andermahr, J; Ries, C; Faymonville, C
2016-06-01
The aim of this study was the evaluation of patient-oriented outcome scores for shoulder function and residual complaints after diaphyseal clavicular fractures with respect to shortening deformities. The analysis was based on data of 172 adult patients (mean age 39 ± 14 years) with healed clavicular fractures treated operatively (n = 104) or conservatively (n = 67). The control population consisted of 35 healthy adults without shoulder problems and 25 patients with nonunion after conservative treatment. The subjective estimation of the level of pain was collated on a visual analog scale (VAS 1-100 points), together with the relative Constant and Murley score, the Cologne clavicle score, the disabilities of the arm, shoulder and hand (DASH) score and a bilateral comparison of the length difference of the clavicles. Patients with a clavicular length difference of > 2 cm had significantly (p < 0.001) more pain, a greater loss of mobility and significantly lower values in the scoring system of Constant and Murley, the DASH and Cologne clavicle scores compared to patients with clavicular length differences < 0.5 cm and healthy controls (p < 0.001). The results of this study showed that shortening deformities after clavicular fractures in adults have a large impact on the functional result and patient-oriented outcome scores. The aim of the therapy of diaphyseal clavicular fractures should therefore concentrate on reconstruction of the anatomical length of the clavicle.
Fixation orientation in ankle fractures with syndesmosis injury.
Nimick, Craig J; Collman, David R; Lagaay, Pieter
2013-01-01
Accurate reduction of the syndesmosis has been shown to be an important prognostic factor for functional outcome in ankle injuries that disrupt the syndesmosis. The purpose of the present case series was to assess the fixation orientation and the position of the fibula within the tibial incisura after open reduction and internal fixation of ankle fractures with syndesmosis injury. Computed tomography was used to assess the accuracy of the reduction. Twelve patients were included in the present case series. A ratio representing the relationship between the tibia and fibula and the orientation of the syndesmotic fixation was measured preoperatively and postoperatively and compared with the uninjured contralateral ankle, representing the patient's normal anatomy. The measurements were accomplished electronically to one tenth of 1 mm using Stentor Intelligent Informatics, I-site, version 3.3.1 (Phillips Electronics; Andover, MA). Posteriorly oriented syndesmotic fixation caused posterior translation of the fibula with respect to the tibia and anteriorly oriented syndesmotic fixation caused anterior translation. Copyright © 2013. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Al Kharusi, Laiyyan M.
Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight correlation to fracture spacing. Furthermore, bed thickness is found to be only one factor in determining fracture density but with increasing strain, internal bedforms and rock petrophysical heterogeneities influence fracture density patterns. This study illustrates how integrating sedimentologic and sequence stratigraphic interpretations with data on structural kinematics can lead to refined predictive understanding of fracture attributes.
Reduced bone mineral density in postmenopausal women self-reporting premenopausal wrist fractures.
Fiorano-Charlier, C; Ostertag, A; Aquino, J P; de Vernejoul, M-C; Baudoin, C
2002-07-01
Postmenopausal fractures are associated with low bone mass; however, the role of low peak bone mass in young adults in determining subsequent osteoporosis suggests that premenopausal fractures may also be relevant. We therefore sought to determine whether a self-reported previous history of premenopausal wrist and nonwrist fractures could also be associated with bone density and therefore be used to predict osteoporosis. We recruited 453 volunteer women with a median age of 64 years (range 50-83 years), with no metabolic bone disease, previous femoral neck fracture, or prevalent vertebral fracture. Bone density at the femoral neck (FN) and lumbar spine (LS) was measured using a Lunar DPX-L. As expected, the 319 women who did not report any fracture had a higher T score at LS (-0.93 +/- 1.44) than the 134 women who reported a previous fracture at any site and at any age (T score -1.60 +/- 1.21, p < 0.001). The findings for the FN were similar. Compared with fracture-free women, the women who reported a first wrist fracture before menopause now had a lower LS T score (-1.77 +/- 1.20, n = 15, p < 0.05), whereas those who reported a nonwrist fracture showed no significant decrease in their LS T score (-1.26 +/- 1.00, n = 36). When both wrist and nonwrist fractures had occurred after menopause, the T score was significantly lower. Twenty percent of the fracture-free women were osteoporosis patients. After adjusting for body weight, age, hormonal replacement therapy (HRT), and hip fracture in the family, the relative risk (RR) of osteoporosis for premenopausal wrist fractures was 2.7 (95% confidence interval 1.4-4.3) vs. 1.2 (0.7-2.4) for women with premenopausal nonwrist fractures. We conclude that self-reported premenopausal wrist fractures, but no other fractures occurring before menopause, are likely to be associated with osteoporosis at 65 years of age, and therefore constitute strong grounds for screening.
Majumdar, Sumit R; Beaupre, Lauren A; Harley, Charles H; Hanley, David A; Lier, Douglas A; Juby, Angela G; Maksymowych, Walter P; Cinats, John G; Bell, Neil R; Morrish, Donald W
2007-10-22
Patients who survive hip fracture are at high risk of recurrent fractures, but rates of osteoporosis treatment 1 year after sustaining a fracture are less than 10% to 20%. We have developed an osteoporosis case manager intervention. The case manager educated patients, arranged bone mineral density tests, provided prescriptions, and communicated with primary care physicians. The intervention was compared with usual care in a randomized controlled trial. We recruited from all hospitals that participate in the Capital Health system (Alberta, Canada), including patients 50 years or older who had sustained a hip fracture and excluding those who were receiving osteoporosis treatment or who lived in a long-term care facility. Primary outcome was bisphosphonate therapy 6 months after fracture; secondary outcomes included bone mineral density testing, appropriate care (bone mineral density testing and treatment if bone mass was low), and intervention costs. We screened 2219 patients and allocated 220, as follows: 110 to the intervention group and 110 to the control group. Median age was 74 years, 60% were women, and 37% reported having had previous fractures. Six months after hip fracture, 56 patients in the intervention group (51%) were receiving bisphosphonate therapy compared with 24 patients in the control group (22%) (adjusted odds ratio, 4.7; 95% confidence interval, 2.4-8.9; P < .001). Bone mineral density tests were performed in 88 patients in the intervention group (80%) vs 32 patients in the control group (29%) (P < .001). Of the 120 patients who underwent bone mineral density testing, 25 (21%) had normal bone mass. Patients in the intervention group were more likely to receive appropriate care than were patients in the control group (67% vs 26%; P < .001). The average intervention cost was $50.00 per patient. For a modest cost, a case manager was able to substantially increase rates of osteoporosis treatment in a vulnerable elderly population at high risk of future fractures.
Experimental Determination of the Fracture Toughness and Brittleness of the Mancos Shale, Utah.
NASA Astrophysics Data System (ADS)
Chandler, Mike; Meredith, Phil; Crawford, Brian
2013-04-01
The hydraulic fracturing of Gas-Shales has become a topic of interest since the US Shale Gas Revolution, and is increasingly being investigated across Europe. A significant issue during hydraulic fracturing is the risk of fractures propagating further than desired into aquifers or faults. This occured at Preese Hall, UK in April and May 2011 when hydraulic fractures propagated into an adjacent fault causing 2.3ML and 1.7ML earthquakes [1]. A rigorous understanding of how hydraulic fractures propagate under in-situ conditions is therefore important for treatment design, both to maximise gas accessed, and to minimise risks due to fracture overextension. Fractures will always propagate along the path of least resistance, but the direction and extent of this path is a complex relationship between the in-situ stress-field, the anisotropic mechanical properties of the rock, and the pore and fracturing pressures [2]. It is possible to estimate the anisotropic in-situ stress field using an isolated-section hydraulic fracture test, and the pore-pressure using well logs. However, the anisotropic mechanical properties of gas-shales remain poorly constrained, with a wide range of reported values. In particular, there is an extreme paucity of published data on the Fracture Toughness of soft sediments such as shales. Mode-I Fracture Toughness is a measure of a material's resistance to dynamic tensile fracture propagation. Defects such as pre-existing microcracks and pores in a material can induce high local stress concentrations, causing fracture propagation and material failure under substantially lower stress than its bulk strength. The mode-I stress intensity factor, KI, quantifies the concentration of stress at the crack tip. For linear elastic materials the Fracture Toughness is defined by the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, rocks such as shales are relatively ductile and display significant non-linearity. This produces hysteresis during cyclic loading, allowing for the calculation of a brittleness coefficient using the residual displacement after successive loading cycles. This can then be used to define a brittleness corrected Fracture Toughness, KIcc. We report anisotropic KIcc values and a variety of supporting measurements made on the Mancos Shale in the three principle Mode-I crack orientations (Arrester, Divider and Short-Transverse) using a modified Short-Rod sample geometry. The Mancos is an Upper Cretaceous shale from western Colorado and eastern Utah with a relatively high siliclastic content for a gas target formation. The Short-Rod methodology involves the propagation of a crack through a triangular ligament in a chevron-notched cylindrical sample [3]. A very substantial anisotropy is observed in the loading curves and KIcc values for the three crack orientations, with the Divider orientation having KIcc values 25% higher than the other orientations. The measured brittleness for these Mancos shales is in the range 1.5-2.1; higher than for any other rocks we have found in the literature. This implies that the material is extremely non-linear. Increases in KIcc with increasing confining pressure are also investigated, as Shale Gas reservoirs occur at depths where confining pressure may be as high as 35MPa and temperature as high as 100oC. References [1] C.A. Green, P. Styles & B.J. Baptie, "Preese Hall Shale Gas Fracturing", Review & Recommendations for Induced Seismic Mitigation, 2012. [2] N.R. Warpinski & M.B. Smith, "Rock Mechanics and Fracture Geometry", Recent advances in Hydraulic Fracturing, SPE Monograms, Vol. 12, pp. 57-80, 1990. [3] F. Ouchterlony, "International Society for Rock Mechanics Commision on Testing Methods: Suggested Methods for Determining the Fracture Toughness of Rock", International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 25, 1988.
NASA Astrophysics Data System (ADS)
Gajek, Wojciech; Verdon, James; Malinowski, Michał; Trojanowski, Jacek
2017-04-01
Azimuthal anisotropy plays a key-role in hydraulic fracturing experiments, since it provides information on stress orientation and pre-existing fracture system presence. The Lower Paleozoic shale plays in northern Poland are characterized by a strong (15-18%) Vertical Transverse Isotropy (VTI) fabric which dominates weak azimuthal anisotropy being of order of 1-2%. A shear wave travelling in the subsurface after entering an anisotropic medium splits into two orthogonally polarized waves travelling with different velocities. Splitting parameters which can be assessed using a microseismic array are polarization of the fast shear wave and time delay between two modes. Polarization of the fast wave characterizes the anisotropic system on the wave path while the time delay is proportional to the magnitude of anisotropy. We employ Shear Wave Splitting (SWS) technique using a borehole microseismic dataset collected during a hydraulic stimulation treatment located in northern Poland, to image fracture strike masked by a strong VTI signature. During the inversion part, the VTI background parameters were kept constant using information from 3D seismic (VTI model used for pre-stack depth migration). Obtained fracture azimuths averaged over fracturing stages are consistent with the available XRMI imager logs from the nearby vertical well, however they are different from the large-scale maximum stress direction (by 40-45 degrees). Inverted Hudson's crack density (ca. 2%) are compatible with the low shear-wave anisotropy observed in the cross-dipole sonic logs (1-2%). This work has been funded by the Polish National Centre for Research and Development within the Blue Gas project (No BG2/SHALEMECH/14). Data were provided by the PGNiG SA. Collaboration with University of Bristol was supported within TIDES COST Action ES1401.
Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.
García-Rodríguez, J; Martínez-Reina, J
2017-02-01
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, D.W.; Schmitt, L.; Woussen, G.
Airborne SAR images provided essential clues to the tectonic setting of (1) the MbLg 6.5 Saguenay earthquake of 25 November 1988, (2) the Charlevoix-Kamouraska seismic source zone, and (3) some of the low *eve* seismic activity in the Eastern seismic background zone of Canada. The event occurred in the southeastern part of the Canadian Shield in an area where the boundary between the Saguenay graben and the Jacques Cartier horst is not well defined. These two tectonic blocks are both associated with the Iapetan St-Lawrence rift. These blocks exhibit several important structural breaks and distinct domains defined by the lineamentmore » orientations, densities, and habits. Outcrop observations confirm that several lineament sets correspond to Precambrian ductile shear zones reactivated as brittle faults during the Phanerozoic. In addition, the northeast and southwest limits of recent seismic activity in the Charlevoix-Kamouraska zone correspond to major elements of the fracture pattern identified on the SAR images. These fractures appear to be related to the interaction of the Charlevoix astrobleme with the tectonic features of the area. 20 refs.« less
ERIC Educational Resources Information Center
Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.
2005-01-01
Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…
The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone
NASA Astrophysics Data System (ADS)
Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.
2013-12-01
Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins. Whole-rock XRF analyses show Al and Ca content decrease with increasing Si, whereas Na increases towards the core. This can be interpreted as compositional changes of plagioclase to albite-rich ones due to chloritic-propylitic alteration. In the damage zone, LOI increases towards the core but decreases inside of it. This is explained by H2O-rich clays and gypsum in the fault core boundary represented as fault gouge zones whereas in the cataclastic core zone, the decrease in LOI is explained by epidote. Our results show the JF had an evolving permeability structure where a cataclasite-rich core is formed at an early stage, and then a gouge-bounded core is developed which acted as a barrier to fluid from east to west of the fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, M., Prothro, L. B., Obi, C.
A test bed for a series of chemical explosives tests known as Source Physics Experiments (SPE) was constructed in granitic rock of the Climax stock, in northern Yucca Flat at the Nevada National Security Site in 2010-2011. These tests are sponsored by the U.S. Department of Energy, National Nuclear Security Administration's National Center for Nuclear Security. The test series is designed to study the generation and propagation of seismic waves, and will provide data that will improve the predictive capability of calculational models for detecting and characterizing underground explosions. Abundant geologic data are available for the area, primarily as amore » result of studies performed in conjunction with the three underground nuclear tests conducted in the Climax granite in the 1960s and a few later studies of various types. The SPE test bed was constructed at an elevation of approximately 1,524 meters (m), and consists of a 91.4-centimeter (cm) diameter source hole at its center, surrounded by two rings of three 20.3-cm diameter instrument holes. The inner ring of holes is positioned 10 m away from the source hole, and the outer ring of holes is positioned 20 m from the source hole. An initial 160-m deep core hole was drilled at the location of the source hole that provided information on the geology of the site and rock samples for later laboratory testing. A suite of geophysical logs was run in the core hole and all six instruments holes to obtain matrix and fracture properties. Detailed information on the character and density of fractures encountered was obtained from the borehole image logs run in the holes. A total of 2,488 fractures were identified in the seven boreholes, and these were ranked into six categories (0 through 5) on the basis of their degree of openness and continuity. The analysis presented here considered only the higher-ranked fractures (ranks 2 through 5), of which there were 1,215 (approximately 49 percent of all fractures identified from borehole image logs). The fractures were grouped into sets based on their orientation. The most ubiquitous fracture set (50 percent of all higher-ranked fractures) is a group of low-angle fractures (dips 0 to 30 degrees). Fractures with dips of 60 to 90 degrees account for 38 percent of high-ranked fractures, and the remaining 12 percent are fractures with moderate dips (30 to 60 degrees). The higher-angle fractures are further subdivided into three sets based on their dip direction: fractures of Set 1 dip to the north-northeast, fractures of Set 2 dip to the south-southwest, and Set 3 consists of high-angle fractures that dip to the southeast and strike northeast. The low-angle fractures (Set 4) dip eastward. Fracture frequency does not appear to change substantially with depth. True fracture spacing averages 0.9 to 1.2 m for high-angle Sets 1, 2, and 3, and 0.6 m for Set 4. Two significant faults were observed in the core, centered at the depths of 25.3 and 32.3 m. The upper of these two faults dips 80 degrees to the north-northeast and, thus, is related to the Set-1 fractures. The lower fault dips 79 degrees to the south-southwest and is related to SPE Set-2 fractures. Neither fault has an identifiable surface trace. Groundwater was encountered in all holes drilled on the SPE test bed, and the fluid level averaged about 15.2 to 18.3 m below ground surface. An informal study of variations in the fluid level in the holes conducted during various phases of construction of the test bed concluded that groundwater flow through the fractured granitic rocks is not uniform, and appears to be controlled by variations in the orientation and degree of interconnectedness of the fractures. It may also be possible that an aplite dike or quartz vein may be present in the test bed, which could act as a barrier to groundwater flow and, thus, could account for anisotropy seen in the groundwater recovery measurements.« less
Prediction of fracture profile using digital image correlation
NASA Astrophysics Data System (ADS)
Chaitanya, G. M. S. K.; Sasi, B.; Kumar, Anish; Babu Rao, C.; Purnachandra Rao, B.; Jayakumar, T.
2015-04-01
Digital Image Correlation (DIC) based full field strain mapping methodology is used for mapping strain on an aluminum sample subjected to tensile deformation. The local strains on the surface of the specimen are calculated at different strain intervals. Early localization of strain is observed at a total strain of 0.050ɛ; itself, whereas a visually apparent localization of strain is observed at a total strain of 0.088ɛ;. Orientation of the line of fracture (12.0°) is very close to the orientation of locus of strain maxima (11.6°) computed from the strain mapping at 0.063ɛ itself. These results show the efficacy of the DIC based method to predict the location as well as the profile of the fracture, at an early stage.
The effect of retained intramedullary nails on tibial bone mineral density.
Allen, J C; Lindsey, R W; Hipp, J A; Gugala, Z; Rianon, N; LeBlanc, A
2008-07-01
Intramedullary nailing has become a standard treatment for adult tibial shaft fractures. Retained intramedullary nails have been associated with stress shielding, although their long-term effect on decreasing tibial bone mineral density is currently unclear. The purpose of this study was to determine if retained tibial intramedullary nails decrease tibial mineral density in patients with successfully treated fractures. Patients treated with statically locked intramedullary nails for isolated, unilateral tibia shaft fractures were studied. Inclusion required that fracture had healed radiographically and that the patient returned to the pre-injury activity level. Data on patient demographic, fracture type, surgical technique, implant, and post-operative functional status were tabulated. Dual energy X-ray absorptiometry was used to measure bone mineral density in selected regions of the affected tibia and the contralateral intact tibia. Image reconstruction software was employed to ensure symmetry of the studied regions. Twenty patients (mean age 43; range 22-77 years) were studied at a mean of 29 months (range 5-60 months) following intramedullary nailing. There was statistically significant reduction of mean bone mineral density in tibiae with retained intramedullary nails (1.02 g/cm(2) versus 1.06 g/cm(2); P=0.04). A significantly greater decrease in bone mineral density was detected in the reamed versus non-reamed tibiae (-7% versus +6%, respectively; P<0.05). The present study demonstrates a small, but statistically significant overall bone mineral density decrease in healed tibiae with retained nails. Intramedullary reaming appears to be a factor potentiating the reduction of tibia bone mineral density in long-term nail retention.
Ultrasonic characterization of engineering performanace of oriented strandboard
NASA Astrophysics Data System (ADS)
Vun, Ronnie Yunheu
Direct-contact (DC) and non-contact (NC) ultrasonic transmission (UT) methods were developed to characterize the structural performance of oriented strandboard (OSB). The UT variable velocity was shown to be sensitive to the physical impediments caused by flake interfacial boundaries and embedded voids. Both attenuation and root mean square (RMS) voltage were good indicators of the "zero void" densification level for OSB, a point of the greatest transmissivity of the stress wave energy. For both DC and NC methods, the predicted densities of the model were validated for spatial distribution over each OSB type. Based on the control limits of +/-10% of the panel average density, density prediction improved with higher resin content (RC) and higher nominal density (ND) levels. From the out-of-limits plots, the predicted in-situ densities produced a reasonably spatial coherence to the measured values. All panels made with ND 0.60 g/cm3 or greater conformed well within the limits, with declining conformity towards lower RC panels. For each composite type made of different particle sizes, the equilibrium moisture content showed a decreasing trend toward smaller particle panels. The attenuation and RMS were good indicators for moisture change and densification level for each composite type. The velocity, sensitive to physical resistance of particle sizes, increased with increasing IB strength and sample density, manifesting the positive influence of layering, resin content, and the negative effect of bark as a constituent. The results of the creep rupture tests on commercial OSB using an acoustic emission (AE) technique indicated that the cumulative AE event count parameter was highly correlated with deflection parameter and appropriately represented the accumulation of incipient damage. Under high stress levels, specimens with high moisture content (MC) sustained the worse damages having the shortest creep rupture time followed by specimens with dynamically rising MC. Defects on the compression-side of the bending specimen were found critical to creep rupture than those on the tension-side. The in-plane fracture patterns tended to follow the defect trenches of low-density valleys, and worsened with greater variability of the horizontal density, indicating the need to measure and control the horizontal density variation within reasonable limits.
NASA Astrophysics Data System (ADS)
Mezon, Cécile; Mourzenko, Valeri; François Thovert, Jean; Antoine, Raphael; Fontaine, Fabrice; Finizola, Anthony; Adler, Pierre Michel
2016-04-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured isotropically fractured porous media. Fractures are inserted as 2D convex polygons, which are randomly located. The fluid is assumed to satisfy 2D and 3D Darcy's law in the fractures and in the porous medium, respectively; exchanges take place between these two structures. First, checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4pi². 2D convection was verified up to Ra=800. Second, all fractured simulations were made for Rayleigh numbers (Ra) < 150, cubic boxes and closed-top conditions. The influence of parameters such as fracture aperture (or fracture transmissivity) and fracture density on the heat released by the whole system is studied. Then, the effective permeability of each fractured system is calculated. This last calculation enables the comparison between all fractured models and models of homogeneous medium with the same macroscopic properties. First, the heat increase released by the system as a function of fracture transmissivity and fracture density is determined. Second, results show that the effective approach is valid for low Ra (< 70), and that the mismatch between the full calculations and the effective medium approach for Ra higher than 70 depends on the fracture density in a crucial way. Third, the study also reveals that equivalent properties could be deduced from these computations in order to estimate the heat released by a fractured system from an homogeneous approach.
Pritchard, N Stewart; Smoliga, James M; Nguyen, Anh-Dung; Branscomb, Micah C; Sinacore, David R; Taylor, Jeffrey B; Ford, Kevin R
2017-01-01
Metatarsal fractures, especially of the fifth metatarsal, are common injuries of the foot in a young athletic population, but the risk factors for this injury are not well understood. Dual-energy x-ray absorptiometry (DXA) provides reliable measures of regional bone mineral density to predict fracture risk in the hip and lumbar spine. Recently, sub-regional metatarsal reliability was established in fresh cadaveric specimens and associated with ultimate fracture force. The purpose of this study was to assess the reliability of DXA bone mineral density measurements of sub-regions of the second and fifth metatarsals in a young, active population. Thirty two recreationally active individuals participated in the study, and the bone density of the second (2MT) and fifth (5MT) metatarsals of each subject was measured using a Hologic QDR x-ray bone densitometer. Scans were analyzed separately by two raters, and regional bone mineral density, bone mineral content, and area measurements were calculated for the proximal, shaft, and distal regions of the bone. Intra-rater, inter-rater, and scan-rescan reliability were then determined for each region. Proximal and shaft bone mineral density measurements of the second and fifth metatarsal were reliable. ICC's were variable across regions and metatarsals, with the distal region being the poorest. Bone mineral density measurements of the metatarsals may be a better indicator of fracture risk of the metatarsals than whole body measurements. A reliable method for measuring the regional bone mineral densities of the metatarsals was found. However, inter-rater reliability and scan-rescan reliability for the distal regions were poor. Future research should examine the relationship between DXA bone mineral density measurements and fracture risk at the metatarsals.
NASA Astrophysics Data System (ADS)
Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit
2016-04-01
The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both Sierra Madre and the Bowen Basin span similar ranges, indicating that the factor of increase in frequency (F) for a doubling of aperture size (A) shows similar relationships and variability from both sites. Despite their limitations, we conclude that fracture aperture-frequency power-law relationships are valid and, when interpreted carefully, provide a useful basis for comparing rock fracture distributions across different sites.
Structural and Geophysical Characterization of Oklahoma Basement
NASA Astrophysics Data System (ADS)
Morgan, C.; Johnston, C. S.; Carpenter, B. M.; Reches, Z.
2017-12-01
Oklahoma has experienced a large increase in seismicity since 2009 that has been attributed to wastewater injection. Most earthquakes, including four M5+ earthquakes, nucleated at depths > 4 km, well within the pre-Cambrian crystalline basement, even though wastewater injection occurred almost exclusively in the sedimentary sequence above. To better understand the structural characteristics of the rhyolite and granite that makeup the midcontinent basement, we analyzed a 150 m long core recovered from a basement borehole (Shads 4) in Rogers County, NE Oklahoma. The analysis of the fracture network in the rhyolite core included measurements of fracture inclination, aperture, and density, the examination fracture surface features and fill minerology, as well as x-ray diffraction analysis of secondary mineralization. We also analyzed the highly fractured and faulted segments of the core with a portable gamma-ray detector, magnetometer, and rebound hammer. The preliminary analysis of the fractures within the rhyolite core showed: (1) Fracture density increasing with depth by a factor of 10, from 4 fractures/10m in the upper core segment to 40 fracture/10m at 150 m deeper. (2) The fractures are primarily sub-vertical, inclined 10-20° from the axis of the vertical core. (3) The secondary mineralization is dominated by calcite and epidote. (4) Fracture aperture ranges from 0.35 to 2.35mm based on the thickness of secondary filling. (5) About 8% of the examined fractures display slickenside striations. (6) Increases of elasticity (by rebound hammer) and gamma-ray emissions are systematically correlated with a decrease in magnetic susceptibility in core segments of high fracture density and/or faulting; this observation suggests diagenetic fracture re-mineralization.
Information on stress conditions in the oceanic crust from oval fractures in a deep borehole
Morin, R.H.
1990-01-01
Oval images etched into the wall of a deep borehole were detected in DSDP Hole 504B, eastern equatorial Pacific Ocean, from analysis of an acoustic televiewer log. A systematic inspection of these ovals has identified intriguing consistencies in appearance that cannot be explained satisfactorily by a random, coincidental distribution of pillow lavas. As an alternative hypothesis, Mohr-Coulomb failure criterion is used to account for the generation and orientation of similarly curved, stress-induced fractures. Consequently, these oval features can be interpreted as fractures and related directly to stress conditions in the oceanic crust at this site. The azimuth of the oval center corresponds to the orientation of maximum horizontal principal stress (SH), and the oval width, which spans approximately 180?? of the borehole, is aligned with the azimuth of minimum horizontal principal stress (Sh). The oval height is controlled by the fracture angle and thus is a function of the coefficient of internal friction of the rock. -from Author
The use of broadband microseisms for hydraulic fracture mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleefe, G.E.; Warpinski, N.R.; Engler, B.P.
When a hydrocarbon reservoir is subjected to a hydraulic fracture treatment, the cracking and slipping of the formation results in the emission of seismic energy. The objective of this study was to determine the advantages of using broadband (100 Hz to 1500 M) microseismic emissions to map a hydraulic fracture treatment. A hydraulic fracture experiment was performed in the Piceance Basin of Western Colorado to induce and record broadband microseismic events. The formation was subjected to four processes; break-down/ballout, step-rate test, KCL mini-fracture, and linear-gel mini-fracture. Broadband microseisms were successfully recorded by a novel three-component wall-locked seismic accelerometer package, placedmore » in an observation well 211 ft (64 m) offset from the treatment well. During the two hours of formation treatment, more than 1200 significant microseismic events were observed. The occurrences of the events strongly correlated with the injection bore-bole pressures during the treatments. Using both hodogram analysis and time of arrival information, estimates of the origination point of the seismic events were computed. A map of the event locations yielded a fracture orientation estimate consistent with the known orientation of the field in the formation. This paper describes the technique for acquiring and analyzing broadband microseismic events and illustrate how the new broadband approach can enhance signal detectability and event location resolution.« less
Wang, Lei; Liu, Linjuan; Pan, Zhanpeng; Zeng, Yanjun
2015-11-16
Previously reported fracture rates in patients with spinal cord injury range from 1% to 20%. However, the exact role of spinal cord injury in bone metabolism has not yet been clarified. In order to investigate the effects of serum leptin and bone mineral density on the healing of long bone fractures in men with spinal cord injury, 15 male SCI patients and 15 matched controls were involved in our study. The outcome indicated that at 4 and 8 weeks after bone fracture, callus production in patients with spinal cord injury was lower than that in controls. Besides, bone mineral density was significantly reduced at 2, 4 and 8 weeks. In addition, it was found that at each time point, patients with spinal cord injury had significantly higher serum leptin levels than controls and no association was found between serum leptin level and bone mineral density of lumbar vertebrae. Moreover, bone mineral density was positively correlated with bone formation in both of the groups. These findings suggest that in early phases i.e. week 4 and 8, fracture healing was impaired in patients with spinal cord injury and that various factors participated in the complicated healing process, such as hormonal and mechanical factors.
Orientation dependence of microfracture behavior in a dual-phase high-strength low-alloy steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, D.; Lee, S.; Kim, N.J.
1997-02-01
In selecting the processing conditions and evaluating the reliability of structural materials, microscopic observations and identification of the fracture mechanisms in local cracking behavior are required. An important instance in the failure of the local brittle zone (LBZ) in the welding zone. The LBZ, which is very brittle, is the coarse-grained heat-affected zone near the fusion line, a zone known to be critical to the fracture toughness of welded parts. Thus, maintaining stable fracture resistance by predicting the microfracture behavior is important when using high-strength low-alloy (HSLA) steels in offshore structural steel welds. Depending on the thermal cycles involved duringmore » welding, the ferrite/martensite structure can have various morphologies of martensite particles, for example, fibrous and blocky martensite. In summary, in situ SEM fracture tests reveal that in the L-oriented IQ DCB specimen, a microcrack tends to propagate relatively uniformly throughout the ferrite and well-distributed fine fibrous martensite, yielding good elongation with high strength level. Also, the IQ structure in the T orientation shows similar microfracture behavior. On the other hand, in the SQ structure, where blocky-type martensite is mixed with ferrite, strain is localized into shear bands mostly in the ferrite region, and a local microcrack propagates along the strain-localized band formed in the ferrite, resulting in the SQ structure in the T orientation, where the ferrite-martensite bands are parallel to the notch direction, the martensite cannot act as an efficient barrier to microcrack advance, and thus the tensile ductility is decreased.« less
Tectonic lineations and frictional faulting on a relatively simple body (Ariel)
NASA Astrophysics Data System (ADS)
Nyffenegger, Paul; Davis, Dan M.; Consolmagno, Guy J.
1997-09-01
Anderson's model of faulting and the Mohr-Coulomb failure criterion can predict the orientations of faults generated in laboratory triaxial compression experiments, but do a much poorer job of explaining the orientations of outcrop- and map-scale faults on Earth. This failure may be due to the structural complexity of the Earth's lithosphere, the failure of laboratory experiments to predict accurately the strength of natural faults, or some fundamental flaw in the model. A simpler environment, such as the lithosphere of an icy satellite, allows us to test whether this model can succeed in less complex settings. A mathematical method is developed to analyze patterns in fracture orientations that can be applied to fractures in the lithospheres of icy satellites. In a initial test of the method, more than 300 lineations on Uranus' satellite Ariel are examined. A nonrandom pattern of lineations is looked for, and the source of the stresses that caused those features and the strength of the material in which they occur are constrained. It is impossible to observe directly the slip on these fractures. However, their orientations are clearly nonrandom and appear to be consistent with Andersonian strike-slip faulting in a relatively weak frictional lithosphere during one or more episodes of tidal flexing.
Gas-Driven Fracturing of Saturated Granular Media
NASA Astrophysics Data System (ADS)
Campbell, James M.; Ozturk, Deren; Sandnes, Bjørnar
2017-12-01
Multiphase flows in deformable porous materials are important in numerous geological and geotechnical applications; however, the complex flow behavior makes subsurface transport processes difficult to control—or even characterize. Here, we study gas-driven (pneumatic) fracturing of a wet unconsolidated granular packing confined in a Hele-Shaw cell, and we present an in-depth analysis of both pore-scale phenomena and large-scale pattern formation. The process is governed by a complex interplay among pressure, capillary, frictional, and viscous forces. At low gas-injection rates, fractures grow in a stick-slip fashion and branch out to form a simply connected network. We observe the emergence of a characteristic length scale—the separation distance between fracture branches—creating an apparent uniform spatial fracture density. We conclude that the well-defined separation distance is the result of local compaction fronts surrounding fractures and keeping them apart. A scaling argument is presented that predicts fracture density as a function of granular friction, grain size, and capillary interactions. We study the influence of the gas-injection rate and find that the system undergoes a fluidization transition above a critical injection rate, resulting in directional growth of the fractures, and a fracture density that increases with an increasing rate. A dimensionless fluidization number F is defined as the ratio of viscous to frictional forces, and our experiments reveal a frictional regime for F <1 characterized by stick-slip, rate-independent growth, with a transition to a viscous regime (F >1 ) characterized by continuous growth in several fracture branches simultaneously.
Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F
2013-11-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.
Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine
2013-01-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349
Weibull analysis of fracture test data on bovine cortical bone: influence of orientation.
Khandaker, Morshed; Ekwaro-Osire, Stephen
2013-01-01
The fracture toughness, K IC, of a cortical bone has been experimentally determined by several researchers. The variation of K IC values occurs from the variation of specimen orientation, shape, and size during the experiment. The fracture toughness of a cortical bone is governed by the severest flaw and, hence, may be analyzed using Weibull statistics. To the best of the authors' knowledge, however, no studies of this aspect have been published. The motivation of the study is the evaluation of Weibull parameters at the circumferential-longitudinal (CL) and longitudinal-circumferential (LC) directions. We hypothesized that Weibull parameters vary depending on the bone microstructure. In the present work, a two-parameter Weibull statistical model was applied to calculate the plane-strain fracture toughness of bovine femoral cortical bone obtained using specimens extracted from CL and LC directions of the bone. It was found that the Weibull modulus of fracture toughness was larger for CL specimens compared to LC specimens, but the opposite trend was seen for the characteristic fracture toughness. The reason for these trends is the microstructural and extrinsic toughening mechanism differences between CL and LC directions bone. The Weibull parameters found in this study can be applied to develop a damage-mechanics model for bone.
Remote Sensing of Subsurface Fractures in the Otway Basin, South Australia
NASA Astrophysics Data System (ADS)
Bailey, Adam; King, Rosalind; Holford, Simon; Hand, Martin
2013-04-01
A detailed understanding of naturally occurring fracture networks within the subsurface is becoming increasingly important to the energy sector, as the focus of exploration has expanded to include unconventional reservoirs such as coal seam gas, shale gas, tight gas, and engineered geothermal systems. Successful production from such reservoirs, where primary porosity and permeability is often negligible, is heavily reliant on structural permeability provided by naturally occurring and induced fracture networks, permeability, which is often not provided for through primary porosity and permeability. In this study the Penola Trough, located within the onshore Otway Basin in South Australia, is presented as a case study for remotely detecting and defining subsurface fracture networks that may contribute to secondary permeability. This area is prospective for shale and tight gas and geothermal energy. The existence and nature of natural fractures is verified through an integrated analysis of geophysical logs (including wellbore image logs) and 3D seismic data. Wellbore image logs from 11 petroleum wells within the Penola Trough were interpreted for both stress indicators and natural fractures. A total of 507 naturally occurring fractures were identified, striking approximately WNE-ESE. Fractures which are aligned in the in-situ stress field are optimally oriented for reactivation, and are hence likely to be open to fluid flow. Fractures are identifiable as being either resistive or conductive sinusoids on the resistivity image logs used in this study. Resistive fractures, of which 239 were identified, are considered to be cemented with electrically resistive cements (such as quartz or calcite) and thus closed to fluid flow. Conductive fractures, of which 268 were identified, are considered to be uncemented and open to fluid flow, and thus important to geothermal exploration. Fracture susceptibility diagrams constructed for the identified fractures illustrate that the conductive fractures are optimally oriented for reactivation in the present-day strike-slip fault regime, and so are likely to be open to fluid flow. To gain an understanding of the broader extent of these natural fractures, it is necessary to analyse more regional 3D seismic data. It is well documented that fault and fracture networks like those generally observed in image logs lie well below seismic amplitude resolution, making them difficult to observe directly on amplitude data. However, seismic attributes can be calculated to provide some information on sub-seismic scale structural and stratigraphic features. Using the merged Balnaves/Haselgrove 3D seismic cube acquired over the Penola Trough, attribute maps of complex multi-trace dip-steered coherency and most positive curvature, among others, were used to document the presence of discontinuities within the seismic data which area likely to represent natural fractures, and to best constrain the likely extent of the fracture network which they form. The resulting fracture network model displays relatively good connectivity surrounding structural features intersecting the studied horizons, although large areas lacking significant discontinuities are observed. These areas make it unlikely that the fracture network contributes to permeability on a basin-wide scale, though observed features are optimally oriented for reactivation under contemporary stress conditions and are thus likely to provide at least local increases in permeability.
NASA Astrophysics Data System (ADS)
Rashidi Moghaddam, M.; Ayatollahi, M. R.; Berto, F.
2018-01-01
The values of mode II fracture toughness reported in the literature for several rocks are studied theoretically by using a modified criterion based on strain energy density averaged over a control volume around the crack tip. The modified criterion takes into account the effect of T-stress in addition to the singular terms of stresses/strains. The experimental results are related to mode II fracture tests performed on the semicircular bend and Brazilian disk specimens. There are good agreements between theoretical predictions using the generalized averaged strain energy density criterion and the experimental results. The theoretical results reveal that the value of mode II fracture toughness is affected by the size of control volume around the crack tip and also the magnitude and sign of T-stress.
NASA Astrophysics Data System (ADS)
Corradetti, Amerigo; Tavani, Stefano; D'Assisi Tramparulo, Francesco; Prinzi, Ernesto Paolo; Vitale, Stefano; Parente, Mariano; Morsalnejad, Davoud; Mazzoli, Stefano
2017-04-01
In the Zagros Fold and Thrust Belt (FTB), the timing of fracture development with respect to folding is debated. Multiple fracture systems occur in the area. These include "typical" fracture systems that are oriented parallel and orthogonal to the NW-SE strike of the belt, as well as sets oriented N-S and E-W. The interpretation of the N-S and E-W sets is controversial. Despite the general consensus about the first-order relationship between these fractures and inherited N-S striking basement faults, their timing and kinematic significance is not yet fully understood. The ambiguous crosscutting/abutting relationships with the NE-SW and NW-SE sets, together with the difficulty of framing them into the classical scenario of fracturing in foreland basin systems, has led to the development of different hypotheses about the timing of N-S and E-W sets. For the generation of these structures, both pre- and syn-thrusting interpretations have been proposed. In this work, we report on the occurrence of bed-perpendicular fracture sets in the upper part of the Shabazan (Eocene) and in the Asmari (Oligo-Miocene) Formations of the Zagros FTB. These fractures have the peculiarity of being filled with karst material. Such filled fractures are preserved in beds showing variable angles of dip, ranging from horizontal to vertical. Their homogeneous distribution in variably dipping beds around folds undoubtedly point to an origin of these fracture sets predating the tilting of the strata in which they are contained. Therefore, fracture development and related infilling occurred at an early stage, in still flat lying strata, following the deposition of the top Shabazan and Asmari Formations. Such a deposition took place within the general framework of ongoing shortening in the Zagros. This process, occurring since the Late Cretaceous, progressively led to folding of the syn-orogenic Shabazan and Asmari Formations subsequently to the development of the studied filled fractures.
Structural Orientations Adjacent to Some Colorado Geothermal Systems
Richard
2012-02-01
Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology
NASA Astrophysics Data System (ADS)
Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Vinciguerra, S.
2017-08-01
The characterization of the fracturing state of a potentially unstable rock cliff is a crucial requirement for stability assessments and mitigation purposes. Classical measurements of fracture location and orientation can however be limited by inaccessible rock exposures. The steep topography and high-rise morphology of these cliffs, together with the widespread presence of fractures, can additionally condition the success of geophysical prospecting on these sites. In order to mitigate these limitations, an innovative approach combining noncontact geomechanical measurements, active and passive seismic surveys, and 3-D numerical modeling is proposed in this work to characterize the 3-D fracture setting of an unstable rock mass, located in NW Italian Alps (Madonna del Sasso, VB). The 3-D fracture geometry was achieved through a combination of field observations and noncontact geomechanical measurements on oriented pictures of the cliff, resulting from a previous laser-scanning and photogrammetric survey. The estimation of fracture persistence within the rock mass was obtained from surface active seismic surveys. Ambient seismic noise and earthquakes recordings were used to assess the fracture control on the site response. Processing of both data sets highlighted the resonance properties of the unstable rock volume decoupling from the stable massif. A finite element 3-D model of the site, including all the retrieved fracture information, enabled both validation and interpretation of the field measurements. The integration of these different methodologies, applied for the first time to a complex 3-D prone-to-fall mass, provided consistent information on the internal fracturing conditions, supplying key parameters for future monitoring purposes and mitigation strategies.
Land-Surface Subsidence and Open Bedrock Fractures in the Tully Valley, Onondaga County, New York
Hackett, William R.; Gleason, Gayle C.; Kappel, William M.
2009-01-01
Open bedrock fractures were mapped in and near two brine field areas in Tully Valley, New York. More than 400 open fractures and closed joints were mapped for dimension, orientation, and distribution along the east and west valley walls adjacent to two former brine fields. The bedrock fractures are as much as 2 feet wide and over 50 feet deep, while linear depressions in the soil, which are 3 to 10 feet wide and 3 to 6 feet deep, indicate the presence of open bedrock fractures below the soil. The fractures are probably the result of solution mining of halite deposits about 1,200 feet below the land surface.
NASA Astrophysics Data System (ADS)
Bertrand, Lionel; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément
2017-04-01
The Scientific Interest Group (GIS) GEODENERGIES with the REFLET project aims to develop a geological and reservoir model for fault zones that are the main targets for deep geothermal prospects in the West European Rift system. In this project, several areas are studied with an integrated methodology combining field studies, boreholes and geophysical data acquisition and 3D modelling. In this study, we present the results of reservoir rock analogues characterization of one of these prospects in the Valence Graben (Eastern France). The approach used is a structural and petrophysical characterization of the rocks outcropping at the shoulders of the rift in order to model the buried targeted fault zone. The reservoir rocks are composed of fractured granites, gneiss and schists of the Hercynian basement of the graben. The matrix porosity, permeability, P-waves velocities and thermal conductivities have been characterized on hand samples coming from fault zones at the outcrop. Furthermore, fault organization has been mapped with the aim to identify the characteristic fault orientation, spacing and width. The fractures statistics like the orientation, density, and length have been identified in the damaged zones and unfaulted blocks regarding the regional fault pattern. All theses data have been included in a reservoir model with a double porosity model. The field study shows that the fault pattern in the outcrop area can be classified in different fault orders, with first order scale, larger faults distribution controls the first order structural and lithological organization. Between theses faults, the first order blocks are divided in second and third order faults, smaller structures, with characteristic spacing and width. Third order fault zones in granitic rocks show a significant porosity development in the fault cores until 25 % in the most locally altered material, as the damaged zones develop mostly fractures permeabilities. In the gneiss and schists units, the matrix porosity and permeability development is mainly controlled by microcrack density enhancement in the fault zone unlike the granite rocks were it is mostly mineral alteration. Due to the grain size much important in the gneiss, the opening of the cracks is higher than in the schist samples. Thus, the matrix permeability can be two orders higher in the gneiss than in the schists (until 10 mD for gneiss and 0,1 mD for schists for the same porosity around 5%). Combining the regional data with the fault pattern, the fracture and matrix porosity and permeability, we are able to construct a double-porosity model suitable for the prospected graben. This model, combined with seismic data acquisition is a predictable tool for flow modelling in the buried reservoir and helps the prediction of borehole targets and design in the graben.
What Accounts for Rib Fractures in Older Adults?
Wuermser, Lisa-Ann; Achenbach, Sara J.; Amin, Shreyasee; Khosla, Sundeep; Melton, L. Joseph
2011-01-01
To address the epidemiology of rib fractures, an age- and sex-stratified random sample of 699 Rochester, Minnesota, adults age 21–93 years was followed in a long-term prospective study. Bone mineral density (BMD) was assessed at baseline, and fractures were ascertained by periodic interview and medical record review. During 8560 person-years of followup (median, 13.9 years), 56 subjects experienced 67 rib fracture episodes. Risk factors for falling predicted rib fractures as well as BMD, but both were strongly age-related. After age-adjustment, BMD was associated with rib fractures in women but not men. Importantly, rib fractures attributed to severe trauma were associated with BMD in older individuals of both sexes. Self-reported heavy alcohol use doubled fracture risk but did not achieve significance due to limited statistical power. Bone density, along with heavy alcohol use and other risk factors for falling, contributes to the risk of rib fractures, but no one factor predominates. Older women with rib fractures, regardless of cause, should be considered for an osteoporosis evaluation, and strategies to prevent falling should be considered in both sexes. PMID:22028986
What accounts for rib fractures in older adults?
Wuermser, Lisa-Ann; Achenbach, Sara J; Amin, Shreyasee; Khosla, Sundeep; Melton, L Joseph
2011-01-01
To address the epidemiology of rib fractures, an age- and sex-stratified random sample of 699 Rochester, Minnesota, adults age 21-93 years was followed in a long-term prospective study. Bone mineral density (BMD) was assessed at baseline, and fractures were ascertained by periodic interview and medical record review. During 8560 person-years of followup (median, 13.9 years), 56 subjects experienced 67 rib fracture episodes. Risk factors for falling predicted rib fractures as well as BMD, but both were strongly age-related. After age-adjustment, BMD was associated with rib fractures in women but not men. Importantly, rib fractures attributed to severe trauma were associated with BMD in older individuals of both sexes. Self-reported heavy alcohol use doubled fracture risk but did not achieve significance due to limited statistical power. Bone density, along with heavy alcohol use and other risk factors for falling, contributes to the risk of rib fractures, but no one factor predominates. Older women with rib fractures, regardless of cause, should be considered for an osteoporosis evaluation, and strategies to prevent falling should be considered in both sexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doug Blankenship
Natural fracture data from wells 33-7, 33A-7,52A-7, 52B-7 and 83-11 at West Flank. Fracture orientations were determined from image logs of these wells (see accompanying submissions). Data files contain depth, apparent (in wellbore reference frame) and true (in geographic reference frame) azimuth and dip, respectively.
Fracture history in osteoporosis: risk factors and its effect on quality of life.
Kuru, Pınar; Akyüz, Gülseren; Cerşit, Hülya Peynirci; Çelenlioğlu, Alp Eren; Cumhur, Ahmet; Biricik, Şefikcan; Kozan, Seda; Gökşen, Aylin; Özdemir, Mikail; Lüleci, Emel
2014-12-01
Fractures are one of the main outcomes in osteoporosis and have an important effect on the general health status. The purpose of this study was to determine the effect of major fracture history on quality of life. We also investigated the important risk factors and their effect on bone mineral density and fracture history. Cross-sectional study. We recruited 105 patients who were admitted to an osteoporosis outpatient clinic. Medical history, family history, calcium intake, physical activity level and biochemical tests were evaluated. Lumbar spine and femur neck bone mineral density were measured. The Qualeffo-41 questionnaire was also used for evaluating quality of life. The average age of the 105 patients included in the study was 56.04±13.73 and 89% of them were post-menopausal women. The average body mass index was 26.84±5.99, which means that the women were overweight. Also, 48.5% of the patients were diagnosed with osteoporosis and 51.5% of them were diagnosed as low bone density. A total of 34 patients had a fracture history with minor trauma and some of the patients had more than one fracture (12 ankle and foot, 10 forearm, 9 vertebral, 4 hand, 3 hip, 2 rib, 1 tibial). When the patients with and without fracture history were compared, the mean Qualeffo-41 score in patients with fracture was 43.85±2.57 and in the non-fracture group was 36.27±2.01. Forearm, ankle and foot fractures can be commonly seen in osteoporosis patients with fracture history. We suggest that it is important to recognise osteoporosis prior to first fracture and disease-specific quality of life assessment should be done.
Brittle fracture damage around the Alpine Fault, New Zealand
NASA Astrophysics Data System (ADS)
Williams, J. N.; Toy, V.; Smith, S. A. F.; Boulton, C. J.; Massiot, C.; Mcnamara, D. D.
2017-12-01
We use field and drill-core samples to characterize macro- to micro-scale brittle fracture networks within the hanging-wall of New Zealand's Alpine Fault, an active plate-boundary fault that is approaching the end of its seismic cycle. Fracture density in the hanging-wall is roughly constant for distances of up to 500 m from the principal slip zone gouges (PSZs). Fractures >160 m from the PSZs are typically open and parallel to the regional mylonitic foliation or host rock schistosity, and likely formed as unloading joints during rapid exhumation of the hanging-wall at shallow depths. Fractures within c. 160 m of the PSZs are broadly oriented shear-fractures filled with gouge or cataclasite, and are interpreted to constitute the hanging-wall damage zone of the Alpine Fault. This is comparable to the 60-200 m wide "geophysical damage zone" estimated from low seismic wave velocities surrounding the Alpine Fault. Veins are pervasive within the c. 20 m-thick hanging-wall cataclasites and are most commonly filled by calcite, chlorite, muscovite and K-feldspar. Notably, there is a set of intragranular clast-hosted veins, as well as a younger set of veins that cross-cut both clasts and cataclasite matrix. The intragranular veins formed prior to cataclasis or during synchronous cataclasis and calcite-silicate mineralisation. Broad estimates for the depth of vein formation indicate that the cataclasites formed a c. 20 m wide actively deforming zone at depths of c. 4-8 km. Conversely, the cross-cutting veins are interpreted to represent off-fault damage within relatively indurated cataclasites following slip localization onto the <10 cm wide smectite-bearing PSZ gouges at depths of <4 km. Our observations therefore highlight a strong depth-dependence of the width of the actively deforming zone within the brittle seismogenic crust around the Alpine Fault.
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; Farrell, N. J.
2017-12-01
Numerous laboratory brittle deformation experiments have shown that a rapid transition exists in the behaviour of porous materials under stress: at a certain point, early formed tensile cracks interact and coalesce into a `single' narrow zone, the shear plane, rather than remaining distributed throughout the material. In this work, we present and apply a novel image processing tool which is able to quantify this transition between distributed (`stable') damage accumulation and localised (`unstable') deformation, in terms of size, density, and orientation of cracks at the point of failure. Our technique, based on a two-dimensional (2D) continuous Morlet wavelet analysis, can recognise, extract and visually separate the multi-scale changes occurring in the fracture network during the deformation process. We have analysed high-resolution SEM-BSE images of thin sections of Hopeman Sandstone (Scotland, UK) taken from core plugs deformed under triaxial conditions, with increasing confining pressure. Through this analysis, we can determine the relationship between the initial orientation of tensile microcracks and the final geometry of the through-going shear fault, exploiting the total areal coverage of the analysed image. In addition, by comparing patterns of fractures in thin sections derived from triaxial (σ1>σ2=σ3=Pc) laboratory experiments conducted at different confining pressures (Pc), we can quantitatively explore the relationship between the observed geometry and the inferred mechanical processes. The methodology presented here can have important implications for larger-scale mechanical problems related to major fault propagation. Just as a core plug scale fault localises through extension and coalescence of microcracks, larger faults also grow by extension and coalescence of segments in a multi-scale process by which microscopic cracks can ultimately lead to macroscopic faulting. Consequently, wavelet analysis represents a useful tool for fracture pattern recognition, applicable to the detection of the transitions occurring at the time of catastrophic rupture.
A Review of the Effect of Anticonvulsant Medications on Bone Mineral Density and Fracture Risk
Lee, Richard H.; Lyles, Kenneth W.; Colón-Emeric, Cathleen
2011-01-01
Background Osteoporosis and seizure disorders are common diagnoses in older adults and often occur concomitantly. Objective The goal of this review was to discuss the current hypothesis for the pathogenesis of anticonvulsant-induced bone density loss and the evidence regarding the risk for osteoporosis and fractures in older individuals. Methods A review of the literature was performed, searching in MEDLINE and CINAHL for articles published between 1990 and October 2009 with the following search terms: anticonvulsant OR antiepileptic; AND osteoporosis OR bone density OR fracture OR absorptiometry, photon. Studies within the pediatric population, cross-sectional studies, and studies whose results were published in a language other than English were excluded. Results A search of the published literature yielded >300 results, of which 24 met the inclusion and exclusion criteria and were included in this review. Hepatic enzyme induction by certain anticonvulsant medications appears to contribute to increased metabolism of 25-hydroxyvitamin D to inactive metabolites, which results in metabolic bone disease. There is increasing evidence that anticonvulsant use is associated with a higher risk of osteoporosis and clinical fractures, especially among older agents such as phenobarbital, carbamazepine, phenytoin, and valproate. Several observational studies suggest a class effect among anticonvulsant agents, associated with clinically significant reductions in bone mineral density and fracture risk. The use of anticonvulsant medications increases the odds of fracture by 1.2 to 2.4 times. However, only 2 large-scale observational studies have specifically examined the risk among those aged >65 years. This review also identified a randomized controlled trial whose results suggest that supplementation with high-dose vitamin D may be associated with increased bone mineral density in patients taking anticonvulsant medications. However, no randomized controlled trials investigating therapeutic agents to prevent fracture in this population were identified. Consequently, there are no formal practice guidelines for the monitoring, prevention, and management of bone disease among those taking anticonvulsants. Conclusions Observational studies suggest an association between use of anticonvulsant medications, reduced bone mineral density, and increased fracture risk. Randomized clinical trials are needed to guide the management of bone disease among those who use anticonvulsants. PMID:20226391
Active shape modeling of the hip in the prediction of incident hip fracture.
Baker-LePain, Julie C; Luker, Kali R; Lynch, John A; Parimi, Neeta; Nevitt, Michael C; Lane, Nancy E
2011-03-01
The objective of this study was to evaluate right proximal femur shape as a risk factor for incident hip fracture using active shape modeling (ASM). A nested case-control study of white women 65 years of age and older enrolled in the Study of Osteoporotic Fractures (SOF) was performed. Subjects (n = 168) were randomly selected from study participants who experienced hip fracture during the follow-up period (mean 8.3 years). Controls (n = 231) had no fracture during follow-up. Subjects with baseline radiographic hip osteoarthritis were excluded. ASM of digitized right hip radiographs generated 10 independent modes of variation in proximal femur shape that together accounted for 95% of the variance in proximal femur shape. The association of ASM modes with incident hip fracture was analyzed by logistic regression. Together, the 10 ASM modes demonstrated good discrimination of incident hip fracture. In models controlling for age and body mass index (BMI), the area under receiver operating characteristic (AUROC) curve for hip shape was 0.813, 95% confidence interval (CI) 0.771-0.854 compared with models containing femoral neck bone mineral density (AUROC = 0.675, 95% CI 0.620-0.730), intertrochanteric bone mineral density (AUROC = 0.645, 95% CI 0.589-0.701), femoral neck length (AUROC = 0.631, 95% CI 0.573-0.690), or femoral neck width (AUROC = 0.633, 95% CI 0.574-0.691). The accuracy of fracture discrimination was improved by combining ASM modes with femoral neck bone mineral density (AUROC = 0.835, 95% CI 0.795-0.875) or with intertrochanteric bone mineral density (AUROC = 0.834, 95% CI 0.794-0.875). Hips with positive standard deviations of ASM mode 4 had the highest risk of incident hip fracture (odds ratio = 2.48, 95% CI 1.68-3.31, p < .001). We conclude that variations in the relative size of the femoral head and neck are important determinants of incident hip fracture. The addition of hip shape to fracture-prediction tools may improve the risk assessment for osteoporotic hip fractures. Copyright © 2011 American Society for Bone and Mineral Research.
3D Printing of 316L Stainless Steel and Its Effect on Microstructure and Mechanical Properties
NASA Astrophysics Data System (ADS)
Rawn, Penn
Laser powder bed fusion or 3D printing is a potential candidate for net shape forming and manufacturing complex shapes. Understanding of how various parameters affect build quality is necessary. Specimens were made from 316L stainless steel at 0°, 30°, 60°, and 90° angles measured from the build plate. Three tensile and four fatigue specimens at each angle were produced. Fracture morphology investigation was performed to determine the fracture mode of specimens at each build angle. Microstructural analysis was performed on one of each orientation. The average grain size of the samples was marginally influenced by the build angle orientation. Tensile yield strength was the highest for 0° and decreased in the order of 60°, 30°, and 90° angles; all had higher yield strength than wrought. Unlike with the tensile results, the 60° had the highest fatigue strength followed by the 0°, then the 30°, and the 90° build angle had the lowest fatigue strength. Tensile specimens all failed predominantly by ductile fracture, with a few locations of brittle fracture suspected to be caused by delamination. Fatigue fracture always initiated at void space.
NASA Astrophysics Data System (ADS)
Lodge, Robert W. D.; Lescinsky, David T.
2009-09-01
Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as marginal inflation. In addition to this, horizontally propagating cooling fractures will be directly influenced by viscous strain caused by the settling of the flow. This would cause preferential opening of fractures horizontally, resulting in vertically oriented fractures. It is important to note that the proposed model for the formation of linear fractures is dependent on contact with and confinement by glacial ice. The influence of flow or movement on cooling fracture patterns has not been extensively discussed in previous modeling of cooling fractures. Rapid cooling of lava by the interaction with water and ice will increase the ability to the capture and preserve perturbations in the stress regime.
Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers
2002-01-01
dweymann@ emconinc.com Caldwell Trucking Northern NJ 1998 TCE Hydraulic Fracturing , $1.12 M Fe0 Only 60% John Vidumsky Permeation Infilling...Oriented $1.15 M Granular No problems except Stephen H. Shoemaker Chloroform, Freon 11, Hydraulic Fracturing cast iron at recovering an Tel: 704-362...VC Massachusetts Falmouth, MA 1998 PCE, TCE Hydraulic Fracturing $160 K Fe0 Robert W. Gillham Military Reservation Tel: 519-888-4658 CS-10 Plume Fax
Generation of High-Frequency P and S Wave Energy by Rock Fracture During a Buried Explosion
2015-07-20
symmetry is broken. Spherical symmetry is broken by the following: tectonic pre-stress, preferred orientation of pre-existing fractures (anisotropic rock...generated by laboratory explosions in plates of “candy glass”. Candy glass (or break-away glass) is used in the movie industry to simulate glass fracture in...9 4.1. Experimental Results – Candy-Glass Plates .......................................................9 4.2. Measurements of the Mechanical
NASA Astrophysics Data System (ADS)
Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, J. Germán.; Krause, Rolf; Holliger, Klaus
2018-01-01
Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.
Liu, X Sherry; Walker, Marcella D; McMahon, Donald J; Udesky, Julia; Liu, George; Bilezikian, John P; Guo, X Edward
2013-01-01
Despite lower areal bone mineral density (aBMD), Chinese-American women have fewer fractures than white women. We hypothesized that better skeletal microstructure in Chinese-American women in part could account for this paradox. Individual trabecula segmentation (ITS), a novel image-analysis technique, and micro–finite-element analysis (μFEA) were applied to high-resolution peripheral quantitative computed tomography (HR-pQCT) images to determine bone microarchitecture and strength in premenopausal Chinese-American and white women. Chinese-American women had 95% and 80% higher plate bone volume fraction at the distal radius and tibia, respectively, as well as 20% and 18% higher plate number density compared with white women (p < .001). With similar rodlike characteristics, the plate-to-rod ratio was twice as high in the Chinese-American than in white trabecular bone (p < .001). Plate-rod junction density, a parameter indicating trabecular network connections, was 37% and 29% greater at the distal radius and tibia, respectively, in Chinese-American women (p < .002). Moreover, the orientation of the trabecular bone network was more axially aligned in Chinese-American women because axial bone volume fraction was 51% and 32% higher at the distal radius and tibia, respectively, than in white women (p < .001). These striking differences in trabecular bone microstructure translated into 55% to 68% (distal radius, p < .001) and 29% to 43% (distal tibia, p < .01) greater trabecular bone strength, as assessed by Young’s moduli, in the Chinese-American versus the white group. The observation that Chinese-American women have a major microstructural advantage over white women may help to explain why their risk of fracture is lower despite their lower BMD. PMID:21351150
NASA Astrophysics Data System (ADS)
Das, A.; Viehrig, H. W.; Altstadt, E.; Heintze, C.; Hoffmann, J.
2018-02-01
ODS steels are known to show inferior fracture properties as compared to ferritic martensitic non-ODS steels. Hot extruded 13Cr ODS steel however, showed excellent fracture toughness at a temperature range from room temperature to 400 °C. In this work, the factors which resulted in superior and anisotropic fracture behaviour were investigated by comparing different orientations of two hot extruded materials using scanning electron, electron backscatter and transmission electron microscopy. Fracture behaviour of the two materials was compared using unloading compliance fracture toughness tests. Anisotropic fracture toughness was predominantly influenced by grain morphology. Superior fracture toughness in 13Cr ODS-KIT was predominantly influenced by factors such as smaller void inducing particle size and higher sub-micron particle-matrix interfacial strength.
NASA Astrophysics Data System (ADS)
Hammond, K. Jill; Evans, James P.
2003-05-01
We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as a localized conduit to hydrocarbon-bearing calcite veins. The results of this study show that fault-zone character may change dramatically over short, deposit- or reservoir-scale distances. The presence of damage zones may not be well correlated at the fine scale with geochemically defined regions of the fault, even though a gross spatial correlation may exist.
NASA Astrophysics Data System (ADS)
Kwiatek, G.; Plenkers, K.; Zang, A.; Stephansson, O.; Stenberg, L.
2016-12-01
The geothermic Fatigue Hydraulic Fracturing (FHF) in situ experiment (Nova project 54-14-1) took place in the Äspö Hard Rock Laboratory/Sweden in a 1.8 Ma old granitic to dioritic rock mass. The experiment aims at optimizing geothermal heat exchange in crystalline rock mass by multistage hydraulic fracturing at 10 m scale. Six fractures are driven by three different water injection schemes (continuous, cyclic, pulse pressurization) inside a 28 m long, horizontal borehole at depth level 410 m. The rock volume subject to hydraulic fracturing and monitored by three different networks with acoustic emission (AE), micro-seismicity and electromagnetic sensors is about 30 m x 30 m x 30 m in size. The 16-channel In-situ AE monitoring network by GMuG monitored the rupture generation and propagation in the frequency range 1000 Hz to 100,000 Hz corresponding to rupture dimensions from cm- to dm-scale. The in-situ AE monitoring system detected and analyzed AE activity in-situ (P- and S-wave picking, localization). The results were used to review the ongoing microfracturing activity in near real-time. The in-situ AE monitoring network successfully recorded and localized 196 seismic events for most, but not all, hydraulic fractures. All AE events detected in-situ occurred during fracturing time periods. The source parameters (fracture sizes, moment magnitudes, static stress drop) of AE events framing injection periods were calculated using the combined spectral fitting/spectra ratio techniques. The AE activity is clustered in space and clearly outline the fractures location, its orientation, and expansion as well as their temporal evolution. The outward migration of AE events away from the borehole is observed. Fractures extend up to 7 m from the injection interval in the horizontal borehole. The fractures orientation and location correlate for most fractures roughly with the results gained by image packer. Clear differences in seismic response between hydraulic fractures in different formations and injection schemes are visible which need further investigation. For further analysis all AE data of fracturing time periods were recorded continuously with 1 MHz sampling frequency per channel.
Fractures on Europa - Possible response of an ice crust to tidal deformation
NASA Technical Reports Server (NTRS)
Helfenstein, P.; Parmentier, E. M.
1980-01-01
The surface of Europa contains a planetwide system of low albedo lineaments which have been interpreted as fractures in an icy crust. The pattern of fractures on the surface consists of radial and concentric fractures having the general appearance of tension cracks within a region near the antipode of the sub-Jupiter point. Outside this region, linear fractures intersect at angles near 60 deg, suggesting that they are conjugate shear fractures. The orientation of this pattern on the surface suggests that a principal axis of the deformation that produced the fractures was approximately radial to Jupiter. Fracturing may thus be consistent with an origin due to cyclical tidal deformation resulting from orbital eccentricity. Orbital eccentricity related to a relatively recent establishment of orbital resonance among the Galilean satellites may explain the presence of fractures in a relatively young, lightly cratered planetary surface.
NASA Astrophysics Data System (ADS)
Okyay, U.; Glennie, C. L.; Khan, S.
2017-12-01
Owing to the advent of terrestrial laser scanners (TLS), high-density point cloud data has become increasingly available to the geoscience research community. Research groups have started producing their own point clouds for various applications, gradually shifting their emphasis from obtaining the data towards extracting more and meaningful information from the point clouds. Extracting fracture properties from three-dimensional data in a (semi-)automated manner has been an active area of research in geosciences. Several studies have developed various processing algorithms for extracting only planar surfaces. In comparison, (semi-)automated identification of fracture traces at the outcrop scale, which could be used for mapping fracture distribution have not been investigated frequently. Understanding the spatial distribution and configuration of natural fractures is of particular importance, as they directly influence fluid-flow through the host rock. Surface roughness, typically defined as the deviation of a natural surface from a reference datum, has become an important metric in geoscience research, especially with the increasing density and accuracy of point clouds. In the study presented herein, a surface roughness model was employed to identify fracture traces and their distribution on an ophiolite outcrop in Oman. Surface roughness calculations were performed using orthogonal distance regression over various grid intervals. The results demonstrated that surface roughness could identify outcrop-scale fracture traces from which fracture distribution and density maps can be generated. However, considering outcrop conditions and properties and the purpose of the application, the definition of an adequate grid interval for surface roughness model and selection of threshold values for distribution maps are not straightforward and require user intervention and interpretation.
a Fractal Network Model for Fractured Porous Media
NASA Astrophysics Data System (ADS)
Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung
2016-04-01
The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2017-05-01
Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.
Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.
1997-01-01
The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern limbs with a fold axis that plunges to the northeast. The fold is cut by several faults including the Toll Canyon fault, which we interpret as a west-directed folded hanging-wall splay off the east-directed Mt. Raymond thrust. These complex geometries may be due to at least two phases of deformation. Results from outcrop analyses show that the fractured bedrock aquifers are lithologically heterogeneous, anisotropic, and compartmentalized. Two exposures of the Toll Canyon fault show that even though the fault cores may be thin, extensive damage zones develop in the Nugget Sandstone and Thaynes Limestone, and shale smears form in the Triassic shales. The damaged zones may be regions of enhanced fracture permeability, whereas the shale smears act as flow barriers. The orientation, density, and hydrogeologic characteristics for predominate fracture sets vary within meters. In the Summit Park area, chronic water shortages required new wells to be sited in the northeast-plunging Summit Park anticline. The anticline experienced two phases of folding and at least one episode of faulting. Structural analysis of the fold defined the geometry of the structure, and a down plunge projection along the fold hinge was used to estimate the location of the Nugget Sandstone at a depth of 700 ft (213 m). The crestal region of the anticline was drilled in order to intercept regions of higher fracture density in the fold. The test well penetrated the Nugget Sandstone at 698 ft depth, and two production wells with long-term yields of 120 and 180 gpm completed. One well in the Sliderock Member (Twin Creek Formation) experiences seasonal fluctuations whereas production in the Nugget sandstone has only subdued seasonal variations, suggesting the Nugget may have great storage. Complex structures work against the typical basin yield approach for water budgets, therefore, water supply estimates may benefit from detailed studies within local areas. The results of this study demonstrate how tradition
Kutina, J.; Carter, William D.; Lopez, F.X.
1978-01-01
The role of east-west fracture zones in South America is discussed with regard to global fracturing and the motion of lithospheric plates. A set of major NW-trending lineaments has been derived which show a tendency to be spaced equidistantly and may correspond to a set of east-west fractures in the "pre-drift" position of the South American plate. Statistical analysis of linears in the ERTS-mosaics shows that NW-fractures are also among the most important ones in the Andes region, suggesting that the above major lineaments extend into the basement of the Andes. Some of the old major fractures, trending east-west in the present orientation of South America, are discussed and their NE orientation in the pre-drift position of the plate is considered. An example of structural control of ore deposition in the Brazilian Shield is presented, using the maps of the RADAM Project. It is concluded that the small tin-bearing granitic bodies concentrated in the region of Sao Felix do Xingu in the state of Para represent upper parts of an unexposed granitoid massif which is controlled by the intersection of a major east-west fracture zone probably represents westward extension of the Patos Lineament of the easternmost part of Brazil, connected with the east-west fracture zone of the Para state through the basement of the Maranhao Basin (Sineclise do Maranhao-Piaui). It is expected that the proposed "Patos-Para Lineament" extends further westward and may similarly control, at intersections with fractures of other trends, some mineralization centers in the western part of the state of Para and in the state of Amazonas.
Hickman, Stephen; Barton, Colleen; Zoback, Mark; Morin, Roger; Sass, John; Benoit, Richard; ,
1997-01-01
As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, Shmin, is S57 ??E. As the Stillwater fault at this location dips S50 ??E at approximately 3??, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of Shmin is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of Shmin is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of Shmin in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures. Comparison of these stress and hydrologic data with fracture orientations from the televiewer log indicates that hydraulically conductive fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active normal faults in the current west-northwest extensional stress regime at Dixie Valley.
Määttä, M.; Macdonald, H. M.; Mulpuri, K.
2016-01-01
Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041
NASA Astrophysics Data System (ADS)
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.
Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C
2018-01-01
Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.
Morin, R.H.; Wilkens, R.H.
2005-01-01
As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.
Spent Fuel Test-Climax: core logging for site investigation and instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilder, D.G.; Yow, J.L. Jr.; Thorpe, R.K.
1982-05-28
As an integral part of the Spent Fuel Test-Climax 5150 ft (1570 m) of granite core was obtained. This core was diamond drilled in various sizes, mainly 38-mm and 76-mm diameters. The core was teken with single tube core barrels and was unoriented. Techniques used to drill and log this core are discussed, as well as techniques to orient the core. Of the 5150 ft (1570 m) of core more than 3645 ft (1111 m) was retained and logged in some detail. As a result of the core logging, geologic discontinuities were identified, joint frequency and spacing characterized. Discontinuities identifiedmore » included several joint sets, shear zones and faults. Correlations based on coring along were generally found to be impossible, even for the more prominent features. The only feature properly correlated from the exploratory drilling was the fault system at the end of the facility, but it was not identified from the exploratory core as a fault. Identification of discontinuities was later helped by underground mapping that identified several different joint sets with different characteristics. It was found that joint frequency varied from 0.3 to 1.1 joint per foot of core for open fractures and from 0.3 to 3.3/ft for closed or healed fractures. Histograms of fracture spacing indicate that there is likely a random distribution of spacing superimposed upon uniformly spaced fractures. It was found that a low angle joint set had a persistent mean orientation. These joints were healed and had pervasive wall rock alteration which made identification of joints in this set possible. The recognition of a joint set with known attitude allowed orientation of much of the core. This orientation technique was found to be effective. 10 references, 25 figures, 4 tables.« less
Guided ultrasonic wave beam skew in silicon wafers
NASA Astrophysics Data System (ADS)
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2018-04-01
In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.
Fracture toughness testing of polymer matrix composites
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
1992-01-01
A review of the interlaminar fracture indicates that a standard specimen geometry is needed to obtain consistent fracture toughness measurements in polymer matrix composites. In general, the variability of measured toughness values increases as the toughness of the material increases. This variability could be caused by incorrect sizing of test specimens and/or inconsistent data reduction procedures. A standard data reduction procedure is therefore needed as well, particularly for the tougher materials. Little work has been reported on the effects of fiber orientation, fiber architecture, fiber surface treatment or interlaminar fracture toughness, and the mechanisms by which the fibers increase fracture toughness are not well understood. The little data that is available indicates that woven fiber reinforcement and fiber sizings can significantly increase interlaminar fracture toughness.
Bisphosphonate therapy for osteogenesis imperfecta.
Dwan, Kerry; Phillipi, Carrie A; Steiner, Robert D; Basel, Donald
2016-10-19
Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. This is an update of a previously published Cochrane Review. To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Register: 28 April 2016. Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. Two authors independently extracted data and assessed the risk of bias of the included trials. Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo, aggregated data from two trials showed no statistically significant difference for the number of participants with at least one fracture, risk ratio 0.56 (95% confidence interval 0.30 to 1.06). In the remaining trial no statistically significant difference was noted in fracture incidence. For spine bone mineral density, no statistically significant difference was noted in the aggregated data from two trials, mean difference 9.96 (95% confidence interval -2.51 to 22.43). In the remaining trial a statistically significant difference in mean per cent change in spine bone mineral density z score favoured intravenous bisphosphonates at six and 12 months. Data describing growth, bone pain, and functional outcomes after oral or intravenous bisphosphonate therapy, or both, as compared to placebo were incomplete among all studies, but do not show consistent improvements in these outcomes. Two studies compared different doses of bisphosphonates. No differences were found between doses when bone mineral density, fractures, and height or length z score were assessed. One trial compared oral versus intravenous bisphosphonates and found no differences in primary outcomes. Two studies compared the intravenous bisphosphonates zoledronic acid and pamidronate. There were no significant differences in primary outcome. However, the studies were at odds as to the relative benefit of zoledronic acid over pamidronate for lumbosacral bone mineral density at 12 months. Bisphophonates are commonly prescribed to individuals with osteogenesis imperfecta. Current evidence, albeit limited, demonstrates oral or intravenous bisphosphonates increase bone mineral density in children and adults with this condition. These were not shown to be different in their ability to increase bone mineral density. It is unclear whether oral or intravenous bisphosphonate treatment consistently decreases fractures, though multiple studies report this independently and no studies report an increased fracture rate with treatment. The studies included here do not show bisphosphonates conclusively improve clinical status (reduce pain; improve growth and functional mobility) in people with osteogenesis imperfecta. Given their current widespread and expected continued use, the optimal method, duration of therapy and long-term safety of bisphosphonate therapy require further investigation. In addition, attention should be given to long-term fracture reduction and improvement in quality of life indicators.
Bisphosphonate therapy for osteogenesis imperfecta.
Dwan, Kerry; Phillipi, Carrie A; Steiner, Robert D; Basel, Donald
2014-07-23
Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search: 07 April 2014. Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. Two authors independently extracted data and assessed the risk of bias of the included trials. Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo, aggregated data from two trials showed no statistically significant difference for the number of participants with at least one fracture, risk ratio 0.56 (95% confidence interval 0.30 to 1.06). In the remaining trial no statistically significant difference was noted in fracture incidence. For spine bone mineral density, no statistically significant difference was noted in the aggregated data from two trials, mean difference 9.96 (95% confidence interval -2.51 to 22.43). In the remaining trial a statistically significant difference in mean per cent change in spine bone mineral density z score favoured intravenous bisphosphonates at six and 12 months. Data describing growth, bone pain, and functional outcomes after oral or intravenous bisphosphonate therapy, or both, as compared to placebo were incomplete among all studies, but do not show consistent improvements in these outcomes. Two studies compared different doses of bisphosphonates. No differences were found between doses when bone mineral density, fractures, and height or length z score were assessed. One study compared oral versus intravenous bisphosphonates and found no differences in primary outcomes. Two studies compared the intravenous bisphosphonates zoledronic acid and pamidronate. There were no significant differences in primary outcome. However, the studies were at odds as to the relative benefit of zoledronic acid over pamidronate for lumbosacral bone mineral density at 12 months. Bisphophonates are commonly prescribed to individuals with osteogenesis imperfecta. Current evidence, albeit limited, demonstrates oral or intravenous bisphosphonates increase bone mineral density in children and adults with this condition. These were not shown to be different in their ability to increase bone mineral density. It is unclear whether oral or intravenous bisphosphonate treatment consistently decreases fractures, though multiple studies report this independently and no studies report an increased fracture rate with treatment. The studies included here do not show bisphosphonates conclusively improve clinical status (reduce pain; improve growth and functional mobility) in people with osteogenesis imperfecta. Given their current widespread and expected continued use, the optimal method, duration of therapy and long-term safety of bisphosphonate therapy require further investigation. In addition, attention should be given to long-term fracture reduction and improvement in quality of life indicators.
NASA Astrophysics Data System (ADS)
Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John
2015-04-01
In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study areas of palaeo¬geothermal fields in the Bristol Channel (1), all mineral veins, most of which are extension fractures, are of calcite. They are clearly associated with the faults and indicate that geothermal water was transported along the then-active faults into the host rocks with evidence of injection as hydrofractures. Layers with contrasting mechanical properties (in particular, stiffnesses), however, acted as stress barriers and lead to fracture arrest. Along some faults, veins propagated through the barriers along faults to shallower levels. In the Northwest German Basin (2) there are pronounced differences between normal-fault zones in carbonate and clastic rocks. Only in carbonate rocks clear damage zones occur, characterized by increased fracture frequencies and high amounts of fractures with large apertures. On the Upper Rhine Graben shoulders (3) damage zones in Triassic Muschelkalk limestones are well developed; fault cores are narrow and comprise breccia, clay smear, host rock lenses and mineralization. A large fault zone in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a transition zone with mostly disturbed layering and highest fracture frequency, and a damage zone. The latter damage zone is compared to the damage zone of a large Bunter sandstone fault zone currently explored for geothermal energy production. The numerical models focus on stress field development, fracture propagation and associated permeability changes. These studies contribute to the understanding of the hydromechanical behaviour of fault zones and related fluid transport in fractured reservoirs complementing predictions based on geophysical measurements. Eventually we aim at classifying and quantifying fracture system properties in fault zones to improve exploration and exploitation of geothermal reservoirs. Acknowledgements The authors appreciate the support of 'Niedersächsisches Ministerium für Wissen¬schaft und Kultur' and 'Baker Hughes' within the gebo research project (http://www.gebo-nds.de), the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU; FKZ: 0325302, AuGE) and the Deutsche Forschungsgemeinschaft. GeoEnergy GmbH, Karlsruhe, is thanked for explorational data.
The role of local stress perturbation on the simultaneous opening of orthogonal fractures
NASA Astrophysics Data System (ADS)
Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn
2016-04-01
Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension in between systematic fractures is reduced but does not remove the occurring stress flip. However, putting effective tension on the boundaries will give overestimates in the reduction of the local effective tensile stress perpendicular to the larger systematic fractures and therefore the magnitude of the stress flip. In conclusion, both model approaches indicate that orthogonal fractures can form while experiencing one regional stress regime. This also means that under these specific loading and locally perturbed stress conditions both sets of orthogonal fractures stay open and can provide a pathway for fluid circulation.
Gausden, Elizabeth; Garner, Matthew R; Fabricant, Peter D; Warner, Stephen J; Shaffer, Andre D; Lorich, Dean G
2017-06-01
The operative management of tibial plateau fractures in elderly patients has historically led to inconsistent results, and these clinical outcomes were thought to be associated with poor bone quality often in elderly patients. The goal of this study was to investigate the relationship between bone density and subjective clinical outcome scores after open reduction and internal fixation of tibial plateau fractures. This is a retrospective cohort study from a single-surgeon conducted at an Academic, Level 1 Trauma Center. A preoperative computed tomography (CT) scan was obtained for all patients. Bone density of the distal femur was quantified with Hounsfield units (HU) as measured on axial CT scans. Inter-rater reliability of HU measurements was assessed using interclass correlation coefficients. Regression models controlling for age were used to identify relationships between bone density (HU) and the following variables: articular subsidence and 1-year subjective clinical outcomes scores [Knee Outcome Survey Activities of Daily Living Scale (KOS-ADLS), and Short-Form-36 (SF-36) physical and mental component scores (PCS, MCS)]. Sixty-one patients with a mean age of 59.3 years (range 27-85 years) and a minimum of 12 months of clinical follow-up were included in the study. The majority of the fractures (32 of 61) were classified as Schatzker II tibial plateau fractures, and there were 13 Schatzker V fractures, 11 Schatzker VI fractures, 2 Schatzker IV fractures and 1 Schatzker 1 fracture. HU measurements demonstrated an almost perfect inter-observer reliability (ICC = 0.97). Age was negatively correlated with HU measurements (r = -0.51, p < 0.001), and using a geriatric cut-off of 65 years of age, the geriatric group had a lower mean HU compared to the non-geriatric group (78.2 versus 114.8, p = 0.018). There was no significant relationship between bone quality, as assessed by distal femoral HU, and any subjective clinical outcome score. Inferior bone mineral density alone does not appear to affect clinical outcomes 1 year postoperatively when bone grafting is used to restore osseous voids. Poor bone quality should not be used as an indication for non-operative management of tibial plateau fractures.
He, Xingrong; Yang, Yongqiang; Wu, Weihui; Wang, Di; Ding, Huanwen; Huang, Weihong
2010-06-01
In order to simplify the distal femoral comminuted fracture surgery and improve the accuracy of the parts to be reset, a kind of surgery orienting model for the surgery operation was designed according to the scanning data of computer tomography and the three-dimensional reconstruction image. With the use of DiMetal-280 selective laser melting rapid prototyping system, the surgery orienting model of 316L stainless steel was made through orthogonal experiment for processing parameter optimization. The technology of direct manufacturing of surgery orienting model by selective laser melting was noted to have obvious superiority with high speed, precise profile and good accuracy in size when compared with the conventional one. The model was applied in a real surgical operation for thighbone replacement; it worked well. The successful development of the model provides a new method for the automatic manufacture of customized surgery model, thus building a foundation for more clinical applications in the future.
Complex association between body weight and fracture risk in postmenopausal women.
Mpalaris, V; Anagnostis, P; Goulis, D G; Iakovou, I
2015-03-01
Osteoporosis is a common disease, characterized by low bone mass with micro-architectural disruption and skeletal fragility, resulting in an increased risk of fracture. A substantial number of studies has examined the possible relationship between body weight, bone mineral density and fracture risk in post-menopausal women, with the majority of them concluding that low body weight correlates with increased risk of fracture, especially hip fracture. Controversies about the potential protective effect of obesity on osteoporosis and consequent fracture risk still exist. Several recent studies question the concept that obesity exerts a protective effect against fractures, suggesting that it stands as a risk factor for fractures at specific skeletal sites, such as upper arm. The association between body weight and fracture risk is complex, differs across skeletal sites and body mass index, and is modified by the interaction between body weight and bone mineral density. Some potential explanations that link obesity with increased fracture risk may be the pattern of falls and impaired mobility in obese individuals, comorbidities, such as asthma, diabetes and early menopause, as well as, increased parathyroid hormone and reduced 25-hydroxy-vitamin D concentrations. © 2015 World Obesity.
The role of molybdenum in suppressing cold dwell fatigue in titanium alloys
NASA Astrophysics Data System (ADS)
Ready, Adam J.; Haynes, Peter D.; Grabowski, Blazej; Rugg, David; Sutton, Adrian P.
2017-07-01
We test a hypothesis to explain why Ti-6242 is susceptible to cold dwell fatigue (CDF), whereas Ti-6246 is not. The hypothesis is that, in Ti-6246, substitutional Mo-atoms in α-Ti grains trap vacancies, thereby limiting creep relaxation. In Ti-6242, this creep relaxation enhances the loading of grains unfavourably oriented for slip and they subsequently fracture. Using density functional theory to calculate formation and binding energies between Mo-atoms and vacancies, we find no support for the hypothesis. In the light of this result, and experimental observations of the microstructures in these alloys, we agree with the recent suggestion (Qiu et al. 2014 Metall. Mater. Trans. A 45, 6075-6087. (doi:10.1007/s11661-014-2541-5)) that Ti-6246 has a much smaller susceptibility to CDF because it has a smaller grain size and a more homogeneous distribution of grain orientations. We propose that the reduction of the susceptibility to CDF of Ti-6242 at temperatures above about 200°C is due to the activation of
Uebelhart, Brigitte; Rizzoli, René
2016-01-13
Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw.
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, N.C.; Lancaster, D.E.
1995-07-01
The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.
Oppenheimer, Adam J.; Monson, Laura A.; Buchman, Steven R.
2013-01-01
It is wise to recall the dictum “children are not small adults” when managing pediatric orbital fractures. In a child, the craniofacial skeleton undergoes significant changes in size, shape, and proportion as it grows into maturity. Accordingly, the craniomaxillofacial surgeon must select an appropriate treatment strategy that considers both the nature of the injury and the child's stage of growth. The following review will discuss the management of pediatric orbital fractures, with an emphasis on clinically oriented anatomy and development. PMID:24436730
Physical Properties of Fractured Porous Media
NASA Astrophysics Data System (ADS)
Mohammed, T. E.; Schmitt, D. R.
2015-12-01
The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based on seismic response. As well, the formal similarity between electrical conductivity and permeability can be utilized to help optimize injection and production strategies.
Hansen, Bruce P.; Lane, John W.
1995-01-01
Four geophysical techniques were used to determine bedrock-fracture orientation and other site characteristics that can be used to determine ground-water movement and contaminant transport at a fractured crystalline bedrock site in Millville and Uxbridge, Massachusetts. Azimuthal seismic- refraction and azimuthal square-array direct-current resistivity surveys were conducted at three sites. Borehole-radar surveys were conducted in a cluster of three wells. Ground-penetrating radar surveys were conducted along roads in the study area. Azimuthal seismic-refraction data indicated a primary fracture strike between 56 and 101 degrees at three sites. Graphical and analytical analysis of azimuthal square-array resistivity data indicated a primary fracture strike from 45 to 90 degrees at three sites. Directional borehole-radar data from three wells indicated 46 fractures or fracture zones located as far as 147 feet from the surveyed wells. Patterns of low radar-wave velocity and high radar- wave attenuation from cross-hole radar surveys of two well pairs were interpreted as a planar fracture zone that strikes 297 degrees and dips 55 degrees south. Ground-penetrating radar surveys with 100-MHz antennas penetrated as much as 150 feet of bedrock where the bedrock surface was at or near land surface. Horizontal and subhorizontal fractures were observed on the ground-penetrating radar records at numerous locations. Correlation of data sets indicates good agreement and indicates primary high- angle fracturing striking east-northeast. Secondary bedrock porosity and average fracture aperture determined from square-array resistivity data averaged 0.0044 and 0.0071 foot. Depths to bedrock observed on the ground-penetrating radar records were 0 to 20 feet below land surface along most of the area surveyed. A bedrock depth from 45 to 50 feet below land surface was observed along one section of Conestoga Drive.
Multiscale analysis of the fracture pattern in granite, example of Tamariu's granite, Catalunya.
NASA Astrophysics Data System (ADS)
Bertrand, L.; LeGarzic, E.; Géraud, Y.; Diraison, M.
2012-04-01
Crystalline rocks can be the host of important fluid flow and therefore they can provide a good reservoir potential. In this kind of rocks, the matrice porosity is in general low and a large part of the permeability is governed by the fracture pattern. Thus, they are the first interest of studies in order to characterize and model the fluid flows. Actual reservoirs are underground, and the only access to the fracture pattern is with boreholes and seismic lines. Those methods are investigating different scales and dimensions: seismic is in 3D at a global scale whereas boreholes are 1D at a localized scale. To make the link between the different data, it is necessary to study field analogues where such fractured rocks are outcropping. Tamariu's granite, in Catalunya, has recently been studied as a field analogue of a fractured reservoir. The previous studies have lead to define structural blocks at different scales, linked to the regional deformation. This study's aim is to characterize the internal fracturation of a single structural block with a statistical analysis. We used one dimension scan lines at the scale of a block and 2 dimensions mapping at a more precise scale until the grain scale. The data highlighted that the fracture and fault lengths have a power law relation in 8 orders of scales. So this power law is stretching between seismic and borehole scales. Therefore, the data fit with a very good trust in the power law exponent, which is very well defined. The link between the reservoir scale faults and the internal block fracturation has also been defined in term of the structures orientation. Finally, a comparison between the 1D and 2D measurement could be done. The 1D scan lines show correctly the different fractures families but samples incompletely a part the fracture pattern, whereas the 2D maps which show more the global trends of the fractures and could lose some minor trends orientations.
Critical Fracture Toughness Measurements of an Antarctic Ice Core
NASA Astrophysics Data System (ADS)
Christmann, Julia; Müller, Ralf; Webber, Kyle; Isaia, Daniel; Schader, Florian; Kippstuhl, Sepp; Freitag, Johannes; Humbert, Angelika
2014-05-01
Fracture toughness is a material parameter describing the resistance of a pre-existing defect in a body to further crack extension. The fracture toughness of glacial ice as a function of density is important for modeling efforts aspire to predict calving behavior. In the presented experiments this fracture toughness is measured using an ice core from Kohnen Station, Dronning Maud Land, Antarctica. The samples were sawed in an ice lab at the Alfred Wegener Institute in Bremerhaven at -20°C and had the dimensions of standard test samples with thickness 14 mm, width 28 mm and length 126 mm. The samples originate from a depth of 94.6 m to 96 m. The grain size of the samples was also identified. The grain size was found to be rather uniform. The critical fracture toughness is determined in a four-point bending approach using single edge V-notch beam samples. The initial notch length was around 2.5 mm and was prepared using a drilling machine. The experimental setup was designed at the Institute of Materials Science at Darmstadt. In this setup the force increases linearly, until the maximum force is reached, where the specific sample fractures. This procedure was done in an ice lab with a temperature of -15°C. The equations to calculate the fracture toughness for pure bending are derived from an elastic stress analysis and are given as a standard test method to detect the fracture toughness. An X-ray computer tomography (CT scanner) was used to determine the ice core densities. The tests cover densities from 843 kg m-3 to 871 kg m-3. Thereby the influence of the fracture toughness on the density was analyzed and compared to previous investigations of this material parameter. Finally the dependence of the measured toughness on thickness, width, and position in the core cross-section was investigated.
NASA Astrophysics Data System (ADS)
Carr, B.; Zhang, Y.; Ren, S.; Flinchum, B. A.; Parsekian, A.; Holbrook, S.; Riebe, C. S.; Moravec, B. G.; Chorover, J.; Pelletier, J. D.; Richter, D. D., Jr.
2017-12-01
Four prominent hypotheses exist and predict conceptual models defining the base of the critical zone. These hypotheses lack insights and constraints from borehole data since few deep (> 20 m) boreholes (and even fewer connected wellfields) are present in the U.S. Critical Zone Observatories (CZO) and similar critical zone study sites (CZs). The influence and interaction of fracture presence, fracture density, fracture orientation, groundwater presence and groundwater flow have only begun to be analyzed relative to any definition of the base of the critical zone. In this presentation, we examine each hypothesis by jointly evaluating borehole geophysical logs and groundwater testing datasets collected by the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) since 2014 at these deep CZO or CZ boreholes. Deep boreholes allow a unique opportunity to observe the factors influencing groundwater transmissivity/storage capacity within the three main subsurface CZ layers: Unconsolidated (soil/saprolite), Fractured/weathered Bedrock, and Protolith bedrock (i.e. less fractured bedrock). The boreholes used in this study consist of: 1) nine wells of the Blair-Wallis (WY) WyCEHG CZ, 2) two wells in Catalina-Jemez CZO (Valle Caldera NM) and 3) one borehole at the Calhoun (SC) CZO. At this time, these are the only sites that contain boreholes with depths ranging from at least 20 m up to 70m that have been geophysically logged with full-waveform seismic, acoustic and optical televiewer, electric, electromagnetic, flowmeter (impeller and heat pulse), fluid temperature, fluid conductivity and nuclear magnetic resonance. Further, the Blair-Wallis CZ site contains five hydraulically connected wells that allow us to estimate formation transmissivity and storage coefficients at increasing scales by conducting: slug tests, FLUTe™ borehole profiling, and cross-hole pumping tests. These well tests provide direct hydraulic data of the bedrock (both fractured and protolith) that can be integrated with geophysical logging data. Because fracture permeability is the dominant mechanism for groundwater transport in these igneous environments, a joint analysis of geophysical logging and hydraulic testing data provides in situ material-property-based refinements for the defining the base of the critical zone.
Innovations in the management of hip fractures.
Teasdall, Robert D; Webb, Lawrence X
2003-08-01
Hip fractures include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region that is exposed to large compressive stresses. Implants used to address these fractures must accommodate significant loads while the fractures consolidate. Complications secondary to hip fractures produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.
NASA Astrophysics Data System (ADS)
Wan, L. F.; Beckman, S. P.
2012-10-01
The orthorhombic boride crystal family XYB14, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this compound. We present here the results from a comprehensive investigation into the fracture strength of the archetypal AlLiB14 crystal. First principles, ab initio, methods are used to determine the ideal brittle cleavage strength for several high-symmetry orientations. The elastic tensor and the orientation-dependent Young’s modulus are calculated. From these results the lower bound fracture strength of AlLiB14 is predicted to be between 29 and 31 GPa, which is near the measured hardness reported in the literature. These results indicate that the intrinsic strength of AlLiB14 is limited by the interatomic B-B bonds that span between the B layers.
Over-Aging Effect on Fracture Toughness of Beryllium Copper Alloy C17200
NASA Astrophysics Data System (ADS)
Jen, Kei-Peng; Xu, Liqun; Hylinski, Steven; Gildersleeve, Nate
2008-10-01
This study experimentally increased the fracture toughness of Beryllium Copper (CuBe) UNS C17200 alloy using three different age hardening processes. At the same time, the micro- and macro-fracture behavior of this alloy were comprehensively studied. ASTM E399 fracture toughness, tensile, and Charpy impact tests were conducted for all three heat-treated rods. The fracture surfaces were examined under both an optical microscope and a scanning electron microscope to investigate the failure mechanisms. Multiple test orientations were considered to explore isotropy. Increasing the temperature and duration at which age hardening was performed increased fracture toughness while decreasing ultimate tensile strength. The maximum fracture toughness was reached on the most overaged specimen, while retaining a serviceable tensile strength. The specimen test data allowed a relationship to be established among Charpy impact toughness, fracture toughness, and yield strength. Analysis of fracture behavior revealed an interesting relationship between fracture toughness and pre-cracking fatigue propagation rate.
In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada
Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.
1997-01-01
Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.
NASA Technical Reports Server (NTRS)
Pizzo, P. P.
1980-01-01
The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.
Lahtinen, Antti; Leppilahti, Juhana; Harmainen, Samppa; Sipilä, Jaakko; Antikainen, Riitta; Seppänen, Maija-Liisa; Willig, Reeta; Vähänikkilä, Hannu; Ristiniemi, Jukka; Rissanen, Pekka; Jalovaara, Pekka
2015-09-01
To examine effects of physical and geriatric rehabilitation on institutionalisation and mortality after hip fracture. Prospective randomised study. Physically oriented (187 patients), geriatrically oriented (171 patients), and health centre hospital rehabilitation (180 patients, control group). A total of 538 consecutively, independently living patients with non-pathological hip fracture. Patients were evaluated on admission, at 4 and 12 months for social status, residential status, walking ability, use of walking aids, pain in the hip, activities of daily living (ADL) and mortality. Mortality was significantly lower at 4 and 12 months in physical rehabilitation (3.2%, 8.6%) than in geriatric rehabilitation group (9.6%, 18.7%, P=0.026, P=0.005, respectively) or control group (10.6%, 19.4%, P=0.006, P=0.004, respectively). At 4 months more patients in physical (84.4%) and geriatric rehabilitation group (78.0%) were able to live at home or sheltered housing than in control group (71.9%, P=0.0012 and P<0.001, respectively). No significant difference was found between physical rehabilitation and geriatric rehabilitation (P=0.278). Analysis of femoral neck and trochanteric fractures showed that significant difference was true only for femoral neck fractures (physical rehabilitation vs geriatric rehabilitation P=0.308, physical rehabilitation vs control group P<0,001 and geriatric rehabilitation vs control group P<0.001). Effects of intensified rehabilitations disappeared at 12 months. No impact on walking ability or ADL functions was observed. Physical rehabilitation reduced mortality. Physical and geriatric rehabilitation significantly improved the ability of independent living after 4 months especially among the femoral neck fracture patients but this effect could not be seen after 12 months. © The Author(s) 2014.
Osteoporosis Imaging: State of the Art and Advanced Imaging
2012-01-01
Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures. © RSNA, 2012 PMID:22438439
Partial proximal tibia fractures
Raschke, Michael J.; Kittl, Christoph; Domnick, Christoph
2017-01-01
Partial tibial plateau fractures may occur as a consequence of either valgus or varus trauma combined with a rotational and axial compression component. High-energy trauma may result in a more complex and multi-fragmented fracture pattern, which occurs predominantly in young people. Conversely, a low-energy mechanism may lead to a pure depression fracture in the older population with weaker bone density. Pre-operative classification of these fractures, by Müller AO, Schatzker or novel CT-based methods, helps to understand the fracture pattern and choose the surgical approach and treatment strategy in accordance with estimated bone mineral density and the individual history of each patient. Non-operative treatment may be considered for non-displaced intra-articular fractures of the lateral tibial condyle. Intra-articular joint displacement ⩾ 2 mm, open fractures or fractures of the medial condyle should be reduced and fixed operatively. Autologous, allogenic and synthetic bone substitutes can be used to fill bone defects. A variety of minimally invasive approaches, temporary osteotomies and novel techniques (e.g. arthroscopically assisted reduction or ‘jail-type’ screw osteosynthesis) offer a range of choices for the individual and are potentially less invasive treatments. Rehabilitation protocols should be carefully planned according to the degree of stability achieved by internal fixation, bone mineral density and other patient-specific factors (age, compliance, mobility). To avoid stiffness, early functional mobilisation plays a major role in rehabilitation. In the elderly, low-energy trauma and impression fractures are indicators for the further screening and treatment of osteoporosis. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160067. Originally published online at www.efortopenreviews.org PMID:28630761
Fracture Risk and Areal Bone Mineral Density in Adolescent Females with Anorexia Nervosa
Faje, Alexander T.; Fazeli, Pouneh K.; Miller, Karen K.; Katzman, Debra K.; Ebrahimi, Seda; Lee, Hang; Mendes, Nara; Snelgrove, Deirdre; Meenaghan, Erinne; Misra, Madhusmita; Klibanski, Anne
2014-01-01
Objective To (i) compare fracture prevalence in adolescent females with anorexia nervosa (AN) vs. normal-weight controls and (ii) examine whether reductions in areal bone mineral density (aBMD) predict fracture risk in females with AN. Methods 418 females (310 with active AN and 108 normal-weight controls) 12–22 years old were studied cross-sectionally. Lifetime fracture history was recorded by a physician during participant interviews. Body composition and aBMD measurements of the whole body, whole body less head, lumbar spine, and hip were assessed by dual-energy x-ray absorptiometry (DXA), and bone mineral apparent density (BMAD) was calculated for the lumbar spine. Results Participants with AN and normal-weight controls did not differ for chronological age, sexual maturity, or height. The lifetime prevalence of prior fracture was 59.8% higher in those with AN compared to controls (31.0 % versus 19.4 %, p = 0.02), and the fracture incidence rate peaked in our cohort after the diagnosis of AN. Lower aBMD and lumbar BMAD were not associated with a higher prevalence of fracture in the AN or control group on univariate or multivariate analyses. Compared to controls, fracture prevalence was significantly higher in the subgroup of girls with AN who had normal aBMD or only modest reductions of aBMD (Z-scores > −1 or −1.5). Discussion This is the first study to show that the risk of fracture during childhood and adolescence is significantly higher in patients with AN than in normal-weight controls. Fracture prevalence is increased in this cohort of subjects with AN even without significant reductions in aBMD. PMID:24430890
Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa.
Faje, Alexander T; Fazeli, Pouneh K; Miller, Karen K; Katzman, Debra K; Ebrahimi, Seda; Lee, Hang; Mendes, Nara; Snelgrove, Deirdre; Meenaghan, Erinne; Misra, Madhusmita; Klibanski, Anne
2014-07-01
To (i) compare fracture prevalence in adolescent females with anorexia nervosa (AN) versus normal-weight controls and (ii) examine whether reductions in areal bone mineral density (aBMD) predict fracture risk in females with AN. Four-hundred eighteen females (310 with active AN and 108 normal-weight controls) 12- to 22-years-old were studied cross-sectionally. Lifetime fracture history was recorded by a physician during participant interviews. Body composition and aBMD measurements of the whole body, whole body less head, lumbar spine, and hip were assessed by dual-energy X-ray absorptiometry, and bone mineral apparent density (BMAD) was calculated for the lumbar spine. Participants with AN and normal-weight controls did not differ for chronological age, sexual maturity, or height. The lifetime prevalence of prior fracture was 59.8% higher in those with AN as compared to controls (31.0% vs. 19.4%, p = 0.02), and the fracture incidence rate peaked in our cohort after the diagnosis of AN. Lower aBMD and lumbar BMAD were not associated with a higher prevalence of fracture in the AN or control group on univariate or multivariate analyses. Compared to controls, fracture prevalence was significantly higher in the subgroup of girls with AN who had normal aBMD or only modest reductions of aBMD (Z-scores > -1 or -1.5). This is the first study to show that the risk of fracture during childhood and adolescence is significantly higher in patients with AN than in normal-weight controls. Fracture prevalence is increased in this cohort of participants with AN even without significant reductions in aBMD. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Ryder, K. M.; Williams, J.; Womack, C.; Nayak, N. G.; Nasef, S.; Bush, A.; Tylavsky, F. A.; Carbone, L.
2003-01-01
This study found a high incidence of nontraumatic fractures in adults with developmental disabilities living in a state-run facility, a 7.3% incidence among 391 adults. Factors associated with fractures included use of antiepileptic medication. Although bone mineral density (BMD) by heel ultrasound did not predict fracture, values were much lower…
Weibull crack density coefficient for polydimensional stress states
NASA Technical Reports Server (NTRS)
Gross, Bernard; Gyekenyesi, John P.
1989-01-01
A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.
Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.
1981-01-01
The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)
Fracture analysis near the mid-ocean plate boundary, Reykjavik-Hvalfjördur area, Iceland
NASA Astrophysics Data System (ADS)
Jefferis, Robert G.; Voight, Barry
1981-07-01
The geometry and thermal history of fractures have been determined at 59 stations from Reykjavik to Hvalfjördur in southwestern Iceland. The data provide information on crustal stress regimes in the vicinity of mid-ocean ridges. Two major, generalized fracture orientations are present (1) a northeast system, trend 010°-030°, except on Akranes where the orientation is 040°-060° (2) a broad east—west system containing one or more sets with strike between 070°-130°. Thermal history of the host rock and fractures was determined from secondary minerals in vugs and fractures. The thermal history indicates that the northeast fracture set opened while the area was within the relatively hot axial zone of active volcanism and rifting. Some of the east—west trending fractures also opened at this time but many formed later, after the area had begun to cool and drift from the active zone. The northeast fracture set is essentially parallel to the trend of dikes and normal faults in southwestern Iceland. They have been interpreted as extension fractures (resulting in about 0.4% maximum extension) forming generally from the same stress field associated with normal faulting and dike injection in the active zone. Fracturing in an east-west direction (estimated 0.1% maximum extension), mainly near the edge and outside the active zone, indicates a reorientation of this stress field. The dominant mechanism related to the origin of the east—west fractures may be thermoelastic stresses arising from axial and basal accretion and cooling of lithospheric plates. Both fracture systems are inferred to have formed, in the Griffiths idealization, under nearly biaxial effective compressive loading on the order of 200 bar. The discrepancy between this value and the kilobar-order strengths of short-time laboratory tests reflects such factors as high temperature stress corrosion and fatigue. Fracture propagation is assumed to have been stable, but governed primarily by lateral load-diminishing mechanisms rather than by progressive loading. These relaxation mechanisms may have been episodic (northeast-system fissure swarm activity) or steady-state (thermoelastic contraction) in time.
Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage
Newell, P.; Martinez, M. J.; Eichhubl, P.
2016-07-29
Economic feasibility of geologic carbon storage demands sustaining large storage rates without damaging caprock seals. Reactivation of pre-existing or newly formed fractures may provide a leakage pathway across caprock layers. In this paper, we apply an equivalent continuum approach within a finite element framework to model the fluid-pressure-induced reactivation of pre-existing fractures within the caprock, during high-rate injection of super-critical CO 2 into a brine-saturated reservoir in a hypothetical system, using realistic geomechanical and fluid properties. We investigate the impact of reservoir to caprock layer thickness, wellbore orientation, and injection rate on overall performance of the system with respect tomore » caprock failure and leakage. We find that vertical wells result in locally higher reservoir pressures relative to horizontal injection wells for the same injection rate, with high pressure inducing caprock leakage along reactivated opening-mode fractures in the caprock. After prolonged injection, leakage along reactivated fractures in the caprock is always higher for vertical than horizontal injection wells. Furthermore, we find that low ratios of reservoir to caprock thickness favor high excess pressure and thus fracture reactivation in the caprock. Finally, injection into thick reservoir units thus lowers the risk associated with CO 2 leakage.« less
Vertically oriented structure and its fracture behavior of the Indonesia white-pearl oyster.
Chen, Guowei; Luo, Hongyun; Luo, Shunfei; Lin, Zhenying; Ma, Yue
2017-02-01
Structural calcites, aragonites, and the bonding organic network decide the growth, structure and mechanical properties of the mollusk bivalvia shell. Here, it was found out that the calcite prisms together with the coated organics construct another kind of 'brick and mortar' structure similar to the aragonite tablets. The calcite layer can be divided into three sublayers and direct evidences show that the calcite prisms are produced by two methods: nucleation and growing in the first sublayer; or fusing from the aragonites, which is quite different from some previous reports. The crystallographic orientation, micro hardness and crack propagations were tested and observed by XRD, micro harness tester, SEM and TEM. Submicron twin crystals were observed in the immature aragonite tablets. The fracture processes and the micro deformation of the aragonite tablets are detected by acoustic emission (AE) in the tensile tests, which gave the interpretation of the dynamical fracture processes: plastic deformation and fracture of the organics, and friction of the minerals at the first two stages; wear and fracture of the minerals at the third stage. Calcites and aragonites are combined and working together, like two layers of vertical 'brick and mortar's, ensuring the stable mechanical properties of the whole shell. Copyright © 2016 Elsevier Ltd. All rights reserved.
Webb, Lawrence X
2002-01-01
Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.
Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd
2001-01-01
Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground water; and (3) an increase in primary or secondary porosity and an associated change in mineral assemblage, or decrease in ground water specific conductance, was characterized in two of the boreholes below 300 m.The results of the radar reflection logging indicate that even where data quality is marginal, borehole-radar reflection logging can provide useful information for ground-water characterization studies in fractured rock and insights into the nature and extent of fractures and fracture zones in and near boreholes.
Elevated temperature crack growth in advanced powder metallurgy aluminum alloys
NASA Technical Reports Server (NTRS)
Porr, William C., Jr.; Gangloff, Richard P.
1990-01-01
Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging may play a role. Fractography showed that microvoid coalescence was the microscopic mode of fracture in FVS0812 under all testing conditions. However, the nature of the microvoids varied with test temperature and loading rate, and is complex for the fine grain and dipersoid sizes of FVS0812.
The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density
Jin, A.; Cobb, J.; Hansen, U.; Bhattacharya, R.; Reinhard, C.; Vo, N.; Atwood, R.; Li, J.; Karunaratne, A.; Wiles, C.
2017-01-01
Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1. PMID:29066534
Morgan, Elise F.; Mason, Zachary D.; Chien, Karen B.; Pfeiffer, Anthony J.; Barnes, George L.; Einhorn, Thomas A.; Gerstenfeld, Louis C.
2009-01-01
Non-invasive characterization of fracture callus structure and composition may facilitate development of surrogate measures of the regain of mechanical function. As such, quantitative computed tomography- (CT-) based analyses of fracture calluses could enable more reliable clinical assessments of bone healing. Although previous studies have used CT to quantify and predict fracture healing, it is unclear which of the many CT-derived metrics of callus structure and composition are the most predictive of callus mechanical properties. The goal of this study was to identify the changes in fracture callus structure and composition that occur over time and that are most closely related to the regain of mechanical function. Micro-computed tomography (μCT) imaging and torsion testing were performed on murine fracture calluses (n=188) at multiple post-fracture timepoints and under different experimental conditions that alter fracture healing. Total callus volume (TV), mineralized callus volume (BV), callus mineralized volume fraction (BV/TV), bone mineral content (BMC), tissue mineral density (TMD), standard deviation of mineral density (σTMD), effective polar moment of inertia (Jeff), torsional strength, and torsional rigidity were quantified. Multivariate statistical analyses, including multivariate analysis of variance, principal components analysis, and stepwise regression were used to identify differences in callus structure and composition among experimental groups and to determine which of the μCT outcome measures were the strongest predictors of mechanical properties. Although calluses varied greatly in the absolute and relative amounts of mineralized tissue (BV, BMC, and BV/TV), differences among timepoints were most strongly associated with changes in tissue mineral density. Torsional strength and rigidity were dependent on mineral density as well as the amount of mineralized tissue: TMD, BV, and σTMD explained 62% of the variation in torsional strength (p<0.001); and TMD, BMC, BV/TV, and σTMD explained 70% of the variation in torsional rigidity (p<0.001). These results indicate that fracture callus mechanical properties can be predicted by several μCT-derived measures of callus structure and composition. These findings form the basis for developing non-invasive assessments of fracture healing and for identifying biological and biomechanical mechanisms that lead to impaired or enhanced healing. PMID:19013264
Multi-scale fracture damage associated with underground chemical explosions
NASA Astrophysics Data System (ADS)
Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.
2018-05-01
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulander, B.R.; Dean, S.L.; Barton, C.C.
1977-01-01
Methods results, and conclusions formulated during a prototype fractographic logging study of seventy-five feet of oriented Devonian shale core are summarized. The core analyzed is from the Nicholas Combs No. 7239 well located twelve miles due north of Hazard, Kentucky. The seventy-five foot core length was taken from a cored section lying between 2369.0 feet (subsea) and 2708.0 feet (subsea). Total core length is 339.0 feet. The core was extracted from the upper Devonian Ohio and Olentangy shale formations. Results indicate that there are few tectonic (pre-core) fractures within the studied core section. The region may nevertheless be cut atmore » core sample depth by well-defined vertical or inclined tectonic fractures that the vertically drilled test core didn't intersect. This is likely since surface Plateau systematic fractures in other Plateau areas are vertical to sub-vertical and seldom have a frequency of less than one major fracture per foot. The remarkable directional preference of set three fractures about strikes of N 40/sup 0/ E, N 10/sup 0/ W, N 45/sup 0/ W, suggests some incipient pre-core rock anisotropy or stored directional strain energy. If this situation exists, the anisotropy strike change or stored strain variance from N 40/sup 0/ E to N 45/sup 0/ W downcore remains an unanswered question. Tectonic features, indicating local and/or regional movement plans, are present on and within the tectonichorizontal fracture set one. Slickensides had a preferred orientation within several core levels, and fibrous-nonfibrous calcite serves as fracture fillings.« less
Morin, R.H.; Paillet, Frederick L.
1996-01-01
As part of the Hawaii Scientific Drilling Project, Kahi Puka Well 1 penetrated about 275 m of Mauna Loa basalts overlying a sequence of Mauna Kea flow units as it was drilled and cored to a total depth of 1053 m below land surface. A borehole televiewer (BHTV) was run in most of the well in successive stages prior to casing in order to obtain magnetically oriented acoustic images of the borehole wall. A total of 283 individual fractures were identified from this log and characterized in terms of strike and dip. These data are divided into three vertical sections based upon age and volcanic source, and lower hemisphere stereographic plots identify two predominant, subparallel fracture subsets common to each section. Assuming that most of the steeply dipping fractures observed in the BHTV log are tensile features generated within basalt flows during deposition and cooling, this fracture information can be combined with models of the evolution of the island of Hawaii to investigate the depositional history of these Mauna Loa and Mauna Kea basalts over the past 400 kyr. The directions of high-angle fractures appear to be generally parallel to topography or to the coastline at the time of deposition, as is supported by surface mapping of modern flows. Consequently, an overall counterclockwise rotation of about 75?? in the strike of these fractures from the bottom to the top of the well represents a systematic change in depositional slope direction over time. We attribute the observed rotation in the orientations of the two predominant fracture subsets over the past 400 kyr to changes in the configurations of volcanic sources during shield building and to the structural interference of adjacent volcanoes that produces shifts in topographic patterns.
NASA Astrophysics Data System (ADS)
Morin, Roger H.; Paillet, Frederick L.
1996-05-01
As part of the Hawaii Scientific Drilling Project, Kahi Puka Well 1 penetrated about 275 m of Mauna Loa basalts overlying a sequence of Mauna Kea flow units as it was drilled and cored to a total depth of 1053 m below land surface. A borehole televiewer (BHTV) was run in most of the well in successive stages prior to casing in order to obtain magnetically oriented acoustic images of the borehole wall. A total of 283 individual fractures were identified from this log and characterized in terms of strike and dip. These data are divided into three vertical sections based upon age and volcanic source, and lower hemisphere stereographic plots identify two predominant, subparallel fracture subsets common to each section. Assuming that most of the steeply dipping fractures observed in the BHTV log are tensile features generated within basalt flows during deposition and cooling, this fracture information can be combined with models of the evolution of the island of Hawaii to investigate the depositional history of these Mauna Loa and Mauna Kea basalts over the past 400 kyr. The directions of high-angle fractures appear to be generally parallel to topography or to the coastline at the time of deposition, as is supported by surface mapping of modern flows. Consequently, an overall counterclockwise rotation of about 75° in the strike of these fractures from the bottom to the top of the well represents a systematic change in depositional slope direction over time. We attribute the observed rotation in the orientations of the two predominant fracture subsets over the past 400 kyr to changes in the configurations of volcanic sources during shield building and to the structural interference of adjacent volcanoes that produces shifts in topographic patterns.
Mendoza, Erick S; Lopez, Amy A; Valdez, Valerie Ann U; Mercado-Asis, Leilani B
2016-09-01
Osteoporosis in men is markedly underdiagnosed and undertreated despite higher morbidity and mortality associated with fractures. This study aimed to characterize adult Filipino men with osteopenia, osteoporosis and prevalent fractures. A cross-sectional study of 184 Filipino men ≥50 years screened for bone mineral density was performed. Age, weight, body mass index (BMI), Osteoporosis Self-Assessment Tool for Asians (OSTA) score, smoking status, family history of fracture, diabetes mellitus, physical inactivity, and T-score were considered. Of the 184 patients, 40.2% and 29.9% have osteopenia and osteoporosis. Sixteen (21.6%) and 18 (32.1%) osteopenic and osteoporotic men have fragility hip, spine, or forearm fractures. Men aged 50 to 69 years have the same risk of osteoporosis and fractures as those ≥70 years. While hip fractures are higher in osteoporotic men, vertebral fractures are increased in both osteopenic and osteoporotic men. Mere osteopenia predicts the presence of prevalent fractures. A high risk OSTA score can predict fracture. A BMI <21 kg/m² (P<0.05) and current smoking are associated with osteoporosis. A significant fraction of Filipino men with osteopenia and osteoporosis have prevalent fractures. Our data suggest that fractures occur in men <70 years even before osteoporosis sets in. Low BMI, high OSTA score, and smoking are significant risk factors of osteoporosis.
Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W
2010-11-01
The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Craig M. Clemons; Daniel F. Caulfield; A. Jeffrey Giacomin
1999-10-01
In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber...
NASA Astrophysics Data System (ADS)
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
2017-07-01
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
Challenges of Fracture Management for Adults With Osteogenesis Imperfecta.
Gil, Joseph A; DeFroda, Steven F; Sindhu, Kunal; Cruz, Aristides I; Daniels, Alan H
2017-01-01
Osteogenesis imperfecta is caused by qualitative or quantitative defects in type I collagen. Although often considered a disease with primarily pediatric manifestations, more than 25% of lifetime fractures are reported to occur in adulthood. General care of adults with osteogenesis imperfecta involves measures to preserve bone density, regular monitoring of hearing and dentition, and maintenance of muscle strength through physical therapy. Surgical stabilization of fractures in these patients can be challenging because of low bone mineral density, preexisting skeletal deformities, or obstruction by instrumentation from previous surgeries. Additionally, unique perioperative considerations exist when operatively managing fractures in patients with osteogenesis imperfecta. To date, there is little high-quality literature to help guide the optimal treatment of fractures in adult patients with osteogenesis imperfecta. [Orthopedics. 2017; 40(1):e17-e22.]. Copyright 2016, SLACK Incorporated.
Irreversibility of advanced osteoporosis: Limited role for pharmacologic intervention
NASA Technical Reports Server (NTRS)
Parfitt, A. M.
1994-01-01
Osteoporosis is of medical interest only because it increases bone fragility and risk of fracture, and except for relief of symptoms, preventing fracture is the only purpose of intervention. To prevent the first fracture, adequate bone density must be accumulated and conserved, but to prevent subsequent fracture, bone density must be augmented so that the supportive function of the skeleton can be restored. Almost 50 years after the recognition of post menopausal osteoporosis as a clinical entity, not one of the many treatments that have been used has been demonstrated to be efficacious in reducing subsequent fracture risk. My purpose is not to recite this chronicle of disappointment, but to account for it in terms of bone biology, to consider some possible exceptions, and to reiterate the importance of preventing damage to the skeleton rather than belatedly attempting its repair.
Edge orientations of mechanically exfoliated anisotropic two-dimensional materials
NASA Astrophysics Data System (ADS)
Yang, Juntan; Wang, Yi; Li, Yinfeng; Gao, Huajian; Chai, Yang; Yao, Haimin
2018-03-01
Mechanical exfoliation is an approach widely applied to prepare high-quality two-dimensional (2D) materials for investigating their intrinsic physical properties. During mechanical exfoliation, in-plane cleavage results in new edges whose orientations play an important role in determining the properties of the as-exfoliated 2D materials especially those with high anisotropy. Here, we systematically investigate the factors affecting the edge orientation of 2D materials obtained by mechanical exfoliation. Our theoretical study manifests that the fractured direction during mechanical exfoliation is determined synergistically by the tearing direction and material anisotropy of fracture energy. For a specific 2D material, our theory enables us to predict the possible edge orientations of the exfoliated flakes as well as their occurring probabilities. The theoretical prediction is experimentally verified by examining the inter-edge angles of the exfoliated flakes of four typical 2D materials including graphene, MoS2, PtS2, and black phosphorus. This work not only sheds light on the mechanics of exfoliation of the 2D materials but also provides a new approach to deriving information of edge orientations of mechanically exfoliated 2D materials by data mining of their macroscopic geometric features.
Shatter cones at the Keurusselkä impact structure and their relation to local jointing
NASA Astrophysics Data System (ADS)
Hasch, Maximilian; Reimold, Wolf Uwe; Raschke, Ulli; Zaag, Patrice Tristan
2016-08-01
Shatter cones are the only distinct meso- to macroscopic recognition criterion for impact structures, yet not all is known about their formation. The Keurusselkä impact structure, Finland, is interesting in that it presents a multitude of well-exposed shatter cones in medium- to coarse-grained granitoids. The allegedly 27 km wide Keurusselkä impact structure was formed about 1150 Ma ago in rocks of the Central Finland Granitoid Complex. Special attention was paid in this work to possible relationships between shatter cones and local, as well as regionally occurring, fracture or joint systems. A possible shatter cone find outside the previously suggested edge of the structure could mean that the Keurusselkä impact structure is larger than previously thought. The spacing between joints/fractures from regional joint systems was influenced by the impact, but impact-induced fractures strongly follow the regional joint orientation trends. There is a distinct relationship between shatter cones and joints: shatter cones occur on and against joint surfaces of varied orientations and belonging to the regional orientation trends. Planar fractures (PF) and planar deformation features (PDF) were found in three shatter cone samples from the central-most part of the impact structure, whereas other country rock samples from the same level of exposure but further from the assumed center lack shock deformation features. PDF occurrence is enhanced within 5 mm of shatter cone surfaces, which is interpreted to suggest that shock wave reverberation at preimpact joints could be responsible for this local enhancement of shock deformation. Some shatter cone surfaces are coated with a quasi-opaque material which is also found in conspicuous veinlets that branch off from shatter cone surfaces and resemble pseudotachylitic breccia veins. The vein-filling is composed of two mineral phases, one of which could be identified as a montmorillonitic phyllosilicate. The second phase could not be identified yet. The original composition of the fill could not be determined. Further work is required on this material. Observed joints and fractures were discussed against findings from Barringer impact crater. They show that impact-induced joints in the basement rock do not follow impact-specific orientations (such as radial, conical, or concentric).
Skedros, John G; Knight, Alex N; Pitts, Todd C; O'Rourke, Peter J; Burkhead, Wayne Z
2016-02-01
Methods are needed for identifying poorer quality cadaver proximal humeri to ensure that they are not disproportionately segregated into experimental groups for fracture studies. We hypothesized that measurements made from radiographs of cadaveric proximal humeri are stronger predictors of fracture strength than chronological age or bone density values derived from dual-energy x-ray absorptiometry (DXA) scans. Thirty-three proximal humeri (range: 39-78 years) were analyzed for: (1) bone mineral density (BMD, g/cm(2)) using DXA, (2) bulk density (g/cm(3)) using DXA and volume displacement, (3) regional bone density in millimeters of aluminum (mmAl) using radiographs, and (4) regional mean (medial+lateral) cortical thickness and cortical index (CI) using radiographs. The bones were then fractured simulating a fall. Strongest correlations with ultimate fracture load (UFL) were: mean cortical thickness at two diaphyseal locations (r = 0.71; p < 0.001), and mean mmAl in the humeral head (r = 0.70; p < 0.001). Weaker correlations were found between UFL and DXA-BMD (r = 0.60), bulk density (r = 0.43), CI (r = 0.61), and age (r = -0.65) (p values <0.01). Analyses between UFL and the product of any two characteristics showed six combinations with r-values >0.80, but none included DXA-derived density, CI, or age. Radiographic morphometric and densitometric measurements from radiographs are therefore stronger predictors of UFL than age, CI, or DXA-derived density measurements. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems
Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...
2017-09-05
Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less
Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia
Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less
Osteoporosis and skeletal fractures in chronic liver disease.
Diamond, T; Stiel, D; Lunzer, M; Wilkinson, M; Roche, J; Posen, S
1990-01-01
In order to determine the prevalence and severity of hepatic osteodystrophy by non-invasive means we compared 115 consecutive ambulant patients with histologically proven chronic liver disease to 113 age and sex matched control subjects. Methods used included the assessment of fracture prevalence rates, spinal radiography, and measurements of bone mineral density in the spine and the forearm. Spinal and peripheral fractures were more prevalent in the patients than in the control subjects (p less than 0.03 and p less than 0.01 respectively). The type of the underlying liver disease did not significantly affect the fracture prevalence rates, but alcoholic patients sustained more peripheral fractures than patients with other hepatic disorders (p less than 0.05). The bone mineral densities of the spines and the forearms were significantly reduced in male patients of all age groups and in female patients aged 60 years or more (p less than 0.001 for men and p less than 0.01 for women for both measurements). The prevalence rates of spinal and forearm osteoporosis were twice as high among patients with liver disease than in control subjects regardless of the definitions used. The presence of cirrhosis and hypogonadism were major risk factors for development of both spinal (Beta coef = 0.190 and 0.176; SE = 0.079 and 0.086 respectively) and forearm osteoporosis (Beta coef = 0.20 and 0.29; SE = 0.073 and 0.80 respectively). Spinal bone density was the predominant determinant of spinal fractures (Beta coef = -0.007; SE = 0.001), while hypogonadism (Beta coef = 0.363; SE = 0.075) and cirrhosis (Beta coef = 0.185; SE = 0.068) were the major predictors of peripheral fractures. The concentrations of serum calcium and serum vitamin D metabolites and the use of corticosteroids were apparently without effect on the prevalence of skeletal fractures or bone density. PMID:2318434
Enhanced Geothermal Systems (EGS) - Where Are We Now
NASA Astrophysics Data System (ADS)
Wyborn, D.
2011-12-01
There were seven major EGS projects in which reservoir circulation was achieved prior to the Geodynamics Limited project in the Innamincka granite in northern South Australia which commenced in 2002. Six other projects did not achieve significant circulation. Importantly all but one of these projects were located in granitic bodies in which it is assumed that families of existing natural fractures are present. Evidence from all these EGS projects indicated that: 1 Stimulation in granite rock resulting from water injection with no added chemicals enhanced rock fracture permeability by 2-3 orders of magnitude. 2 The increased permeability resulted from increased fracture porosity associated with slippage on existing natural fractures during the stimulation. 3The extent of the resulting reservoir could be accurately mapped by acoustic (micro-seismic) monitoring of the fracture slippages. 4 The orientation of the reservoir is strongly dependent on the relative directions of the three principle rock stress axes. 5 The stimulation pumping pressures required were 50-75% of the minimum principle stress for the depth of reservoir creation in accord with geomechanical theory, and are therefore lower than those required to open tensile fractures (fracking). 6 The size of the resulting stimulated reservoir is proportional to the volume of water injected. New space created by the increase in fracture porosity associated with the micro-seismic events is taken up by the injected water. 7 Most projects to 2002 were carried out in strike-slip and normal faulting stress regimes with minimum stress direction horizontal and the resulting reservoirs were oriented close to vertically. 8 Volcanic activity can only occur in strike-slip and normal faulting stress regimes so EGS reservoirs in volcanic areas will be oriented close to vertically. 9 The Fjallbacka project in Sweden was the only project carried out in an overthrust stress regime (minimum stress direction vertical) and the reservoir was oriented horizontally. It is with these understandings that the Geodynamics field program commenced near Innamincka in 2002 where high temperature granite basement had been intersected at 3.6 km depth by petroleum exploration wells. Gravity and heat flow models indicated the basement granite to be 10 km thick and that most of the heat flow (> 100 mW/m2) was derived from elevated thorium and uranium levels in the granite. The stress environment was thought to be overthrust, but this was not certain.The results of the Geodynamics field program consists of drilling 5 wells to the granite, stimulation in three of those wells, flow testing in two of those wells and circulation between two of those wells. There are now four main barriers to economic deployment of EGS throughout the world for electricity generation. One is the cost of drilling and new technologies need to be developed to increase drilling ROP in high strength rocks. The other three relate to reservoir development and increased flow rate. These are (i) new geophysical tools to locate large fractures remotely (ii) deployment of temporary fracture sealing agents to allow enhancement in more than one fracture, and (iii) decreased flow impedance in a given fracture at the production well. New projects at different locations around the world are required to test ways of overcoming these barriers.
An integrated approach to characterization of fractured reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta-Gupta, A.; Majer, E.; Vasco, D.
1995-12-31
This paper summarizes an integrated hydrologic and seismic characterization of a fractured limestone formation at the Conoco Borehole Test Facility (CBTF) in Kay County, Oklahoma. Transient response from pressure interference tests were first inverted in order to identify location and orientation of dominant fractures at the CBTF. Subsequently, high resolution (1000 to 10000 Hz) cross-well and single-well seismic surveys were conducted to verify the preferential slow paths indicated by hydrologic analysis. Seismic surveys were conducted before and after an air injection in order to increase the visibility of the fracture zone to seismic imaging. Both Seismic and hydrologic analysis weremore » found to yield consistent results in detecting the location of a major fracture zone.« less
Lin, Liqiang; Zeng, Xiaowei
2015-01-01
The focus of this work is to investigate spall fracture in polycrystalline materials under high-speed impact loading by using an atomistic-based interfacial zone model. We illustrate that for polycrystalline materials, increases in the potential energy ratio between grain boundaries and grains could cause a fracture transition from intergranular to transgranular mode. We also found out that the spall strength increases when there is a fracture transition from intergranular to transgranular. In addition, analysis of grain size, crystal lattice orientation and impact speed reveals that the spall strength increases as grain size or impact speed increases. PMID:26435546
Axial and appendicular bone density predict fractures in older women
NASA Technical Reports Server (NTRS)
Black, D. M.; Cummings, S. R.; Genant, H. K.; Nevitt, M. C.; Palermo, L.; Browner, W.
1992-01-01
To determine whether measurement of hip and spine bone mass by dual-energy x-ray absorptiometry (DEXA) predicts fractures in women and to compare the predictive value of DEXA with that of single-photon absorptiometry (SPA) of appendicular sites, we prospectively studied 8134 nonblack women age 65 years and older who had both DEXA and SPA measurements of bone mass. A total of 208 nonspine fractures, including 37 wrist fractures, occurred during the follow-up period, which averaged 0.7 years. The risk of fracture was inversely related to bone density at all measurement sites. After adjusting for age, the relative risks per decrease of 1 standard deviation in bone density for the occurrence of any fracture was 1.40 for measurement at the proximal femur (95% confidence interval 1.20-1.63) and 1.35 (1.15-1.58) for measurement at the spine. Results were similar for all regions of the proximal femur as well as SPA measurements at the calcaneus, distal radius, and proximal radius. None of these measurements was a significantly better predictor of fractures than the others. Furthermore, measurement of the distal radius was not a better predictor of wrist fracture (relative risk 1.64: 95% CI 1.13-2.37) than other sites, such as the lumbar spine (RR 1.56; CI 1.07-2.26), the femoral neck (RR 1.65; CI 1.12-2.41), or the calcaneus (RR 1.83; CI 1.26-2.64). We conclude that the inverse relationship between bone mass and risk of fracture in older women is similar for absorptiometric measurements made at the hip, spine, and appendicular sites.
Bone density of the radius, spine, and proximal femur in osteoporosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazess, R.B.; Barden, H.; Ettinger, M.
1988-02-01
Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry (/sup 153/Gd), whereas the radius shaft measurement used single-photon absorptiometry (/sup 125/I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory;more » their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture.« less
Hollaender, R; Hartl, F; Krieg, M-A; Tyndall, A; Geuckel, C; Buitrago-Tellez, C; Manghani, M; Kraenzlin, M; Theiler, R; Hans, D
2009-03-01
Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.
Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes.
Ackerman, Kathryn E; Cano Sokoloff, Natalia; DE Nardo Maffazioli, Giovana; Clarke, Hannah M; Lee, Hang; Misra, Madhusmita
2015-08-01
This study was aimed to compare fracture prevalence in oligoamenorrheic athletes (AA), eumenorrheic athletes (EA), and nonathletes (NA) and determine relationships with bone density, structure, and strength estimates. One hundred seventy-five females (100 AA, 35 EA, and 40 NA) 14-25 yr old were studied. Lifetime fracture history was obtained through participant interviews. Areal bone mineral density (BMD) was assessed by DXA at the spine, hip, and whole body (WB). Bone structure was assessed by HRpQCT at the radius and tibia, and strength by finite element analysis. AA, EA, and NA did not differ in age, sexual maturity, or height. AA had lower BMI, and older menarchal age than EA and NA (P ≤ 0.001). Bone mineral density Z-scores were lower in AA versus EA at the total hip, femoral neck, spine, and whole body (P ≤ 0.001). Lifetime fracture risk was higher in AA than EA and NA (47%, 25.7%, 12.5%; P ≤ 0.001), largely driven by stress fractures in AA versus EA and NA (32% vs 5.9% vs 0%). In AA, those who fractured had lower lumbar and WB BMD Z-scores, volumetric BMD (vBMD) of outer trabecular region in radius and tibia, and trabecular thickness of the radius (P ≤ 0.05). In AA, those who had two or more stress fractures had lower lumbar and WB BMD Z-scores, total cross-sectional area, trabecular vBMD, stiffness, and failure load at radius; and lower stiffness and failure load at tibia versus those with fewer than two stress fractures (P ≤ 0.05). Weight-bearing athletic activity increases BMD but may increase stress fracture risk in those with menstrual dysfunction. Bone microarchitecture and strength differences are more pronounced in AA with multiple stress fractures. This is the first study to examine fractures in relation to bone structure in adolescent female athletes.
Davey, Trish; Lanham-New, Susan A; Shaw, Anneliese M; Cobley, Rosalyn; Allsopp, Adrian J; Hajjawi, Mark O R; Arnett, Timothy R; Taylor, Pat; Cooper, Cyrus; Fallowfield, Joanne L
2015-04-01
Stress fracture is a common overuse injury within military training, resulting in significant economic losses to the military worldwide. Studies to date have failed to fully identify the bone density and bone structural differences between stress fractured personnel and controls due to inadequate adjustment for key confounding factors; namely age, body size and physical fitness; and poor sample size. The aim of this study was to investigate bone differences between male Royal Marine recruits who suffered a stress fracture during the 32 weeks of training and uninjured control recruits, matched for age, body weight, height and aerobic fitness. A total of 1090 recruits were followed through training and 78 recruits suffered at least one stress fracture. Bone mineral density (BMD) was measured at the lumbar spine (LS), femoral neck (FN) and whole body (WB) using Dual X-ray Absorptiometry in 62 matched pairs; tibial bone parameters were measured using peripheral Quantitative Computer Tomography in 51 matched pairs. Serum C-terminal peptide concentration was measured as a marker of bone resorption at baseline, week-15 and week-32. ANCOVA was used to determine differences between stress fractured recruits and controls. BMD at the LS, WB and FN sites was consistently lower in the stress fracture group (P<0.001). Structural differences between the stress fracture recruits and controls were evident in all slices of the tibia, with the most prominent differences seen at the 38% tibial slice. There was a negative correlation between the bone cross-sectional area and BMD at the 38% tibial slice. There was no difference in serum CTx concentration between stress fracture recruits and matched controls at any stage of training. These results show evidence of fundamental differences in bone mass and structure in stress fracture recruits, and provide useful data on bone risk factor profiles for stress fracture within a healthy military population. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Varga, Peter; Grünwald, Leonard; Windolf, Markus
2018-02-22
Fixation of osteoporotic proximal humerus fractures has remained challenging, but may be improved by careful pre-operative planning. The aim of this study was to investigate how well the failure of locking plate fixation of osteoporotic proximal humerus fractures can be predicted by bone density measures assessed with currently available clinical imaging (realistic case) and a higher resolution and quality modality (theoretical best-case). Various density measures were correlated to experimentally assessed number of cycles to construct failure of plated unstable low-density proximal humerus fractures (N = 18). The influence of density evaluation technique was investigated by comparing local (peri-implant) versus global evaluation regions; HR-pQCT-based versus clinical QCT-based image data; ipsilateral versus contralateral side; and bone mineral content (BMC) versus bone mineral density (BMD). All investigated density measures were significantly correlated with the experimental cycles to failure. The best performing clinically feasible parameter was the QCT-based BMC of the contralateral articular cap region, providing significantly better correlation (R 2 = 0.53) compared to a previously proposed clinical density measure (R 2 = 0.30). BMC had consistently, but not significantly stronger correlations with failure than BMD. The overall best results were obtained with the ipsilateral HR-pQCT-based local BMC (R 2 = 0.74) that may be used for implant optimization. Strong correlations were found between the corresponding density measures of the two CT image sources, as well as between the two sides. Future studies should investigate if BMC of the contralateral articular cap region could provide improved prediction of clinical fixation failure compared to previously proposed measures. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Gebauer, Matthias; Stark, Olaf; Vettorazzi, Eik; Grifka, Joachim; Püschel, Klaus; Amling, Michael; Beckmann, Johannes
2014-01-01
The validity of dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) measurements as predictors of pertrochanteric and femoral neck fracture loads was compared in an experimental simulation of a fall on the greater trochanter. 65 proximal femora were harvested from patients at autopsy. All specimens were scanned with use of DXA for areal bone mineral density and pQCT for volumetric densities at selected sites of the proximal femur. A three-point bending test simulating a side-impact was performed to determine fracture load and resulted in 16 femoral neck and 49 pertrochanteric fractures. Regression analysis revealed that DXA BMD trochanter was the best variable at predicting fracture load of pertrochanteric fractures with an adjusted R(2) of 0.824 (p < 0.0001). There was no correlation between densitometric parameters and the fracture load of femoral neck fractures. A significant correlation further was found between body weight, height, femoral head diameter, and neck length on the one side and fracture load on the other side, irrespective of the fracture type. Clinically, the DXA BMD trochanter should be favored and integrated routinely as well as biometric and geometric parameters, particularly in elderly people with known osteoporosis at risk for falls. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Influence of natural fractures on hydraulic fracture propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teufel, L.W.; Warpinski, N.R.
Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principal in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found and to provide guidelines for predicting when this complex fracturing will occur.« less
Influence of natural fractures on hydraulic fracture propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teufel, L.W.; Warpinski, N.R.
Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principle in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found to an provide guidelines for predicting when this complex fracturing occurs.« less
Indentation damage and mechanical properties of human enamel and dentin.
Xu, H H; Smith, D T; Jahanmir, S; Romberg, E; Kelly, J R; Thompson, V P; Rekow, E D
1998-03-01
Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.
Kado, Deborah M; Huang, Mei-Hua; Karlamangla, Arun S; Cawthon, Peggy; Katzman, Wendy; Hillier, Teresa A; Ensrud, Kristine; Cummings, Steven R
2013-01-01
Age-related hyperkyphosis is thought to be a result of underlying vertebral fractures, but studies suggest that among the most hyperkyphotic women, only one in three have underlying radiographic vertebral fractures. Although commonly observed, there is no widely accepted definition of hyperkyphosis in older persons, and other than vertebral fracture, no major causes have been identified. To identify important correlates of kyphosis and risk factors for its progression over time, we conducted a 15-year retrospective cohort study of 1196 women, aged 65 years and older at baseline (1986 to 1988), from four communities across the United States: Baltimore County, MD; Minneapolis, MN; Portland, OR; and the Monongahela Valley, PA. Cobb angle kyphosis was measured from radiographs obtained at baseline and an average of 3.7 and 15 years later. Repeated measures, mixed effects analyses were performed. At baseline, the mean kyphosis angle was 44.7 degrees (SE = 0.4, SD = 11.9) and significant correlates included a family history of hyperkyphosis, prevalent vertebral fracture, low bone mineral density, greater body weight, degenerative disc disease, and smoking. Over an average of 15 years, the mean increase in kyphosis was 7.1 degrees (SE = 0.25). Independent determinants of greater kyphosis progression were prevalent and incident vertebral fractures, low bone mineral density and concurrent bone density loss, low body weight, and concurrent weight loss. Thus, age-related kyphosis progression may be best prevented by slowing bone density loss and avoiding weight loss. Copyright © 2013 American Society for Bone and Mineral Research.
Kado, DM; Huang, MH; Karlamangla, AS; Cawthon, P; Katzman, W; Hillier, TA; Ensrud, K; Cummings, SR
2012-01-01
Age-related hyperkyphosis is thought to be a result of underlying vertebral fractures, but studies suggest that among the most hyperkyphotic women, only one in three have underlying radiographic vertebral fractures. Although commonly observed, there is no widely accepted definition of hyperkyphosis in older persons, and other than vertebral fracture, no major causes have been identified. To identify important correlates of kyphosis and risk factors for its progression over time, we conducted a 15 year retrospective cohort study of 1,196 women, aged 65 years and older at baseline (1986–88), from four communities across the United States: Baltimore County, MD; Minneapolis, MN, Portland, Oregon, and the Monongahela Valley, PA. Cobb angle kyphosis was measured from radiographs obtained at baseline and an average of 3.7 and 15 years later. Repeated measures, mixed effects analyses were performed. At baseline, the mean kyphosis angle was 44.7 degrees (standard error 0.4, standard deviation 11.9) and significant correlates included a family history of hyperkyphosis, prevalent vertebral fracture, low bone mineral density, greater body weight, degenerative disc disease, and smoking. Over an average of 15 years, the mean increase in kyphosis was 7.1 degrees (standard error 0.25). Independent determinants of greater kyphosis progression were prevalent and incident vertebral fractures, low bone mineral density and concurrent bone density loss, low body weight, and concurrent weight loss. Thus, age-related kyphosis progression may be best prevented by slowing bone density loss and avoiding weight loss. PMID:22865329
Denosumab for the Treatment of Osteoporosis
Zaheer, Sarah; LeBoff, Meryl; Lewiecki, E. Michael
2015-01-01
Introduction Low trauma fractures due to osteoporosis are a major health concern worldwide. Despite the availability of many therapeutic compounds to reduce fracture risk, osteoporosis remains undertreated and the burden of osteoporotic fractures remains high. Denosumab is a novel agent that acts to reduce bone turnover, improve bone mineral density, and reduce fracture risk, offering a favorable efficacy and safety profile. Areas covered This review covers the pharmacology and major clinical trials with extension/post-marketing follow-up, including trials for all FDA-approved indications of denosumab to date. Expert Opinion Denosumab is an efficacious and safe osteoporosis treatment option, with current data up to 8 years of continued use showing continued improvement in bone density with sustained fracture risk reduction. Safety profiles overall are similar to placebo, with no new safety concerns in extension trials, though a theoretical increased risk of infection exists with RANKL inhibition. Future considerations include safety of prolonged treatment beyond 8 years, and efficacy/fracture risk after discontinuation or with non-adherence, given the characteristic pharmacodynamic profile of denosumab. PMID:25614274
P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks
NASA Astrophysics Data System (ADS)
Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions even at normal incidence. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
Interlaminar fracture of random short-fiber SMC composite
NASA Technical Reports Server (NTRS)
Wang, S. S.; Suemasu, H.; Zahlan, N. M.
1984-01-01
In the experimental phase of the present study of the interlaminar fracture behavior of a randomly oriented short fiber sheet molding compound (SMC) composite, the double cantilever beam fracture test is used to evaluate the mode I interlaminar fracture toughness of different composite thicknesses. In the analytical phase of this work, a geometrically nonlinear analysis is introduced in order to account for large deflections and nonlinear load deflection curves in the evaluation of interlaminar fracture toughness. For the SMC-R50 material studied, interlaminar toughness is an order of magnitude higher than that of unreinforced neat resin, due to unusual damage mechanisms ahead of the crack tip, together with significant fiber bridging across crack surfaces. Composite thickness effects on interlaminar fracture are noted to be appreciable, and a detailed discussion is given on the influence of SMC microstructure.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.; Soto-Pinto, C. A.
2014-12-01
Over the last decades strong efforts have been made to apply new spaceborn technologies to the study of volcanic activity. Recent studies have shown that the high resolution satellite images can be very useful for tracking of evolution of the stress patterns related to the volcanic activity. It can be done by observing the changes in density and orientation of lineaments extracted from satellite images. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments which are usually determined by land-based surveys, nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. For this study the lineaments were detected using the ADALGEO software, based on the Hough transform (Soto-Pinto et al, 2013). A temporal sequence of the Landsat 8 multispectral images of the Lascar volcano, located in the North of Chile, was used to study changes in lineament configuration during 2013-2014. It was found that, the number and orientation of lineaments is affected by microseimicity. In particular, it was found that often the density of lineaments decreases with the intensity of microseisms, which could be related to the volcano inflation.
Femur Neck Fracture in a Young Marfan Syndrome Patient.
Kwon, Yong-Uk; Kong, Gyu-Min; Park, Jun-Ho
2016-12-01
Marfan syndrome is an autosomal dominant and could decrease bone mineral density. So patients with Marfan syndrome could vulnerable to trauma in old ages. We present the first report, to the best of our knowledge, of a rare fracture of the femoral neck with a minor traumatic history in a juvenile Marfan syndrome patient whose physis is still open. Although the patient is young, her bone mineral density was low and the geometry of femur is changed like old ages. The femur neck fracture in children is very rare and only caused by high energy trauma, we concluded that the Marfan syndrome makes the bone weaker in young age and preventative medications to avoid fractures in younger Marfan syndrome patients are necessary in early ages.
NASA Astrophysics Data System (ADS)
Forbes Inskip, Nathaniel; Meredith, Philip; Gudmundsson, Agust
2016-04-01
While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through layered sedimentary rocks with different mechanical and elastic properties remains poorly constrained. Yet this is a key issue controlling the propagation of both natural and anthropogenic hydraulic fractures in layered sequences. Here we report measurements of the contrasting mechanical and elastic properties of the Lower Lias at Nash Point, South Wales, which comprises an interbedded sequence of shale and limestone layers, and how those properties may influence fracture propagation. Elastic properties of both materials have been characterised via ultrasonic wave velocity measurements as a function of azimuth on samples cored both normal and parallel to bedding. The shale is highly anisotropic, with P-wave velocities varying from 2231 to 3890 m s-1, giving an anisotropy of ~55%. By contrast, the limestone is essentially isotropic, with a mean P-wave velocity of 5828 m s-1 and an anisotropy of ~2%. The dynamic Young's modulus of the shale, calculated from P- and S-wave velocity data, is also anisotropic with a value of 36 GPa parallel to bedding and 12 GPa normal to bedding. The modulus of the limestone is again isotropic with a value of 80 GPa. It follows that for a vertical fracture propagating (i.e. normal to bedding) the modulus contrast is 6.6. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. There are three principal mechanisms by which a fracture may deflect across or along an interface, namely: Cook-Gordon debonding, stress barrier, and elastic mismatch. Preliminary numerical modelling results (using a Finite Element Modelling software) of induced fractures at Nash Point suggest that all three are important. The results demonstrate a rotation of the maximum principal compressive stress across an interface but also a confinement of tensile stress within the host layer. Mechanical properties have been characterised by indirect measurement of the tensile strength using the Brazil-Disk technique. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Values for the shale again showed a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but with much lower values in the Short-Transverse (bedding parallel) orientation. The tensile strength of the limestone is considerably higher than that of the shale and exhibits no significant anisotropy. Current work is underway to characterise the fracture propagation properties by measuring the fracture toughness and fracture ductility of both rocks using a combination of the Semi-Circular Bend and Short-Rod techniques.
NASA Astrophysics Data System (ADS)
Rokhforouz, M. R.; Akhlaghi Amiri, H. A.
2018-03-01
In this work, coupled Cahn-Hilliard phase field and Navier-Stokes equations were solved using finite element method to address the effects of micro-fracture and its characterizations on water-oil displacements in a heterogeneous porous medium. Sensitivity studies at a wide range of viscosity ratios (M) and capillary numbers (Ca), and the resultant log Ca-log M stability phase diagram, revealed that in both media, with/without fracture, the three regimes of viscous fingering, capillary fingering and stable displacement similarly occur. However, presence of the fracture caused water channeling phenomenon which resulted in reduction of the number of active fingers and hence the final oil recovery factor. At high Ca (especially in the stable regime, with log Ca ≥ -2.5 and log M ≥ 0), recovery factor for the fractured medium was relatively identical with the non-fractured one. At log M ≥ 0, the fracture was fully swept, but flow instabilities were observed inside the fracture at lower M values, especially for log Ca > -4.6. In the case of the fractured medium at log Ca = -4.6 and log M = 0 (capillary dominant flow), it is observed that the primary breakthrough took place by a finger progressed through the matrix, not those channeled through the fracture. Geometrical properties of the fracture, including length, aperture and orientation, highly affected both displacement profile and efficiency. The fracture length inversely influenced the oil recovery factor. It was observed that there is a critical fracture width (almost half of the medium average pore diameter) at which the recovery factor of the medium during displacement is minimum, compared to the media having thinner and thicker fractures. Minor channeling effect in the media with thinner fracture and larger fracture swept volume as well as high fracture/matrix cross flow in the media with thicker fracture were detected as the main cause of this non-monotonic behavior. In the models with thick fractures (with the thickness higher than the average pore diameter), considerable trapped oil volumes were observed inside the fracture at low M values. The fracture orientation had the most impressive effect on oil recovery compared to the other studied parameters; where the oil recovery factor incremented more than 20% as the fracture rotated 90° from flow direction. Due to the dominant effect of the channeling phenomenon, the change in the medium wettability from slightly oil-wet to slightly water-wet, did not considerably affect the displacement profile in the fractured medium. However, oil recovery factor increased as the medium became more water-wet. The fracture area was fully swept by the injected water in the oil-wet and neutral-wet media. However, flow instabilities were observed inside the fracture of the water-wet medium due to counter-current imbibition between fracture/matrix. Micro-scale mechanisms of pore doublet effect, interface coalesce, snap-off and reverse movements were captured during the studied unstable displacements.
Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Jenkins, Andrew
Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the stimulation treatment plan.
An integer programming model for distal humerus fracture fixation planning.
Maratt, Joseph D; Peaks, Ya-Sin A; Doro, Lisa Case; Karunakar, Madhav A; Hughes, Richard E
2008-05-01
To demonstrate the feasibility of an integer programming model to assist in pre-operative planning for open reduction and internal fixation of a distal humerus fracture. We describe an integer programming model based on the objective of maximizing the reward for screws placed while satisfying the requirements for sound internal fixation. The model maximizes the number of bicortical screws placed while avoiding screw collision and favoring screws of greater length that cross multiple fracture planes. The model was tested on three types of total articular fractures of the distal humerus. Solutions were generated using 5, 9, 21 and 33 possible screw orientations per hole. Solutions generated using 33 possible screw orientations per hole and five screw lengths resulted in the most clinically relevant fixation plan and required the calculation of 1,191,975 pairs of screws that resulted in collision. At this level of complexity, the pre-processor took 104 seconds to generate the constraints for the solver, and a solution was generated in under one minute in all three cases. Despite the large size of this problem, it can be solved in a reasonable amount of time, making use of the model practical in pre-surgical planning.
NASA Astrophysics Data System (ADS)
Viegas, G. F.; Urbancic, T.; Baig, A. M.
2014-12-01
In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285
Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong
2016-06-21
X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.
Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn
2012-01-01
This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.
Speckle interferometry applied to asteroids and other solar system objects
NASA Technical Reports Server (NTRS)
Drummond, J. D.; Hege, E. K.
1986-01-01
Speckle interferometry is a high angular resolution technique that allows study of resolved asteroids. By following the changing size, shape, and orientation of minor planets, and with a few general assumptions (e.g., geometric scattering, triaxial ellipsoid figures, no albedo features), it is possible to directly measure an asteroid's true dimensions and the direction of its spin axis in one or two nights. A particular subset of triaxial ellipsoid figures are equilibrium shapes, and would imply that some asteroids are thoroughly fractured. Such shapes if they exist among the asteroids would allow a determination of bulk density since there is a unique relation among spin period, size, shape, and density. The discovery of even a single rubble pile, (just as the finding of even one binary asteroid by speckle interferometric techniques) would drastically alter the notion of asteroids as small solid planets. The Pluto/Charon system was studied to aid in improving the orbital elements necessary to predict the eclipse/occultation season currently in progress. Four asteroids were reduced to their size, shape, and pole direction: 433 Eros, 532 Herculina, 511 Davida, and 2 Pallas.
NASA Astrophysics Data System (ADS)
Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter
2010-10-01
Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.
NASA Astrophysics Data System (ADS)
Mount, Christopher P.; Titus, Timothy N.
2015-07-01
Small-scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct end-members across the NPSC: (1) Snow deposits may anneal to form an overlying slab layer that fractures. These low-density deposits maintain relatively constant densities over springtime. (2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high-density deposits dramatically increase in density over time. The end-members appear to be correlated with latitude.
Mount, Christopher P.; Titus, Timothy N.
2015-01-01
Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.
Automatically Generated Vegetation Density Maps with LiDAR Survey for Orienteering Purpose
NASA Astrophysics Data System (ADS)
Petrovič, Dušan
2018-05-01
The focus of our research was to automatically generate the most adequate vegetation density maps for orienteering purpose. Application Karttapullatuin was used for automated generation of vegetation density maps, which requires LiDAR data to process an automatically generated map. A part of the orienteering map in the area of Kazlje-Tomaj was used to compare the graphical display of vegetation density. With different settings of parameters in the Karttapullautin application we changed the way how vegetation density of automatically generated map was presented, and tried to match it as much as possible with the orienteering map of Kazlje-Tomaj. Comparing more created maps of vegetation density the most suitable parameter settings to automatically generate maps on other areas were proposed, too.
2013-01-01
Background Currently it is uncertain how to define osteoporosis and who to treat after a hip fracture. There is little to support the universal treatment of all such patients but how to select those most in need of treatment is not clear. In this study we have compared cortical and trabecular bone status between patients with spinal fractures and those with hip fracture with or without spinal fracture with the aim to begin to identify, by a simple clinical method (spine x-ray), a group of hip fracture patients likely to be more responsive to treatment with current antiresorptive agents. Methods Comparison of convenience samples of three groups of 50 patients, one with spinal fractures, one with a hip fracture, and one with both. Measurements consist of bone mineral density at the lumbar spine, at the four standard hip sites, number, distribution and severity of spinal fractures by the method of Genant, cortical bone thickness at the infero-medial femoral neck site, femoral neck and axis length and femoral neck width. Results Patients with spinal fractures alone have the most deficient bones at both trabecular and cortical sites: those with hip fracture and no spinal fractures the best at trabecular bone and most cortical bone sites: and those with both hip and spinal fractures intermediate in most measurements. Hip axis length and neck width did not differ between groups. Conclusion The presence of the spinal fracture indicates poor trabecular bone status in hip fracture patients. Hip fracture patients without spinal fractures have a bone mass similar to the reference range for their age and gender. Poor trabecular bone in hip fracture patients may point to a category of patient more likely to benefit from therapy and may be indicated by the presence of spinal fractures. PMID:23432767
Structures Formed in Experimentally Sheared Artificial Fault Gouge: Precise Statistical Measurements
NASA Astrophysics Data System (ADS)
Dilov, T.; Yoshida, S.; Kato, A.; Nakatani, M.; Mochizuki, H.; Otsuki, K.
2004-12-01
The physical parameters governing earthquakes change with the ongoing formation and evolution of structures, formed in the course of a single or multiple earthquakes, within a particular fault zone or in a broad volume containing interacting tectonic faults. Our precise knowledge of these complex phenomena is still elusive. Especially, works considering geometrical evolution of shear structures under controlled conditions are rare. In order to gain some insights we accomplished a set of 12 laboratory experiments using a servo-controlled direct-shear apparatus, under room temperature and without controlling the air humidity. Two fault gouge layers (industrially produced quartz powder, average particle size of 5 μ m, and pre-shear thickness of 1.5, 2.0 and 3.0 mm,) were sandwiched between three granite blocks. The middle block was slid in order to create frictional structures within the simulated gouge. The total imposed shear strain varies between 0.14 and 11.80. The post-shear gouge layer thickness ranges from 0.99-2.11 mm. Each experiment was run under a constant normal stress (varying from 10-44 MPa through the experiments) and at a constant shear velocity (0.07, 0.7 and 7 μ m/s, through the experiments). Later, in cross-sections of solidified by epoxy glue gouge (parallel to the shear direction, normal to the gouge walls,) we quantified the numerous R-shears, according to their density distribution, fracture thickness (measured perpendicularly to the fracture walls), fracture angle and morphology, and fracture length. In gouge views parallel to the sliding blocks, we measured fracture length and along-strike R-shear morphology. Although the latter data are with lower quality, both observational sets provide precise statistical fracture data as well snapshots of evolving 3D structures. We observe shear localization with decreasing gouge layer thickness and with increasing normal stress. The average density of major fractures increases from 2.83 to 3.67 [fracture/cm] for decrease of the post-shear gouge layer thickness. This is at the expense of a considerable decrease of visible more diffusive minor fractures. On the other hand, the fractures formed at lower normal stress are more irregular and show average fracture density of 4.48 [fracture/cm]. The latter decreases down to 3.64 at higher normal stress, as the fracture morphology becomes more regular. The fracture density increases abruptly from zero, after a small total shear strain (0.15-0.50), and later the change is slower or none with the increase of the total shear strain; the fractures are already localized and they accommodate most of the brittle deformation. Also we observe weak polarity in fracture development in accordance to the sliding sense, especially in the subset of fractures starting from the gouge wall and dying out within the gouge layer. More such fractures are developed along the leading part of the sliding blocks. Our results throw new light over the formation and development of fault-related structures and their dependency on the earthquake-governing physical parameters.
NASA Astrophysics Data System (ADS)
Pascal, Christophe; Roberts, David; Gabrielsen, Roy H.
2005-05-01
Fieldwork was conducted in Finnmark, northern Norway, with the purpose of detecting and measuring stress-relief features, induced by quarrying and road works, and to derive from them valuable information on the shallow-crustal stress orientations and magnitudes. Two kinds of stress-relief features were considered in this study. The first consists of drillhole offsets that were found along blasted road-cuts and which were triggered by the sudden rock unloading following the actual blasting. Vertical axial fractures found in the concave remains of boreholes represent the second kind of stress-relief feature. The axial fractures are tension fractures produced by gas overpressure inside the drillhole when the blast occurs. As such, their strike reflects the orientation of the ambient maximum horizontal stress axis. The borehole offsets show mostly reverse-slip displacements to the E-SE and the axial fractures trend NW-SE on average, in agreement with NW-SE compression induced by North Atlantic ridge-push forces. Mechanical considerations of the slip planes offsetting some of the drillholes lead to the conclusion that the magnitude of the maximum horizontal stress at the surface is in the range ˜0.1-˜1 MPa. This range of magnitudes is 1-2 orders less than the horizontal stress magnitudes measured at the surface in other post-glacial environments (e.g. Canada). It is suggested that this difference is related to the marked decline in stress that followed the tremendous post-glacial burst of earthquake activity that affected Fennoscandia but apparently not the Canadian Shield.
Microcomputed tomography and shock microdeformation studies on shatter cones
NASA Astrophysics Data System (ADS)
Zaag, Patrice Tristan; Reimold, Wolf Uwe; Hipsley, Christy Anna
2016-08-01
One of the aspects of impact cratering that are still not fully understood is the formation of shatter cones and related fracturing phenomena. Yet, shatter cones have been applied as an impact-diagnostic criterion for decades without the role of shock waves and target rock defects in their formation having been elucidated ever. We have tested the application of the nondestructive microcomputed tomography (μCT) method to visualize the interior of shatter cones in order to possibly resolve links between fracture patterns and shatter cone surface features (striations and intervening "valleys"). Shatter-coned samples from different impact sites and in different lithologies were investigated for their μCT suitability, with a shatter cone in sandstone from the Serra da Cangalha impact structure (Brazil) remaining as the most promising candidate because of the fracture resolution achieved. To validate the obtained CT data, the scanned specimen was cut into three orthogonal sets of thin sections. Scans with 13 μm resolution were obtained. μCT scans and microscopic analysis unraveled an orientation of subplanar fractures and related fluid inclusion trails, and planar fracture (PF) orientations in the interior of shatter cones. Planar deformation features (PDF) were observed predominantly near the shatter cone surface. Previously undescribed varieties of feather features (FF), in the form of lamellae emanating from curviplanar and curved fractures, as well as an "arrowhead"-like FF development with microlamellae originating from both sides of a PF, were observed. The timing of shatter cone formation was investigated by establishing temporal relations to the generation of various shock microscopic effects. Shatter cones are, thus, generated post- or syn-formation of PF, FF, subplanar fractures, and PDF. The earliest possible time for shatter cone formation is during the late stage of the compressional phase, that is, shock wave passage, of an impact event.
Association between low C-peptide and fragility fractures in postmenopausal women without diabetes.
Ferro, Y; Russo, C; Russo, D; Gazzaruso, C; Coppola, A; Gallotti, P; Zambianchi, V; Fodaro, M; Romeo, S; Galliera, E; Marazzi, M G; Romanelli, M M C; Giannini, S; Pujia, A; Montalcini, T
2017-10-01
C-peptide has been shown to exert several, previously unknown, biological effects. A recent cross-sectional study demonstrated an association between low C-peptide serum levels and low lumbar bone density of postmenopausal women not affected by diabetes. To date, very little research attention has been directed toward the association between C-peptide and osteoporotic fractures. To contribute toward filling this gap, we investigated the association between C-peptide and fractures in postmenopausal women. A cohort of 133 non-diabetic postmenopausal women with and without a history of fractures was evaluated in this cross-sectional investigation. Standardized interviews were performed to gather information on the patients' fracture history. All of the participants underwent a bone mineral density assessment by DXA, radiographs, and a serum C-peptide measurement. Thirty-four women presented fractures. Bivariate analysis revealed an inverse correlation between C-peptide and fractures (r = -0.27, p = 0.002). A significant difference in mean C-peptide levels was also found between women with vs. without fractures (p = 0.01, adjusted for age, BMI and glucose). Logistic regression analysis showed that C-peptide levels, femoral and vertebral BMD were all negatively associated with fracture status (B = -1.097, ES = 0.401, p = 0.006, 95% CI 0.15-0.73; B = -15.6, SE = 4.17, p < 0.001, CI 0.001-0.002; B = -24.8, SE = 5.23, p < 0.001, CI 0001-0.002; respectively). This study confirms an inverse association between serum C-peptide levels and a history of fractures in postmenopausal women without diabetes. These results suggest that C-peptidemay exert an effect on bone mineral density. However, further large-scale studies are needed to corroborate this finding and investigate the potential underlying mechanisms involved.
Hickman, Stephen H.; Healy, John H.; Zoback, Mark D.
1985-01-01
Hydraulic fracturing stress measurements and a borehole televiewer survey were conducted in a 1.6‐km‐deep well at Auburn, New York. This well, which was drilled at the outer margin of the Appalachian Fold and Thrust Belt in the Appalachian Plateau, penetrates approximately 1540 m of lower Paleozoic sedimentary rocks and terminates 60 m into the Precambrian marble basement. Analysis of the hydraulic fracturing tests indicates that the minimum horizontal principal stress increases in a nearly linear fashion from 9.9±0.2 MPa at 593 m to 30.6±0.4 MPa at 1482 m. The magnitude of the maximum horizontal principal stress increases in a less regular fashion from 13.8±1.2 MPa to 49.0±2.0 MPa over the same depth range. The magnitudes of the horizontal principal stresses relative to the calculated overburden stress are somewhat lower than is the norm for this region and are indicative of a strike‐slip faulting regime that, at some depths, is transitional to normal faulting. As expected from the relative aseismicity of central New York State, however, analysis of the magnitudes of the horizontal principal stresses indicates, at least to a depth of 1.5 km, that frictional failure on favorably oriented preexisting fault planes is unlikely. Orientations of the hydraulic fractures at 593 and 919 m indicate that the azimuth of the maximum horizontal principal stress at Auburn is N83°E±15°, in agreement with other stress field indicators for this region. The borehole televiewer log revealed a considerable number of planar features in the Auburn well, the great majority of which are subhorizontal (dips < 5°) and are thought to be bedding plane washouts or drill bit scour marks. In addition, a smaller number of distinct natural fractures were observed on the borehole televiewer log. Of these, the distinct steeply dipping natural fractures in the lower half of the sedimentary section at Auburn tend to strike approximately east‐west, while those in the upper part of the well and in the Precambrian basement exhibit no strong preferred orientation. The origin of this east‐west striking fracture set is uncertain, as it is parallel both to the contemporary direction of maximum horizontal compression and to a late Paleozoic fracture set that has been mapped to the south of Auburn. In addition to these planar features the borehole televiewer log indicates paired dark bands on diametrically opposite sides of the borehole throughout the Auburn well. Processing of the borehole televiewer data in the time domain revealed these features to be irregular depressions in the borehole wall. As these depressions were consistently oriented in a direction at right angles to the direction of maximum horizontal compression, we interpret them to be the result of stress‐induced spalling of the borehole wall (breakouts).
Hey, Hwee Weng Dennis; Hwee Weng, Dennis Hey; Tan, Jun Hao; Jun, Hao Tan; Tan, Chuen Seng; Chuen, Seng Tan; Tan, Hsi Ming Bryan; Ming, Bryan Tan Hsi; Lau, Puang Huh Bernard; Huh, Bernard Lau Puang; Hee, Hwan Tak; Hwan, Tak Hee
2015-12-01
A case-control study. In this study, we investigated the correlation between level-specific preoperative bone mineral density and subsequent vertebral fractures. We also identified factors associated with subsequent vertebral fractures. Complications of cement augmentation of the spine include subsequent vertebral fractures, leading to unnecessary morbidity and more treatment. Ability to predict at-risk vertebra will help guide management. We studied all patients with osteoporotic compression fractures who underwent cement augmentation in a single institution from November 2001 to December 2010 by a single surgeon. Association between level-specific bone mineral density T-scores and subsequent fractures was assessed. Multivariable analysis was performed to identify significant factors associated with subsequent vertebral fractures. 93 patients followed up for a mean duration of 25.1 months (12-96) had a mean age of 76.8 years (47-99). Vertebroplasty was performed in 58 patients (62.4%) on 68 levels and kyphoplasty in 35 patients (37.6%) on 44 levels. Refracture was seen in 16 patients (17.2%). The time to subsequent fracture post cement augmentation was 20.5 months (2-90). For refracture cases, 43.8% (7/16) fractured in the adjacent vertebrae. Subsequently fractured vertebra had a mean T-score of -2.860 (95% confidence interval -3.268 to -2.452) and nonfractured vertebra had a mean T-score of -2.180 (95% confidence interval -2.373 to -1.986). A T-score of -2.2 or lower is predictive of refracture at that vertebra (P = 0.047). Odds ratio increases with decreasing T-scores from -2.2 or lower to -2.6 or lower. A T-score of -2.6 or lower gives no additional predictive advantage. After multivariable analysis, age (P = 0.049) and loss of preoperative anterior vertebral height (P = 0.017) are associated with refracture. Level-specific T-scores are predictive of subsequent fractures and the odds ratio increases with lower T-scores from -2.2 or less to -2.6 or less. They have a low positive predictive value, but a high negative predictive value for subsequent fractures. Other significant associations with subsequent refractures include age and anterior vertebral height. 4.
NASA Astrophysics Data System (ADS)
Dobson, P. F.; Oldenburg, C. M.; Wu, Y.; Cook, P. J.; Kneafsey, T. J.; Nakagawa, S.; Ulrich, C.; Siler, D. L.; Guglielmi, Y.; Ajo Franklin, J. B.; Rutqvist, J.; Daley, T. M.; Birkholzer, J. T.; Wang, H. F.; Lord, N.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Ingraham, M. D.; Huang, H.; Mattson, E.; Johnson, T. C.; Zhou, J.; Zoback, M. D.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.
2017-12-01
In 2015, we established a field test facility at the Sanford Underground Research Facility (SURF), and in 2016 we carried out in situ hydraulic fracturing experiments to characterize the stress field, understand the effects of crystalline rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) project test site was established in the West Access Drift at the 4850 ft level, 1478 m below ground in phyllite of the Precambrian Poorman Formation. The kISMET team drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume 40 m below the drift invert (floor) at a total depth of 1518 m. Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale ( 1 cm or smaller) changes in the mechanical properties of the rock. Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. Pre-fracturing numerical simulations with a discrete element code were carried out to predict fracture size and magnitude of microseismicity. Field measurements of the stress field were made using hydraulic fracturing, which produced remarkably uniformly oriented fractures suggesting rock fabric did not play a significant role in controlling fracture orientation. Electrical resistivity tomography (ERT) and continuous active seismic source monitoring (CASSM) were deployed in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift were carried out during the generation of a larger fracture (so-called stimulation test). ERT was not able to detect the fracture created, nor did the accelerometers in the drift, but microseismicity was detected for the first (deepest) hydraulic-fracturing stress measurement. Analytical solutions suggest that the fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. Currently kISMET team members are analyzing a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF.
Degnan, James R.; Moore, Richard Bridge; Mack, Thomas J.
2001-01-01
Bedrock-fracture zones near high-yield bedrock wells in southern New Hampshire well fields were located and characterized using seven surface and six borehole geophysical survey methods. Detailed surveys of six sites with various methods provide an opportunity to integrate and compare survey results. Borehole geophysical surveys were conducted at three of the sites to confirm subsurface features. Hydrogeologic settings, including a variety of bedrock and surface geologic materials, were sought to gain an insight into the usefulness of the methods in varied terrains. Results from 15 survey lines, 8 arrays, and 3 boreholes were processed and interpreted from the 6 sites. The surface geophysical methods used provided physical properties of fractured bedrock. Seismic refraction and ground-penetrating radar (GPR) primarily were used to characterize the overburden materials, but in a few cases indicated bedrock-fracture zones. Magnetometer surveys were used to obtain background information about the bedrock to compare with other results, and to search for magnetic lows, which may result from weathered fractured rock. Electromagnetic terrain conductivity surveys (EM) and very-low-frequency electromagnetic surveys (VLF) were used as rapid reconnaissance techniques with the primary purpose of identifying electrical anomalies, indicating potential fracture zones in bedrock. Direct-current (dc) resistivity methods were used to gather detailed subsurface information about fracture depth and orientation. Two-dimensional (2-D) dc-resistivity surveys using dipole-dipole and Schlumberger arrays located and characterized the overburden, bedrock, and bedrock-fracture zones through analysis of data inversions. Azimuthal square array dc-resistivity survey results indicated orientations of conductive steep-dipping bedrock-fracture zones that were located and characterized by previously applied geophysical methods. Various available data sets were used for site selection, characterizations, and interpretations. Lineament data, developed as a part of a statewide and regional scale investigation of the bedrock aquifer, were available to identify potential near-vertical fracture zones. Geophysical surveys indicated fracture zones coincident with lineaments at 4 of the sites. Geologic data collected as a part of the regional scale investigation provided outcrop fracture measurements, ductile fabric, and contact information. Dominant fracture trends correspond to the trends of geophysical anomalies at 4 of the sites. Water-well drillers? logs from water supply and environmental data sets also were used where available to characterize sites. Regional overburden information was compiled from stratified-drift aquifer maps and surficial-geological maps.
Structures and properties of materials recovered from high shock pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nellis, W.J.
1994-03-01
Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be comparedmore » with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.« less
... to restore the height of the vertebrae) Spinal fusion (bones of your spine are joined together so ... osteoporosis Patient Instructions Hip fracture - discharge Preventing falls Images Compression fracture Bone density scan Osteoporosis Osteoporosis Hip ...
Percolation and permeability of heterogeneous fracture networks
NASA Astrophysics Data System (ADS)
Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François
2013-04-01
Natural fracture fields are almost necessarily heterogeneous with a fracture density varying with space. Two classes of variations are quite frequent. In the first one, the fracture density is decreasing from a given surface; the fracture density is usually (but not always see [1]) an exponential function of depth as it has been shown by many measurements. Another important example of such an exponential decrease consists of the Excavated Damaged Zone (EDZ) which is created by the excavation process of a gallery [2,3]. In the second one, the fracture density undergoes some local random variations around an average value. This presentation is mostly focused on the first class and numerical samples are generated with an exponentially decreasing density from a given plane surface. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [4]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole fractured medium to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data for transmissivity are presented. A simple parallel flow model is introduced. The flow properties of the medium vary with the distance z from the wall. However, the macroscopic pressure gradient does not depend on z, and the flow lines are in average parallel to the wall. Hence, the overall transmissivity is tentatively estimated by a parallel flow model, where a layer at depth z behaves as a fractured medium with uniform properties corresponding to the state at this position in the medium. It yields an explicit analytical expression for the transmissivity as a function of the heterogeneity and anisotropy parameters, and it successfully accounts for all the numerical data. Graphical tools are provided from which first estimates can be quickly and easily obtained. A short overview of the second class of heterogeneous media will be given. [1] Barton C.A., Zoback M.D., J. Geophys. Res., 97B, 5181-5200 (1992). [2] Bossart P. et al, Eng. Geol., vol. 66, 19-38 (2002). [3] Thovert J.-F. et al, Eng. Geol., 117, 39-51 (2011). [4] Adler P.M. et al, Fractured porous media, Oxford U. Press, 2012.
Park, Jin-Sung; Lee, Jaewon; Park, Ye-Soo
2016-01-01
The study aimed to investigate the effectiveness of the clinical use of the Fracture Risk Assessment Tool (FRAX(®)) developed by the World Health Organization identifying patients at risk of osteoporotic fracture and to evaluate changes in osteoporotic fracture risk prediction according to bone mineral density (BMD) values. We identified the occurrence of osteoporotic fracture among patients whose BMD was measured in our hospital between April 2003 and March 2013. We then analyzed FRAX(®) scores obtained with or without BMD on the day before the occurrence of an osteoporotic fracture in actual osteoporotic fracture patients. According to the National Osteoporosis Foundation high-risk criteria, we identified the percentage of high-risk patients before the actual fracture. Among 445 osteoporotic fracture patients, when FRAX(®)-BMD was used, 281 patients (63%) were identified as high-risk before an actual osteoporotic fracture, and when FRAX(®) without BMD was used, 258 patients (58%) were identified (p = 0.115). In the 84 osteopenia patients, 39 patients (46.4%) were identified as high-risk when FRAX(®) without BMD was used, and 19 patients (22.6%) were identified when FRAX(®)-BMD was used (p = 0.001). The use of BMD in FRAX(®) does not seem to increase the clinical effectiveness of predicting osteoporotic fracture in osteopenia patients. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Eastell, Richard; Black, Dennis M; Boonen, Steven; Adami, Silvano; Felsenberg, Dieter; Lippuner, Kurt; Cummings, Steven R; Delmas, Pierre D; Palermo, Lisa; Mesenbrink, Peter; Cauley, Jane A
2009-09-01
In the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly - Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg significantly reduced fracture risk. The aim of the study was to identify factors associated with greater efficacy during ZOL 5 mg treatment. We conducted a subgroup analysis (preplanned and post hoc) of a multicenter, double-blind, placebo-controlled, 36-month trial in 7765 women with postmenopausal osteoporosis. A single infusion of ZOL 5 mg or placebo was administered at baseline, 12, and 24 months. Primary endpoints were new vertebral fracture and hip fracture. Secondary endpoints were nonvertebral fracture and change in femoral neck bone mineral density (BMD). Baseline risk factor subgroups were age, BMD T-score and vertebral fracture status, total hip BMD, race, weight, geographical region, smoking, height loss, history of falls, physical activity, prior bisphosphonates, creatinine clearance, body mass index, and concomitant osteoporosis medications. Greater ZOL induced effects on vertebral fracture risk were seen with younger age (treatment-by-subgroup interaction, P = 0.05), normal creatinine clearance (P = 0.04), and body mass index >or= 25 kg/m(2) (P = 0.02). There were no significant treatment-factor interactions for hip or nonvertebral fracture or for change in BMD. ZOL appeared more effective in preventing vertebral fracture in younger women, overweight/obese women, and women with normal renal function. ZOL had similar effects irrespective of fracture risk factors or femoral neck BMD.
Fluid-driven Fractures and Backflow in a Multilayered Elastic Matrix
NASA Astrophysics Data System (ADS)
Smiddy, Samuel; Lai, Ching-Yao; Stone, Howard
2016-11-01
We study the dynamics when pressurized fluid is injected at a constant flow rate into a multi-layered elastic matrix. In particular, we report experiments of such crack propagation as a function of orientation and distance from the contact of the layers. Subsequently we study the shape and propagation of the fluid along the contact of layers as well as volume of fluid remaining in the matrix once the injection pressure is released and "flowback" occurs. The experiments presented here may mimic the interaction between hydraulic fractures and pre-existing fractures and the dynamics of flowback in hydraulic fracturing. Study made possible by the Andlinger Center for Energy and the Environment and the Fred Fox Fund.
Calcium plus vitamin D supplementation and the risk of fractures.
Jackson, Rebecca D; LaCroix, Andrea Z; Gass, Margery; Wallace, Robert B; Robbins, John; Lewis, Cora E; Bassford, Tamsen; Beresford, Shirley A A; Black, Henry R; Blanchette, Patricia; Bonds, Denise E; Brunner, Robert L; Brzyski, Robert G; Caan, Bette; Cauley, Jane A; Chlebowski, Rowan T; Cummings, Steven R; Granek, Iris; Hays, Jennifer; Heiss, Gerardo; Hendrix, Susan L; Howard, Barbara V; Hsia, Judith; Hubbell, F Allan; Johnson, Karen C; Judd, Howard; Kotchen, Jane Morley; Kuller, Lewis H; Langer, Robert D; Lasser, Norman L; Limacher, Marian C; Ludlam, Shari; Manson, JoAnn E; Margolis, Karen L; McGowan, Joan; Ockene, Judith K; O'Sullivan, Mary Jo; Phillips, Lawrence; Prentice, Ross L; Sarto, Gloria E; Stefanick, Marcia L; Van Horn, Linda; Wactawski-Wende, Jean; Whitlock, Evelyn; Anderson, Garnet L; Assaf, Annlouise R; Barad, David
2006-02-16
The efficacy of calcium with vitamin D supplementation for preventing hip and other fractures in healthy postmenopausal women remains equivocal. We recruited 36,282 postmenopausal women, 50 to 79 years of age, who were already enrolled in a Women's Health Initiative (WHI) clinical trial. We randomly assigned participants to receive 1000 mg of elemental [corrected] calcium as calcium carbonate with 400 IU of vitamin D3 daily or placebo. Fractures were ascertained for an average follow-up period of 7.0 years. Bone density was measured at three WHI centers. Hip bone density was 1.06 percent higher in the calcium plus vitamin D group than in the placebo group (P<0.01). Intention-to-treat analysis indicated that participants receiving calcium plus vitamin D supplementation had a hazard ratio of 0.88 for hip fracture (95 percent confidence interval, 0.72 to 1.08), 0.90 for clinical spine fracture (0.74 to 1.10), and 0.96 for total fractures (0.91 to 1.02). The risk of renal calculi increased with calcium plus vitamin D (hazard ratio, 1.17; 95 percent confidence interval, 1.02 to 1.34). Censoring data from women when they ceased to adhere to the study medication reduced the hazard ratio for hip fracture to 0.71 (95 percent confidence interval, 0.52 to 0.97). Effects did not vary significantly according to prerandomization serum vitamin D levels. Among healthy postmenopausal women, calcium with vitamin D supplementation resulted in a small but significant improvement in hip bone density, did not significantly reduce hip fracture, and increased the risk of kidney stones. (ClinicalTrials.gov number, NCT00000611.). Copyright 2006 Massachusetts Medical Society
USDA-ARS?s Scientific Manuscript database
Polyunsaturated fatty acids (PUFA) may influence bone health. Our objective was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: 1) femoral neck bone mineral density (FN-BMD) (n=765); 2) 4-y change in FN-BMD (n=556); and 3) hip fracture risk (n=76...
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiberbraided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiberbraided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
Graph Representations of Flow and Transport in Fracture Networks using Machine Learning
NASA Astrophysics Data System (ADS)
Srinivasan, G.; Viswanathan, H. S.; Karra, S.; O'Malley, D.; Godinez, H. C.; Hagberg, A.; Osthus, D.; Mohd-Yusof, J.
2017-12-01
Flow and transport of fluids through fractured systems is governed by the properties and interactions at the micro-scale. Retaining information about the micro-structure such as fracture length, orientation, aperture and connectivity in mesh-based computational models results in solving for millions to billions of degrees of freedom and quickly renders the problem computationally intractable. Our approach depicts fracture networks graphically, by mapping fractures to nodes and intersections to edges, thereby greatly reducing computational burden. Additionally, we use machine learning techniques to build simulators on the graph representation, trained on data from the mesh-based high fidelity simulations to speed up computation by orders of magnitude. We demonstrate our methodology on ensembles of discrete fracture networks, dividing up the data into training and validation sets. Our machine learned graph-based solvers result in over 3 orders of magnitude speedup without any significant sacrifice in accuracy.
Development of stimulation diagnostic technology. Annual report, May 1990--December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.; Lorenz, J.C.
The objective of this project is to apply Sandia`s expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. Initial work has concentrated on experiment planning for a site where hydraulic fracturing could be evaluated and design models and fracture diagnostics could be validated and improved. Important issues have been defined and new diagnostics, such as inclinometers, identified. In the area of in situ stress, circumferential velocity analysis is proving to be a useful diagnostic for stress orientation. Natural fracture studies of the Frontier formation aremore » progressing; two fracture sets have been found and their relation to tectonic events have been hypothesized. Analyses of stimulation data have been performed for several sites, primarily for in situ stress information. Some new ideas in stimulation diagnostics have been proposed; these ideas may significantly improve fracture diagnostic capabilities.« less
Development of stimulation diagnostic technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.; Lorenz, J.C.
The objective of this project is to apply Sandia's expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. Initial work has concentrated on experiment planning for a site where hydraulic fracturing could be evaluated and design models and fracture diagnostics could be validated and improved. Important issues have been defined and new diagnostics, such as inclinometers, identified. In the area of in situ stress, circumferential velocity analysis is proving to be a useful diagnostic for stress orientation. Natural fracture studies of the Frontier formation aremore » progressing; two fracture sets have been found and their relation to tectonic events have been hypothesized. Analyses of stimulation data have been performed for several sites, primarily for in situ stress information. Some new ideas in stimulation diagnostics have been proposed; these ideas may significantly improve fracture diagnostic capabilities.« less
NASA Astrophysics Data System (ADS)
Luther, A. L.; Axen, G. J.; Selverstone, J.; Khalsa, N.
2009-12-01
Classical fault mechanic theory does not adequately explain slip on “weak” faults oriented at high angles to the regional maximum stress direction, such as the San Andreas Fault and low-angle normal faults. One hypothesis is that stress rotation due to fault-weakening mechanisms allows slip, which may be testable using detailed paleostress analyses of minor faults and tensile fractures. Preliminary data from the footwalls of the Whipple detachment (WD) and the West Salton detachment (WSD) suggest lateral and/or vertical stress rotations. Three inversion programs that use different fault-slip datasets are compared. 1) FaultKin (Marrett and Allmendinger ‘90; Cladouhos and Allmendinger ‘93) determines the principal strain directions using only faults with striae and known slip senses; principal stress orientations are determined assuming coaxiality. To date, FaultKin results appear to be the most reproducible, but it is difficult to find enough faults with striae and slip sense in the small outcrop areas of our study. 2) Slick.bas (Ramsey and Lisle ‘00) uses a grid search to find the best-fit stress tensor from fault and striae orientations, but does not accept slip sense. This program can yield erroneous stress fields that predict slip senses opposite those known for some faults (particularly faults at a high angle to sigma 1). 3) T-TECTO 2.0 (Zalohar and Vrabec ‘07) applies a Gaussian approach, using orientations of faults and striae, the slip senses of any faults for which it is known, plus tensile fractures. We expect that this flexibility of input data types will be best, but testing is preliminary. Paleostress analyses assume that minor faults slipped in response to constant, homogeneous stress fields. We use shear and tensile fractures and cross-cutting relationships from the upper ~25 m of both footwalls to test for spatial and temporal changes to the paleostress field. Paleostress analysis of fractures ~0.3 - 2 m below the WSD on the N limb of an antiform suggests that sigma 3 plunges moderately (~45 degrees) W, sigma 1 plunges gently S, and sigma 2 is steep, consistent with wrench-related folding about E-W trends during WSD slip. However, tensile fractures in the immediately overlying ultracataclasite yield sigma 3 with a shallow W plunge (~4 degrees). In a synformal trough, Reidel shears in the upper 1-2 m of the WSD footwall suggest a moderately (~50 degrees) E plunging sigma 1. Deeper (2-10 m) in the footwall, shear fractures have different but consistent orientations, suggesting a change in the stress field. Preliminary results from several sets of shear fractures in the WD footwall suggest that sigma 1 is steep (~75-90 degrees) in the chlorite breccia zone (implying low shear traction) but is shallower (~45 degrees) in the deeper damage zone. Prior work (Axen & Selverstone ‘94) found that sigma 1 becomes steep again at greater depths. Continued testing of paleostress analysis methods and several other datasets are in progress to confirm our results.
Ripamonti, C; Lisi, L; Avella, M
2014-05-01
To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures.
Lisi, L; Avella, M
2014-01-01
Objective: To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. Methods: We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Results: Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. Conclusion: NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. Advances in knowledge: The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures. PMID:24678889
Fabric controls on the brittle failure of folded gneiss and schist
NASA Astrophysics Data System (ADS)
Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.
2014-12-01
We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.
NASA Astrophysics Data System (ADS)
Stewart, S. A.; Wynn, T. J.
2000-08-01
Maps of the three-dimensional geometry of geologic surfaces show that structural curvature commonly varies with scale of observation: This fact can be viewed as superposition of structures at different wavelengths. Rock properties such as fracture density and orientation reflect the contribution of superimposed structures. For this reason, characterization of geologic surfaces is fundamentally different from purely geometrical characterization, for which local description of surface properties is sufficient. We show that measured curvature decays according to a power law with increasing size of measurement window, so short-wavelength curvatures do not obscure long-wavelength curvatures in the same data set. This property can be taken advantage of in a simple technique for automatically mapping multiwavelength curvatures. At each point on a surface, curvature is measured at a range of wavelengths. This curvature spectrum can be analyzed in map view or collapsed into a single value at each point in space. The results indicate that complex geologic surfaces can be characterized without any prior knowledge of structural wavelengths and orientation. The method should prove useful in applications requiring knowledge of spatial variation in rock properties from remotely sensed data, such as exploration for hydrocarbon reservoirs or nuclear waste repositories.
Engineering Controlled Spalling in (100)-Oriented GaAs for Wafer Reuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweet, Cassi A.; McNeely, Joshua E.; Gorman, Brian
Controlled spalling offers a way to cleave thin, single-crystal films or devices from wafers, particularly if the fracture planes in the material are oriented parallel to the wafer surface. Unfortunately, misalignment between the favored fracture planes and the wafer surface preferred for photovoltaic growth in (100)-oriented GaAs produces a highly faceted surface when subject to controlled spalling. This highly faceted cleavage surface is problematic in several ways: (1) it can result in large variations of spall depth due to unstable crack propagation; (2) it may introduce defects into the device zone or underlying substrate; and (3) it consumes many micronsmore » of material outside of the device zone. We present the ways in which we have engineered controlled spalling for (100)-oriented GaAs to minimize these effects. We expand the operational window for controlled spalling to avoid spontaneous spalling, find no evidence of dislocation activity in the spalled film or the parent wafer, and reduce facet height and facet height irregularity. Resolving these issues provides a viable path forward for reducing III-V device cost through the controlled spalling of (100)-oriented GaAs devices and subsequent wafer reuse when these processes are combined with a high-throughput growth method such as Hydride Vapor Phase Epitaxy.« less
An Quantitative Analysis Method Of Trabecular Pattern In A Bone
NASA Astrophysics Data System (ADS)
Idesawa, Masanor; Yatagai, Toyohiko
1982-11-01
Orientation and density of trabecular pattern observed in a bone is closely related to its mechanical properties and deseases of a bone are appeared as changes of orientation and/or density distrbution of its trabecular patterns. They have been treated from a qualitative point of view so far because quantitative analysis method has not be established. In this paper, the authors proposed and investigated some quantitative analysis methods of density and orientation of trabecular patterns observed in a bone. These methods can give an index for evaluating orientation of trabecular pattern quantitatively and have been applied to analyze trabecular pattern observed in a head of femur and their availabilities are confirmed. Key Words: Index of pattern orientation, Trabecular pattern, Pattern density, Quantitative analysis
Ground reaction forces and bone parameters in females with tibial stress fracture.
Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim
2004-03-01
Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.
NASA Astrophysics Data System (ADS)
Normani, S. D.; Sykes, J. F.; Jensen, M. R.
2009-04-01
A high resolution sub-regional scale (84 km2) density-dependent, fracture zone network groundwater flow model with hydromechanical coupling and pseudo-permafrost, was developed from a larger 5734 km2 regional scale groundwater flow model of a Canadian Shield setting in fractured crystalline rock. The objective of the work is to illustrate aspects of regional and sub-regional groundwater flow that are relevant to the long-term performance of a hypothetical nuclear fuel repository. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture zone network model delineated from surface features was superimposed onto an 789887 element flow domain mesh. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. The crystalline rock between these structural discontinuities was assigned properties characteristic of those reported for the Canadian Shield at the Underground Research Laboratory at Pinawa, Manitoba. Interconnectivity of permeable fracture features is an important pathway for the possibly relatively rapid migration of average water particles and subsequent reduction in residence times. The multiple 121000 year North American continental scale paleoclimate simulations are provided by W.R. Peltier using the University of Toronto Glacial Systems Model (UofT GSM). Values of ice sheet normal stress, and proglacial lake depth from the UofT GSM are applied to the sub-regional model as surface boundary conditions, using a freshwater head equivalent to the normal stress imposed by the ice sheet at its base. Permafrost depth is applied as a permeability reduction to both three-dimensional grid blocks and fractures that lie within the time varying permafrost zone. Two different paleoclimate simulations are applied to the sub-regional model to investigate the effect on the depth of glacial meltwater migration into the subsurface. In addition, different conceptualizations of fracture permeability with depth, and various hydromechanical loading efficiencies are used to investigate glacial meltwater penetration. The importance of density dependent flow, due to pore waters deep in the Canadian Shield with densities of up to 1200 kg/m3 and total dissolved solids concentrations in excess of 300 g/L, is also illustrated. Performance measures used in the assessment include depth of glacial meltwater penetration using a tracer, and mean life expectancy. Consistent with the findings from isotope and geochemical assessments, the analyses support the conclusion that for the discrete fracture zone and matrix properties simulated in this study, glacial meltwaters would not likely impact a deep geologic repository in a crystalline rock setting.
NASA Astrophysics Data System (ADS)
Gischig, Valentin Samuel; Doetsch, Joseph; Maurer, Hansruedi; Krietsch, Hannes; Amann, Florian; Evans, Keith Frederick; Nejati, Morteza; Jalali, Mohammadreza; Valley, Benoît; Obermann, Anne Christine; Wiemer, Stefan; Giardini, Domenico
2018-01-01
To characterize the stress field at the Grimsel Test Site (GTS) underground rock laboratory, a series of hydrofracturing and overcoring tests were performed. Hydrofracturing was accompanied by seismic monitoring using a network of highly sensitive piezosensors and accelerometers that were able to record small seismic events associated with metre-sized fractures. Due to potential discrepancies between the hydrofracture orientation and stress field estimates from overcoring, it was essential to obtain high-precision hypocentre locations that reliably illuminate fracture growth. Absolute locations were improved using a transverse isotropic P-wave velocity model and by applying joint hypocentre determination that allowed for the computation of station corrections. We further exploited the high degree of waveform similarity of events by applying cluster analysis and relative relocation. Resulting clouds of absolute and relative located seismicity showed a consistent east-west strike and 70° dip for all hydrofractures. The fracture growth direction from microseismicity is consistent with the principal stress orientations from the overcoring stress tests, provided that an anisotropic elastic model for the rock mass is used in the data inversions. The σ1 stress is significantly larger than the other two principal stresses and has a reasonably well-defined orientation that is subparallel to the fracture plane; σ2 and σ3 are almost equal in magnitude and thus lie on a circle defined by the standard errors of the solutions. The poles of the microseismicity planes also lie on this circle towards the north. Analysis of P-wave polarizations suggested double-couple focal mechanisms with both thrust and normal faulting mechanisms present, whereas strike-slip and thrust mechanisms would be expected from the overcoring-derived stress solution. The reasons for these discrepancies can be explained by pressure leak-off, but possibly may also involve stress field rotation around the propagating hydrofracture. Our study demonstrates that microseismicity monitoring along with high-resolution event locations provides valuable information for interpreting stress characterization measurements.
Three-phase fracturing in granular material
NASA Astrophysics Data System (ADS)
Campbell, James; Sandnes, Bjornar
2015-04-01
There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.
NASA Astrophysics Data System (ADS)
Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan
2015-02-01
Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the surrounding host rock increases slightly toward the intrusion at approximately 3 m from the contact. We conclude by presenting a conceptual fluid flow model, showing permeability enhancement and a high potential for fluid flow-channeling along the intrusion-host rock interfaces.
Influence of TiN Inclusions on the Cleavage Fracture Behavior of Low-Carbon Microalloyed Steels
NASA Astrophysics Data System (ADS)
Yan, W.; Shan, Y. Y.; Yang, K.
2007-06-01
Toughness is a major concern for low-carbon microalloyed steels. In this work, the impact fracture behavior of two low-carbon Ti-V microalloyed steels was investigated in order to better understand the role of TiN inclusions in the toughness of the steels. The steels had similar chemical compositions and were manufactured by the same rolling process. However, there was an obvious difference in the ductile brittle transition temperature (DBTT) in the Charpy V-notch (CVN) impact tests of the two steels; one (steel 1) possessing a DBTT below -20 °C, while the DBTT of the other (steel 2) was above 15 °C. Scanning electron microscopy (SEM) fractography revealed that there were TiN inclusions at the cleavage fracture initiation sites on the fracture surfaces of steel 2 at both low and room temperatures. It is shown that the TiN inclusions had nucleated on Al2O3 particles and that they had pre-existing interior flaws. A high density of TiN inclusions was found in steel 2, but there was a much lower density in steel 1. Analysis indicates that these inclusions were responsible for the shift of DBTT to a higher temperature in steel 2. A mechanism is proposed for understanding the effect of the size and density of TiN inclusions on the fracture behavior, and the cleavage fracture initiation process is analyzed in terms of the distribution and development of stresses ahead of the notch tip during fracture at both low and room temperatures.
2015-09-30
This image from NASA Mars Reconnaissance Orbiter spacecraft provides information about erosion and movement of surface material, about wind and weather patterns, even about the soil grains and grain sizes. However, looking past the dunes, these images also reveal the nature of the substrate beneath. Within the spaces between the dunes, a resistant and highly fractured surface is revealed. The fractured ground is resistant to erosion by the wind, and suggests the material is bedrock that is now shattered by a history of bending stresses or temperature changes, such as cooling, for example. Alternately, the surface may be a sedimentary layer that was once wet and shrunk and fractured as it dried, like gigantic mud cracks. In either case, the relative small and indistinct fractures have trapped the dark dune sand marching overhead. Now the fractures have become quite distinct, allowing us to examine the orientation and spacing of the fractures to learn more about the processes that formed them. http://photojournal.jpl.nasa.gov/catalog/PIA19958
NASA Astrophysics Data System (ADS)
Rita, Novia; Mursyidah, Syahindra, Michael
2018-03-01
When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.
Veganism and osteoporosis: a review of the current literature.
Smith, Annabelle M
2006-10-01
The purpose of this review is to examine the current literature regarding calcium and Vitamin D deficiencies in vegan diets and the possible relationship to low bone mineral density and incidence for fracture. Prominent databases were searched for original research publications providing data capable of answering these questions: (i) Do vegans have lower-than-recommended levels of calcium/Vitamin D? (ii) Do vegans have lower bone mineral density than their non-vegan counterparts? (iii) Are vegans at a greater risk for fractures than non-vegans? The findings gathered consistently support the hypothesis that vegans do have lower bone mineral density than their non-vegan counterparts. However, the evidence regarding calcium, Vitamin D and fracture incidence is inconclusive. More research is needed to definitively answer these questions and to address the effects of such deficiencies on the medical and socioeconomic aspects of life.
Open natural fractures in sandstone at 18,300 ft: Do they help or hinder production of gas?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Billingsley, R.L.; Evans, L.W.
1996-06-01
Vertical core, from relatively undeformed Cretaceous (Frontier FM) sandstones at a depth of 18,300 ft in the Green River Basin, contains three sets of mineralized natural fractures. The earliest fractures opened in extension as the strata passed through the hydrocarbon window. Continued subsidence and the maturation of organic material created overpressured conditions, causing oil to be injected into the fractures. Only a carbon residue of the original oil remains in these fractures, suggesting continued burial and maturation. The residue seriously inhibits permeability along and across fractures. Oil residue is also present in oblique, unmineralized mare`s-tails at the ends of fractures,more » suggesting that the in situ stress orientations had changed slightly. Quartz crystals mineralized the fracture walls, growing over the oil residue or pushing it aside. A second set of extension fractures strikes 20-30 degrees oblique to the first set. These fractures are mineralized with calcite, which was also deposited over the quartz in the first fracture set. Continued tectonism reoriented the horizontal stresses by nearly 90 degrees, forming a third set of extension fractures and further degrading permeability by narrowing apertures along earlier fractures. Significant porosity remains along many of the fractures at this depth, yet the in situ stresses and oil residue have combined to degrade fracture permeability to uneconomic matrix values.« less
Open natural fractures in sandstone at 18,300 ft: Do they help or hinder production of gas?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Billingsley, R.L.; Evans, L.W.
1995-06-01
Vertical core, from relatively undeformed Cretaceous (Frontier Fm) sandstones at a depth of 18,300 ft in the Green River Basin, contains three sets of mineralized natural fractures. The earliest fractures opened in extension as the strata passed through the hydrocarbon window. Continued subsidence and the maturation of organic material created overpressured conditions, causing oil to be injected into the fractures. Only a carbon residue of the original oil remains in these fractures, suggesting continued burial and maturation. The residue seriously inhibits permeability along and across fractures. Oil residue is also present in oblique, unmineralized mare`s-tails at the ends of fractures,more » suggesting that the in-situ stress orientations had changed slightly. Quartz crystals mineralized the fracture walls, growing over the oil residue or pushing it aside. A second set of extension fractures strikes 20-30 degrees oblique to the first set. These fractures are mineralized with calcite, which was also deposited over the quartz in the first fracture set. Continued tectonism reoriented the horizontal stresses by nearly 90 degrees, forming a third set of extension fractures and further degrading permeability by narrowing apertures along earlier fractures. Significant porosity remains along many of the fractures at this depth, yet the in situ stresses and oil residue have combined to degrade fracture permeability to uneconomic matrix values.« less
Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps
NASA Astrophysics Data System (ADS)
Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp
2013-10-01
Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.
Capozzi, Anna; Lello, Stefano; Pontecorvi, Alfredo
2014-06-01
There is great interest in new treatments of osteoporosis owing to general ageing of population and increased risk for fragility fractures in the elderly. Current therapies show a good efficacy in improving bone quality and bone density, but, in spite of a certain reduction in fracture rate, according to each treatment, the problem of osteoporotic fractures is yet far from to be solved. Moreover, some treatments may produce different side effects. Denosumab (Dmab), a receptor activator of nuclear factor kappa-B ligand (RANKL)-inhibitor, is an agent recently introduced in clinical practice for treatment of osteoporosis of postmenopausal women. Dmab has improved bone mineral density and prevented new vertebral and non-vertebral fractures with a similar efficacy in comparison with alendronate. Many clinical studies showed Dmab produces also significant improvement versus placebo in bone quality as indicated by decreasing markers of bone turnover. Patients using Dmab reported less risk of AFF (Atypical Femoral Fractures) and ONJ (Osteonecrosis of the Jaw) with an increased number of cellulitis. Here, we review articles using Dmab for female post-menopausal osteoporosis.
Yamaguchi, Toru
2012-09-01
Drug treatment for osteoporosis is intended to prevent osteoporotic fractures. Physicians should assess fracture risk in patients with diabetes not only by measuring bone mineral density (BMD) but also by taking a fracture history and evaluating prior vertebral fractures using spinal X-rays when starting drug therapy. Accumulating evidence shows that patients with diabetes (DM) have a high risk for fragility fractures independent of BMD. Thus, when DM patients have osteopenia, fracture risk could become higher than non-DM counterparts, and drug therapy should be considered to prevent fragility fractures. The criteria for starting drug treatment to prevent fragility fractures in DM patients, albeit tentative, are shown in this article.
Samelson, E. J.; Sornay-Rendu, E.; Chapurlat, R.; Kiel, D. P.
2013-01-01
Summary In older men, severe abdominal aortic calcification and vertebral fracture (both assessed using dual-energy X-ray absorptiometry) were positively associated after adjustment for confounders including bone mineral density. Introduction Abdominal aortic calcification (AAC) is associated with higher fracture risk, independently of low bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA) can be used to assess both vertebral fracture and AAC and requires less time, cost, and radiation exposure. Methods We conducted a cross-sectional study of the association between AAC and prevalent vertebral fractures in 901 men ≥50 years old. We used DXA (vertebral fracture assessment) to evaluate BMD, vertebral fracture, and AAC. Results Prevalence of vertebral fracture was 11 %. Median AAC score was 1 and 12 % of men had AAC score >6. After adjustment for age, weight, femoral neck BMD, smoking, ischemic heart disease, diabetes, and hypertension, AAC score >6 (vs ≤6) was associated with 2.5 (95 % CI, 1.4–4.5) higher odds of vertebral fracture. Odds of vertebral fracture for AAC score >6 increased with vertebral fracture severity (grade 1, OR=1.8; grade 2, OR=2.4; grade 3, OR=4.4; trend p<0.01) and with the number of vertebral fractures (1 fracture, OR=2.0, >1 fracture, OR=3.5). Prevalence of vertebral fracture was twice as high in men having both a T-score<−2.0 and an AAC score>6 compared with men having only one of these characteristics. Conclusions Men with greater severity AAC had greater severity and greater number of vertebral fractures, independently of BMD and co-morbidities. DXA can be used to assess vertebral fracture and AAC. It can provide a rapid, safe, and less expensive alternative to radiography. DXA may be an important clinical tool to identify men at high risk of adverse outcomes from osteoporosis and cardiovascular disease. PMID:22872071
Hayhoe, Richard P G; Lentjes, Marleen A H; Luben, Robert N; Khaw, Kay-Tee; Welch, Ailsa A
2015-08-01
In our aging population, maintenance of bone health is critical to reduce the risk of osteoporosis and potentially debilitating consequences of fractures in older individuals. Among modifiable lifestyle and dietary factors, dietary magnesium and potassium intakes are postulated to influence bone quality and osteoporosis, principally via calcium-dependent alteration of bone structure and turnover. We investigated the influence of dietary magnesium and potassium intakes, as well as circulating magnesium, on bone density status and fracture risk in an adult population in the United Kingdom. A random subset of 4000 individuals from the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort of 25,639 men and women with baseline data was used for bone density cross-sectional analyses and combined with fracture cases (n = 1502) for fracture case-cohort longitudinal analyses (mean follow-up 13.4 y). Relevant biological, lifestyle, and dietary covariates were used in multivariate regression analyses to determine associations between dietary magnesium and potassium intakes and calcaneal broadband ultrasound attenuation (BUA), as well as in Prentice-weighted Cox regression to determine associated risk of fracture. Separate analyses, excluding dietary covariates, investigated associations of BUA and fractures with serum magnesium concentration. Statistically significant positive trends in calcaneal BUA for women (n = 1360) but not men (n = 968) were apparent across increasing quintiles of magnesium plus potassium (Mg+K) z score intake (P = 0.03) or potassium intake alone (P = 0.04). Reduced hip fracture risk in both men (n = 1958) and women (n = 2755) was evident for individuals in specific Mg+K z score intake quintiles compared with the lowest. Statistically significant trends in fracture risk in men across serum magnesium concentration groups were apparent for spine fractures (P = 0.02) and total hip, spine, and wrist fractures (P = 0.02). None of these individual statistically significant associations remained after adjustment for multiple testing. These findings enhance the limited literature studying the association of magnesium and potassium with bone density and demonstrate that further investigation is warranted into the mechanisms involved and the potential protective role against osteoporosis. © 2015 American Society for Nutrition.
Multi-scale fracture damage associated with underground chemical explosions
Swanson, Erika M.; Sussman, A. J.; Wilson, J. E.; ...
2018-02-22
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive sourcemore » are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.« less
NASA Astrophysics Data System (ADS)
Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.
2014-12-01
Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deopartment of Energy's National Security Administration under contract DE-AC04-94AL85000. SAND2014-16578A
Multi-scale fracture damage associated with underground chemical explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Erika M.; Sussman, A. J.; Wilson, J. E.
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive sourcemore » are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.« less
Fracture liaison service: report on the first successful experience from the Middle East.
Bachour, Falah; Rizkallah, Maroun; Sebaaly, Amer; Barakat, Angelique; Razzouk, Hiba; El Hage, Rawad; Nasr, Riad; El Khoury, Mirvat; Maalouf, Ghassan
2017-09-19
This study aims to assess for the first time in the Middle East, the clinical benefits of an FLS model established in a hospital in Beirut, Lebanon. It shows a significant 54% relative risk reduction in re-fracture incidence, confirming the patient-oriented benefit of diffusing this system in the Middle East region. Few hospitals in Lebanon applied Fracture Liaison Service (FLS) program. A type A FLS is established at Bellevue hospital in Beirut in July 2013. This study aims to assess its clinical benefits and efficacy. Patients aged 50 years and above presenting to our hospital with minimal trauma fracture from July 2012 till June 2014 are enrolled. These are divided into two groups, before (group A) and after (group B) FLS implementation. Both groups are compared for re-fracture incidence, bone health assessment; osteoporosis treatment maintenance, and death in a 2-year follow-up. Nighty-eight patient composing group B are compared to 100 patients in the group A. Around 65% of patients in the FLS group underwent Dexa osteodensitometry following their fracture compared to 28% in the comparator group (p < 0.001). About 54% of patients in group B maintained osteoporosis treatment compared to 26% in group A (p < 0.001). Sixteen percent of patients died in the FLS study group compared to 16% of patients in the comparator group (p = 0.950). A second fracture, happened in 8.2% of patients in the FLS study group compared to 18% of the patients in the comparator group p = 0.004. Number needed to treat reached 10.2 patients. The statistical analysis results go with the overwhelming evidence concerning FLS importance in promoting bone health assessment and osteoporosis treatment in fracture patients. It also confirms the clinical value and the patient-oriented benefit of an implementation of such a system.
Fracture Patterns within the Shale Hills Critical Zone Observatory
NASA Astrophysics Data System (ADS)
Singha, K.; White, T.; Perron, J.; Chattopadhyay, P. B.; Duffy, C.
2012-12-01
Rock fractures are known to exist within the deep Critical Zone and are expected to influence groundwater flow, but there are limited data on their orientation and spatial arrangement and no general framework for systematically predicting their effects. Here, we explore fracture patterns within the Susquehanna-Shale Hills Critical Zone Observatory, and consider how they may be influenced by weathering, rock structure, and stress via field observations of variable fracture orientation within the site, with implications for the spatial variability of structural control on hydrologic processes. Based on field observations from 16-m deep boreholes and surface outcrop, we suggest that the appropriate structural model for the watershed is steeply dipping strata with meter- to decimeter-scale folds superimposed, including a superimposed fold at the mouth of the watershed that creates a short fold limb with gently dipping strata. These settings would produce an anisotropy in the hydraulic conductivity and perhaps also flow, especially within the context of the imposed stress field. Recently conducted 2-D numerical stress modeling indicates that the proxy for shear fracture declines more rapidly with depth beneath valleys than beneath ridgelines, which may produce or enhance the spatial variability in permeability. Even if topographic stresses do not cause new fractures, they could activate and cause displacement on old fractures, making the rocks easier to erode and increasing the permeability, and potentially driving a positive feedback that enhances the growth of valley relief. Calculated stress fields are consistent with field observations, which show a rapid decline in fracture abundance with increasing depth below the valley floor, and predict a more gradual trend beneath ridgetops, leading to a more consistent (and lower) hydraulic conductivity with depth on the ridgetops when compared to the valley, where values are higher but more variable with depth. Hydraulic conductivity is a fundamental property controlling the zone of active flow within the watershed.
Fracture characteristics of gas hydrate-bearing sediments in the Ulleung Basin, East Sea
NASA Astrophysics Data System (ADS)
Kim, Gil Young; Narantsetseg, Buyanbat; Yoo, Dong Geun; Ryu, Byong Jae
2015-04-01
The LWD (Logging-While-Drilling) logging (including wireline logging) and coring (including pressure coring) were conducted during UBGH2 (Ulleung Basin Gas Hydrate) expedition. The LWD data from 13 logged sites were obtained and most of the sites showed typical log data indicating the presence of gas hydrate. In particular, prominent fractures were clearly identified on the resistivity borehole images from the seismic chimney structures. The strike and dip of each fracture in all sites was calculated and displayed on the stereographic plot and rosette diagram. Fracture orientations on the stereographic plot are more broadly distributed, indicating that the fracture pattern is not well-ordered on the rosette diagram, although the maximum horizontal stress dominates NW-SE direction at most sites. This indicates that accurate horizontal stress directions cannot be completely resolved from the fractures. Moreover, the fractures may be developed from overburden (e.g., gravitational effect) compaction associated with sediment dewatering after deposition. Thus we should consider various factors affecting formation of fractures in order to interpret the origin of fractures. Nevertheless, the results of fracture analysis can be used to interpret distribution pattern and type of gas hydrate in the Ulleung Basin. .
Nogués, Xavier; Prieto-Alhambra, Daniel; Güerri-Fernández, Roberto; Garcia-Giralt, Natalia; Rodriguez-Morera, Jaime; Cos, Lourdes; Mellibovsky, Leonardo; Pérez, Adolfo Díez
2017-10-01
Some patients experience fractures while receiving oral bisphosphonates (BPs) treatment. Clinical risk factors, advanced bone density loss, and microarchitecture deterioration have been associated with such fractures but bone tissue properties other than bone mineral density (BMD) have not been assessed. In a cross-sectional study of postmenopausal women on bisphosphonates for at least 4years with good adherence to treatment, 21 patients with incident fractures were compared with 18 treated patients without new fractures. Demographic and clinical variables, BMD, laboratory tests, and bone material strength index (BMSi) assessed by impact microindentation at the tibial diaphysis were recorded for all participants. Clinical and laboratory results did not differ between patients taking BPs with incident fractures and those without new fractures. However, BMSi was significantly lower (mean±SD) in those who fractured (73.76±6.49) than in no-fracture patients (81.64±6.26; p=0.001). Lumbar spine (LS) BMD was also lower in fractured patients (p=0.03). Adjusted models including age, body mass index, years on BP treatment, and LS-BMD confirmed an increase in fracture risk per BMSi standard deviation decrease: adjusted OR 23.5 [95% CI 2.16 to 255.66], p=0.01. ROC analyses showed an area under the curve of 0.82 (95% CI 0.68 to 0.95) for BMSi, higher than that for BMD at any location, which ranged from 0.64 (95% CI 0.47 to 0.82) for femoral neck (FN) BMD to 0.71 (95% CI 0.55 to 0.87) for LS-BMD. Patients who fracture while receiving BPs treatment have worse BMSi scores than BP-treated patients without fractures. The potential for BMSi to provide an additional osteoporosis treatment target should be explored. Copyright © 2017 Elsevier Inc. All rights reserved.
Distinct Element Method modelling of fold-related fractures in a multilayer sequence
NASA Astrophysics Data System (ADS)
Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard
2017-04-01
Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.
Patsch, Janina M; Li, Xiaojuan; Baum, Thomas; Yap, Samuel P; Karampinos, Dimitrios C; Schwartz, Ann V; Link, Thomas M
2013-08-01
The goal of this magnetic resonance (MR) imaging study was to quantify vertebral bone marrow fat content and composition in diabetic and nondiabetic postmenopausal women with fragility fractures and to compare them with nonfracture controls with and without type 2 diabetes mellitus. Sixty-nine postmenopausal women (mean age 63 ± 5 years) were recruited. Thirty-six patients (47.8%) had spinal and/or peripheral fragility fractures. Seventeen fracture patients were diabetic. Thirty-three women (52.2%) were nonfracture controls. Sixteen women were diabetic nonfracture controls. To quantify vertebral bone marrow fat content and composition, patients underwent MR spectroscopy (MRS) of the lumbar spine at 3 Tesla. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry (DXA) of the hip and lumbar spine (LS) and quantitative computed tomography (QCT) of the LS. To evaluate associations of vertebral marrow fat content and composition with spinal and/or peripheral fragility fractures and diabetes, we used linear regression models adjusted for age, race, and spine volumetric bone mineral density (vBMD) by QCT. At the LS, nondiabetic and diabetic fracture patients had lower vBMD than controls and diabetics without fractures (p = 0.018; p = 0.005). However, areal bone mineral density (aBMD) by DXA did not differ between fracture and nonfracture patients. After adjustment for age, race, and spinal vBMD, the prevalence of fragility fractures was associated with -1.7% lower unsaturation levels (confidence interval [CI] -2.8% to -0.5%, p = 0.005) and +2.9% higher saturation levels (CI 0.5% to 5.3%, p = 0.017). Diabetes was associated with -1.3% (CI -2.3% to -0.2%, p = 0.018) lower unsaturation and +3.3% (CI 1.1% to 5.4%, p = 0.004) higher saturation levels. Diabetics with fractures had the lowest marrow unsaturation and highest saturation. There were no associations of marrow fat content with diabetes or fracture. Our results suggest that altered bone marrow fat composition is linked with fragility fractures and diabetes. MRS of spinal bone marrow fat may therefore serve as a novel tool for BMD-independent fracture risk assessment. Copyright © 2013 American Society for Bone and Mineral Research.
Water fluoridation and osteoporotic fracture.
Hillier, S; Inskip, H; Coggon, D; Cooper, C
1996-09-01
Osteoporotic fractures constitute a major public health problem. These fractures typically occur at the hip, spine and distal forearm. Their pathogenesis is heterogeneous, with contributions from both bone strength and trauma. Water fluoridation has been widely proposed for its dental health benefits, but concerns have been raised about the balance of skeletal risks and benefits of this measure. Fluoride has potent effects on bone cell function, bone structure and bone strength. These effects are mediated by the incorporation of fluoride ions in bone crystals to form fluoroapatite, and through an increase in osteoblast activity. It is believed that a minimum serum fluoride level of 100 ng/ml must be achieved before osteoblasts will be stimulated. Serum levels associated with drinking water fluoridated to 1 ppm are usually several times lower than this value, but may reach this threshold at concentrations of 4 ppm in the drinking water. Animal studies suggest no effect of low-level (0-3 ppm) fluoride intake on bone strength, but a possible decrease at higher levels. Sodium fluoride has been used to treat established osteoporosis for nearly 30 years. Recent trials of this agent, prescribed at high doses, have suggested that despite a marked increase in bone mineral density, there is no concomitant reduction in vertebral fracture incidence. Furthermore, the increase in bone density at the lumbar spine may be achieved at the expense of bone mineral in the peripheral cortical skeleton. As a consequence, high dose sodium fluoride (80 mg daily) is not currently used to treat osteoporosis. At lower doses, recent trials have suggested a beneficial effect on both bone density and fracture. The majority of epidemiological evidence regarding the effect of fluoridated drinking water on hip fracture incidence is based on ecological comparisons. Although one Finnish study suggested that hip fracture rates in a town with fluoridated water were lower than those in a matching town without fluoride, a later study failed to show differences. Ecological studies from the United States and Great Britain have, if anything, revealed a weak positive association between water fluoride concentration and hip fracture incidence. Two studies examining hip fracture rates before and after fluoridation yielded discordant results, and are complicated by underlying time trends in hip fracture incidence. Only two studies have attempted to examine the relation between water fluoride concentration and fracture risk at an individual level. In one of these, women in a high fluoride community had double the fracture risk of women in a low fluoride community. In the other, there was no relationship between years of fluoride exposure and incidence of spine or non-spine fractures. In conclusion, the epidemiological evidence relating water fluoridation to hip fracture is based upon ecological comparisons and is inconclusive. However, several studies suggest the possibility of a weak adverse effect, which warrants further exploration. Data on the relationship between fluoride intake and hip fracture risk at the individual level, and data relating fluoridation to bone mineral density are required. Until these become available, the burden of evidence suggesting that fluoridation might be a risk factor for hip fracture is weak and not sufficient to retard the progress of the water fluoridation programme.
Percolation and permeability of fracture networks in Excavated Damaged Zones
NASA Astrophysics Data System (ADS)
Mourzenko, V.; Thovert, J.; Adler, P. M.
2012-12-01
Generally, the excavation process of a gallery generates fractures in its immediate vicinity. The corresponding zone which is called the Excavated Damaged Zone (EDZ), has a larger permeability than the intact surrounding medium. The properties of the EDZ are attracting more and more attention because of their potential importance in repositories of nuclear wastes. The EDZ which is induced by the excavation process may create along the galleries of the repositories a high permeability zone which could directly connect the storage area with the ground surface. Therefore, the studies of its properties are of crucial importance for applications such as the storage of nuclear wastes. Field observations (such as the ones which have been systematically performed at Mont Terri by [1, 2]) suggest that the fracture density is an exponentially decreasing function of the distance to the wall with a characteristic length of about 0.5 m and that the fracture orientation is anisotropic (most fractures are subparallel to the tunnel walls) and well approximated by a Fisher law whose pole is orthogonal to the wall. Numerical samples are generated according to these prescriptions. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [3]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole EDZ to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data for the EDZ transmissivity are presented. A simple parallel flow model is introduced. The flow properties of the EDZ vary with the distance z from the wall. However, the macroscopic pressure gradient does not depend on z, and the flow lines are in average parallel to the wall. Hence, the overall transmissivity is tentatively estimated by a parallel flow model, where a layer at depth z behaves as a fractured medium with uniform properties corresponding to the state at this position in the EDZ. It yields an explicit analytical expression for the transmissivity as a function of the heterogeneity and anisotropy parameters, and it successfully accounts for all the numerical data. Graphical tools are provided from which first estimates can be quickly and easily obtained. [1] Bossart P. et al, Eng. Geol., vol. 66, 19-38 (2002). [2] Thovert J.-F. et al, Eng. Geol., 117, 39-51 (2011). [3] Adler P.M. et al, Fractured porous media, Oxford U. Press, in press.
[Imaging of diabetic osteopathy].
Patsch, J; Pietschmann, P; Schueller-Weidekamm, C
2015-04-01
Diabetic bone diseases are more than just osteoporosis in patients with diabetes mellitus (DM): a relatively high bone mineral density is paired with a paradoxically high risk of fragility fractures. Diabetics exhibit low bone turnover, osteocyte dysfunction, relative hypoparathyroidism and an accumulation of advanced glycation end products in the bone matrix. Besides typical insufficiency fractures, diabetics show a high risk for peripheral fractures of the lower extremities (e.g. metatarsal fractures). The correct interdisciplinary assessment of fracture risks in patients with DM is therefore a clinical challenge. There are two state of the art imaging methods for the quantification of fracture risks: dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). Radiography, multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) are suitable for the detection of insufficiency fractures. Novel research imaging techniques, such as high-resolution peripheral quantitative computed tomography (HR-pQCT) provide non-invasive insights into bone microarchitecture of the peripheral skeleton. Using MR spectroscopy, bone marrow composition can be studied. Both methods have been shown to be capable of discriminating between type 2 diabetic patients with and without prevalent fragility fractures and thus bear the potential of improving the current standard of care. Currently both methods remain limited to clinical research applications. DXA and HR-pQCT are valid tools for the quantification of bone mineral density and assessment of fracture risk in patients with DM, especially if interpreted in the context of clinical risk factors. Radiography, CT and MRI are suitable for the detection of insufficiency fractures.
Osteoporosis in paediatric patients with spina bifida.
Marreiros, Humberto; Marreiros, Humberto Filipe; Loff, Clara; Calado, Eulalia
2012-01-01
The prevalence and morbidity associated with osteoporosis and fractures in patients with spina bifida (SB) highlight the importance of osteoporosis prevention and treatment in early childhood; however, the issue has received little attention. The method for the selection of appropriate patients for drug treatment has not been clarified. To review the literature concerning fracture risks and low bone density in paediatric patients with SB. We looked for studies describing state-of-the-art treatments and for prevention of secondary osteoporosis. Articles were identified through a search in the electronic database (PUBMED) supplemented with reviews of the reference lists of selected papers. The main outcome measures were incidence of fractures and risk factors for fracture, an association between bone mineral density (BMD) and occurrence of fracture, risk factors of low BMD, and effects of pharmacological and non-pharmacological treatments on BMD and on the incidence of fractures. We considered as a secondary outcome the occurrence of fractures in relation to the mechanism of injury. Results indicated that patients with SB are at increased risk for fractures and low BMD. Risk factors that may predispose patients to fractures include higher levels of neurological involvement, non-ambulatory status, physical inactivity, hypercalciuria, higher body fat levels, contractures, and a previous spontaneous fracture. Limitations were observed in the number and quality of studies concerning osteoporosis prevention and treatment in paediatric patients with SB. The safety and efficiency of drugs to treat osteoporosis in adults have not been evaluated satisfactorily in children with SB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesz, Sabina, E-mail: sabina.lesz@polsl.pl
The experiments demonstrate that ductility of the samples of bulk metallic glass (BMG) with the same chemical composition increased with decreasing sample size. It is shown that microhardness and density increases with decreasing the cooling rate. The fracture morphology of rods after compressive fracture were different on the cross section. Two characteristic features of the compressive fracture morphologies of metallic glasses (MGs) were observed in samples: smooth region and the vein pattern. Many parallel shear bands were observed on the deformed specimen with ϕ = 2 mm in diameter. The results provide more understanding on the relationship among the coolingmore » rate, structure and micro-indentation behavior of the Fe-Co-based BMGs. - Highlights: •Fracture morphology and micro-indentation behavior is studied. •The smaller BMG sample exhibits the larger plasticity. •Microhardness and density increase with decreasing the cooling rate. •Formation of shear bands has been reported in deformed specimens. •Structure and mechanical properties of BMGs can be controlled by the cooling rate.« less
2013-01-01
Background Laxatives are among the most widely used over-the-counter medications in the United States but studies examining their potential hazardous side effects are sparse. Associations between laxative use and risk for fractures and change in bone mineral density [BMD] have not previously been investigated. Methods This prospective analysis included 161,808 postmenopausal women (8907 users and 151,497 nonusers of laxatives) enrolled in the WHI Observational Study and Clinical Trials. Women were recruited from October 1, 1993, to December 31, 1998, at 40 clinical centers in the United States and were eligible if they were 50 to 79 years old and were postmenopausal at the time of enrollment. Medication inventories were obtained during in-person interviews at baseline and at the 3-year follow-up visit on everyone. Data on self-reported falls (≥2), fractures (hip and total fractures) were used. BMD was determined at baseline and year 3 at 3 of the 40 clinical centers of the WHI. Results Age-adjusted rates of hip fractures and total fractures, but not for falls were similar between laxative users and non-users regardless of duration of laxative use. The multivariate-adjusted hazard ratios for any laxative use were 1.06 (95% confidence interval [CI], 1.03-1.10) for falls, 1.02 (95% CI, 0.85-1.22) for hip fractures and 1.01 (95% CI, 0.96-1.07) for total fractures. The BMD levels did not statistically differ between laxative users and nonusers at any skeletal site after 3-years intake. Conclusion These findings support a modest association between laxative use and increase in the risk of falls but not for fractures. Its use did not decrease bone mineral density levels in postmenopausal women. Maintaining physical functioning, and providing adequate treatment of comorbidities that predispose individuals for falls should be considered as first measures to avoid potential negative consequences associated with laxative use. PMID:23635086
Syddall, Holly E; Evandrou, Maria; Dennison, Elaine M; Cooper, Cyrus; Sayer, Avan Aihie
2012-01-01
It is unknown whether osteoporosis is socially patterned. Using data from the Hertfordshire Cohort Study we found no consistent evidence for social inequalities in prevalent or incident fracture, bone mineral density or loss rates, or bone strength. Public health strategies for prevention of osteoporosis should focus on the whole population. Osteoporosis and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. It is unclear whether osteoporosis and osteoporotic fracture are socially patterned. This study aims to analyse social inequalities in osteoporosis and osteoporotic fracture among the 3,225 community-dwelling men and women, aged 59-73 years, who participated in the Hertfordshire Cohort Study (HCS), UK. A panel of markers of bone health (fracture since 45 years of age; DXA bone mineral density and loss rate at the total femur; pQCT strength strain indices for the radius and tibia; and incident fracture) were analysed in relation to the social circumstances of the HCS participants (characterised at the individual level by: age left full time education; current social class; housing tenure and car availability). We found little strong or consistent evidence among men, or women, for social inequalities in prevalent or incident fracture, DXA bone mineral density, bone loss rates, or pQCT bone strength, with or without adjustment for age, anthropometry, lifestyle and clinical characteristics. Reduced car availability at baseline was associated with lower pQCT radius and tibia strength strain indices at follow-up among men only (p = 0.02 radius and p < 0.01 tibia unadjusted; p = 0.05 radius and p = 0.01 tibia, adjusted for age, anthropometry, lifestyle and clinical characteristics). Our results suggest that fracture and osteoporosis do not have a strong direct social gradient and that public health strategies for prevention and treatment of osteoporosis should continue to focus on the whole population.
A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...
Experimental study on performance of new low-density proppant
NASA Astrophysics Data System (ADS)
Tian, Yu; Qu, Zhanqing; Cheng, Yingchun; Gong, Yuanzhi
2018-04-01
In recent years, Unconventional oil and gas resources have gradually become an important part of oil and gas development. The development of the above resources must be applied to hydraulic fracturing technology. As a key material in fracturing technology, the proppant is an important factor influencing the success of fracturing. The parameters of ceramsite are excellent which can be used in most fracturing operation. And self-suspension proppant also has good parameters, gelling and gelling breaking, can greatly simplify the oilfield fracturing site construction difficulty, so it can be a new kind of fracturing material as oilfield operation.
Li, Yuzhan; Rios, Orlando; Kessler, Michael R
2014-11-12
A thermomagnetic processing method was used to produce a biphenyl-based liquid-crystalline epoxy resin (LCER) with oriented liquid-crystalline (LC) domains. The orientation of the LCER was confirmed and quantified using two-dimensional X-ray diffraction. The effect of molecular alignment on the mechanical and thermomechanical properties of the LCER was investigated using nanoindentation and thermomechanical analysis, respectively. The effect of the orientation on the fracture behavior was also examined. The results showed that macroscopic orientation of the LC domains was achieved, resulting in an epoxy network with an anisotropic modulus, hardness, creep behavior, and thermal expansion.
Mapping of hydraulic fractures from tiltmeter measurements
NASA Astrophysics Data System (ADS)
Lecampion, B.; Jeffrey, R.
2003-12-01
In considering the problem of inverse modeling of tiltmeter data for hydraulic fracture mapping, we address the issues of selecting the elastic model to represent the hydraulic fracture and limitations imposed by distance and fracture size on the information that can be recovered about the fracture. A tiltmeter measures, at its location, the changes in the surface inclination in two orthogonal directions. These inclinations are a direct measure of the horizontal gradient of the vertical component of the displacement field. Since advances in instrumentation in the last two decades, this type of apparatus have become extremely precise and can detect inclination changes down to a nanoradian. The simplicity of tiltmeter measurements has attracted interest not only in geophysics, but also in the petroleum industry. The idea of using tiltmeters to monitor hydraulic fractures can be traced back to the paper of Sun te{S} and is now a commercial service offered to the petroleum industry te{W}. However, the modeling and associated inverse problems required to analyze tiltmeter data raise difficult questions. The object(s) (fault, dyke, fracture) responsible for the recorded tilt are often modeled by finite Displacement Discontinuities, also called dislocation models. The validity of this type of model has been extensively discussed te{O,E} and many solutions for different configurations can be found in the literature. We show that it is possible to construct the solution for any type of dislocation model from the fundamental solution for an infinitesimal Displacement Discontinuity tensor. The eigenstrain theory te{M} is used to obtain this fundamental solution from the Green's function for the desired elastic domain (e.g. full or half space). Comparisons with known solutions demonstrate the flexibility of such method. We then focus on the problem of obtaining information about the orientation and size of an opening mode hydraulic fracture from the measured tilt field. One important problem is the identification of all the dimensions of the fracture model (length, width). The ability to obtain these parameters is controlled by limits, expressed in terms of the distance between the measurements and the fracture compared to the size of the fracture itself. The value of this ratio provides a condition that must be met before the fracture length-scales can be resolved. Determination of the fracture orientation is then investigated using a spatial Fourier Transform on the data set. This procedure highlights the requirement on the measurement array needed for a reliable identification: extension, number of tiltmeters, relative angle between the array and the fracture plane. \\begin{thebibliography}{1} \\bibitem{E} {Evans K.} \
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jing; Huang, Hai; Deo, Milind
The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing,more » arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.« less
Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.
Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A
2000-01-01
The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.
Eastell, Richard; Black, Dennis M.; Boonen, Steven; Adami, Silvano; Felsenberg, Dieter; Lippuner, Kurt; Cummings, Steven R.; Delmas, Pierre D.; Palermo, Lisa; Mesenbrink, Peter; Cauley, Jane A.
2016-01-01
Context In the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly – Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg significantly reduced fracture risk. Objective The aim of the study was to identify factors associated with greater efficacy during ZOL 5 mg treatment. Design, Setting, and Patients We conducted a subgroup analysis (preplanned and post hoc) of a multicenter, double-blind, placebo-controlled, 36-month trial in 7765 women with postmenopausal osteoporosis. Intervention A single infusion of ZOL 5 mg or placebo was administered at baseline, 12, and 24 months. Main Outcome Measures Primary endpoints were new vertebral fracture and hip fracture. Secondary endpoints were nonvertebral fracture and change in femoral neck bone mineral density (BMD). Baseline risk factor subgroups were age, BMD T-score and vertebral fracture status, total hip BMD, race, weight, geographical region, smoking, height loss, history of falls, physical activity, prior bisphosphonates, creatinine clearance, body mass index, and concomitant osteoporosis medications. Results Greater ZOL induced effects on vertebral fracture risk were seen with younger age (treatment-by-subgroup interaction, P =0.05), normal creatinine clearance (P =0.04), and body mass index ≥ 25 kg/m2 (P = 0.02). There were no significant treatment–factor interactions for hip or nonvertebral fracture or for change in BMD. Conclusions ZOL appeared more effective in preventing vertebral fracture in younger women, overweight/obese women, and women with normal renal function. ZOL had similar effects irrespective of fracture risk factors or femoral neck BMD. PMID:19567517
NASA Astrophysics Data System (ADS)
Gao, Feng; Cai, Chengzheng; Yang, Yugui
2018-06-01
As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.
Harkins, G J; Davis, G D; Dettori, J; Hibbert, M L; Hoyt, R A
1999-03-01
Depot medroxyprogesterone acetate is a popular contraceptive among young, physically active women. However, its administration has been linked to a relative decrease in estrogen levels. Since bone resorption is accelerated during hypoestrogenic states, there has been growing concern about the potential development of osteoporosis and fractures with the use of this contraceptive method. A physically active, 33-year-old woman demonstrated a 12.4% drop in femoral neck bone mineral density (BMD), 6.4% drop in lumbar BMD and 0.8% drop in total BMD with the subsequent development of a tibial stress fracture while on depot medroxyprogesterone acetate. Bone mineralization rapidly improved, and the stress fracture resolved with discontinuation of the medication. The long-term effects of depot medroxyprogesterone acetate on bone mineralization in physically active women should be evaluated more thoroughly.
NASA Astrophysics Data System (ADS)
Cacace, Mauro; Jacquey, Antoine B.
2017-09-01
Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).
NASA Astrophysics Data System (ADS)
Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand
2016-04-01
Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90-120 kV and target currents from 40-60 μA. The focal spot size on the diamond/tungsten target was about 5 μm. The x-ray beam was filtered using a 1 mm Aluminum plate before passing the sample. 1200 x-ray images were taken during a full rotation of the sample using an amorphous silicon flat panel detector with 1516x1900 pixels. This resulted in a voxel resolution of about 8 μm in the 3D data reconstructed from the images. Future work will be aimed in the images segmentation of the fault-related fracture mesh followed by the estimation of its hydraulic properties at the time of fracture sealing. Acknowledgements: This work is a contribution to the CONICYT- BMBF International Scientific Collaborative Research Program Project PCCI130025/FKZ01DN14033 and the FONDAP-CONICYT Project 15090013.
Histological observation for needle-tissue interactions.
Nakagawa, Yoshiyuki; Koseki, Yoshihiko
2013-01-01
We histologically investigated tissue fractures and deformations caused by ex vivo needle insertions. The tissue was formalin-fixed while the needle remained in the tissue. Following removal of the needle, the tissue was microtomed, stained, and observed microscopically. This method enabled observations of cellular and tissular conditions where deformations caused by needle insertions were approximately preserved. For this study, our novel method presents preliminary findings related with tissue fractures and the orientation of needle blade relative to muscle fibers. When the needle blade was perpendicular to the muscle fiber, transfiber fractures and relatively large longitudinal deformations occurred. When the needle blade was parallel to the muscle fiber, interfiber fractures and relatively small longitudinal deformations occurred. This made a significant difference in the resistance force of the needle insertions.
Method for directional hydraulic fracturing
Swanson, David E.; Daly, Daniel W.
1994-01-01
A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.
Brief Report: Bone Fractures in Children and Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Neumeyer, Ann M.; O'Rourke, Julia A.; Massa, Alexandra; Lee, Hang; Lawson, Elizabeth A.; McDougle, Christopher J.; Misra, Madhusmita
2015-01-01
Peripubertal boys with autism spectrum disorder (ASD) have lower bone mineral density (BMD) than typically developing controls. However, it is not clear whether lower BMD in ASD results in an increased fracture rate. This study examined the rate of fractures in children and adults with and without ASD using a national database of emergency room…
Dimensional threshold for fracture linkage and hooking
NASA Astrophysics Data System (ADS)
Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.
2018-03-01
Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.
kISMET: Stress and fracture characterization in a deep mine
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Dobson, P. F.; Daley, T. M.; Birkholzer, J. T.; Cook, P. J.; Ajo Franklin, J. B.; Rutqvist, J.; Siler, D.; Kneafsey, T. J.; Nakagawa, S.; Wu, Y.; Guglielmi, Y.; Ulrich, C.; Marchesini, P.; Wang, H. F.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Mattson, E.; Huang, H.; Johnson, T. C.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.
2016-12-01
We are developing a community facility called kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) at the Sanford Underground Research Facility (SURF) in Lead, SD. The purpose of kISMET is to investigate stress and the effects of rock fabric on hydraulic fracturing. Although findings from kISMET may have broad applications that inform stress and fracturing in anisotropic rock, results will be most applicable to improving control of hydraulic fracturing for enhanced geothermal systems (EGS) in crystalline rock. At the kISMET site on the 4850 ft (1480 m depth) level of SURF, we have drilled and cored an array of nearly vertical boreholes in Precambrian phyllite. The array consists of four 50-m deep monitoring boreholes surrounding one 100-m deep borehole forming a 6 m-wide five-spot pattern at a depth of 1530 m. Previous investigations of the stress field at SURF suggest that the principal stress s1 is nearly vertical. By aligning the kISMET boreholes approximately with σ1, fractures created in the center borehole should in theory be perpendicular to σ3, the least principal horizontal stress. But the phyllite at kISMET has a strong fabric (foliation) that could influence fracturing. Stress measurements and stimulation using hydraulic fracturing will be carried out in the center borehole using a straddle packer and high-pressure pump. We will use an impression packer and image logs after stress testing and stimulation to determine fracture orientation and extent at the center borehole. In order to study the control of stress, rock fabric, and stimulation approach on size, aperture, and orientation of hydraulic fractures, we will carefully monitor the stress measurements and stimulation. For example, we will use continuous active source seismic (CASSM) in two of the monitoring boreholes to measure changes in seismic-wave velocity as water fills the fracture. Second, near real-time electrical resistance tomography (ERT) will be used in the other two boreholes to monitor the changes in resistivity during stress measurement and stimulation. Finally, accelerometers placed nearby on the 4850 level will monitor induced microseismicity. Results of pre-test fracturing simulations, laboratory tests on core, stress testing, and stimulation and associated monitoring will be presented.
NASA Astrophysics Data System (ADS)
Beekman, Fred; Badsi, Madjid; van Wees, Jan-Diederik
2000-05-01
Many low-efficiency hydrocarbon reservoirs are productive largely because effective reservoir permeability is controlled by faults and natural fractures. Accurate and low-cost information on basic fault and fracture properties, orientation in particular, is critical in reducing well costs and increasing well recoveries. This paper describes how we used an advanced numerical modelling technique, the finite element method (FEM), to compute site-specific in situ stresses and rock deformation and to predict fracture attributes as a function of material properties, structural position and tectonic stress. Presented are the numerical results of two-dimensional, plane-strain end-member FEM models of a hydrocarbon-bearing fault-propagation-fold structure. Interpretation of the modelling results remains qualitative because of the intrinsic limitations of numerical modelling; however, it still allows comparisons with (the little available) geological and geophysical data. In all models, the weak mechanical strength and flow properties of a thick shale layer (the main seal) leads to a decoupling of the structural deformation of the shallower sediments from the underlying sediments and basement, and results in flexural slip across the shale layer. All models predict rock fracturing to initiate at the surface and to expand with depth under increasing horizontal tectonic compression. The stress regime for the formation of new fractures changes from compressional to shear with depth. If pre-existing fractures exist, only (sub)horizontal fractures are predicted to open, thus defining the principal orientation of effective reservoir permeability. In models that do not include a blind thrust fault in the basement, flexural amplification of the initial fold structure generates additional fracturing in the crest of the anticline controlled by the material properties of the rocks. The folding-induced fracturing expands laterally along the stratigraphic boundaries under enhanced tectonic loading. Models incorporating a blind thrust fault correctly predict the formation of secondary syn- and anti-thetic mesoscale faults in the basement and sediments of the hanging wall. Some of these faults cut reservoir and/or seal layers, and thus may influence effective reservoir permeability and affect seal integrity. The predicted faults divide the sediments across the anticline in several compartments with different stress levels and different rock failure (and proximity to failure). These numerical model outcomes can assist classic interpretation of seismic and well bore data in search of fractured and overpressured hydrocarbon reservoirs.
Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.
2011-01-01
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.
NASA Astrophysics Data System (ADS)
Philipp, S. L.; Reyer, D.; Meier, S.
2009-04-01
Geothermal reservoirs are rock units from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In geothermal reservoirs in limestone (and similar in other rocks with low matrix permeability), fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites (the percolation threshold must be reached). In order to generate permeability in man-made reservoirs, interconnected fracture systems are formed either by creating hydraulic fractures or by massive hydraulic stimulation of the existing fracture system in the host rock. For effective stimulation, the geometry of the fracture system and the mechanical properties of the host rock (particularly rock stiffnesses and strengths) must be known. Here we present results of a study of fracture systems in rocks that could be used to host man-made geothermal reservoirs: the Muschelkalk (Middle Triassic) limestones in Germany. Studies of fracture systems in exposed palaeogeothermal fields can also help understand the permeability development in stimulated reservoirs. We therefore present data on the infrastructures of extinct fracture-controlled geothermal fields in fault zones in the Blue Lias (Lower Jurassic), Great Britain. In fault zones there are normally two main mechanical and hydrogeological units. The fault core, along which fault slip mostly occurs, consists mainly of breccia and other cataclastic rocks. The fault damage zone comprises numerous fractures of various sizes. During fault slip, the fault core may transport water (if its orientation is favourable to the hydraulic gradient in the area). In the damage zone, however, fluid transport through fracture networks depends particularly on the current local stress field. One reason for this is that fractures are sensitive to changes in the stress field and deform much more easily than circular pores. If the maximum horizontal compression is oriented perpendicular to the fault strike, its fractures (mainly in the damage zone) tend to be closed and lead less water than if the maximum horizontal compression is oriented parallel to the fault strike, in which case its fractures tend to open up and be favourable to fluid transport. In areas of potential geothermal reservoirs, fault zones must be studied, keeping in mind that the permeability structure of a fault zone depends partly on the mechanical units of the fault zone and partly on the local stress field. To explore stress fields affecting fracture propagation we have run numerical models using the finite-element and the boundary-element methods. We focus on the influence of changes in mechanical properties (particularly Young's modulus) between host rock layers in geothrmal reservoirs in limestone. The numerical models show that stresses commonly concentrate in stiff layers. Also, at the contacts between soft marl and stiffer limestone layers, the stress trajectories (directions of the principal stresses) may become rotated. Depending on the external loading conditions, certain layers may become stress barriers to fracture propagation. In a reservoir where most hydrofractures become stratabound (confined to individual layers), interconnected fracture systems are less likely to develop than in one with non-stratabound hydrofractures. Reservoirs with stratabound fractures may not reach the percolation threshold needed for significant permeability. We also used the field data to investigate the fracture-related permeability of fluid reservoirs in limestone with numerical models. We simulated different scenarios, in which potential fluid pathways were added successively (vertical extension fractures, inclined shear fractures and open layer contacts). Short and straight fluid pathways parallel to the flow direction lead to the highest permeabilities. The better the connectivity of the fracture system, the higher is the resulting permeability. Only in well-interconnected, continuous systems of fluid pathways there is a correlation between the apertures of the fractures and the permeability. Our results suggest that fluid transport along faults, and the propagation and aperture variation of hydrofractures, are important parameters in the permeability development of geothermal reservoirs. These studies provide a basis for models of fracture networks and fluid transport in future man-made reservoirs. We conclude that the likely permeability of a man-made geothermal reservoir can be inferred from field data, natural analogues, laboratory measurements, and numerical models.
Maffezzoni, Filippo; Maddalo, Michele; Frara, Stefano; Mezzone, Monica; Zorza, Ivan; Baruffaldi, Fabio; Doglietto, Francesco; Mazziotti, Gherardo; Maroldi, Roberto; Giustina, Andrea
2016-11-01
Vertebral fractures are an emerging complication of acromegaly but their prediction is still difficult occurring even in patients with normal bone mineral density. In this study we evaluated the ability of high-resolution cone-beam computed tomography to provide information on skeletal abnormalities associated with vertebral fractures in acromegaly. 40 patients (24 females, 16 males; median age 57 years, range 25-72) and 21 healthy volunteers (10 females, 11 males; median age 60 years, range: 25-68) were evaluated for trabecular (bone volume/trabecular volume ratio, mean trabecular separation, and mean trabecular thickness) and cortical (thickness and porosity) parameters at distal radius using a high-resolution cone-beam computed tomography system. All acromegaly patients were evaluated for morphometric vertebral fractures and for mineral bone density by dual-energy X-ray absorptiometry at lumbar spine, total hip, femoral neck, and distal radius. Acromegaly patients with vertebral fractures (15 cases) had significantly (p < 0.05) lower bone volume/trabecular volume ratio, greater mean trabecular separation, and higher cortical porosity vs. nonfractured patients, without statistically significant differences in mean trabecular thickness and cortical thickness. Fractured and nonfractured acromegaly patients did not have significant differences in bone density at either skeletal site. Patients with acromegaly showed lower bone volume/trabecular volume ratio (p = 0.003) and mean trabecular thickness (p < 0.001) and greater mean trabecular separation (p = 0.02) as compared to control subjects, without significant differences in cortical thickness and porosity. This study shows for the first time that abnormalities of bone microstructure are associated with radiological vertebral fractures in acromegaly. High-resolution cone-beam computed tomography at the distal radius may be useful to evaluate and predict the effects of acromegaly on bone microstructure.
Epidemiology, etiology, and diagnosis of osteoporosis.
Lane, Nancy E
2006-02-01
Osteoporosis, a major public health problem, is becoming increasingly prevalent with the aging of the world population. Osteoporosis is a skeletal disorder characterized by compromised bone strength, which predisposes the individual to an increased risk of fractures of the hip, spine, and other skeletal sites. The clinical consequences and economic burden of this disease call for measures to assess individuals who are at high risk to allow for appropriate intervention. Many risk factors are associated with osteoporotic fracture, including low peak bone mass, hormonal factors, the use of certain drugs (eg, glucocorticoids), cigarette smoking, low physical activity, low intake of calcium and vitamin D, race, small body size, and a personal or a family history of fracture. All of these factors should be taken into account when assessing the risk of fracture and determining whether further treatment is required. Because osteoporotic fracture risk is higher in older women than in older men, all postmenopausal women should be evaluated for signs of osteoporosis during routine physical examinations. Radiologic laboratory assessments of bone mineral density generally should be reserved for patients at highest risk, including all women over the age of 65, younger postmenopausal women with risk factors, and all postmenopausal women with a history of fractures. The evaluation of biochemical markers of bone turnover has been useful in clinical research. However, the predictive factor of these measurements is not defined clearly, and these findings should not be used as a replacement for bone density testing. Together, clinical assessment of osteoporotic risk factors and objective measures of bone mineral density can help to identify patients who will benefit from intervention and, thus, can potentially reduce the morbidity and mortality associated with osteoporosis-associated fractures in this population.
A Modified Direct-Reading Azimuth Protractor
ERIC Educational Resources Information Center
Larson, William C.; Pugliese, Joseph M.
1977-01-01
Describes the construction of a direct-reading azimuth protractor (DRAP) used for mapping fracture and joint-surface orientations in underground mines where magnetic disturbances affect typical geologic pocket transit. (SL)
NASA Astrophysics Data System (ADS)
Makowski, Alexander J.; Granke, Mathilde; Uppuganti, Sasidhar; Mahadevan-Jansen, Anita; Nyman, Jeffry S.
2015-02-01
Polarization Raman Spectroscopy has been used to demonstrate microstructural features and collagen fiber orientation in human and mouse bone, concurrently measuring both organization and composition; however, it is unclear as to what extent these measurements explain the mechanical quality of bone. In a cohort of age and gender matched cadaveric cortical bone samples (23-101 yr.), we show homogeneity of both composition and structure are associated with the age related decrease in fracture toughness. 64 samples were machined into uniform specimens and notched for mechanical fracture toughness testing and polished for Raman Spectroscopy. Fingerprint region spectra were acquired on wet bone prior to mechanical testing by sampling nine different microstructural features spaced in a 750x750 μm grid in the region of intended crack propagation. After ASTM E1820 single edge notched beam fracture toughness tests, the sample was dried in ethanol and the osteonal-interstitial border of one osteon was samples in a 32x32 grid of 2μm2 pixels for two orthogonal orientations relative to the long bone axis. Standard peak ratios from the 9 separate microstructures show heterogeneity between structures but do not sufficiently explain fracture toughness; however, peak ratios from mapping highlight both lamellar contrast (ν1Phos/Amide I) and osteon-interstitial contrast (ν1Phos/Proline). Combining registered orthogonal maps allowed for multivariate analysis of underlying biochemical signatures. Image entropy and homogeneity metrics of single principal components significantly explain resistance to crack initiation and propagation. Ultimately, a combination of polarization content and multivariate Raman signatures allowed for the association of microstructural tissue heterogeneity with fracture resistance.
NASA Astrophysics Data System (ADS)
Chen, Haichao; Meng, Xiaobo; Niu, Fenglin; Tang, Youcai; Yin, Chen; Wu, Furong
2018-02-01
Microseismic monitoring is crucial to improving stimulation efficiency of hydraulic fracturing treatment, as well as to mitigating potential induced seismic hazard. We applied an improved matching and locating technique to the downhole microseismic data set during one treatment stage along a horizontal well within the Weiyuan shale gas play inside Sichuan Basin in SW China, resulting in 3,052 well-located microseismic events. We employed this expanded catalog to investigate the spatiotemporal evolution of the microseismicity in order to constrain migration of the injected fluids and the associated dynamic processes. The microseismicity is generally characterized by two distinctly different clusters, both of which are highly correlated with the injection activity spatially and temporarily. The distant and well-confined cluster (cluster A) is featured by relatively large-magnitude events, with 40 events of M -1 or greater, whereas the cluster in the immediate vicinity of the wellbore (cluster B) includes two apparent lineations of seismicity with a NE-SW trending, consistent with the predominant orientation of natural fractures. We calculated the b-value and D-value, an index of fracture complexity, and found significant differences between the two seismicity clusters. Particularly, the distant cluster showed an extremely low b-value ( 0.47) and D-value ( 1.35). We speculate that the distant cluster is triggered by reactivation of a preexisting critically stressed fault, whereas the two lineations are induced by shear failures of optimally oriented natural fractures associated with fluid diffusion. In both cases, the spatially clustered microseismicity related to hydraulic stimulation is strongly controlled by the preexisting faults and fractures.
Qaseem, Amir; Forciea, Mary Ann; McLean, Robert M; Denberg, Thomas D
2017-06-06
This guideline updates the 2008 American College of Physicians (ACP) recommendations on treatment of low bone density and osteoporosis to prevent fractures in men and women. This guideline is endorsed by the American Academy of Family Physicians. The ACP Clinical Guidelines Committee based these recommendations on a systematic review of randomized controlled trials; systematic reviews; large observational studies (for adverse events); and case reports (for rare events) that were published between 2 January 2005 and 3 June 2011. The review was updated to July 2016 by using a machine-learning method, and a limited update to October 2016 was done. Clinical outcomes evaluated were fractures and adverse events. This guideline focuses on the comparative benefits and risks of short- and long-term pharmacologic treatments for low bone density, including pharmaceutical prescriptions, calcium, vitamin D, and estrogen. Evidence was graded according to the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. The target audience for this guideline includes all clinicians. The target patient population includes men and women with low bone density and osteoporosis. ACP recommends that clinicians offer pharmacologic treatment with alendronate, risedronate, zoledronic acid, or denosumab to reduce the risk for hip and vertebral fractures in women who have known osteoporosis. (Grade: strong recommendation; high-quality evidence). ACP recommends that clinicians treat osteoporotic women with pharmacologic therapy for 5 years. (Grade: weak recommendation; low-quality evidence). ACP recommends that clinicians offer pharmacologic treatment with bisphosphonates to reduce the risk for vertebral fracture in men who have clinically recognized osteoporosis. (Grade: weak recommendation; low-quality evidence). ACP recommends against bone density monitoring during the 5-year pharmacologic treatment period for osteoporosis in women. (Grade: weak recommendation; low-quality evidence). ACP recommends against using menopausal estrogen therapy or menopausal estrogen plus progestogen therapy or raloxifene for the treatment of osteoporosis in women. (Grade: strong recommendation; moderate-quality evidence). ACP recommends that clinicians should make the decision whether to treat osteopenic women 65 years of age or older who are at a high risk for fracture based on a discussion of patient preferences, fracture risk profile, and benefits, harms, and costs of medications. (Grade: weak recommendation; low-quality evidence).
Kumar, Dharmendra; Jain, Vijay Kumar; Lal, Hitesh; Arya, Rajinder Kumar; Sinha, Skand
2012-12-01
Osteopetrosis is a rare inherited skeletal disorder characterized by increased density. The increased fragility of such dense bone results in a greater incidence of fractures, especially around hip and proximal femur. The surgical treatment of such fractures is difficult due to hard but brittle structure of bone. Herein we report a case of bilateral subtrochanteric fracture in an osteopetrotic patient. It was fixed using a dynamic hip screw with plate.
Bone mineral density at different sites and vertebral fractures in Serbian postmenopausal women.
Ilic Stojanovic, O; Vuceljic, M; Lazovic, M; Gajic, M; Radosavljevic, N; Nikolic, D; Andjic, M; Spiroski, D; Vujovic, S
2017-02-01
This randomized study aimed to evaluate the correlation between bone mineral densities (BMD) measured at different sites and the frequency of vertebral fractures in a group of Serbian postmenopausal women. BMD was measured in 130 naïve postmenopausal women by dual X-ray absorptiometry (DXA) at the ultra-distal part of the forearms, at the hip and at the lumbar spine. At each of the measurement sites, the patients were categorized as osteoporotic, or osteopenic, or in the reference range. Vertebral fractures were examined using thoracic and lumbar spine radiography. A T-score at different skeletal sites showed discordance in the site-specific region. Vertebral fractures were found in 58.82% of patients with hip osteopenia, in 45% with forearm osteopenia and in 54.54% with lumbar spine osteoporosis. The study confirmed that the reduction of BMD depends on age and choice of measurement site. The best correlation was obtained in the women with osteopenia at all measurement sites. The discovery of vertebral fractures by lateral thoracic and lumbar spine radiography improves prompt treatment. Reference values of BMD do not exclude vertebral fractures. Of vertebral fractures, 72.5% were asymptomatic and thus spine radiographies are obligatory. Currently discussed is the position of DXA for measuring BMD as a method of detection for patients at risk of fracture.
Sudden onset odontoid fracture caused by cervical instability in hypotonic cerebral palsy.
Shiohama, Tadashi; Fujii, Katsunori; Kitazawa, Katsuhiko; Takahashi, Akiko; Maemoto, Tatsuo; Honda, Akihito
2013-11-01
Fractures of the upper cervical spine rarely occur but carry a high rate of mortality and neurological disabilities in children. Although odontoid fractures are commonly caused by high-impact injuries, cerebral palsy children with cervical instability have a risk of developing spinal fractures even from mild trauma. We herein present the first case of an odontoid fracture in a 4-year-old boy with cerebral palsy. He exhibited prominent cervical instability due to hypotonic cerebral palsy from infancy. He suddenly developed acute respiratory failure, which subsequently required mechanical ventilation. Neuroimaging clearly revealed a type-III odontoid fracture accompanied by anterior displacement with compression of the cervical spinal cord. Bone mineral density was prominently decreased probably due to his long-term bedridden status and poor nutritional condition. We subsequently performed posterior internal fixation surgically using an onlay bone graft, resulting in a dramatic improvement in his respiratory failure. To our knowledge, this is the first report of an odontoid fracture caused by cervical instability in hypotonic cerebral palsy. Since cervical instability and decreased bone mineral density are frequently associated with cerebral palsy, odontoid fractures should be cautiously examined in cases of sudden onset respiratory failure and aggravated weakness, especially in hypotonic cerebral palsy patients. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Risedronate and ergocalciferol prevent hip fracture in elderly men with Parkinson disease.
Sato, Yoshihiro; Honda, Yoshiaki; Iwamoto, Jun
2007-03-20
There is a high incidence of hip fractures in patients with Parkinson disease (PD). Bone mineral density (BMD) is decreased in patients with PD, correlating with the immobilization-induced bone resorption and hypovitaminosis D with compensatory hyperparathyroidism. To evaluate the effectiveness of risedronate, an inhibitor of bone resorption, on osteoporosis and the risk of hip fractures in elderly men with PD. This was a 2-year, randomized, double-blind, placebo-controlled trial. In a prospective study of patients with PD, 121 patients received a daily dose of 2.5 mg risedronate and vitamin D2 1,000 IU for 2 years, and the remaining 121 received placebo and vitamin D2 1,000 IU. Incidence of hip fractures was compared between the two groups. Nine patients sustained hip fractures in the placebo group, and three hip fractures occurred in the risedronate group. The relative risk of a hip fracture in the risedronate group vs the placebo group was 0.33 (95% CI, 0.09 to 1.20). BMD increased by 2.2% in the risedronate group and decreased by 2.9% in the placebo group (p < 0.0001). Urinary deoxypyridinoline, a bone resorption marker, decreased by 46.7% in the risedronate group and by 33.0% in the placebo group. Treatment with risedronate and vitamin D2 increases bone mineral density in elderly men with Parkinson disease and reduces the risk of hip fractures.
Magma storage in a strike-slip caldera
Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.
2016-01-01
Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions. PMID:27447932
Magma storage in a strike-slip caldera.
Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E
2016-07-22
Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.
1985-01-01
Mechanical properties and stress-strain behavior were evaluated for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol pct discontinuous SiC whisker, nodule, or particulate reinforcement. The elastic modulus of the composites was found to be isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Type and orientation of reinforcement had some effect on the strengths of composites, but only for those in which the whisker reinforcement was highly oriented. Ductility decreased with increasing reinforcement content; however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain was probably attributable to cleaner matrix powder, better mixing, and increased mechanical working during fabrication. Comparison of properties with conventional aluminum and titanium structural alloys showed that the properties of the low-cost, lightweight composites demonstrated very good potential for application to aerospace structures.
Fracture-fault network characterization of pavement imagery of the Whitby Mudstone, Yorkshire
NASA Astrophysics Data System (ADS)
Boersma, Quinten; Hardebol, Nico; Houben, Maartje; Barnhoorn, Auke; Drury, Martyn
2015-04-01
Natural fractures play an important role in the hydrocarbon production from tight reservoirs. The need for fracture network pathways by fraccing matters particularly for shale gas prospects, due to their micro- to nano-darcies matrix permeabilities. The study of natural fractures from outcrops helps to better understand network connectivity and possibility of reactivating pre-existing planes of weakness, induced by hydraulic stimulation. Microseismicity also show that natural fractures are reactivated during fraccing in tight gas reservoirs and influence the success of the stimulation. An accurate understanding of natural fracture networks can help in predicting the development of fracture networks. In this research we analyze an outcrop analogue, the Whitby Mustone Formation (WMF), in terms of its horizontal fracture network. The WMF is the time equivalent of the Posidonia Shale Formation (PSF), which on itself is the main shale gas prospect in the Dutch subsurface. The fracture network of the WMF is characterized by a system of steep dipping joints with two dominant directions with N-S and E-W strike. The network was digitized from bird-view imagery of the pavement with a spatial extent of ~100 m at sub-cm resolution. The imagery is interpreted in terms of orientation and length distributions, intensity and fractal dimensions. Samples from the field were analyzed for rock strength and sample mineralogy. The results indicate that the fracture networks greatly differ per bed. Observed differences are for example; the geometry of the fracture network, its cumulative length distribution law, the fracture intensity, the fracture length vs its orientation and the fractal dimension. All these parameters greatly influence fracture network connectivity, the probability that longer fractures exist within the pavement and whether the network is more prone to clustering or scattering. Apart from the differences, the networks display a fairly similar orthogonal arrangement with dominant large (> 5-10 m) N-S striking fractures and smaller E-W striking cross-joints (< 2-3 m). A nested network arrangement is indicated by some smaller-scale N-S fractures abutting against the E-W striking ones. Furthermore, abutment relations provide some constraints on relative time. Timing indications with respect to burial-exhumation are difficult to establish. Some joints are cemented and measurable from the high-resolution imagery. The vein measurements helped establishing a first order relation between the fracture aperture with respect to their length and confirm that longer fractures have a wider aperture. The above stated parameters and results all prove to be very valuable information which can help predict the geometries of the different fracture networks present within the PSF. It is important to understand the possible mechanisms which can cause these differences in fracture network characteristics. Bulk lithological variations between beds are minor, mainly consisting of clay minerals. Furthermore, some quartz and pyrite is present in all samples and TOC is present in variable amounts. However, the occurrence of concretions up to 0.5m in size correlates with notable differences in distinct network arrangement. Therefore it appears that the presence of these concretions greatly alters the overall strength of the rock, hence the fracture network geometry.