Science.gov

Sample records for fracture network generator

  1. FRACGEN™ Stochastically Generates Fracture Networks Consistent with Data

    SciTech Connect

    Smith, D.H.; McKoy, M.L.; Boyle, E.J.

    2006-10-01

    FRACGEN(tm) generates fracture networks for highly fractured reservoirs (< 60,000 fractures) consistent with field data (e.g., outcrop data, fmi and other logs) and a geologist’s intuition. It uses four Boolean models of increasing complexity through a Monte Carlo process that samples statistical distributions for various network attributes of each fracture set as found from the data. Three models account for hierarchical relations among fracture sets, and two generate fracture swarming. Termination/intersection frequencies may be controlled implicitly or explicitly. The code also is being upgraded to allow specification of fractal properties for the fracture network. FRACGEN provides an output file that specifies length, orientation, and effective aperture for each fracture. This output file can be used by a unique reservoir engineering code, NFFLOW, to perform reservoir engineering studies for geologic sequestration of carbon dioxide. This presentation describes use of FRACGEN to describe a reservoir in the Oriskany Sandstone in West Virginia.

  2. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  3. Drainage fracture networks in elastic solids with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Galland, Olivier; Renard, François; Meakin, Paul; Jamtveit, Bjørn; Dysthe, Dag K.

    2013-06-01

    Experiments in which CO2 gas was generated by the yeast fermentation of sugar in an elastic layer of gelatine gel confined between two glass plates are described and analyzed theoretically. The CO2 gas pressure causes the gel layer to fracture. The gas produced is drained on short length scales by diffusion and on long length scales by flow in a fracture network, which has topological properties that are intermediate between river networks and hierarchical-fracture networks. A simple model for the experimental system with two parameters that characterize the disorder and the intermediate (river-fracture) topology of the network was developed and the results of the model were compared with the experimental results.

  4. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  5. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  6. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  7. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  8. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  9. Temporal and spatial characteristics of drainage fracture networks in elastic media with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Dysthe, Dag Kristian; Kobchenko, Maya; Hafver, Andreas; Panahi, Hamed; Jamtveit, Bjørn; Renard, Francois

    2014-05-01

    Escape of internally generated fluids from low permeability elastic solids plays an important role in several natural environments. In geological systems, primary migration of hydrocarbons, dehydration of sediments and hydrated mantle rocks in subduction zones are examples where the existing permeability cannot accommodate transport of generated fluids in low permeability rocks and fluid pressure build-up may alter the permeability by fracturing. Fractures form and propagate in the rock due to internal pressure build-up. We have performed experiments on shales and model materials using X-ray microtomography, 2D imaging and pressure burst recordings to study the spatiotemporal evolution of drainage fracture networks and released fluids. The local growth of fractures due to internal pressure build up has been characterized and modeled. The spatial organization of the fracture networks have been characterized in a novel manner as intermediate between tree networks and hierarchical fracture networks. The dynamics of intermittent fluid release on the network show both periodic, 1/f and 1/f2 dependence of fluid release spectrum. Discrete element, algorithmic and finite element models have been used to reproduce different aspects of the drainage fracture network behavior.

  10. Temporal evolution of a drainage fracture network into an elastic medium with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Dysthe, Dag Kristian; Renard, Francois

    2013-04-01

    Escape of internally generated fluids from low permeability rocks plays an important role in several geological systems. Primary migration of hydrocarbons, dehydration of sediments and hydrated mantellic rocks in subduction zones in the Earth's crust are geological examples where the existing permeability cannot accommodate transport of generated fluids in low permeability rocks and fluid pressure build-up may alter the permeability by fracturing. Fractures form and propagate in the rock due to internal pressure build-up. We develop an easy and reproducible analog experiment to simulate fracture formation in low permeability rock during internal fluid/gas production. This work aims to describe the physical mechanism of fracture network growth and temporal evolution of created fractures. A tight elastic gelatin matrix is used as a rock analog. The nucleation, propagation and coalescence of fractures within the solid matrix occurs due to CO2 production by yeast consuming sugar and is followed using optical means. We quantify first how an equilibrium fracture network self-develop, and then how the intermittent fluid transport is controlled by the dynamics of opening and closing of fractures, with a well-defined time frequency.

  11. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  12. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion.

    PubMed

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO_{2} production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1/f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1/f^{2} power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  13. A structural analysis of the Minas da Panasqueira vein network and related fracture generations

    NASA Astrophysics Data System (ADS)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    The Minas da Panasqueira is a world-class W-Cu-Sn vein-type deposit, situated within the Central Iberian Zone of the Palaeozoic Iberian Massif (Portugal). The deposit consists of a network of subhorizontal, sill-like massive quartz veins situated above the southwestern extremity of a greisen cupola, within regionally metamorphosed, isoclinally folded, lower-greenschist slates and greywackes. The greisen cupola is part of a larger intrusive complex, emplaced during the late- to post-tectonic stage of the Variscan orogeny. The late-Variscan granitoid(s) underlying the Panasqueira deposit is considered to have served as a major metal source. The structure of the network of subhorizontal extension veins, consists of numerous planar vein lobes that are separated by host-rock bridges and merge at branch-points. A structural analysis demonstrates that not only within the Panasqueira mine, but also on a more regional scale, one or more generations of flat-lying fractures are present. The veins clearly exploited these pre-existing discontinuities, as confirmed by (1) the vein geometry being directly influenced by variations in the orientation of the initial fracture sets and (2) the geometry of the rock bridges and overlapping vein morphologies, consistently showing straight-line propagating crack tips. If veining is governed by a preferential, strongly developed anisotropy in the host rock, the hypothesis of vein lobes and rock bridges forming during propagation of the parent crack by tip-line bifurcation and confinement processes (Foxford et al., 2000) does not seem plausible. Instead, we propose that the rock bridges formed from several, initially separate and small veinlets that eventually overlapped in an en echelon arrangement during progressive propagation and inflation. Bending of the rock bridges and incipient vein rotation indicate that veining occurred near the brittle-ductile transition. Using a quantitative analysis of bridge orientations, vein aspect ratios

  14. Fractal modeling of natural fracture networks

    SciTech Connect

    Ferer, M.; Dean, B.; Mick, C.

    1995-06-01

    West Virginia University will implement procedures for a fractal analysis of fractures in reservoirs. This procedure will be applied to fracture networks in outcrops and to fractures intersecting horizontal boreholes. The parameters resulting from this analysis will be used to generate synthetic fracture networks with the same fractal characteristics as the real networks. Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network. Reliable characterization of the actual fracture network in the reservoir is severely limited. The location and orientation of fractures intersecting the borehole can be determined, but the length of these fractures cannot be unambiguously determined. Because of the lack of detailed information about the actual fracture network, modeling methods must represent the porosity and permeability associated with the fracture network, as accurately as possible with very little a priori information. In the sections following, the authors will (1) present fractal analysis of the MWX site, using the box-counting procedure; (2) review evidence testing the fractal nature of fracture distributions and discuss the advantages of using the fractal analysis over a stochastic analysis; and (3) present an efficient algorithm for producing a self-similar fracture networks which mimic the real MWX outcrop fracture network.

  15. Pore network extraction for fractured porous media

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; van Dijke, M. I. J.; Geiger, S.; Ma, J.; Couples, G. D.; Li, X.

    2017-09-01

    Although flow through fractured rocks involves many different length-scales, it is crucial for the prediction of continuum-scale single- and multi-phase flow functions to understand, at the pore-scale, the interaction between the rock matrix and fractures. Here we present a pore-network extraction method in which the pore diameters and fracture apertures are of similar size. The method involves a shrinking algorithm to extract a hybrid skeleton of medial axes and surfaces, and it includes a workflow to convert the medial surfaces of fractures into dense networks of virtual medial axes, allowing generation of an integrated pore-network for the entire pore space. Appropriate single- and two-phase flow properties are assigned to network elements representing the fractures. We validate the method via comparisons between pore network flow simulations and an analytical solution, direct flow simulations and experimental observations. The network calculations are several orders of magnitude faster than the direct simulations.

  16. Investigation of the Effect of Cemented Fractures on Fracturing Network Propagation in Model Block with Discrete Orthogonal Fractures

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, C. H.

    2017-07-01

    Researchers have recently realized that the natural fractures in shale reservoirs are often cemented or sealed with various minerals. However, the influence of cement characteristics of natural fracture on fracturing network propagation is still not well understood. In this work, laboratory-scaled experiments are proposed to prepare model blocks with discrete orthogonal fractures network with different strength of natural fracture, in order to reveal the influence of cemented natural fractures on the interactions between hydraulic fractures and natural fractures. A series of true triaxial hydraulic fracturing experiments were conducted to investigate the mechanism of hydraulic fracture initiation and propagation in model blocks with natural fractures of different cement strength. The results present different responses of interactions between hydraulic and natural fractures, which can be reflected on the pump pressure profiles and block failure morphology. For model blocks with fluctuated pump pressure curves, the communication degree of hydraulic and natural fractures is good, which is confirmed by a proposed new index of "P-SRV." The most significant finding is that too high and too low strength properties of cemented natural fracture are adverse to generate complex fracturing network. This work can help us better understand how cemented natural fractures affect the fracturing network propagation subsurface and give us reference to develop more accurate hydraulic fracturing models.

  17. Discrete Fracture Network Characterization of Fractured Shale Reservoirs with Implications to Hydraulic Fracturing Optimization

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2016-12-01

    Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an

  18. Conditioning Fracture Networks through the Gradual Deformation Method

    NASA Astrophysics Data System (ADS)

    Le Ravalec, m

    2001-12-01

    A stochastic optimization technique has been developed to characterize fracture networks from mass transport. First, we introduce a new method to generate fracture networks consistent with some prior knowledge, that is the knowledge of the major components of the fracture system. Then, we focus on the representation of fracture networks that respect both the prior information and the hydrologic data collected in multiple wells. A good way to go about this characterization stage is through optimization. The optimization process provides a fracture network which reproduces all the observed data. The hope is that networks that can at least duplicate the observed data are more likely to make good predictions. Up to now, simulated annealing has been widely implemented to identify lattice configurations matching the hydrologic data. However, this optimization approach creates fracture networks that reproduce more or less the hydrologic data, but without honoring the prior information. Therefore, we suggest to base the optimization process upon a geostatistical parameterization technique, called the gradual deformation method. Independent fracture networks are combined sequentially to modify continuously a starting fracture model until the matching is satisfactory enough. This new approach, in addition to be quicker than simulated annealing, allows for determining networks consistent with the hydrologic data observed in the field and the prior knowledge about the fracture distribution. It was used successfully to find lattice configurations consistent with tracer data.

  19. Estimating the hydraulic conductivity of two-dimensional fracture networks

    NASA Astrophysics Data System (ADS)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our

  20. A methodology for pseudo-genetic stochastic modeling of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bonneau, François; Henrion, Vincent; Caumon, Guillaume; Renard, Philippe; Sausse, Judith

    2013-07-01

    Stochastic simulation of fracture systems is an interesting approach to build a set of dense and complex networks. However, discrete fracture models made of planar fractures generally fail to reproduce the complexity of natural networks, both in terms of geometry and connectivity. In this study a pseudo-genetic method is developed to generate stochastic fracture models that are consistent with patterns observed on outcrops and fracture growth principles. The main idea is to simulate evolving fracture networks through geometric proxies by iteratively growing 3D fractures. The algorithm defines heuristic rules in order to mimic the mechanics of fracture initiation, propagation, interaction and termination. The growth process enhances the production of linking structure and impacts the connectivity of fracture networks. A sensitivity study is performed on synthetic examples. The method produces unbiased fracture dip and strike statistics and qualitatively reproduces the fracture density map. The fracture length distribution law is underestimated because of the early stop in fracture growth after intersection.

  1. From invasion percolation to flow in rock fracture networks

    NASA Astrophysics Data System (ADS)

    Wettstein, Salomon J.; Wittel, Falk K.; Araújo, Nuno A. M.; Lanyon, Bill; Herrmann, Hans J.

    2012-01-01

    The main purpose of this work is to simulate two-phase flow in the form of immiscible displacement through anisotropic, three-dimensional (3D) discrete fracture networks (DFN). The considered DFNs are artificially generated, based on a general distribution function or are conditioned on measured data from deep geological investigations. We introduce several modifications to the invasion percolation (MIP) to incorporate fracture inclinations, intersection lines, as well as the hydraulic path length inside the fractures. Additionally a trapping algorithm is implemented that forbids any advance of the invading fluid into a region, where the defending fluid is completely encircled by the invader and has no escape route. We study invasion, saturation, and flow through artificial fracture networks, with varying anisotropy and size and finally compare our findings to well studied, conditioned fracture networks.

  2. Influence of Natural Fractures Cohesive Properties on Geometry of Hydraulic Fracture Networks

    NASA Astrophysics Data System (ADS)

    Gonzalez-Chavez, M. A.; Dahi Taleghani, A.; Puyang, P.

    2014-12-01

    An integrated modeling methodology is proposed to analyze hydraulic fracturing jobs in the presence of the natural fracture network in the formation. A propagating hydraulic fracture may arrest, cross, or diverts into a preexisting natural crack depending on fracture properties of rock and magnitude and direction of principal rock stresses. Opening of natural fractures during fracturing treatment could define the effectiveness of the stimulation technique. Here, we present an integrated methodology initiated with lab scale fracturing properties using Double Cantilever Beam tests (DCB) to determine cohesive properties of rock and natural fractures. We used cohesive finite element models to reproduce laboratory results to verify the numerical model for the interaction of the hydraulic fracture and individual cemented natural fractures. Based on the initial investigations, we found out that distribution of pre-existing natural fractures could play a significant role in the final geometry of the induced fracture network; however in practice, there is not much information about the distribution of natural fractures in the subsurface due to the limited access. Hence, we propose a special optimization scheme to generate natural fracture geometry from the location of microseismic events. Accordingly, the criteria of evaluating the fitness of natural fracture realizations is defined as the total minimum distance squares of all microseismic events, which is the sum of minimum square distance for all microseismic events. Moreover, an additional constraint in this problem is that we need to set a minimum distance between fracture grids. Using generated natural fracture realizations, forward field-scale simulations are implemented using cohesive finite element analysis to find the best match with the recorded bottomhole pressure. To show the robustness of the proposed workflow for real field problem, we implemented this technique on available data from several well Chicontepec

  3. Fracture network topology and characterization of structural permeability

    NASA Astrophysics Data System (ADS)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  4. Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations

    NASA Astrophysics Data System (ADS)

    Zou, Yushi; Zhang, Shicheng; Ma, Xinfang; Zhou, Tong; Zeng, Bo

    2016-03-01

    Hydraulic fracture network (HFN) propagation in naturally fractured shale formations is investigated numerically using a 3D complex fracturing model based on the discrete element method. To account for the plastic deformation behavior of shales, the Drucker-Prager plasticity model is incorporated into the fracturing model. Parametric studies are then conducted for different Young's moduli, horizontal differential stresses, natural fracture (NF) properties, injection rates, and number and spacing of perforation clusters. Numerical results show that horizontal differential stress primarily determines the generation of a complex HFN. The plastic deformation of shale can reduce the stimulated reservoir volume; this is more obvious with Young's modulus of less than 20 GPa. In addition, a higher injection rate could largely increase the fracture complexity index (FCI). Moreover, increasing perforation cluster numbers per fracturing stage is beneficial for increasing the FCI, but it also increases the potential merging of neighboring fractures, which may lead to non-uniform development of HFN in far-wellbore regions. To achieve uniform development of HFN within a fracturing stage, the distribution of NFs should be fully considered. The results presented here may provide improved understanding of HFN generation and are favorable for optimizing fracturing treatment designs for shale formations.

  5. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    NASA Astrophysics Data System (ADS)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  6. Simulation of Solute Flow and Transport in a Geostatistically Generated Fractured Porous System

    NASA Astrophysics Data System (ADS)

    Assteerawatt, A.; Helmig, R.; Haegland, H.; Bárdossy, A.

    2007-12-01

    Fractured aquifer systems have provided important natural resources such as petroleum, gas, water and geothermal energy and have also been recently under investigation for their suitability as storage sites for high-level nuclear waste. The resource exploitation and potential utilization have led to extensive studies aiming of understanding, characterizing and finally predicting the behavior of fractured aquifer systems. By applying a discrete model approach to study flow and transport processes, fractures are determined discretely and the effect of individual fractures can be explicitly investigated. The critical step for the discrete model is the generation of a representative fracture network since the development of flow paths within a fractured system strongly depends on its structure. The geostatistical fracture generation (GFG) developed in this study aims to create a representative fracture network, which combines the spatial structures and connectivity of a fracture network, and the statistical distribution of fracture geometries. The spatial characteristics are characterized from indicator fields, which are evaluated from fracture trace maps. A global optimization, Simulated annealing, is utilized as a generation technique and the spatial characteristics are formulated to its objective function. We apply the GFG to a case study at a Pliezhausen field block, which is a sandstone of a high fracture density. The generated fracture network from the GFG are compared with the statistically generated fracture network in term of structure and hydraulic behavior. As the GFG is based on a stochastic concept, several realizations of the same descriptions can be generated, hence, an overall behavior of the fracture-matrix system have to be investigated from various realizations which leads to a problem of computational demand. In order to overcome this problem, a streamline method for a solute transport in a fracture porous system is presented. The results obtained

  7. Fractal characterization of subsurface fracture network for geothermal energy extraction system

    SciTech Connect

    Watanabe; Takahashi, H.

    1993-01-28

    As a new modeling procedure of geothermal energy extraction systems, the authors present two dimensional and three dimensional modeling techniques of subsurface fracture network, based on fractal geometry. Fluid flow in fractured rock occurs primarily through a connected network of discrete fractures. The fracture network approach, therefore, seeks to model fluid flow and heat transfer through such rocks directly. Recent geophysical investigations have revealed that subsurface fracture networks can be described by "fractal geometry". In this paper, a modeling procedure of subsurface fracture network is proposed based on fractal geometry. Models of fracture networks are generated by distributing fractures randomly, following the fractal relation between fracture length r and the number of fractures N expressed with fractal dimension D as N =C·r-D, where C is a constant to signify the fracture density of the rock mass. This procedure makes it possible to characterize geothermal reservoirs by the parameters measured from field data, such as core sampling. In this characterization, the fractal dimension D and the fracture density parameter C of a geothermal reservoir are used as parameters to model the subsurface fracture network. Using this model, the transmissivities between boreholes are also obtained as a function of the fracture density parameter C, and a parameter study of system performances, such as heat extraction, is performed. The results show the dependence of thermal recovery of geothermal reservoir on fracture density parameter C.

  8. Some Characteristics of Regular Fracture-lineament Global Network

    NASA Astrophysics Data System (ADS)

    Anokhin, Vladimir; Longinos, Biju

    2013-04-01

    Existence of regular fracture-lineament global network global network (FLGN) (or regmatic network), was known for lands of the Earth in many regions. Authors made more than 20 000 measurements of lineaments and faults azimuths of the lineaments and fractures on geographic, geologic and tectonic maps for number of regions and for all Earth. Later all data files have subjected by the factor analysis. We detect existence FLGN in the Ocean bottom. Statistic relation between fractures and lineaments directions was established. Control of large-scale lineaments by fractures within the competence of the FLGN was based. Predominating strike directions of line elements of FLGN are: 0 - 10˚, 80 - 90˚, 30 - 60˚, 120 - 150˚. FLGN have attribute of fractality. One-direction lines elements of the FLGN alternate with constant step within the competence of defined scale. FLGN was formed under a continuous stress, which exist at least throughout the entire earthcrust thickness and during the time of at least the entire Phanerozoe. This stress was generated by a complex of forces: rotational, pulsating and, possibly, some others in the earthcrust. All of these forces are symmetric to the Earth rotation axis and some of them also to the equator. Rotation and pulsating processes of the Earth are the main factors of these forces and, hence, formation of the fracture- lineament network. FLGN determines the most favorable place for fracturing, formation of fracture-controlled landforms, volcanic and seismic processes (geohazards), fluid flow and ore-formation (minerals).

  9. Glossary of fault and other fracture networks

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2016-11-01

    Increased interest in the two- and three-dimensional geometries and development of faults and other types of fractures in rock has led to an increasingly bewildering terminology. Here we give definitions for the geometric, topological, kinematic and mechanical relationships between geological faults and other types of fractures, focussing on how they relate to form networks.

  10. Particle Swarm Transport in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  11. A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks

    NASA Astrophysics Data System (ADS)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui

    2016-06-01

    This paper presents a semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. The model dynamically couples an analytical dual-porosity model with a numerical discrete fracture model. The small-scale fractures with the matrix are idealized as a dual-porosity continuum and an analytical flow solution is derived based on source functions in Laplace domain. The large-scale fractures are represented explicitly as the major fluid conduits and the flow is numerically modeled, also in Laplace domain. This approach allows us to include finer details of the fracture network characteristics while keeping the computational work manageable. For example, the large-scale fracture network may have complex geometry and varying conductivity, and the computations can be done at predetermined, discrete times, without any grids in the dual-porosity continuum. The validation of the semi-analytical model is demonstrated in comparison to the solution of ECLIPSE reservoir simulator. The simulation is fast, gridless and enables rapid model setup. On the basis of the model, we provide detailed analysis of the flow behavior of a horizontal production well in fractured reservoir with multi-scale fracture networks. The study has shown that the system may exhibit six flow regimes: large-scale fracture network linear flow, bilinear flow, small-scale fracture network linear flow, pseudosteady-state flow, interporosity flow and pseudoradial flow. During the first four flow periods, the large-scale fracture network behaves as if it only drains in the small-scale fracture network; that is, the effect of the matrix is negligibly small. The characteristics of the bilinear flow and the small-scale fracture network linear flow are predominantly determined by the dimensionless large-scale fracture conductivity. And low dimensionless fracture conductivity will generate large pressure drops in the large-scale fractures surrounding the wellbore. With

  12. Impact of fracture network geometry on free convective flow patterns

    NASA Astrophysics Data System (ADS)

    Vujević, Katharina; Graf, Thomas; Simmons, Craig T.; Werner, Adrian D.

    2014-09-01

    The effect of fracture network geometry on free convection in fractured rock is studied using numerical simulations. We examine the structural properties of fracture networks that control the onset and strength of free convection and the patterns of density-dependent flow. Applicability of the equivalent porous medium approach (EPM) is also tested, and recommendations are given, for which situations the EPM approach is valid. To date, the structural properties of fracture networks that determine free convective flow are examined only in few, predominantly simplified regular fracture networks. We consider fracture networks containing continuous, discontinuous, orthogonal and/or inclined discrete fractures embedded in a low-permeability rock matrix. The results indicate that bulk permeability is not adequate to infer the occurrence and magnitude of free convection in fractured rock. Fracture networks can inhibit or promote convection depending on the fracture network geometry. Continuous fracture circuits are the crucial geometrical feature of fracture networks, because large continuous fracture circuits with a large vertical extent promote convection. The likelihood of continuous fracture circuits and thus of free convection increases with increasing fracture density and fracture length, but individual fracture locations may result in great deviances in strength of convection between statistically equivalent fracture networks such that prediction remains subject to large uncertainty.

  13. Synthetic fracture network characterization with transdimensional inversion

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2017-06-01

    Fracture network geometry is crucial for transport in hard rock aquifers, but it can only be approximated in models. While fracture orientation, spacing, and intensity can be obtained from borehole logs, core images, and outcrops, the characterization of in situ fracture network geometry requires the interpretation of spatially distributed hydraulic and transport experiments. In this study, we present a novel concept using a transdimensional inversion method (reversible jump Markov Chain Monte Carlo, rjMCMC) to invert a two-dimensional cross-well discrete fracture network (DFN) geometry from tracer tomography experiments. The conservative tracer transport is modeled via a fast finite difference model neglecting matrix diffusion. The proposed DFN inversion method iteratively evolves DFN variants by geometry updates to fit the observed tomographic data evaluated by the Metropolis-Hastings-Green acceptance criteria. A main feature is the varying dimensions of the inverse problem, which allows for the calibration of fracture geometries and numbers. This delivers an ensemble of thousands of DFN realizations that can be utilized for probabilistic identification of fractures in the aquifer. In the presented hypothetical and outcrop-based case studies, cross sections between boreholes are investigated. The procedure successfully identifies major transport pathways in the investigated domain and explores equally probable DFN realizations, which are analyzed in fracture probability maps and by multidimensional scaling.

  14. Towards effective flow simulations in realistic discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano

    2016-04-01

    We focus on the simulation of underground flow in fractured media, modeled by means of Discrete Fracture Networks. Focusing on a new recent numerical approach proposed by the authors for tackling the problem avoiding mesh generation problems, we further improve the new family of methods making a step further towards effective simulations of large, multi-scale, heterogeneous networks. Namely, we tackle the imposition of Dirichlet boundary conditions in weak form, in such a way that geometrical complexity of the DFN is not an issue; we effectively solve DFN problems with fracture transmissivities spanning many orders of magnitude and approaching zero; furthermore, we address several numerical issues for improving the numerical solution also in quite challenging networks.

  15. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    SciTech Connect

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; Makedonska, Nataliia; Karra, Satish

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  16. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE PAGES

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  17. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    SciTech Connect

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; Makedonska, Nataliia; Karra, Satish

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  18. Random fracture networks: percolation, geometry and flow

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Thovert, J. F.; Mourzenko, V. V.

    2015-12-01

    This paper reviews some of the basic properties of fracture networks. Most of the data can only be derived numerically, and to be useful they need to be rationalized, i.e., a large set of numbers should be replaced by a simple formula which is easy to apply for estimating orders of magnitude. Three major tools are found useful in this rationalization effort. First, analytical results can usually be derived for infinite fractures, a limit which corresponds to large densities. Second, the excluded volume and the dimensionless density prove crucial to gather data obtained at intermediate densities. Finally, shape factors can be used to further reduce the influence of fracture shapes. Percolation of fracture networks is of primary importance since this characteristic controls transport properties such as permeability. Recent numerical studies for various types of fracture networks (isotropic, anisotropic, heterogeneous in space, polydisperse, mixture of shapes) are summarized; the percolation threshold rho is made dimensionless by means of the excluded volume. A general correlation for rho is proposed as a function of the gyration radius. The statistical characteristics of the blocks which are cut in the solid matrix by the network are presented, since they control transfers between the porous matrix and the fractures. Results on quantities such as the volume, surface and number of faces are given and semi empirical relations are proposed. The possible intersection of a percolating network and of a cubic cavity is also summarized. This might be of importance for the underground storage of wastes. An approximate reasoning based on the excluded volume of the percolating cluster and of the cubic cavity is proposed. Finally, consequences on the permeability of fracture networks are briefly addressed. An empirical formula which verifies some theoretical properties is proposed.

  19. Analysis of the Complex Fracture Flow in Multiple Fractured Horizontal Wells with the Fractal Tree-Like Network Models

    NASA Astrophysics Data System (ADS)

    Wang, Wendong; Su, Yuliang; Zhang, Xiao; Sheng, Guanglong; Ren, Long

    2015-03-01

    This paper formulates a fractal-tree network model to address the challenging problem of characterizing the hydraulic fracture network in unconventional reservoirs. It has been proved that the seepage flow in tight/shale oil reservoirs is much more complicated to the conventional formation. To further understand the flow mechanisms in such a complex system, a semi-analytical model considering "branch network fractures" was established stage by stage using point source method and superposition principle. Fractal method was employed to generate and represent induced fracture network around bi-wing fractures. In addition, based on the new established model and solution, deterministic fractal-tree-like fracture network patterns and heterogeneity were carefully investigated and compared with the simulation model. Results show that the fractal dimension for the fracture network has significant effect on the connectivity of the stimulated reservoir. The proposed fractal model may capture the characteristics of the heterogeneous complex fracture network and help in understanding the flow and transport mechanisms of multiple fractured horizontal wells.

  20. Three-phase flow simulations in discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Niessner, J.; Matthai, S. K.; Helmig, R.

    2006-12-01

    Fractures are often the key conduits for fluid flow in otherwise low permeability rocks. Their presence in hydrocarbon reservoirs leads to complex production histories, unpredictable coupling of wells, rapidly changing flow rates, possibly early water breakthrough, and low final recovery. Recently, it has been demonstrated that a combination of finite volume and finite element discretization is well suited to model incompressible, immiscible two-phase flow in 3D discrete fracture networks (DFN) representing complexly fractured rocks. Such an approach has been commercialized in Golder Associates' FracMan Reservoir Edition software. For realistic reservoir simulations, however, it would be desirable if a third compressible gas phase can be included which is often present at reservoir conditions. Here we present the extension of an existing node-centred finite volume - finite element (FEFV) discretization for the efficient and accurate simulations of three-component - three-phase flow in geologically realistic representations of fractured porous media. Two possible types of fracture networks can be used: In 2D, they are detailed geometrical representations of fractured rock masses mapped in field studies. In 3D, they are geologically constrained, stochastically generated discrete fracture networks. Flow and transport can be simulated for fractures only or for fractures and matrix combined. The governing equations are solved decoupled using an implicit-pressure, explicit-saturation (IMPES) approach. Flux and concentration terms can be treated with higher-order accuracy in the finite volume scheme to preserve shock fronts. The method is locally mass conservative and works on unstructured, spatially refined grids. Flash calculations are carried out by a new description of the Black-Oil model. Capillary and gravity effects are included in this formulation. The robustness and accuracy of this formulation is shown in several applications. First, grid convergence is

  1. Discrete Fracture Networks Groundwater Modelling at Bedding Control Fractured Sedimentary Rock mass

    NASA Astrophysics Data System (ADS)

    Pin, Yeh; Yuan-Chieh, Wu

    2017-04-01

    Groundwater flow modelling in fractured rock mass is an important challenging work in predicting the transport of contamination. So far as we know about the numerical analysis method was consider for crystalline rock, which means discontinuous are treated as stochastic distribution in homogeneous rock mass. Based on the understanding of geology in Taiwan in past few decades, we know that the hydraulic conductivities of Quaternary and Tertiary system rock mass are strongly controlled by development of sedimentary structures (bedding plane). The main purpose of this study is to understand how Discrete Fracture Networks (DFN) affects numerical results in terms of hydraulic behavior using different DFN generation methods. Base on surface geology investigation and core drilling work (3 boreholes with a total length of 120m), small scale fracture properties with in Cho-lan formation (muddy sandstone) are defined, including gently dip of bedding and 2 sub-vertical joint sets. Two FracMan/MAFIC numerical modellings are conducted, using ECPM approach (Equivalent Continuum Porous Media); case A considered all fracture were Power law distribution with Poisson fracture center; case B considered all bedding plans penetrate into modelling region, and remove the bedding count to recalculate joint fracture parameters. Modelling results show that Case B gives stronger groundwater pathways than Case A and have impact on flow field. This preliminary modelling result implicates the groundwater flow modelling work in some fractured sedimentary rock mass, might be considerate to rock sedimentary structure development itself, discontinuous maybe not follow the same stochastic DFN parameter.

  2. Characterization of Moment tensor Derived Discrete Fracture Networks Utilizing Scanlines and Topological Approaches

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.; Ardakani, E. P.; Smith, L.

    2016-12-01

    Hydraulic fracturing is the primary method used to stimulate production from new and existing unconventional oil and gas wells by creating fractures in the target formations. The generated discrete fracture network has a key role in increasing the effective rock permeability surrounding the production wells. Therefore better understanding of the fracture (individually and as a group) properties are extremely vital to increase the completion efficiency. One approach for fracture network characterization is through higher-order microseismic data analyses such as SeismicMoment Tensor Inversion and source parameter examination. Microseismic monitoring is a common deployment in the hydraulic fracture treatments, and if high quality data are sufficiently sampled from a large azimuthal range (thorough multi-array downhole deployments), the generated discrete fracture network properties can be characterized. These properties consist ofquantitative measures such as the type of failure (tensile, shear, or shear-tensile), fracture orientation (azimuth, dip, and rake), the relative dimensions (length, slip, and aperture), and qualitative observations such as the fracture state interaction with planes of the weakness (i.e.,bedding planes and stratigraphic boundaries). In this paper we characterize the discrete fracture network from a range of hydraulic fracturing monitoring projects in shale plays throughout North America. In the process of this investigation, we utilize scanline and topological approaches to facilitate the visualization and interpretation of the inferred fracture characteristics.

  3. Tight gas reservoir simulation: Modeling discrete irregular strata-bound fracture network flow, including dynamic recharge from the matrix

    SciTech Connect

    McKoy, M.L., Sams, W.N.

    1997-10-01

    The US Department of Energy, Federal Energy Technology Center, has sponsored a project to simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular discontinuous, or clustered networks of fractures. New FORTRAN codes have been developed to generate fracture networks, or simulate reservoir drainage/recharge, and to plot the fracture networks and reservoirs pressures. Ancillary codes assist with raw data analysis.

  4. Effect of Internal Aperture Variability on Tracer Transport in Large Discrete Fracture Networks (DFN)

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Hyman, J.; Karra, S.; Gable, C. W.; Viswanathan, H. S.

    2015-12-01

    Aperture variability within individual fractures is usually neglected in modeling flow and transport through fractured media. Typically, individual fractures are assumed to be homogeneous. However, in reality, individual fractures are heterogeneous, which may affect flow and transport in fractured media. The relative importance of including in-fracture variability in flow and transport modeling has been under debate for a long time. Previous studies have shown flow channeling on an individual fracture with internal variability, where the fracture is considered isolated from the rest of the fracture network. Although these studies yield some clear insights into the process, the boundary conditions are impractical for field-scale networks, where the realistic boundary conditions are determined by fracture connections in the network. Therefore, flow in a single fracture is controlled not only by in-fracture variability but also by boundary conditions. In order to address the question of the importance of in-fracture variability, the internal heterogeneity of every individual fracture is incorporated into a three-dimensional fracture network, represented by a composition of intersecting fractures. The new DFN simulation capability, dfnWorks, is used to generate a kilometer scale DFNs similar to the Forsmark, Sweden site. In our DFN model, the in-fracture aperture variability is scattered over each cell of the computational mesh along the fracture, representing by a stationary Gaussian random field with various correlation lengths. The Lagrangian particle tracking is conducted in multiple DFN realizations and the flow-dependent Lagrangian parameters, non-reacting travel time, τ, and cumulative reactivity parameter, β, are obtained along particles streamlines. It is shown that early particle travel times are more sensitive to in-fracture aperture variability than tails of travel time distributions, where no significant effect of the aperture variations and spatial

  5. Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios

    NASA Astrophysics Data System (ADS)

    Başağaoğlu, Hakan; Succi, Sauro; Manepally, Chandrika; Fedors, Randall; Wyrick, Danielle Y.

    2009-09-01

    Active fractures refer to the portions of unsaturated, connected fractures that actively conduct water. The active fracture model parameter accounts for the reduction in the number of fractures carrying water and in the fracture-matrix interface area in field-scale simulations of flow and transport in unsaturated fractured rocks. One example includes the numerical analyses of the fault test results at the Yucca Mountain site, Nevada (USA). In such applications, the active fracture model parameter is commonly used as a calibration parameter without relating it to fracture network orientations and infiltration rates. A two-dimensional, multiphase lattice-Boltzmann model was used in this study to investigate the sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios for an unsaturated, variable dipping, and geometrically simple fracture network. The active fracture model parameter differed by as much as 0.11-0.44 when the effects of fracture network orientation, injection rate, and injection mode were included in the simulations. Hence, the numerical results suggest that the sensitivity of the active fracture model parameter to fracture network orientation, injection rates, and injection modes should be explored at the field-scale to strengthen the technical basis and range of applicability of the active fracture model.

  6. Compartmentalization analysis using discrete fracture network models

    SciTech Connect

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-12-31

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  7. Compartmentalization analysis using discrete fracture network models

    SciTech Connect

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  8. SIZE SCALING RELATIONSHIPS IN FRACTURE NETWORKS

    SciTech Connect

    Thomas H. Wilson

    2000-01-01

    The research conducted under DOE grant DE-FG26-98FT40385 provides a detailed assessment of size scaling issues in natural fracture and active fault networks that extend over scales from several tens of kilometers to less than a tenth of a meter. This study incorporates analysis of data obtained from several sources, including: natural fracture patterns photographed in the Appalachian field area, natural fracture patterns presented by other workers in the published literature, patterns of active faulting in Japan mapping at a scale of 1:100,000, and lineament patterns interpreted from satellite-based radar imagery obtained over the Appalachian field area. The complexity of these patterns is always found to vary with scale. In general,but not always, patterns become less complex with scale. This tendency may reverse as can be inferred from the complexity of high-resolution radar images (8 meter pixel size) which are characterized by patterns that are less complex than those observed over smaller areas on the ground surface. Model studies reveal that changes in the complexity of a fracture pattern can be associated with dominant spacings between the fractures comprising the pattern or roughly to the rock areas bounded by fractures of a certain scale. While the results do not offer a magic number (the fractal dimension) to characterize fracture networks at all scales, the modeling and analysis provide results that can be interpreted directly in terms of the physical properties of the natural fracture or active fault complex. These breaks roughly define the size of fracture bounded regions at different scales. The larger more extensive sets of fractures will intersect and enclose regions of a certain size, whereas smaller less extensive sets will do the same--i.e. subdivide the rock into even smaller regions. The interpretation varies depending on the number of sets that are present, but the scale breaks in the logN/logr plots serve as a guide to interpreting the

  9. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    SciTech Connect

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.

  10. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    SciTech Connect

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.

  11. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  12. Discrete modeling of hydraulic fracturing processes in a complex pre-existing fracture network

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rutqvist, J.; Nakagawa, S.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    Hydraulic fracturing and stimulation of fracture networks are widely used by the energy industry (e.g., shale gas extraction, enhanced geothermal systems) to increase permeability of geological formations. Numerous analytical and numerical models have been developed to help understand and predict the behavior of hydraulically induced fractures. However, many existing models assume simple fracturing scenarios with highly idealized fracture geometries (e.g., propagation of a single fracture with assumed shapes in a homogeneous medium). Modeling hydraulic fracture propagation in the presence of natural fractures and homogeneities can be very challenging because of the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and pre-existing natural fractures. In this study, the TOUGH-RBSN code for coupled hydro-mechanical modeling is utilized to simulate hydraulic fracture propagation and its interaction with pre-existing fracture networks. The simulation tool combines TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach, with the implementation of a lattice modeling approach for geomechanical and fracture-damage behavior, named Rigid-Body-Spring Network (RBSN). The discrete fracture network (DFN) approach is facilitated in the Voronoi discretization via a fully automated modeling procedure. The numerical program is verified through a simple simulation for single fracture propagation, in which the resulting fracture geometry is compared to an analytical solution for given fracture length and aperture. Subsequently, predictive simulations are conducted for planned laboratory experiments using rock-analogue (soda-lime glass) samples containing a designed, pre-existing fracture network. The results of a preliminary simulation demonstrate selective fracturing and fluid infiltration along the pre-existing fractures, with additional fracturing in part

  13. Characterization of EGS Fracture Network Lifecycles

    SciTech Connect

    Gillian R. Foulger

    2008-03-31

    Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nation’s resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or “EGS”) experiments performed at the Coso geothermal field

  14. Laboratory Visualization of Hydraulic Fracture Propagation and Interaction with a Network of Preexisting Fractures

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Borglin, S. E.

    2015-12-01

    We present optical visualization experiments of hydraulic fracture propagation within transparent rock-analogue samples containing a network of preexisting fractures. Natural fractures and heterogeneities in rock have a great impact on hydraulic fracture propagation and resulting improvements in reservoir permeability. In recent years, many sophisticated numerical simulations on hydraulic fracturing have been conducted. Laboratory experiments on hydraulic fracturing are often performed with acoustic emission (Micro Earthquake) monitoring, which allows detection and location of fracturing and fracture propagation. However, the detected fractures are not necessarily hydraulically produced fractures which provide permeable pathways connected to the injection (and production) well. The primary objectives of our visualization experiments are (1) to obtain quantitative visual information of hydraulic fracture propagation affected by pre-existing fractures and (2) to distinguish fractures activated by the perturbed stress field away from the injected fluid and hydraulically produced fractures. The obtained data are also used to develop and validate a new numerical modeling technique (TOUGH-RBSN [Rigid-Body-Spring-Network] model) for hydraulic fracturing simulations, which is presented in a companion paper. The experiments are conducted using transparent soda-lime glass cubes (10 cm × 10 cm × 10 cm) containing either (1) 3D laser-engraved artificial fractures and fracture networks or (2) a random network of fractures produced by rapid thermal quenching. The strength (and also the permeability for the latter) of the fractures can be altered to examine their impact on hydraulic fracturing. The cubes are subjected to true-triaxial stress within a polyaxial loading frame, and hydraulic fractures are produced by injecting fluids with a range of viscosity into an analogue borehole drilled in the sample. The visual images of developing fractures are obtained both through a port

  15. Use of an Integrated Discrete Fracture Network Code for Stochastic Stability Analyses of Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Merrien-Soukatchoff, V.; Korini, T.; Thoraval, A.

    2012-03-01

    The paper presents the Discrete Fracture Network code RESOBLOK, which couples geometrical block system construction and a quick iterative stability analysis in the same package. The deterministic or stochastic geometry of a fractured rock mass can be represented and interactively displayed in 3D using two different fracture generators: one mainly used for hydraulic purposes and another designed to allow block stability evaluation. RESOBLOK has downstream modules that can quickly compute stability (based on limit equilibrium or energy-based analysis), display geometric information and create links to other discrete software. The advantage of the code is that it couples stochastic geometrical representation and a quick iterative stability analysis to allow risk-analysis with or without reinforcement and, for the worst cases, more accurate analysis using stress-strain analysis computer codes. These different aspects are detailed for embankment and underground works.

  16. Properties of a pair of fracture networks produced by triaxial deformation experiments: insights on fluid flow using discrete fracture network models

    NASA Astrophysics Data System (ADS)

    Trullenque, Ghislain; Parashar, Rishi; Delcourt, Clément; Collet, Lucille; Villard, Pauline; Potel, Sébastien

    2017-05-01

    Results of a series of deformation experiments conducted on gabbro samples and numerical models for computation of flow are presented. Rocks were subjected to triaxial tests (σ1 > σ2 = σ3) under σ3 = 150 MPa confining pressure at room temperature, to generate fracture network patterns. These patterns were either produced by keeping a constant confining pressure and loading the sample up to failure (conventional test: CT), or by building up a high differential stress and suddenly releasing the confining pressure (confining pressure release test: CPR). The networks are similar in overall density but differ primarily in the orientation of smaller fractures. In the case of CT tests, a conjugate fracture set is observed with one dominant fracture zone running at about 20° from σ1. CPR tests do not show such a conjugate pattern and the mean fracture orientation is at around 35° from σ1. Discrete fracture network (DFN) methodology was used to determine the distribution of flow and hydraulic head for both fracture sets under simple boundary conditions and uniform transmissivity values. The fracture network generated by CT and CPR tests exhibit different patterns of flow field and hydraulic head configurations, but convey approximately the same amount of flow at all scales for which DFN models were simulated. The numerical modelling results help to develop understanding of qualitative differences in flow distribution that may arise in rocks of the same mineralogical composition and mechanical properties, but under the influence of different stress conditions, albeit at similar overall stress magnitude.

  17. Properties of a pair of fracture networks produced by triaxial deformation experiments: insights on fluid flow using discrete fracture network models

    NASA Astrophysics Data System (ADS)

    Ghislain, Trullenque; Rishi, Parashar; Clément, Delcourt; Lucille, Collet; Pauline, Villard; Sébastien, Potel

    2016-09-01

    Results of a series of deformation experiments conducted on gabbro samples and numerical models for computation of flow are presented. Rocks were subjected to triaxial tests (σ1 > σ2 = σ3) under σ3 = 150 MPa confining pressure at room temperature, to generate fracture network patterns. These patterns were either produced by keeping a constant confining pressure and loading the sample up to failure (conventional test: CT), or by building up a high differential stress and suddenly releasing the confining pressure (confining pressure release test: CPR). The networks are similar in overall density but differ primarily in the orientation of smaller fractures. In the case of CT tests, a conjugate fracture set is observed with one dominant fracture zone running at about 20° from σ1. CPR tests do not show such a conjugate pattern and the mean fracture orientation is at around 35° from σ1. Discrete fracture network (DFN) methodology was used to determine the distribution of flow and hydraulic head for both fracture sets under simple boundary conditions and uniform transmissivity values. The fracture network generated by CT and CPR tests exhibit different patterns of flow field and hydraulic head configurations, but convey approximately the same amount of flow at all scales for which DFN models were simulated. The numerical modelling results help to develop understanding of qualitative differences in flow distribution that may arise in rocks of the same mineralogical composition and mechanical properties, but under the influence of different stress conditions, albeit at similar overall stress magnitude.

  18. Analysis of Fracturing Network Evolution Behaviors in Random Naturally Fractured Rock Blocks

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, X.; Zhang, B.

    2016-11-01

    Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in the shale plays, core observations indicate abundant random non-tectonic micro-fractures in the producing shales. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. In a series of scaled true triaxial laboratory experiments, we investigate the interaction of propagating fracturing network with natural fractures. The influence of dominating factors was studied and analyzed, with an emphasis on non-tectonic fracture density, injection rate, and stress ratio. A new index of P-SRV is proposed to evaluate the fracturing effectiveness. From the test results, three types of fracturing network geometry of radial random net-fractures, partly vertical fracture with random branches, and vertical main fracture with multiple branches were observed. It is suggested from qualitative and quantitative analysis that great micro-fracture density and injection rate tend to maximum the fracturing network; however, it tends to decrease the fracturing network with the increase in horizontal stress ratio. The function fitting results further proved that the injection rate has the most obvious influence on fracturing effectiveness.

  19. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Shicheng, Zhang; Tong, Zhou; Xiang, Zhou; Tiankui, Guo

    2016-01-01

    simultaneous fracturing can effectively reduce the stress difference and increase the fracture number, making it possible to generate a large-scale complex fracture network, even for high Δ σ h from 6 MPa to 12 MPa.

  20. Effect of fracture network geometry on density-driven flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Vujevic, Katharina; Graf, Thomas

    2013-04-01

    Density-driven flow can be a highly efficient transport mechanism in hydrogeological systems, especially if head gradients as a driving force for groundwater movement are absent. Unstable density layering may lead to variable-density, free-convective flow. Convection cells may form whose number and shape depends on the prevailing concentration and temperature gradients. The presence of open fractures may complicate the free convective flow pattern because fractures represent preferential pathways where water flow velocities can be considerably larger than in the rock matrix. Therefore, the purpose of this study is to provide insight into the structural properties of fracture networks that determine flow and transport patterns and to make a statement on the applicability of the equivalent porous medium approach (EPM). We systematically study free convective flow in continuous, discontinuous, orthogonal and inclined fracture networks embedded in a low-permeability rock matrix. Layer stability and convection patterns for different fracture networks are compared to each other and to an unfractured base case representing an EPM. We examine rates of solute transport by monitoring the mass flux at the solute source and relate it to the critical structural properties of the fracture networks. Simulations are performed using the numerical variable-density groundwater flow and transport model HydroGeoSphere. Fractures are represented as discrete fractures, whose geometric properties are explicitly defined. Fracture permeability is calculated using the cubic law. Results show that for free convective flow, the EPM approach is not able to reliably represent a fractured porous medium if fracture permeability is more than 5 orders of magnitude larger than matrix permeability. Nonetheless the EPM approach can be a reasonable approximation if the fracture network (i) evenly covers the simulated rock, (ii) is of high fracture density, (iii) is well-connected, (iv) contains

  1. A Spatial Clustering Approach for Stochastic Fracture Network Modelling

    NASA Astrophysics Data System (ADS)

    Seifollahi, S.; Dowd, P. A.; Xu, C.; Fadakar, A. Y.

    2014-07-01

    Fracture network modelling plays an important role in many application areas in which the behaviour of a rock mass is of interest. These areas include mining, civil, petroleum, water and environmental engineering and geothermal systems modelling. The aim is to model the fractured rock to assess fluid flow or the stability of rock blocks. One important step in fracture network modelling is to estimate the number of fractures and the properties of individual fractures such as their size and orientation. Due to the lack of data and the complexity of the problem, there are significant uncertainties associated with fracture network modelling in practice. Our primary interest is the modelling of fracture networks in geothermal systems and, in this paper, we propose a general stochastic approach to fracture network modelling for this application. We focus on using the seismic point cloud detected during the fracture stimulation of a hot dry rock reservoir to create an enhanced geothermal system; these seismic points are the conditioning data in the modelling process. The seismic points can be used to estimate the geographical extent of the reservoir, the amount of fracturing and the detailed geometries of fractures within the reservoir. The objective is to determine a fracture model from the conditioning data by minimizing the sum of the distances of the points from the fitted fracture model. Fractures are represented as line segments connecting two points in two-dimensional applications or as ellipses in three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a comprehensive fracture modification scheme based on simulated annealing and (2) it introduces new spatial approaches, a goodness-of-fit measure for the fitted fracture model, a measure for fracture similarity and a clustering technique for proposing a locally optimal solution for fracture parameters. We use a simulated dataset to demonstrate the application of the proposed approach

  2. The Benefits of Maximum Likelihood Estimators in Predicting Bulk Permeability and Upscaling Fracture Networks

    NASA Astrophysics Data System (ADS)

    Emanuele Rizzo, Roberto; Healy, David; De Siena, Luca

    2016-04-01

    directly into the permeability calculations. The application of Maximum Likelihood Estimators can have important consequences, especially when we aim to predict the tendency of fracture attributes towards smaller and larger scales than those observed, in order to build consistent, useable models from outcrop observations. The procedures presented here aim to understand whether the average permeability of a fracture network can be predicted, reducing its uncertainties; and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models, which can then be easily up-scaled into larger areas or volumes. Gale et al. "Natural Fracture in shale: A review and new observations", AAPG Bulletin 98.11 (2014). Mauldon et al. "Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces", Journal of Structural Geology, 23 (2001). Oda "Permeability tensor for discontinuous rock masses", Geotechnique 35.4 (1985).

  3. Fractal Characterization of Dynamic Fracture Network Extension in Porous Media

    NASA Astrophysics Data System (ADS)

    Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Liu, Richeng; Wang, Jinjie

    Fracture network and fractured porous media as well as their transport properties have received great attentions in many fields from engineering application and basic theoretical researches. Fracture will dynamically extend in length and aperture to form complex fracture network under some external conditions such as percussion drilling, wave propagation, desiccation and hydrofracturing. The complexity of fracture network can be well quantitatively characterized by fractal dimension. In this work, the dynamic characterization of fracture network extension in porous media under drying process is measured by the improved box-counting technique, and fractal dimensions of fracture network are respectively related to drying time, average aperture, moisture content and fracture porosity. The fractal dimension increases exponentially with drying time and average aperture, and decreases with moisture content in the form of power law. Specially, the fractal dimension is approximatively increased with porosity in the form of linearity in a narrow porosity range. The transport capacity of fracture network, described by seepage coefficient, is also related to the fractal dimension with drying time in the form of exponential function. The presented fractal analysis of fracture network could also shed light on the hydrofracturing application in subsurface unconventional oil and gas reservoirs.

  4. Hydrofracture Modeling Using Discrete Fracture Network in Barnett Shale

    NASA Astrophysics Data System (ADS)

    Yaghoubi, A.; Zoback, M. D.

    2012-12-01

    Shale gas has become an important source of unconventional reservoir in the united state over the past decade. Since the shale gas formations are impermeable, hydraulic fracturing from vertical and horizontal well are commonly approach to extract natural gas deposit from these unconventional sources. Hydraulic fracturing has been a successful and relatively inexpensive stimulation method for stimulation and enhances hydrocarbon recovery. Multistage hydro fracturing treatments in horizontal well creates a large stimulated reservoir volume. However, modeling hydraulic fracturing requires to prior knowledge of natural fracture network. This problem can be deal with Discrete Fracture network modeling. The objective of this study is first to model discrete fracture network and then simulate hydro-fracturing in five horizontal well of a case study in Barnett shale gas reservoir. In the case study, five horizontal wells have been drilled in Barnett shale gas reservoir in which each of them has 10 stages of hydro-fracturing stimulation. Of all five wells, just well C has a full comprehensive logging data. Fracture date detected using FMI image log of well C for building DFN model are associated with different sources of uncertainty; orientation, density and length. After building reservoir geomechanics model and detecting natural fracture form image log from well C, DFN model has built based on fracture parameters, orientation, intensity, shape size and permeability detected from image log and core data. Modeling hydrofractuing in five wells are consistent with critically stressed-fracture and micro-seismic events.

  5. Effects of fracture reactivation and diagenesis on fracture network evolution: Cambrian Eriboll Formation, NW Scotland

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Eichhubl, P.; Xu, G.; Ahn, H.; Fall, A.; Hargrove, P.; Laubach, S.; Ukar, E.

    2011-12-01

    The Cambrian Eriboll Formation quartzarenites contain abundant fractures with varying degrees of quartz cement infill. Fractures exist that are entirely sealed; are locally sealed by bridging cements but preserve pore space among bridges; are mostly open but lined with veneers of cement; or are devoid of cement. Fracture propagation in the Eriboll Formation is highly sensitive to the presence of pre-existing fractures. Fracture reactivation occurs in opening mode as individual fractures repeatedly open and are filled or bridged by syn-kinematic cements. As well, reactivation occurs in shear as opening of one fracture orientation coincides with shear displacement along pre-existing fractures of different orientations. The tendency for pre-existing fractures to slip varies in part by the extent of cement infill, yet we observe shear and opening-mode reactivation even among sealed fractures. Paleotemperature analysis of fluid inclusions within fracture cements suggests some fractures now in outcrop formed deep in the subsurface. Fractures within the Eriboll Formation may therefore affect later fracture propagation throughout geologic time. With progressive strain, fault zones develop within fracture networks by a sequence of opening-mode fracture formation, fracture reactivation and linkage, fragmentation, cataclasis, and the formation of slip surfaces. Cataclasite within fault zones is commonly more thoroughly cemented than fractures in the damage zone or outside the fault zone. This variance of cement abundance is likely the result of (1) continued exposure of freshly broken quartz surfaces within cataclasite, promoting quartz precipitation, and (2) possibly more interconnected pathways for mass transfer within the fault zone. Enhanced cementation of cataclasite results in strengthening or diagenetic strain hardening of the evolving fault zone. Further slip is accommodated by shear localization along discrete slip surfaces. With further linkage of fault segments

  6. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    NASA Astrophysics Data System (ADS)

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-11-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

  7. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    PubMed Central

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-01-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349

  8. Characterizing the dynamic behavior of hydraulically-induced fracture networks associated with hydraulic fracture stimulations (Invited)

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2013-12-01

    Seismic Moment Tensor Inversion (SMTI) analysis of microseismicity recorded with multi-well multi-array configurations allows for the potential determination of fracture growth, both spatially and temporally away from a treatment well, as well as the identification of fracture interactions within the reservoir. Based on these analyses, it may be possible to identify the role of pre-existing fracture networks in fracture development as well as, for example, failure type, fracture connectivity, and fracture intensity. Here, we present our observations based on evaluating event sequences associated with multiple injection programs in shale plays throughout North America. In our analysis we identify that, generally, local hydraulically induced variations in the stress-strain field during stimulation result in mixed-mode shear/tensile failures along predominantly pre-existing fractures/joints emplaced during current- and paleo-stress regimes rather than in the creation of new fractures. Away from treatment intervals, failures tend to be dominated by shear and are heavily influenced by the regional stress conditions. Utilizing Hudson plots (k-T), it appears that the fracture process can be further broken down into four types of activity relative to the treatment well and the start of the injection, namely initiation/reactivation of fractures (k ~ 0, double couple dominated), breakout into formation (explosive isotropic), progression of fracture from the treatment well (mostly explosive isotropic), and fracture infill behind the fracture front (decreasing k with treatment time, i.e., explosive to implosive). Breakout events comprised of crack-opening type failures followed by closure events close to the treatment well could be considered to be a canonical fracture, and that the observed behavior can be thought of as the superposition of many of these canonical fractures. Based on our observations, we suggest that by mapping these mechanisms, we can begin to delineate the

  9. Connectivity, formation factor and permeability of 2D fracture network

    NASA Astrophysics Data System (ADS)

    Tang, Y. B.; Li, M.; Li, X. F.

    2017-10-01

    The purpose of this paper is to investigate the effects of fracture connectivity and length distributions on the electrical formation factor, F, of random fracture network using percolation theory. We assumed that the matrix was homogeneous and low-permeable, but the connectivity and length distributions of fracture system were randomly variable. F of fracture network is analyzed via finite element method. The main result is that: different from the classical percolation ;universal; power law for porous-type rocks, F of fracture network obeys a normalized ;universal; scaling relation using the length-scale < l > / L (< l > is fracture mean length, and L is the domain size). Our proposed formation factor model, derived from the normalized ;universal; scaling relationship, is valid in fracture network with constant fracture length and length distributions, showing that the normalized ;universal; scaling law is independent of fracture patterns. The normalized scaling relation is also successfully used to derive the permeability model of 2D random fracture network using the previously published dataset, which obtained better fitting results than before.

  10. Creating permeable fracture networks for EGS: Engineered systems versus nature

    SciTech Connect

    Stephen L Karner

    2005-10-01

    The United States Department of Energy has set long-term national goals for the development of geothermal energy that are significantly accelerated compared to historical development of the resource. To achieve these goals, it is crucial to evaluate the performance of previous and existing efforts to create enhanced geothermal systems (EGS). Two recently developed EGS sites are evaluated from the standpoint of geomechanics. These sites have been established in significantly different tectonic regimes: 1. compressional Cooper Basin (Australia), and 2. extensional Soultz-sous-Fôrets (France). Mohr-Coulomb analyses of the stimulation procedures employed at these sites, coupled with borehole observations, indicate that pre-existing fractures play a significant role in the generation of permeability networks. While pre-existing fabric can be exploited to produce successful results for geothermal energy development, such fracture networks may not be omnipresent. For mostly undeformed reservoirs, it may be necessary to create new fractures using processes that merge existing technologies or use concepts borrowed from natural hydrofracture examples (e.g. dyke swarms).

  11. Rule generation from neural networks

    SciTech Connect

    Fu, L.

    1994-08-01

    The neural network approach has proven useful for the development of artificial intelligence systems. However, a disadvantage with this approach is that the knowledge embedded in the neural network is opaque. In this paper, we show how to interpret neural network knowledge in symbolic form. We lay down required definitions for this treatment, formulate the interpretation algorithm, and formally verify its soundness. The main result is a formalized relationship between a neural network and a rule-based system. In addition, it has been demonstrated that the neural network generates rules of better performance than the decision tree approach in noisy conditions. 7 refs.

  12. a Fractal Network Model for Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  13. Transport efficiency and dynamics of hydraulic fracture networks

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  14. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    USGS Publications Warehouse

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  15. Investigation of small-scale polygonal networks on Mars using models of terrestrial fracture and ice-wedge networks.

    NASA Astrophysics Data System (ADS)

    Plug, L. J.; Werner, B. T.

    2002-12-01

    Polygons formed by closely spaced (tens to hundreds of meters) interconnected troughs, visible in Mars Orbiter Camera images, are qualitatively similar to ice- and sand-wedge patterns in lowland Arctic and Antarctic terrain on Earth. The spacing and relative orientation between troughs in Mars networks varies between polygonal networks. Terrestrial networks, which form by recurrent opening of tension fractures in perennially frozen ground during periods of rapid cooling in winter, also display broad variations in the characteristic spacing, width and intersection angles of ice- and sand-wedges. Hypothesized causes for variations between terrestrial networks include variability in magnitude and orientation of maximum cooling-induced tensile stress, in substrate-dependent strength and heterogeneity, and in limits to downward propagation of fractures owing to a temperature-dependent brittle/ductile transition at depth. To investigate mechanisms for variability in Mars and terrestrial networks and to test if properties of some or all measured Mars networks fit within the range of terrestrial variability, we explore the response of a recently-developed computational model for terrestrial networks to changes in substrate strength and heterogeneity, maximum tensile stress, and fracture depth. The model treats initiation, propagation and arrest of fractures in a tensile stress field perturbed by neighboring fractures, and includes the growth of ice or sediment wedges along fracture paths. Modeled networks are compared to 20 1x1 km network regions from MOC images of Utopia Planitia using two methods. In the first method, joint distributions of relative orientation and spacing between troughs are used to characterize mean spacing and orthogonality of networks. In the second method, regions of a pixelated image of a network are used to predict the pixel pattern of displaced regions with a nonlinear spatial forecasting algorithm that operates on pixel brightness. Prediction

  16. Numerical Investigation into the Influence of Bedding Plane on Hydraulic Fracture Network Propagation in Shale Formations

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Shicheng, Zhang; Tong, Zhou; Han, Li

    2016-09-01

    Shale formations are often characterized by low matrix permeability and contain numerous bedding planes (BPs) and natural fractures (NFs). Massive hydraulic fracturing is an important technology for the economic development of shale formations in which a large-scale hydraulic fracture network (HFN) is generated for hydrocarbon flow. In this study, HFN propagation is numerically investigated in a horizontally layered and naturally fractured shale formation by using a newly developed complex fracturing model based on the 3D discrete element method. In this model, a succession of continuous horizontal BP interfaces and vertical NFs is explicitly represented and a shale matrix block is considered impermeable, transversely isotropic, and linearly elastic. A series of simulations is performed to illustrate the influence of anisotropy, associated with the presence of BPs, on the HFN propagation geometry in shale formations. Modeling results reveal that the presence of BP interfaces increases the injection pressure during fracturing. HF deflection into a BP interface tends to occur under high strength and elastic anisotropy as well as in low vertical stress anisotropy conditions, which generate a T-shaped or horizontal fracture. Opened BP interfaces may limit the growth of the fracture upward and downward, resulting in a very low stimulated thickness. However, the opened BP interfaces favor fracture complexity because of the improved connection between HFs and NFs horizontally under moderate vertical stress anisotropy. This study may help predict the HF growth geometry and optimize the fracturing treatment designs in shale formations with complex depositional heterogeneity.

  17. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    NASA Astrophysics Data System (ADS)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  18. Reconstruction of two-dimensional fracture network geometry by transdimensional inversion

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2017-04-01

    Transport processes in a fractured aquifer are mainly controlled by the geometry of the fracture network. Such a network is ideally modelled as discrete fracture network (DFN), which is composed by a skeleton of hydraulically conductive fractures that intersect the impermeable rock matrix. The orientation and connectivity of the fractures are highly case-specific, and mapping especially the hydraulically active parts of a fracture network requires insight from hydraulic or transport related experiments, such as tracer tests. Single tracer tests, however, offer only an integral picture of an aquifeŕs transport properties. Here, multiple tracer tests are proposed and evaluated together in a tracer tomography framework to obtain spatially distributed data. The interpretation of the data obtained from these experiments is challenging, since there exists no common recipe for reconstructing the fracture network in a DFN model. A crucial point is that the number of fractures (and thus the number of model parameters) is unknown. We propose the use of a transdimensional inversion method, which can be applied to calibrate fracture properties and number. In this study, the reversible jump Markov Chain Monte Carlo algorithm is selected and conservative tracer tomography experiments are interpreted with two-dimensional DFN models. In our approach, a randomly generated initial DFN solution is evolved through a Markov sequence. In each iteration the DFN model is updated by a random manipulation of the geometry (fracture addition, fracture deletion or fracture shift). The tracer tomography experiment is simulated with the updated model, and the simulated tracer breakthroughs curves are compared to the original observations. Each updated DFN realization is evaluated using the Metropolis-Hastings-Green acceptance criteria. This evaluation is based on probabilistic properties of the updates and the improvement of the fit of the breakthrough curves. The transdimensional algorithm

  19. Incorporating Discrete Irregular Fracture Zone Networks into 3D Paleohydrogeologic Simulations

    NASA Astrophysics Data System (ADS)

    Normani, S. D.

    2015-12-01

    Dual continuum computational models which include both porous media and discrete fracture zones are valuable tools in assessing groundwater migration and pathways in fractured rock systems. Fracture generation models can produce stochastic realizations of fracture networks which honor geological structures and fracture propagation behaviors. Surface lineament traces can be propagated to depth based on fracture zone statistics to produce representations of geological structures in rock. The generated discrete, complex and irregular fracture zone networks, represented as a triangulated mesh, are embedded using orthogonal quadrilateral elements within a three-dimensional hexahedral finite element mesh. A detailed coupled density-dependent paleohydrogeologic groundwater analysis of a hypothetical 104 km2 portion of the Canadian Shield has been conducted using the discrete-fracture dual continuum finite element model FRAC3DVS to investigate the characterization of large-scale fracture zone networks on groundwater and tracer movement during a 120,000 year paleoclimate cycle. Permeability reduction due to permafrost was also applied. Time series data for the depth of permafrost, along with ice thickness and lake depth, were provided by the University of Toronto (UofT) Glacial Systems Model. The crystalline rock between fracture zones was assigned properties characteristic of those reported for the Canadian Shield. Total dissolved solids concentrations of 300 g/L are encountered at depth. Surface water features and a Digital Elevation Model (DEM) were used in a GIS framework to define the watershed boundaries at surface water divides and to populate the finite element mesh. This work will illustrate the long-term evolution and stability of the geosphere and groundwater systems to external perturbations caused by glaciation through the use of performance measures such as Mean Life Expectancy and the migration of a unit tracer to depth over a paleoclimate cycle.

  20. DNAPL Dissolution in Bedrock Fractures And Fracture Networks

    DTIC Science & Technology

    2011-06-01

    capillary pressure, wettability , interfacial tension and relative permeability (63). The advancing DNAPL front and intersecting fractures will be only be...UCRL-JC-149856- ABS . ER-1554 Final Report 130 (12) Rubin, H., K. Rathfelder, K., Abriola, L.M., Spiller, M., Köngeter, J. Using continuum... wettability and saturation on liquid-liquid interfacial area in porous media. Environ. Sci. Technol. 2002, 37, 584-591. (94) Morley, M.C., Yamamoto, H

  1. Fracture energy of polymer gels with controlled network structures

    NASA Astrophysics Data System (ADS)

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-01

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  2. Fracture energy of polymer gels with controlled network structures.

    PubMed

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-14

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  3. Experimental Study of Heat Transport in Fractured Network

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria

    2015-04-01

    Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the

  4. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  5. Fractal scaling and fluid flow in fracture networks in rock

    SciTech Connect

    Barton, C.C.

    1996-12-31

    Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.

  6. Fractal scaling and fluid flow in fracture networks in rock

    SciTech Connect

    Barton, C.C. )

    1996-01-01

    Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.

  7. Fractal and geostatistical methods for modeling of a fracture network

    SciTech Connect

    Chiles, J.P.

    1988-08-01

    The modeling of fracture networks is useful for fluid flow and rock mechanics studies. About 6600 fracture traces were recorded on drifts of a uranium mine in a granite massif. The traces have an extension of 0.20-20 m. The network was studied by fractal and by geostatistical methods but can be considered neither as a fractal with a constant dimension nor a set of purely randomly located fractures. Two kinds of generalization of conventional models can still provide more flexibility for the characterization of the network: (a) a nonscaling fractal model with variable similarity dimension (for a 2-D network of traces, the dimension varying from 2 for the 10-m scale to 1 for the centimeter scale, (b) a parent-daughter model with a regionalized density; the geostatistical study allows a 3-D model to be established where: fractures are assumed to be discs; fractures are grouped in clusters or swarms; and fracturation density is regionalized (with two ranges at about 30 and 300 m). The fractal model is easy to fit and to simulate along a line, but 2-D and 3-D simulations are more difficult. The geostatistical model is more complex, but easy to simulate, even in 3-D.

  8. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    NASA Astrophysics Data System (ADS)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  9. Fractal modeling of natural fracture networks. Final report, June 1994--June 1995

    SciTech Connect

    Ferer, M.V.; Dean, B.H.; Mick, C.

    1996-04-01

    Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network. Reliable characterization of the actual fracture network in the reservoir is severely limited. The location and orientation of fractures intersecting the borehole can be determined, but the length of these fractures cannot be unambiguously determined. Fracture networks can be determined for outcrops, but there is little reason to believe that the network in the reservoir should be identical because of the differences in stresses and history. Because of the lack of detailed information about the actual fracture network, modeling methods must represent the porosity and permeability associated with the fracture network, as accurately as possible with very little apriori information. Three rather different types of approaches have been used: (1) dual porosity simulations; (2) `stochastic` modeling of fracture networks, and (3) fractal modeling of fracture networks. Stochastic models which assume a variety of probability distributions of fracture characteristics have been used with some success in modeling fracture networks. The advantage of these stochastic models over the dual porosity simulations is that real fracture heterogeneities are included in the modeling process. In the sections provided in this paper the authors will present fractal analysis of the MWX site, using the box-counting procedure; (2) review evidence testing the fractal nature of fracture distributions and discuss the advantages of using their fractal analysis over a stochastic analysis; (3) present an efficient algorithm for producing a self-similar fracture networks which mimic the real MWX outcrop fracture network.

  10. Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.

    2013-12-01

    Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus

  11. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  12. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  13. Developing Next Generation Natural Fracture Detection and Prediction Technology

    SciTech Connect

    R.L. Billingsley

    2005-05-01

    The purpose of the ''Next Generation'' project was to develop technology that will provide a quantitative description of natural fracture properties and locations in low-permeability reservoirs. The development of this technology has consistently been ranked as one of the highest priority needs by industry. Numerous researchers and resource assessment groups have stated that the ability to identify area where intense clusters of natural fractures co-exist with gas-charged sands, the so called ''sweet spots'', will be the key to unlocking the vast quantities of gas in-place contained in these low-permeability gas basins. To meet this technology need, the ''Next Generation'' project was undertaken with three performance criteria in mind: (1) provide an integrated assessment of the burial and tectonic stresses in a basin responsible for natural fracture genesis (using seismic data, a significantly modified application of geomechanics, and a discrete natural fracture generation model); (2) link the assessment of natural fracture properties and locations to the reservoir's fluid, storage and flow properties; and, (3) provide a reservoir simulation-based calculation of the gas (and water) production capacity of a naturally fractured reservoir system. Phase III of the ''Next Generation'' project entailed the performance of a field demonstration of the software in an ''exploration'' setting. The search for an Industry Partner willing to host an exploratory field demonstration was unsuccessful and Phase III was canceled effective May, 31, 2005. The failure to find an Industry Partner can be attributed to severe changes in the petroleum industry competitive environment between 1999 when the project was initiated and 2005 when further demonstration efforts were halted. The software was employed in portions of other, non-exploratory, projects underway during the development time period, and insights gained will be summarized here in lieu of a full field demonstration.

  14. Next-generation photonic networks

    NASA Astrophysics Data System (ADS)

    Katagiri, Yoshitada

    2002-10-01

    Novel network architecture and key device technology are described for next-generation photonic networks enabling high-performance data communications. To accomplish full-mesh links for efficient data transportaion, time-shared wavelength-division multiplexing is the most promising under the limitation imposed on the total wavelength number available at network nodes. Optical add/drop multipelxing (OADM) using wavelngth-tunable devices is essential for temporal data link fomraiotn. Wavelength managemetn based on absolute wavelength calibraiotn is a key to OADM operations. A simple wavelength dscriminating device using a disk-shaped tunable optical bandpass filter under the synchro-scanned operation is useful for managing the laser wavelengths. High-speed data transmissions of greater than 40 Gbps necessary for efficient operation of the networks are also described. A key is photonic downconversion which enables phase deteciton for optical data streams at above the electrical limitation of around 50 GHz. This technique is applied not only to a phase-locked loop for synchronizing mode-locked pulses to an electrical signal in the much lower frequency range of around 10 GHz, but to timing extraction from 100-Gbps data streams.

  15. Venus - Complex Network of Narrow Fractures Near Hestia Rupes Region

    NASA Image and Video Library

    1996-10-23

    This image from NASA Magellan spacecraft covers region near Hestia Rupes on the northwestern corner of Aphrodite Terra. The complex network of narrow (<1 kilometer) fractures in the center of the image extends for approximately 50 kilometers (31 miles). This network exhibits tributary-like branches similar to those observed in river systems on Earth. However, the angular intersections of tributaries suggest tectonic control. These features appear to be due to drainage of lava along preexisting fractures and subsequent collapse of the surface. The underlying tectonic fabric can be observed in the northeast trending ridges which predate the plains. http://photojournal.jpl.nasa.gov/catalog/PIA00469

  16. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  17. Signature of seismic wave attenuation during fracture network formation

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Zhubayev, Alimzhan; Houben, Maartje; Hardebol, Nico; Smeulders, David

    2015-04-01

    Seismic waves are significantly affected by the presence of fractures and faults. Fractures alter the arrival time of a seismic wave and the amplitude of the seismic wave. Attenuation of a seismic wave is the reduction of wave amplitude due to the presence of e.g. fractures. Attenuation of acoustic compressional P- and shear S-waves have been measured in laboratory studies on different rock types. These studies generally show a decrease in attenuation with an increase in stress. This decrease in attenuation is attributed to progressive crack closure of pre-existing cracks. The stress-dependent decrease in attenuation reported in these studies all occur within the elastic deformation field, i.e. below yield stress levels and thus no additional cracks/micro-fractures have yet been formed. At stress levels just above the yield strength the first fractures start to form. With increasing stress, fractures nucleate, grow and coalesce until a connected network of fractures has developed at which failure of the rock sample occurs. The change in attenuation during the fracturing process however has seldom been investigated. In analogy to fracture closure, where attenuation generally decreases, fracture formation should cause again an increase in attenuation. Here we report an experimental study on shales from Whitby (UK), where s-wave attenuation was measured in the laboratory during an increase in stress towards fracture formation until complete failure of the shale samples. Before yield stress conditions, as expected an increase in stress caused a gradual decrease in attenuation. At the transition from elastic to inelastic deformation behaviour, the first microfractures start to form and attenuation starts to increase again. This reversal in attenuation behaviour could potentially be used as an indicator that failure of a rock mass under stress is imminent (imminence of seismicity). The measured seismic velocities do not depict the transition from elastic to inelastic

  18. Multi-scale approach to invasion percolation of rock fracture networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Wittel, Falk K.; Araújo, Nuno A. M.; Herrmann, Hans J.

    2014-11-01

    A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

  19. New software for 3D fracture network analysis and visualization

    NASA Astrophysics Data System (ADS)

    Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.

    2013-12-01

    This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  20. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    SciTech Connect

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  1. Fractured Bedrock Storm Flow: a New Pathway for Runoff Generation

    NASA Astrophysics Data System (ADS)

    Oshun, J.; Salve, R.; Rempe, D. M.; Dietrich, W. E.; Fung, I.

    2010-12-01

    Groundwater dynamics in the fractured weathered bedrock underlying hillslopes may dominate storm runoff in many hilly and mountainous areas Few studies, however, have explored this runoff generation process. Here we use an intensively monitored site to study the spatial relationships between fractured bedrock and hydraulic properties in the weathered zone below a forested hillslope. The study site, Rivendell, is a 4000 m2 catchment draining directly into Elder Creek in the Angelo Coast Range Reserve (ACRR) in Northern California. The site is underlain by highly fractured and weak mudstones and boudinaged, ridge-forming sandstones that are turbidite sequences of the Coastal Franciscan Belt. The site receives an average of 1800mm of precipitation annually, with the vast majority falling between October and May. Rivendell has a thinly mantled soil layer underlain by a fractured rock zone, which thickens upslope to a depth of up to 30 m. Standard penetration tests show a consistent increase in bedrock resistance at depth before an abrupt lower boundary upon which the water table is perched. We use seven monitoring wells, precipitation data, soil moisture data, a steam gauge in Elder Creek, and well pump tests to characterize water movement through the fractured rock zone.. We analyze the lag time between peak rainfall and peak response at seven wells and Elder Creek from 2007-2010. The water table varies across the slope between 4 and 25 m below the ground surface, and the dynamic range of well water level increases with distance from Elder Creek. The magnitude and timing of well response shows a relationship to depth, magnitude of rainfall and antecedent moisture conditions. Although nearly all runoff is generated through fractured bedrock, we observe that Elder Creek consistently shows the shortest lag times compared to the wells on the hillslope. Wells show different trends in magnitude and timing of response throughout the rainy season. Pump tests reveal a

  2. Outgassing of silicic magma through bubble and fracture networks (Invited)

    NASA Astrophysics Data System (ADS)

    Okumura, S.; Nakamura, M.; Uesugi, K.

    2013-12-01

    Outgassing of magma is a fundamental process that controls the style and explosivity of volcanic eruptions. Vesiculation during the ascent and decompression of magma results in the formation of bubble networks within the magma. The permeable gas escape through the bubble networks is an efficient way to induce the outgassing of silicic magma (Eichelberger et al., 1986). To understand magma ascent dynamics and predict the style and explosivity of eruptions, it is necessary to constrain the rate of magma outgassing as the magma ascends in a volcanic conduit. However, the gas permeability of natural samples should not be considered, because it reflects complicated processes involving vesiculation, deformation, outgassing, and compaction. Experimental studies have demonstrated that vesiculation and compaction processes show hysteresis behavior (Okumura et al., 2013). Thus, we have performed experiments to simulate magma decompression and the deformation of vesicular magmas (e.g., Okumura et al., 2009, 2012). A series of decompression and deformation experiments indicates that the gas permeability is less than the order of 10-15 m2 for isotropic vesiculation at vesicularity <60-80 vol%. When magma ascent is simulated with shear deformation, the gas permeability is much greater than that observed under isotropic conditions. Akin to bubble networks, permeable networks consisting of shear-induced brittle fractures are thought to be efficient outgassing pathways (Gonnermann and Manga, 2003). Our recent experiments demonstrated that fractured magma has a higher gas permeability than vesicular magma at least at vesicularities <~40 vol%. This indicates that fracture networks in magma become efficient parts for the outgassing. However, as shear fracturing results from high strain rates in highly viscous magma, outgassing via fracture networks can be enhanced in localized shear zones and shallow parts of the conduit. The permeable bubble and fracture networks are preferentially

  3. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  4. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  5. Hydraulic fracture extending into network in shale: reviewing influence factors and their mechanism.

    PubMed

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design.

  6. Importance of Stratabound Fracture Networks for Seismic Hazard Assessment of Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W.; Davidsen, J.; Pedersen, P. K.; Boroumand, N.

    2013-12-01

    Hydraulic fracturing, a powerful completion technique used to enhance oil or gas production from impermeable strata, may trigger unintended earthquake activity. The primary basis for assessment of triggered and natural seismic hazard is the classic Gutenberg-Richter (G-R) relation, which expresses scale-independent behavior of earthquake magnitudes. Using a stochastic approach to simulate microseismicity from three monitoring programs in North America, we show that magnitude-distance trends for microearthquakes induced by hydraulic fracturing may deviate significantly from the G-R relation. This apparent breakdown in the power-law scaling paradigm, coupled with unusually high values for the b-parameter (slope) of the G-R relation, can be explained by a new model based on activation of stratabound fracture networks in which fracture height growth is limited by mechanical bed thickness. For the three areas considered, mechanical bed thickness is well represented by a lognormal distribution, which leads asymptotically to a Gaussian decay for induced magnitudes that fits the observations remarkably well. This new relationship has profound implications for understanding the scaling behavior of induced microearthquakes, as well as for forecasting the probability of larger earthquakes triggered by hydraulic fracturing in oil and gas development.

  7. Generative model for feedback networks

    NASA Astrophysics Data System (ADS)

    White, Douglas R.; Kejžar, Nataša; Tsallis, Constantino; Farmer, Doyne; White, Scott

    2006-01-01

    We propose a model for network formation and study some of its statistical properties. The motivation for the model comes from the growth of several kinds of real networks (i.e., kinship and trading networks, networks of corporate alliances, networks of autocatalytic chemical reactions). These networks grow either by establishing closer connections by adding links in the existing network or by adding new nodes. A node in these networks lacks the information of the entire network. In order to establish a closer connection to other nodes it starts a search in the neighboring part of the network and waits for a possible feedback from a distant node that received the “searching signal.” Our model imitates this behavior by growing the network via the addition of a link that creates a cycle in the network or via the addition of a new node with a link to the network. The forming of a cycle creates feedback between the two ending nodes. After choosing a starting node, a search is made for another node at a suitable distance; if such a node is found, a link is established between this and the starting node, otherwise (such a node cannot be found) a new node is added and is linked to the starting node. We simulate this algorithm and find that we cannot reject the hypothesis that the empirical degree distribution is a q -exponential function, which has been used to model long-range processes in nonequilibrium statistical mechanics.

  8. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection

  9. Nodal network generator for CAVE3

    NASA Technical Reports Server (NTRS)

    Palmieri, J. V.; Rathjen, K. A.

    1982-01-01

    A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.

  10. Probabilistic fracture mechanics code for PWR steam generator tube maintenance

    SciTech Connect

    Granger, B. ); Pitner, P. ); Flesch, B. )

    1991-01-01

    This paper presents the COMPROMIS code developed by Electricite de France (EDF) to optimize the maintenance of PWR steam generator (SG) tube bundles. This model, based on probabilistic fracture mechanics, quantifies the impact of in-service inspections and maintenance actions on the risk of failure of an SG tube, with allowance as random variable for all the relevant parameters (distribution of crack sizes, detection and sizing capability, crack initiation and propagation, critical sizes, leak before break risk). The code is SG-specific and is designed to allow realtime evaluation based on manufacturing and inspection data banks.

  11. Sequential state generation by model neural networks.

    PubMed Central

    Kleinfeld, D

    1986-01-01

    Sequential patterns of neural output activity form the basis of many biological processes, such as the cyclic pattern of outputs that control locomotion. I show how such sequences can be generated by a class of model neural networks that make defined sets of transitions between selected memory states. Sequence-generating networks depend upon the interplay between two sets of synaptic connections. One set acts to stabilize the network in its current memory state, while the second set, whose action is delayed in time, causes the network to make specified transitions between the memories. The dynamic properties of these networks are described in terms of motion along an energy surface. The performance of the networks, both with intact connections and with noisy or missing connections, is illustrated by numerical examples. In addition, I present a scheme for the recognition of externally generated sequences by these networks. PMID:3467316

  12. Next generation network management technology

    NASA Astrophysics Data System (ADS)

    Baras, John S.; Atallah, George C.; Ball, Mike; Goli, Shravan; Karne, Ramesh K.; Kelley, Steve; Kumar, Harsha; Plaisant, Catherine; Roussopoulos, Nick; Schneiderman, Ben; Srinivasarao, Mulugu; Stathatos, Kosta; Teittinen, Marko; Whitefield, David

    1995-01-01

    Today's telecommunications networks are becoming increasingly large, complex, mission critical and heterogeneous in several dimensions. For example, the underlying physical transmission facilities of a given network may be ``mixed media'' (copper, fiber-optic, radio, and satellite); the subnetworks may be acquired from different vendors due to economic, performance, or general availability reasons; the information being transmitted over the network may be ``multimedia'' (video, data, voice, and images) and, finally, varying performance criteria may be imposed e.g., data transfer may require high throughput while the others, whose concern is voice communications, may require low call blocking probability. For these reasons, future telecommunications networks are expected to be highly complex in their services and operations. Due to this growing complexity and the disparity among management systems for individual sub-networks, efficient network management systems have become critical to the current and future success of telecommunications companies. This paper addresses a research and development effort which focuses on prototyping configuration management, since that is the central process of network management and all other network management functions must be built upon it. Our prototype incorporates ergonomically designed graphical user interfaces tailored to the network configuration management subsystem and to the proposed advanced object-oriented database structure. The resulting design concept follows open standards such as Open Systems Interconnection (OSI) and incorporates object oriented programming methodology to associate data with functions, permit customization, and provide an open architecture environment.

  13. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    SciTech Connect

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.

  14. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE PAGES

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.« less

  15. Modeling in-situ transport of uranine and colloids in the fracture network in KURT.

    PubMed

    Kim, Jung-Woo; Lee, Jae-Kwang; Baik, Min-Hoon; Jeong, Jongtae

    2015-02-01

    An in-situ dipole migration experiment was conducted using the conservative tracer uranine and latex colloids in KAERI (Korea Atomic Energy Research Institute) Underground Research Tunnel (KURT). The location and dimensions of the fractures between the two boreholes were estimated using the results of a borehole image processing system (BIPS) investigation, and the connectivity of the fractures was evaluated by a packer test. To investigate the flow and transport of uranine and colloids through an in-situ fracture network, a fracture network transport model was newly developed. The model consists of a series of one-dimensional advection-dispersion-matrix diffusion equations for each channel of the fracture network. Using the fracture network transport model, the most probable representation and the hydrologic parameters of the fracture network can be estimated by fitting the breakthrough of uranine. While the fracture network might not be unique, the representation chosen was adequate to describe the breakthrough of uranine and it represents a reasonable approach to modeling transport in the fracture network. An additional evaluation showed that the colloid transport in this study was influenced by filtration on the fracture surface rather than the enhancement of the colloid velocity. Overall, the model can explain successfully the in-situ experimental results of uranine and colloid transports through the fracture network.

  16. Editorial: Next Generation Access Networks

    NASA Astrophysics Data System (ADS)

    Ruffini, Marco; Cincotti, Gabriella; Pizzinat, Anna; Vetter, Peter

    2015-12-01

    Over the past decade we have seen an increasing number of operators deploying Fibre-to-the-home (FTTH) solutions in access networks, in order to provide home users with a much needed network access upgrade, to support higher peak rates, higher sustained rates and a better and more uniform broadband coverage of the territory.

  17. Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Cacciari, Pedro Pazzoto; Futai, Marcos Massao

    2017-05-01

    Discontinuity mapping and analysis are extremely important for modeling shallow tunnels constructed in fractured rock masses. However, the limited exposure and variability of rock face orientation in tunnels must be taken into account. In this paper, an automatic method is proposed to generate discrete fracture networks (DFNs) using terrestrial laser scanner (TLS) geological mapping and to continuously calculate the volumetric intensities ( P 32) along a tunnel. The number of fractures intersecting rectangular sampling planes with different orientations, fitted in tunnel sections of finite lengths, is used as the program termination criteria to create multiple DFNs and to calculate the mean P 32. All traces and orientations from three discontinuity sets of the Monte Seco tunnel (Vitória Minas Railway) were mapped and the present method applied to obtain the continuous variation in P 32 along the tunnel. A practical approach to creating single and continuous DFNs (for each discontinuity set), considering the P 32 variations, is also presented, and the results are validated by comparing the trace intensities ( P 21) from the TLS mapping and DFNs generated. Three examples of 3DEC block models generated from different sections of the tunnel are shown, including the ground surface and the bedrock topographies. The results indicate that the proposed method is a practical and powerful tool for modeling fractured rock masses of uncovered tunnels. It is also promising for application during tunnel construction when TLS mapping is a daily task (for as-built tunnel controls), and the complete geological mapping (traces and orientations) is available.

  18. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    SciTech Connect

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  19. Periodic Hydraulic Tests in a Bedrock Fracture Network

    NASA Astrophysics Data System (ADS)

    Cole, M. C.; Becker, M.; Ciervo, C.

    2016-12-01

    Better understanding of groundwater flow through bedrock fracture networks is critical for the emerging field of enhanced geothermal systems, as well as traditional hydrogeologic characterization. Periodic hydraulic testing has shown promise for its sensitivity to local heterogeneity and, therefore, may provide useful information about flow channelization and short circuiting. Unlike conventional steady-rate pumping or injection tests, periodic tests create a disturbance such that heads in the pumping and observation wells are always in the transient state. The volume of hydraulic influence of the oscillating flow increases with period of oscillation. Thus, different portions of the formation may be interrogated even with a single well pair. We recently performed periodic pumping tests at the Mirror Lake experimental fractured rock hydrology field site in the Northeastern United States. Head in one well was oscillated while heads in five monitoring wells 30 to 60 m away were monitored. Head oscillation was accomplished through alternating injection and pumping from a surface tank and pressure was measured using a network of transducers in zones isolated by pneumatic packers. Periodicity of the induced signal was varied in order to investigate different volumes of the formation. Drawdown data from the monitoring wells were digitally filtered, which enabled use of responses that were too small or noisy for curve fitting methods. As expected, the volume of hydraulic influence increased with period, but well response was not strictly a function of distance from the source well. This anomalous response is attributed to variation in fracture network hydraulic connectivity. The ability to vary the effective penetration distance of hydraulic influence provided more information about network connectivity than from a constant rate pumping test. Estimates of hydraulic parameters displayed a decreasing trend with period length, which has been noted in previous periodic tests

  20. A joint inversion approach to characterize subsurface fracture networks based on geophysical and hydrological data

    NASA Astrophysics Data System (ADS)

    Karra, S.; Mudunuru, M.; Chen, T.; Makedonska, N.

    2016-12-01

    Fracture networks form critical pathways for fluid flow and transport of chemical species. Their characterization is crucial for applications involving storage and extraction of fluids in the subsurface such as unconventional oil and gas, CO2 sequestration, geothermal, nuclear waste storage, etc. Due to the extreme heterogeneity, anisotropy and uncertainties in the subsurface, characterizing fracture networks is a challenge. Just geophysical data (e.g., microseismic information) is insufficient to properly characterize the fracture networks, leading to a lot of uncertainty. One needs to incorporate multiple data streams such as geophysical, flow and tracer data, in order to constrain the fracture networks. In this work, we present a joint inversion framework to characterize subsurface fracture networks using multiple data streams. We first estimate the stochastics of the fracture orientations through a combination of focal mechanisms and clustering analysis of microseismic events. Flow and tracer observation datasets are then used to constrain the fracture lengths/size. The outcome of the proposed methodology is a discrete fracture network (DFN) that models the fracture network in the subsurface as a network of two-dimensional planar fractures in three-dimensional space. The DFN can then be used to predict flow, reactive transport or the state-of-stress in the subsurface.

  1. Reservoir Characterization and Flow Simulation for CO 2-EOR in the Tensleep Formation Using Discrete Fracture Networks, Teapot Dome, Wyoming

    NASA Astrophysics Data System (ADS)

    Kavousi Ghahfarokhi, Payam

    The Tensleep oil reservoir at Teapot Dome, Wyoming, USA, is a naturally fractured tight sandstone reservoir that has been considered for carbon-dioxide enhanced oil recovery (CO2-EOR) and sequestration. CO2-EOR analysis requires a thorough understanding of the Tensleep fracture network. Wireline image logs from the field suggest that the reservoir fracture network is dominated by early formed structural hinge oblique fractures with interconnectivity enhanced by hinge parallel and hinge perpendicular fracture sets. Available post stack 3D seismic data are used to generate a seismic fracture intensity attribute for the reservoir fracture network. The resulting seismic fracture intensity is qualitatively correlated to the field production history. Wells located on hinge-oblique discontinuities are more productive than other wells in the field. We use Oda's method to upscale the fracture permeabilities in the discrete fracture network for use in a dual porosity fluid flow simulator. We analytically show that Oda's method is sensitive to the grid orientation relative to fracture set strike. Results show that the calculated permeability tensors have maximum geometric mean for the non-zero permeability components (kxx,kyy,kzz,kxy) when the dominant fracture set cuts diagonally through the grid cell at 45° relative to the grid cell principal directions (i,j). The geometric mean of the permeability tensor components falls to a minimum when the dominant fracture set is parallel to either grid wall (i or j principal directions). The latter case has off-diagonal permeability terms close to zero. We oriented the Tensleep reservoir grid to N72°W to minimize the off-diagonal permeability terms. The seismic fracture intensity attribute is then used to generate a realization of the reservoir fracture network. Subsequently, fracture properties are upscaled to the reservoir grid scale for a fully compositional flow simulation. We implemented a PVT analysis using CO2 swelling test

  2. Analysis of microseismicity using fuzzy logic and fractals for fracture network characterization

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Ayatollahy Tafti, T.; Maity, D.; Boyle, K.; Sahimi, M.; Sammis, C. G.

    2010-12-01

    The area where microseismic events occur may be correlated with the fracture network at a geothermal field. For an Enhanced Geothermal System (EGS) reservoir, an extensive fracture network with a large aerial distribution is required. Pore-pressure increase, temperature changes, volume change due to fluid withdrawal/injection and chemical alteration of fracture surfaces are all mechanisms that may explain microseismic events at a geothermal field. If these mechanisms are operative, any fuzzy cluster of the microseismic events should represent a connected fracture network. Drilling new EGS wells (both injection and production wells) in these locations may facilitate the creation of an EGS reservoir. In this article we use the fuzzy clustering technique to find the location and characteristics of fracture networks in the Geysers geothermal field. We also show that the centers of these fuzzy clusters move in time, which may represent fracture propagation or fluid movement within the fracture network. Furthermore, analyzing the distribution of fuzzy hypocenters and quantifying their fractal structure helps us to develop an accurate fracture map for the reservoir. Combining the fuzzy clustering results with the fractal analysis allows us to better understand the mechanisms for fracture stimulation and better characterize the evolution of the fracture network. We also show how micro-earthquake date collected in different time periods can be correlated with drastic changes in the distribution of active fractures resulting from injection, production or other transient events.

  3. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  4. Gender Differences in Cross-Generation Networks.

    ERIC Educational Resources Information Center

    Troll, Lillian E.

    1987-01-01

    Members of cross-generational networks, which are primarily among kin, are likely to share basic values or to avoid issues that might cause conflict. Mother-daughter bonds are both the strongest through life and the most complex, linking household units into modified extended family networks. Critical conceptual methodological problems abound.…

  5. Membership generation using multilayer neural network

    NASA Technical Reports Server (NTRS)

    Kim, Jaeseok

    1992-01-01

    There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.

  6. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J.

    2013-02-01

    A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

  7. Next Generation Distributed Sensor Networks

    DTIC Science & Technology

    2004-09-01

    the exciting information processing problems that are being solved to effectively harvest the benefits of current and emerging nano , micro ...A number of nano and micro sensors are being introduced each month ranging from biological sensors to complex RF and optical sensors. The mass...sensor networks as one of the top ten emerging technologies. The July 2003 issue of the IEEE Proceeding is devoted to micro and nano sensors

  8. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    PubMed Central

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.

    2017-01-01

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the

  9. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales.

    PubMed

    Booker, Anne E; Borton, Mikayla A; Daly, Rebecca A; Welch, Susan A; Nicora, Carrie D; Hoyt, David W; Wilson, Travis; Purvine, Samuel O; Wolfe, Richard A; Sharma, Shikha; Mouser, Paula J; Cole, David R; Lipton, Mary S; Wrighton, Kelly C; Wilkins, Michael J

    2017-01-01

    Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of

  10. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Zhang, Chengyuan; Liu, Quansheng; Birkholzer, Jens

    2009-05-01

    In many underground nuclear waste repository systems, such as Yucca Mountain project, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of Multi-point Statistical method is to record multiple-point statistics concerning the connectivity patterns of fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at Yucca Mountain waste repository system. First, MPS method is used to create fracture network with original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in surrounding rock of waste emplacement drifts. Our study shows that connectivity or pattern of fracture network can be grasped and reconstructed by Multi-Point-Statistical method. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify uncertainty of models even in complicated coupled THM simulation. It indicates that Multi-Point Statistics is a potential method to characterize and reconstruct natural fracture network in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  11. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    SciTech Connect

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-05-01

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  12. Heterogeneous fluid flow in fractured layered carbonates and its implication for generation of incipient karst

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lei, Q.; Lonergan, L.; Jourde, H.; Gosselin, O.; Cosgrove, J.

    2017-09-01

    We use numerical models to investigate fluid flow in layered fractured carbonate rocks, and specifically to investigate the effects of the structural and hydraulic properties of both joints and bedding planes on flow localization. Synthetic fracture networks made up of two jointed layers separated by a horizontal bedding plane are generated to represent the typical layered fracture systems often formed in carbonate rocks. A uniform aperture field is assumed for each joint set and for the bedding plane, but different joint sets and the bedding plane can have non-identical values. The aperture ratio of the joint sets to the bedding plane is found to dominate the behaviour of flow heterogeneity on the bedding plane. Three distinct flow regimes, i.e. joint-dominated, transitional and bedding plane-dominated, are recognized. The magnitude of the aperture ratio controls which flow regime develops. We further suggest that the different flow regimes may be responsible for the initiation of different types of incipient karst morphologies observed in nature: pipe karst, stripe karst and sheet karst.

  13. Results from a discrete fracture network model of a Hot Dry Rock system

    SciTech Connect

    Lanyon, G.W.; Batchelor, A.S.; Ledingham, P.

    1993-01-28

    The work described represents a move towards better representations of the natural fracture system. The discrete fracture network model used during the study was the NAPSAC code (Grindrod et al, 1992). The goals of the work were to investigate the application of discrete fracture network models to Hot Dry Rock systems, increase the understanding of the basic thermal extraction process and more specifically the understanding of the Rosemanowes Phase 2B system. The aim in applying the work to the Rosemanowes site was to use the discrete fracture network approach to integrate a diverse set of field measurements into as simple a model as possible.

  14. From Stochastic toward Deterministic Characterization of Discrete Fracture Network via Thermal Tracer Tests

    NASA Astrophysics Data System (ADS)

    Somogyvari, M.; Jalali, M.; Bayer, P.; Jiménez Parras, S.

    2015-12-01

    The presence of fractures play an essential role in different disciplines, including hydrogeology, geothermal and hydrocarbon industries, as fractures introduce new pathways for flow and transport in the host rocks. Understanding the physical properties of these planar features would reduce the uncertainty of the numerical models and enhance the reliability of their results. Among the fracture properties, orientation and spacing are relatively easily estimated via borehole logs, core images, and outcrops, whereas the fracture geometry (i.e. length, width, and height) is more difficult to investigate. As the fracture geometry controls the hydraulic and thermal behavior of the fracture network through the strong dependency of the fracture conductivity with fracture aperture, it is possible to estimate these geometrical properties indirectly through hydraulic and thermal tomography investigations. To reach this goal, an innovative approach is introduced for discrete fracture network (DFN) characterization of heterogeneous fractured media via active thermal tracer testing. A synthetic DFN model is constructed based on the geological properties of an arbitrary fracture medium such as fracture orientation, length, spacing and persistency. Different realization are then constructed by considering all the above mentioned fracture properties except the length of fracture segments. Pressure and temperature fields are estimated inside the fracture network by means of an implicit upwind finite difference method, which is used to compute heat tracer travel times between injection and observation points and record the full temperature breakthrough curves at the monitoring points. A trans-dimensional inversion is then adopted to update the lengths fracture segment (add or remove) of the DFN model by comparison between proposed and observed travel times (Figure 1). The resulting assemble of the models can be used as an input geometry for deterministic simulations of fracture

  15. A new device for characterizing fracture networks and measuring groundwater and contaminant fluxes in fractured rock aquifers

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk; Newman, Mark A.; Cho, Jaehyun; Annable, Michael D.; Parker, Beth L.; Cherry, John A.; Perminova, Irina

    2016-07-01

    This paper presents the fundamental theory and laboratory test results on a new device that is deployed in boreholes in fractured rock aquifers to characterize vertical distributions of water and contaminant fluxes, aquifer hydraulic properties, and fracture network properties (e.g., active fracture density and orientation). The device, a fractured rock passive flux meter (FRPFM), consists of an inflatable core assembled with upper and lower packers that isolate the zone of interest from vertical gradients within the borehole. The outer layer of the core consists of an elastic fabric mesh equilibrated with a visible dye which is used to provide visual indications of active fractures and measures of fracture location, orientation, groundwater flux, and the direction of that flux. Beneath the outer layer is a permeable sorbent that is preloaded with known amounts of water soluble tracers which are eluted at rates proportional to groundwater flow. This sorbent also captures target contaminants present in intercepted groundwater. The mass of contaminant sorbed is used to quantify cumulative contaminant flux; whereas, the mass fractions of resident tracers lost are used to provide measures of water flux. In this paper, the FRPFM is bench tested over a range of fracture velocities (2-20 m/day) using a single fracture flow apparatus (fracture aperture = 0.5 mm). Test results show a discoloration in visible dye corresponding to the location of the active fracture. The geometry of the discoloration can be used to discern fracture orientation as well as direction and magnitude of flow in the fracture. Average contaminant fluxes were measured within 16% and water fluxes within 25% of known imposed fluxes.

  16. Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation

    SciTech Connect

    Shouchun Deng; Robert Podgorney; Hai Huang

    2011-02-01

    Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be

  17. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada: proceedings

    SciTech Connect

    Barton, C.C.; Larsen, E.

    1985-12-31

    Fracture traces exposed on three 214- to 260-m{sup 2} pavements in the same Miocene ash-flow tuff at Yucca Mountain, southwestern Nevada, have been mapped at a scale of 1:50. The maps are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.20 m were mapped. The distribution of fracture-trace lengths is log-normal. The fractures do not exhibit well-defined sets based on orientation. Since fractal characterization of such complex fracture-trace networks may prove useful for modeling fracture flow and mechanical responses of fractured rock, an analysis of each of the three maps was done to test whether such networks are fractal. These networks proved to be fractal and the fractal dimensions (D) are tightly clustered (1.12, 1.14, 1.16) for three laterally separated pavements, even though visually the fracture networks appear quite different. The fractal analysis also indicates that the network patterns are scale independent over two orders of magnitude for trace lengths ranging from 0.20 to 25 m. 7 refs., 7 figs.

  18. Factors Controlling DNAPL Migration in a Fracture Network: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ji, S.; Yeo, I.; Lee, K.

    2002-12-01

    Groundwater contamination by dense nonaqueous phase liquids (DNAPLs) has received considerable attention in recent years, and the attention on characterizing and quantifying the migration of DNAPL in geological formations has been given to the migration of DNAPL in porous media, not much in fractured rock. The spilled DNAPL that is heavier than water migrates downward to fractured bedrocks under the influence of gravity and is a long-term contaminant source. Although the progress has been accomplished on the development of algorithms for the numerical solution of the macroscopic models of contaminant transport in rock fractures, a lack of fundamental understanding exists concerning the interactive effects of the structural characteristics of fractures and fluid rheology on the patterns of DNAPL migration in a fracture network. In particular, little experimental work has been done on DNAPL migration in a fracture network. The two-dimensional fracture network was built up. Water was applied to both sides of a fracture network to have intended hydraulic head, and TCE was injected into one of vertical fractures. TCE migration process was recorded with digital camcorder. The dynamic macro-modified invasion percolation (DMMIP) model is suggested by integrating groundwater flow factor with MMIP that reflects the capillary effect, gravity-destabilization condition and viscous force of DNAPL. The information gained from experiments was analyzed and used for testing the DMMIP model to characterize the DNAPL migration pathway in a fracture network. DMMIP simulations and laboratory experiments show a good agreement. The results of DMMIP simulations and laboratory experiments show that in addition to gravity force, water viscous force considerably affects migration of DNAPL in rock fractures. This study will provide a step-stone for further developing reliable numerical simulators of the DNAPL migration in a fracture network that are required for the implementation of rational

  19. Fiber to the home: next generation network

    NASA Astrophysics Data System (ADS)

    Yang, Chengxin; Guo, Baoping

    2006-07-01

    Next generation networks capable of carrying converged telephone, television (TV), very high-speed internet, and very high-speed bi-directional data services (like video-on-demand (VOD), Game etc.) strategy for Fiber To The Home (FTTH) is presented. The potential market is analyzed. The barriers and some proper strategy are also discussed. Several technical problems like various powering methods, optical fiber cables, and different network architecture are discussed too.

  20. Fracture-fault network characterization of pavement imagery of the Whitby Mudstone, Yorkshire

    NASA Astrophysics Data System (ADS)

    Boersma, Quinten; Hardebol, Nico; Houben, Maartje; Barnhoorn, Auke; Drury, Martyn

    2015-04-01

    Natural fractures play an important role in the hydrocarbon production from tight reservoirs. The need for fracture network pathways by fraccing matters particularly for shale gas prospects, due to their micro- to nano-darcies matrix permeabilities. The study of natural fractures from outcrops helps to better understand network connectivity and possibility of reactivating pre-existing planes of weakness, induced by hydraulic stimulation. Microseismicity also show that natural fractures are reactivated during fraccing in tight gas reservoirs and influence the success of the stimulation. An accurate understanding of natural fracture networks can help in predicting the development of fracture networks. In this research we analyze an outcrop analogue, the Whitby Mustone Formation (WMF), in terms of its horizontal fracture network. The WMF is the time equivalent of the Posidonia Shale Formation (PSF), which on itself is the main shale gas prospect in the Dutch subsurface. The fracture network of the WMF is characterized by a system of steep dipping joints with two dominant directions with N-S and E-W strike. The network was digitized from bird-view imagery of the pavement with a spatial extent of ~100 m at sub-cm resolution. The imagery is interpreted in terms of orientation and length distributions, intensity and fractal dimensions. Samples from the field were analyzed for rock strength and sample mineralogy. The results indicate that the fracture networks greatly differ per bed. Observed differences are for example; the geometry of the fracture network, its cumulative length distribution law, the fracture intensity, the fracture length vs its orientation and the fractal dimension. All these parameters greatly influence fracture network connectivity, the probability that longer fractures exist within the pavement and whether the network is more prone to clustering or scattering. Apart from the differences, the networks display a fairly similar orthogonal arrangement

  1. Characterisation of induced fracture networks within an enhanced geothermal system using anisotropic electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    MacFarlane, Jake; Thiel, Stephan; Pek, Josef; Peacock, Jared; Heinson, Graham

    2014-11-01

    As opinions regarding the future of energy production shift towards renewable sources, enhanced geothermal systems (EGS) are becoming an attractive prospect. The characterisation of fracture permeability at depth is central to the success of EGS. Recent magnetotelluric (MT) studies of the Paralana geothermal system (PGS), an EGS in South Australia, have measured changes in MT responses which were attributed to fracture networks generated during fluid injection experiments. However, extracting permeabilities from these measurements remains problematic as conventional isotropic MT modelling is unable to accommodate for the complexities present within an EGS. To circumvent this problem, we introduce an electrical anisotropy representation to allow better characterisation of volumes at depth. Forward modelling shows that MT measurements are sensitive to subtle variations in anisotropy. Subsequent two-dimensional anisotropic forward modelling shows that electrical anisotropy is able to reproduce the directional response associated with fractures generated by fluid injection experiments at the PGS. As such, we conclude that MT monitoring combined with anisotropic modelling is a promising alternative to the micro-seismic method when characterising fluid reservoirs within geothermal and coal seam gas reservoirs.

  2. Radiology: "killer app" for next generation networks?

    PubMed

    McNeill, Kevin M

    2004-03-01

    The core principles of digital radiology were well developed by the end of the 1980 s. During the following decade tremendous improvements in computer technology enabled realization of those principles at an affordable cost. In this decade work can focus on highly distributed radiology in the context of the integrated health care enterprise. Over the same period computer networking has evolved from a relatively obscure field used by a small number of researchers across low-speed serial links to a pervasive technology that affects nearly all facets of society. Development directions in network technology will ultimately provide end-to-end data paths with speeds that match or exceed the speeds of data paths within the local network and even within workstations. This article describes key developments in Next Generation Networks, potential obstacles, and scenarios in which digital radiology can become a "killer app" that helps to drive deployment of new network infrastructure.

  3. NICT New-Generation Network Vision and Five Network Targets

    NASA Astrophysics Data System (ADS)

    Nishinaga, Nozomu

    The National Institute of Information and Communications Technology (NICT) vision and five network targets of research and development (R&D) of the NeW-Generation Network (NWGN) are presented in this letter. The NWGN is based on new design concepts that look beyond the next generation network (NGN). The NWGN will maintain the sustainability of our prosperous civilization and help resolve various social issues and problems by using information and communication technologies (ICTs). NICT's vision for NWGN is also presented in this letter. Based on this vision, 19 items concerning social issues and future social outlook are analyzed, and the functional requirements of the NWGN are extracted. The requirements are refined and categorized into five network targets that must be developed for realizing the vision.

  4. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na

    2016-11-01

    Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

  5. A parallel program for numerical simulation of discrete fracture network and groundwater flow

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Wei; Liou, Tai-Sheng; Kalatehjari, Roohollah

    2017-04-01

    The ability of modeling fluid flow in Discrete Fracture Network (DFN) is critical to various applications such as exploration of reserves in geothermal and petroleum reservoirs, geological sequestration of carbon dioxide and final disposal of spent nuclear fuels. Although several commerical or acdametic DFN flow simulators are already available (e.g., FracMan and DFNWORKS), challenges in terms of computational efficiency and three-dimensional visualization still remain, which therefore motivates this study for developing a new DFN and flow simulator. A new DFN and flow simulator, DFNbox, was written in C++ under a cross-platform software development framework provided by Qt. DFNBox integrates the following capabilities into a user-friendly drop-down menu interface: DFN simulation and clipping, 3D mesh generation, fracture data analysis, connectivity analysis, flow path analysis and steady-state grounwater flow simulation. All three-dimensional visualization graphics were developed using the free OpenGL API. Similar to other DFN simulators, fractures are conceptualized as random point process in space, with stochastic characteristics represented by orientation, size, transmissivity and aperture. Fracture meshing was implemented by Delaunay triangulation for visualization but not flow simulation purposes. Boundary element method was used for flow simulations such that only unknown head or flux along exterior and interection bounaries are needed for solving the flow field in the DFN. Parallel compuation concept was taken into account in developing DFNbox for calculations that such concept is possible. For example, the time-consuming seqential code for fracture clipping calculations has been completely replaced by a highly efficient parallel one. This can greatly enhance compuational efficiency especially on multi-thread platforms. Furthermore, DFNbox have been successfully tested in Windows and Linux systems with equally-well performance.

  6. Unified pipe network method for simulation of water flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  7. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wall was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.

  8. Lacunarity analysis of fracture networks: Evidence for scale-dependent clustering

    NASA Astrophysics Data System (ADS)

    Roy, Ankur; Perfect, Edmund; Dunne, William M.; Odling, Noelle; Kim, Jung-Woo

    2010-10-01

    Previous studies on fracture networks have shown that fractures contained within distinct mechanical units ("stratabound") are regularly spaced while those that terminate within the rock mass are clustered ("non-stratabound"). Lacunarity is a parameter which can quantify the distribution of spaces between rock fractures. When normalized to account for differences in fracture abundance, lacunarity characterizes the distribution of spaces as the degree of clustering in the fracture network. Normalized lacunarity curves, L∗( r), computed using the gliding-box algorithm and plotted as a function of box-size, r, were constructed for natural fracture patterns from Telpyn Point, Wales and the Hornelen basin, Norway. The results from analysis of the Telpyn Point fractures indicate that such curves are sensitive to differences in the clustering of different fracture sets at the same scale. For fracture networks mapped at different scales from the Hornelen basin, our analysis shows that clustering increases with decreasing spatial scale. This trend is attributed to the transition from a "stratabound" system at the scale of sedimentary cycles (100-200 m) that act as distinct mechanical units to a "non-stratabound" fracture system geometry at the finer 10's of meters thick bedding scale.

  9. NASA's Next Generation Space Geodesy Network

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  10. BGen: A UML Behavior Network Generator Tool

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Reder, Leonard J.; Balian, Harry

    2010-01-01

    BGen software was designed for autogeneration of code based on a graphical representation of a behavior network used for controlling automatic vehicles. A common format used for describing a behavior network, such as that used in the JPL-developed behavior-based control system, CARACaS ["Control Architecture for Robotic Agent Command and Sensing" (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40] includes a graph with sensory inputs flowing through the behaviors in order to generate the signals for the actuators that drive and steer the vehicle. A computer program to translate Unified Modeling Language (UML) Freeform Implementation Diagrams into a legacy C implementation of Behavior Network has been developed in order to simplify the development of C-code for behavior-based control systems. UML is a popular standard developed by the Object Management Group (OMG) to model software architectures graphically. The C implementation of a Behavior Network is functioning as a decision tree.

  11. Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments

  12. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-05

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  13. Identification and characterization of individual fractures in 3D networks of microtomography - a first step towards multi-scale analysis of reservoir fractures

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, K.

    2015-12-01

    Fractures provide significant conduits for fluid flow in tight (low porosity) reservoirs. Hydraulic fracturing is often used to create fractures and thus to increase permeability and enhance hydrocarbon recovery. Although such technique is commonly used in the petroleum and geothermal industry, the relationships between reservoir rock, stress and fracture formation are not well understood partly because the three-dimensional (3D) geometry of subsurface fractures is difficult to image directly at the resolutions required. Microtomography enables the observation of 3D internal structures (both pores and fractures) of rocks at micro-scale. Fractures at micro-scale show similarity with those at macro-scale and can be described by power-laws based on previous two-dimensional (2D) studies of fractures. Aiming to establish the scaling law of fractures in 3D space, we characterize fractures in microtomographic images in this study. In our workflow the first crucial step is to identify individual fractures in the 3D network. Starting from 2D, percolation theory is used to detect the connectivity of fractures, and a modified moving window method is used to detect the strike of a fracture - by changing the placement of the moving window following the intersection of the fracture and the boundary until the end point of the fracture is found. The 3D topology of a fracture is determined by the analysis of the connectivity of fractures in 2D slices. Once individual fractures are identified and registered, the characterization of fractures can then be achievable. Direct characterization parameters include the position of each fracture, the size (in voxels), orientation, and dimensions in three principal orientations. Derivative parameters include the density of fractures, the density of intersections, and the statistics of the direct parameters. This technical progress promises further development of the multi-scale analysis of reservoir fractures.

  14. Symbolic regression of generative network models

    PubMed Central

    Menezes, Telmo; Roth, Camille

    2014-01-01

    Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining their morphology and growth processes permit a wide range of phenomena to be more systematically analysed and understood. At the same time, creating such models is often challenging and requires insights that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We have developed an approach to automatically detect realistic decentralised network growth models from empirical data, employing a machine learning technique inspired by natural selection and defining a unified formalism to describe such models as computer programs. As the proposed method is completely general and does not assume any pre-existing models, it can be applied “out of the box” to any given network. To validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several canonical network generation models and credible laws for diverse real-world networks. We were able to find programs that are simple enough to lead to an actual understanding of the mechanisms proposed, namely for a simple brain and a social network. PMID:25190000

  15. Integrity of the osteocyte bone cell network in osteoporotic fracture: Implications for mechanical load adaptation

    NASA Astrophysics Data System (ADS)

    Kuliwaba, J. S.; Truong, L.; Codrington, J. D.; Fazzalari, N. L.

    2010-06-01

    The human skeleton has the ability to modify its material composition and structure to accommodate loads through adaptive modelling and remodelling. The osteocyte cell network is now considered to be central to the regulation of skeletal homeostasis; however, very little is known of the integrity of the osteocyte cell network in osteoporotic fragility fracture. This study was designed to characterise osteocyte morphology, the extent of osteocyte cell apoptosis and expression of sclerostin protein (a negative regulator of bone formation) in trabecular bone from the intertrochanteric region of the proximal femur, for postmenopausal women with fragility hip fracture compared to age-matched women who had not sustained fragility fracture. Osteocyte morphology (osteocyte, empty lacunar, and total lacunar densities) and the degree of osteocyte apoptosis (percent caspase-3 positive osteocyte lacunae) were similar between the fracture patients and non-fracture women. The fragility hip fracture patients had a lower proportion of sclerostin-positive osteocyte lacunae in comparison to sclerostin-negative osteocyte lacunae, in contrast to similar percent sclerostin-positive/sclerostin-negative lacunae for non-fracture women. The unexpected finding of decreased sclerostin expression in trabecular bone osteocytes from fracture cases may be indicative of elevated bone turnover and under-mineralisation, characteristic of postmenopausal osteoporosis. Further, altered osteocytic expression of sclerostin may be involved in the mechano-responsiveness of bone. Optimal function of the osteocyte cell network is likely to be a critical determinant of bone strength, acting via mechanical load adaptation, and thus contributing to osteoporotic fracture risk.

  16. The Use of Shear-Thinning Fluids as "Smart" Tracers to Infer Fracture Network Properties

    NASA Astrophysics Data System (ADS)

    Roques, C.; Selker, J. S.; Le Borgne, T.; Meheust, Y.; Abou Najm, M.; Rochefort, W. E.; Davy, P.; Bour, O.; Loiseau, M.; Givens, S.; Herring, B. J.

    2015-12-01

    The identification of preferential flow paths, their connectivity and their hydraulic properties in fractured rocks is critical for fluid flow and solute transport. Classical hydraulic tests allow defining a mean effective aperture based on simplified fracture models. Here we study the potential of using shear-thinning fluids as "smart" tracers to infer the distribution of fracture hydraulic properties. The main hypothesis considers that the flow of a shear-thinning fluid will sample specific pathways of the network as the fluid presents more viscous-shear behaviors. The flow field distribution of shear-thinning fluids in a 2D parallel fracture is first investigated numerically by implementing a viscous-shear model on classical flow equations. The relationship between fracture aperture and the degree of the flow enhancement due to the thinning behavior is quantified - given by the ratio between the non-Newtonian fluid average velocity and its corresponding Newtonian fluid at viscosity. A dimensionless solution describing the flow enhancement with respect to fracture aperture is derived from the theory. We also examine the impact of multiple fracture setups on the flow field redistribution in radial flow condition. Two main fracture configurations that can be found in a real network are considered: fractures organized in series and in parallel. We describe different flow enhancement behaviors controlled by the power exponent of the fluid and the fracture geometry. In perspective, some first experimental results are introduced that will guide the development of an inverse modelling framework.

  17. Ozone generation by rock fracture: Earthquake early warning?

    SciTech Connect

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  18. Ozone generation by rock fracture: Earthquake early warning?

    NASA Astrophysics Data System (ADS)

    Baragiola, Raúl A.; Dukes, Catherine A.; Hedges, Dawn

    2011-11-01

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O2 and CO2 at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  19. Generation of oscillating gene regulatory network motifs

    NASA Astrophysics Data System (ADS)

    van Dorp, M.; Lannoo, B.; Carlon, E.

    2013-07-01

    Using an improved version of an evolutionary algorithm originally proposed by François and Hakim [Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0304532101 101, 580 (2004)], we generated small gene regulatory networks in which the concentration of a target protein oscillates in time. These networks may serve as candidates for oscillatory modules to be found in larger regulatory networks and protein interaction networks. The algorithm was run for 105 times to produce a large set of oscillating modules, which were systematically classified and analyzed. The robustness of the oscillations against variations of the kinetic rates was also determined, to filter out the least robust cases. Furthermore, we show that the set of evolved networks can serve as a database of models whose behavior can be compared to experimentally observed oscillations. The algorithm found three smallest (core) oscillators in which nonlinearities and number of components are minimal. Two of those are two-gene modules: the mixed feedback loop, already discussed in the literature, and an autorepressed gene coupled with a heterodimer. The third one is a single gene module which is competitively regulated by a monomer and a dimer. The evolutionary algorithm also generated larger oscillating networks, which are in part extensions of the three core modules and in part genuinely new modules. The latter includes oscillators which do not rely on feedback induced by transcription factors, but are purely of post-transcriptional type. Analysis of post-transcriptional mechanisms of oscillation may provide useful information for circadian clock research, as recent experiments showed that circadian rhythms are maintained even in the absence of transcription.

  20. Macroscopic properties of isotropic and anisotropic fracture networks from the percolation threshold to very large densities

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Thovert, J.; Mourzenko, V.

    2011-12-01

    The main purpose of this review paper is to summarize some recent studies of fracture networks. Progress has been made possible thanks to a very versatile numerical technique based on a three-dimensional discrete description of the fracture networks. Any network geometry, any boundary condition, and any distribution of the fractures can be addressed. The first step is to mesh the fracture network as it is by triangles of a controlled size. The second step consists in the discretization of the conservation equations by the finite volume technique. Two important properties were systematically studied, namely the percolation threshold rho_c and the macroscopic permeability K_n of the fracture network. Dimensionless quantities are denoted by a prime. The numerical results are interpreted in a systematic way with the concept of excluded volume which enables us to define a dimensionless fracture density rho' equal in the average to the average number of intersections per fracture. 1. Isotropic networks of identical fractures The dimensionless percolation threshold rho'_c of such networks was systematically studied for fractures of various shapes. rho'_c was shown to be almost independent of the shape except when one has very elongated rectangles. A formula is proposed for rho'_c. The permeability of these networks was calculated for a wide range of fracture densities and shapes. K'_n(rho') is almost independent of the fracture shape; an empirical formula is proposed for any value of rho' between rho'_c and infinity. For large rho', K_n is well approximated by the Snow formula initially derived for infinite fractures. 2. Anisotropic networks of identical fractures The fracture orientations are supposed to follow a Fisher distribution characterized by the parameter kappa; when kappa=0, the fractures are isotropic; when kappa=infinity, the fractures are perpendicular to a given direction. rho'_c does not depend significantly on kappa and the general formula proposed in 1

  1. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other

  2. Realistic computer network simulation for network intrusion detection dataset generation

    NASA Astrophysics Data System (ADS)

    Payer, Garrett

    2015-05-01

    The KDD-99 Cup dataset is dead. While it can continue to be used as a toy example, the age of this dataset makes it all but useless for intrusion detection research and data mining. Many of the attacks used within the dataset are obsolete and do not reflect the features important for intrusion detection in today's networks. Creating a new dataset encompassing a large cross section of the attacks found on the Internet today could be useful, but would eventually fall to the same problem as the KDD-99 Cup; its usefulness would diminish after a period of time. To continue research into intrusion detection, the generation of new datasets needs to be as dynamic and as quick as the attacker. Simply examining existing network traffic and using domain experts such as intrusion analysts to label traffic is inefficient, expensive, and not scalable. The only viable methodology is simulation using technologies including virtualization, attack-toolsets such as Metasploit and Armitage, and sophisticated emulation of threat and user behavior. Simulating actual user behavior and network intrusion events dynamically not only allows researchers to vary scenarios quickly, but enables online testing of intrusion detection mechanisms by interacting with data as it is generated. As new threat behaviors are identified, they can be added to the simulation to make quicker determinations as to the effectiveness of existing and ongoing network intrusion technology, methodology and models.

  3. Quantification and description of fracture network by MRI image analysis.

    PubMed

    Balzarini, M; Nicula, S; Mattiello, D; Aliverti, E

    2001-01-01

    The contribution of fractures to total porosity and their geometrical descriptions have been studied by Image Analysis applied to 1H Magnetic Resonance Imaging (MRI). Reservoirs of different lithology were acquired with MSME 2D quantitative and 3D sequences. An image analysis procedure, developed ad hoc, was then applied to these acquisitions and the petrophysical parameters computed. These parameters range from fracture porosity to fracture density.

  4. Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models

    NASA Astrophysics Data System (ADS)

    Maillot, J.; Davy, P.; Le Goc, R.; Darcel, C.; de Dreuzy, J. R.

    2016-11-01

    A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest. This so-called "kinematic fracture model" is characterized by a large proportion of T intersections, and a smaller number of intersections per fracture. Several kinematic models were tested and compared with Poisson DFN models with the same density, length, and orientation distributions. Connectivity, permeability, and flow distribution were calculated for 3-D networks with a self-similar power law fracture length distribution. For the same statistical properties in orientation and density, the permeability is systematically and significantly smaller by a factor of 1.5-10 for kinematic than for Poisson models. In both cases, the permeability is well described by a linear relationship with the areal density p32, but the threshold of kinematic models is 50% larger than of Poisson models. Flow channeling is also enhanced in kinematic DFN models. This analysis demonstrates the importance of choosing an appropriate DFN organization for predicting flow properties from fracture network parameters.

  5. Macroscopic properties of fracture networks from the percolation threshold to very large densities

    NASA Astrophysics Data System (ADS)

    Adler, P.; Thovert, J.-F.; Mourzenko, V. V.

    2012-04-01

    Progress has been made possible thanks to a very versatile numerical technique based on a three-dimensional discrete description of the fracture networks. Any network geometry, any boundary condition, and any distribution of the fractures can be addressed. The first step is to mesh the fracture network as it is by triangles of a controlled size. The second step consists in the discretization of the conservation equations by the finite volume technique. Two important properties were systematically studied, namely the percolation threshold rhoc and the macroscopic permeability Kn of the fracture network. Dimensionless quantities are denoted by a prime. The numerical results are interpreted in a systematic way with the concept of excluded volume which enables us to define a dimensionless fracture density rho' equal in the average to the average number of intersections per fracture. 1. Isotropic networks of identical fractures The dimensionless percolation threshold rho'c of such networks was systematically studied for fractures of various shapes. rho'c was shown to be almost independent of the shape except when one has very elongated rectangles. A formula is proposed for rho'_c. The permeability of these networks was calculated for a wide range of fracture densities and shapes. K'_n(rho') is almost independent of the fracture shape; an empirical formula is proposed for any value of rho' between rho'c and infinity. For large rho', Kn is well approximated by the Snow formula initially derived for infinite fractures. 2. Anisotropic networks of identical fractures The fracture orientations are supposed to follow a Fisher distribution characterized by the parameter kappa; when kappa=0, the fractures are isotropic; when kappa=infinity, the fractures are perpendicular to a given direction. rho'c does not depend significantly on kappa and the general formula proposed in 1 can be used as a first approximation. A considerable simplification occurs for permeability. The

  6. Biology Question Generation from a Semantic Network

    NASA Astrophysics Data System (ADS)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from

  7. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...

    2017-09-05

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  8. An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bisdom, K.; Nick, H. M.; Bertotti, G.

    2017-06-01

    Fluid flow in naturally fractured reservoirs is often controlled by subseismic-scale fracture networks. Although the fracture network can be partly sampled in the direct vicinity of wells, the inter-well scale network is poorly constrained in fractured reservoir models. Outcrop analogues can provide data for populating domains of the reservoir model where no direct measurements are available. However, extracting relevant statistics from large outcrops representative of inter-well scale fracture networks remains challenging. Recent advances in outcrop imaging provide high-resolution datasets that can cover areas of several hundred by several hundred meters, i.e. the domain between adjacent wells, but even then, data from the high-resolution models is often upscaled to reservoir flow grids, resulting in loss of accuracy. We present a workflow that uses photorealistic georeferenced outcrop models to construct geomechanical and fluid flow models containing thousands of discrete fractures covering sufficiently large areas, that does not require upscaling to model permeability. This workflow seamlessly integrates geomechanical Finite Element models with flow models that take into account stress-sensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix permeabilities shows that conventional upscaling to effective grid properties leads to potential underestimation of the true permeability and the orientation of principal permeabilities. The presented workflow yields the full permeability tensor model of discrete fracture networks with stress-induced apertures, instead of relying on effective properties as most conventional flow models do.

  9. A numerical procedure for transient free surface seepage through fracture networks

    NASA Astrophysics Data System (ADS)

    Jiang, Qinghui; Ye, Zuyang; Zhou, Chuangbing

    2014-11-01

    A parabolic variational inequality (PVI) formulation is presented for the transient free surface seepage problem defined for a whole fracture network. Because the seepage faces are specified as Signorini-type conditions, the PVI formulation can effectively eliminate the singularity of spillpoints that evolve with time. By introducing a continuous penalty function to replace the original Heaviside function, a finite element procedure based on the PVI formulation is developed to predict the transient free surface response in the fracture network. The effects of the penalty parameter on the solution precision are analyzed. A relative error formula for evaluating the flow losses at steady state caused by the penalty parameter is obtained. To validate the proposed method, three typical examples are solved. The solutions for the first example are compared with the experimental results. The results from the last two examples further demonstrate that the orientation, extent and density of fractures significantly affect the free surface seepage behavior in the fracture network.

  10. Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997

    SciTech Connect

    Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

    1998-01-01

    This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

  11. Next-Generation Synthetic Gene Networks

    PubMed Central

    Lu, Timothy K.; Khalil, Ahmad S.; Collins, James J.

    2009-01-01

    Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field’s first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems, and frameworks for the reliable construction and operation of complex, higher-order networks. Here, we highlight challenges and goals for next-generation synthetic gene networks, in the context of potential applications in medicine, biotechnology, bioremediation, and bioenergy. PMID:20010597

  12. Next-generation synthetic gene networks.

    PubMed

    Lu, Timothy K; Khalil, Ahmad S; Collins, James J

    2009-12-01

    Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field's first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems and frameworks for the reliable construction and operation of complex, higher-order networks. As these challenges are addressed, synthetic biologists will be able to construct useful next-generation synthetic gene networks with real-world applications in medicine, biotechnology, bioremediation and bioenergy.

  13. Fracture-frequency prediction from borehole wireline logs using artificial neural networks

    SciTech Connect

    FitzGerald, E.M.; Bean, C.J.; Reilly, R.

    1999-11-01

    Borehole-wall imaging is currently the most reliable means of mapping discontinuities within boreholes. As these imaging techniques are expensive and thus not always included in a logging run, a method of predicting fracture frequency directly from traditional logging tool responses would be very useful and cost effective. Artificial neural networks (ANNs) show great potential in this area. ANNs are computational systems that attempt to mimic natural biological neural networks. They have the ability to recognize patterns and develop their own generalizations about a given data set. Neural networks are trained on data sets for which the solution is known and tested on data not previously seen in order to validate the network result. The authors show that artificial neural networks, due to their pattern recognition capabilities, are able to assess the signal strength of fracture-related heterogeneity in a borehole log and thus fracture frequency within a borehole. A combination of wireline logs (neutron porosity, bulk density, P-sonic, S-sonic, deep resistivity and shallow resistivity) were used as input parameters to the ANN. Fracture frequency calculated from borehole televiewer data was used as the single output parameter. The ANN was trained using a back-propagation algorithm with a momentum learning function. In addition to fracture frequency within a single borehole, an ANN trained on a subset of boreholes in an area could be used for prediction over the entire set of boreholes, thus allowing the lateral correlation of fracture zones.

  14. Wave generation by fracture initiation and propagation in geomaterials with internal rotations

    NASA Astrophysics Data System (ADS)

    Esin, Maxim; Pasternak, Elena; Dyskin, Arcady; Xu, Yuan

    2016-04-01

    Crack or fracture initiation and propagation in geomaterials are sources of waves and is important in both stability and fracture (e.g. hydraulic fracture) monitoring. Many geomaterials consist of particles or other constituents capable of rotating with respect to each other, either due to the absence of the binder phase (fragmented materials) or due to extensive damage of the cement between the constituents inflicted by previous loading. In investigating the wave generated in fracturing it is important to distinguish between the cases when the fracture is instantaneously initiated to its full length or propagates from a smaller initial crack. We show by direct physical experiments and discrete element modelling of 2D arrangements of unbonded disks that under compressive load fractures are initiated instantaneously as a result of the material instability and localisation. Such fractures generate waves as a single impulse impact. When the fractures propagate, they produce a sequence of impulses associated with the propagation steps. This manifests itself as acoustic (microseismic) emission whose temporal pattern contains the information of the fracture geometry, such as fractal dimension of the fracture. The description of this process requires formulating criteria of crack growth capable of taking into account the internal rotations. We developed an analytical solution based on the Cosserat continuum where each point of body has three translational and three rotational degrees of freedom. When the Cosserat characteristic lengths are comparable with the grain sizes, the simplified equations of small-scale Cosserat continuum can be used. We established that the order of singularity of the main asymptotic term for moment stress is higher than the order of singularity for conventional stress. Therefore, the mutual rotation of particles and related bending and/or twisting of the bonds between the particles represent an unconventional mechanism of crack propagation.

  15. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    NASA Astrophysics Data System (ADS)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  16. Laboratory Experiments on Wave Emissions Generated by the Variable Viscosity of Fracturing Fluids

    NASA Astrophysics Data System (ADS)

    Dahi Taleghani, A.; Lorenzo, J. M.

    2014-12-01

    Microseismic analysis is recognized as the main method for estimating hydraulic fracture geometry. However, because of limited access to the subsurface and usually high levels of environmental noise it becomes crucial to verify assumed fracture propagation models under more controlled laboratory conditions. Considering the fact that fluid driven fractures may grow under different regimes i.e., toughness-dominated or viscous-dominated, scaling is necessary to reproduce the corresponding fracture growth regime. Scaling is achieved by constraining material deformational parameters, fluid flow rates, and fracturing-fluid viscosity for the appropriate value of the non-dimensional toughness. Hence, we implemented hydraulic fracturing tests on translucent plexiglass samples, at room temperature with contrasting fracturing fluid viscosities. A modest, biaxial loading frame creates relatively low directed principal stresses (< 1000 psi, or less < 1 km overburden pressure). A sealed fluid conduit generates fluid pressures (< 3000 psi) created by a positive displacement pump. We record microseismic events on the upper and lower faces of a thermally annealed, sample block (13 cm x 13 cm x 10 cm) with 3-component, broadband sensors (101-106). Preliminary results indicate that the dominant frequency band of the microseismic events appears similar for both toughness-dominated and viscous-dominated regimes (101-102 Hz). The experiments in both regimes show rippled crack surfaces although in the toughness-dominated regime, 'ripples' are more closely spaced (mm cf. cm). The fracture surfaces show bifurcating, "wish-bone" structures only in the viscous regime.

  17. Extraction and visualization of a fracture network using Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Rath, A.; Voorn, M.; Exner, U.

    2012-04-01

    Micro-Computed Tomography (µCT) measurements were conducted on 3 cm dolomite drill core plugs to gain knowledge about the distribution and orientation of a fracture network inside such plugs. µCT produces a 3D-image stack of 2D-images and these are used to reconstruct a 3D-Model of the fracture network representing the main pore space. The measurements are performed on a Rayscan 250 E at the University of Applied Sciences of Upper Austria (Fachhochschule Oberösterreich, FHÖO) using optimal recording parameters, to ensure the best spatial resolution and image quality. The resolution of the performed scans is around 20 µm. Each scan is acquired five times and then averaged to increase contrast and decrease noise artifacts. Due to the fact that the fracture apertures can be far below 20 µm, noise can be a main drawback to be able to segment the fractures. To decrease a further impact of noise we filter the images after image acquisition, by means of image histogram equalization and edge enhanced diffusion. Segmenting the fractures and the fracture network is not trivial. Many different segmentation routines the one option giving by far the best results was the Frangi Filter 2D. This filter was written in the medical research field to trace blood vessels. From a data perspective blood vessels are rather similar structures to fractures. However, the results are intensity images so that we still have to use a global threshold. This step is done by the automatic Otsu threshold, which is not biased by any human input. From a segmented image it is possible to quantify the apertures, orientation and distribution of the fractures. Using this technique can provide deep insight into the deformation history and a geometrical dataset to calculate permeability of a fracture network, which is additionally calibrated with conventional thin section analysis.

  18. dfnWorks: A HPC Workflow for Discrete Fracture Network Modeling with Subsurface Flow and Transport Applications

    NASA Astrophysics Data System (ADS)

    Gable, C. W.; Hyman, J.; Karra, S.; Makedonska, N.; Painter, S. L.; Viswanathan, H. S.

    2015-12-01

    dfnWorks generates discrete fracture networks (DFN) of planar polygons, creates a high quality conforming Delaunay triangulation of the intersecting DFN polygons, assigns properties (aperture, permeability) using geostatistics, sets boundary and initial conditions, solves pressure/flow in single or multi-phase fluids (water, air, CO2) using the parallel PFLOTRAN or serial FEHM, and solves for transport using Lagrangian particle tracking. We outline the dfnWorks workflow and present applications from a range of fractured rock systems. dfnWorks (http://www.lanl.gov/expertise/teams/view/dfnworks) is composed of three main components, all of which are freely available. dfnGen generates a distribution of fracture polygons from site characterization data (statistics or deterministic fractures) and utilizes the FRAM (Feature Rejection Algorithm for Meshing) to guarantee the mesh generation package LaGriT (lagrit.lanl.gov) will generate a high quality conforming Delaunay triangular mesh. dfnWorks links the mesh to either PFLOTRAN (pflotran.org) or FEHM (fehm.lanl.gov) for solving flow and transport. The various physics options available in FEHM and PFLOTRAN such as single and multi-phase flow and reactive transport are all available with appropriate initial and boundary conditions and material property models. dfnTrans utilizes explicit Lagrangian particle tracking on the DFN using a velocity field reconstructed from the steady state pressure/flow field solution obtained in PFLOTRAN or FEHM. Applications are demonstrated for nuclear waste repository in fractured granite, CO2 sequestration and extraction of unconventional hydrocarbon resources.

  19. Three Dimensional Flow, Transport and Geomechanical Simulations in Discrete Fracture Network Under Condition of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ryerson, F. J.; Ezzedine, S. M.; Glascoe, L. G.; Antoun, T. H.

    2011-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Data collected are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable probabilistic assessment of flow, transport and geomechanical phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, we investigate the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport and geomechanics. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory. (Prepared by LLNL under Contract DE-AC52-07NA27344)

  20. Effects of using a continuum representation of discrete fracture networks

    SciTech Connect

    Hull, L.C.; Clemo, T.M.

    1987-01-01

    The substitution of matrix or continuum permeability for discrete fracture permeability in the simulation of complex fracture systems requires a radically different treatment of transport in the matrix. The spatial distribution of pressure is reasonably well described by inclusion of only the major fractures. Transport of tracer and heat, however, depends on a detailed knowledge of fluid velocities. Two factors are involved. First, the velocities are dependent on the active porosity of the system. Because fractures channel flow, the active porosity may be much smaller than the total porosity of the system. Secondly, the distribution of velocities is generally not normally distributed precluding the use of a Gaussian dispersion model. Characterization of the active porosity and velocity distribution are necessary to quantify tracer and heat movement.

  1. Mechanical transport in two-dimensional networks of fractures

    SciTech Connect

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables.

  2. Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.

    PubMed

    Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan

    2013-04-01

    To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.

  3. Numerical Simulation of non-Newtonian Fluid Flows through Fracture Network

    NASA Astrophysics Data System (ADS)

    Dharmawan, I. A.; Ulhag, R. Z.; Endyana, C.; Aufaristama, M.

    2016-01-01

    We present a numerical simulation of non-Newtonian fluid flow in a twodimensional fracture network. The fracture is having constant mean aperture and bounded with Hurst exponent surfaces. The non-Newtonian rheology behaviour of the fluid is described using the Power-Law model. The lattice Boltzmann method is employed to calculate the solutions for non-Newtonian flow in finite Reynolds number. We use a constant force to drive the fluid within the fracture, while the bounceback rules and periodic boundary conditions are applied for the fluid-solid interaction and inflow outlflow boundary conditions, respectively. The validation study of the simulation is done via parallel plate flow simulation and the results demonstrated good agreement with the analytical solution. In addition, the fluid flow properties within the fracture network follow the relationships of power law fluid while the errors are becoming larger if the fluid more shear thinning.

  4. A hybrid mortar virtual element method for discrete fracture network simulations

    NASA Astrophysics Data System (ADS)

    Benedetto, Matías Fernando; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialò, Stefano

    2016-02-01

    The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN) is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to "weakly" impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.

  5. FMG, RENUM, LINEL, ELLFMG, ELLP, and DIMES: Chain of programs for calculating and analyzing fluid flow through two-dimensional fracture networks -- theory and design

    SciTech Connect

    Billaux, D.; Bodea, S.; Long, J.

    1988-02-01

    This report describes some of the programs developed at Lawrence Berkeley Laboratory for network modelling. By themselves, these programs form a complete chain for the study of the equivalent permeability of two-dimensional fracture networks. FMG generates the fractures considered as line discontinuities, with any desired distribution of aperture, length, and orientation. The locations of these fractures on a plane can be either specified or generated randomly. The intersections of these fractures with each other, and with the boundaries of a specified flow region, are determined, and a finite element line network is output. RENUM is a line network optimizer. Nodes very close to each other are merged, deadends are removed, and the nodes are then renumbered in order to minimize the bandwidth of the corresponding linear system of equations. LINEL computes the steady state flux through a mesh of line elements previously processed by program RENUM. Equivalent directional permeabilities are output. ELLFMG determines the three components of the permeability tensor which best fits the directional permeabilities output by LINEL. A measure of the goodness fit is also computed. Two plotting programs, DIMES and ELLP, help visualize the outputs of these programs. DIMES plots the line network at various stages of the process. ELLP plots the equivalent permeability results. 14 refs., 25 figs.

  6. Anaesthesia for proximal femoral fracture in the UK: first report from the NHS Hip Fracture Anaesthesia Network.

    PubMed

    White, S M; Griffiths, R; Holloway, J; Shannon, A

    2010-03-01

    The aim of this audit was to investigate process, personnel and anaesthetic factors in relation to mortality among patients with proximal femoral fractures. A questionnaire was used to record standardised data about 1195 patients with proximal femoral fracture admitted to 22 hospitals contributing to the Hip Fracture Anaesthesia Network over a 2-month winter period. Patients were demographically similar between hospitals (mean age 81 years, 73% female, median ASA grade 3). However, there was wide variation in time from admission to operation (24-108 h) and 30-day postoperative mortality (2-25%). Fifty percent of hospitals had a mean admission to operation time < 48 h. Forty-two percent of operations were delayed: 51% for organisational; 44% for medical; and 4% for 'anaesthetic' reasons. Regional anaesthesia was administered to 49% of patients (by hospital, range = 0-82%), 51% received general anaesthesia and 19% of patients received peripheral nerve blockade. Consultants administered 61% of anaesthetics (17-100%). Wide national variations in current management of patients sustaining proximal femoral fracture reflect a lack of research evidence on which to base best practice guidance. Collaborative audits such as this provide a robust method of collecting such evidence.

  7. The guitar chord-generating algorithm based on complex network

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  8. Revision of ceramic head fracture after third generation ceramic-on-ceramic total hip arthroplasty.

    PubMed

    Koo, Kyung-Hoi; Ha, Yong-Chan; Kim, Shin-Yoon; Yoon, Kang-Sup; Min, Byung-Woo; Kim, Sang-Rim

    2014-01-01

    We performed 24 revisions of fractures of third generation ceramic heads. The stem was not changed in 20 revisions; a new ceramic-on-ceramic bearing was used in four and a metal-on-polyethylene bearing in 16. The stem was changed in four revisions; a new ceramic-on-ceramic bearing was used in three and a metal-on-polyethylene bearing in one. During the follow-up of 57.5 months, complications occurred in five hips among the 20 stem retained revisions: a fracture of the new ceramic head in two, metallosis with pseudocyst in two, and femoral osteolysis with stem loosening in one. However, there were no complications in the four revisions where the stem was changed. Revision surgery after ceramic head fracture shows high rates of early complications. We recommend stem revision in cases of THA failure due to fracture of a modern ceramic head. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1995-09-01

    Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m. In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.

  10. Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications

    SciTech Connect

    Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

    2011-01-18

    The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

  11. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  12. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  13. Impact of Geological Characterization Uncertainties on Subsurface Flow & Transport Using a Stochastic Discrete Fracture Network Approach

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2009-12-01

    Fractures and fracture networks are the principal pathways for transport of water and contaminants in groundwater systems, enhanced geothermal system fluids, migration of oil and gas, carbon dioxide leakage from carbon sequestration sites, and of radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples, among other techniques. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as a stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions of fracture density, orientation, aperture and size on the flow and transport using topological measures such as fracture connectivity, physical characteristics such as effective hydraulic conductivity tensors, and

  14. Fractures in anisotropic media

    NASA Astrophysics Data System (ADS)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  15. Fractures

    MedlinePlus

    A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...

  16. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  17. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian [Kensington, CA; Myers, Cornelia A [St. Louis, MO; Podowski, Raf M [Pleasant Hill, CA

    2011-07-26

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  18. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian; Myers, Cornelia A; Podowski, Raf M

    2015-05-05

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  19. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE PAGES

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...

    2017-07-10

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  20. Multi-scale fracture networks within layered shallow water tight carbonates

    NASA Astrophysics Data System (ADS)

    Panza, Elisa; Agosta, Fabrizio; Rustichelli, Andrea; Vinciguerra, Sergio; Zambrano, Miller; Prosser, Giacomo; Tondi, Emanuele

    2015-04-01

    The work is aimed at deciphering the contribution of background deformation and persistent fracture zones on the fluid flow properties of tight platform carbonates. Taking advantage of 3D exposures present in the Murge area of southern Italy, the fracture networks crosscutting at different scales the layered Cretaceous limestone of the Altamura Fm. were analyzed. The rock multi-layer is characterized by 10's of cm-thick, sub-horizontal, laterally continuous carbonate beds. Each bed commonly represents a shallowing-upward peritidal cycle made up of homogeneous micritic limestones grading upward to cm-thick stromatolitic limestones and/or fenestral limestones. The bed interfaces are formed by sharp maximum flooding surfaces. Porosity measurements carried out on 40 limestone samples collected from a single carbonate bed show values ranging between 0,5% and 5,5%. Background deformation includes both stratabound and non-stratabound fractures. The former elements consist of bed-perpendicular joints and sheared joints, which are confined within a single bed and often displace small, bed-parallel stylolites. Non-stratabound fractures consist of incipient, cm offset, sub-vertical strike-slip faults, which crosscut the bed interfaces. The aforementioned elements are often confined within individual bed-packages, which are identified by presence of pronounced surfaces locally marked by veneers of reddish clayey paleosoils. Persistent fracture zones consist of 10's of m-high, 10's of cm-offset strike-slip faults that offset the bed-package interfaces and are confined within individual bed-packages association. Laterally discontinuous, cm- to a few m-thick paleokarstic breccia levels separate the different bed-packages associations. Persistent fracture zones include asymmetric fractured damage zones and mm-thick veneers of discontinuous fault rocks. The fracture networks that pervasively crosscut the study limestone multi-layer are investigated by mean of scanline and scanarea

  1. Investigating the time clustering of induced microseismicity generated by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano; Eisner, Leo; Stabile, Tony A.; Vlček, Josef

    2016-12-01

    By using the global and local coefficient of variation and the Allan Factor we investigated the time-clustering properties of the time dynamics of fluid-injection–induced microseismicity. The experiment consists of a microseismic monitoring through a nearly vertical borehole of 12 receivers of a hydraulic fracturing stimulation along a horizontal well separated into more than 20 sections (stages) The main finding of the applied methodology is the discrimination between fault triggering and new fracturing, being the first characterized by a clusterization of the induced microseismic events and the second by a Poissonian behaviour of the generated events.

  2. Deep convolutional networks for automated detection of posterior-element fractures on spine CT

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Wang, Yinong; Yao, Jianhua; Lu, Le; Burns, Joseph E.; Summers, Ronald M.

    2016-03-01

    Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of `positive', i.e. fractured posterior-elements and `negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.

  3. A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Latham, John-Paul; Tsang, Chin-Fu; Xiang, Jiansheng; Lang, Philipp

    2015-07-01

    A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale "source" fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation.

  4. Development of hydraulic fracture network propagation model in shale gas reservoirs: 2D, single-phase and 3D, multi-phase model development, parametric studies, and verification

    NASA Astrophysics Data System (ADS)

    Ahn, Chong Hyun

    The most effective method for stimulating shale gas reservoirs is a massive hydraulic fracture treatment. Recent analysis using microseismic technology have shown that complex fracture networks are commonly created in the field as a result of the stimulation of shale wells. The interaction between pre-existing natural fractures and the propagating hydraulic fracture is a critical factor affecting the created complex fracture network; however, many existing numerical models simulate only planar hydraulic fractures without considering the pre-existing fractures in the formation. The shale formations already contain a large number of natural fractures, so an accurate fracture propagation model needs to be developed to optimize the fracturing process. In this research, we first characterized the mechanics of hydraulic fracturing and fluid flow in the shale gas reservoir. Then, a 2D, single-phase numerical model and a 3D, 2-phase coupled model were developed, which integrate dynamic fracture propagation, interactions between hydraulic fractures and pre-existing natural fractures, fracture fluid leakoff, and fluid flow in a petroleum reservoir. By using the developed model, we conducted parametric studies to quantify the effects of treatment rate, treatment size, fracture fluid viscosity, differential horizontal stress, natural fracture spacing, fracture toughness, matrix permeability, and proppant size on the geometry of the hydraulic fracture network. The findings elucidate important trends in hydraulic fracturing of shale reservoirs that are useful in improving the design of treatments for specific reservoir settings.

  5. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    SciTech Connect

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01

    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints

  6. Analysis of fracture networks in a reservoir dolomite by 3D micro-imaging

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Hoyer, Stefan; Exner, Ulrike; Reuschlé, Thierry

    2013-04-01

    Narrow fractures in reservoir rocks can be of great importance when determining the hydrocarbon potential of such a reservoir. Such fractures can contribute significantly to - or even be dominant for - the porosity and permeability characteristics of such rocks. Investigating these narrow fractures is therefore important, but not always trivial. Standard laboratory measurements on sample plugs from a reservoir are not always suitable for fractured rocks. Thin section analysis can provide very important information, but mostly only in 2D. Also other sources of information have major drawbacks, such as FMI (Formation Micro-Imager) during coring (insufficient resolution) and hand specimen analysis (no internal information). 3D imaging of reservoir rock samples is a good alternative and extension to the methods mentioned above. The 3D information is in our case obtained by X-ray Micro-Computed Tomography (µCT) imaging. Our used samples are 2 and 3 cm diameter plugs of a narrowly fractured (apertures generally <200 µm) reservoir dolomite (Hauptdolomit formation) from below the Vienna Basin, Austria. µCT has the large advantage of being non-destructive to the samples, and with the chosen sample sizes and settings, the sample rocks and fractures can be imaged with sufficient quality at sufficient resolution. After imaging, the fracture networks need to be extracted (segmented) from the background. Unfortunately, available segmentation approaches in the literature do not provide satisfactory results on such narrow fractures. We therefore developed the multiscale Hessian fracture filter, with which we are able to extract the fracture networks from the datasets in a better way. The largest advantages of this technique are that it is inherently 3D, runs on desktop computers with limited resources, and is implemented in public domain software (ImageJ / FIJI). The results from the multiscale Hessian fracture filtering approach serve as input for porosity determination. Also

  7. SNAP: A computer program for generating symbolic network functions

    NASA Technical Reports Server (NTRS)

    Lin, P. M.; Alderson, G. E.

    1970-01-01

    The computer program SNAP (symbolic network analysis program) generates symbolic network functions for networks containing R, L, and C type elements and all four types of controlled sources. The program is efficient with respect to program storage and execution time. A discussion of the basic algorithms is presented, together with user's and programmer's guides.

  8. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples

    PubMed Central

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-01-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these

  9. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    PubMed

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and

  10. A density driven mesh generator guided by a neural network

    SciTech Connect

    Lowther, D.A.; Dyck, D.N. )

    1993-03-01

    A neural network guided mesh generator is described. The mesh generator used density information provided by the neural network to determine the size and placement of elements. This system is coupled with an adaptive meshing and solving process and is shown to have major computational benefits compared with adaptation alone.

  11. Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben

    2017-08-01

    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.

  12. Application of fractal geometry to the study of networks and fractures and their pressure transient

    SciTech Connect

    Acuna, J.A.; Yortsos, Y.C.

    1995-03-01

    Typical models for the representation of naturally fractured systems generally rely on the double-porosity Warren-Root model or on random arrays of fractures. However, field observations have demonstrated the existence of multiple length scales in a variety of naturally fractured media. Present models fail to capture this important property of self-similarity. We first use concepts from the theory of fragmentation and from fractal geometry to construct numerically a network of fractures that exhibits self-similar behavior over a range of scales. The method is a combination of fragmentation concepts and the iterated function system approach and allows for great flexibility in the development of patterns. Next, numerical simulation of unsteady single-phase flow in such networks is described. It is found that the pressure transient response of finite fractals behaves according to the analytical predictions of Change and Yortsos (1990) provided that there exists a power law in the mass-radius relationship around the test well location. Finite size effects can become significant and interfere with the identification of the fractal structure. The paper concludes by providing examples from actual well tests in fractured systems which are analyzed using fractal pressure transient theory. 31 refs., 16 figs.

  13. Natural fault and fracture network versus anisotropy in the Lower Paleozoic rocks of Pomerania (Poland)

    NASA Astrophysics Data System (ADS)

    Haluch, Anna; Rybak-Ostrowska, Barbara; Konon, Andrzej

    2017-04-01

    Knowledge of the anisotropy of rock fabric, geometry and distribution of the natural fault and fracture network play a crucial role in the exploration for unconventional hydrocarbon recourses. Lower Paleozoic rocks from Pomerania within the Polish part of Peri-Baltic Basin, as prospective sequences, can be considered a laboratory for analysis of fault and fracture arrangement in relation to the mineral composition of the host rocks. A microstructural study of core samples from five boreholes in Pomerania indicate that the Silurian succession in the study area is predominantly composed of claystones and mudstones interbedded with thin layers of tuffites. Intervals with a high content of detrital quartz or diagenetic silica also occur. Most of the Silurian deposits are abundant in pyrite framboids forming layers or isolated small concretions. Early diagenetic carbonate concretions are also present. The direction and distribution of natural faults and fractures have resulted not only from paleostress. Preliminary study reveals that the fault and fracture arrangement is related to the mechanical properties of the host rocks that depend on their fabric and mineralogical composition: subvertical fractures in mudstones and limestones show steeper dips than those within the more clayey intervals; bedding-parallel fractures occur within organic-rich claystones and along the boundaries between different lithologies; tuffites and radiolaria-bearing siliceous mudstones are more brittle and show denser nets of fractures or wider mineral apertures; and, fracture refraction is observed at competence contrast or around spherical concretions. The fault and fracture mineralization itself is prone to the heterogenity of the rock profile. Thus, fractures infilled with calcite occur in all types of the studied rocks, but mineral growth is syntaxial within marly mudstones because of chemical uniformity, and antitaxial within sillicous mudstones. Fractures infilled with quartz are

  14. Wild cricket social networks show stability across generations.

    PubMed

    Fisher, David N; Rodríguez-Muñoz, Rolando; Tregenza, Tom

    2016-07-27

    A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.

  15. Neural networks as perpetual information generators

    NASA Astrophysics Data System (ADS)

    Englisch, Harald; Xiao, Yegao; Yao, Kailun

    1991-07-01

    The information gain in a neural network cannot be larger than the bit capacity of the synapses. It is shown that the equation derived by Engel et al. [Phys. Rev. A 42, 4998 (1990)] for the strongly diluted network with persistent stimuli contradicts this condition. Furthermore, for any time step the correct equation is derived by taking the correlation between random variables into account.

  16. The New Generation Russian VLBI Network

    NASA Technical Reports Server (NTRS)

    Finkelstein, Andrey; Ipatov, Alexander; Smolentsev, Sergey; Mardyshkin, Vyacheslav; Fedotov, Leonid; Surkis, Igor; Ivanov, Dmitrij; Gayazov, Iskander

    2010-01-01

    This paper deals with a new project of the Russian VLBI Network dedicated for Universal Time determinations in quasi on-line mode. The basic principles of the network design and location of antennas are explained. Variants of constructing receiving devices, digital data acquisition system, and phase calibration system are specially considered. The frequency ranges and expected values of noise temperature are given.

  17. Network generation and analysis of complex biomass conversion systems

    SciTech Connect

    Rangarajan, S.; Kaminski, T.; Van Wyk, E.; Bhan, A.; Daoutidis, P.

    2011-01-01

    A modular computational tool for automated generation and rule-based post-processing of reaction systems in biomass conversion is presented. Cheminformatics and graph theory algorithms are used to generate chemical transformations pertaining to heterogeneous and homogeneous chemistries in the automated rule-based network generator. A domain-specific language provides a user-friendly English-like chemistry specification interface to the network generator. A rule-based pathway analysis module enables the user to extract and query pathways from the reaction network. A demonstration of the features of this tool is presented using Fructose to 5-Hydroxymethylfurfural as a case study.

  18. CAPSAICIN-SENSITIVE SENSORY NERVE FIBERS CONTRIBUTE TO THE GENERATION AND MAINTENANCE OF SKELETAL FRACTURE PAIN

    PubMed Central

    Jimenez-Andrade, Juan Miguel; Bloom, Aaron P.; Mantyh, William G.; Koewler, Nathan J.; Freeman, Katie T.; Delong, David; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2009-01-01

    Although skeletal pain can have a marked impact on a patient’s functional status and quality of life, relatively little is known about the specific populations of peripheral nerve fibers that drive non-malignant bone pain. In the present report, neonatal male Sprague Dawley rats were treated with capsaicin or vehicle and femoral fracture was produced when the animals were young adults (15–16 weeks old). Capsaicin treatment, but not vehicle, resulted in a significant (>70%) depletion in the density of calcitonin-gene related peptide positive (CGRP+) sensory nerve fibers, but not 200 kD neurofilament H positive (NF200+) sensory nerve fibers in the periosteum. The periosteum is a thin, cellular and fibrous tissue that tightly adheres to the outer surface of all but the articulated surface of bone and appears to play a pivotal role in driving fracture pain. In animals treated with capsaicin, but not vehicle, there was a 50% reduction in the severity, but no change in the time course, of fracture-induced skeletal pain related behaviors as measured by spontaneous flinching, guarding and weight bearing. These results suggest that both capsaicin-sensitive (primarily CGRP+ C-fibers) and capsaicin-insensitive (primarily NF200+ A-delta fibers) sensory nerve fibers participate in driving skeletal fracture pain. Skeletal pain can be a significant impediment to functional recovery following trauma-induced fracture, osteoporosis-induced fracture and orthopedic surgery procedures such as knee and hip replacement. Understanding the specific populations of sensory nerve fibers that need to be targeted to inhibit the generation and maintenance of skeletal pain may allow the development of more specific mechanism-based therapies that can effectively attenuate acute and chronic skeletal pain. PMID:19486928

  19. Fracture Networks from a deterministic physical model as 'forerunners' of Maze Caves

    NASA Astrophysics Data System (ADS)

    Ferer, M. V.; Smith, D. H.; Lace, M. J.

    2013-12-01

    'Fractures are the chief forerunners of caves because they transmit water much more rapidly than intergranular pores.[1] Thus, the cave networks can follow the fracture networks from which the Karst caves formed by a variety of processes. Traditional models of continental Karst define water flow through subsurface geologic formations, slowly dissolving the rock along the pathways (e.g. water saturated with respect to carbon dioxide flowing through fractured carbonate formations). We have developed a deterministic, physical model of fracturing in a model geologic layer of a given thickness, when that layer is strained in one direction and subsequently in a perpendicular direction. It was observed that the connected fracture networks from our model visually resemble maps of maze caves. Since these detailed cave maps offer critical tools in modeling cave development patterns and conduit flow in Karst systems, we were able to test the qualitative resemblance by using statistical analyses to compare our model networks in geologic layers of four different thicknesses with the corresponding statistical analyses of four different maze caves, formed in a variety of geologic settings. The statistical studies performed are: i) standard box-counting to determine if either the caves or the model networks are fractal. We found that both are fractal with a fractal dimension Df ≈ 1.75 . ii) for each section inside a closed path, we determined the area and perimeter-length, enabling a study of the tortuosity of the networks. From the dependence of the section's area upon its perimeter-length, we have found a power-law behavior (for sufficiently large sections) characterized by a 'tortuosity' exponent. These exponents have similar values for both the model networks and the maze caves. The best agreement is between our thickest model layer and the maze-like part of Wind Cave in South Dakota where the data from the model and the cave overlie each other. For the present networks from

  20. Impact of generator replacement on the risk of Fidelis lead fracture.

    PubMed

    Krahn, Andrew D; Bashir, Jamil; Birnie, David H; Brown, Jason; Spencer, Julianne H; Leander, Christina; Estes, N A Mark

    2016-08-01

    A dilemma arises about the merits of conservative management vs lead replacement and/or extraction when patients with a Medtronic Sprint Fidelis lead undergo generator replacement. Conflicting reports suggest that the fracture rate may increase after generator change. The purpose of this study was to investigate the effect of generator replacement on Fidelis lead performance. The Carelink PLUS cohort is composed of 21,500 Fidelis leads (model 6949) implanted in 1,006 centers. The survival rate for leads that remained active after the first generator replacement was compared with that for a control group with matched lead implant duration, patient age, patient sex, and generator type using the Kaplan-Meier method. The control group's starting point was adjusted to match the implant duration of each lead in the replacement group to allow for the comparison of similarly aged leads. Of the 2,988 implanted leads in each group, there was no statistical difference in the number of lead fractures between cases and controls (replacement, n = 227; no replacement, n = 257; Fisher exact, P = .169). Lead survival analysis demonstrated that lead performance since the first replacement procedure did not differ from that of the matched control group. The Fidelis lead survival rate after generator replacement does not differ from that of the Fidelis leads that have not had replacement. In the event of generator replacement with no manifestation of lead fracture, the lead model, patient age and life expectancy, ejection fraction, comorbidities, ease of extraction, local extraction expertise, and patient preference should be considered to determine the best course of action. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  1. Automatic Generation of Network Protocol Gateways

    NASA Astrophysics Data System (ADS)

    Bromberg, Yérom-David; Réveillère, Laurent; Lawall, Julia L.; Muller, Gilles

    The emergence of networked devices in the home has made it possible to develop applications that control a variety of household functions. However, current devices communicate via a multitude of incompatible protocols, and thus gateways are needed to translate between them. Gateway construction, however, requires an intimate knowledge of the relevant protocols and a substantial understanding of low-level network programming, which can be a challenge for many application programmers.

  2. Phoebus: Network Middleware for Next-Generation Network Computing

    SciTech Connect

    Martin Swany

    2012-06-16

    The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

  3. Comment on"Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios" by Basagaoglu et al. (2009)

    SciTech Connect

    Liu, H.H.

    2010-04-01

    Basagaoglu et al. (2009) present a study on detailed unsaturated flow behavior in two-dimensional fracture networks using numerical experiments (simulations) based on the lattice-Boltzmann method. Their results are valuable for improving our understanding of unsaturated flow processes and evaluating the active fracture model (AFM) that was developed for capturing large-scale preferential flow in fractured rocks (Liu et al., 1998; 2003). As indicated in Basagaoglu et al. (2009), a previous study was conducted to evaluate the AFM with numerical experiments (Seol et al., 2003). However, the methodology used in that study and the corresponding conclusions are highly questioned for the following two reasons. First, the evaluation relies on a condition that simulated water flow processes in a fracture network are adequately represented with a continuum approach, because they draw their conclusions by comparing simulation results with those obtained from a dual-continuum model based on the AFM. No effort was made by Seol et al. (2003) to justify the validity of the continuum approach for their specific fracture network that includes a small number of fractures only. (The analyses of Basagaoglu et al. (2009) do not need the similar condition.) Second, Seol et al. (2003) use numerical dispersion to represent the matrix diffusion process. This treatment is not valid simply because numerical dispersion results from numerical errors and is not a physical process.

  4. Use of neutron radiography and tomography to identify fracture network connectivity in low permeability carbonates

    NASA Astrophysics Data System (ADS)

    Lewis, Helen; Zihms, Stephanie; Couples, Gary; Charalampidou, Elma-Maria; Hall, Stephen; Tudisco, Erika; Edlmann, Katriona; Ando, Edward; Etxegarai, Maddi; Tengattini, Alessandro; Atkins, Duncan

    2017-04-01

    For low permeability rocks, open fractures have the potential to provide a dominant flow pathway, but determining effective connectivity, and associated single or multi-phase flow characteristics within an intact sample, is not simple. Flow tests can provide bulk values for any one sample, but general predictability requires considerably more information. X-ray tomography (XRT) has been used to identify fracture patterns and apertures in 3D. Here, in addition to XRT of experimentally-fractured low-permeability laminites, neutron beam radiography and tomography have been used to image flow via sensitivity to protons. To our knowledge this is the first identification of fluid front movement through fracture arrays using neutron tomography. Specifically, samples of a very fine-grained laminite, a layered carbonate rock deposited in a lake bed environment, with a "grain" size of approximately 5µm, were deformed experimentally under conditions representing 1 to 2 km burial depth, creating a series of shear- and extension- fractures that XRT indicated were at least partly open (Fig 1). But only destructive assessment (e.g. SEM) could verify this, destroying the ability to test flow capabilities in the process. Neutron tomography, using deuterated and then distilled water (which have slightly different densities and significantly different Neutron absorption) are introduced into the sample base, under pressure control, enabling observation of the progression of deuterated water into the air-filled laminite matrix- and fracture space-network, following by distilled water that mainly flows in the fractures (Fig. 2). Radiography and tomography identify a complex but rational pattern of initial water movement into the matrix laminae that suggests that in unfractured laminite, the fluid front would progress stepwise from one lamina to the next with a relatively fast filling across an entered lamina and relatively slow progression across the overlying lamina. But in the

  5. A simplified fracture network model for studying the efficiency of a single well semi open loop heat exchanger in fractured crystalline rock

    NASA Astrophysics Data System (ADS)

    de La Bernardie, Jérôme; de Dreuzy, Jean-Raynald; Bour, Olivier; Thierion, Charlotte; Ausseur, Jean-Yves; Lesuer, Hervé; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the complexity of fractured media. The purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, a simplified numerical model of fractured media is considered with few fractures. Here we present the different steps for building the model and for achieving the sensitivity analysis. First, an analytical and dimensional study on the equations has been achieved to highlight the main parameters that control the optimization of the system. In a second step, multiphysics software COMSOL was used to achieve numerical simulations in a very simplified model of fractured media. The objective was to test the efficiency of such a system to store and recover thermal energy depending on i) the few parameters controlling fracture network geometry (size and number of fractures) and ii) the frequency of cycles used to store and recover thermal energy. The results have then been compared to reference shallow geothermal systems already set up for porous media. Through this study, relationships between structure, heat exchanges and storage may be highlighted.

  6. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network

    NASA Astrophysics Data System (ADS)

    Glamočanin, D.

    2017-05-01

    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  7. Faster Algorithms for Isomer Network Generation.

    PubMed

    Thiagarajan, Dheivya; Mehta, Dinesh P

    2016-12-27

    Isomer networks provide a mechanism to understand and interpret relationships between organic molecules with applications in medicinal chemistry and drug design. The extraction of isomer networks is a time- and data-intensive computation (e.g., we have experimentally determined the space required for the computation of a set of 25 isomers of nicotine to be 205 MB; extrapolating this, we have projected the computation to require 8 TB of storage for a set of 1 050 219 isomers of nicotine). In this paper we describe our efforts to improve the network extraction process by using the symmetry present in most molecules to reduce runtime and memory and streamlining the algorithm used for the detection of duplicate dnNames. Together, these techniques result in reductions in memory of up to 60% and improvements in runtime of up to a factor of 100.

  8. Estimating Equivalent Continuum Scales in Fractured Aquifer Watersheds Using Discrete Feature Network Simulation

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Poeter, E. P.

    2003-12-01

    Fractured aquifers serve as primary water resources throughout the western United States. In light of diminishing water supply, management practices must be improved to promote resource sustainability. Ground-water flow models are often the preferred management tool, but can be computationally expensive and difficult to implement in large-scale fractured environments. Discrete feature network (DFN) simulation is a robust approach for modeling fluid movement in fractured architecture, but numerically expensive for large-scale models. By using an equivalent continuum model (ECM) numerical expense may be substantially reduced. An intrinsic assumption of the ECM approach is that the geologic media is represented accurately as a continuum, requiring that grid scale discretization correspond to representative elementary scale (RES) at each location within a fractured aquifer. Heterogeneity and compartmentalization likely cause regions with large differences in fracture permeability and connectivity, resulting in spatially variable RES. Thus, while regional flow may be honored using essentially any grid pattern, failure to properly represent spatially variable RES could lead to erroneous predictions of local flow and transport, especially in highly heterogeneous zones. The purpose of our study is to determine whether head predictions from DFN flow simulations can delineate spatially variable RES in fractured aquifers. Provided there is a correlation of simulated hydraulic head to continuum scale, we hypothesize that RES can be identified using spatially disperse water level observations within a fractured aquifer watershed. Preliminary results suggest there is potential for using hydraulic head data to determine the RES. Ongoing research is necessary to confirm these preliminary results and our hypothesis.

  9. Numerical construction and flow simulation in networks of fractures using fractals

    SciTech Connect

    Yortsos, Y.C.; Acuna, J.A.

    1991-11-01

    Present models for the representation of naturally fractured systems rely on the double-porosity Warren-Root model or on random arrays of fractures. However, field observation in outcrops has demonstrated the existence of multiple length scales in many naturally fractured media. The existing models fail to capture this important fractal property. In this paper, we use concepts from the theory of fragmentation and from fractal geometry for the numerical construction of networks of fractures that have fractal characteristics. The method is based mainly on the work of Barnsley (1) and allows for great flexibility in the development of patterns. Numerical techniques are developed for the simulation of unsteady single phase flow in such networks. It is found that the pressure transient response of finite fractals behaves according to the analytical predictions of Chang and Yortsos (6), provided that there exists a power law in the mass-radius relationship around the test well location. Otherwise, the finite size effects become significant and interfere severely with the identification of the underlying fractal structure. 21 refs., 13 figs.

  10. The Operational Risk Assessment for Distribution Network with Distributed Generations

    NASA Astrophysics Data System (ADS)

    Hua, Xie; Yaqi, Wu; Yifan, Wang; Qian, Sun; Jianwei, Ma

    2017-05-01

    Distribution network is an important part of the power system and is connected to the consumers directly. Many distributed generations that have discontinuous output power are connected in the distribution networks, which may cause adverse impact to the distribution network. Therefore, to ensure the security and reliability of distribution network with numerous distributed generations, the risk analysis is necessary for this kind of distribution networks. After study of stochastic load flow algorithm, this paper applies it in the static security risk assessment. The wind and photovoltaic output probabilistic model are built. The voltage over-limit is chosen to calculate the risk indicators. As a case study, the IEEE 33 system is simulated for analyzing impact of distributed generations on system risk in the proposed method.

  11. Probing next Generation Portuguese Academic Network

    ERIC Educational Resources Information Center

    Friacas, Carlos; Massano, Emanuel; Domingues, Monica; Veiga, Pedro

    2008-01-01

    Purpose: The purpose of this article is to provide several viewpoints about monitoring aspects related to recent deployments of a new technology (IPv6). Design/methodology/approach: Several views and domains were used, with a common point: the Portuguese research and education network (RCTS). Findings: A significant amount of work is yet to be…

  12. Probing next Generation Portuguese Academic Network

    ERIC Educational Resources Information Center

    Friacas, Carlos; Massano, Emanuel; Domingues, Monica; Veiga, Pedro

    2008-01-01

    Purpose: The purpose of this article is to provide several viewpoints about monitoring aspects related to recent deployments of a new technology (IPv6). Design/methodology/approach: Several views and domains were used, with a common point: the Portuguese research and education network (RCTS). Findings: A significant amount of work is yet to be…

  13. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    SciTech Connect

    Makedonska, Nataliia; Kwicklis, Edward Michael; Birdsell, Kay Hanson; Harrod, Jeremy Ashcraft; Karra, Satish

    2016-10-18

    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  14. In vitro fracture resistance of root-filled teeth using new-generation dentine bonding adhesives.

    PubMed

    Hürmüzlü, F; Serper, A; Siso, S H; Er, K

    2003-11-01

    To compare the fracture resistance of root-filled premolar teeth restored with new-generation dentine bonding adhesives. Sixty extracted single-rooted human maxillary premolar teeth were used. Access cavities were prepared, and the roots were instrumented with K-files to an apical size 50 using a step-back technique. Root fillings were accomplished using gutta percha (Sure-Endo, Seoul, Korea) and AH Plus root canal sealer (Dentsply DeTrey, Konstanz, Germany) using the lateral condensation technique. The teeth were then randomly divided into six groups of 10 teeth each. A mesiodistocclusal (MOD) cavity was prepared in the teeth to the level of the canal orifices so that the thickness of the buccal wall of the teeth measured 2 mm at the occlusal surface and 3 mm at the cemento-enamel junction. Preparations were restored using the following adhesive systems: Etch & Prime 3.0 (Degussa AG, Hanau, Germany), Clearfil SE Bond (Kuraray, Osaka, Japan), Prompt L-Pop (ESPE, Seefeld, Germany), Panavia F (Kuraray, Osaka, Japan), Optibond Plus (Kerr, Orange, CA, USA) and Admira Bond (Voco, Cuxhaven, Germany); all preparations except those of the Panavia F and Admira Bond groups were further restored with resin composites. The Panavia F group was restored with amalgam and the Admira Bond group with Ormocer (Voco, Cuxhaven, Germany). The teeth were mounted in a Universal Testing Machine (Hounsfield, Surrey, UK), and the buccal walls were subjected to a slowly increasing compressive force until fracture occurred. The force of fracture of the walls of each tooth was recorded and the results in the various groups were compared. Statistical analysis of the data was accomplished using one-way anova. There was no significant difference in the fracture resistance of any of the test groups. In this laboratory study, the type of dentine bonding agents had no influence in the fracture resistance of teeth.

  15. Learning to Generate Chairs, Tables and Cars with Convolutional Networks.

    PubMed

    Dosovitskiy, Alexey; Springenberg, Jost Tobias; Tatarchenko, Maxim; Brox, Thomas

    2017-04-01

    We train generative 'up-convolutional' neural networks which are able to generate images of objects given object style, viewpoint, and color. We train the networks on rendered 3D models of chairs, tables, and cars. Our experiments show that the networks do not merely learn all images by heart, but rather find a meaningful representation of 3D models allowing them to assess the similarity of different models, interpolate between given views to generate the missing ones, extrapolate views, and invent new objects not present in the training set by recombining training instances, or even two different object classes. Moreover, we show that such generative networks can be used to find correspondences between different objects from the dataset, outperforming existing approaches on this task.

  16. Using Lineament Extraction to aid in Discrete Fracture Network Modeling at Multiple Scales, Dry Creek Experimental Watershed, Boise, Idaho

    NASA Astrophysics Data System (ADS)

    Hoffman, B. A.; McNamara, J.; Wilkins, D.; Northrup, C.

    2006-12-01

    To improve watershed models of Dry Creek Experimental Watershed discrete fracture network modeling is being performed. Fracture characterization by discrete fracture network modeling relies on the accurate identification of the probability density function (PDF hereafter) of both the fracture orientations and the fracture length. Fracture length is often difficult to measure in the field as fractures are frequently much larger than outcrops and road cuts. The Idaho Batholith is a composite group of calc-alkaline plutons covering 40,000 km2 of central Idaho and western Montana and includes the Boise Front (Shuster and Bickford, 1985). The batholith is divided into two distinct lobes the Bitterroot and Atlanta with the Boise Front included in the latter. The Dry Creek Experimental Watershed is located in the batholith north of Boise, Idaho. So that the fracture network could be modeled for Dry Creek, lineament extraction using color infrared aerial photographs was performed for the watershed. The extracted lineaments allow for the definition of the PDF of the fracture lengths; however, this function is only valid if the PDF for the lineament orientation matches that of fractures measured in the field. If the two functions match then it is possible that lineament extraction may aid in fracture characterization at multiple scales. The PDF of the orientations of fractures in Dry Creek is compared to that of lineaments in the same watershed as well as to those of lineaments extracted from the rest of the Atlanta Lobe of the Idaho Batholith. The lengths of lineaments in the watershed are also compared to those occurring elsewhere in the Idaho Batholith. Shuster, R.D. and Bickford, M.E., 1985. Chemical and isotopic evidence for the petrogenesis of the northeastern Idaho batholith, Journal of Geology 93: 727-742.

  17. MAGNeT : Monitor for Application-Generated Network Traffic /

    SciTech Connect

    Feng, W. C.; Hay, J. R.; Gardner, M. K.

    2001-01-01

    Over the laqt decade, network practitioners have focused on monitoring, measuring, and characterizing traffic in the network to gain insight into building critical network components (from the protocol stack to routers and switches to network interface cards). Recent research shows that additional insight can be obtained by monitoring traffic at the application level (Le,, before application-sent traffic is modulated by the protocol stack) rather than in the network (i-e., after it is modulated by the protocol stack). Consequently, this paper describes a Monitor for Application-Generated Network Traffic (MAGNeT) that captures traffic generated by the application rather than traffic in the network. MAGNeT consists of application programs as well as modifications to the standard Linux kernel. Together, these tools provide the capability of monitoring an application's network behavior and protocol state information in production systems. The use of MAGNeT will enable the research community to construct a library of real traces of application-generated traffic from which researchers can more realistically test network protocol designs and theory. MAGNeT can also be used to verify the correct operation of protocol enhancements and to troubleshoot and tune protocol implementations.

  18. Phase structure within a fracture network beneath a surface pond: Field experiment

    SciTech Connect

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregular wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.

  19. New figure-fracturing algorithm for high-quality variable-shaped e-beam exposure data generation

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroomi; Moriizumi, Koichi; Kamiyama, Kinya; Terai, Masayuki; Miwa, Hisaharu

    1996-07-01

    We present a new figure fracturing algorithm that partitions each polygon in layout design data into trapezoids for vriab1eshaped EB exposure data generation. In order to improve the dimension accuracy of fabricated mask patterns created using the figure fracturing result, our algorithm has two new effective functions, one for suppressing narrow figure generation and the other for suppressing critical part partition. Furthermore, using a new graph based approach, our algorithm efficiently chooses from all the possible partitioning lines an appropriate set of lines by which optimal figure fracturing is performed. The application results show that the algorithm produces high quality results in a reasonable processing time.

  20. The next generation of neural network chips

    SciTech Connect

    Beiu, V.

    1997-08-01

    There have been many national and international neural networks research initiatives: USA (DARPA, NIBS), Canada (IRIS), Japan (HFSP) and Europe (BRAIN, GALA TEA, NERVES, ELENE NERVES 2) -- just to mention a few. Recent developments in the field of neural networks, cognitive science, bioengineering and electrical engineering have made it possible to understand more about the functioning of large ensembles of identical processing elements. There are more research papers than ever proposing solutions and hardware implementations are by no means an exception. Two fields (computing and neuroscience) are interacting in ways nobody could imagine just several years ago, and -- with the advent of new technologies -- researchers are focusing on trying to copy the Brain. Such an exciting confluence may quite shortly lead to revolutionary new computers and it is the aim of this invited session to bring to light some of the challenging research aspects dealing with the hardware realizability of future intelligent chips. Present-day (conventional) technology is (still) mostly digital and, thus, occupies wider areas and consumes much more power than the solutions envisaged. The innovative algorithmic and architectural ideals should represent important breakthroughs, paving the way towards making neural network chips available to the industry at competitive prices, in relatively small packages and consuming a fraction of the power required by equivalent digital solutions.

  1. An optimization approach for large scale simulations of discrete fracture network flows

    NASA Astrophysics Data System (ADS)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano

    2014-01-01

    In recent papers [1,2] the authors introduced a new method for simulating subsurface flow in a system of fractures based on a PDE-constrained optimization reformulation, removing all difficulties related to mesh generation and providing an easily parallel approach to the problem. In this paper we further improve the method removing the constraint of having on each fracture a non-empty portion of the boundary with Dirichlet boundary conditions. This way, Dirichlet boundary conditions are prescribed only on a possibly small portion of DFN boundary. The proposed generalization of the method in [1,2] relies on a modified definition of control variables ensuring the non-singularity of the operator on each fracture. A conjugate gradient method is also introduced in order to speed up the minimization process.

  2. New probabilistic fracture mechanics approach with neural network-based crack modeling: Its application to multiple cracks problem

    SciTech Connect

    Yoshimura, Shinobu; Lee, J.S.; Yagawa, Genki; Sugioka, Kiyoshi; Kawai, Tadahiko

    1995-11-01

    Studies on efficient utilization and life extension of operating nuclear power plants (NPPs) have become increasingly important since ages of the first-generation NPPs are approaching their design lives. In order to predict a remaining life of each plant, it is necessary to select those critical components that strongly influence the plant life, and to evaluate their remaining lives by considering aging effects of materials and other factors. This paper proposes a new method to incorporate sophisticated crack models, such as interaction and coalescence of multiple surface cracks, into probabilistic fracture mechanism (PFM) computer programs using neural networks. First, hundreds of finite element (FE) calculations of a plate containing multiple surface cracks are performed by parametrically changing crack parameters such as sizes and locations. A fully automated 3D FE analysis system is effectively utilized here. Second, the back-propagation neural network is trained using the FE solutions, i.e. crack parameters vs. their corresponding stress intensity factors (SIFs). After a sufficient number of training iterations, the network attains an ability to promptly output SIFs for arbitrary combinations of crack parameters. The well trained network is then incorporated into the parallel PFM program which runs on one of massively parallel computers composed of 512 processing units. To demonstrate its fundamental performances, the present computer program is applied to evaluate failure probabilities of aged reactor pressure vessels considering interaction and coalescence of two dissimilar semi-elliptical surface cracks.

  3. Optical coherent technologies in next generation access networks

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi

    2012-01-01

    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  4. Adaptive multidimensional modulation and multiplexing for next generation optical networks

    NASA Astrophysics Data System (ADS)

    Cvijetic, Milorad

    2015-01-01

    The overall spectral efficiency in optical transmission systems needs to be enhanced by employment of advanced modulation, multiplexing, and coding schemes, as well as the advanced detection techniques. In parallel, novel networking concepts with the griddles and elastic bandwidth allocation are needed to increase the network dynamics and flexibility. In this paper we discuss multidimensional modulation, multiplexing, and coding schemes, which are enablers not only of the information capacity increase, but also for the next generation elastic high-speed optical networking and outline possible future directions and application scenario in different networking segments.

  5. Treatments for the Fifth Metacarpal Neck Fractures: A Network Meta-analysis of Randomized Controlled Trials.

    PubMed

    Zong, Shuang-Le; Zhao, Gang; Su, Li-Xin; Liang, Wei-Dong; Li, Li-Geng; Cheng, Guang; Wang, Ai-Jun; Cao, Xiao-Qiang; Zheng, Qiu-Tao; Li, Li-Dong; Kan, Shi-Lian

    2016-03-01

    The fifth metacarpal neck fractures (commonly termed boxer's fractures) are the most common type of metacarpal fractures. Many types of treatments are available in clinical practice, some of which have already been compared with other treatments by various researchers. However, a comprehensive treatment comparison is lacking. We estimated the comparative efficacy of different interventions for total complications, through a network meta-analysis of randomized controlled trials. We conducted a systematic search of the literature through October 2015. The outcome measurements were the total complications. We used a Bayesian network meta-analysis to combine direct and indirect evidence and to estimate the relative effects of treatment. We identified 6 RCTs registering a total of 288 patients who were eligible for our network meta-analysis. The literature's quality is relatively high. The median Structured Effectiveness for Quality Evaluation of Study score for the included trials was 33.8. The overall methodological quality was high. Of the 6 studies, all were 2-arm controlled trials comparing active intervention. Among the 4 treatments--conservative treatment (CT), antegrade intramedullary nailing (AIMN), transverse pinning (TP) with K-wires, and plate fixation (PF)--CT had the best rankings (ie, lowest risk of total complications), followed by PF, AIMN, and TP (ie, highest risk of total complications). Furthermore, we also presented the results using surface under the cumulative ranking curve. The surface under the cumulative ranking curve probabilities were 94.1%, 52.9%, 37.3%, and 15.7% for CT, PF, AIMN, and TP, respectively. In conclusion, current evidence suggested that conservative treatment is the optimum treatment for the fifth metacarpal neck fractures because of reduced total complication rates. Moreover, the TP with K-wires is the worst option with highly total complication rates. PF and AIMN therapy should be considered as the first-line choices. Larger

  6. Generating English Discourse from Semantic Networks.

    ERIC Educational Resources Information Center

    Simmons, R. F.; Slocum, Jonathan

    The system described in this report is designed for use as a computational tool that allows a linguist to develop and study methods for generating surface strings from an underlying semantic structure. Initial findings with regard to form-determiners (such as voice, form, tense, and mood), some rules for embedding sentences, and some attention to…

  7. Generating functionals for autonomous latching dynamics in attractor relict networks

    PubMed Central

    Linkerhand, Mathias; Gros, Claudius

    2013-01-01

    Coupling local, slowly adapting variables to an attractor network allows to destabilize all attractors, turning them into attractor ruins. The resulting attractor relict network may show ongoing autonomous latching dynamics. We propose to use two generating functionals for the construction of attractor relict networks, a Hopfield energy functional generating a neural attractor network and a functional based on information-theoretical principles, encoding the information content of the neural firing statistics, which induces latching transition from one transiently stable attractor ruin to the next. We investigate the influence of stress, in terms of conflicting optimization targets, on the resulting dynamics. Objective function stress is absent when the target level for the mean of neural activities is identical for the two generating functionals and the resulting latching dynamics is then found to be regular. Objective function stress is present when the respective target activity levels differ, inducing intermittent bursting latching dynamics. PMID:23784373

  8. An Experimental and Theoretical Study of Fracture Patterns Generated by Underground Explosions

    NASA Astrophysics Data System (ADS)

    Bhat, H.; Mihaly, J. M.; Rosakis, A.; Sammis, C. G.

    2012-12-01

    A dynamic micro-mechanical damage mechanics model, developed by Bhat, Rosakis and Sammis, J. Appl. Mech., 2012, is used to simulate two-dimensional explosions in a brittle material. The theoretical patterns of circumferential and radial fractures are quantitatively compared with those produced by point explosions in very brittle "candy glass" plates. In these experiments the evolution of the fracture pattern is monitored using high-speed digital photography, which also images the resultant elastic waves (P and S). Theoretical estimates of the spatial extent of circumferential and radial cracking as well as the propagation speed of the comminution front and the growth-rate of individual radial cracks all compare well with the experimental observations. The wave-forms of the P and S waves, specifically the local particle velocities, are also recorded at selected points using laser vibrometers. Asymmetric fracture patterns caused by a non isotropic pre-stress, the preferred orientation of initial flaws (a rift plane), or a lithostatic gradient lead to the generation of strong S-waves from the otherwise spherically symmetric point source.

  9. Microfluidic Investigation of Oil Mobilization in Shale Fracture Networks at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Investigations of pore-scale fluid flow and transport phenomena using engineered micromodels has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. One drawback to these studies is the use of engineered materials that do not faithfully represent the rock properties (e.g., porosity, wettability, roughness, etc.) encountered in subsurface formations. In this work, we describe a unique high pressure (up to 1500 psi) and temperature (up to 80 °C) microfluidics experimental system in which we investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in hydraulically fractured shale. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase huff-and-puff experiments involving N2 and n-Decane, as well as three-phase displacement experiments involving supercritical CO2, brine, and n-Decane.

  10. Inter-generational Contact From a Network Perspective

    PubMed Central

    Marcum, Christopher Steven; Koehly, Laura M.

    2015-01-01

    Pathways for resource—or other—exchanges within families have long been known to be dependent on the structure of relations between generations (Silverstein, 2011; Fuller-Thomson et al., 1997; Agree et al., 2005; Treas and Marcum, 2011). Much life course research has theorized models of inter-generational exchange— including, the ‘sandwich generation’ (Miller, 1981) and the ‘skipped generation’ pathways (Chalfie, 1994)—but there is little work relating these theories to relevant network mechanisms such as liaison brokerage (Gould and Fernandez, 1989) and other triadic configurations (Davis and Leinhardt, 1972; Wasserman and Faust, 1994). To address this, a survey of models of resource allocation between members of inter-generational households from a network perspective is introduced in this paper. Exemplary data come from health discussion networks among Mexican-origin multi-generational households. PMID:26047986

  11. Designing cyclic pressure pulsing in naturally fractured reservoirs using an inverse looking recurrent neural network

    NASA Astrophysics Data System (ADS)

    Artun, E.; Ertekin, T.; Watson, R.; Miller, B.

    2012-01-01

    In this paper, an inverse looking approach is presented to efficiently design cyclic pressure pulsing (huff 'n' puff) with N 2 and CO 2, which is an effective improved oil recovery method in naturally fractured reservoirs. A numerical flow simulation model with compositional, dual-porosity formulation is constructed. The model characteristics are from the Big Andy Field, which is a depleted, naturally fractured oil reservoir in Kentucky. A set of cyclic pulsing design scenarios is created and run using this model. These scenarios and corresponding performance indicators are fed into the recurrent neural network for training. In order to capture the cyclic, time-dependent behavior of the process, recurrent neural networks are used to develop proxy models that can mimic the reservoir simulation model in an inverse looking manner. Two separate inverse looking proxy models for N 2 and CO 2 injections are constructed to predict the corresponding design scenarios, given a set of desired performance characteristics. Predictive capabilities of developed proxy models are evaluated by comparing simulation outputs with neural-network outputs. It is observed that networks are able to accurately predict the design parameters, such as the injection rate and the duration of injection, soaking and production periods.

  12. Analysis and Visualization of Discrete Fracture Networks Using a Flow Topology Graph.

    PubMed

    Aldrich, Garrett; Hyman, Jeffrey; Karra, Satish; Gable, Carl; Makedonska, Nataliia; Viswanathan, Hari; Woodring, Jonathan; Hamann, Bernd

    2016-06-20

    We present an analysis and visualization prototype using the concept of a flow topology graph (FTG) for characterization of flow in constrained networks, with a focus on discrete fracture networks (DFN), developed collaboratively by geoscientists and visualization scientists. Our method allows users to understand and evaluate flow and transport in DFN simulations by computing statistical distributions, segment paths of interest, and cluster particles based on their paths. The new approach enables domain scientists to evaluate the accuracy of the simulations, visualize features of interest, and compare multiple realizations over a specific domain of interest. Geoscientists can simulate complex transport phenomena modeling large sites for networks consisting of several thousand fractures without compromising the geometry of the network. However, few tools exist for performing higher-level analysis and visualization of simulated DFN data. The prototype system we present addresses this need. We demonstrate its effectiveness for increasingly complex examples of DFNs, covering two distinct use cases - hydrocarbon extraction from unconventional resources and transport of dissolved contaminant from a spent nuclear fuel repository.

  13. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications

    NASA Astrophysics Data System (ADS)

    Fadakar Alghalandis, Younes

    2017-05-01

    Rapidly growing topic, the discrete fracture network engineering (DFNE), has already attracted many talents from diverse disciplines in academia and industry around the world to challenge difficult problems related to mining, geothermal, civil, oil and gas, water and many other projects. Although, there are few commercial software capable of providing some useful functionalities fundamental for DFNE, their costs, closed code (black box) distributions and hence limited programmability and tractability encouraged us to respond to this rising demand with a new solution. This paper introduces an open source comprehensive software package for stochastic modeling of fracture networks in two- and three-dimension in discrete formulation. Functionalities included are geometric modeling (e.g., complex polygonal fracture faces, and utilizing directional statistics), simulations, characterizations (e.g., intersection, clustering and connectivity analyses) and applications (e.g., fluid flow). The package is completely written in Matlab scripting language. Significant efforts have been made to bring maximum flexibility to the functions in order to solve problems in both two- and three-dimensions in an easy and united way that is suitable for beginners, advanced and experienced users.

  14. Mobility management techniques for the next-generation wireless networks

    NASA Astrophysics Data System (ADS)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  15. General principles of rhythmogenesis in central pattern generator networks.

    PubMed

    Harris-Warrick, Ronald M

    2010-01-01

    The cellular and ionic mechanisms that generate the rhythm in central pattern generator (CPG) networks for simple movements are not well understood. Using vertebrate locomotion, respiration and mastication as exemplars, I describe four main principles of rhythmogenesis: (1) rhythmogenic ionic currents underlie all CPG networks, regardless of whether they are driven by a network pacemaker or an endogenous pacemaker neuron kernel; (2) fast synaptic transmission often evokes slow currents that can affect cycle frequency; (3) there are likely to be multiple and redundant mechanisms for rhythmogenesis in any essential CPG network; and (4) glial cells may participate in CPG network function. The neural basis for rhythmogenesis in simple behaviors has been studied for almost 100 years, yet we cannot identify with certainty the detailed mechanisms by which rhythmic behaviors are generated in any vertebrate system. Early studies focused on whether locomotor rhythms were generated by a chain of coupled reflexes that require sensory feedback, or by a central neural network. By now there is general agreement that for the major rhythmic behaviors (including locomotion, respiration, and mastication, the subjects of this book), there exist CPG networks within the central nervous system that are able to drive the basic rhythmic behavior in the complete absence of sensory feedback. This of course does not eliminate an important role for sensory feedback, which certainly affects cycle frequency and for some behaviors determines the timing of one phase of the behavior (Borgmann et al., 2009; Pearson, 2008). Given the existence of CPGs, the question of rhythmogenesis can be rephrased to ask how these networks determine the timing of the rhythmic behavior. In this chapter, I focus on cellular and molecular mechanisms that could underlie rhythmogenesis in CPG networks, especially those that drive locomotion, respiration, and mastication.

  16. Thermalnet: a Deep Convolutional Network for Synthetic Thermal Image Generation

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Gorbatsevich, V. S.; Mizginov, V. A.

    2017-05-01

    Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural networks.

  17. Overlapping community detection using a generative model for networks

    NASA Astrophysics Data System (ADS)

    Wang, Zhenwen; Hu, Yanli; Xiao, Weidong; Ge, Bin

    2013-10-01

    Detecting overlapping communities is a challenging task in analyzing networks, where nodes may belong to more than one community. Many present methods optimize quality functions to extract the communities from a network. In this paper, we present a probabilistic method for detecting overlapping communities using a generative model. The model describes the probability of generating a network with the model parameters, which reflect the communities in the network. The community memberships of each node are determined based on a probabilistic approach using those model parameters, whose values can be obtained by fitting the model to the network. This method has the advantage that the node participation degrees in each community are also computed. The proposed method is compared with some other community detection methods on both synthetic networks and real-world networks. The experiments show that this method is efficient at detecting overlapping communities and can provide better performance on the networks where a majority of nodes belong to more than one community.

  18. Learning Orthographic Structure With Sequential Generative Neural Networks.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain.

  19. Propagating mode-I fracture in amorphous materials using the continuous random network model

    NASA Astrophysics Data System (ADS)

    Heizler, Shay I.; Kessler, David A.; Levine, Herbert

    2011-08-01

    We study propagating mode-I fracture in two-dimensional amorphous materials using atomistic simulations. We use the continuous random network model of an amorphous material, creating samples using a two-dimensional analog of the Wooten-Winer-Weaire Monte Carlo algorithm. For modeling fracture, molecular-dynamics simulations were run on the resulting samples. The results of our simulations reproduce the main experimental features. In addition to achieving a steady-state crack under a constant driving displacement (which has not yet been achieved by other atomistic models for amorphous materials), the runs show microbranching, which increases with driving, transitioning to macrobranching for the largest drivings. In addition to the qualitative visual similarity of the simulated cracks to experiment, the simulation also succeeds in reproducing qualitatively the experimentally observed oscillations of the crack velocity.

  20. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these

  1. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks.

    PubMed

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-04-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons.

  2. Local network parameters can affect inter-network phase lags in central pattern generators.

    PubMed

    Jones, S R; Kopell, N

    2006-01-01

    Weakly coupled phase oscillators and strongly coupled relaxation oscillators have different mechanisms for creating stable phase lags. Many oscillations in central pattern generators combine features of each type of coupling: local networks composed of strongly coupled relaxation oscillators are weakly coupled to similar local networks. This paper analyzes the phase lags produced by this combination of mechanisms and shows how the parameters of a local network, such as the decay time of inhibition, can affect the phase lags between the local networks. The analysis is motivated by the crayfish central pattern generator used for swimming, and uses techniques from geometrical singular perturbation theory.

  3. Surgical interventions to treat humerus shaft fractures: A network meta-analysis of randomized controlled trials

    PubMed Central

    Wang, Jia; Meng, Xiao-Hui; Zeng, Xian-Tie; Kan, Shi-Lian

    2017-01-01

    Background There are three main surgical techniques to treat humeral shaft fractures: open reduction and plate fixation (ORPF), intramedullary nail (IMN) fixation, and minimally invasive percutaneous osteosynthesis (MIPO). We performed a network meta-analysis to compare three surgical procedures, including ORPF, IMN fixation, and MIPO, to provide the optimum treatment for humerus shaft fractures. Methods MEDLINE, EMBASE, Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, and Cochrane library were researched for reports published up to May 2016. We only included randomized controlled trials (RCTs) comparing two or more of the three surgical procedures, including the ORPF, IMN, and MIPO techniques, for humeral shaft fractures in adults. The methodological quality was evaluated based on the Cochrane risk of bias tool. We used WinBUGS1.4 to conduct this Bayesian network meta-analysis. We used the odd ratios (ORs) with 95% confidence intervals (CIs) to calculate the dichotomous outcomes and analyzed the percentages of the surface under the cumulative ranking curve. Results Seventeen eligible publications reporting 16 RCTs were included in this study. Eight hundred and thirty-two participants were randomized to receive one of three surgical procedures. The results showed that shoulder impingement occurred more commonly in the IMN group than with either ORPF (OR, 0.13; 95% CI, 0.03–0.37) or MIPO fixation (OR, 0.08; 95% CI, 0.00–0.69). Iatrogenic radial nerve injury occurred more commonly in the ORPF group than in the MIPO group (OR, 11.09; 95% CI, 1.80–124.20). There were no significant differences among the three procedures in nonunion, delayed union, and infection. Conclusion Compared with IMN and ORPF, MIPO technique is the preferred treatment method for humeral shaft fractures. PMID:28333947

  4. Generation of High-Frequency P and S Wave Energy by Rock Fracture During a Buried Explosion

    DTIC Science & Technology

    2015-07-20

    symmetry is broken. Spherical symmetry is broken by the following: tectonic pre-stress, preferred orientation of pre-existing fractures (anisotropic rock...generated by laboratory explosions in plates of “candy glass”. Candy glass (or break-away glass) is used in the movie industry to simulate glass fracture in...9 4.1. Experimental Results – Candy-Glass Plates .......................................................9 4.2. Measurements of the Mechanical

  5. Numerical Modeling of Fracture Propagation in Naturally Fractured Formations

    NASA Astrophysics Data System (ADS)

    Wang, W.; Prodanovic, M.; Olson, J. E.; Schultz, R.

    2015-12-01

    Hydraulic fracturing consists of injecting fluid at high pressure and high flowrate to the wellbore for the purpose of enhancing production by generating a complex fracture network. Both tensile failure and shear failure occur during the hydraulic fracturing treatment. The shear event can be caused by slip on existing weak planes such as faults or natural fractures. From core observation, partially cemented and fully cemented opening mode natural fractures, often with considerable thickness are widely present. Hydraulic fractures can propagate either within the natural fracture (tensile failure) or along the interface between the natural fracture and the rock matrix (tensile/shear failure), depending on the relative strength of cement and rock matrix materials, the bonding strength of interface, as well as the presence of any heterogeneities. In this study, we evaluate the fracture propagation both experimentally and numerically. We embed one or multiple inclusions of different mechanical properties within synthetic hydrostone samples in order to mimic cemented natural fractures and rock. A semi-circular bending test is performed for each set of properties. A finite element model built with ABAQUS is used to mimic the semi-circular bending test and study the fracture propagation path, as well as the matrix-inclusion bonding interface status. Mechanical properties required for the numerical model are measured experimentally. The results indicate that the match between experiment and modeling fracture path are extremely sensitive to the chosen interface (bonding) model and related parameters. The semi-circular bending test is dry and easily conducted, providing a good platform for validating numerical approaches. A validated numerical model will enable us to add pressurized fluid within the crack and simulate hydraulic fracture-natural fracture interaction in the reservoir conditions, ultimately providing insights into the extent of the fracture network.

  6. Toward green next-generation passive optical networks

    NASA Astrophysics Data System (ADS)

    Srivastava, Anand

    2015-01-01

    Energy efficiency has become an increasingly important aspect of designing access networks, due to both increased concerns for global warming and increased network costs related to energy consumption. Comparing access, metro, and core, the access constitutes a substantial part of the per subscriber network energy consumption and is regarded as the bottleneck for increased network energy efficiency. One of the main opportunities for reducing network energy consumption lies in efficiency improvements of the customer premises equipment. Access networks in general are designed for low utilization while supporting high peak access rates. The combination of large contribution to overall network power consumption and low Utilization implies large potential for CPE power saving modes where functionality is powered off during periods of idleness. Next-generation passive optical network, which is considered one of the most promising optical access networks, has notably matured in the past few years and is envisioned to massively evolve in the near future. This trend will increase the power requirements of NG-PON and make it no longer coveted. This paper will first provide a comprehensive survey of the previously reported studies on tackling this problem. A novel solution framework is then introduced, which aims to explore the maximum design dimensions and achieve the best possible power saving while maintaining the QoS requirements for each type of service.

  7. Three-dimensional discrete fracture network simulations of flow and particle transport based on Laxemar site data (Sweden).

    NASA Astrophysics Data System (ADS)

    Frampton, A.; Cvetkovic, V.

    2008-12-01

    Implementing site characterization data to models for simulating flow and transport still remains a formidable challenge, in particular for sparsely fracture rock environments. We present advective flow and particle transport simulations in three-dimensional discrete fracture networks based on Laxemar site characterisation data in Sweden, which is a candidate repository site for high level radioactive waste in the Swedish nuclear waste management program. Field measurements have revealed at least five background fracture sets based on statistically significant orientation data, exhibiting power-law behaviour for fracture size and inferred transmissivity distributions. We study the effect of various interpretations of these background fracture populations, all consistent with the field data, and expose their impact on the behaviour of small scale advective particle transport. In particular, we analyse the inferred correlation between fracture size and transmissivity, together with implications on particle injection mode (flux and resident) and transport law. Furthermore, a fundamental aspect towards understanding tracer migration in subsurface sparsely fractured rock formations is the relationship between the Eulerian flow distribution at a sub-fracture scale with the Lagrangian flow distribution at a characteristic model domain scale. We present a novel approach of accurately inferring the segment-scale Lagrangian distributions from Eulerian distributions obtained from flow simulations. Also, we discuss the potential link to field measurements of fracture specific flow, and how such approaches can be used to improve confidence in model assessment.

  8. Satellite communications for the next generation telecommunication services and networks

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  9. Performance evaluation of network-based steam generator level control

    SciTech Connect

    Li, Q.; Jiang, J.

    2006-07-01

    The performance of a network-based control system (NCS) is systematically and quantitatively analyzed by simulation and experiments. A U-Tube Steam Generator (UTSG) is used as the process in this study. The simulation results show that the offset and rise time are largely unaffected by either network-induced delays or data loss, but the overshoot, range, and settling time can be influenced by delay and/or data loss. In addition, the simulation results also indicate that Model Predictive Control (MPC) is more robust to tolerate network-induced delays and data loss than its PI counterpart. The experimental tests show that the introduction of a network (Foundation Field-bus in this case) to the control loop does not degrade the overall control system performance if the network is used for small number of control loops, but it may degrade the control system performance if more control loops are added. (authors)

  10. Neural network approaches to dynamic collision-free trajectory generation.

    PubMed

    Yang, S X; Meng, M

    2001-01-01

    In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.

  11. Interaction Networks: Generating High Level Hints Based on Network Community Clustering

    ERIC Educational Resources Information Center

    Eagle, Michael; Johnson, Matthew; Barnes, Tiffany

    2012-01-01

    We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…

  12. Network Traffic Generator for Low-rate Small Network Equipment Software

    SciTech Connect

    Lanzisera, Steven

    2013-05-28

    Application that uses the Python low-level socket interface to pass network traffic between devices on the local side of a NAT router and the WAN side of the NAT router. This application is designed to generate traffic that complies with the Energy Star Small Network Equipment Test Method.

  13. Network Traffic Generator for Low-rate Small Network Equipment Software

    SciTech Connect

    Lanzisera, Steven

    2013-05-28

    Application that uses the Python low-level socket interface to pass network traffic between devices on the local side of a NAT router and the WAN side of the NAT router. This application is designed to generate traffic that complies with the Energy Star Small Network Equipment Test Method.

  14. Increasing revenue through idea generation at University Health Network.

    PubMed

    Alcia, Lisa

    2013-01-01

    To enhance products and services provided to researchers and generate external revenue, research operations at the University Health Network implemented an ideation revenue generation framework for evaluation of product ideas for launch to external market. The framework consists of coordinated cross-functional teamwork in idea development and formal evaluation by research operations senior management based on standard criteria. The framework accelerates launch to market of products and services, facilitates due diligence review, increases staff competencies and engagement, and helps foster innovative thinking.

  15. Hydraulic fracture propagation modeling and data-based fracture identification

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  16. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  17. Interfacial fracture between highly crosslinked polymer networks and a solid surface: Effect of interfacial bond density

    SciTech Connect

    STEVENS,MARK J.

    2000-03-23

    For highly crosslinked, polymer networks bonded to a solid surface, the effect of interfacial bond density as well as system size on interfacial fracture is studied molecular dynamics simulations. The correspondence between the stress-strain curve and the sequence of molecular deformations is obtained. The failure strain for a fully bonded surface is equal to the strain necessary to make taut the average minimal path through the network from the bottom solid surface to the top surface. At bond coverages less than full, nanometer scale cavities form at the surface yielding an inhomogeneous strain profile. The failure strain and stress are linearly proportional to the number of bonds at the interface unless the number of bonds is so few that van der Waals interactions dominate. The failure is always interfacial due to fewer bonds at the interface than in the bulk.

  18. Network-Oriented Approach to Distributed Generation Planning

    NASA Astrophysics Data System (ADS)

    Kochukov, O.; Mutule, A.

    2017-06-01

    The main objective of the paper is to present an innovative complex approach to distributed generation planning and show the advantages over existing methods. The approach will be most suitable for DNOs and authorities and has specific calculation targets to support the decision-making process. The method can be used for complex distribution networks with different arrangement and legal base.

  19. Epidemic progression on networks based on disease generation time

    PubMed Central

    Davoudi, Bahman; Moser, Flavia; Brauer, Fred; Pourbohloul, Babak

    2013-01-01

    We investigate the time evolution of disease spread on a network and present an analytical framework using the concept of disease generation time. Assuming a susceptible–infected–recovered epidemic process, this network-based framework enables us to calculate in detail the number of links (edges) within the network that are capable of producing new infectious nodes (individuals), the number of links that are not transmitting the infection further (non-transmitting links), as well as the number of contacts that individuals have with their neighbours (also known as degree distribution) within each epidemiological class, for each generation period. Using several examples, we demonstrate very good agreement between our analytical calculations and the results of computer simulations. PMID:23889499

  20. Optimal control of coupled PDE networks with automated code generation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, D.

    2012-09-01

    The purpose of this work is to present a framework for the optimal control of coupled PDE networks. A coupled PDE network is a system of partial differential equations coupled together. Such systems can be represented as a directed graph. A domain specific language (DSL)—an extension of the DOT language—is used for the description of such a coupled PDE network. The adjoint equations and the gradient, required for its optimal control, are computed with the help of a computer algebra system (CAS). Automated code generation techniques have been used for the generation of the PDE systems of both the direct and the adjoint equations. Both the direct and adjoint equations are solved with the standard finite element method. Finally, for the numerical optimization of the system standard optimization techniques are used such as BFGS and Newton conjugate gradient.

  1. Generating three-qubit quantum circuits with neural networks

    NASA Astrophysics Data System (ADS)

    Swaddle, Michael; Noakes, Lyle; Smallbone, Harry; Salter, Liam; Wang, Jingbo

    2017-10-01

    A new method for compiling quantum algorithms is proposed and tested for a three qubit system. The proposed method is to decompose a unitary matrix U, into a product of simpler Uj via a neural network. These Uj can then be decomposed into product of known quantum gates. Key to the effectiveness of this approach is the restriction of the set of training data generated to paths which approximate minimal normal subRiemannian geodesics, as this removes unnecessary redundancy and ensures the products are unique. The two neural networks are shown to work effectively, each individually returning low loss values on validation data after relatively short training periods. The two networks are able to return coefficients that are sufficiently close to the true coefficient values to validate this method as an approach for generating quantum circuits. There is scope for more work in scaling this approach for larger quantum systems.

  2. The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing

    NASA Astrophysics Data System (ADS)

    Virgo, Simon; Abe, Steffen; Urai, Janos L.

    2014-12-01

    Veins are ubiquitous in upper and middle crustal rocks. Due to strength and stiffness contrast to the host rock, veins can influence crack propagation. Here we present Discrete Element Models to investigate crack-vein interactions by simulating cycles of fracturing of a rock mass, sealing the cracks to form veins, and refracturing the rock mass after rotating the stress field. We observe different styles of interaction between new fractures and existing veins, depending on the strength ratio between vein and host rock and on the changes in the stress field between the different deformation stages. If the orientation of stress field does not change between deformation stages, ataxial crack seal veins are produced if the veins are weak and a bundle of subparallel microveins if the veins are strong. If the stress field is rotated between deformation stages, the interactions include reactivation, fracture deflection, and crosscutting. Reactivation of weak veins occurs even if the vein orientation is highly unfavorable relative to the stress field. Relays of fractures between reactivated veins form at a higher angle to the veins than expected. This demonstrates that the orientation of secondary veins does not reflect the regional stress field in a simple manner and that veins can strongly influence fracture connectivity, with implications for paleostress analysis and basin modeling. Simulation results compare well with field examples of multiphase vein networks in carbonates from Jebel Akhdar, Oman.

  3. Polymer infiltrated ceramic network structures for resistance to fatigue fracture and wear.

    PubMed

    El Zhawi, Haifa; Kaizer, Marina R; Chughtai, Asima; Moraes, Rafael R; Zhang, Yu

    2016-11-01

    To investigate fatigue fracture resistance and wear behavior of a polymer infiltrated ceramic network (PICN) material (ENAMIC, Vita Zahnfabrik). Anatomically shaped ENAMIC monolithic crowns were milled using a CAD/CAM system. The crowns were cemented on aged dentin-like composite abutments (Z100, 3M ESPE) with resin-based cement (Vita DUO Cement, Vita). The specimens were subjected to 2 types of fatigue and wear tests: (1) accelerated sliding-contact mouth-motion step-stress fatigue test (n=24) in water; and (2) long-term sliding-contact mouth-motion fatigue/wear test using a clinically relevant load (P=200N, n=8) in water. Failure was designated as chip-off or bulk fracture. Optical and scanning electron microscopes were used to examine the occlusal surface and subsurface damage, as well as to reveal the material's microstructure. In addition, wear volume and depth were measured by X-ray micro-computed tomography. For accelerated mouth-motion step-stress fatigue testing, 3 out of the 24 ENAMIC crowns fractured following cyclic loading up to 1700N. Minor occlusal damage and contact-induced cone cracks were observed in all surviving specimens, but no flexural radial cracks were seen. For long-term mouth-motion fatigue/wear testing under a 200N load in water, a small wear scar without significant cracks was observed in all 8 tested ENAMIC crowns. Monolithic CAD/CAM ENAMIC crowns showed superior resistance to sliding-contact fatigue fracture and wear. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. A microfluidic investigation of gas exsolution in glass and shale fracture networks

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.

    2016-12-01

    Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.

  5. RFoG deployment into the next-generation networks

    NASA Astrophysics Data System (ADS)

    Siska, Petr; Hlavinka, Tomas; Koudelka, Petr; Latal, Jan; Vitasek, Jan; Hajek, Lukas; Poboril, Radek

    2015-01-01

    This paper is dealing with problems and possibilities of RFoG (Radio Frequency over Glass) technology deployment into the new generation optical access networks. Passive optical networks (PON) offer, except high bit rate, also a very wide range of applicability for various traffic data services. These services can be combined with different transmission technologies. The one of the most important needs upon these networks is also their backward compatibility with older analog technologies. The experimental part is devoted to broadcasting of RFoG through the designed PON networks and experimental measurements, using objective methods. The conclusion of this article is focused on the evaluation of individual measurements and considering of the feasibility of RFoG technology deployment in practical utilization.

  6. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model.

    PubMed

    Bi, Size; Liang, Xiao; Huang, Ting-Lei

    2016-01-01

    Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.

  7. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model

    PubMed Central

    Bi, Size; Liang, Xiao

    2016-01-01

    Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization. PMID:27698659

  8. Size effect on brittle and ductile fracture of two-dimensional interlinked carbon nanotube network

    NASA Astrophysics Data System (ADS)

    Jing, Yuhang; Aluru, N. R.

    2017-09-01

    The mechanical properties of two-dimensional (2D) interlinked carbon nanotube (CNT) network are investigated using ab initio calculation and molecular dynamics simulations (MD) with Reaxff force field. The simulation results show that bulk 2D interlinked CNT network has good mechanical properties along the axial direction which can be comparable to that of single-walled CNT and graphene, but has better ductility along the radial direction than single-walled CNT and graphene. In addition, the mechanical properties of 2D interlinked CNT network ribbon along the radial direction depend strongly on the size of the ribbon. The Young's modulus and Poisson's ratio decrease as the size increases while the fracture strain increases with the size increasing. By analyzing the atomic structural (both bond length and atomic von Mises stress) evolution of the ribbons, the mechanism of a brittle-to-ductile transition is revealed. The exploration of the mechanical properties of the 2D interlinked CNT network paves the way for application of the relevant devices that can benefit from the high Young's modulus, high tensile strength, and good ductility.

  9. Generative modelling of regulated dynamical behavior in cultured neuronal networks

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Baruchi, Itay; Persi, Erez; Ben-Jacob, Eshel

    2004-04-01

    The spontaneous activity of cultured in vitro neuronal networks exhibits rich dynamical behavior. Despite the artificial manner of their construction, the networks’ activity includes features which seemingly reflect the action of underlying regulating mechanism rather than arbitrary causes and effects. Here, we study the cultured networks dynamical behavior utilizing a generative modelling approach. The idea is to include the minimal required generic mechanisms to capture the non-autonomous features of the behavior, which can be reproduced by computer modelling, and then, to identify the additional features of biotic regulation in the observed behavior which are beyond the scope of the model. Our model neurons are composed of soma described by the two Morris-Lecar dynamical variables (voltage and fraction of open potassium channels), with dynamical synapses described by the Tsodyks-Markram three variables dynamics. The model neuron satisfies our self-consistency test: when fed with data recorded from a real cultured networks, it exhibits dynamical behavior very close to that of the networks’ “representative” neuron. Specifically, it shows similar statistical scaling properties (approximated by similar symmetric Lévy distribution with finite mean). A network of such M-L elements spontaneously generates (when weak “structured noise” is added) synchronized bursting events (SBEs) similar to the observed ones. Both the neuronal statistical scaling properties within the bursts and the properties of the SBEs time series show generative (a new discussed concept) agreement with the recorded data. Yet, the model network exhibits different structure of temporal variations and does not recover the observed hierarchical temporal ordering, unless fed with recorded special neurons (with much higher rates of activity), thus indicating the existence of self-regulation mechanisms. It also implies that the spontaneous activity is not simply noise-induced. Instead, the

  10. A probability generating function method for stochastic reaction networks

    NASA Astrophysics Data System (ADS)

    Kim, Pilwon; Lee, Chang Hyeong

    2012-06-01

    In this paper we present a probability generating function (PGF) approach for analyzing stochastic reaction networks. The master equation of the network can be converted to a partial differential equation for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical schemes for finding probability distributions as well as first and second moments. We show numerical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G2/M transition model.

  11. A probability generating function method for stochastic reaction networks.

    PubMed

    Kim, Pilwon; Lee, Chang Hyeong

    2012-06-21

    In this paper we present a probability generating function (PGF) approach for analyzing stochastic reaction networks. The master equation of the network can be converted to a partial differential equation for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical schemes for finding probability distributions as well as first and second moments. We show numerical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G(2)/M transition model.

  12. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns.

    PubMed

    Sieper, Kim; Wille, Sebastian; Kern, Matthias

    2017-10-01

    The aim of this study was to evaluate the fracture strength of crowns made from current CAD/CAM materials. In addition the influence of crown thickness and chewing simulation on the fracture strength was evaluated. Crowns were fabricated from lithium disilicate, zirconia reinforced lithium silicate (ZLS-ceramic) and a polymer-infiltrated ceramic-network (PICN) with an occlusal thickness of 1.0mm or 1.5mm, respectively (n=16). Crowns were cemented on composite dies. Subgroups of eight specimens were loaded with 5kg in a chewing simulator for 1,200,000 cycles with thermal cycling. Finally, all specimens were loaded until fracture in a universal testing machine. Three-way ANOVA was used to detect statistical interaction. Differences regarding the materials were tested with two-way ANOVA, following one-way ANOVA and a post-hoc Tukey's-Test. All crowns survived the chewing simulation. The material had a significant influence on the fracture resistance (p≤0.05). Lithium disilicate achieved the highest values of fracture strength in almost all groups followed by ZLS-ceramic. PICN achieved the lowest values of fracture strength. Chewing simulation increased the fracture strength of thick lithium disilicate crown significantly. Greater occlusal thickness of all crown materials resulted in higher crown fracture strength before chewing simulation. After chewing simulation occlusal thickness of lithium disilicate and PICN crowns had no significant influence on the fracture strength. All crowns revealed fracture strength above the clinically expected loading forces. Therefore the durability of the tested CAD/CAM materials seems promising also in an occlusal thickness of 1.0mm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Microcircuits in respiratory rhythm generation: commonalities with other rhythm generating networks and evolutionary perspectives

    PubMed Central

    Ramirez, Jan-Marino; Dashevskiy, Tatiana; Marlin, Ibis Agosto; Baertsch, Nathan

    2017-01-01

    Rhythmicity is critical for the generation of rhythmic behaviors and higher brain functions. This review discusses common mechanisms of rhythm generation, including the role of synaptic inhibition and excitation, with a focus on the mammalian respiratory network. This network generates three phases of breathing and is highly integrated with brain regions associated with numerous non-ventilatory behaviors. We hypothesize that during evolution multiple rhythmogenic microcircuits were recruited to accommodate the generation of each breathing phase. While these microcircuits relied primarily on excitatory mechanisms, synaptic inhibition became increasingly important to coordinate the different microcircuits and to integrate breathing into a rich behavioral repertoire that links breathing to sensory processing, arousal, and emotions as well as learning and memory. PMID:27589601

  15. Neural network based control of Doubly Fed Induction Generator in wind power generation

    NASA Astrophysics Data System (ADS)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  16. A source generation model for near-field seismic impact of coal fractures in stress concentration zones

    NASA Astrophysics Data System (ADS)

    Feng, Junjun; Wang, Enyuan; Shen, Rongxi; Chen, Liang; Li, Xuelong; Li, Nan

    2016-08-01

    To study the near-field seismic impact of coal fractures in stress concentration zones, we established a source generation model based on finite dislocation source theory and dynamic fracture mechanics, derived an analytical expression for near-field seismic displacements caused by coal fractures in the zone and numerically computed the resultant near-field seismic displacements within the coal mass. The results show that (1) the larger difference between the vertical and horizontal normal stresses in the stress concentration zone leads to a greater fracture speed, which thereby causes a stronger seismic impact; (2) the P-wave component in the near-field seismic displacements mainly impacts on the middle of the roadway, while the SH- and SV wave components mainly affect the junctions between the roadway and both the roof and the floor, and the damage caused by the SH- and SV waves within the coal mass is more significant than that caused by the P-waves; and (3) the effective way to mitigate the seismic impact induced by coal fractures in stress concentration zones is to reduce the difference between the vertical and horizontal normal stresses as far as possible. It is hoped that this study will provide a better understanding of the seismic impacts induced by coal fractures in stress concentration zones and thus help engineers to discover ways to prevent roadway failure.

  17. Advances Made in the Next Generation of Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    1999-01-01

    Because of the unique networking characteristics of communications satellites, global satellite networks are moving to the forefront in enhancing national and global information infrastructures. Simultaneously, broadband data services, which are emerging as the major market driver for future satellite and terrestrial networks, are being widely acknowledged as the foundation for an efficient global information infrastructure. In the past 2 years, various task forces and working groups around the globe have identified pivotal topics and key issues to address if we are to realize such networks in a timely fashion. In response, industry, government, and academia undertook efforts to address these topics and issues. A workshop was organized to provide a forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. The Satellite Networks: Architectures, Applications, and Technologies Workshop was hosted by the Space Communication Program at the NASA Lewis Research Center in Cleveland, Ohio. Nearly 300 executives and technical experts from academia, industry, and government, representing the United States and eight other countries, attended the event (June 2 to 4, 1998). The program included seven panels and invited sessions and nine breakout sessions in which 42 speakers presented on technical topics. The proceedings covers a wide range of topics: access technology and protocols, architectures and network simulations, asynchronous transfer mode (ATM) over satellite networks, Internet over satellite networks, interoperability experiments and applications, multicasting, NASA interoperability experiment programs, NASA mission applications, and Transmission Control Protocol/Internet Protocol (TCP/IP) over satellite: issues, relevance, and experience.

  18. Advances Made in the Next Generation of Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    1999-01-01

    Because of the unique networking characteristics of communications satellites, global satellite networks are moving to the forefront in enhancing national and global information infrastructures. Simultaneously, broadband data services, which are emerging as the major market driver for future satellite and terrestrial networks, are being widely acknowledged as the foundation for an efficient global information infrastructure. In the past 2 years, various task forces and working groups around the globe have identified pivotal topics and key issues to address if we are to realize such networks in a timely fashion. In response, industry, government, and academia undertook efforts to address these topics and issues. A workshop was organized to provide a forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. The Satellite Networks: Architectures, Applications, and Technologies Workshop was hosted by the Space Communication Program at the NASA Lewis Research Center in Cleveland, Ohio. Nearly 300 executives and technical experts from academia, industry, and government, representing the United States and eight other countries, attended the event (June 2 to 4, 1998). The program included seven panels and invited sessions and nine breakout sessions in which 42 speakers presented on technical topics. The proceedings covers a wide range of topics: access technology and protocols, architectures and network simulations, asynchronous transfer mode (ATM) over satellite networks, Internet over satellite networks, interoperability experiments and applications, multicasting, NASA interoperability experiment programs, NASA mission applications, and Transmission Control Protocol/Internet Protocol (TCP/IP) over satellite: issues, relevance, and experience.

  19. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns.

    PubMed

    Harada, Akio; Nakamura, Keisuke; Kanno, Taro; Inagaki, Ryoichi; Örtengren, Ulf; Niwano, Yoshimi; Sasaki, Keiichi; Egusa, Hiroshi

    2015-04-01

    The aim of this study was to investigate whether different fabrication processes, such as the computer-aided design/computer-aided manufacturing (CAD/CAM) system or the manual build-up technique, affect the fracture resistance of composite resin-based crowns. Lava Ultimate (LU), Estenia C&B (EC&B), and lithium disilicate glass-ceramic IPS e.max press (EMP) were used. Four types of molar crowns were fabricated: CAD/CAM-generated composite resin-based crowns (LU crowns); manually built-up monolayer composite resin-based crowns (EC&B-monolayer crowns); manually built-up layered composite resin-based crowns (EC&B-layered crowns); and EMP crowns. Each type of crown was cemented to dies and the fracture resistance was tested. EC&B-layered crowns showed significantly lower fracture resistance compared with LU and EMP crowns, although there was no significant difference in flexural strength or fracture toughness between LU and EC&B materials. Micro-computed tomography and fractographic analysis showed that decreased strength probably resulted from internal voids in the EC&B-layered crowns introduced by the layering process. There was no significant difference in fracture resistance among LU, EC&B-monolayer, and EMP crowns. Both types of composite resin-based crowns showed fracture loads of >2000 N, which is higher than the molar bite force. Therefore, CAD/CAM-generated crowns, without internal defects, may be applied to molar regions with sufficient fracture resistance. © 2015 Eur J Oral Sci.

  20. Mapping Generative Models onto a Network of Digital Spiking Neurons.

    PubMed

    Pedroni, Bruno U; Das, Srinjoy; Arthur, John V; Merolla, Paul A; Jackson, Bryan L; Modha, Dharmendra S; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2016-05-18

    Stochastic neural networks such as Restricted Boltzmann Machines (RBMs) have been successfully used in applications ranging from speech recognition to image classification, and are particularly interesting because of their potential for generative tasks. Inference and learning in these algorithms use a Markov Chain Monte Carlo procedure called Gibbs sampling, where a logistic function forms the kernel of this sampler. On the other side of the spectrum, neuromorphic systems have shown great promise for low-power and parallelized cognitive computing, but lack well-suited applications and automation procedures. In this work, we propose a systematic method for bridging the RBM algorithm and digital neuromorphic systems, with a generative pattern completion task as proof of concept. For this, we first propose a method of producing the Gibbs sampler using bio-inspired digital noisy integrate-and-fire neurons. Next, we describe the process of mapping generative RBMs trained offline onto the IBM TrueNorth neurosynaptic processor-a low-power digital neuromorphic VLSI substrate. Mapping these algorithms onto neuromorphic hardware presents unique challenges in network connectivity and weight and bias quantization, which, in turn, require architectural and design strategies for the physical realization. Generative performance is analyzed to validate the neuromorphic requirements and to best select the neuron parameters for the model. Lastly, we describe a design automation procedure which achieves optimal resource usage, accounting for the novel hardware adaptations. This work represents the first implementation of generative RBM inference on a neuromorphic VLSI substrate.

  1. Mapping Generative Models onto a Network of Digital Spiking Neurons.

    PubMed

    Pedroni, Bruno U; Das, Srinjoy; Arthur, John V; Merolla, Paul A; Jackson, Bryan L; Modha, Dharmendra S; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2016-08-01

    Stochastic neural networks such as Restricted Boltzmann Machines (RBMs) have been successfully used in applications ranging from speech recognition to image classification, and are particularly interesting because of their potential for generative tasks. Inference and learning in these algorithms use a Markov Chain Monte Carlo procedure called Gibbs sampling, where a logistic function forms the kernel of this sampler. On the other side of the spectrum, neuromorphic systems have shown great promise for low-power and parallelized cognitive computing, but lack well-suited applications and automation procedures. In this work, we propose a systematic method for bridging the RBM algorithm and digital neuromorphic systems, with a generative pattern completion task as proof of concept. For this, we first propose a method of producing the Gibbs sampler using bio-inspired digital noisy integrate-and-fire neurons. Next, we describe the process of mapping generative RBMs trained offline onto the IBM TrueNorth neurosynaptic processor-a low-power digital neuromorphic VLSI substrate. Mapping these algorithms onto neuromorphic hardware presents unique challenges in network connectivity and weight and bias quantization, which, in turn, require architectural and design strategies for the physical realization. Generative performance is analyzed to validate the neuromorphic requirements and to best select the neuron parameters for the model. Lastly, we describe a design automation procedure which achieves optimal resource usage, accounting for the novel hardware adaptations. This work represents the first implementation of generative RBM inference on a neuromorphic VLSI substrate.

  2. Characteristics of Fracture Networks and Hydrogeologic Units: Implications Provided by Detailed Hydraulic Head Profiles

    NASA Astrophysics Data System (ADS)

    Meyer, J. R.; Parker, B. L.; Cherry, J. A.

    2009-05-01

    hydrogeologic units (HGUs) and were used to delineate 11 HGUs at the MP-6 location. The sections of the head profile with minimal vertical gradient indicate an interconnected fracture network and a dominance of horizontal flow within each HGU. In the current study, seven additional detailed multilevel systems were installed across the site to investigate the lateral continuity of the hydraulic head inflections observed at MP-6. The head profiles measured from all eight MLSs have similar simple geometries: sections of minimal hydraulic gradient separated by sharp vertical inflections. The elevations of the hydraulic head inflections at each of the eight coreholes are strongly correlated despite separation distances of up to 3 km. The inflections observed in the detailed head profiles allow for the delineation of up to 13 bedrock HGUs at the site in contrast to the three bedrock HGUs commonly used in regional groundwater flow models. These 13 bedrock HGUs will provide the framework for site scale numerical modeling of groundwater flow and contaminant transport. The results of this study demonstrate that pre-existing regional stratigraphic frameworks are generally not an appropriate hydrogeologic framework, particularly in dual porosity/permeability systems where contaminant transport and fate is a concern. In addition, the simple geometry of the head profiles suggests an ordered and interconnected fracture network within each HGU and a poor vertical hydraulic connection between the fracture networks of adjacent HGUs.

  3. Photonic devices for next-generation broadband fiber access networks

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.; Yen, She-Hwa; Wong, Shing-Wa

    2011-01-01

    Next-generation optical access networks will deliver substantial benefits to consumers including a dedicated high-QoS access to bit rates of hundreds of Megabits per second. They must include the following features such as: reduced total cost of ownership, higher reliability, lower energy consumption, better flexibility and efficiency. This paper will describe recent progress and technology toward that goal using novel photonic devices

  4. MHD generator with improved network coupling electrodes to a load

    DOEpatents

    Rosa, Richard J.

    1977-01-01

    An MHD generator has a plurality of segmented electrodes extending longitudinally of a duct, whereby progressively increasing high DC voltages are derived from a set of cathode electrodes and progressively increasing low DC voltages are derived from a set of anode electrodes. First and second load terminals are respectively connected to the cathode and anode electrodes by separate coupling networks, each of which includes a number of SCR's and a number of diode rectifiers.

  5. Empirical extraction of mechanisms underlying real world network generation

    NASA Astrophysics Data System (ADS)

    Itzhack, Royi; Muchnik, Lev; Erez, Tom; Tsaban, Lea; Goldenberg, Jacob; Solomon, Sorin; Louzoun, Yoram

    2010-11-01

    The generation mechanisms of real world networks have been described using multiple models. The mathematical features of these models are usually extrapolated from statistical properties of a snapshot of these networks. We here propose an alternative method based on direct measurement of a sequence of consecutive snapshots to uncover the dynamics underlying real world generation. We assume that the probability of adding a node or an edge depends only on local features surrounding the newly added node/edge, and directly measure the contribution of these features to the node/edge addition probability. These measurements are performed using newly defined N-node local structures. Each N-node local structure represents the configuration of edges surrounding a newly added edge. The N-node local structure measurements reproduce for some networks the now classical addition of edges between high degree node mechanisms. It also provides quantitative estimates of more complex mechanisms driving other networks’ evolution, such as the effect of common first and second neighbors. This new methodology reveals the relative importance of different generation mechanisms. We show, for example, that the main mechanism driving hyperlink addition between two websites is the existence of a third website linking to both the source and the target of the new hyperlink.

  6. Toward robust AV conferencing on next-generation networks

    NASA Astrophysics Data System (ADS)

    Liu, Haining; Cheng, Liang; El Zarki, Magda

    2004-12-01

    In order to enable a truly pervasive computing environment, next generation networks (including B3G and 4G) will merge the broadband wireless and wireline networking infrastructure. However, due to the tremendous complexity in administration and the unreliability of the wireless channel, provision of hard-guarantees for services on such networks will not happen in the foreseeable future. This consequently makes it particularly challenging to offer viable AV conferencing services due to their stringent synchronization, delay and data fidelity requirements. We propose in this paper a robust application-level solution for wireless mobile AV conferencing on B3G/4G networks. Expecting no special treatment from the network, we apply a novel adaptive delay and synchronization control mechanism to maintain the synchronization and reduce the latency as much as possible. We also employ a robust video coding technique that has better error-resilience capability. We investigate the performance of the proposed solution through simulations using a three-state hidden Markov chain as the generic end-to-end transport channel model. The results show that our scheme yields tight synchronization performance, relatively low end-to-end latency and satisfactory presentation quality. The scheme successfully provides a fairly robust AV conferencing service.

  7. Toward robust AV conferencing on next-generation networks

    NASA Astrophysics Data System (ADS)

    Liu, Haining; Cheng, Liang; El Zarki, Magda

    2005-01-01

    In order to enable a truly pervasive computing environment, next generation networks (including B3G and 4G) will merge the broadband wireless and wireline networking infrastructure. However, due to the tremendous complexity in administration and the unreliability of the wireless channel, provision of hard-guarantees for services on such networks will not happen in the foreseeable future. This consequently makes it particularly challenging to offer viable AV conferencing services due to their stringent synchronization, delay and data fidelity requirements. We propose in this paper a robust application-level solution for wireless mobile AV conferencing on B3G/4G networks. Expecting no special treatment from the network, we apply a novel adaptive delay and synchronization control mechanism to maintain the synchronization and reduce the latency as much as possible. We also employ a robust video coding technique that has better error-resilience capability. We investigate the performance of the proposed solution through simulations using a three-state hidden Markov chain as the generic end-to-end transport channel model. The results show that our scheme yields tight synchronization performance, relatively low end-to-end latency and satisfactory presentation quality. The scheme successfully provides a fairly robust AV conferencing service.

  8. Learning gene regulatory networks from next generation sequencing data.

    PubMed

    Jia, Bochao; Xu, Suwa; Xiao, Guanghua; Lamba, Vishal; Liang, Faming

    2017-03-10

    In recent years, next generation sequencing (NGS) has gradually replaced microarray as the major platform in measuring gene expressions. Compared to microarray, NGS has many advantages, such as less noise and higher throughput. However, the discreteness of NGS data also challenges the existing statistical methodology. In particular, there still lacks an appropriate statistical method for reconstructing gene regulatory networks using NGS data in the literature. The existing local Poisson graphical model method is not consistent and can only infer certain local structures of the network. In this article, we propose a random effect model-based transformation to continuize NGS data and then we transform the continuized data to Gaussian via a semiparametric transformation and apply an equivalent partial correlation selection method to reconstruct gene regulatory networks. The proposed method is consistent. The numerical results indicate that the proposed method can lead to much more accurate inference of gene regulatory networks than the local Poisson graphical model and other existing methods. The proposed data-continuized transformation fills the theoretical gap for how to transform discrete data to continuous data and facilitates NGS data analysis. The proposed data-continuized transformation also makes it feasible to integrate different types of data, such as microarray and RNA-seq data, in reconstruction of gene regulatory networks.

  9. Carbonate fracture stratigraphy: An integrated outcrop and 2D discrete element modelling study

    NASA Astrophysics Data System (ADS)

    Spence, Guy; Finch, Emma

    2013-04-01

    Constraining fracture stratigraphy is important as natural fractures control primary fluid flow in low matrix permeability naturally fractured carbonate hydrocarbon reservoirs. Away from the influence of folds and faults, stratigraphic controls are known to be the major control on fracture networks. The fracture stratigraphy of carbonate nodular-chert rhythmite successions are investigated using a Discrete Element Modelling (DEM) technique and validated against observations from outcrops. Comparisons are made to the naturally fractured carbonates of the Eocene Thebes Formation exposed in the west central Sinai of Egypt, which form reservoir rocks in the nearby East Ras Budran Field. DEM allows mechanical stratigraphy to be defined as the starting conditions from which forward numerical modelling can generate fracture stratigraphy. DEM can incorporate both stratigraphic and lateral heterogeneity, and enable mechanical and fracture stratigraphy to be characterised separately. Stratally bound stratified chert nodules below bedding surfaces generate closely spaced lateral heterogeneity in physical properties at stratigraphic mechanical interfaces. This generates extra complexity in natural fracture networks in addition to that caused by bed thickness and lithological physical properties. A series of representative geologically appropriate synthetic mechanical stratigraphic models were tested. Fracture networks generated in 15 DEM experiments designed to isolate and constrain the effects of nodular chert rhythmites on carbonate fracture stratigraphy are presented. The discrete element media used to model the elastic strengths of rocks contain 72,866 individual elements. Mechanical stratigraphies and the fracture networks generated are placed in a sequence stratigraphic framework. Nodular chert rhythmite successions are shown to be a distinct type of naturally fractured carbonate reservoir. Qualitative stratigraphic rules for predicting the distribution, lengths, spacing

  10. A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Follin, Sven; Hartley, Lee; Rhén, Ingvar; Jackson, Peter; Joyce, Steven; Roberts, David; Swift, Ben

    2014-03-01

    The large-scale geological structure of the crystalline rock at the proposed high-level nuclear waste repository site at Forsmark, Sweden, has been classified in terms of deformation zones of elevated fracture frequency. The rock between deformation zones was divided into fracture domains according to fracture frequency. A methodology to constrain the geometric and hydraulic parameters that define a discrete fracture network (DFN) model for each fracture domain is presented. The methodology is based on flow logging and down-hole imaging in cored boreholes in combination with DFN realizations, fracture connectivity analysis and pumping test simulations. The simulations suggest that a good match could be obtained for a power law size distribution where the value of the location parameter equals the borehole radius but with different values for the shape parameter, depending on fracture domain and fracture set. Fractures around 10-100 m in size are the ones that typically form the connected network, giving inflows in the simulations. The report also addresses the issue of up-scaling of DFN properties to equivalent continuous porous medium (ECPM) bulk flow properties. Comparisons with double-packer injection tests provide confidence that the derived DFN formulation of detailed flows within individual fractures is also suited to simulating mean bulk flow properties and their spatial variability.

  11. Generation of strength in a drying film: How fracture toughness depends on dispersion properties

    NASA Astrophysics Data System (ADS)

    Birk-Braun, Natalie; Yunus, Kamran; Rees, Eric J.; Schabel, Wilhelm; Routh, Alexander F.

    2017-02-01

    The fracture toughness of colloidal films is measured by characterizing cracks which form during directional drying. Images from a confocal microscope are processed to measure the crack width as a function of distance from the crack tip. Applying theory for thin elastic films the fracture toughness is extracted. It is found that the fracture toughness scales with the particle size to the -0.8 power and that the critical energy release rate scales with the particle size to the -1.3 power. In addition, the fracture toughness is found to increase at lower evaporation rates, but the film thickness does not have a significant effect.

  12. An Experimental Investigation into the Effects of the Anisotropy of Shale on Hydraulic Fracture Propagation

    NASA Astrophysics Data System (ADS)

    Lin, Chong; He, Jianming; Li, Xiao; Wan, Xiaole; Zheng, Bo

    2017-03-01

    Hydraulic fracturing is a key technology in the exploitation of shale gas. Shale formations are a type of typical transverse isotropic material. The mechanisms that generate complex fracture networks during the fracturing process are of vital importance to hydraulic fracturing design. In this article, in order to analyze the effects of the anisotropic characteristics on the propagation of hydraulic fractures in shale formations, a series of hydraulic fracturing experiments were carried out with different stress conditions and injection rates. The effects of the anisotropic structure on the propagation of hydraulic fractures were revealed. The results show that the breakdown pressure increases with an increase in the injection rate of the fracturing fluid. It is suggested that the bedding plane angle of the shale formation has a great influence on the fracturing results. Additionally, as the deviator stress increases, the breakdown pressure decreases. From macroscopic observation of the fractures, different hydraulic fracture morphologies and hydraulic fracture propagation patterns were observed.

  13. A Retrospective Case Series of Surgical Implant Generation Network (SIGN) Placement at the Afghan National Police Hospital, Kabul, Afghanistan.

    PubMed

    Ertl, Christian W; Royal, David; Arzoiey, Humayoon Abdul; Shefa, Azizullah; Sultani, Salim; Mosafa, Mohammed Omar; Sadat, Safiullah; Zirkle, Lewis

    2016-01-01

    In Afghanistan, adequate and cost-effective medical care for even routine conditions is lacking; especially for complex injuries like long-bone fractures. The Surgical Implant Generation Network (SIGN) intramedullary nail is used for treatment of long-bone fractures from blunt injuries and does not require imaging. We are reporting for the first time results of the SIGN intramedullary nail at the Afghan National Police Hospital, a tertiary care facility in Kabul. 71 records from the SIGN Online Surgical Database were reviewed for gender, age, date of injury, implant date, patient's home of record, and type/ mechanism of injury. Mean age was 26.7 years, all but one being male; time from injury to implant ranged 1 to 401 days, with mean of 40.6 days. Long-bone fractures from motor vehicle accidents remained constant, and war injuries peaked in summer. Follow-up is limited because of security and financial burdens of travel. However, personal communication with Afghan National Police Hospital surgeons suggests that patients included in the current study have not experienced any adverse outcomes. While it remains to be seen if the SIGN Online Surgical Database will facilitate more comprehensive outcome studies, our results provide support for the efficacy of SIGN nails in treating long-bone fractures from war injuries.

  14. Code generation: a strategy for neural network simulators.

    PubMed

    Goodman, Dan F M

    2010-10-01

    We demonstrate a technique for the design of neural network simulation software, runtime code generation. This technique can be used to give the user complete flexibility in specifying the mathematical model for their simulation in a high level way, along with the speed of code written in a low level language such as C+ +. It can also be used to write code only once but target different hardware platforms, including inexpensive high performance graphics processing units (GPUs). Code generation can be naturally combined with computer algebra systems to provide further simplification and optimisation of the generated code. The technique is quite general and could be applied to any simulation package. We demonstrate it with the 'Brian' simulator ( http://www.briansimulator.org ).

  15. Fracture network of the Ferron Sandstone Member of the Mancos Shale, east-central Utah, USA

    USGS Publications Warehouse

    Condon, S.M.

    2003-01-01

    The fracture network at the outcrop of the Ferron Sandstone Member of the Mancos Shale was studied to gain an understanding of the tectonic history of the region and to contribute data to studies of gas and water transmissivity related to the occurrence and production of coal-bed methane. About 1900 fracture readings were made at 40 coal outcrops and 62 sandstone outcrops in the area from Willow Springs Wash in the south to Farnham dome in the north of the study area in east-central Utah.Two sets of regional, vertical to nearly vertical, systematic face cleats were identified in Ferron coals. A northwest-striking set trends at a mean azimuth of 321??, and a northeast-striking set has a mean azimuth of 55??. Cleats were observed in all coal outcrops examined and are closely spaced and commonly coated with thin films of iron oxide.Two sets of regional, systematic joint sets in sandstone were also identified and have mean azimuths of 321?? and 34??. The joints of each set are planar, long, and extend vertically to nearly vertically through multiple beds; the northeast-striking set is more prevalent than the northwest-striking set. In some places, joints of the northeast-striking set occur in closely spaced clusters, or joint zones, flanked by unjointed rock. Both sets are mineralized with iron oxide and calcite, and the northwest-striking set is commonly tightly cemented, which allowed the northeast-striking set to propagate across it. All cleats and joints of these sets are interpreted as opening-mode (mode I) fractures. Abutting relations indicate that the northwest-striking cleats and joints formed first and were later overprinted by the northeast-striking cleats and joints. Burial curves constructed for the Ferron indicate rapid initial burial after deposition. The Ferron reached a depth of 3000 ft (1000 m) within 5.2 million years (m.y.), and this is considered a minimum depth and time for development of cleats and joints. The Sevier orogeny produced southeast

  16. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  17. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  18. The Network Spinal Wave as a Central Pattern Generator

    PubMed Central

    Epstein, Donald M.; Lemberger, Daniel

    2016-01-01

    Abstract Objectives: This article explains the research on a unique spinal wave visibly observed in association with network spinal analysis care. Since 1997, the network wave has been studied using surface electromyography (sEMG), characterized mathematically, and determined to be a unique and repeatable phenomenon. Methods: The authors provide a narrative review of the research and a context for the network wave's development. Results: The sEMG research demonstrates that the movement of the musculature of the spine during the wave phenomenon is electromagnetic and mechanical. The changes running along the spine were characterized mathematically at three distinct levels of care. Additionally, the wave has the mathematical properties of a central pattern generator (CPG). Conclusions: The network wave may be the first CPG discovered in the spine unrelated to locomotion. The mathematical characterization of the signal also demonstrates coherence at a distance between the sacral to cervical spine. According to mathematical engineers, based on studies conducted a decade apart, the wave itself is a robust phenomenon and the detection methods for this coherence may represent a new measure for central nervous system health. This phenomenon has implications for recovery from spinal cord injury and for reorganizational healing development. PMID:27243963

  19. Morphological Transformation and Force Generation of Active Cytoskeletal Networks

    PubMed Central

    Maruri, Daniel; Kamm, Roger D.

    2017-01-01

    Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation. PMID:28114384

  20. Generating function formula of heat transfer in harmonic networks.

    PubMed

    Saito, Keiji; Dhar, Abhishek

    2011-04-01

    We consider heat transfer across an arbitrary classical harmonic network connected to two heat baths at different temperatures. The network has N positional degrees of freedom, of which N(L) are connected to a bath at temperature T(L) and N(R) are connected to a bath at temperature T(R). We derive an exact formula for the cumulant generating function for heat transfer between the two baths. The formula is valid even for N(L)≠N(R) and satisfies the Gallavotti-Cohen fluctuation symmetry. Since harmonic crystals in three dimensions are known to exhibit different regimes of transport such as ballistic, anomalous, and diffusive, our result implies validity of the fluctuation theorem in all regimes. Our exact formula provides a powerful tool to study other properties of nonequilibrium current fluctuations.

  1. Generating function formula of heat transfer in harmonic networks

    NASA Astrophysics Data System (ADS)

    Saito, Keiji; Dhar, Abhishek

    2011-04-01

    We consider heat transfer across an arbitrary classical harmonic network connected to two heat baths at different temperatures. The network has N positional degrees of freedom, of which NL are connected to a bath at temperature TL and NR are connected to a bath at temperature TR. We derive an exact formula for the cumulant generating function for heat transfer between the two baths. The formula is valid even for NL≠NR and satisfies the Gallavotti-Cohen fluctuation symmetry. Since harmonic crystals in three dimensions are known to exhibit different regimes of transport such as ballistic, anomalous, and diffusive, our result implies validity of the fluctuation theorem in all regimes. Our exact formula provides a powerful tool to study other properties of nonequilibrium current fluctuations.

  2. Reaction-induced fracturing of low permeability solids

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Dysthe, Dag Kristian; Renard, Francois; Jamtveit, Bjørn; Malthe-Sørenssen, Anders

    2015-04-01

    Escape of internally generated fluids from low permeability elastic solids plays an important role in several natural environments. Primary migration of hydrocarbons, dehydration of sediments and hydrated mantle rocks in subduction zones are examples where the existing permeability cannot accommodate transport of generated fluids in low permeability rocks and fluid pressure build-up may alter the permeability by fracturing. Fractures form and propagate in the rock due to internal pressure build-up. We have performed experiments on organic-rich shales and analogue gels using time-resolved X-ray microtomography, 2D imaging and pressure burst recordings. Fracture nucleation, propagation and coalescence as well as network evolution dynamics during internal fluid genertion was described. The spatial organization of the fracture networks appeared as intermediate between tree networks and hierarchical fractures. The dynamics of intermittent fluid release via fracture pathways show both periodic, 1/f and 1/fˆ2 behaviour of fluid release spectrum.

  3. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  4. Numerical study on criteria for design and operation of water curtain system in underground oil storage cavern using site descriptive fracture networks

    NASA Astrophysics Data System (ADS)

    Moon, Jiwon; Yeo, In Wook

    2013-04-01

    Underground unlined caverns have been constructed in fractured rocks to stockpile oil and petroleum products, where they are hydraulically contained by natural groundwater pressure. However, for the case that natural groundwater pressure is not maintained at the required level, water curtain boreholes, through which water is injected, are often constructed above the cavern as engineering barrier to secure water pressure enough to overwhelm the operational pressure of the cavern. For secure containment of oil and petroleum products inside the cavern, it is essential to keep water pressure around the cavern higher than operational pressure of the cavern using either natural groundwater pressure or engineering barrier. In the Republic of Korea, a number of underground stockpile bases are being operated by Korea National Oil Corporation (KNOC) and private companies, most of which have water curtain system. The criterion that KNOC adopts for water curtain system design and operation such as the vertical distance from the cavern and operational injection rate is based on the Åberg hypothesis that the vertical hydraulic gradient should be larger than one. The criterion has been used for maintaining oil storage cavern without its thorough review. In this study, systematic numerical works have been done for reviewing the Åberg criterion. As groundwater predominantly takes places through fractures in underground caverns, discrete fracture modeling approach is essential for this study. Fracture data, obtained from boreholes drilled at the stage of site investigation at the Yeosu stockpile base in Korea, were statistically analyzed in terms of orientation and intensity, which were used to generate the site descriptive three dimensional fracture networks. Then, groundwater flow modeling has been carried out for the fracture networks. Constant head boundaries were applied along the circumference of the cavern and water curtain boreholes. Main flow channel and hydraulic

  5. Extrapolation of fractal dimensions of natural fracture networks in dolomites from 1-D to 2-D environment

    NASA Astrophysics Data System (ADS)

    Verbovšek, T.

    2009-04-01

    Fractal dimensions of fracture networks (D) are usually determined from 2-D objects, like the digitized fracture traces in outcrops. Sometimes, extrapolations to higher dimensions are required if the measurements (for example fracture traces in the boreholes or in the scanlines) are performed in 1-D environment (D1-D) and are later upscaled to higher dimensions (D2-D). For isotropic fractals this relation should be straight-forward according to the theory: D2-D = D1-D +1, as the intersection of a 2-D fractal with a plane results in a fractal with D1-D equal to D2-D minus one. Some authors have questioned this relation and proposed different empirical relationships. Still, there exist very few field studies of natural fracture networks to support or test such a relationship. The study was therefore focused on the analysis of 23 natural fracture networks in Triassic dolomites in Slovenia. The traces of these fractures were analyzed separately in both 1-D and 2-D environments, and relationships between the obtained fractal dimensions were determined. For 2-D data, the digitized images of fracture traces in 2048x2048 pixel resolution were analyzed by the box-counting method, considering truncation and censoring effects (the 'cut-off' method, using only the valid data right of the cut-off points) and also by considering the complete data range interval (the 'full' method). These values were consequently compared to 1-D values. Those were obtained by dissecting images in both x- and y-directions into 2048 smaller linear images of 1-pixel width, simulating the intersection with a plane. Such line images were then examined by the fracture line-counting method, a 1-D equivalent of the box-counting technique. Results show that the values of all fractal dimensions, regardless of the different fracture networks or the method used, lie in a very narrow data range, and the standard deviations are very small (up to 0.03). The small range can be attributed to a similar fracturing

  6. Fracture-permeability behavior of shale

    SciTech Connect

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  7. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  8. Diffusible crosslinkers generate directed forces in microtubule networks.

    PubMed

    Lansky, Zdenek; Braun, Marcus; Lüdecke, Annemarie; Schlierf, Michael; ten Wolde, Pieter Rein; Janson, Marcel E; Diez, Stefan

    2015-03-12

    Cytoskeletal remodeling is essential to eukaryotic cell division and morphogenesis. The mechanical forces driving the restructuring are attributed to the action of molecular motors and the dynamics of cytoskeletal filaments, which both consume chemical energy. By contrast, non-enzymatic filament crosslinkers are regarded as mere friction-generating entities. Here, we experimentally demonstrate that diffusible microtubule crosslinkers of the Ase1/PRC1/Map65 family generate directed microtubule sliding when confined between partially overlapping microtubules. The Ase1-generated forces, directly measured by optical tweezers to be in the piconewton-range, were sufficient to antagonize motor-protein driven microtubule sliding. Force generation is quantitatively explained by the entropic expansion of confined Ase1 molecules diffusing within the microtubule overlaps. The thermal motion of crosslinkers is thus harnessed to generate mechanical work analogous to compressed gas propelling a piston in a cylinder. As confinement of diffusible proteins is ubiquitous in cells, the associated entropic forces are likely of importance for cellular mechanics beyond cytoskeletal networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Designing the Next Generation Global Geodetic Network for GGOS

    NASA Astrophysics Data System (ADS)

    Pavlis, Erricos C.; Kuzmicz-Cieslak, Magdalena; König, Daniel; MacMillan, Daniel S.

    2014-05-01

    The U.S. National Research Council report "Precise Geodetic Infrastructure: National Requirements for a Shared Resource" (2010) recommended that we 'make a long-term commitment to maintain the International Terrestrial Reference Frame (ITRF) to ensure its continuity and stability'. It further determined that to ensure this, a network of about ~30 globally distributed "core" observatories with state of the art equipment was necessary and should be deployed over the next decade or so. The findings were based on simulation studies using conceptual networks where Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI) equipment of the next generation quality were deployed and operated 24/7. Since then, GGOS—the Global Geodetic Observing System, has embarked in an international effort to organize this future network, soliciting contributions from around the world, through an open solicitation "Call for Proposals—CfP". After a critical number of proposals were received, the results were evaluated and a data base was established where the likely sites are ranked in terms of the available equipment, local environment and weather, probability of completion and the relevant date, etc. The renewal process is expected to evolve smoothly over many years, from the current (legacy) state to the next generation ("GGOS-class") equipment. In order to design the optimal distribution of the proposed sites and to determine any gaps in the final network, simulations have been called for again, only this time the site locations are identical to those listed in the compiled data base, and the equipment at each site is in accordance to what is described in the data base for each point in time. The main objective of the simulations addresses the quality of the ITRF product from a network we expect to have in place about five and ten years after the NRC report (2016/2020). A secondary but equally important simulation task is the study of trade-offs when deploying new

  10. Fibers and fiber devices for next generation optical networks

    NASA Astrophysics Data System (ADS)

    Yam, Scott S. H.

    Conventional optical networks consist of point-to-point fiber links that span long geographical distance, where the performance reliability of time-continuous circuit traffic is critical. As optical networks reach out to users in the last mile, considerations such as bursty traffic pattern and cost have to be taken into account. These considerations impose new challenges on the fiber physical layer. This dissertation outlines the performance requirements of current and next generation optical networks and discusses the above fiber issues they impose. These challenges can be roughly divided into the categories of optical amplifier transient response, high-speed data transmission over multimode fibers, and optical interconnects. Optical amplifier continues to serve its essential role in future optical networks by boosting signal strength to overcome passive component losses. However, being an analog component, the impact of their transient response on end-to-end system performance, and ways to mitigate any negative effects need to be investigated. This is the focus of the section on optical amplifier transient response. In an effort to maximize cost efficiency, installed communication infrastructure in office and residential buildings should be fully utilized, hence motivating the study on high-speed data transmission over multimode fibers. The latest technologies and results are discussed in this section. The last section addresses the interface that ensure seamless connection of traffic as data moves from one type of data network to another, each with its own specific performance requirement. Electrical interconnects have traditionally been the technology of choice, but their speed (and eventual throughput) might not scale with the increasing data rate and the deployment of wavelength division multiplexing. The advantages and results of optical interconnects are presented.

  11. Talking Drums: Generating drum grooves with neural networks

    NASA Astrophysics Data System (ADS)

    Hutchings, P.

    2017-05-01

    Presented is a method of generating a full drum kit part for a provided kick-drum sequence. A sequence to sequence neural network model used in natural language translation was adopted to encode multiple musical styles and an online survey was developed to test different techniques for sampling the output of the softmax function. The strongest results were found using a sampling technique that drew from the three most probable outputs at each subdivision of the drum pattern but the consistency of output was found to be heavily dependent on style.

  12. High strain rate method of producing optimized fracture networks in reservoirs

    DOEpatents

    Roberts, Jeffery James; Antoun, Tarabay H.; Lomov, Ilya N.

    2015-06-23

    A system of fracturing a geological formation penetrated by a borehole. At least one borehole is drilled into or proximate the geological formation. An energetic charge is placed in the borehole. The energetic charge is detonated fracturing the geological formation.

  13. Hybrid Network Architectures for the Next Generation NAS

    NASA Technical Reports Server (NTRS)

    Madubata, Christian

    2003-01-01

    To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.

  14. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect

    La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  15. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  16. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    SciTech Connect

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; Makedonska, N.; Karra, S.

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approach to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.

  17. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    DOE PAGES

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; ...

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less

  18. Strike-slip fault network of the Huangshi structure, SW Qaidam Basin: Insights from surface fractures and seismic data

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang; Zhang, Qiquan; Yu, Xiangjiang; Du, Wei; Liu, Runchao; Bian, Qing; Wang, Zhendong; Zhang, Tuo; Guo, Zhaojie

    2017-01-01

    The Huangshi structure, as one of the NWW-trending S-shaped structures in the southwestern Qaidam Basin, holds important implications for unraveling the regional structural pattern. There are four dominant sets of surface strike-slip fractures at the core of the Huangshi structure. The fractures with orientations of N28°E, N47°E and N65°E correlate well with conjugate Riedel shears (R‧), tension fractures (T) and Riedel shears (R) in the Riedel shear model, respectively. Two conjugate strike-slip fracture sets occur at the surface of the Hongpan structure (secondary to the Huangshi structure) and the southwestern part of the Huangshi structure. In seismic sections, the Huangshi structure is present as a positive flower or Y-shaped structure governed by steeply dipping faults, whereas Hongpan and Xiaoshaping structures, located symmetrically to the Huangshi structure, are thrust-controlled anticlines. The Riedel shear pattern of surface strike-slip fractures, the positive flower or Y-shaped structure in seismic sections and the NW-trending secondary compressional anticlines consistently demonstrate that the Huangshi structure is dominated by left-lateral strike-slip faults which comprise a strike-slip fault network. Considering the similar S-shaped configuration and NWW trend of structures across the southwestern Qaidam Basin, it can be further speculated that these structures are also predominantly of left-lateral strike-slip types.

  19. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  20. THE NEXT GENERATION SAFEGUARDS PROFESSIONAL NETWORK: PROGRESS AND NEXT STEPS

    SciTech Connect

    Zhernosek, Alena V; Lynch, Patrick D; Scholz, Melissa A

    2011-01-01

    President Obama has repeatedly stated that the United States must ensure that the international safeguards regime, as embodied by the International Atomic Energy Agency (IAEA), has 'the authority, information, people, and technology it needs to do its job.' The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) works to implement the President's vision through the Next Generation Safeguards Initiative (NGSI), a program to revitalize the U.S. DOE national laboratories safeguards technology and human capital base so that the United States can more effectively support the IAEA and ensure that it meets current and emerging challenges to the international safeguards system. In 2009, in response to the human capital development goals of NGSI, young safeguards professionals within the Global Nuclear Security Technology Division at Oak Ridge National Laboratory launched the Next Generation Safeguards Professional Network (NGSPN). The purpose of this initiative is to establish working relationships and to foster collaboration and communication among the next generation of safeguards leaders. The NGSPN is an organization for, and of, young professionals pursuing careers in nuclear safeguards and nonproliferation - as well as mid-career professionals new to the field - whether working within the U.S. DOE national laboratory complex, U.S. government agencies, academia, or industry or at the IAEA. The NGSPN is actively supported by the NNSA, boasts more than 70 members, maintains a website and newsletter, and has held two national meetings as well as an NGSPN session and panel at the July 2010 Institute of Nuclear Material Management Annual Meeting. This paper discusses the network; its significance, goals and objectives; developments and progress to date; and future plans.

  1. Toward next-generation optical networks: a network operator perspective based on experimental tests and economic analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaojun; Du, Chunsheng; Zhou, Rongsheng

    2004-04-01

    As a result of data traffic"s exponential growth, network is currently evolving from fixed circuit switched services to dynamic packet switched services, which has brought unprecedented changes to the existing transport infrastructure. It is generally agreed that automatic switched optical network (ASON) is one of the promising solutions for the next generation optical networks. In this paper, we present the results of our experimental tests and economic analysis on ASON. The intention of this paper is to present our perspective, in terms of evolution strategy toward ASON, on next generation optical networks. It is shown through experimental tests that the performance of current Pre-standard ASON enabled equipments satisfies the basic requirements of network operators and is ready for initial deployment. The results of the economic analysis show that network operators can be benefit from the deployment of ASON from three sides. Firstly, ASON can reduce the CAPEX for network expanding by integrating multiple ADM & DCS into one box. Secondly, ASON can reduce the OPEX for network operation by introducing automatic resource control scheme. Finally, ASON can increase margin revenue by providing new optical network services such as Bandwidth on Demand, optical VPN etc. Finally, the evolution strategy is proposed as our perspective toward next generation optical networks. We hope the evolution strategy introduced may be helpful for the network operators to gracefully migrate their fixed ring based legacy networks to next generation dynamic mesh based network.

  2. Contesting Technologies in the Networked Society: A Case Study of Hydraulic Fracturing and Shale Development

    NASA Astrophysics Data System (ADS)

    Hopke, Jill E.

    In this dissertation, I study the network structure and content of a transnational movement against hydraulic fracturing and shale development, Global Frackdown. I apply a relational perspective to the study of role of digital technologies in transnational political organizing. I examine the structure of the social movement through analysis of hyperlinking patterns and qualitative analysis of the content of the ties in one strand of the movement. I explicate three actor types: coordinator, broker, and hyper-local. This research intervenes in the paradigm that considers international actors as the key nodes to understanding transnational advocacy networks. I argue this focus on the international scale obscures the role of globally minded local groups in mediating global issues back to the hyper-local scale. While international NGOs play a coordinating role, local groups with a global worldview can connect transnational movements to the hyper-local scale by networking with groups that are too small to appear in a transnational network. I also examine the movement's messaging on the social media platform Twitter. Findings show that Global Frackdown tweeters engage in framing practices of: movement convergence and solidarity, declarative and targeted engagement, prefabricated messaging, and multilingual tweeting. The episodic, loosely-coordinated and often personalized, transnational framing practices of Global Frackdown tweeters support core organizers' goal of promoting the globalness of activism to ban fracking. Global Frackdown activists use Twitter as a tool to advance the movement and to bolster its moral authority, as well as to forge linkages between localized groups on a transnational scale. Lastly, I study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). I analyze the top actors tweeting using the #fracking

  3. What's in a name generator? Choosing the right name generators for social network surveys in healthcare quality and safety research.

    PubMed

    Burt, Ronald S; Meltzer, David O; Seid, Michael; Borgert, Amy; Chung, Jeanette W; Colletti, Richard B; Dellal, George; Kahn, Stacy A; Kaplan, Heather C; Peterson, Laura E; Margolis, Peter

    2012-12-01

    Interest in the use of social network analysis (SNA) in healthcare research has increased, but there has been little methodological research on how to choose the name generators that are often used to collect primary data on the social connection between individuals for SNA. We sought to determine a minimum set of name generators sufficient to distinguish the social networks of a target population of physicians active in quality improvement (QI). We conducted a pilot survey including 8 name generators in a convenience sample of 25 physicians active in QI to characterize their social networks. We used multidimensional scaling to determine what subset of these name generators was needed to distinguish these social networks. We found that some physicians maintain a social network organized around a specific colleague who performed multiple roles while others maintained highly differentiated networks. We found that a set of 5 of the 8 name generators we used was needed to distinguish the networks of these physicians. Beyond methodology for selecting name generators, our findings suggest that QI networks may require 5 or more generators to elicit valid sets of relevant actors and relations in this target population.

  4. A Framework for Fracture Network Formation in Overpressurised Impermeable Shale: Deformability Versus Diagenesis

    NASA Astrophysics Data System (ADS)

    Alevizos, Sotiris; Poulet, Thomas; Sari, Mustafa; Lesueur, Martin; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2017-03-01

    Understanding the formation, geometry and fluid connectivity of nominally impermeable unconventional shale gas and oil reservoirs is crucial for safe unlocking of these vast energy resources. We present a recent discovery of volumetric instabilities of ductile materials that may explain why impermeable formations become permeable. Here, we present the fundamental mechanisms, the critical parameters and the applicability of the novel theory to unconventional reservoirs. We show that for a reservoir under compaction, there exist certain ambient and permeability conditions at which diagenetic (fluid-release) reactions may provoke channelling localisation instabilities. These channels are periodically interspersed in the matrix and represent areas where the excess fluid from the reaction is segregated at high velocity. We find that channelling instabilities are favoured from pore collapse features for extremely low-permeability formations and fluid-release diagenetic reactions, therefore providing a natural, periodic network of efficient fluid pathways in an otherwise impermeable matrix (i.e. fractures). Such an outcome is of extreme importance the for exploration and extraction phases of unconventional reservoirs.

  5. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks

    PubMed Central

    Vértes, Petra E.; Alexander-Bloch, Aaron; Bullmore, Edward T.

    2014-01-01

    Rich clubs arise when nodes that are ‘rich’ in connections also form an elite, densely connected ‘club’. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour. PMID:25180309

  6. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks.

    PubMed

    Vértes, Petra E; Alexander-Bloch, Aaron; Bullmore, Edward T

    2014-10-05

    Rich clubs arise when nodes that are 'rich' in connections also form an elite, densely connected 'club'. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour.

  7. Amplified CWDM-based Next Generation Broadband Access Networks

    NASA Astrophysics Data System (ADS)

    Peiris, Sasanthi Chamarika

    The explosive growth of both fixed and mobile data-centric traffic along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks will ultimately lead to an all-packet-based converged fixed-mobile optical transport network from the core all the way out to the access network. To address the increasing capacity and speed requirements in the access networks, Wavelength-Division Multiplexed (WDM) and/or Coarse WDM (CWDM)-based Passive Optical Networks (PONs) are expected to emerge as the next-generation optical access infrastructures. However, due to several techno-economic hurdles, CWDM-PONs are still considered an expensive solution and have not yet made any significant inroads into the current access area. One of the key technology hurdles is the scalability of the CWDM-based PONs. Passive component optical insertion losses limit the reach of the network or the number of served optical network units (ONUs). In the recent years, optical amplified CWDM approaches have emerged and new designs of optical amplifiers have been proposed and demonstrated. The critical design parameter for these amplifiers is the very wide optical amplification bandwidth (e.g., 340 nm combined for both directions). The objective of this PhD dissertation work is first to engineer ring and tree-ring based PON architectures that can achieve longer unamplified PON reach and/or provide service to a greater number of ONUs and customers. Secondly is to develop new novel optical amplifier schemes to further address the scalability limitation of the CWDM-based PONs. Specifically, this work proposes and develops novel ultra wide-band hybrid Raman-Optical parametric amplifier (HROPA) schemes that operate over nearly the entire specified CWDM band to provide 340 nm bidirectional optical gain bandwidth over the amplified PON's downstream and upstream CWDM wavelength bands (about 170 nm in each direction). The performance of the proposed HROPA schemes is assessed

  8. Use of microseismicity for determining the structure of the fracture network of large-scale porous media

    NASA Astrophysics Data System (ADS)

    Tafti, Tayeb A.; Sahimi, Muhammad; Aminzadeh, Fred; Sammis, Charles G.

    2013-03-01

    We show that microseismic events—earthquakes with small magnitudes—can be fruitfully used to gain insight into the properties of the fracture network of large-scale porous media, such as oil, gas, and geothermal reservoirs. As an example, we analyze extensive data for the Geysers geothermal field in northeast California. Injection of cold water into the reservoir to produce steam leads to microseismic events. It is demonstrated that the analysis can also lead to insight into whether the fractures are of tectonic type or induced by injection of cold water. To demonstrate this we estimate, using the catalogue of the microseismic events, the fractal dimension Df of the spatial distribution of hypocenters of the events in three seismic clusters associated with the injection of cold water into the field, as well as the b values in the Gutenberg-Richter frequency-magnitude distribution. The fractal dimensions are all in a narrow range centered around Df≃2.57±0.06, comparable to the measured fractal dimension of fracture sets in the greywacke reservoir rock. For most cases the b values are about b≃1.3±0.1, consistent with the Aki relation, Df=2b. Both Df and b are significantly higher than those commonly observed for regional tectonic seismicity or aftershock sequences for which Df≈2 and b≈1 are typical. Our results do not imply that no tectonic triggering exists in the reservoir, but rather that the overpressure allows the activation of less favorably oriented fractures that produce an increase in both b and Df. The estimate Df≈2 for tectonic seismicity has been interpreted as indicating that most tectonic events occur on the subset of near-vertical faults—because they have lower normal stress—or that they occur on the backbone of the fracture and fault network, the multiply connected part of the network that enables finite shear strain. Our results lend support to the latter. The results that the entire fracture network, and not just its backbone, is

  9. Generative model selection using a scalable and size-independent complex network classifier

    NASA Astrophysics Data System (ADS)

    Motallebi, Sadegh; Aliakbary, Sadegh; Habibi, Jafar

    2013-12-01

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks," outperforms existing methods with respect to accuracy, scalability, and size-independence.

  10. Generative model selection using a scalable and size-independent complex network classifier.

    PubMed

    Motallebi, Sadegh; Aliakbary, Sadegh; Habibi, Jafar

    2013-12-01

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks," outperforms existing methods with respect to accuracy, scalability, and size-independence.

  11. Generative model selection using a scalable and size-independent complex network classifier

    SciTech Connect

    Motallebi, Sadegh Aliakbary, Sadegh Habibi, Jafar

    2013-12-15

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named “Generative Model Selection for Complex Networks,” outperforms existing methods with respect to accuracy, scalability, and size-independence.

  12. Fracture resistance of teeth restored with different post systems using new-generation adhesives.

    PubMed

    Kivanç, Bagdagül Helvacioglu; Görgül, Güliz

    2008-11-01

    The aim of this study was to investigate the fracture strength of three post systems cemented with a dual cure composite resin luting cement by using different adhesive systems. In this study 63 extracted anterior teeth with single roots were endodontically prepared and filled. Teeth were randomly assigned to one of three post systems placed into the prepared canals: Group I - titanium posts (n=21) (Filpost); Group II - glass fiber posts (n=21) (Mirafit White); and Group III zirconia posts (n=21) (CosmoPost). Each group was again randomly divided into three subgroups according to the bonding materials used [Single Bond (n=7), Clearfil SE Bond (n=7), and Prompt L Pop (n=7)]. A dual cured resin cement (Rely X ARC) was used for bonding the posts into the root canals. Standard cores were made by a composite resin (Clearfil Photocore) using core build-ups. The samples were tested in the compression test machine for 1 mm/min and fracture resistance of the teeth were recorded. The data was analyzed by using two-way analysis of variance (ANOVA) and Duncan's New Multiple Range Tests. A significance level of p<.05 was used for all comparisons. There was a significant difference in fracture resistance between the post systems (p<0.05) and the interaction of adhesive resins and post systems (p<0.05). Mirafit White was more resistant to fracture than other groups; Filpost showed the least resistance to fracture. CosmoPost post system bonded with Single Bond recorded the lowest fracture resistance (p<0.05). Endodontically treated anterior teeth restored with glass fiber posts exhibited higher failure loads than teeth restored with zirconia and titanium posts. Self-etching adhesives are better alternatives to etch-and-rinse adhesive systems for luting post systems. Under the condition of this study, glass fiber posts are preferable to restore endodontically treated anterior teeth.

  13. Rock fracture image acquisition and analysis

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zongpu, Jia; Chen, Liwan

    2007-12-01

    As a cooperation project between Sweden and China, this paper presents: rock fracture image acquisition and analysis. Rock fracture images are acquired by using UV light illumination and visible optical illumination. To present fracture network reasonable, we set up some models to characterize the network, based on the models, we used Best fit Ferret method to auto-determine fracture zone, then, through skeleton fractures to obtain endpoints, junctions, holes, particles, and branches. Based on the new parameters and a part of common parameters, the fracture network density, porosity, connectivity and complexities can be obtained, and the fracture network is characterized. In the following, we first present a basic consideration and basic parameters for fractures (Primary study of characteristics of rock fractures), then, set up a model for fracture network analysis (Fracture network analysis), consequently to use the model to analyze fracture network with different images (Two dimensional fracture network analysis based on slices), and finally give conclusions and suggestions.

  14. When do evolutionary food web models generate complex networks?

    PubMed

    Allhoff, Korinna T; Drossel, Barbara

    2013-10-07

    Evolutionary foodweb models are used to build food webs by the repeated addition of new species. Population dynamics leads to the extinction or establishment of a newly added species, and possibly to the extinction of other species. The food web structure that emerges after some time is a highly nontrivial result of the evolutionary and dynamical rules. We investigate the evolutionary food web model introduced by Loeuille and Loreau (2005), which characterizes species by their body mass as the only evolving trait. Our goal is to find the reasons behind the model's remarkable robustness and its capability to generate various and stable networks. In contrast to other evolutionary food web models, this model requires neither adaptive foraging nor allometric scaling of metabolic rates with body mass in order to produce complex networks that do not eventually collapse to trivial structures. Our study shows that this is essentially due to the fact that the difference in niche value between predator and prey as well as the feeding range are constrained so that they remain within narrow limits under evolution. Furthermore, competition between similar species is sufficiently strong, so that a trophic level can accommodate several species. We discuss the implications of these findings and argue that the conditions that stabilize other evolutionary food web models have similar effects because they also prevent the occurrence of extreme specialists or extreme generalists that have in general a higher fitness than species with a moderate niche width.

  15. Photographic wound documentation of open fractures: an update for the digital generation

    PubMed Central

    Morgan, B W; Read, J R; Solan, M C

    2007-01-01

    Objective To examine the availability of working cameras in UK emergency departments and to discuss the merits of digital imaging over Polaroid. Design This study was conducted by means of a telephone questionnaire to 50 UK emergency departments. Results It was found that 80% were able to produce either a working Polaroid or digital camera, and that 63% of emergency departments had a digital camera available. Conclusions We report a pronounced increase in the ability of emergency departments to photograph open fractures, due in part to the availability of digital cameras. We recommend the appropriate use of these tools in the management of open fractures. PMID:18029517

  16. Macrostructure from Microstructure: Generating Whole Systems from Ego Networks

    PubMed Central

    Smith, Jeffrey A.

    2014-01-01

    This paper presents a new simulation method to make global network inference from sampled data. The proposed simulation method takes sampled ego network data and uses Exponential Random Graph Models (ERGM) to reconstruct the features of the true, unknown network. After describing the method, the paper presents two validity checks of the approach: the first uses the 20 largest Add Health networks while the second uses the Sociology Coauthorship network in the 1990's. For each test, I take random ego network samples from the known networks and use my method to make global network inference. I find that my method successfully reproduces the properties of the networks, such as distance and main component size. The results also suggest that simpler, baseline models provide considerably worse estimates for most network properties. I end the paper by discussing the bounds/limitations of ego network sampling. I also discuss possible extensions to the proposed approach. PMID:25339783

  17. The seismogenic Gole Larghe Fault Zone (Italian Southern Alps): quantitative 3D characterization of the fault/fracture network, mapping of evidences of fluid-rock interaction, and modelling of the hydraulic structure through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2016-12-01

    The Gole Larghe Fault Zone (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault zone over a continuous area > 1.5 km2, the fault zone architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault zone strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic

  18. Column generation algorithms for exact modularity maximization in networks

    NASA Astrophysics Data System (ADS)

    Aloise, Daniel; Cafieri, Sonia; Caporossi, Gilles; Hansen, Pierre; Perron, Sylvain; Liberti, Leo

    2010-10-01

    Finding modules, or clusters, in networks currently attracts much attention in several domains. The most studied criterion for doing so, due to Newman and Girvan [Phys. Rev. E 69, 026113 (2004)]10.1103/PhysRevE.69.026113, is modularity maximization. Many heuristics have been proposed for maximizing modularity and yield rapidly near optimal solution or sometimes optimal ones but without a guarantee of optimality. There are few exact algorithms, prominent among which is a paper by Xu [Eur. Phys. J. B 60, 231 (2007)]10.1140/epjb/e2007-00331-0. Modularity maximization can also be expressed as a clique partitioning problem and the row generation algorithm of Grötschel and Wakabayashi [Math. Program. 45, 59 (1989)]10.1007/BF01589097 applied. We propose to extend both of these algorithms using the powerful column generation methods for linear and non linear integer programming. Performance of the four resulting algorithms is compared on problems from the literature. Instances with up to 512 entities are solved exactly. Moreover, the computing time of previously solved problems are reduced substantially.

  19. Fracture network characteristics of a deep borehole in the Table Mountain Group (TMG), South Africa

    NASA Astrophysics Data System (ADS)

    Lin, L.; Jia, H.; Xu, Y.

    2007-11-01

    Core samples from an 800-m deep borehole at the Rietfontein Farm, 10 km west of Graafwater, Western Cape, South Africa, were examined and interpreted for the hydrogeological significance of the Table Mountain Group (TMG) in the area. A suite of fracture data was collected and analysed to characterize the aquifer and conceptualize flow in the vicinity of the hole. Based on these data, the hydraulic conductivity, and density and coating intensity (due to precipitation) of the fractures against depth were computed. The dependence of fracture density on depth is very weak, while the intensity of fracture coatings is closely linked to the distribution of hydraulically active fractures that represents the maximum number of fractures currently open to groundwater flow. Four scenarios of depth ranges reflecting the development of hydraulically active fractures are proposed as a depth model of groundwater flow, implying that the majority of groundwater exists above 400 m depth. The top of the hydraulically inactive fracture zone clearly indicates that no groundwater flow could take place below a depth of about 570 m. The depth model gives a better understanding of the properties of the aquifers in the area and improves conceptual models, considering the lower limit of aquifer depth in particular.

  20. Automatic modulation format recognition for the next generation optical communication networks using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Hraghi, Abir; Menif, Mourad

    2015-03-01

    A new technique for Automatic Modulation Format Recognition (AMFR) in next generation optical communication networks is presented. This technique uses the Artificial Neural Network (ANN) in conjunction with the features of Linear Optical Sampling (LOS) of the detected signal at high bit rates using direct detection or coherent detection. The use of LOS method for this purpose mainly driven by the increase of bit rates which enables the measurement of eye diagrams. The efficiency of this technique is demonstrated under different transmission impairments such as chromatic dispersion (CD) in the range of -500 to 500 ps/nm, differential group delay (DGD) in the range of 0-15 ps and the optical signal tonoise ratio (OSNR) in the range of 10-30 dB. The results of numerical simulation for various modulation formats demonstrate successful recognition from a known bit rates with a higher estimation accuracy, which exceeds 99.8%.

  1. Computer-generated global map of valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Stepinski, T. F.

    2009-11-01

    The presence of valley networks (VN) on Mars suggests that early Mars was warmer and wetter than present. However, detailed geomorphic analyses of individual networks have not led to a consensus regarding their origin. An additional line of evidence can be provided by the global pattern of dissection on Mars, but the currently available global map of VN, compiled from Viking images, is incomplete and outdated. We created an updated map of VN by using a computer algorithm that parses topographic data and recognizes valleys by their morphologic signature. This computer-generated map was visually inspected and edited to produce the final updated map of VN. The new map shows an increase in total VN length by a factor of 2.3. A global map of dissection density, D, derived from the new VN map, shows that the most highly dissected region forms a belt located between the equator and mid-southern latitudes. The most prominent regions of high values of D are the northern Terra Cimmeria and the Margaritifer Terra where D reaches the value of 0.12 km-1 over extended areas. The average value of D is 0.062 km-1, only 2.6 times lower than the terrestrial value of D as measured in the same fashion. These relatively high values of dissection density over extensive regions of the planet point toward precipitation-fed runoff erosion as the primary mechanism of valley formation. Assuming a warm and wet early Mars, peculiarity of the global pattern of dissection is interpreted in the terms of climate controlling factors influenced by the topographic dichotomy.

  2. A case report of pycnodysostosis with atypical femur fracture diagnosed by next-generation sequencing of candidate genes

    PubMed Central

    Song, Hyung Keun; Sohn, Young Bae; Choi, Yong Jun; Chung, Yoon-Sok; Jang, Ja-Hyun

    2017-01-01

    Abstract Rationale: Pycnodysostosis is a rare autosomal recessive skeletal dysplasia characterized by short stature, craniofacial dysmorphism, acro-osteolysis, osteosclerosis, and brittle bone with poor healing. Pycnodysostosis results from the deficient activity of cathepsin K, a lysosomal cysteine protease that is encoded by CTSK. Patient concerns: We report a Korean adult patient with pycnodysostosis and atypical femur fracture whose diagnosis was confirmed by next-generation sequencing (NGS) of candidate genes. A 41-year-old female patient was presented with a left femur fracture after falling down. Underlying sclerotic bone disease was suspected as a radiographic skeletal survey showed thickened cortical bones, and the total body bone density was increased (T score was 5.3, and Z score was 4.9). Diagnoses: We performed candidate gene sequencing of various sclerotic bone diseases for the differential molecular diagnosis of underlying sclerosing bone disease. Two heterozygous variants of CTSK were detected. One was a frameshift variant in exon 5, c.426delT (p.Phe142Leufs∗19), which was previously reported, and the other was a novel missense variant in exon 6, c.755G>A (p.Ser252Asn). Sanger sequencing of CTSK confirmed the 2 heterozygous variants and thus the patient was diagnosed with pycnodysostosis. Interventions: The patient had emergency surgery for subtrochantic femoral fracture. Outcomes: After 4 months of surgery, the patient had almost a full range of hip and knee movements and radiographs show the substantial bridging callus across the fracture. Lessons: Candidate gene sequencing could be a useful diagnostic tool for the genetically heterogeneous skeletal dysplasia group, especially in cases with a mild or atypical clinical phenotype. PMID:28328823

  3. Investigation of a generator system for generating electrical power, to supply directly to the public network, using a windmill

    NASA Technical Reports Server (NTRS)

    Tromp, C.

    1979-01-01

    A windpowered generator system is described which uses a windmill to convert mechanical energy to electrical energy for a three phase (network) voltage of constant amplitude and frequency. The generator system controls the windmill by the number of revolutions so that the power drawn from the wind for a given wind velocity is maximum. A generator revolution which is proportional to wind velocity is achieved. The stator of the generator is linked directly to the network and a feed converter at the rotor takes care of constant voltage and frequency at the stator.

  4. An Experimental and Theoretical Study of Fracture Patterns and Particle Motion Generated by Underground Explosions

    NASA Astrophysics Data System (ADS)

    Mihaly, J. M.; Rosakis, A.; Sammis, C. G.; Bhat, H.

    2013-12-01

    Fracture patterns and local particle velocities produced by point explosions in very brittle 'candy glass' plates are compared to those numerically predicted using a dynamic micro-mechanical damage mechanics model, developed by Bhat, Rosakis and Sammis, J. Appl. Mech., 2012. Empirically measured material properties for candy glass facilitate direct comparison between the numerical simulation and experimental results. The evolution of fracture damage produced in experiments is observed using high-speed digital photography, which also images resultant wave fronts (for both P and S). Local particle velocities are also recorded at up to three points using laser vibrometers. Numerical results for the spatial extent of circumferential and radial cracking, in addition to the growth-rate of individual radial cracks, are representative of experimental observations. Wave reflections from the plate edges are observed in both experiment and numerical simulation to affect the expansion of radial cracks. Numerically predicted wave-forms and arrivals compare well with experimental results observed at select points.

  5. Roles of Radiolytic and Externally Generated H2 in the Corrosion of Fractured Spent Nuclear Fuel.

    PubMed

    Liu, Nazhen; Wu, Linda; Qin, Zack; Shoesmith, David W

    2016-11-15

    A 2-D model for the corrosion of spent nuclear fuel inside a failed nuclear waste container has been modified to determine the influence of various redox processes occurring within fractures in the fuel. The corrosion process is driven by reaction of the fuel with the dominant α radiolysis product, H2O2. A number of reactions are shown to moderate or suppress the corrosion rate, including H2O2 decomposition and a number of reactions involving dissolved H2 produced either by α radiolysis or by the corrosion of the steel container vessel. Both sources of H2 lead to the suppression of fuel corrosion, with their relative importance being determined by the radiation dose rate, the steel corrosion rate, and the dimensions of the fractures in the fuel. The combination of H2 from these two sources can effectively prevent corrosion when only micromolar quantities of H2 are present.

  6. Automatic generation of investigator bibliographies for institutional research networking systems.

    PubMed

    Johnson, Stephen B; Bales, Michael E; Dine, Daniel; Bakken, Suzanne; Albert, Paul J; Weng, Chunhua

    2014-10-01

    Publications are a key data source for investigator profiles and research networking systems. We developed ReCiter, an algorithm that automatically extracts bibliographies from PubMed using institutional information about the target investigators. ReCiter executes a broad query against PubMed, groups the results into clusters that appear to constitute distinct author identities and selects the cluster that best matches the target investigator. Using information about investigators from one of our institutions, we compared ReCiter results to queries based on author name and institution and to citations extracted manually from the Scopus database. Five judges created a gold standard using citations of a random sample of 200 investigators. About half of the 10,471 potential investigators had no matching citations in PubMed, and about 45% had fewer than 70 citations. Interrater agreement (Fleiss' kappa) for the gold standard was 0.81. Scopus achieved the best recall (sensitivity) of 0.81, while name-based queries had 0.78 and ReCiter had 0.69. ReCiter attained the best precision (positive predictive value) of 0.93 while Scopus had 0.85 and name-based queries had 0.31. ReCiter accesses the most current citation data, uses limited computational resources and minimizes manual entry by investigators. Generation of bibliographies using named-based queries will not yield high accuracy. Proprietary databases can perform well but requite manual effort. Automated generation with higher recall is possible but requires additional knowledge about investigators. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  8. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  9. Fracture size scaling of hydraulic fracture stimulations in shale reservoirs

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2014-12-01

    It is becoming widely evident that hydraulic fracture stimulations in shale reservoirs can result in the generation of events with magnitudes M>0. These events are of concern both to the public as potential geo-hazards possibly affecting groundwater conditions and surface infra-structure, and to engineers for optimizing productivity and engineering design. Typically, in these environments, recording bandwidth limitations has resulted in a bias towards the consideration of events with M<0. This in turn has limited the observable fracture sizes to those constrained within lithological units. By extending the recording bandwidth to lower frequencies, the dimensions of the observable fractures are also extended to include larger fractures/faults activated during the stimulation. Our observations suggest that these larger-scale events can contribute upwards of 80% of the overall seismic budget or energy release associated with the stimulation process. Effective analysis of scaling relations independent of recording further suggests that breakdowns in scaling can be related to the presence of barriers to growth such as contrasts in rock properties associated with different lithological units. Generally, detected larger-magnitude events are associated with smaller-magnitude events, M<0, suggesting that these latter events can be used to characterize aspects of the rupture process whereas their associated signals observed with the low-frequency network can be used to characterize the overall fracture/fault behavior. By accounting for the presence of larger events, additional activated fracture surface area within the reservoir results in a significant increase in surface area. In an example provided, these events account for a further ~10 km2 of additional activated fracture surface area than estimated based on only utilizing high-frequency band-limited recordings. Overall, the identification of the actual discrete fracture network over many size scales allows for a better

  10. Persona: Network Layer Anonymity and Accountability for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Mallios, Yannis; Modi, Sudeep; Agarwala, Aditya; Johns, Christina

    Individual privacy has become a major concern, due to the intrusive nature of the services and websites that collect increasing amounts of private information. One of the notions that can lead towards privacy protection is that of anonymity. Unfortunately, anonymity can also be maliciously exploited by attackers to hide their actions and identity. Thus some sort of accountability is also required. The current Internet has failed to provide both properties, as anonymity techniques are difficult to fully deploy and thus are easily attacked, while the Internet provides limited level of accountability. The Next Generation Internet (NGI) provides us with the opportunity to examine how these conflicting properties could be efficiently applied and thus protect users’ privacy while holding malicious users accountable. In this paper we present the design of a scheme, called Persona that can provide anonymity and accountability in the network layer of NGI. More specifically, our design requirements are to combine these two conflicting desires in a stateless manner within routers. Persona allows users to choose different levels of anonymity, while it allows the discovery of malicious nodes.

  11. Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin

    2014-10-01

    Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.

  12. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  13. Optogenetic stimulation effectively enhances intrinsically generated network synchrony

    PubMed Central

    El Hady, Ahmed; Afshar, Ghazaleh; Bröking, Kai; Schlüter, Oliver M.; Geisel, Theo; Stühmer, Walter; Wolf, Fred

    2013-01-01

    Synchronized bursting is found in many brain areas and has also been implicated in the pathophysiology of neuropsychiatric disorders such as epilepsy, Parkinson’s disease, and schizophrenia. Despite extensive studies of network burst synchronization, it is insufficiently understood how this type of network wide synchronization can be strengthened, reduced, or even abolished. We combined electrical recording using multi-electrode array with optical stimulation of cultured channelrhodopsin-2 transducted hippocampal neurons to study and manipulate network burst synchronization. We found low frequency photo-stimulation protocols that are sufficient to induce potentiation of network bursting, modifying bursting dynamics, and increasing interneuronal synchronization. Surprisingly, slowly fading-in light stimulation, which substantially delayed and reduced light-driven spiking, was at least as effective in reorganizing network dynamics as much stronger pulsed light stimulation. Our study shows that mild stimulation protocols that do not enforce particular activity patterns onto the network can be highly effective inducers of network-level plasticity. PMID:24155695

  14. Well test analysis in fractured media

    SciTech Connect

    Karasaki, K.

    1987-04-01

    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  15. Cisco Networking Academy: Next-Generation Assessments and Their Implications for K-12 Education

    ERIC Educational Resources Information Center

    Liu, Meredith

    2014-01-01

    To illuminate the possibilities for next-generation assessments in K-12 schools, this case study profiles the Cisco Networking Academy, which creates comprehensive online training curriculum to teach networking skills. Since 1997, the Cisco Networking Academy has served more than five million high school and college students and now delivers…

  16. Fracture network, fluid pathways and paleostress at the Tolhuaca geothermal field

    NASA Astrophysics Data System (ADS)

    Pérez-Flores, Pamela; Veloso, Eugenio; Cembrano, José; Sánchez-Alfaro, Pablo; Lizama, Martín; Arancibia, Gloria

    2017-03-01

    In this study, we examine the fracture network of the Tolhuaca geothermal system located in the Southern Andean volcanic zone that may have acted as a pathway for migration and ascent of deep-seated fluids under the far/local stress field conditions of the area. We collected the orientation, slip-data and mineralogical content of faults and veins recovered on a ca. 1000 m deep borehole (Tol-1) located in the NW-flank of the Tolhuaca volcano. Tol-1 is a non-oriented, vertical borehole that recovered relatively young (<1 Ma) basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcanoclastic interbedded units of Pleistocene age. Here, we examined and measured the inclination, geometry, texture, mineralogy, and relative sense of displacement of veins and faults. To determine the actual azimuthal orientation of fault and veins we reoriented 66 segments (89 standard mini-cores) of Tol-1 using stable Characteristic remanent magnetization component (ChRM) obtained by thermal demagnetization methodology. Paleo-declination of ChRM vectors was used to re-orient the borehole pieces, as well as fault and veins, to a common anchor orientation value consistent with the Geocentric Axial Dipole approximation (GAD). Inversion of RM-corrected fault-slip data reveals a local tensional stress field with a vertically oriented σ1 axis (083/74) and a subhorizontal, NS-trending σ3 axis (184/03). Within the topmost 400 m of the borehole, faults and veins are randomly oriented, whereas below 400 m depth, faults and veins show preferential NE-to EW-strikes and steep (>50°) dips. The EW-striking veins are compatible with the calculated local stress field whereas NE-striking veins are compatible with the regional stress field, the morphological elongation of volcanic centers, alignments of flank vents and dikes orientation. Our results demonstrate that the paleomagnetic methodology proved to be reliable and it is useful to re-orient vertical boreholes such as Tol-1. Furthermore

  17. Three-dimensional discrete fracture network simulations of flow and particle transport based on the Laxemar site data (Sweden).

    NASA Astrophysics Data System (ADS)

    Frampton, A.

    2007-12-01

    We study particle transport in a 3D DFN scenario based on the Laxemar site characterisation data in Sweden, which is a candidate repository site for high level radioactive waste in the Swedish nuclear waste management program. The site characterisation data has revealed several interesting geometric and hydraulic fracture properties, such as power-law distributed fracture sizes and transmissivities. Our study involves investigating the relationship between the resulting Eulerian flow field at a segment (sub- fracture) scale with Lagrangian trajectories at the characteristic (model domain) transport scale. We present results from a new technique for upscaling particle transitions obtained from Eulerian flow statistics to predictions of tracer discharge at the characteristic transport scale, based on previously developed methods used for 2D DFN's. This includes a mapping algorithm for transforming Eulerian into Lagrangian flow statistics without a priori knowledge of network connectivity, and by retaining the correlation between the water residence time τ and the hydrodynamic control of retention β we present accurate tracer discharge predictions. These results are illustrated using the unlimited diffusion model, and for some hypothetical tracers with properties designed to capture the behaviour of many common radionuclides. Finally we emphasise the importance of capturing the early arrival and peak of tracer breakthrough curves, i.e. to capture the bulk of the tracer mass arrival, in order to make accurate and conservative predictions.

  18. Resistor network as a model of fractures in granitic rocks - model for ERT interpretation in crystalline rocks

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Janeček, Josef; Slavík, Lubomír; Bárta, Jaroslav

    2017-04-01

    Recently we have developed and tested system for long-term monitoring of underground excavation stability in granitic rocks. It is based on repeated ultrasonic time-of-flight measurement and electrical resistivity tomography (ERT) measurement. The ERT measurement is performed directly on the rock wall using 48 electrodes. The spacing between electrodes was selected 20 centimeters. Based on sensitivity function it can be expected that maximum penetration depth of ERT is about 1.5 m. The observed time changes in apparent resistivity are expected to be mainly result of changes in fracture water saturation. To get some basic knowledge about relation between electrical resistivity in the rock fracture zone and its saturation a series of laboratory tests with rock samples with different porosity and different saturation was performed. The model of crystalline rock with sparse net of fractures is highly inhomogeneous medium and can be hardly considered as 2D layered model, which is usually used in ERT inversion. Therefore, we prepared resistor-network model for the qualitative/quantitative interpretation of observed apparent resistivity changes. Some preliminary results of our experience with this new type of resistivity model are presented. The results can be used for underground storage monitoring projects. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  19. Low-frequency guided waves in a fluid-filled borehole: Simultaneous effects of generation and scattering due to multiple fractures

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit

    2017-03-01

    Low-frequency, axially-symmetric guided waves which propagate along a fluid-filled borehole (tube waves) are studied in order to characterize the hydraulic fractures intersecting the borehole. We formulate a new equation for the total tube wavefield, which includes simultaneous effects of (1) tube-wave scattering (reflection and transmission) due to wave propagation across hydraulic fractures, and (2) tube-wave generation due to incident plane P waves. The fracture is represented by the nonwelded interface boundary conditions. We use an appropriate form of the representation theorem in order to correctly handle the multiple scattering due to nonwelded interfaces. Our approach can implement any model that has so far been developed. We consider a recent model which includes simultaneous effects of fluid viscosity, dynamic fluid flow, and fracture compliance. The derived equation offers a number of important insights. We recognize that the effective generation amplitude contains the simultaneous effect of both tube-wave generation and scattering. This leads to a new physical understanding indicating that the tube waves are scattered immediately after generation. We show that this scattering is nonlinear with respect to interface compliance. This physical mechanism can be implicitly accounted for by considering more realistic boundary conditions. We also illustrate the application of the new equation in order to predict the complex signature of the total tube wavefield, including generation and scattering at multiple hydraulic fractures. A new formulation for focusing analyses is also derived in order to image and characterize the hydraulic fractures. The obtained results and discussions are important for interpretation, modeling, and imaging using low-frequency guided waves, in the presence of multiple fractures along a cylindrical inclusion.

  20. Stent fracture and longitudinal compression detected on coronary CT angiography in the first- and new-generation drug-eluting stents.

    PubMed

    Chung, Mi Sun; Yang, Dong Hyun; Kim, Young-Hak; Roh, Jae-Hyung; Song, Jihyun; Kang, Joon-Won; Ahn, Jung-Min; Park, Duk-Woo; Kang, Soo-Jin; Lee, Seung-Whan; Lee, Cheol Whan; Park, Seong-Wook; Park, Seung-Jung; Lim, Tae-Hwan

    2016-04-01

    To evaluated prevalence and clinical implication of stent fracture and longitudinal compression in first- and new-generation drug-eluting stents (DES) using coronary computed tomography angiography (CCTA). The incidence of stent fracture and longitudinal compression were compared between first- and new-generation DES in 374 patients who underwent coronary stenting using DES and follow-up CCTA due to recurrent angina. 235 and 139 patients received 322 first- and 213 new-generation DES, respectively. The crude per-stent incidence of longitudinal compression (6.1 vs. 0.3 %, p < 0.001) was higher after new- than first-generation DES implantation using CCTA and the incidence of stent fracture (11.3 vs. 8.1 %, p = 0.23) was comparable. On follow-up coronary angiography for 347 stents, stent fracture (3.2 %) and longitudinal compression (0.9 %) were less detected than those on CCTA. Ostial stenting was a risk factor of longitudinal compression (p < 0.001). Stent fracture was associated with younger patients (p = 0.03), longer stent (p = 0.010), and excessively tortuous lesions (p = 0.001). The presence of stent fracture or longitudinal compression was not associated with poor clinical outcomes. The longitudinal compression more frequently occurred after new-generation DES implantation. The stent fracture was comparable between two DES. However, the occurrence of such mechanical deformities did not translate into a poor clinical outcome.

  1. Fracturing driven by gas exsolution

    NASA Astrophysics Data System (ADS)

    Hafver, A.; Kobchenko, M. E.; Malthe-Sørenssen, A.; Meakin, P.

    2012-04-01

    The formation and dynamics of fractures due to uniform fluid production is important for many geological systems, such as for primary migration of hydrocarbons, dehydration and devolatilization reactions. However, the basic mechanism of the process or the key signature in the form of fracture network geometries are not understood. We have therefore developed a set of analogue experiments addressing the fracturing of a thin, confined layer of gelatin which consumes sugar to generate CO2. Exploratory experimental studies show that the system exhibits a complex dynamics with clear fracture-fracture interactions during fluid production and expulsion. Here, we introduce a model to address the dynamics observed in the experiment by focusing on the material failure process induced by bubble formation during CO2 production. We use a discrete element model to address the elastic gel matrix with a coupled representation of the dissolved gas. The failure of individual bonds is modeled as a thermally activated processes - where the transition probability depends on the local stress as well as the local saturation of the dissolved gas. The model is used to address the phase-diagram for the fracture patterns, with a particular focus on hierarchical fracture system and drainage dynamics during fluid expulsion.

  2. Voltage Control of Distribution Network with a Large Penetration of Photovoltaic Generations using FACTS Devices

    NASA Astrophysics Data System (ADS)

    Kondo, Taro; Baba, Jumpei; Yokoyama, Akihiko

    In recent years, there is a great deal of interest in distributed generations from viewpoints of environmental problem and energy saving measure. Thus, a lot of distributed generators will be connected to the distribution network in the future. However, increase of distributed generators, which convert natural energy into electric energy, is concerned on their adverse effects on distribution network. Therefore, control of distribution networks using Flexible AC Transmission System (FACTS) devices is considered in order to adjust the voltage profile, and as a result more distributed generations can be installed into the networks. In this paper, four types of FACTS devices, Static Synchronous Compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Unified Power Flow Controller (UPFC) and self-commutated Back-To-Back converter (BTB), are analyzed by comparison of required minimum capacity of the inverters in a residential distribution network with a large penetration of photovoltaic generations.

  3. Recurrent Network models of sequence generation and memory

    PubMed Central

    Rajan, Kanaka; Harvey, Christopher D; Tank, David W

    2016-01-01

    SUMMARY Sequential activation of neurons is a common feature of network activity during a variety of behaviors, including working memory and decision making. Previous network models for sequences and memory emphasized specialized architectures in which a principled mechanism is pre-wired into their connectivity. Here, we demonstrate that starting from random connectivity and modifying a small fraction of connections, a largely disordered recurrent network can produce sequences and implement working memory efficiently. We use this process, called Partial In-Network training (PINning), to model and match cellular-resolution imaging data from the posterior parietal cortex during a virtual memory-guided two-alternative forced choice task [Harvey, Coen and Tank, 2012]. Analysis of the connectivity reveals that sequences propagate by the cooperation between recurrent synaptic interactions and external inputs, rather than through feedforward or asymmetric connections. Together our results suggest that neural sequences may emerge through learning from largely unstructured network architectures. PMID:26971945

  4. Pythoscape: a framework for generation of large protein similarity networks.

    PubMed

    Barber, Alan E; Babbitt, Patricia C

    2012-11-01

    Pythoscape is a framework implemented in Python for processing large protein similarity networks for visualization in other software packages. Protein similarity networks are graphical representations of sequence, structural and other similarities among proteins for which pairwise all-by-all similarity connections have been calculated. Mapping of biological and other information to network nodes or edges enables hypothesis creation about sequence-structure-function relationships across sets of related proteins. Pythoscape provides several options to calculate pairwise similarities for input sequences or structures, applies filters to network edges and defines sets of similar nodes and their associated data as single nodes (termed representative nodes) for compression of network information and output data or formatted files for visualization.

  5. Channel modeling for fifth generation cellular networks and wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Torabi, Amir

    In view of exponential growth in data traffic demand, the wireless communications industry has aimed to increase the capacity of existing networks by 1000 times over the next 20 years. A combination of extreme cell densification, more bandwidth, and higher spectral efficiency is needed to support the data traffic requirements for fifth generation (5G) cellular communications. In this research, the potential improvements achieved by using three major 5G enabling technologies (i.e., small cells, millimeter-wave spectrum, and massive MIMO) in rural and urban environments are investigated. This work develops SPM and KA-based ray models to investigate the impact of geometrical parameters on terrain-based multiuser MIMO channel characteristic. Moreover, a new directional 3D channel model is developed for urban millimeter-wave (mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence length are studied in urban areas. Exploiting physical optics (PO) and geometric optics (GO) solutions, closed form expressions are derived for spatial correlation. Achievable spatial diversity is evaluated using horizontal and vertical linear arrays as well as planar 2D arrays. In another study, a versatile near-ground field prediction model is proposed to facilitate accurate wireless sensor network (WSN) simulations. Monte Carlo simulations are used to investigate the effects of antenna height, frequency of operation, polarization, and terrain dielectric and roughness properties on WSNs performance.

  6. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    NASA Astrophysics Data System (ADS)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  7. Using The Finite Element Method And Artificial Neural Networks To Predict Ductile Fracture In Cold Forming Processes

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Breuer, D.

    2004-06-01

    Apart from the calculation of the plastic formability of metals the prediction of ductile cracks in cold forming processes is very important in order to design these processes efficiently. Therefore, many crack criteria have been developed and implemented in several FEM Programs. These criteria scale the crack prediction down to one value and they are qualified to detect the most endangered areas occurring cracks during the forming process quite well. All these criteria have two significant disadvantages: on one hand none of these criteria consider the whole forming history and on the other hand the detected critical value is not applicable to other forming processes. Therefore a new method to predict ductile fracture in cold forming processes has been developed. Various upsetting, bending and extrusion tests were designed in order to provoke a failure during the forming process. All these processes were modelled by means of the Finite Element Method to acquire the whole forming history (including the first principle stress, the equivalent stress and the equivalent strain starting with the first deformation to the first crack occurrence) for the area where the first fracture occurs. Basal in the results way a database with forming histories which all will lead to an failure during a forming process was built up. This database is used to train an artificial neural network. The artificial neural network will be able to predict a failure for new forming histories. The paper gives an overview over the use of the artificial neural network, the calculation of the forming histories and the used forming processes as well as the interaction between the Finite Element Method and the artificial neural network.

  8. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain.

    PubMed

    Chartier, Stephane R; Thompson, Michelle L; Longo, Geraldine; Fealk, Michelle N; Majuta, Lisa A; Mantyh, Patrick W

    2014-11-01

    Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in nonhealed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state.

  9. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  10. Global, Computer-generated Map of Valley Networks on Mars

    NASA Astrophysics Data System (ADS)

    Luo, W.; Stepinski, T. F.

    2009-03-01

    The new, global map of valley networks on Mars has been created entirely by a computer algorithm parsing topographic data. Dependencies between dissection density and its potential controlling factors are derived and discussed.

  11. GLEON: An Example of Next Generation Network Biogeoscience

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Hanson, P. C.

    2014-12-01

    When we think of sensor networks, we often focus on hardware development and deployments and the resulting data and synthesis. Yet, for networks that cross institutional boundaries, such as distributed federations of observatories, people are the critical network resource. They establish the linkages and enable access to and interpretation of the data. In the Global Lake Ecological Observatory Network (GLEON), we found that careful integration of three networks --people, hardware, and data--was essential to providing an effective research environment. Accomplishing this integration is not trivial and requires a shared vision among members, explicit attention to the emerging tenets of the science of team science, and training of scientists at all career stages. In GLEON these efforts have resulted in scientific inferences covering new scales, crossing broad ecosystem gradients, and capturing important environmental events. Network-level capital has been increased by the deployment of instrumented buoys, the creation of new data sets and publicly available models, and new ways to synthesize and analyze high frequency data. The formation of international teams of scientists is essential to these goals. Our approach unites a diverse membership in GLEON-style team science, with emphasis on training and engagement of graduate students while creating knowledge. Examples of the bottom-up scientific output from GLEON include creating and confronting models using high frequency data from sensor networks; interpreting output from biological sensors (e.g., algal pigment sensors) as predictors for water quality indices such as water clarity; and understanding the relationship between occasional, highly noxious algal blooms and fluorometric measurements of pigments from sensor networks. Numerical simulation models are not adequate for predicting highly skewed distributions of phytoplankton in eutrophic lakes, suggesting that our fundamental understanding of phytoplankton

  12. Next generation of network medicine: interdisciplinary signaling approaches.

    PubMed

    Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio

    2017-02-20

    In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.

  13. Novel mechanism of network protection against the new generation of cyber attacks

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander; Bukshpun, Leonid; Pradhan, Ranjit

    2012-06-01

    A new intelligent mechanism is presented to protect networks against the new generation of cyber attacks. This mechanism integrates TCP/UDP/IP protocol stack protection and attacker/intruder deception to eliminate existing TCP/UDP/IP protocol stack vulnerabilities. It allows to detect currently undetectable, highly distributed, low-frequency attacks such as distributed denial-of-service (DDoS) attacks, coordinated attacks, botnet, and stealth network reconnaissance. The mechanism also allows insulating attacker/intruder from the network and redirecting the attack to a simulated network acting as a decoy. As a result, network security personnel gain sufficient time to defend the network and collect the attack information. The presented approach can be incorporated into wireless or wired networks that require protection against known and the new generation of cyber attacks.

  14. Ethernet-Based Services for Next Generation Networks

    NASA Astrophysics Data System (ADS)

    Hernandez-Valencia, Enrique

    Over the last few years, Ethernet technology and services have emerged as an indispensable component of the broadband networking and telecommunications infrastructure, both for network operators and service providers. As an example, Worldwide Enterprise customer demand for Ethernet services by itself is expected to hit the 30B US mark by year 2012. Use of Ethernet technology in the feeder networks that support residential applications, such as "triple play" voice, data, and video services, is equally on the rise. As the synergies between packet-aware transport and service oriented equipment continue to be exploited in the path toward transport convergence. Ethernet technology is expected to play a critical part in the evolution toward converged Optical/Packet Transport networks. Here we discuss the main business motivations, services, and technologies driving the specifications of so-called carrier Ethernet and highlight challenges associated with delivering the expectations for low implementation complexity, easy of use, provisioning and management of networks and network elements embracing this technology.

  15. Well test analysis in fractured media

    SciTech Connect

    Karasaki, K.

    1986-04-01

    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  16. Influence of screw insertion order on compression generated by bone plates in a fracture model.

    PubMed

    Jermyn, K; Roe, S C

    2011-01-01

    Present recommendations regarding order of screw insertion for compression plate osteosynthesis in veterinary training are variable. We hypothesized that placement of a neutrally positioned screw would reduce the magnitude of compression that could be generated by a subsequently placed compression screw. Canine tibial diaphyseal segments were fixed to a plate attached to a bone surrogate and load cell, and the compression generated by screw tightening was measured. Three different screw insertion order patterns were evaluated using both dynamic compression plate (DCP) and limited contact dynamic compression plate (LC-DCP) implants. In group CN, the first screw was placed in compression mode and the second in neutral mode; in group NC, the first screw was placed in neutral mode and the second in compression mode; in group LNC, the first screw was placed partially tightened in neutral mode and the second in compression mode followed by complete tightening of the neutral screw. Screw insertion order significantly influenced the amount of compression generated with both groups CN and LNC demonstrating significantly greater compression generation when compared with group NC (p <0.0001). Compression generated by group CN constructs was also significantly greater than group LNC (p = 0.0013). Evaluation of group CN data to assess the influence of plate and drill guide combinations on compressive force generated did not demonstrate a statistically significant difference. To maximize compression using a load screw in a bone plate, following securement of the opposite bone fragment to the plate, it should be placed before a neutral screw is placed.

  17. Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks

    NASA Technical Reports Server (NTRS)

    Thomas, W. J.

    1967-01-01

    Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.

  18. Analysis of Non-Planar Multi-Fracture Propagation from Layered-Formation Inclined-Well Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Jin, Yan; Chen, Mian; Hou, Bing

    2016-05-01

    Current research shows that layered formation barriers can have a significant impact on the extension of fracture height; however, there are few studies on inclined-well near-wellbore fracture propagation shapes and penetrating patterns near the interface. We performed a true triaxial hydraulic fracturing experiment to study the layered formation of inclined-well near-wellbore and interface fracture propagation geometries influenced by formation conditions and perforation schemes. The results revealed that horizontal stress differences, perforation phase angles, borehole azimuths, and interlayer minimum horizontal in situ stress differences were the main factors that controlled the fracture propagation geometry. Under the conditions of large differences in horizontal stress, large perforation phase angles, and large angles between the borehole azimuth and the maximum horizontal in situ stress azimuth, the near-wellbore cracks presented a single main fracture with a large number of secondary fractures; in addition, the main and secondary fractures changed orientations. With moderate horizontal stress differences and less severe angle parameters, the fracture propagation geometry was simplified, forming a single main fracture. When all three parameters were small, the cracks displayed multiple main or network fractures. The surface morphology of spatial distribution was complex and the seam surface was rough. Under a crossing condition, the pattern of the penetrating fractures was highly affected by the near-wellbore fractures when the interlayer minimum horizontal in situ stress differences were small. Under large interlayer minimum horizontal in situ stress differences, the interface fractures began to deflect and generate new branches. The fluctuation and increase in fracturing pressure was caused by the dispersion of the fracturing fluid flow from multi-fractures and the large number of seam surfaces.

  19. Benchmarking transport solvers for fracture flow problems

    NASA Astrophysics Data System (ADS)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2015-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in geothermal systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. For example, geothermal energy is primarily transported by the flow of the heated water or steam rather than by the thermal diffusion. The geometry of the fracture network and the distribution of the mean apertures of individual fractures are the key parameters with regard to the fracture network transmissivity. Transport in fractures can occur through the combination of advection and diffusion processes like in the case of dissolved chemical components. The local distribution of the fracture aperture may play an important role for both flow and transport processes. In this work, we benchmark various numerical solvers for flow and transport processes in a single fracture in 2D and 3D. Fracture aperture distributions are generated by a number of synthetic methods. We examine a single-phase flow of an incompressible viscous Newtonian fluid in the low Reynolds number limit. Periodic boundary conditions are used and a pressure difference is imposed in the background. The velocity field is primarly found using the Stokes equations. We systematically compare the obtained velocity field to the results obtained by solving the Reynolds equation. This allows us to examine the impact of the aperture distribution on the permeability of the medium and the local velocity distribution for two different mathematical descriptions of the fracture flow. Furthermore, we analyse the impact of aperture distribution on the front characteristics such as the standard deviation and the fractal dimension for systems in 2D and 3D.

  20. Hybrid WDM/OCDMA for next generation access network

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi

    2007-11-01

    Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.

  1. Efficient Signal Processing in Random Networks that Generate Variability: A Comparison of Internally Generated and Externally Induced Variability

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sakyasingha; Nishikawa, Isao; Aihara, Kazuyuki; Toyoizumi, Taro

    Source of cortical variability and its influence on signal processing remain an open question. We address the latter, by studying two types of balanced randomly connected networks of quadratic I-F neurons, with irregular spontaneous activity: (a) a deterministic network with strong connections generating noise by chaotic dynamics (b) a stochastic network with weak connections receiving noisy input. They are analytically tractable in the limit of large network-size and channel time-constant. Despite different sources of noise, spontaneous activity of these networks are identical unless majority of neurons are simultaneously recorded. However, the two networks show remarkably different sensitivity to external stimuli. In the former, input reverberates internally and can be read out over long time, but in the latter, inputs rapidly decay. This is further enhanced with activity-dependent plasticity at input synapses producing marked difference in decoding inputs from neural activity. We show, this leads to distinct performance of the two networks to integrate temporally separate signals from multiple sources, with the deterministic chaotic network activity serving as reservoir for Monte Carlo sampling to perform near optimal Bayesian integration, unlike its stochastic counterpart.

  2. Automatic theory generation from analyst text files using coherence networks

    NASA Astrophysics Data System (ADS)

    Shaffer, Steven C.

    2014-05-01

    This paper describes a three-phase process of extracting knowledge from analyst textual reports. Phase 1 involves performing natural language processing on the source text to extract subject-predicate-object triples. In phase 2, these triples are then fed into a coherence network analysis process, using a genetic algorithm optimization. Finally, the highest-value sub networks are processed into a semantic network graph for display. Initial work on a well- known data set (a Wikipedia article on Abraham Lincoln) has shown excellent results without any specific tuning. Next, we ran the process on the SYNthetic Counter-INsurgency (SYNCOIN) data set, developed at Penn State, yielding interesting and potentially useful results.

  3. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  4. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  5. Gene network and pathway generation and analysis: Editorial

    SciTech Connect

    Zhao, Zhongming; Sanfilippo, Antonio P.; Huang, Kun

    2011-02-18

    The past decade has witnessed an exponential growth of biological data including genomic sequences, gene annotations, expression and regulation, and protein-protein interactions. A key aim in the post-genome era is to systematically catalogue gene networks and pathways in a dynamic living cell and apply them to study diseases and phenotypes. To promote the research in systems biology and its application to disease studies, we organized a workshop focusing on the reconstruction and analysis of gene networks and pathways in any organisms from high-throughput data collected through techniques such as microarray analysis and RNA-Seq.

  6. Emergent Network Topology within the Respiratory Rhythm-Generating Kernel Evolved In Silico

    PubMed Central

    Lal, Amit; Oku, Yoshitaka; Someya, Hiroshi; Miwakeichi, Fumikazu; Tamura, Yoshiyasu

    2016-01-01

    We hypothesize that the network topology within the pre-Bötzinger Complex (preBötC), the mammalian respiratory rhythm generating kernel, is not random, but is optimized in the course of ontogeny/phylogeny so that the network produces respiratory rhythm efficiently and robustly. In the present study, we attempted to identify topology of synaptic connections among constituent neurons of the preBötC based on this hypothesis. To do this, we first developed an effective evolutionary algorithm for optimizing network topology of a neuronal network to exhibit a ‘desired characteristic’. Using this evolutionary algorithm, we iteratively evolved an in silico preBötC ‘model’ network with initial random connectivity to a network exhibiting optimized synchronous population bursts. The evolved ‘idealized’ network was then analyzed to gain insight into: (1) optimal network connectivity among different kinds of neurons—excitatory as well as inhibitory pacemakers, non-pacemakers and tonic neurons—within the preBötC, and (2) possible functional roles of inhibitory neurons within the preBötC in rhythm generation. Obtained results indicate that (1) synaptic distribution within excitatory subnetwork of the evolved model network illustrates skewed/heavy-tailed degree distribution, and (2) inhibitory subnetwork influences excitatory subnetwork primarily through non-tonic pacemaker inhibitory neurons. Further, since small-world (SW) network is generally associated with network synchronization phenomena and is suggested as a possible network structure within the preBötC, we compared the performance of SW network with that of the evolved model network. Results show that evolved network is better than SW network at exhibiting synchronous bursts. PMID:27152967

  7. Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks.

    PubMed

    Scharnhorst, Wolfram; Hilty, Lorenz M; Jolliet, Olivier

    2006-07-01

    The environmental performance of presently operated GSM and UMTS networks was analysed concentrating on the environmental effects of the End-of-Life (EOL) phase using the Life Cycle Assessment (LCA) method. The study was performed based on comprehensive life cycle inventory and life cycle modelling. The environmental effects were quantified using the IMPACT2002+ method. Based on technological forecasts, the environmental effects of forthcoming mobile telephone networks were approximated. The results indicate that a parallel operation of GSM and UMTS networks is environmentally detrimental and the transition phase should be kept as short as possible. The use phase (i.e. the operation) of the radio network components account for a large fraction of the total environmental impact. In particular, there is a need to lower the energy consumption of those network components. Seen in relation to each other, UMTS networks provide an environmentally more efficient mobile communication technology than GSM networks. In assessing the EOL phase, recycling the electronic scrap of mobile phone networks was shown to have clear environmental benefits. Under the present conditions, material recycling could help lower the environmental impact of the production phase by up to 50%.

  8. Perspectives on next-generation technology for environmental sensor networks

    Treesearch

    Barbara J. Benson; Barbara J. Bond; Michael P. Hamilton; Russell K. Monson; Richard. Han

    2009-01-01

    Sensor networks promise to transform and expand environmental science. However, many technological difficulties must be overcome to achieve this potential. Partnerships of ecologists with computer scientists and engineers are critical in meeting these challenges. Technological issues include promoting innovation in new sensor design, incorporating power optimization...

  9. Development of a methodology for the assessment of shallow-flaw fracture in nuclear reactor pressure vessels: Generation of biaxial shallow-flaw fracture toughness data

    SciTech Connect

    McAfee, W.J.; Bass, B.R.; Bryson, J.W.

    1998-07-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow-surface flaws. Shallow-flaw fracture toughness of RPV material has been shown to be higher than that for deep flaws, because of the relaxation of crack-tip constraint. This report describes the preliminary test results for a series of cruciform specimens with a uniform depth surface flaw. These specimens are all of the same size with the same depth flaw. Temperature and biaxial load ratio are the independent variables. These tests demonstrated that biaxial loading could have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. Through that temperature range, the effect of full biaxial (1:1) loading on uniaxial, shallow-flaw toughness varied from no effect near the lower shelf to a reduction of approximately 58% at higher temperatures.

  10. Quality assessment of reservoirs by means of outcrop data and "discrete fracture network" models: The case history of Rosario de La Frontera (NW Argentina) geothermal system

    NASA Astrophysics Data System (ADS)

    Maffucci, R.; Bigi, S.; Corrado, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.

    2015-04-01

    We report the results of a systematic study carried out on the fracture systems exposed in the Sierra de La Candelaria anticline, in the central Andean retrowedge of northwestern Argentina. The aim was to elaborate a kinematic model of the anticline and to assess the dimensional and spatial properties of the fracture network characterizing the Cretaceous sandstone reservoir of the geothermal system of Rosario de La Frontera. Special regard was devoted to explore how tectonics may affect fluid circulation at depth and control fluids' natural upwelling at surface. With this aim we performed a Discrete Fracture Network model in order to evaluate the potential of the reservoir of the studied geothermal system. The results show that the Sierra de La Candelaria regional anticline developed according to a kinematic model of transpressional inversion compatible with the latest Andean regional WNW-ESE shortening, acting on a pre-orogenic N-S normal fault. A push-up geometry developed during positive inversion controlling the development of two minor anticlines: Termas and Balboa, separated by further NNW-SSE oblique-slip fault in the northern sector of the regional anticline. Brittle deformation recorded at the outcrop scale is robustly consistent with the extensional and transpressional events recognized at regional scale. In terms of fluid circulation, the NNW-SSE and NE-SW fault planes, associated to the late stage of the positive inversion, are considered the main structures controlling the migration paths of hot fluids from the reservoir to the surface. The results of the fracture modeling performed show that fractures related to the same deformation stage, are characterized by the highest values of secondary permeability. Moreover, the DFN models performed in the reservoir volume indicates that fracture network enhances its permeability: its secondary permeability is of about 49 mD and its fractured portion represents the 0.03% of the total volume.

  11. Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks.

    PubMed

    Simsir, Burcu; Yan, Jun; Im, Jeongdae; Graves, Duane; Löffler, Frank E

    2017-03-22

    Contaminant discharge from fractured bedrock formations remains a remediation challenge. We applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C1-C3 chlorinated solvents to less chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of known dechlorinator biomarker genes within the creek sediment, and demonstrated that multiple dechlorinator populations degrading chlorinated C1-C3 alkanes and alkenes coinhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 meters horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 ± 0.4 × 105 and 5.4 ± 0.9 × 106 16S rRNA gene copies per gram of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.

  12. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization

    NASA Astrophysics Data System (ADS)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik

    2015-05-01

    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  13. A Bayesian network meta-analysis of three different surgical procedures for the treatment of humeral shaft fractures

    PubMed Central

    Qiu, Hao; Wei, Zhihui; Liu, Yuting; Dong, Jing; Zhou, Xin; Yin, Liangjun; Zhang, Minhua; Lu, Minpeng

    2016-01-01

    Abstract Background: The optimal surgical procedure for humeral shaft fractures remains a matter of debate. We aimed to establish the optimum procedure by performing a Bayesian network meta-analysis. Methods: PubMed, EMBASE, the Cochrane Library, and Medline were searched for both randomized controlled trials and prospective studies of surgical treatment for humeral shaft fractures. The quality of the included studies was assessed according to the Cochrane Collaboration's “Risk of bias”. Results: Seventeen RCTs or prospective studies were included in the meta-analysis. The pooled results showed that the occurrence rate of radial nerve injury was lowest for minimally invasive plate osteosynthesis (MIPO; SUCRA probability, 95.1%), followed by open reduction and plate osteosynthesis (ORPO; SUCRA probability, 29.5%), and was highest for intramedullary nailing (IMN; SUCRA probability, 25.4%). The aggregated results of pairwise meta-analysis showed no significant difference in radial nerve injury rate when comparing ORPO versus IMN (OR, 1.92; 95% CI, 0.96 to 3.86), ORPO versus MIPO (OR, 3.38; 95% CI, 0.80 to 14.31), or IMN versus MIPO (OR, 3.19; 95% CI, 0.48 to 21.28). Regarding the nonunion, SUCRA probabilities were 90.5%, 40.2%, and 19.3% for MIPO, ORPO, and IMN, respectively. The aggregated results of a pairwise meta-analysis also showed no significant difference for ORPO versus IMN (OR, 0.83; 95% CI, 0.41 to 1.69), ORPO versus MIPO (OR, 2.42; 95% CI, 0.45 to 12.95), or IMN versus MIPO (OR, 2.49; 95% CI, 0.35 to 17.64). Conclusion: The current evidence indicates that MIPO is the optimum choice in the treatment of humeral shaft fractures and that ORPO is superior to IMN. PMID:28002327

  14. Evaluation of shoulder function in clavicular fracture patients after six surgical procedures based on a network meta-analysis.

    PubMed

    Huang, Shou-Guo; Chen, Bo; Lv, Dong; Zhang, Yong; Nie, Feng-Feng; Li, Wei; Lv, Yao; Zhao, Huan-Li; Liu, Hong-Mei

    2017-01-01

    Purpose Using a network meta-analysis approach, our study aims to develop a ranking of the six surgical procedures, that is, Plate, titanium elastic nail (TEN), tension band wire (TBW), hook plate (HP), reconstruction plate (RP) and Knowles pin, by comparing the post-surgery constant shoulder scores in patients with clavicular fracture (CF). Methods A comprehensive search of electronic scientific literature databases was performed to retrieve publications investigating surgical procedures in CF, with the stringent eligible criteria, and clinical experimental studies of high quality and relevance to our area of interest were selected for network meta-analysis. Statistical analyses were conducted using Stata 12.0. Results A total of 19 studies met our inclusion criteria were eventually enrolled into our network meta-analysis, representing 1164 patients who had undergone surgical procedures for CF (TEN group = 240; Plate group = 164; TBW group  =  180; RP group  =  168; HP group  =  245; Knowles pin group  =  167). The network meta-analysis results revealed that RP significantly improved constant shoulder score in patients with CF when compared with TEN, and the post-operative constant shoulder scores in patients with CF after Plate, TBW, HP, Knowles pin and TEN were similar with no statistically significant differences. The treatment relative ranking of predictive probabilities of constant shoulder scores in patients with CF after surgery revealed the surface under the cumulative ranking curves (SUCRA) value is the highest in RP. Conclusion The current network meta-analysis suggests that RP may be the optimum surgical treatment among six inventions for patients with CF, and it can improve the shoulder score of patients with CF. Implications for Rehabilitation RP improves shoulder joint function after surgical procedure. RP achieves stability with minimal complications after surgery. RP may be the optimum surgical treatment for

  15. A Dialectic Analysis of Generativity: Issues of Network-Supported Design in Mathematics and Science

    ERIC Educational Resources Information Center

    Stroup, Walter M.; Ares, Nancy M.; Hurford, Andrew C.

    2005-01-01

    New theoretical, methodological, and design frameworks for engaging classroom learning are supported by the highly interactive and group-centered capabilities of a new generation of classroom-based networks. In our analyses, networked teaching and learning are organized relative to a dialectic of (a) seeing mathematical and scientific structures…

  16. Privacy and Generation Y: Applying Library Values to Social Networking Sites

    ERIC Educational Resources Information Center

    Fernandez, Peter

    2010-01-01

    Librarians face many challenges when dealing with issues of privacy within the mediated space of social networking sites. Conceptually, social networking sites differ from libraries on privacy as a value. Research about Generation Y students, the primary clientele of undergraduate libraries, can inform librarians' relationship to this important…

  17. An Expanded Study of Net Generation Perceptions on Privacy and Security on Social Networking Sites (SNS)

    ERIC Educational Resources Information Center

    Lawler, James P.; Molluzzo, John C.; Doshi, Vijal

    2012-01-01

    Social networking on the Internet continues to be a frequent avenue of communication, especially among Net Generation consumers, giving benefits both personal and professional. The benefits may be eventually hindered by issues in information gathering and sharing on social networking sites. This study evaluates the perceptions of students taking a…

  18. Privacy and Generation Y: Applying Library Values to Social Networking Sites

    ERIC Educational Resources Information Center

    Fernandez, Peter

    2010-01-01

    Librarians face many challenges when dealing with issues of privacy within the mediated space of social networking sites. Conceptually, social networking sites differ from libraries on privacy as a value. Research about Generation Y students, the primary clientele of undergraduate libraries, can inform librarians' relationship to this important…

  19. Simulation studies of multiple large wind turbine generators on a utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    The potential electrical problems that may be inherent in the inertia of clusters of wind turbine generators and an electric utility network were investigated. Preliminary and limited results of an analog simulation of two MOD-2 wind generators tied to an infinite bus indicate little interaction between the generators and between the generators and the bus. The system demonstrated transient stability for the conditions considered.

  20. A comparison of expert systems and neural networks applications in power generation

    SciTech Connect

    Rodriguez, G.; Mejia-Lavalle, M.

    1994-12-31

    Two application systems, Tube Failure Diagnosis (TFD) and Electric Generator Failure Diagnosis (EGFD), are discussed in the paper. The TFD system was built using two different approaches: one with rule-chaining search algorithms and the other with a new neural network paradigm. The EGFD system combines the two artificial intelligence approaches: rule-chaining and neural networks. An analysis of the advantages and disadvantages of the two technologies, as applied to power generation applications, is included.

  1. An Exploratory Application of Neural Networks to the Sortie Generation Forecasting Problem

    DTIC Science & Technology

    1991-09-01

    AD-A246 626 3MAR 02 19 AN EXPLORATORY APPLICATION OF NEURAL NETWORKS To THE SORTIE GENERATION FORECASTING PROBLEM THESIS James M. Dagg, GS-12 AFIT...2 1992M D AN EXPLORATORY APPLICATION OF NEURAL NETWORKS TO THE SORTIE GENERATION FORECASTING PROBLEM THESIS James M. Dagg, GS-12 AFIT/GLM/LSM/9 1S-11...Approved for public release; distribution unlimited the views expressed in this thesis are those of the authors and do not ref lect the of ficial

  2. Fracture channel waves

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  3. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  4. The fracture network, a proxy for mesoscale deformation: Constraints on layer parallel shortening history from the Malargüe fold and thrust belt, Argentina

    NASA Astrophysics Data System (ADS)

    Branellec, M.; Callot, J. P.; Nivière, B.; Ringenbach, J. C.

    2015-04-01

    An analysis was performed of the fracture networks in the N-S trending thick-skinned Malargüe fold and thrust belt (MFTB). A total of 2000 planar structures including joints and veins were measured in different structural domains ranging from surficial thin-skinned systems detached in the cover to large-scale structures such as basement-cored folds. The investigated stratigraphic section ranges from the Middle Jurassic (Cuyo Group) to the Paleocene (Malargüe Group), including sandstones, siltstones, shales, and limestones. Four main fracture sets are identified trending, E-W, NW-SE, NE-SW, and N-S. The abutting relationships provide a reliable chronology between the four fracture sets which are ubiquitously found in the MFTB throughout the various structural domains. Due to this observation, we assume the fracture signal to be regional and developed in response to both large-scale processes and folding. In particular, based on a fold test and the characteristics of data dispersion, the fracture sets I, II, and III exhibit a prefolding origin, while set IV shows a synfolding origin. A regional interpretation of the various fractures is proposed, involving several stages of fracture formation from compaction to folding, including prefolding layer parallel shortening. The fracture signal yields useful insights about the structural history of the MFTB and the spatiotemporal evolution of the foreland tectonic regime since Late Cretaceous times. We then place the various identified fracture sets into the known pattern of geodynamic evolution since the Late Cretaceous.

  5. Techno Generation: Social Networking amongst Youth in South Africa

    NASA Astrophysics Data System (ADS)

    Basson, Antoinette; Makhasi, Yoliswa; van Vuuren, Daan

    Internet and cell phones can be considered as new media compared to traditional media types and have become a fundamental part of the lives of many young people across the globe. The exploratory research study investigated the diffusion and adoption of new media innovations among adolescents. It was found that new media have diffused at a high rate among South African adolescents who are not only the innovators in this area, but also changing their life styles to adapt to the new media. Social networking grew to prominence in South Africa especially among the youth. The protection of children from potential harmful exposure and other risks remain a concern and adequate measures need to be initiated and implemented for children to enjoy social networks and other forms of new media. The exploratory research study provided worthwhile and interesting insights into the role of the new media, in the lives of adolescents in South Africa.

  6. CATS: Context-Aware Triggering System for Next Generation Networks

    NASA Astrophysics Data System (ADS)

    Simoes, José; Goncalves, João; Mota, Telma; Magedanz, Thomas

    Considering context information, namely location, in order to create new services has become a commercial trend. The innovative approaches that context-aware mechanisms make possible are being targeted by service providers of diverse areas. On the other hand, Service Oriented Architectures play a central role in allowing component reuse and low cost service creation. Together with IP Multimedia Subsystem enable the convergence of telecommunications and web services, allowing the network transport technologies to be abstracted from the services above. By integrating these three technologies, a number of synergies can be explored. Existing services can be easily enriched with context information, made available on a variety of networks and new services can be composed using previously existing building blocks. This paper explains how this integration can be achieved, and demonstrates the potentialities of this architectural paradigm with a prototype service.

  7. Next-Generation Undersea Warfare and Undersea Distributed Networked Systems

    DTIC Science & Technology

    2007-01-31

    ACRONYMS AlP Air-independent propulsion AOU Area of uncertainty ASCM Antiship cruise missile ASDS Advanced Swimmer Delivery System ASUW Antisurface warfare... maritime commons who may or may not have weapons of mass destruction .4, The 2006 Quadrennial Defense Review6 lays out the force planning construct for...Joint maritime forces, including the Coast Guard, will conduct highly distributed operations with a networked fleet that is more capable of projecting

  8. Gene regulation networks generate diverse pigmentation patterns in plants.

    PubMed

    Albert, Nick; Davies, Kevin; Schwinn, Kathy

    2014-06-13

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.

  9. Gene regulation networks generate diverse pigmentation patterns in plants

    PubMed Central

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants. PMID:25763693

  10. Remote Control of Respiratory Neural Network by Spinal Locomotor Generators

    PubMed Central

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Thoby-Brisson, Muriel; Morin, Didier

    2014-01-01

    During exercise and locomotion, breathing rate rapidly increases to meet the suddenly enhanced oxygen demand. The extent to which direct central interactions between the spinal networks controlling locomotion and the brainstem networks controlling breathing are involved in this rhythm modulation remains unknown. Here, we show that in isolated neonatal rat brainstem-spinal cord preparations, the increase in respiratory rate observed during fictive locomotion is associated with an increase in the excitability of pre-inspiratory neurons of the parafacial respiratory group (pFRG/Pre-I). In addition, this locomotion-induced respiratory rhythm modulation is prevented both by bilateral lesion of the pFRG region and by blockade of neurokinin 1 receptors in the brainstem. Thus, our results assign pFRG/Pre-I neurons a new role as elements of a previously undescribed pathway involved in the functional interaction between respiratory and locomotor networks, an interaction that also involves a substance P-dependent modulating mechanism requiring the activation of neurokinin 1 receptors. This neurogenic mechanism may take an active part in the increased respiratory rhythmicity produced at the onset and during episodes of locomotion in mammals. PMID:24586951

  11. Generation of Spatially Aligned Collagen Fiber Networks through Microtransfer Molding

    PubMed Central

    Naik, Nisarga; Caves, Jeffrey

    2013-01-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. We report an approach for fabricating spatially aligned, fiber-reinforced composites (FRC) with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2 – 50 μm, thickness: 300 nm – 3 μm) exhibit a Young’s modulus of 126 ± 61 MPa and an ultimate tensile strength (UTS) of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young’s modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1–10% v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young’s modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means has been established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  12. Gene regulation networks generate diverse pigmentation patterns in plants.

    PubMed

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.

  13. The default network and self-generated thought: component processes, dynamic control, and clinical relevance

    PubMed Central

    Andrews-Hanna, Jessica R.; Smallwood, Jonathan; Spreng, R. Nathan

    2014-01-01

    Though only a decade has elapsed since the default network was first emphasized as being a large-scale brain system, recent years have brought great insight into the network’s adaptive functions. A growing theme highlights the default network as playing a key role in internally-directed—or self-generated—thought. Here, we synthesize recent findings from cognitive science, neuroscience, and clinical psychology to focus attention on two emerging topics as current and future directions surrounding the default network. First, we present evidence that self-generated thought is a multi-faceted construct whose component processes are supported by different subsystems within the network. Second, we highlight the dynamic nature of the default network, emphasizing its interaction with executive control systems when regulating aspects of internal thought. We conclude by discussing clinical implications of disruptions to the integrity of the network, and consider disorders when thought content becomes polarized or network interactions become disrupted or imbalanced. PMID:24502540

  14. User Generated Content Consumption and Social Networking in Knowledge-Sharing OSNs

    NASA Astrophysics Data System (ADS)

    Lussier, Jake T.; Raeder, Troy; Chawla, Nitesh V.

    Knowledge-sharing online social networks are becoming increasingly pervasive and popular. While the user-to-user interactions in these networks have received substantial attention, the consumption of user generated content has not been studied extensively. In this work, we use data gathered from digg.com to present novel findings and draw important sociological conclusions regarding the intimate relationship between consumption and social networking. We first demonstrate that individuals' consumption habits influence their friend networks, consistent with the concept of homophily. We then show that one's social network can also influence the consumption of a submission through the activation of an extended friend network. Finally, we investigate the level of reciprocity, or balance, in the network and uncover relationships that are significantly less balanced than expected.

  15. Radiological tele-immersion for next generation networks.

    PubMed

    Ai, Z; Dech, F; Rasmussen, M; Silverstein, J C

    2000-01-01

    Since the acquisition of high-resolution three-dimensional patient images has become widespread, medical volumetric datasets (CT or MR) larger than 100 MB and encompassing more than 250 slices are common. It is important to make this patient-specific data quickly available and usable to many specialists at different geographical sites. Web-based systems have been developed to provide volume or surface rendering of medical data over networks with low fidelity, but these cannot adequately handle stereoscopic visualization or huge datasets. State-of-the-art virtual reality techniques and high speed networks have made it possible to create an environment for clinicians geographically distributed to immersively share these massive datasets in real-time. An object-oriented method for instantaneously importing medical volumetric data into Tele-Immersive environments has been developed at the Virtual Reality in Medicine Laboratory (VRMedLab) at the University of Illinois at Chicago (UIC). This networked-VR setup is based on LIMBO, an application framework or template that provides the basic capabilities of Tele-Immersion. We have developed a modular general purpose Tele-Immersion program that automatically combines 3D medical data with the methods for handling the data. For this purpose a DICOM loader for IRIS Performer has been developed. The loader was designed for SGI machines as a shared object, which is executed at LIMBO's runtime. The loader loads not only the selected DICOM dataset, but also methods for rendering, handling, and interacting with the data, bringing networked, real-time, stereoscopic interaction with radiological data to reality. Collaborative, interactive methods currently implemented in the loader include cutting planes and windowing. The Tele-Immersive environment has been tested on the UIC campus over an ATM network. We tested the environment with 3 nodes; one ImmersaDesk at the VRMedLab, one CAVE at the Electronic Visualization Laboratory (EVL) on

  16. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    -deterministic, outcrop constrained discrete fracture network modeling code to derive volumetric fault intensity measures (fault area per unit volume / fault volume per unit volume). Producing per-vertex measures of volumetric intensity; our method captures the spatial variability in 3D fault density across a surveyed outcrop, enabling first order controls to be probed. We demonstrate our approach on pervasively faulted exposures of a Permian aged reservoir analogue from the Vale of Eden Basin, UK.

  17. Generating prior probabilities for classifiers of brain tumours using belief networks

    PubMed Central

    Reynolds, Greg M; Peet, Andrew C; Arvanitis, Theodoros N

    2007-01-01

    Background Numerous methods for classifying brain tumours based on magnetic resonance spectra and imaging have been presented in the last 15 years. Generally, these methods use supervised machine learning to develop a classifier from a database of cases for which the diagnosis is already known. However, little has been published on developing classifiers based on mixed modalities, e.g. combining imaging information with spectroscopy. In this work a method of generating probabilities of tumour class from anatomical location is presented. Methods The method of "belief networks" is introduced as a means of generating probabilities that a tumour is any given type. The belief networks are constructed using a database of paediatric tumour cases consisting of data collected over five decades; the problems associated with using this data are discussed. To verify the usefulness of the networks, an application of the method is presented in which prior probabilities were generated and combined with a classification of tumours based solely on MRS data. Results Belief networks were constructed from a database of over 1300 cases. These can be used to generate a probability that a tumour is any given type. Networks are presented for astrocytoma grades I and II, astrocytoma grades III and IV, ependymoma, pineoblastoma, primitive neuroectodermal tumour (PNET), germinoma, medulloblastoma, craniopharyngioma and a group representing rare tumours, "other". Using the network to generate prior probabilities for classification improves the accuracy when compared with generating prior probabilities based on class prevalence. Conclusion Bayesian belief networks are a simple way of using discrete clinical information to generate probabilities usable in classification. The belief network method can be robust to incomplete datasets. Inclusion of a priori knowledge is an effective way of improving classification of brain tumours by non-invasive methods. PMID:17877822

  18. QoS for Real Time Applications over Next Generation Data Networks

    NASA Technical Reports Server (NTRS)

    Ivancic, William; Atiquzzaman, Mohammed; Bai, Haowei; Su, Hongjun; Chitri, Jyotsna; Ahamed, Faruque

    2001-01-01

    Viewgraphs on Qualtity of Service (QOS) for real time applications over next generation data networks are presented. The progress to date include: Task 1: QoS in Integrated Services over DiffServ networks (UD); Task 2: Interconnecting ATN with the next generation Internet (UD); Task 3: QoS in DiffServ over ATM (UD); Task 4: Improving Explicit Congestion Notification with the Mark-Front Strategy (OSU); Task 5: Multiplexing VBR over VBR (OSU); and Task 6: Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services (OSU).

  19. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  20. Network Dynamics: Modeling And Generation Of Very Large Heterogeneous Social Networks

    DTIC Science & Technology

    2015-11-23

    distinct degrees that appear in a finite network was found to grow algebraically with network size and the underlying distribution is a universal...The average number of distinct degrees grows algebraically with network size, with an exponent that is the reciprocal of the degree distribution...example, the degree distribution has an algebraic tail, Nk ∼ N/kν for k 1, with ν > 2. In contrast, enhanced redirection leads to the non-extensive

  1. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  2. Next generation communications satellites: multiple access and