NASA Astrophysics Data System (ADS)
Yao, Yao
2012-05-01
Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.
NASA Astrophysics Data System (ADS)
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.
2016-05-01
Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.
NASA Technical Reports Server (NTRS)
Madaras, E. I.; Poe, C. C.; Heyman, J. S.
1987-01-01
A model for predicting the fracture strength of homogeneous materials is proposed. Impacted FWC samples were evaluated using ultrasonic testing and an X-ray dye penetration method. The ability of the model to measure fracture strength was also examined. The relation between attenuation and velocity measurements is studied. It is observed that the X-ray method is not useful for predicting fracture strength because the dye could not penetrate the matrix. It is noted that fracture strength predictions derived from the fracture mechanical model and the ultrasonic measurements correlate well with actual measured fracture strengths.
Hansen, Karen E; Blank, Robert D; Palermo, Lisa; Fink, Howard A; Orwoll, Eric S
2014-01-01
Summary In this study, the area under the curve was highest when using the lowest vertebral body T-score to diagnose osteoporosis. In men for whom hip imaging is not possible, the lowest vertebral body T-score improves ability to diagnose osteoporosis in men who are likely to have an incident fragility fracture. Purpose Spine T-scores have limited ability to predict fragility fracture. We hypothesized that using lowest vertebral body T-score to diagnose osteoporosis would better predict fracture. Methods Among men enrolled in the Osteoporotic Fractures in Men Study, we identified cases with incident clinical fracture (n=484) and controls without fracture (n=1,516). We analyzed the lumbar spine BMD in cases and controls (n=2,000) to record the L1-L4 (referent), the lowest vertebral body and ISCD-determined T-scores using a male normative database, and the L1-L4 T-score using a female normative database. We compared the ability of method to diagnose osteoporosis and therefore predict incident clinical fragility fracture, using area under the receiver operator curves (AUC) and the net reclassification index (NCI) as measures of diagnostic accuracy. ISCD-determined T-scores were determined in only 60% of participants (n=1205). Results Among 1,205 men, the AUC to predict incident clinical fracture was 0.546 for L1-L4 male, 0.542 for the L1-L4 female, 0.585 for lowest vertebral body and 0.559 for ISCD-determined T-score. The lowest vertebral body AUC was the only method significantly different from the referent method (p=0.002). Likewise, a diagnosis of osteoporosis based on the lowest vertebral body T-score demonstrated a significantly better NRI than the referent method (net NRI +0.077, p=0.005). By contrast, the net NRI for other methods of analysis did not differ from the referent method. Conclusion Our study suggests that in men, the lowest vertebral body T-score is an acceptable method by which to estimate fracture risk. PMID:24850381
NASA Astrophysics Data System (ADS)
Zhang, Kai; Ma, Xiaopeng; Li, Yanlai; Wu, Haiyang; Cui, Chenyu; Zhang, Xiaoming; Zhang, Hao; Yao, Jun
Hydraulic fracturing is an important measure for the development of tight reservoirs. In order to describe the distribution of hydraulic fractures, micro-seismic diagnostic was introduced into petroleum fields. Micro-seismic events may reveal important information about static characteristics of hydraulic fracturing. However, this method is limited to reflect the distribution area of the hydraulic fractures and fails to provide specific parameters. Therefore, micro-seismic technology is integrated with history matching to predict the hydraulic fracture parameters in this paper. Micro-seismic source location is used to describe the basic shape of hydraulic fractures. After that, secondary modeling is considered to calibrate the parameters information of hydraulic fractures by using DFM (discrete fracture model) and history matching method. In consideration of fractal feature of hydraulic fracture, fractal fracture network model is established to evaluate this method in numerical experiment. The results clearly show the effectiveness of the proposed approach to estimate the parameters of hydraulic fractures.
Progressive damage, fracture predictions and post mortem correlations for fiber composites
NASA Technical Reports Server (NTRS)
1985-01-01
Lewis Research Center is involved in the development of computational mechanics methods for predicting the structural behavior and response of composite structures. In conjunction with the analytical methods development, experimental programs including post failure examination are conducted to study various factors affecting composite fracture such as laminate thickness effects, ply configuration, and notch sensitivity. Results indicate that the analytical capabilities incorporated in the CODSTRAN computer code are effective in predicting the progressive damage and fracture of composite structures. In addition, the results being generated are establishing a data base which will aid in the characterization of composite fracture.
A decision-analytic approach to predict state regulation of hydraulic fracturing.
Linkov, Igor; Trump, Benjamin; Jin, David; Mazurczak, Marcin; Schreurs, Miranda
2014-01-01
The development of horizontal drilling and hydraulic fracturing methods has dramatically increased the potential for the extraction of previously unrecoverable natural gas. Nonetheless, the potential risks and hazards associated with such technologies are not without controversy and are compounded by frequently changing information and an uncertain landscape of international politics and laws. Where each nation has its own energy policies and laws, predicting how a state with natural gas reserves that require hydraulic fracturing will regulate the industry is of paramount importance for potential developers and extractors. We present a method for predicting hydraulic fracturing decisions using multiple-criteria decision analysis. The case study evaluates the decisions of five hypothetical countries with differing political, social, environmental, and economic priorities, choosing among four policy alternatives: open hydraulic fracturing, limited hydraulic fracturing, completely banned hydraulic fracturing, and a cap and trade program. The result is a model that identifies the preferred policy alternative for each archetypal country and demonstrates the sensitivity the decision to particular metrics. Armed with such information, observers can predict each country's likely decisions related to natural gas exploration as more data become available or political situations change. Decision analysis provides a method to manage uncertainty and address forecasting concerns where rich and objective data may be lacking. For the case of hydraulic fracturing, the various political pressures and extreme uncertainty regarding the technology's risks and benefits serve as a prime platform to demonstrate how decision analysis can be used to predict future behaviors.
Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos
Fraser, L.-A.; Langsetmo, L.; Berger, C.; Ioannidis, G.; Goltzman, D.; Adachi, J. D.; Papaioannou, A.; Josse, R.; Kovacs, C. S.; Olszynski, W. P.; Towheed, T.; Hanley, D. A.; Kaiser, S. M.; Prior, J.; Jamal, S.; Kreiger, N.; Brown, J. P.; Johansson, H.; Oden, A.; McCloskey, E.; Kanis, J. A.
2016-01-01
Summary A new Canadian WHO fracture risk assessment (FRAX®) tool to predict 10-year fracture probability was compared with observed 10-year fracture outcomes in a large Canadian population-based study (CaMos). The Canadian FRAX tool showed good calibration and discrimination for both hip and major osteoporotic fractures. Introduction The purpose of this study was to validate a new Canadian WHO fracture risk assessment (FRAX®) tool in a prospective, population-based cohort, the Canadian Multi-centre Osteoporosis Study (CaMos). Methods A FRAX tool calibrated to the Canadian population was developed by the WHO Collaborating Centre for Metabolic Bone Diseases using national hip fracture and mortality data. Ten-year FRAX probabilities with and without bone mineral density (BMD) were derived for CaMos women (N=4,778) and men (N=1,919) and compared with observed fracture outcomes to 10 years (Kaplan–Meier method). Cox proportional hazard models were used to investigate the contribution of individual FRAX variables. Results Mean overall 10-year FRAX probability with BMD for major osteoporotic fractures was not significantly different from the observed value in men [predicted 5.4% vs. observed 6.4% (95%CI 5.2–7.5%)] and only slightly lower in women [predicted 10.8% vs. observed 12.0% (95%CI 11.0–12.9%)]. FRAX was well calibrated for hip fracture assessment in women [predicted 2.7% vs. observed 2.7% (95%CI 2.2–3.2%)] but underestimated risk in men [predicted 1.3% vs. observed 2.4% (95%CI 1.7–3.1%)]. FRAX with BMD showed better fracture discrimination than FRAX without BMD or BMD alone. Age, body mass index, prior fragility fracture and femoral neck BMD were significant independent predictors of major osteoporotic fractures; sex, age, prior fragility fracture and femoral neck BMD were significant independent predictors of hip fractures. Conclusion The Canadian FRAX tool provides predictions consistent with observed fracture rates in Canadian women and men, thereby providing a valuable tool for Canadian clinicians assessing patients at risk of fracture. PMID:21161508
Johannesdottir, Fjola; Allaire, Brett; Bouxsein, Mary L
2018-05-30
This review critiques the ability of CT-based methods to predict incident hip and vertebral fractures. CT-based techniques with concurrent calibration all show strong associations with incident hip and vertebral fracture, predicting hip and vertebral fractures as well as, and sometimes better than, dual-energy X-ray absorptiometry areal biomass density (DXA aBMD). There is growing evidence for use of routine CT scans for bone health assessment. CT-based techniques provide a robust approach for osteoporosis diagnosis and fracture prediction. It remains to be seen if further technical advances will improve fracture prediction compared to DXA aBMD. Future work should include more standardization in CT analyses, establishment of treatment intervention thresholds, and more studies to determine whether routine CT scans can be efficiently used to expand the number of individuals who undergo evaluation for fracture risk.
Computational simulation of progressive fracture in fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.
Prior nonhip limb fracture predicts subsequent hip fracture in institutionalized elderly people.
Nakamura, K; Takahashi, S; Oyama, M; Oshiki, R; Kobayashi, R; Saito, T; Yoshizawa, Y; Tsuchiya, Y
2010-08-01
This 1-year cohort study of nursing home residents revealed that historical fractures of upper limbs or nonhip lower limbs were associated with hip fracture (hazard ratio = 2.14), independent of activities of daily living (ADL), mobility, dementia, weight, and type of nursing home. Prior nonhip fractures are useful for predicting of hip fracture in institutional settings. The aim of this study was to evaluate the utility of fracture history for the prediction of hip fracture in nursing home residents. This was a cohort study with a 1-year follow-up. Subjects were 8,905 residents of nursing homes in Niigata, Japan (mean age, 84.3 years). Fracture histories were obtained from nursing home medical records. ADL levels were assessed by caregivers. Hip fracture diagnosis was based on hospital medical records. Subjects had fracture histories of upper limbs (5.0%), hip (14.0%), and nonhip lower limbs (4.6%). Among historical single fractures, only prior nonhip lower limbs significantly predicted subsequent fracture (adjusted hazard ratio, 2.43; 95% confidence interval (CI), 1.30-4.57). The stepwise method selected the best model, in which a combined historical fracture at upper limbs or nonhip lower limbs (adjusted hazard ratio, 2.14; 95% CI, 1.30-3.52), dependence, ADL levels, mobility, dementia, weight, and type of nursing home independently predicted subsequent hip fracture. A fracture history at upper or nonhip lower limbs, in combination with other known risk factors, is useful for the prediction of future hip fracture in institutional settings.
Anderson, Donald D; Kilburg, Anthony T; Thomas, Thaddeus P; Marsh, J Lawrence
2016-01-01
Post-traumatic osteoarthritis (PTOA) is common after intra-articular fractures of the tibial plafond. An objective CT-based measure of fracture severity was previously found to reliably predict whether PTOA developed following surgical treatment of such fractures. However, the extended time required obtaining the fracture energy metric and its reliance upon an intact contralateral limb CT limited its clinical applicability. The objective of this study was to establish an expedited fracture severity metric that provided comparable PTOA predictive ability without the prior limitations. An expedited fracture severity metric was computed from the CT scans of 30 tibial plafond fractures using textural analysis to quantify disorder in CT images. The expedited method utilized an intact surrogate model to enable severity assessment without requiring a contralateral limb CT. Agreement between the expedited fracture severity metric and the Kellgren-Lawrence (KL) radiographic OA score at two-year follow-up was assessed using concordance. The ability of the metric to differentiate between patients that did or did not develop PTOA was assessed using the Wilcoxon Ranked Sum test. The expedited severity metric agreed well (75.2% concordance) with the KL scores. The initial fracture severity of cases that developed PTOA differed significantly (p = 0.004) from those that did not. Receiver operating characteristic analysis showed that the expedited severity metric could accurately predict PTOA outcome in 80% of the cases. The time required to obtain the expedited severity metric averaged 14.9 minutes/ case, and the metric was obtained without using an intact contralateral CT. The expedited CT-based methods for fracture severity assessment present a solution to issues limiting the utility of prior methods. In a relatively short amount of time, the expedited methodology provided a severity score capable of predicting PTOA risk, without needing to have the intact contralateral limb included in the CT scan. The described methods provide surgeons an objective, quantitative representation of the severity of a fracture. Obtained prior to the surgery, it provides a reasonable alternative to current subjective classification systems. The expedited severity metric offers surgeons an objective means for factoring severity of joint insult into treatment decision-making.
NASA Technical Reports Server (NTRS)
Ehret, R. M.
1974-01-01
The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.
Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction
NASA Astrophysics Data System (ADS)
Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.
2017-12-01
We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.
Development of a binder fracture test to determine fracture energy.
DOT National Transportation Integrated Search
2012-04-01
It has been found that binder testing methods in current specifications do not accurately predict cracking performance at intermediate temperatures. Fracture energy has been determined to be strongly correlated to fracture resistance of asphalt mixtu...
Pires, RES; Pereira, AA; Abreu-e-Silva, GM; Labronici, PJ; Figueiredo, LB; Godoy-Santos, AL; Kfuri, M
2014-01-01
Background: Foot and ankle injuries are frequent in emergency departments. Although only a few patients with foot and ankle sprain present fractures and the fracture patterns are almost always simple, lack of fracture diagnosis can lead to poor functional outcomes. Aim: The present study aims to evaluate the reliability of the Ottawa ankle rules and the orthopedic surgeon subjective perception to assess foot and ankle fractures after sprains. Subjects and Methods: A cross-sectional study was conducted from July 2012 to December 2012. Ethical approval was granted. Two hundred seventy-four adult patients admitted to the emergency department with foot and/or ankle sprain were evaluated by an orthopedic surgeon who completed a questionnaire prior to radiographic assessment. The Ottawa ankle rules and subjective perception of foot and/or ankle fractures were evaluated on the questionnaire. Results: Thirteen percent (36/274) patients presented fracture. Orthopedic surgeon subjective analysis showed 55.6% sensitivity, 90.1% specificity, 46.5% positive predictive value and 92.9% negative predictive value. The general orthopedic surgeon opinion accuracy was 85.4%. The Ottawa ankle rules presented 97.2% sensitivity, 7.8% specificity, 13.9% positive predictive value, 95% negative predictive value and 19.9% accuracy respectively. Weight-bearing inability was the Ottawa ankle rule item that presented the highest reliability, 69.4% sensitivity, 61.6% specificity, 63.1% accuracy, 21.9% positive predictive value and 93% negative predictive value respectively. Conclusion: The Ottawa ankle rules showed high reliability for deciding when to take radiographs in foot and/or ankle sprains. Weight-bearing inability was the most important isolated item to predict fracture presence. Orthopedic surgeon subjective analysis to predict fracture possibility showed a high specificity rate, representing a confident method to exclude unnecessary radiographic exams. PMID:24971221
Lisi, L; Avella, M
2014-01-01
Objective: To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. Methods: We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Results: Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. Conclusion: NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. Advances in knowledge: The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures. PMID:24678889
Dufour, A B; Roberts, B; Broe, K E; Kiel, D P; Bouxsein, M L; Hannan, M T
2012-02-01
We examined the relation between a biomechanical measure, factor-of-risk, and hip fracture risk in 1,100 men and women from the Framingham Study and found that it predicted hip fracture (men, ORs of 1.8; women, 1.2-1.4). Alternative methods of predicting hip fracture are needed since 50% of adults who fracture do not have osteoporosis by bone mineral density (BMD) measurements. One method, factor-of-risk (Φ), computes the ratio of force on the hip in a fall to femoral strength. We examined the relation between Φ and hip fracture in 1,100 subjects from the Framingham Study with measured hip BMD, along with weight, height, and age, collected in 1988-1989. We estimated both peak and attenuated force applied to the hip in a sideways fall from standing height, where attenuated force incorporated cushioning effects of trochanteric soft tissue. Femoral strength was estimated from femoral neck BMD, using cadaveric femoral strength data. Sex-specific, age-adjusted survival models were used to calculate hazard ratios (HR) and 95% confidence intervals for the relation between Φ (peak), Φ (attenuated), and their components with hip fracture. In 425 men and 675 women (mean age, 76 years), 136 hip fractures occurred over median follow-up of 11.3 years. Factor-of-risk, Φ, was associated with increased age-adjusted risk for hip fracture. One standard deviation increase in Φ (peak) and Φ (attenuated) was associated with HR of 1.88 and 1.78 in men and 1.23 and 1.41 in women, respectively. Examining components of Φ, in women, we found fall force and soft tissue thickness were predictive of hip fracture independent of femoral strength (was estimated from BMD). Thus, both Φ (peak) and Φ (attenuated) predict hip fracture in men and women. These findings suggest additional studies of Φ predicting hip fracture using direct measurements of trochanteric soft tissue.
NASA Astrophysics Data System (ADS)
Seo, Yongbeom; Macias, Francisco Javier; Jakobsen, Pål Drevland; Bruland, Amund
2018-05-01
The net penetration rate of hard rock tunnel boring machines (TBM) is influenced by rock mass degree of fracturing. This influence is taken into account in the NTNU prediction model by the rock mass fracturing factor ( k s). k s is evaluated by geological mapping, the measurement of the orientation of fractures and the spacing of fractures and fracture type. Geological mapping is a subjective procedure. Mapping results can therefore contain considerable uncertainty. The mapping data of a tunnel mapped by three researchers were compared, and the influence of the variation in geological mapping was estimated to assess the influence of subjectivity in geological mapping. This study compares predicted net penetration rates and actual net penetration rates for TBM tunneling (from field data) and suggests mapping methods that can reduce the error related to subjectivity. The main findings of this paper are as follows: (1) variation of mapping data between individuals; (2) effect of observed variation on uncertainty in predicted net penetration rates; (3) influence of mapping methods on the difference between predicted and actual net penetration rate.
NASA Astrophysics Data System (ADS)
Di Lorenzo, R.; Ingarao, G.; Fonti, V.
2007-05-01
The crucial task in the prevention of ductile fracture is the availability of a tool for the prediction of such defect occurrence. The technical literature presents a wide investigation on this topic and many contributions have been given by many authors following different approaches. The main class of approaches regards the development of fracture criteria: generally, such criteria are expressed by determining a critical value of a damage function which depends on stress and strain paths: ductile fracture is assumed to occur when such critical value is reached during the analysed process. There is a relevant drawback related to the utilization of ductile fracture criteria; in fact each criterion usually has good performances in the prediction of fracture for particular stress - strain paths, i.e. it works very well for certain processes but may provide no good results for other processes. On the other hand, the approaches based on damage mechanics formulation are very effective from a theoretical point of view but they are very complex and their proper calibration is quite difficult. In this paper, two different approaches are investigated to predict fracture occurrence in cold forming operations. The final aim of the proposed method is the achievement of a tool which has a general reliability i.e. it is able to predict fracture for different forming processes. The proposed approach represents a step forward within a research project focused on the utilization of innovative predictive tools for ductile fracture. The paper presents a comparison between an artificial neural network design procedure and an approach based on statistical tools; both the approaches were aimed to predict fracture occurrence/absence basing on a set of stress and strain paths data. The proposed approach is based on the utilization of experimental data available, for a given material, on fracture occurrence in different processes. More in detail, the approach consists in the analysis of experimental tests in which fracture occurs followed by the numerical simulations of such processes in order to track the stress-strain paths in the workpiece region where fracture is expected. Such data are utilized to build up a proper data set which was utilized both to train an artificial neural network and to perform a statistical analysis aimed to predict fracture occurrence. The developed statistical tool is properly designed and optimized and is able to recognize the fracture occurrence. The reliability and predictive capability of the statistical method were compared with the ones obtained from an artificial neural network developed to predict fracture occurrence. Moreover, the approach is validated also in forming processes characterized by a complex fracture mechanics.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo
2018-06-01
This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.
Klop, Corinne; de Vries, Frank; Bijlsma, Johannes W J; Leufkens, Hubert G M; Welsing, Paco M J
2016-01-01
Objectives FRAX incorporates rheumatoid arthritis (RA) as a dichotomous predictor for predicting the 10-year risk of hip and major osteoporotic fracture (MOF). However, fracture risk may deviate with disease severity, duration or treatment. Aims were to validate, and if needed to update, UK FRAX for patients with RA and to compare predictive performance with the general population (GP). Methods Cohort study within UK Clinical Practice Research Datalink (CPRD) (RA: n=11 582, GP: n=38 755), also linked to hospital admissions for hip fracture (CPRD-Hospital Episode Statistics, HES) (RA: n=7221, GP: n=24 227). Predictive performance of UK FRAX without bone mineral density was assessed by discrimination and calibration. Updating methods included recalibration and extension. Differences in predictive performance were assessed by the C-statistic and Net Reclassification Improvement (NRI) using the UK National Osteoporosis Guideline Group intervention thresholds. Results UK FRAX significantly overestimated fracture risk in patients with RA, both for MOF (mean predicted vs observed 10-year risk: 13.3% vs 8.4%) and hip fracture (CPRD: 5.5% vs 3.1%, CPRD-HES: 5.5% vs 4.1%). Calibration was good for hip fracture in the GP (CPRD-HES: 2.7% vs 2.4%). Discrimination was good for hip fracture (RA: 0.78, GP: 0.83) and moderate for MOF (RA: 0.69, GP: 0.71). Extension of the recalibrated UK FRAX using CPRD-HES with duration of RA disease, glucocorticoids (>7.5 mg/day) and secondary osteoporosis did not improve the NRI (0.01, 95% CI −0.04 to 0.05) or C-statistic (0.78). Conclusions UK FRAX overestimated fracture risk in RA, but performed well for hip fracture in the GP after linkage to hospitalisations. Extension of the recalibrated UK FRAX did not improve predictive performance. PMID:26984006
Application of Fracture Distribution Prediction Model in Xihu Depression of East China Sea
NASA Astrophysics Data System (ADS)
Yan, Weifeng; Duan, Feifei; Zhang, Le; Li, Ming
2018-02-01
There are different responses on each of logging data with the changes of formation characteristics and outliers caused by the existence of fractures. For this reason, the development of fractures in formation can be characterized by the fine analysis of logging curves. The well logs such as resistivity, sonic transit time, density, neutron porosity and gamma ray, which are classified as conventional well logs, are more sensitive to formation fractures. In view of traditional fracture prediction model, using the simple weighted average of different logging data to calculate the comprehensive fracture index, are more susceptible to subjective factors and exist a large deviation, a statistical method is introduced accordingly. Combining with responses of conventional logging data on the development of formation fracture, a prediction model based on membership function is established, and its essence is to analyse logging data with fuzzy mathematics theory. The fracture prediction results in a well formation in NX block of Xihu depression through two models are compared with that of imaging logging, which shows that the accuracy of fracture prediction model based on membership function is better than that of traditional model. Furthermore, the prediction results are highly consistent with imaging logs and can reflect the development of cracks much better. It can provide a reference for engineering practice.
Specimen-specific modeling of hip fracture pattern and repair.
Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J
2014-01-22
Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.
External Validation of the Garvan Nomograms for Predicting Absolute Fracture Risk: The Tromsø Study
Ahmed, Luai A.; Nguyen, Nguyen D.; Bjørnerem, Åshild; Joakimsen, Ragnar M.; Jørgensen, Lone; Størmer, Jan; Bliuc, Dana; Center, Jacqueline R.; Eisman, John A.; Nguyen, Tuan V.; Emaus, Nina
2014-01-01
Background Absolute risk estimation is a preferred approach for assessing fracture risk and treatment decision making. This study aimed to evaluate and validate the predictive performance of the Garvan Fracture Risk Calculator in a Norwegian cohort. Methods The analysis included 1637 women and 1355 aged 60+ years from the Tromsø study. All incident fragility fractures between 2001 and 2009 were registered. The predicted probabilities of non-vertebral osteoporotic and hip fractures were determined using models with and without BMD. The discrimination and calibration of the models were assessed. Reclassification analysis was used to compare the models performance. Results The incidence of osteoporotic and hip fracture was 31.5 and 8.6 per 1000 population in women, respectively; in men the corresponding incidence was 12.2 and 5.1. The predicted 5-year and 10-year probability of fractures was consistently higher in the fracture group than the non-fracture group for all models. The 10-year predicted probabilities of hip fracture in those with fracture was 2.8 (women) to 3.1 times (men) higher than those without fracture. There was a close agreement between predicted and observed risk in both sexes and up to the fifth quintile. Among those in the highest quintile of risk, the models over-estimated the risk of fracture. Models with BMD performed better than models with body weight in correct classification of risk in individuals with and without fracture. The overall net decrease in reclassification of the model with weight compared to the model with BMD was 10.6% (p = 0.008) in women and 17.2% (p = 0.001) in men for osteoporotic fractures, and 13.3% (p = 0.07) in women and 17.5% (p = 0.09) in men for hip fracture. Conclusions The Garvan Fracture Risk Calculator is valid and clinically useful in identifying individuals at high risk of fracture. The models with BMD performed better than those with body weight in fracture risk prediction. PMID:25255221
Jang, Eun Jin; Park, ByeongJu; Kim, Tae-Young; Shin, Soon-Ae
2016-01-01
Background Asian-specific prediction models for estimating individual risk of osteoporotic fractures are rare. We developed a Korean fracture risk prediction model using clinical risk factors and assessed validity of the final model. Methods A total of 718,306 Korean men and women aged 50–90 years were followed for 7 years in a national system-based cohort study. In total, 50% of the subjects were assigned randomly to the development dataset and 50% were assigned to the validation dataset. Clinical risk factors for osteoporotic fracture were assessed at the biennial health check. Data on osteoporotic fractures during the follow-up period were identified by ICD-10 codes and the nationwide database of the National Health Insurance Service (NHIS). Results During the follow-up period, 19,840 osteoporotic fractures were reported (4,889 in men and 14,951 in women) in the development dataset. The assessment tool called the Korean Fracture Risk Score (KFRS) is comprised of a set of nine variables, including age, body mass index, recent fragility fracture, current smoking, high alcohol intake, lack of regular exercise, recent use of oral glucocorticoid, rheumatoid arthritis, and other causes of secondary osteoporosis. The KFRS predicted osteoporotic fractures over the 7 years. This score was validated using an independent dataset. A close relationship with overall fracture rate was observed when we compared the mean predicted scores after applying the KFRS with the observed risks after 7 years within each 10th of predicted risk. Conclusion We developed a Korean specific prediction model for osteoporotic fractures. The KFRS was able to predict risk of fracture in the primary population without bone mineral density testing and is therefore suitable for use in both clinical setting and self-assessment. The website is available at http://www.nhis.or.kr. PMID:27399597
NASA Astrophysics Data System (ADS)
Park, N.; Huh, H.; Yoon, J. W.
2017-09-01
This paper deals with the prediction of fracture initiation in square cup drawing of DP980 steel sheet with the thickness of 1.2 mm. In an attempt to consider the influence of material anisotropy on the fracture initiation, an uncoupled anisotropic ductile fracture criterion is developed based on the Lou—Huh ductile fracture criterion. Tensile tests are carried out at different loading directions of 0°, 45°, and 90° to the rolling direction of the sheet using various specimen geometries including pure shear, dog-bone, and flat grooved specimens so as to calibrate the parameters of the proposed fracture criterion. Equivalent plastic strain distribution on the specimen surface is computed using Digital Image Correlation (DIC) method until surface crack initiates. The proposed fracture criterion is implemented into the commercial finite element code ABAQUS/Explicit by developing the Vectorized User-defined MATerial (VUMAT) subroutine which features the non-associated flow rule. Simulation results of the square cup drawing test clearly show that the proposed fracture criterion is capable of predicting the fracture initiation with sufficient accuracy considering the material anisotropy.
Material Characterization for Ductile Fracture Prediction
NASA Technical Reports Server (NTRS)
Hill, Michael R.
2000-01-01
The research summarized in this document provides valuable information for structural health evaluation of NASA infrastructure. Specifically, material properties are reported which will enable calibration of ductile fracture prediction methods for three high-toughness metallic materials and one aluminum alloy which can be found in various NASA facilities. The task of investigating these materials has also served to validate an overall methodology for ductile fracture prediction is currently being employed at NASA. In facilitating the ability to incorporate various materials into the prediction scheme, we have provided data to enable demonstration of the overall generality of the approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen
Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko inmore » 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.« less
Tuning Fractures With Dynamic Data
NASA Astrophysics Data System (ADS)
Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao
2018-02-01
Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is capable of dealing with strongly nonlinear problems. A series of numerical case studies with increasing complexity are set up to examine the performance of the proposed approach.
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
2015-12-07
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
Advances in Imaging Approaches to Fracture Risk Evaluation
Manhard, Mary Kate; Nyman, Jeffry S.; Does, Mark D.
2016-01-01
Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density (BMD) at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high resolution HR-peripheral QCT (HR-pQCT) and micro-magnetic resonance imaging (μMRI) assess the micro-architecture of trabecular bone; quantitative ultrasound (QUS) measures the modulus or tissue stiffness of cortical bone; and quantitative ultra-short echo time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions. PMID:27816505
Leslie, William D; Lix, Lisa M
2011-03-01
The World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) computes 10-year probability of major osteoporotic fracture from multiple risk factors, including femoral neck (FN) T-scores. Lumbar spine (LS) measurements are not currently part of the FRAX formulation but are used widely in clinical practice, and this creates confusion when there is spine-hip discordance. Our objective was to develop a hybrid 10-year absolute fracture risk assessment system in which nonvertebral (NV) fracture risk was assessed from the FN and clinical vertebral (V) fracture risk was assessed from the LS. We identified 37,032 women age 45 years and older undergoing baseline FN and LS dual-energy X-ray absorptiometry (DXA; 1990-2005) from a population database that contains all clinical DXA results for the Province of Manitoba, Canada. Results were linked to longitudinal health service records for physician billings and hospitalizations to identify nontrauma vertebral and nonvertebral fracture codes after bone mineral density (BMD) testing. The population was randomly divided into equal-sized derivation and validation cohorts. Using the derivation cohort, three fracture risk prediction systems were created from Cox proportional hazards models (adjusted for age and multiple FRAX risk factors): FN to predict combined all fractures, FN to predict nonvertebral fractures, and LS to predict vertebral (without nonvertebral) fractures. The hybrid system was the sum of nonvertebral risk from the FN model and vertebral risk from the LS model. The FN and hybrid systems were both strongly predictive of overall fracture risk (p < .001). In the validation cohort, ROC analysis showed marginally better performance of the hybrid system versus the FN system for overall fracture prediction (p = .24) and significantly better performance for vertebral fracture prediction (p < .001). In a discordance subgroup with FN and LS T-score differences greater than 1 SD, there was a significant improvement in overall fracture prediction with the hybrid method (p = .025). Risk reclassification under the hybrid system showed better alignment with observed fracture risk, with 6.4% of the women reclassified to a different risk category. In conclusion, a hybrid 10-year absolute fracture risk assessment system based on combining FN and LS information is feasible. The improvement in fracture risk prediction is small but supports clinical interest in a system that integrates LS in fracture risk assessment. Copyright © 2011 American Society for Bone and Mineral Research.
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laubach, S.E.; Marrett, R.; Rossen, W.
The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less
Effect of Measured Welding Residual Stresses on Crack Growth
NASA Technical Reports Server (NTRS)
Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)
1998-01-01
Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavinich, W.A.; Yoon, K.K.; Hour, K.Y.
1999-10-01
The present reference toughness method for predicting the change in fracture toughness can provide over estimates of these values because of uncertainties in initial RT{sub NDT} and shift correlations. It would be preferable to directly measure fracture toughness. However, until recently, no standard method was available to characterize fracture toughness in the transition range. ASTM E08 has developed a draft standard that shows promise for providing lower bound transition range fracture toughness using the master curve approach. This method has been successfully implemented using 1T compact fracture specimens. Combustion Engineering reactor vessel surveillance programs do not have compact fracture specimens.more » Therefore, the CE Owners Group developed a program to validate the master curve method for Charpy-sized and reconstituted Charpy-sized specimens for future application on irradiated specimens. This method was validated for Linde 1092 welds using unirradiated Charpy-sized and reconstituted Charpy-sized specimens by comparison of results with those from compact fracture specimens.« less
Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria
2012-01-01
This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, M.P.
This paper provides comments to a companion journal paper on predictive modeling of hydraulic fracturing patterns (N.R. Warpinski et. al., 1994). The former paper was designed to compare various modeling methods to demonstrate the most accurate methods under various geologic constraints. The comments of this paper are centered around potential deficiencies in the former authors paper which include: limited actual comparisons offered between models, the issues of matching predictive data with that from related field operations was lacking or undocumented, and the relevance/impact of accurate modeling on the overall hydraulic fracturing cost and production.
Langsetmo, Lisa; Nguyen, Tuan V.; Nguyen, Nguyen D.; Kovacs, Christopher S.; Prior, Jerilynn C.; Center, Jacqueline R.; Morin, Suzanne; Josse, Robert G.; Adachi, Jonathan D.; Hanley, David A.; Eisman, John A.
2011-01-01
Background A set of nomograms based on the Dubbo Osteoporosis Epidemiology Study predicts the five- and ten-year absolute risk of fracture using age, bone mineral density and history of falls and low-trauma fracture. We assessed the discrimination and calibration of these nomograms among participants in the Canadian Multicentre Osteoporosis Study. Methods We included participants aged 55–95 years for whom bone mineral density measurement data and at least one year of follow-up data were available. Self-reported incident fractures were identified by yearly postal questionnaire or interview (years 3, 5 and 10). We included low-trauma fractures before year 10, except those of the skull, face, hands, ankles and feet. We used a Cox proportional hazards model. Results Among 4152 women, there were 583 fractures, with a mean follow-up time of 8.6 years. Among 1606 men, there were 116 fractures, with a mean follow-up time of 8.3 years. Increasing age, lower bone mineral density, prior fracture and prior falls were associated with increased risk of fracture. For low-trauma fractures, the concordance between predicted risk and fracture events (Harrell C) was 0.69 among women and 0.70 among men. For hip fractures, the concordance was 0.80 among women and 0.85 among men. The observed fracture risk was similar to the predicted risk in all quintiles of risk except the highest quintile of women, where it was lower. The net reclassification index (19.2%, 95% confidence interval [CI] 6.3% to 32.2%), favours the Dubbo nomogram over the current Canadian guidelines for men. Interpretation The published nomograms provide good fracture-risk discrimination in a representative sample of the Canadian population. PMID:21173069
NASA Technical Reports Server (NTRS)
Elber, W.
1973-01-01
The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.
Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel
NASA Technical Reports Server (NTRS)
Elber, W.
1974-01-01
The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.
Fracture behaviors of ceramic tissue scaffolds for load bearing applications
NASA Astrophysics Data System (ADS)
Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing
2016-07-01
Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.
NASA Astrophysics Data System (ADS)
Wu, W.; Zhu, J. B.; Zhao, J.
2013-02-01
The purpose of this study is to further investigate the seismic response of a set of parallel rock fractures filled with viscoelastic materials, following the work by Zhu et al. Dry quartz sands are used to represent the viscoelastic materials. The split Hopkinson rock bar (SHRB) technique is modified to simulate 1-D P-wave propagation across the sand-filled parallel fractures. At first, the displacement and stress discontinuity model (DSDM) describes the seismic response of a sand-filled single fracture. The modified recursive method (MRM) then predicts the seismic response of the sand-filled parallel fractures. The SHRB tests verify the theoretical predictions by DSDM for the sand-filled single fracture and by MRM for the sand-filled parallel fractures. The filling sands cause stress discontinuity across the fractures and promote displacement discontinuity. The wave transmission coefficient for the sand-filled parallel fractures depends on wave superposition between the fractures, which is similar to the effect of fracture spacing on the wave transmission coefficient for the non-filled parallel fractures.
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.
Predicting Fluid Flow in Stressed Fractures: A Quantitative Evaluation of Methods
NASA Astrophysics Data System (ADS)
Weihmann, S. A.; Healy, D.
2015-12-01
Reliable estimation of fracture stability in the subsurface is crucial to the success of exploration and production in the petroleum industry, and also for wider applications to earthquake mechanics, hydrogeology and waste disposal. Previous work suggests that fracture stability is related to fluid flow in crystalline basement rocks through shear or tensile instabilities of fractures. Our preliminary scoping analysis compares the fracture stability of 60 partly open (apertures 1.5-3 cm) and electrically conductive (low acoustic amplitudes relative to matrix) fractures from a 16 m section of a producing zone in a basement well in Bayoot field, Yemen, to a non-producing zone in the same well (also 16 m). We determine the Critically Stressed Fractures (CSF; Barton et al., 1995) and dilatation tendency (Td; Ferrill et al., 1999). We find that: 1. CSF (Fig. 1) is a poor predictor of high fluid flow in the inflow zone; 88% of the fractures are predicted to be NOT critically stressed and yet they all occur within a zone of high fluid flow rate 2. Td (Fig. 2) is also a poor predictor of high fluid flow in the inflow zone; 67% of the fractures have a LOW Td(< 0.6) 3. For the non-producing zone CSF is a very reliable predictor (100% are not critically stressed) whereas the values of Tdare consistent with their location in non-producing interval (81% are < 0.6) (Fig. 3 & 4). In summary, neither method correlates well with the observed abundance of hydraulically conductive fractures within the producing zone. Within the non-producing zone CSF and Td make reasonably accurate predictions. Fractures may be filled or partially filled with drilling mud or a lower density and electrically conductive fill such as clay in the producing zone and therefore appear (partly) open. In situ stress, fluid pressure, rock properties (friction, strength) and fracture orientation data used as inputs for the CSF and Td calculations are all subject to uncertainty. Our results suggest that scope exists to systematically quantify and explore the impacts of these uncertainties for better predictions of geomechanical stability and fluid conductivity in the subsurface.
NASA Astrophysics Data System (ADS)
Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi
2015-01-01
The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.
A study of fracture phenomena in fiber composite laminates. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Konish, H. J., Jr.
1973-01-01
The extension of linear elastic fracture mechanics from ostensibly homogeneous isotropic metallic alloys to heterogeneous anisotropic advanced fiber composites is considered. It is analytically demonstrated that the effects of material anisotropy do not alter the principal characteristics exhibited by a crack in an isotropic material. The heterogeneity of fiber composites is experimentally shown to have a negligible effect on the behavior of a sufficiently long crack. A method is proposed for predicting the fracture strengths of a large class of composite laminates; the values predicted by this method show good agreement with limited experimental data. The limits imposed by material heterogeneity are briefly discussed, and areas for further study are recommended.
Briot, Karine; Paternotte, Simon; Kolta, Sami; Eastell, Richard; Felsenberg, Dieter; Reid, David M.; Glüer, Claus-C.; Roux, Christian
2013-01-01
Purposes The aim of this study was to analyse how well FRAX® predicts the risk of major osteoporotic and vertebral fractures over 6 years in postmenopausal women from general population. Patients and methods The OPUS study was conducted in European women aged above 55 years, recruited in 5 centers from random population samples and followed over 6 years. The population for this study consisted of 1748 women (mean age 74.2 years) with information on incident fractures. 742 (43.1%) had a prevalent fracture; 769 (44%) and 155 (8.9%) of them received an antiosteoporotic treatment before and during the study respectively. We compared FRAX® performance with and without bone mineral density (BMD) using receiver operator characteristic (ROC) c-statistical analysis with ORs and areas under receiver operating characteristics curves (AUCs) and net reclassification improvement (NRI). Results 85 (4.9%) patients had incident major fractures over 6 years. FRAX® with and without BMD predicted these fractures with an AUC of 0.66 and 0.62 respectively. The AUC were 0.60, 0.66, 0.69 for history of low trauma fracture alone, age and femoral neck (FN) BMD and combination of the 3 clinical risk factors, respectively. FRAX® with and without BMD predicted incident radiographic vertebral fracture (n = 65) with an AUC of 0.67 and 0.65 respectively. NRI analysis showed a significant improvement in risk assignment when BMD is added to FRAX®. Conclusions This study shows that FRAX® with BMD and to a lesser extent also without FN BMD predict major osteoporotic and vertebral fractures in the general population. PMID:24386199
Is intrasound vibration useful in the diagnosis of occult scaphoid fractures?
Roolker, L; Tiel-van Buul, M M; Broekhuizen, T H
1998-03-01
This study was designed to confirm the results of Finkenberg et al. (J Hand Surg 1993;18A: 4-7), who found a high sensitivity (100%) and specificity (95%) of the intrasound vibration method in diagnosing occult scaphoid fractures. These occult scaphoid fractures are not visible on x-ray films, but clinically the patients are suspected of having a scaphoid fracture. A vibratory apparatus is placed over the anatomical snuff-box and a vibration of 100 mW is emitted; a painful sensation is produced if the scaphoid is fractured. Thirty-seven consecutive patients with a clinically suspected scaphoid fracture were evaluated. In 6 patients, a scaphoid fracture was radiographically identified; in the remaining 31 patients, a 3-phase bone scan was obtained. Eleven wrists showed increased uptake over the scaphoid and were considered to have an occult scaphoid fracture. In this group, bone scintigraphy was used as the reference standard. The vibration test was painful in 1 of 6 patients with a proven scaphoid fracture and in 3 of the 11 patients with a positive bone scan. In contrast to the results of Finkenberg et al, the intrasound vibration method shows a sensitivity of 24%, a specificity of 85%, a positive predictive value of 40%, and a negative predictive value of 65%. We conclude that the accuracy of intrasound vibration is low and that it is not useful in the diagnosis of scaphoid fractures.
Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness
NASA Technical Reports Server (NTRS)
Rossbacher, Lisa A.
1987-01-01
One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.
Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength
NASA Astrophysics Data System (ADS)
Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.
2018-02-01
To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.
Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.; ...
2016-03-14
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive modelsmore » to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive modelsmore » to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.« less
Modeling flow and transport in fracture networks using graphs
NASA Astrophysics Data System (ADS)
Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs.
Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs
Karra, S.; O'Malley, D.; Hyman, J. D.; ...
2018-03-09
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
Modeling flow and transport in fracture networks using graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karra, S.; O'Malley, D.; Hyman, J. D.
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
2011-01-01
Background Age-related bone loss is asymptomatic, and the morbidity of osteoporosis is secondary to the fractures that occur. Common sites of fracture include the spine, hip, forearm and proximal humerus. Fractures at the hip incur the greatest morbidity and mortality and give rise to the highest direct costs for health services. Their incidence increases exponentially with age. Independently changes in population demography, the age - and sex- specific incidence of osteoporotic fractures appears to be increasing in developing and developed countries. This could mean more than double the expected burden of osteoporotic fractures in the next 50 years. Methods/Design To assess the predictive power of the WHO FRAX™ tool to identify the subjects with the highest absolute risk of fragility fracture at 10 years in a Spanish population, a predictive validation study of the tool will be carried out. For this purpose, the participants recruited by 1999 will be assessed. These were referred to scan-DXA Department from primary healthcare centres, non hospital and hospital consultations. Study population: Patients attended in the national health services integrated into a FRIDEX cohort with at least one Dual-energy X-ray absorptiometry (DXA) measurement and one extensive questionnaire related to fracture risk factors. Measurements: At baseline bone mineral density measurement using DXA, clinical fracture risk factors questionnaire, dietary calcium intake assessment, history of previous fractures, and related drugs. Follow up by telephone interview to know fragility fractures in the 10 years with verification in electronic medical records and also to know the number of falls in the last year. The absolute risk of fracture will be estimated using the FRAX™ tool from the official web site. Discussion Since more than 10 years ago numerous publications have recognised the importance of other risk factors for new osteoporotic fractures in addition to low BMD. The extension of a method for calculating the risk (probability) of fractures using the FRAX™ tool is foreseeable in Spain and this would justify a study such as this to allow the necessary adjustments in calibration of the parameters included in the logarithmic formula constituted by FRAX™. PMID:21272372
Klop, Corinne; de Vries, Frank; Bijlsma, Johannes W J; Leufkens, Hubert G M; Welsing, Paco M J
2016-12-01
FRAX incorporates rheumatoid arthritis (RA) as a dichotomous predictor for predicting the 10-year risk of hip and major osteoporotic fracture (MOF). However, fracture risk may deviate with disease severity, duration or treatment. Aims were to validate, and if needed to update, UK FRAX for patients with RA and to compare predictive performance with the general population (GP). Cohort study within UK Clinical Practice Research Datalink (CPRD) (RA: n=11 582, GP: n=38 755), also linked to hospital admissions for hip fracture (CPRD-Hospital Episode Statistics, HES) (RA: n=7221, GP: n=24 227). Predictive performance of UK FRAX without bone mineral density was assessed by discrimination and calibration. Updating methods included recalibration and extension. Differences in predictive performance were assessed by the C-statistic and Net Reclassification Improvement (NRI) using the UK National Osteoporosis Guideline Group intervention thresholds. UK FRAX significantly overestimated fracture risk in patients with RA, both for MOF (mean predicted vs observed 10-year risk: 13.3% vs 8.4%) and hip fracture (CPRD: 5.5% vs 3.1%, CPRD-HES: 5.5% vs 4.1%). Calibration was good for hip fracture in the GP (CPRD-HES: 2.7% vs 2.4%). Discrimination was good for hip fracture (RA: 0.78, GP: 0.83) and moderate for MOF (RA: 0.69, GP: 0.71). Extension of the recalibrated UK FRAX using CPRD-HES with duration of RA disease, glucocorticoids (>7.5 mg/day) and secondary osteoporosis did not improve the NRI (0.01, 95% CI -0.04 to 0.05) or C-statistic (0.78). UK FRAX overestimated fracture risk in RA, but performed well for hip fracture in the GP after linkage to hospitalisations. Extension of the recalibrated UK FRAX did not improve predictive performance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Fritscher, Karl; Schuler, Benedikt; Link, Thomas; Eckstein, Felix; Suhm, Norbert; Hänni, Markus; Hengg, Clemens; Schubert, Rainer
2008-01-01
Fractures of the proximal femur are one of the principal causes of mortality among elderly persons. Traditional methods for the determination of femoral fracture risk use methods for measuring bone mineral density. However, BMD alone is not sufficient to predict bone failure load for an individual patient and additional parameters have to be determined for this purpose. In this work an approach that uses statistical models of appearance to identify relevant regions and parameters for the prediction of biomechanical properties of the proximal femur will be presented. By using Support Vector Regression the proposed model based approach is capable of predicting two different biomechanical parameters accurately and fully automatically in two different testing scenarios.
Deng, Hang; Fitts, Jeffrey P.; Peters, Catherine A.
2016-02-01
This paper presents a new method—the Technique of Iterative Local Thresholding (TILT)—for processing 3D X-ray computed tomography (xCT) images for visualization and quantification of rock fractures. The TILT method includes the following advancements. First, custom masks are generated by a fracture-dilation procedure, which significantly amplifies the fracture signal on the intensity histogram used for local thresholding. Second, TILT is particularly well suited for fracture characterization in granular rocks because the multi-scale Hessian fracture (MHF) filter has been incorporated to distinguish fractures from pores in the rock matrix. Third, TILT wraps the thresholding and fracture isolation steps in an optimized iterativemore » routine for binary segmentation, minimizing human intervention and enabling automated processing of large 3D datasets. As an illustrative example, we applied TILT to 3D xCT images of reacted and unreacted fractured limestone cores. Other segmentation methods were also applied to provide insights regarding variability in image processing. The results show that TILT significantly enhanced separability of grayscale intensities, outperformed the other methods in automation, and was successful in isolating fractures from the porous rock matrix. Because the other methods are more likely to misclassify fracture edges as void and/or have limited capacity in distinguishing fractures from pores, those methods estimated larger fracture volumes (up to 80 %), surface areas (up to 60 %), and roughness (up to a factor of 2). In conclusion, these differences in fracture geometry would lead to significant disparities in hydraulic permeability predictions, as determined by 2D flow simulations.« less
Fracture mechanics methodology: Evaluation of structural components integrity
NASA Astrophysics Data System (ADS)
Sih, G. C.; de Oliveira Faria, L.
1984-09-01
The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.
A review of fracture mechanics life technology
NASA Technical Reports Server (NTRS)
Besuner, P. M.; Harris, D. O.; Thomas, J. M.
1986-01-01
Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.
A review of fracture mechanics life technology
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Besuner, P. M.; Harris, D. O.
1985-01-01
Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.
Bolandparvaz, Shahram; Moharamzadeh, Payman; Jamali, Kazem; Pouraghaei, Mahboob; Fadaie, Maryam; Sefidbakht, Sepideh; Shahsavari, Kavous
2013-11-01
Long bone fractures are currently diagnosed using radiography, but radiography has some disadvantages (radiation and being time consuming). The present study compared the diagnostic accuracy of bedside ultrasound and radiography in multiple trauma patients at the emergency department (ED). The study assessed 80 injured patients with multiple trauma from February 2011 to July 2012. The patients were older than 18 years and triaged to the cardiopulmonary resuscitation ward of the ED. Bedside ultrasound and radiography were conducted for them. The findings were separately and blindly assessed by 2 radiologists. Sensitivity, specificity, the positive and negative predictive value, and κ coefficient were measured to assess the accuracy and validity of ultrasound as compared with radiography. The sensitivity of ultrasound for diagnosis of limb bone fractures was not high enough and ranged between 55% and 75% depending on the fracture site. The specificity of this diagnostic method had an acceptable range of 62% to 84%. Ultrasound negative prediction value was higher than other indices under study and ranged between 73% and 83%, but its positive prediction value varied between 33.3% and 71%. The κ coefficient for diagnosis of long bone fractures of upper limb (κ = 0.58) and upper limb joints (κ = 0.47) and long bones of lower limb (κ = 0.52) was within the medium range. However, the value for diagnosing fractures of lower limb joints (κ = 0.47) was relatively low. Bedside ultrasound is not a reliable method for diagnosing fractures of upper and lower limb bones compared with radiography. © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Swanson, P. L.
1984-01-01
An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1988-01-01
A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 to + or - 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was developed to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Strengths of specimens containing crack-like slits were calculated from predicted failing strains using uniaxial stress-strain curves. Predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only + or - 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.
Evaluation of easily measured risk factors in the prediction of osteoporotic fractures
Bensen, Robert; Adachi, Jonathan D; Papaioannou, Alexandra; Ioannidis, George; Olszynski, Wojciech P; Sebaldt, Rolf J; Murray, Timothy M; Josse, Robert G; Brown, Jacques P; Hanley, David A; Petrie, Annie; Puglia, Mark; Goldsmith, Charlie H; Bensen, W
2005-01-01
Background Fracture represents the single most important clinical event in patients with osteoporosis, yet remains under-predicted. As few premonitory symptoms for fracture exist, it is of critical importance that physicians effectively and efficiently identify individuals at increased fracture risk. Methods Of 3426 postmenopausal women in CANDOO, 40, 158, 99, and 64 women developed a new hip, vertebral, wrist or rib fracture, respectively. Seven easily measured risk factors predictive of fracture in research trials were examined in clinical practice including: age (<65, 65–69, 70–74, 75–79, 80+ years), rising from a chair with arms (yes, no), weight (< 57, ≥ 57kg), maternal history of hip facture (yes, no), prior fracture after age 50 (yes, no), hip T-score (>-1, -1 to >-2.5, ≤-2.5), and current smoking status (yes, no). Multivariable logistic regression analysis was conducted. Results The inability to rise from a chair without the use of arms (3.58; 95% CI: 1.17, 10.93) was the most significant risk factor for new hip fracture. Notable risk factors for predicting new vertebral fractures were: low body weight (1.57; 95% CI: 1.04, 2.37), current smoking (1.95; 95% CI: 1.20, 3.18) and age between 75–79 years (1.96; 95% CI: 1.10, 3.51). New wrist fractures were significantly identified by low body weight (1.71, 95% CI: 1.01, 2.90) and prior fracture after 50 years (1.96; 95% CI: 1.19, 3.22). Predictors of new rib fractures include a maternal history of a hip facture (2.89; 95% CI: 1.04, 8.08) and a prior fracture after 50 years (2.16; 95% CI: 1.20, 3.87). Conclusion This study has shown that there exists a variety of predictors of future fracture, besides BMD, that can be easily assessed by a physician. The significance of each variable depends on the site of incident fracture. Of greatest interest is that an inability to rise from a chair is perhaps the most readily identifiable significant risk factor for hip fracture and can be easily incorporated into routine clinical practice. PMID:16143046
NASA Astrophysics Data System (ADS)
Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio
2018-07-01
This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.
Krieg, Marc-Antoine; Cornuz, Jacques; Ruffieux, Christiane; Van Melle, Guy; Büche, Daniel; Dambacher, Maximilian A; Hans, Didier; Hartl, Florian; Häuselmann, Hansjorg J; Kraenzlin, Marius; Lippuner, Kurt; Neff, Maurus; Pancaldi, Pierro; Rizzoli, Rene; Tanzi, Franco; Theiler, Robert; Tyndall, Alan; Wimpfheimer, Claus; Burckhardt, Peter
2006-09-01
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.
Thevenot, Jérôme; Hirvasniemi, Jukka; Pulkkinen, Pasi; Määttä, Mikko; Korpelainen, Raija; Saarakkala, Simo; Jämsä, Timo
2014-07-01
To investigate whether femoral neck fracture can be predicted retrospectively on the basis of clinical radiographs by using the combined analysis of bone geometry, textural analysis of trabecular bone, and bone mineral density (BMD). Formal ethics committee approval was obtained for the study, and all participants gave informed written consent. Pelvic radiographs and proximal femur BMD measurements were obtained in 53 women aged 79-82 years in 2006. By 2012, 10 of these patients had experienced a low-impact femoral neck fracture. A Laplacian-based semiautomatic custom algorithm was applied to the radiographs to calculate the texture parameters along the trabecular fibers in the lower neck area for all subjects. Intra- and interobserver reproducibility was calculated by using the root mean square average coefficient of variation to evaluate the robustness of the method. The best predictors of hip fracture were entropy (P = .007; reproducibility coefficient of variation < 1%), the neck-shaft angle (NSA) (P = .017), and the BMD (P = .13). For prediction of fracture, the area under the receiver operating characteristic curve was 0.753 for entropy, 0.608 for femoral neck BMD, and 0.698 for NSA. The area increased to 0.816 when entropy and NSA were combined and to 0.902 when entropy, NSA, and BMD were combined. Textural analysis of pelvic radiographs enables discrimination of patients at risk for femoral neck fracture, and our results show the potential of this conventional imaging method to yield better prediction than that achieved with dual-energy x-ray absorptiometry-based BMD. The combination of the entropy parameter with NSA and BMD can further enhance predictive accuracy. © RSNA, 2014.
Does the continuum theory of dynamic fracture work?
NASA Astrophysics Data System (ADS)
Kessler, David A.; Levine, Herbert
2003-09-01
We investigate the validity of the linear elastic fracture mechanics approach to dynamic fracture. We first test the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent stress intensity factor. Excellent agreement with the theory is found. We then use the same method to analyze the experiment of Sharon and Fineberg. The data here are not consistent with the theoretical expectation.
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Lewis, P. E.
1979-01-01
A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.
Inclusion-based effective medium models for the field-scale permeability of 3D fractured rock masses
NASA Astrophysics Data System (ADS)
Ebigbo, Anozie; Lang, Philipp S.; Paluszny, Adriana; Zimmerman, Robert W.
2016-04-01
Fractures that are more permeable than their host rock can act as preferential, or at least additional, pathways for fluid to flow through the rock. The additional transmissivity contributed by these fractures will be of great relevance in several areas of earth science and engineering, such as radioactive waste disposal in crystalline rock, exploitation of fractured hydrocarbon and geothermal reservoirs, or hydraulic fracturing. In describing or predicting flow through fractured rock, the effective permeability of the rock mass, comprising both the rock matrix and a network of fractures, is a crucial parameter, and will depend on several geometric properties of the fractures/networks, such as lateral extent, aperture, orientation, and fracture density. This study investigates the ability of classical inclusion-based effective medium models (following the work of Sævik et al., Transp. Porous Media, 2013) to predict this permeability. In these models, the fractures are represented as thin, spheroidal inclusions, the interiors of which are treated as porous media having a high (but finite) permeability. The predictions of various effective medium models, such as the symmetric and asymmetric self-consistent schemes, the differential scheme, and Maxwell's method, are tested against the results of explicit numerical simulations of mono- and polydisperse isotropic fracture networks embedded in a permeable rock matrix. Comparisons are also made with the Hashin-Shrikman bounds, Snow's model, and Mourzenko's heuristic model (Mourzenko et al., Phys. Rev. E, 2011). This problem is characterised mathematically by two small parameters, the aspect ratio of the spheroidal fractures, α, and the ratio between matrix and fracture permeability, κ. Two different regimes can be identified, corresponding to α/κ < 1 and α/κ > 1. The lower the value of α/κ, the more significant is flow through the matrix. Due to differing flow patterns, the dependence of effective permeability on fracture density differs in the two regimes. When α/κ > 1, a distinct percolation threshold is observed, whereas for α/κ < 1, the matrix is sufficiently transmissive that a percolation-like transition is not observed. The self-consistent effective medium methods show good accuracy for both mono- and polydisperse isotropic fracture networks. Mourzenko's equation is also found to be very accurate, particularly for monodisperse networks. Finally, it is shown that Snow's model essentially coincides with the Hashin-Shtrikman upper bound.
Fracture mechanisms and fracture control in composite structures
NASA Astrophysics Data System (ADS)
Kim, Wone-Chul
Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally observed complex compressive failure modes, such as shear crippling and pure compressive fiber failure of fibers are explained by the predicted stress distributions calculated in this work. These fracture analyses can be damage tolerant design methodology for composite structures. The proposed fracture criteria and the corresponding critical fracture strains provide the designer with quantitative guidelines for safe-life design. These have been incorporated into a fracture control plan for composite structures, which is also described. Currently, fracture control plans do not exist for composite structures; the proposed plan is a first step towards establishing fracture control and damage tolerant design methodology for this important class of materials.
Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki
2008-10-01
The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (< or =6 h or >6 h), method of soft-tissue management, skin closure time (< or =1 week or >1 week), existence of polytrauma (ISS< 18 or ISS> or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (P< 0.0001). In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with occurrence of nonunion (P < 0.05). Gustilo type and existence of deep infection were significantly correlated with healing time to union on multivariate analysis (r(2) = 0.263, P = 0.0001). Multivariate analyses for open tibial fractures treated with IMN showed that IMN after EF (especially in existence of pin site infection) was at high risk of deep infection, and that debridement within 6 h and appropriate soft-tissue managements were also important factor in preventing deep infections. These analyses postulated that both the Gustilo type and the existence of deep infection is related with fracture healing in open fractures treated with IMN. In addition, immediate IMN for type IIIB and IIIC is potentially risky, and canal reaming did not increase the risk of complication for open tibial fractures treated with IMN.
NASA Astrophysics Data System (ADS)
Emanuele Rizzo, Roberto; Healy, David; De Siena, Luca
2016-04-01
The success of any predictive model is largely dependent on the accuracy with which its parameters are known. When characterising fracture networks in fractured rock, one of the main issues is accurately scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (lengths, apertures, orientations and densities) is fundamental to the estimation of permeability and fluid flow, which are of primary importance in a number of contexts including: hydrocarbon production from fractured reservoirs; geothermal energy extraction; and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. Our work links outcrop fracture data to modelled fracture networks in order to numerically predict bulk permeability. We collected outcrop data from a highly fractured upper Miocene biosiliceous mudstone formation, cropping out along the coastline north of Santa Cruz (California, USA). Using outcrop fracture networks as analogues for subsurface fracture systems has several advantages, because key fracture attributes such as spatial arrangements and lengths can be effectively measured only on outcrops [1]. However, a limitation when dealing with outcrop data is the relative sparseness of natural data due to the intrinsic finite size of the outcrops. We make use of a statistical approach for the overall workflow, starting from data collection with the Circular Windows Method [2]. Then we analyse the data statistically using Maximum Likelihood Estimators, which provide greater accuracy compared to the more commonly used Least Squares linear regression when investigating distribution of fracture attributes. Finally, we estimate the bulk permeability of the fractured rock mass using Oda's tensorial approach [3]. The higher quality of this statistical analysis is fundamental: better statistics of the fracture attributes means more accurate permeability estimation, since the fracture attributes feed directly into the permeability calculations. The application of Maximum Likelihood Estimators can have important consequences, especially when we aim to predict the tendency of fracture attributes towards smaller and larger scales than those observed, in order to build consistent, useable models from outcrop observations. The procedures presented here aim to understand whether the average permeability of a fracture network can be predicted, reducing its uncertainties; and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models, which can then be easily up-scaled into larger areas or volumes. Gale et al. "Natural Fracture in shale: A review and new observations", AAPG Bulletin 98.11 (2014). Mauldon et al. "Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces", Journal of Structural Geology, 23 (2001). Oda "Permeability tensor for discontinuous rock masses", Geotechnique 35.4 (1985).
Compression fractures detection on CT
NASA Astrophysics Data System (ADS)
Bar, Amir; Wolf, Lior; Bergman Amitai, Orna; Toledano, Eyal; Elnekave, Eldad
2017-03-01
The presence of a vertebral compression fracture is highly indicative of osteoporosis and represents the single most robust predictor for development of a second osteoporotic fracture in the spine or elsewhere. Less than one third of vertebral compression fractures are diagnosed clinically. We present an automated method for detecting spine compression fractures in Computed Tomography (CT) scans. The algorithm is composed of three processes. First, the spinal column is segmented and sagittal patches are extracted. The patches are then binary classified using a Convolutional Neural Network (CNN). Finally a Recurrent Neural Network (RNN) is utilized to predict whether a vertebral fracture is present in the series of patches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, C.E.; Bass, B.R.; Keeney, J.A.
This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasismore » was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Zhou; H. Huang; M. Deo
Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to differentmore » particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.« less
NASA Technical Reports Server (NTRS)
Chao, Luen-Yuan; Shetty, Dinesh K.
1992-01-01
Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.
Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, S.; Zhoi, Y.X.; Bailey, M.
2009-08-15
Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, havemore » to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.« less
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1989-01-01
A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 deg and +/- 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was develolped to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Far-field strains at failure were calculated from the strain intensity factor, and then strengths were calculated from the far-field strains using uniaxial stress-strain curves. The predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only +/- 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.
Height Loss Predicts Subsequent Hip Fracture in Men and Women of the Framingham Study
Hannan, Marian T.; Broe, Kerry E.; Cupples, L. Adrienne; Dufour, Alyssa B.; Rockwell, Margo; Kiel, Douglas P.
2013-01-01
Background Although height is a risk factor for osteoporotic fracture, current risk assessments do not consider height loss. Height loss may be a simple measurement that clinicians could use to predict fracture or need for further testing. Objective To examine height loss and subsequent hip fracture, evaluating both long-term adult height loss and recent height loss. Methods Prospective cohort of 3,081 adults from the Framingham Heart Study. Height was measured biennially since 1948, and cohort followed for hip fracture through 2005. Adult height loss from middle-age years across 24 years and recent height loss in elderly years were considered. Cox proportional hazard regression was used to estimate association between height loss and risk of hip fracture. Results Of 1,297 men and 1,784 women, mean baseline age was 66y (SD7.8). Average height loss for men was 1.06 inches (0.76), and for women was 1.12 inches (0.84). 11% of men and 15% of women lost ≤ 2 inches of height. Mean follow-up was 17y during which 71 men and 278 women had incident hip fractures. For each 1-inch of height loss, HR=1.4 in men (95%CI: 1.00, 1.99), and 1.04 in women (95%CI: 0.88, 1.23). Men and women who lost ≤ 2 inches of height had increased fracture risk (compared to 0 to <2 inches) of borderline significance: men HR=1.8, 95%CI: 0.86, 3.61; women HR=1.3, 95%CI: 0.90, 1.76. Recent height loss in elders significantly increased the risk of hip fracture, 54% in men and 21% in women (95%CI: 1.14, 2.09; 1.03, 1.42, respectively). Conclusions Adult height loss predicted hip fracture risk in men in our study. Recent height loss in elderly men and women predicted risk of hip fracture. PMID:22072590
Modelling DC responses of 3D complex fracture networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, Gungor Didem; Weiss, Chester Joseph
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
Modelling DC responses of 3D complex fracture networks
Beskardes, Gungor Didem; Weiss, Chester Joseph
2018-03-01
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Bin-Yan; He, Shi-Cheng; Zhu, Hai-Dong
PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy ofmore » this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.« less
Continuum Damage Modeling for Dynamic Fracture Toughness of Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Lee, Intaek; Ochi, Yasuo; Bae, Sungin; Song, Jungil
Short fiber reinforced metal-matrix composites (MMCs) have widely adopted as structural materials and many experimental researches have been performed to study fracture toughness of it. Fracture toughness is often referred as the plane strain(maximum constraint) fracture toughness KIc determined by the well-established standard test method, such as ASTM E399. But the application for dynamic fracture toughness KId has not been popular yet, because of reliance in capturing the crack propagating time. This paper deals with dynamic fracture toughness testing and simulation using finite element method to evaluate fracture behaviors of MMCs manufactured by squeeze casting process when material combination is varied with the type of reinforcement (appearance, size), volume fraction and combination of reinforcements, and the matrix alloy. The instrumented Charphy impact test was used for KId determination and continuum damage model embedded in commercial FE program is used to investigate the dynamic fracture toughness with the influence of elasto-visco-plastic constitutive relation of quasi-brittle fracture that is typical examples of ceramics and some fibre reinforced composites. With Compared results between experimental method and FE simulation, the determination process for KId is presented. FE simulation coupled with continuum damage model is emphasized single shot simulation can predict the dynamic fracture toughness, KId and real time evolution of that directly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Wellman, Gerald William; Emery, John M.
2011-09-01
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictionsmore » had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.« less
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
NASA Astrophysics Data System (ADS)
Beekman, Fred; Badsi, Madjid; van Wees, Jan-Diederik
2000-05-01
Many low-efficiency hydrocarbon reservoirs are productive largely because effective reservoir permeability is controlled by faults and natural fractures. Accurate and low-cost information on basic fault and fracture properties, orientation in particular, is critical in reducing well costs and increasing well recoveries. This paper describes how we used an advanced numerical modelling technique, the finite element method (FEM), to compute site-specific in situ stresses and rock deformation and to predict fracture attributes as a function of material properties, structural position and tectonic stress. Presented are the numerical results of two-dimensional, plane-strain end-member FEM models of a hydrocarbon-bearing fault-propagation-fold structure. Interpretation of the modelling results remains qualitative because of the intrinsic limitations of numerical modelling; however, it still allows comparisons with (the little available) geological and geophysical data. In all models, the weak mechanical strength and flow properties of a thick shale layer (the main seal) leads to a decoupling of the structural deformation of the shallower sediments from the underlying sediments and basement, and results in flexural slip across the shale layer. All models predict rock fracturing to initiate at the surface and to expand with depth under increasing horizontal tectonic compression. The stress regime for the formation of new fractures changes from compressional to shear with depth. If pre-existing fractures exist, only (sub)horizontal fractures are predicted to open, thus defining the principal orientation of effective reservoir permeability. In models that do not include a blind thrust fault in the basement, flexural amplification of the initial fold structure generates additional fracturing in the crest of the anticline controlled by the material properties of the rocks. The folding-induced fracturing expands laterally along the stratigraphic boundaries under enhanced tectonic loading. Models incorporating a blind thrust fault correctly predict the formation of secondary syn- and anti-thetic mesoscale faults in the basement and sediments of the hanging wall. Some of these faults cut reservoir and/or seal layers, and thus may influence effective reservoir permeability and affect seal integrity. The predicted faults divide the sediments across the anticline in several compartments with different stress levels and different rock failure (and proximity to failure). These numerical model outcomes can assist classic interpretation of seismic and well bore data in search of fractured and overpressured hydrocarbon reservoirs.
NASA Technical Reports Server (NTRS)
Ernst, Hugo A. (Editor); Saxena, Ashok (Editor); Mcdowell, David L. (Editor); Atluri, Satya N. (Editor); Newman, James C., Jr. (Editor); Raju, Ivatury S. (Editor); Epstein, Jonathan S. (Editor)
1992-01-01
Current research on fracture mechanics is reviewed, focusing on ductile fracture; high-temperature and time-dependent fracture; 3D problems; interface fracture; microstructural aspects of fatigue and fracture; and fracture predictions and applications. Particular attention is given to the determination and comparison of crack resistance curves from wide plates and fracture mechanics specimens; a relationship between R-curves in contained and uncontained yield; the creep crack growth behavior of titanium alloy Ti-6242; a crack growth response in three heat resistant materials at elevated temperature; a crack-surface-contact model for determining effective-stress-intensity factors; interfacial dislocations in anisotropic bimaterials; an effect of intergranular crack branching on fracture toughness evaluation; the fracture toughness behavior of exservice chromium-molybdenum steels; the application of fracture mechanics to assess the significance of proof loading; and a load ratio method for estimating crack extension.
[Conventional X-Rays of Ankle Joint Fractures in Older Patients are Not Always Predictive].
Jubel, A; Faymonville, C; Andermahr, J; Boxberg, S; Schiffer, G
2017-02-01
Background: Ankle fractures are extremely common in the elderly, with an incidence of up to 39 fractures per 100,000 persons per year. We found a discrepancy between intraoperative findings and preoperative X-ray findings. It was suggested that many relevant lesions of the ankle joint in the elderly cannot be detected with plain X-rays. Methods: Complete data sets and preoperative X-rays of 84 patients aged above 60 years with ankle fractures were analysed retrospectively. There were 59 women and 25 men, with a mean age of 69.9 years. Operation reports and preoperative X-rays were analysed with respect to four relevant lesions: multifragmentary fracture pattern of the lateral malleolus, involvement of the medial malleolus, posterior malleolar fractures and bony avulsion of anterior syndesmosis. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy and prevalence were calculated. Results: The prevalence of specific ankle lesions in the analyzed cohort was 24 % for the multifragmentary fracture pattern of the lateral malleolus, 38 % for fractures of the medial malleolus, 25 % for posterior malleolar fractures and 22.6 % for bony avulsions of the anterior syndesmosis. Multifragmentary fracture patterns of the lateral malleolus (sensitivity 0 %) and bony avulsions of the anterior syndesmosis (sensitivity 5 %) could not be detected in plain X-rays of the ankle joint at all. Fractures of the medial malleolus and involvement of the dorsal tibial facet were detected with a sensitivity of 96.8 % and 76.2 %, respectively, and specificity of 100 % in both cases. Conclusions: This study confirms that complex fracture patterns, such as multifragmentary involvement of the lateral malleolus, additional fracture of the medial malleolus, involvement of the dorsal tibial facet or bony avulsion of the anterior syndesmosis are common in ankle fractures of the elderly. Therefore, CT scans should be routinely considered for primary diagnosis, in addition to plain X-rays. Georg Thieme Verlag KG Stuttgart · New York.
Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction
Morse, Leslie R.
2015-01-01
Background: Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. Methods: We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Conclusions: Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail. PMID:26689691
Lenz, Gerhard P; Stasiak, Andrzej; Deszczyński, Jarosław; Karpiński, Janusz; Stolarczyk, Artur; Ziółkowski, Marcin; Szczesny, Grzegorz
2003-10-30
Background. This work focuses on problems of heuristic techniques based on artificial intelligence. Mainly about artificial non-linear and multilayer neurons, which were used to estimate the bone union fractures treatment process using orthopaedic stabilizers Dynastab DK. Material and methods. The author utilizes computer software based on multilayer neuronal network systems, which allows to predict the curve of the bone union at early stages of therapy. The training of the neural net has been made on fifty six cases of bone fracture which has been cured by the Dynastab stabilizers DK. Using such trained net, seventeen fractures of long bones shafts were being examined on strength and prediction of the bone union as well. Results. Analyzing results, it should be underlined that mechanical properties of the bone union in the slot of fracture are changing in nonlinear way in function of time. Especially, major changes were observed during the forth month of the fracture treatment. There is strong correlation between measure number two and measure number six. Measure number two is more strict and in the matter of fact it refers to flexion, as well as the measure number six, to compression of the bone in the fracture slot. Conclusions. Consequently, deflection loads are especially hazardous for healing bone. The very strong correlation between real curves and predicted curves shows the correctness of the neuronal model.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.
1987-01-01
The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.
Rodgers, J.E.; Elebi, M.
2011-01-01
The 1994 Northridge earthquake caused brittle fractures in steel moment frame building connections, despite causing little visible building damage in most cases. Future strong earthquakes are likely to cause similar damage to the many un-retrofitted pre-Northridge buildings in the western US and elsewhere. Without obvious permanent building deformation, costly intrusive inspections are currently the only way to determine if major fracture damage that compromises building safety has occurred. Building instrumentation has the potential to provide engineers and owners with timely information on fracture occurrence. Structural dynamics theory predicts and scale model experiments have demonstrated that sudden, large changes in structure properties caused by moment connection fractures will cause transient dynamic response. A method is proposed for detecting the building-wide level of connection fracture damage, based on observing high-frequency, fracture-induced transient dynamic responses in strong motion accelerograms. High-frequency transients are short (<1 s), sudden-onset waveforms with frequency content above 25 Hz that are visually apparent in recorded accelerations. Strong motion data and damage information from intrusive inspections collected from 24 sparsely instrumented buildings following the 1994 Northridge earthquake are used to evaluate the proposed method. The method's overall success rate for this data set is 67%, but this rate varies significantly with damage level. The method performs reasonably well in detecting significant fracture damage and in identifying cases with no damage, but fails in cases with few fractures. Combining the method with other damage indicators and removing records with excessive noise improves the ability to detect the level of damage. ?? 2010 Elsevier B.V. All rights reserved.
Ripamonti, C; Lisi, L; Avella, M
2014-05-01
To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures.
Timashpolsky, Alisa; Dagum, Alexander B; Sayeed, Syed M; Romeiser, Jamie L; Rosenfeld, Elisheva A; Conkling, Nicole
2016-01-01
BACKGROUND There are >150,000 patient visits per year to emergency rooms for facial trauma. The reliability of a computed tomography (CT) scan has made it the primary modality for diagnosing facial skeletal injury, with the physical examination playing more a cursory role. Knowing the predictive value of physical findings in facial skeletal injuries may enable more appropriate use of imaging and health care resources. OBJECTIVE A blinded prospective study was undertaken to assess the predictive value of physical examination findings in detecting maxillofacial fracture in trauma patients, and in determining whether a patient will require surgical intervention. METHODS Over a four-month period, the authors’ team examined patients admitted with facial trauma to the emergency department of their hospital. The evaluating physician completed a standardized physical examination evaluation form indicating the physical findings. Corresponding CT scans and surgical records were then reviewed, and the results recorded by a plastic surgeon who was blinded to the results of the physical examination. RESULTS A total of 57 patients met the inclusion criteria; there were 44 male and 13 female patients. The sensitivity, specificity, positive predictive value and negative predictive value of grouped physical examination findings were determined in major areas. In further analysis, specific examination findings with n≥9 (15%) were also reported. CONCLUSIONS The data demonstrated a high negative predictive value of at least 90% for orbital floor, zygomatic, mandibular and nasal bone fractures compared with CT scan. Furthermore, none of the patients who did not have a physical examination finding for a particular facial fracture required surgery for that fracture. Thus, the instrument performed well at ruling out fractures in these areas when there were none. Ultimately, these results may help reduce unnecessary radiation and costly imaging in patients with facial trauma without facial fractures. PMID:27441188
Loesaus, Julia; Wobbe, Isabel; Stahlberg, Erik; Barkhausen, Joerg; Goltz, Jan Peter
2017-01-01
AIM To evaluate the reliability of pronator quadratus fat pad sign to detect distal radius fracture and to predict its severity. METHODS Retrospectively we identified 89 consecutive patients (41 female, mean age 49 ± 18 years) who had X-ray (CR) and computed tomography (CT) within 24 h following distal forearm trauma. Thickness of pronator quadratus fat pad complex (PQC) was measured using lateral views (CR) and sagittal reconstructions (CT). Pearson’s test was used to determine the correlation of the PQC thickness in CR and CT. A positive pronator quadratus sign (PQS) was defined as a PQC > 8.0 mm (female) or > 9.0 mm (male). Frykman classification was utilized to assess the severity of fractures. RESULTS Forty-four/89 patients (49%) had a distal radius fracture (Frykman I n = 3, II n = 0, III n = 10, IV n = 5, V n = 2, VI n = 2, VII n = 9, VIII n = 13). Mean thickness of the PQC thickness can reliably be measured on X-ray views and was 7.5 ± 2.8 mm in lateral views (CR), respectively 9.4 ± 3.0 mm in sagittal reconstructions (CT), resulting in a significant correlation coefficient of 0.795. A positive PQS at CR was present in 21/44 patients (48%) with distal radius fracture and in 2/45 patients (4%) without distal radius fracture, resulting in a specificity of 96% and a sensitivity of 48% for the detection of distal radius fractures. There was no correlation between thickness of the PQC and severity of distal radius fractures. CONCLUSION A positive PQS shows high specificity but low sensitivity for detection of distal radius fractures. The PQC thickness cannot predict the severity of distal radius fractures. PMID:29098069
Przedlacki, J; Buczyńska-Chyl, J; Koźmiński, P; Niemczyk, E; Wojtaszek, E; Gieglis, E; Żebrowski, P; Podgórzak, A; Wściślak, J; Wieliczko, M; Matuszkiewicz-Rowińska, J
2018-05-01
We assessed the FRAX® method in 718 hemodialyzed patients in estimating increased risk of bone major and hip fractures. Over two prospective years, statistical analysis showed that FRAX® enables a better assessment of bone major fracture risk in these patients than any of its components and other risk factors considered in the analysis. Despite the generally increased risk of bone fractures among patients with end-stage renal disease, no prediction models for identifying individuals at particular risk have been developed to date. The goal of this prospective, multicenter observational study was to assess the usefulness of the FRAX® method in comparison to all its elements considered separately, selected factors associated with renal disease and the history of falls, in estimating increased risk of low-energy major bone and hip fractures in patients undergoing chronic hemodialysis. The study included a total of 1068 hemodialysis patients, who were followed for 2 years, and finally, 718 of them were analyzed. The risk analysis included the Polish version of the FRAX® calculator (without bone mineral density), dialysis vintage, mineral metabolism disorders (serum calcium, phosphate, and parathyroid hormone), and the number of falls during the last year before the study. Over 2 years, low-energy 30 major bone fractures were diagnosed and 13 of hip fractures among them. Area under the curve for FRAX® was 0.76 (95% CI 0.69-0.84) for major fractures and 0.70 (95% CI 0.563-0.832) for hip fractures. The AUC for major bone fractures was significantly higher than for all elements of the FRAX® calculator. In logistic regression analysis FRAX® was the strongest independent risk factor of assessment of the major bone fracture risk. FRAX® enables a better assessment of major bone fracture risk in ESRD patients undergoing hemodialysis than any of its components and other risk factors considered in the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jing; Huang, Hai; Deo, Milind
The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing,more » arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.« less
Fractual interrelationships in field and seismic data. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-07
Fractals provide a description of physical patterns over a range of scales in both time and space. Studies presented herein examine the fractal characteristics of various geological variables such as deformed bed-lengths, fold relief, seismic reflection arrival time variations, drainage and topographic patterns, and fracture systems. The studies are also extended to consider the possibility that the fractal characteristics of these variables are interrelated. Fractal interrelationships observed in these studies provide a method for relating variations in the fractal characteristics of seismic reflection events from reservoir intervals to the fractal characteristics of reservoir fracture systems, faults, and fold distributions. Themore » work is motivated by current exploration and development interests to detect fractured reservoirs and to accurately predict flow rates and flow patterns within the fractured reservoir. Accurate prediction requires an understanding of several reservoir properties including the fractal geometry of the reservoir fracture network. Results of these studies provide a method to remotely assess the fractal characteristics of a fractured reservoir, and help guide field development activities. The most significant outgrowth of this research is that the fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Production from fractured reservoirs is the result of complex structural and stratigraphic controls; hence, the import of fractal characterization to the assessment of fractured reservoirs lies in its potential to quantitatively define interrelationships between subtle structural variation and production. The potential uses are illustrated using seismic data from the Granny Creek oil field in the Appalachian Plateau.« less
a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear
NASA Astrophysics Data System (ADS)
Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu
This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.S.; Sidener, S.E.; Hamilton, M.L.
1999-10-01
Dynamic finite element modeling of the fracture behavior of fatigue-precracked Charpy specimens in both unirradiated and irradiated conditions was performed using a computer code, ABAQUS Explicit, to predict the upper shelf energy of precracked specimens of a given size from experimental data obtained for a different size. A tensile fracture-strain based method for modeling crack extension and propagation was used. It was found that the predicted upper shelf energies of full and half size precracked specimens based on third size data were in reasonable agreement with their respective experimental values. Similar success was achieved for predicting the upper shelf energymore » of subsize precracked specimens based on full size data.« less
Fracture Strength of Fused Silica From Photonic Signatures Around Collision Sites
NASA Technical Reports Server (NTRS)
Yost, William T.; Cramer, K Elliott
2015-01-01
Impact sites in glass affect its fracture strength. An analytical model that predicts fracture strength from grey-field polariscope (GFP) readings (photoelastic retardations) has been developed and reported in the literature. The model is suggestive that stress fields, resulting from impact damage, destablizes sites within the glass, which lead to pathways that cause strength degradation. Using data collected from fused silica specimens fabricated from outer window panes that were designed for the space shuttle, the model was tested against four categories of inflicted damage. The damage sites were cored from the window carcasses, examined with the GFP and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and the photoelastic retardation measured at the damage site in each specimen. A least-squares fit is calculated. The results are compared with the predictions from the model. A plausible single-sided NDE damage site inspection method (a version of which is planned for glass inspection in the Orion Project) that relates photoelastic retardation in glass components to its fracture strength is presented.
NASA Technical Reports Server (NTRS)
Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.
2005-01-01
A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.
Determination of Fracture Parameters for Multiple Cracks of Laminated Composite Finite Plate
NASA Astrophysics Data System (ADS)
Srivastava, Amit Kumar; Arora, P. K.; Srivastava, Sharad Chandra; Kumar, Harish; Lohumi, M. K.
2018-04-01
A predictive method for estimation of stress state at zone of crack tip and assessment of remaining component lifetime depend on the stress intensity factor (SIF). This paper discusses the numerical approach for prediction of first ply failure load (FL), progressive failure load, SIF and critical SIF for multiple cracks configurations of laminated composite finite plate using finite element method (FEM). The Hashin and Chang failure criterion are incorporated in ABAQUS using subroutine approach user defined field variables (USDFLD) for prediction of progressive fracture response of laminated composite finite plate, which is not directly available in the software. A tensile experiment on laminated composite finite plate with stress concentration is performed to validate the numerically predicted subroutine results, shows excellent agreement. The typical results are presented to examine effect of changing the crack tip distance (S), crack offset distance (H), and stacking fiber angle (θ) on FL, and SIF .
Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels
NASA Astrophysics Data System (ADS)
Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon
2010-08-01
The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J.; Huang, H.; Deo, M.
2016-03-01
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Zhou; H. Huang; M. Deo
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
External validation of the Garvan nomograms for predicting absolute fracture risk: the Tromsø study.
Ahmed, Luai A; Nguyen, Nguyen D; Bjørnerem, Åshild; Joakimsen, Ragnar M; Jørgensen, Lone; Størmer, Jan; Bliuc, Dana; Center, Jacqueline R; Eisman, John A; Nguyen, Tuan V; Emaus, Nina
2014-01-01
Absolute risk estimation is a preferred approach for assessing fracture risk and treatment decision making. This study aimed to evaluate and validate the predictive performance of the Garvan Fracture Risk Calculator in a Norwegian cohort. The analysis included 1637 women and 1355 aged 60+ years from the Tromsø study. All incident fragility fractures between 2001 and 2009 were registered. The predicted probabilities of non-vertebral osteoporotic and hip fractures were determined using models with and without BMD. The discrimination and calibration of the models were assessed. Reclassification analysis was used to compare the models performance. The incidence of osteoporotic and hip fracture was 31.5 and 8.6 per 1000 population in women, respectively; in men the corresponding incidence was 12.2 and 5.1. The predicted 5-year and 10-year probability of fractures was consistently higher in the fracture group than the non-fracture group for all models. The 10-year predicted probabilities of hip fracture in those with fracture was 2.8 (women) to 3.1 times (men) higher than those without fracture. There was a close agreement between predicted and observed risk in both sexes and up to the fifth quintile. Among those in the highest quintile of risk, the models over-estimated the risk of fracture. Models with BMD performed better than models with body weight in correct classification of risk in individuals with and without fracture. The overall net decrease in reclassification of the model with weight compared to the model with BMD was 10.6% (p = 0.008) in women and 17.2% (p = 0.001) in men for osteoporotic fractures, and 13.3% (p = 0.07) in women and 17.5% (p = 0.09) in men for hip fracture. The Garvan Fracture Risk Calculator is valid and clinically useful in identifying individuals at high risk of fracture. The models with BMD performed better than those with body weight in fracture risk prediction.
Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.
Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar
2017-10-01
Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.
NASA Astrophysics Data System (ADS)
Cao, Zhanning; Li, Xiangyang; Sun, Shaohan; Liu, Qun; Deng, Guangxiao
2018-04-01
Aiming at the prediction of carbonate fractured-vuggy reservoirs, we put forward an integrated approach based on seismic and well data. We divide a carbonate fracture-cave system into four scales for study: micro-scale fracture, meso-scale fracture, macro-scale fracture and cave. Firstly, we analyze anisotropic attributes of prestack azimuth gathers based on multi-scale rock physics forward modeling. We select the frequency attenuation gradient attribute to calculate azimuth anisotropy intensity, and we constrain the result with Formation MicroScanner image data and trial production data to predict the distribution of both micro-scale and meso-scale fracture sets. Then, poststack seismic attributes, variance, curvature and ant algorithms are used to predict the distribution of macro-scale fractures. We also constrain the results with trial production data for accuracy. Next, the distribution of caves is predicted by the amplitude corresponding to the instantaneous peak frequency of the seismic imaging data. Finally, the meso-scale fracture sets, macro-scale fractures and caves are combined to obtain an integrated result. This integrated approach is applied to a real field in Tarim Basin in western China for the prediction of fracture-cave reservoirs. The results indicate that this approach can well explain the spatial distribution of carbonate reservoirs. It can solve the problem of non-uniqueness and improve fracture prediction accuracy.
2014-01-01
Background Impairment in activities of daily living (ADL) is an important predictor of outcomes although many administrative databases lack information on ADL function. We evaluated the impact of ADL function on predicting postoperative mortality among older adults with hip fractures in Ontario, Canada. Methods Sociodemographic and medical correlates of ADL impairment were first identified in a population of older adults with hip fractures who had ADL information available prior to hip fracture. A logistic regression model was developed to predict 360-day postoperative mortality and the predictive ability of this model were compared when ADL impairment was included or omitted from the model. Results The study sample (N = 1,329) had a mean age of 85.2 years, were 72.8% female and the majority resided in long-term care (78.5%). Overall, 36.4% of individuals died within 360 days of surgery. After controlling for age, sex, medical comorbidity and medical conditions correlated with ADL impairment, addition of ADL measures improved the logistic regression model for predicting 360 day mortality (AIC = 1706.9 vs. 1695.0; c -statistic = 0.65 vs 0.67; difference in - 2 log likelihood ratios: χ2 = 16.9, p = 0.002). Conclusions Direct measures of ADL impairment provides additional prognostic information on mortality for older adults with hip fractures even after controlling for medical comorbidity. Observational studies using administrative databases without measures of ADLs may be potentially prone to confounding and bias and case-mix adjustment for hip fracture outcomes should include ADL measures where these are available. PMID:24472282
Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.
Troy, Karen L; Morse, Leslie R
2015-01-01
Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.
Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min
2014-01-01
A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.
NASA Astrophysics Data System (ADS)
Alkharji, Mohammed N.
Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.
Robust human body model injury prediction in simulated side impact crashes.
Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D
2016-01-01
This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.
Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
Miranda, Pedro; Pajares, Antonia; Guiberteau, Fernando
2008-11-01
The use of finite element modeling to calculate the stress fields in complex scaffold structures and thus predict their mechanical behavior during service (e.g., as load-bearing bone implants) is evaluated. The method is applied to identifying the fracture modes and estimating the strength of robocast hydroxyapatite and beta-tricalcium phosphate scaffolds, consisting of a three-dimensional lattice of interpenetrating rods. The calculations are performed for three testing configurations: compression, tension and shear. Different testing orientations relative to the calcium phosphate rods are considered for each configuration. The predictions for the compressive configurations are compared to experimental data from uniaxial compression tests.
Gnudi, S; Sitta, E; Pignotti, E
2012-01-01
Objective To compare hip fracture incidence in post-menopausal females who were differently stratified for the fracture risk according to bone mineral density and proximal femur geometry. Methods In a 5 year follow-up study, the hip fracture incidence in 729 post-menopausal females (45 of whom suffered from incident hip fracture) was assessed and compared. Forward logistic regression was used to select independent predictors of hip fracture risk, including age, age at menopause, height, weight, femoral neck bone mineral density (FNBMD), neck–shaft angle (NSA), hip axis length, femoral neck diameter and femoral shaft diameter as covariates. Fracture incidence was then calculated for the categories of young/old age, high/low FNBMD and wide/narrow NSA, which were obtained by dichotomising each hip fracture independent predictor at the value best separating females with and without a hip fracture. Results The hip fracture incidence of the whole cohort was significantly higher in females with a wide NSA (8.52%) than in those with a narrow NSA (3.51%). The combination of wide NSA and low FNBMD had the highest hip fracture incidence in the whole cohort (17.61%) and each age category. The combinations of narrow/wide NSA with low/high FNBMD, respectively, gave a significantly higher fracture incidence in older than in younger women, whereas women with a combined wide NSA and low FNBMD had no significantly different fracture incidence in young (14.60%) or old age (21.62%). Conclusion Our study showed that NSA is effective at predicting the hip fracture risk and that the detection in early post-menopause of a wide NSA together with a low FNBMD should identify females at high probability of incident hip fracture. PMID:22096224
Sandia fracture challenge 2: Sandia California's modeling approach
Karlson, Kyle N.; James W. Foulk, III; Brown, Arthur A.; ...
2016-03-09
The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Furthermore, mesh-independent solutions of continuum damage modelsmore » having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.« less
NASA Astrophysics Data System (ADS)
Thomas, R. N.; Ebigbo, A.; Paluszny, A.; Zimmerman, R. W.
2016-12-01
The macroscopic permeability of 3D anisotropic geomechanically-generated fractured rock masses is investigated. The explicitly computed permeabilities are compared to the predictions of classical inclusion-based effective medium theories, and to the permeability of networks of randomly oriented and stochastically generated fractures. Stochastically generated fracture networks lack features that arise from fracture interaction, such as non-planarity, and termination of fractures upon intersection. Recent discrete fracture network studies include heuristic rules that introduce these features to some extent. In this work, fractures grow and extend under tension from a finite set of initial flaws. The finite element method is used to compute displacements, and modal stress intensity factors are computed around each fracture tip using the interaction integral accumulated over a set of virtual discs. Fracture apertures emerge as a result of simulations that honour the constraints of stress equilibrium and mass conservation. The macroscopic permeabilities are explicitly calculated by solving the local cubic law in the fractures, on an element-by-element basis, coupled to Darcy's law in the matrix. The permeabilities are then compared to the estimates given by the symmetric and asymmetric versions of the self-consistent approximation, which, for randomly fractured volumes, were previously demonstrated to be most accurate of the inclusion-based effective medium methods (Ebigbo et al., Transport in Porous Media, 2016). The permeabilities of several dozen geomechanical networks are computed as a function of density and in situ stresses. For anisotropic networks, we find that the asymmetric and symmetric self-consistent methods overestimate the effective permeability in the direction of the dominant fracture set. Effective permeabilities that are more strongly dependent on the connectivity of two or more fracture sets are more accurately captured by the effective medium models.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dongming; Miller, Robert A.
2003-01-01
The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dongming; Miller, Robert A.
2003-01-01
The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
NASA Astrophysics Data System (ADS)
Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.
2018-02-01
In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.
Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces
NASA Astrophysics Data System (ADS)
Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.
2017-12-01
Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for such surfaces. This analysis yielded a continuum of contact angles (real above, and imaginary below, zero degrees) that can be used to investigate relationships with properties such surface roughness and porosity. It should be noted these are preliminary, unreplicated results and further research will be needed to verify them and refine the approach.
Determination of Fracture Patterns in Glass and Glassy Polymers.
Baca, Allison C; Thornton, John I; Tulleners, Frederic A
2016-01-01
The study of fractures of glass, glassy-type materials, and plastic has long been of interest to the forensic community. The focus of this interest has been the use of glass and polymer fractures to associate items of evidence under the assumption that each fracture is different. Generally, it is well-accepted that deviations exist; however, the emphasis has been on classifying and predicting fracture rather than determining that each fracture is different. This study documented the controlled fracture patterns of 60 glass panes, 60 glass bottles, and 60 plastic tail light lens covers using both dynamic impact and static pressure methods under closely controlled conditions. Each pattern was intercompared, and based on the limited specimens tested in this study, the results illustrate that the fracture patterns are different. Further repetitive studies, under controlled conditions, will be needed to provide more statistical significance to the theory that each fracture forms a nonreproducible fracture pattern. © 2015 American Academy of Forensic Sciences.
Tension fracture of laminates for transport fuselage. Part 2: Large notches
NASA Technical Reports Server (NTRS)
Walker, Tom H.; Ilcewicz, Larry B.; Polland, D. R.; Poe, C. C., Jr.
1993-01-01
Tests were conducted on over 200 center-crack specimens to evaluate: (a) the tension-fracture performance of candidate materials and laminates for commercial fuselage applications; and (b) the accuracy of several failure criteria in predicting response. Crack lengths of up to 12 inches were considered. Other variables included fiber/matrix combination, layup, lamination manufacturing process, and intraply hybridization. Laminates fabricated using the automated tow-placement process provided significantly higher tension-fracture strengths than nominally identical tape laminates. This confirmed earlier findings for other layups, and possibly relates to a reduced stress concentration resulting from a larger scale of repeatable material inhomogeneity in the tow-placed laminates. Changes in material and layup result in a trade-off between small-notch and large-notch strengths. Toughened resins and 0 deg-dominate layups result in higher small-notch strengths but lower large-notch strengths than brittle resins, 90 deg and 45 deg dominated layups, and intraply S2-glass hybrid material forms. Test results indicate that strength-prediction methods that allow for a reduced order singularity of the crack-tip stress field are more successful at predicting failure over a range of notch sizes than those relying on the classical square-root singularity. The order of singularity required to accurately predict large-notch strength from small-notch data was affected by both material and layup. Measured crack-tip strain distributions were generally higher than those predicted using classical methods. Traditional methods of correcting for finite specimen width were found to be lacking, confirming earlier findings with other specimen geometries. Fracture tests of two stiffened panels, identical except for differing materials, with severed central stiffeners resulted in nearly identical damage progression and failure sequences. Strain-softening laws implemented within finite element models appear attractive to account for load redistribution in configured structure due to damage-induced crack tip softening
Rate decline curves analysis of multiple-fractured horizontal wells in heterogeneous reservoirs
NASA Astrophysics Data System (ADS)
Wang, Jiahang; Wang, Xiaodong; Dong, Wenxiu
2017-10-01
In heterogeneous reservoir with multiple-fractured horizontal wells (MFHWs), due to the high density network of artificial hydraulic fractures, the fluid flow around fracture tips behaves like non-linear flow. Moreover, the production behaviors of different artificial hydraulic fractures are also different. A rigorous semi-analytical model for MFHWs in heterogeneous reservoirs is presented by combining source function with boundary element method. The model are first validated by both analytical model and simulation model. Then new Blasingame type curves are established. Finally, the effects of critical parameters on the rate decline characteristics of MFHWs are discussed. The results show that heterogeneity has significant influence on the rate decline characteristics of MFHWs; the parameters related to the MFHWs, such as fracture conductivity and length also can affect the rate characteristics of MFHWs. One novelty of this model is to consider the elliptical flow around artificial hydraulic fracture tips. Therefore, our model can be used to predict rate performance more accurately for MFHWs in heterogeneous reservoir. The other novelty is the ability to model the different production behavior at different fracture stages. Compared to numerical and analytic methods, this model can not only reduce extensive computing processing but also show high accuracy.
Single well productivity prediction of carbonate reservoir
NASA Astrophysics Data System (ADS)
Le, Xu
2018-06-01
It is very important to predict the single-well productivity for the development of oilfields. The fracture structure of carbonate fractured-cavity reservoirs is complex, and the change of single-well productivity is inconsistent with that of sandstone reservoir. Therefore, the establishment of carbonate oil well productivity It is very important. Based on reservoir reality, three different methods for predicting the productivity of carbonate reservoirs have been established based on different types of reservoirs. (1) To qualitatively analyze the single-well capacity relations corresponding to different reservoir types, predict the production capacity according to the different wells encountered by single well; (2) Predict the productivity of carbonate reservoir wells by using numerical simulation technology; (3) According to the historical production data of oil well, fit the relevant capacity formula and make single-well productivity prediction; (4) Predict the production capacity by using oil well productivity formula of carbonate reservoir.
FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS
Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian
2016-01-01
Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa
2014-11-01
Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.
The contribution of rib fractures to chronic pain and disability.
Gordy, Stephanie; Fabricant, Loic; Ham, Bruce; Mullins, Richard; Mayberry, John
2014-05-01
The contribution of rib fractures to chronic pain and disability is not well described. Two hundred three patients with rib fractures were followed for 6 months. Chronic pain was assessed using the McGill Pain Questionnaire Pain Rating Index and Present Pain Intensity (PPI) scales. Disability was defined as a decrease in work or functional status. The prevalence of chronic pain was 22% and disability was 53%. Acute PPI predicted chronic pain. Associated injuries, bilateral rib fractures, injury severity score, and number of rib fractures were not predictive of chronic pain. No acute injury characteristics were predictive of disability. Among 89 patients with isolated rib fractures, the prevalence of chronic pain was 28% and of disability was 40%. No injury characteristics predicted chronic pain. Bilateral rib fractures and acute PPI predicted disability. The contribution of rib fractures to chronic pain and disability is significant but unpredictable with conventional injury descriptors. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Ha Young; Jang, Eun Jin; Park, ByeongJu; Kim, Tae-Young; Shin, Soon-Ae; Ha, Yong-Chan; Jang, Sunmee
2016-01-01
Asian-specific prediction models for estimating individual risk of osteoporotic fractures are rare. We developed a Korean fracture risk prediction model using clinical risk factors and assessed validity of the final model. A total of 718,306 Korean men and women aged 50-90 years were followed for 7 years in a national system-based cohort study. In total, 50% of the subjects were assigned randomly to the development dataset and 50% were assigned to the validation dataset. Clinical risk factors for osteoporotic fracture were assessed at the biennial health check. Data on osteoporotic fractures during the follow-up period were identified by ICD-10 codes and the nationwide database of the National Health Insurance Service (NHIS). During the follow-up period, 19,840 osteoporotic fractures were reported (4,889 in men and 14,951 in women) in the development dataset. The assessment tool called the Korean Fracture Risk Score (KFRS) is comprised of a set of nine variables, including age, body mass index, recent fragility fracture, current smoking, high alcohol intake, lack of regular exercise, recent use of oral glucocorticoid, rheumatoid arthritis, and other causes of secondary osteoporosis. The KFRS predicted osteoporotic fractures over the 7 years. This score was validated using an independent dataset. A close relationship with overall fracture rate was observed when we compared the mean predicted scores after applying the KFRS with the observed risks after 7 years within each 10th of predicted risk. We developed a Korean specific prediction model for osteoporotic fractures. The KFRS was able to predict risk of fracture in the primary population without bone mineral density testing and is therefore suitable for use in both clinical setting and self-assessment. The website is available at http://www.nhis.or.kr.
Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris
2002-11-27
The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.
1985-01-01
A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution model, using the principle of independent action for polyaxial stress states and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all for volume distributed flaws in macroscopically isotropic solids. Both penny-shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive crack response calculations, using Griffith's maximum tensile stress or critical coplanar strain energy release rate criteria to predict mixed mode fracture. Weibull material parameters can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and fracture data. The reliability prediction analysis uses MSC/NASTRAN stress, temperature and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
Novais, Eduardo N.; Carry, Patrick M.; Mark, Bryan J.; Sayan, DE; Miller, Nancy H.
2016-01-01
Objective To identify factors predictive of the risk of conversion from closed to open reduction. Methods ICD-9 codes were used to identify completely displaced pediatric supracondylar humerus fractures that underwent planned closed reduction and percutaneous pinning. Clinical and radiographic variables were retrospectively collected. Results Compared to posterior extension fractures, flexion [Risk Ratio (RR): 34.1, 95% CI: 8.1 to 143.6, p<0.0001] and posterolateral extension [RR: 6.0, 95% CI: 1.3 to 27.5, p=0.0221] fractures were significantly more likely to undergo conversion from closed to open reduction. Conclusions The direction of displacement should be considered during the pre-operative evaluation of supracondylar fractures. PMID:27035497
Prediction of fracture profile using digital image correlation
NASA Astrophysics Data System (ADS)
Chaitanya, G. M. S. K.; Sasi, B.; Kumar, Anish; Babu Rao, C.; Purnachandra Rao, B.; Jayakumar, T.
2015-04-01
Digital Image Correlation (DIC) based full field strain mapping methodology is used for mapping strain on an aluminum sample subjected to tensile deformation. The local strains on the surface of the specimen are calculated at different strain intervals. Early localization of strain is observed at a total strain of 0.050ɛ; itself, whereas a visually apparent localization of strain is observed at a total strain of 0.088ɛ;. Orientation of the line of fracture (12.0°) is very close to the orientation of locus of strain maxima (11.6°) computed from the strain mapping at 0.063ɛ itself. These results show the efficacy of the DIC based method to predict the location as well as the profile of the fracture, at an early stage.
Thabane, Lehana; Ioannidis, George; Kennedy, Courtney; Papaioannou, Alexandra
2015-01-01
Objectives To compare the predictive accuracy of the frailty index (FI) of deficit accumulation and the phenotypic frailty (PF) model in predicting risks of future falls, fractures and death in women aged ≥55 years. Methods Based on the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort (n = 3,985), we compared the predictive accuracy of the FI and PF in risks of falls, fractures and death using three strategies: (1) investigated the relationship with adverse health outcomes by increasing per one-fifth (i.e., 20%) of the FI and PF; (2) trichotomized the FI based on the overlap in the density distribution of the FI by the three groups (robust, pre-frail and frail) which were defined by the PF; (3) categorized the women according to a predicted probability function of falls during the third year of follow-up predicted by the FI. Logistic regression models were used for falls and death, while survival analyses were conducted for fractures. Results The FI and PF agreed with each other at a good level of consensus (correlation coefficients ≥ 0.56) in all the three strategies. Both the FI and PF approaches predicted adverse health outcomes significantly. The FI quantified the risks of future falls, fractures and death more precisely than the PF. Both the FI and PF discriminated risks of adverse outcomes in multivariable models with acceptable and comparable area under the curve (AUCs) for falls (AUCs ≥ 0.68) and death (AUCs ≥ 0.79), and c-indices for fractures (c-indices ≥ 0.69) respectively. Conclusions The FI is comparable with the PF in predicting risks of adverse health outcomes. These findings may indicate the flexibility in the choice of frailty model for the elderly in the population-based settings. PMID:25764521
Fall risk: the clinical relevance of falls and how to integrate fall risk with fracture risk.
Peeters, G; van Schoor, Natasja M; Lips, Paul
2009-12-01
In old age, 5-10% percent of all falls result in a fracture, and up to 90% of all fractures result from a fall. This article describes the link between fall risk and fracture risk in community-dwelling older persons. Which factors attribute to both the fall risk and the fracture risk? Which falls result in a fracture? Which tools are available to predict falls and fractures? Directions for the use of prediction tools in clinical practice are given. Challenges for future research include further validation of existing prediction tools and evaluation of the cost-effectiveness of treatment after screening.
Callus features of regenerate fracture cases in femoral lengthening in achondroplasia.
Devmurari, Kamlesh N; Song, Hae Ryong; Modi, Hitesh N; Venkatesh, K P; Ju, Kim Seung; Song, Sang Heon
2010-09-01
We studied the callus features seen in cases of regenerate fracture in femoral lengthening using a monolateral fixator in achondroplasia to determine whether callus types and shapes can predict the probability of callus fracture. The radiographs of 28 cases of femoral lengthening in 14 patients, 14 cases of callus fracture, and 14 cases without callus fracture were retrospectively analyzed by four observers and classified into different shapes and types in concordance with the Ru Li classification. The average lengthening of 9.4 cm (range 7.5-11.8 cm) was achieved, which was 41% (range 30-55%) of the original length and the average timing of callus fracture was 470 days (range 440-545 days) after surgery in the callus fracture group. While the average lengthening of 9.1 cm (range 8-9.7 cm) was achieved, this was 30% (range 28-32%) of the original length in the group of patients without callus fracture. The callus was atypically shaped, there was a 48% average (range 30-72%) reduction of the callus width compared with the natural width of the femur, and a lucent pathway was present in all cases of regenerate fracture. A lucent pathway was seen in all fracture cases with concave, lateral, and atypical shapes, and there was more than 30% lengthening and 30% reduction of the callus width compared with the natural width of the femur, which are the warning signs for regenerate fractures. These signs help the surgeon to predict the outcome and guide him in planning for any additional interventions. The Ru Li classification is an effective method for the evaluation of the chance of callus fracture.
Discriminative value of FRAX for fracture prediction in a cohort of Chinese postmenopausal women.
Cheung, E Y N; Bow, C H; Cheung, C L; Soong, C; Yeung, S; Loong, C; Kung, A
2012-03-01
We followed 2,266 postmenopausal Chinese women for 4.5 years to determine which model best predicts osteoporotic fracture. A model that contains ethnic-specific risk factors, some of which reflect frailty, performed as well as or better than the well-established FRAX model. Clinical risk assessment, with or without T-score, can predict fractures in Chinese postmenopausal women although it is unknown which combination of clinical risk factors is most effective. This prospective study sought to compare the accuracy for fracture prediction using various models including FRAX, our ethnic-specific clinical risk factors (CRF) and other simple models. This study is part of the Hong Kong Osteoporosis Study. A total of 2,266 treatment naïve postmenopausal women underwent clinical risk factor and bone mineral density assessment. Subjects were followed up for outcome of major osteoporotic fracture and receiver operating characteristic (ROC) curves for different models were compared. The percentage of subjects in different quartiles of risk according to various models who actually fractured was also compared. The mean age at baseline was 62.1 ± 8.5 years and mean follow-up time was 4.5 ± 2.8 years. A total of 106 new major osteoporotic fractures were reported, of which 21 were hip fractures. Ethnic-specific CRF with T-score performed better than FRAX with T-score (based on both Chinese normative and National Health and Nutrition Examination Survey (NHANES) databases) in terms of AUC comparison for prediction of major osteoporotic fracture. The two models were similar in hip fracture prediction. The ethnic-specific CRF model had a 10% higher sensitivity than FRAX at a specificity of 0.8 or above. CRF related to frailty and differences in lifestyle between populations are likely to be important in fracture prediction. Further work is required to determine which and how CRF can be applied to develop a fracture prediction model in our population.
Quasi-static analysis of elastic behavior for some systems having higher fracture densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.; Aydin, A.
2009-10-15
Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting whenmore » and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.« less
Prediction of R-curves from small coupon tests
NASA Technical Reports Server (NTRS)
Yeh, J. R.; Bray, G. H.; Bucci, R. J.; Macheret, Y.
1994-01-01
R-curves were predicted for Alclad 2024-T3 and C188-T3 sheet using the results of small-coupon Kahn tear tests in combination with two-dimensional elastic-plastic finite element stress analyses. The predictions were compared to experimental R-curves from 6.3, 16 and 60-inch wide M(T) specimens and good agreement was obtained. The method is an inexpensive alternative to wide panel testing for characterizing the fracture toughness of damage-tolerant sheet alloys. The usefulness of this approach was demonstrated by performing residual strength calculations for a two-bay crack in a representative fuselage structure. C188-T3 was predicted to have a 24 percent higher load carrying capability than 2024-T3 in this application as a result of its superior fracture toughness.
Design for inadvertent damage in composite laminates
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Chamis, Christos C.
1992-01-01
Simplified predictive methods and models to computationally simulate durability and damage in polymer matrix composite materials/structures are described. The models include (1) progressive fracture, (2) progressively damaged structural behavior, (3) progressive fracture in aggressive environments, (4) stress concentrations, and (5) impact resistance. Several examples are included to illustrate applications of the models and to identify significant parameters and sensitivities. Comparisons with limited experimental data are made.
A new software for prediction of femoral neck fractures.
Testi, Debora; Cappello, Angelo; Sgallari, Fiorella; Rumpf, Martin; Viceconti, Marco
2004-08-01
Femoral neck fractures are an important clinical, social and economic problem. Even if many different attempts have been carried out to improve the accuracy predicting the fracture risk, it was demonstrated in retrospective studies that the standard clinical protocol achieves an accuracy of about 65%. A new procedure was developed including for the prediction not only bone mineral density but also geometric and femoral strength information and achieving an accuracy of about 80% in a previous retrospective study. Aim of the present work was to re-engineer research-based procedures and develop a real-time software for the prediction of the risk for femoral fracture. The result was efficient, repeatable and easy to use software for the evaluation of the femoral neck fracture risk to be inserted in the daily clinical practice providing a useful tool for the improvement of fracture prediction.
NASA Astrophysics Data System (ADS)
Mynatt, I.; Hilley, G. E.; Pollard, D. D.
2006-12-01
Understanding and predicting the characteristics of folding induced fracturing is an important and intriguing structural problem. Folded sequences of sedimentary rock at depth are common traps for hydrocarbons and water and fractures can strongly effect (both positively and negatively) this trapping capability. For these reasons fold-fracture relationships are well studied, but due to the complex interactions between the remote tectonic stress, rheologic properties, underlying fault geometry and slip, and pre-existing fractures, fracture characteristics can vary greatly from fold to fold. Additionally, examination of the relationships between fundamental characteristics such as fold geometry and fracture density are difficult even in thoroughly studied producing fields as measurements of fold shape are hampered by the low resolution of seismic surveying and measurements of fractures are limited to sparse well-bore locations. Due to the complexity of the system, the limitations of available data and small number of detailed case studies, prediction of fracture characteristics, e.g. the distribution of fracture density, are often difficult to make for a particular fold. We suggest a combination of mechanical and numerical modeling and analysis combined with detailed field mapping can lead to important insights into fold-fracture relationships. We develop methods to quantify both fold geometry and fracture characteristics, and summarize their relationships for an exhumed analogue reservoir case study. The field area is Raplee Monocline, a Laramide aged, N-S oriented, ~14-km long fold exposed in the Monument Upwarp of south-eastern Utah and part of the larger Colorado Plateau geologic province. The investigation involves three distinct parts: 1) Field based characterization and mapping of the fractures on and near the fold; 2) Development of accurate models of the fold geometry using high resolution data including ~3.5x107 x, y, z topographic points collected using Airborne Laser Swath Mapping (ALSM); and 3) Analysis of the fold shape and fracture patterns using the concepts of differential geometry and fracture mechanics. Field documentation of fracture characteristics enables the classification of distinct pre- and syn- folding fracture sets and the development of conceptual models of multiple stages of fracture evolution. Numerical algorithms, visual methods and field mapping techniques are used to extract the geometry of specific stratigraphic bedding surfaces and interpolate fold geometry between topographic exposures, thereby creating models of the fold geometry at several stratigraphic levels. Geometric characteristics of the fold models, such as magnitudes and directions of maximum and minimum normal curvature and fold limb dip, are compared to the observed fracture characteristics to identify the following relationships: 1) Initiation of folding related fractures at ten degrees of limb dip and increasing fracture density with increasing dip and 2) No correlation between absolute maximum fold curvature and fracture density.
Wihlborg, A; Englund, M; Åkesson, K; Gerdhem, P
2015-08-01
In a large cohort of elderly women followed for 10 years, we found that balance, gait speed, and self-reported history of fall independently predicted fracture. These clinical risk factors are easily evaluated and therefore advantageous in a clinical setting. They would improve fracture risk assessment and thereby also fracture prevention. The aim of this study was to identify additional risk factors for osteoporosis-related fracture by investigating the fracture predictive ability of physical performance tests and self-reported history of falls. In the population-based Osteoporosis Prospective Risk Assessment study (OPRA), 1044 women were recruited at the age of 75 and followed for 10 years. At inclusion, knee extension force, standing balance, gait speed, and bone mineral density (BMD) were examined. Falls the year before investigation was assessed by questionnaire. Cox proportional hazards regression analysis was used to determine fracture hazard ratios (HR) with BMD, history of fracture, BMI, smoking habits, bisphosphonate, vitamin D, glucocorticoid, and alcohol use as covariates. Continuous variables were standardized and HR shown for each standard deviation change. Of all women, 427 (41%) sustained at least one fracture during the 10-year follow-up. Failing the balance test had an HR of 1.98 (1.18-3.32) for hip fracture. Each standard deviation decrease in gait speed was associated with an HR of 1.37 (1.14-1.64) for hip fracture. Previous fall had an HR of 1.30 (1.03-1.65) for any fracture; 1.39 (1.08-1.79) for any osteoporosis-related fracture; and 1.60 (1.03-2.48) for distal forearm fracture. Knee extension force did not show fracture predictability. The balance test, gait speed test, and self-reported history of fall all hold independent fracture predictability. Consideration of these clinical risk factors for fracture would improve the fracture risk assessment and subsequently also fracture prevention.
Sideways fall-induced impact force and its effect on hip fracture risk: a review.
Nasiri Sarvi, M; Luo, Y
2017-10-01
Osteoporotic hip fracture, mostly induced in falls among the elderly, is a major health burden over the world. The impact force applied to the hip is an important factor in determining the risk of hip fracture. However, biomechanical researches have yielded conflicting conclusions about whether the fall-induced impact force can be accurately predicted by the available models. It also has been debated whether or not the effect of impact force has been considered appropriately in hip fracture risk assessment tools. This study aimed to provide a state-of-the-art review of the available methods for predicting the impact force, investigate their strengths/limitations, and suggest further improvements in modeling of human body falling. We divided the effective parameters on impact force to two categories: (1) the parameters that can be determined subject-specifically and (2) the parameters that may significantly vary from fall to fall for an individual and cannot be considered subject-specifically. The parameters in the first category can be investigated in human body fall experiments. Video capture of real-life falls was reported as a valuable method to investigate the parameters in the second category that significantly affect the impact force and cannot be determined in human body fall experiments. The analysis of the gathered data revealed that there is a need to develop modified biomechanical models for more accurate prediction of the impact force and appropriately adopt them in hip fracture risk assessment tools in order to achieve a better precision in identifying high-risk patients. Graphical abstract Impact force to the hip induced in sideways falls is affected by many parameters and may remarkably vary from subject to subject.
Nonstandard Lumbar Region in Predicting Fracture Risk.
Alajlouni, Dima; Bliuc, Dana; Tran, Thach; Pocock, Nicholas; Nguyen, Tuan V; Eisman, John A; Center, Jacqueline R
Femoral neck (FN) bone mineral density (BMD) is the most commonly used skeletal site to estimate fracture risk. The role of lumbar spine (LS) BMD in fracture risk prediction is less clear due to osteophytes that spuriously increase LS BMD, particularly at lower levels. The aim of this study was to compare fracture predictive ability of upper L1-L2 BMD with standard L2-L4 BMD and assess whether the addition of either LS site could improve fracture prediction over FN BMD. This study comprised a prospective cohort of 3016 women and men over 60 yr from the Dubbo Osteoporosis Epidemiology Study followed up for occurrence of minimal trauma fractures from 1989 to 2014. Dual-energy X-ray absorptiometry was used to measure BMD at L1-L2, L2-L4, and FN at baseline. Fracture risks were estimated using Cox proportional hazards models separately for each site. Predictive performances were compared using receiver operating characteristic curve analyses. There were 565 women and 179 men with a minimal trauma fracture during a mean of 11 ± 7 yr. L1-L2 BMD T-score was significantly lower than L2-L4 T-score in both genders (p < 0.0001). L1-L2 and L2-L4 BMD models had a similar fracture predictive ability. LS BMD was better than FN BMD in predicting vertebral fracture risk in women [area under the curve 0.73 (95% confidence interval, 0.68-0.79) vs 0.68 (95% confidence interval, 0.62-0.74), but FN was superior for hip fractures prediction in both women and men. The addition of L1-L2 or L2-L4 to FN BMD in women increased overall and vertebral predictive power compared with FN BMD alone by 1% and 4%, respectively (p < 0.05). In an elderly population, L1-L2 is as good as but not better than L2-L4 site in predicting fracture risk. The addition of LS BMD to FN BMD provided a modest additional benefit in overall fracture risk. Further studies in individuals with spinal degenerative disease are needed. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Classification of Porcine Cranial Fracture Patterns Using a Fracture Printing Interface,.
Wei, Feng; Bucak, Serhat Selçuk; Vollner, Jennifer M; Fenton, Todd W; Jain, Anil K; Haut, Roger C
2017-01-01
Distinguishing between accidental and abusive head trauma in children can be difficult, as there is a lack of baseline data for pediatric cranial fracture patterns. A porcine head model has recently been developed and utilized in a series of studies to investigate the effects of impact energy level, surface type, and constraint condition on cranial fracture patterns. In the current study, an automated pattern recognition method, or a fracture printing interface (FPI), was developed to classify cranial fracture patterns that were associated with different impact scenarios documented in previous experiments. The FPI accurately predicted the energy level when the impact surface type was rigid. Additionally, the FPI was exceedingly successful in determining fractures caused by skulls being dropped with a high-level energy (97% accuracy). The FPI, currently developed on the porcine data, may in the future be transformed to the task of cranial fracture pattern classification for human infant skulls. © 2016 American Academy of Forensic Sciences.
The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials
NASA Astrophysics Data System (ADS)
Aliha, Mohammad Reza Mohammad; Mahdavi, Eqlima; Ayatollahi, Majid Reza
2017-03-01
Up to now, several methods have been proposed to determine the mode I fracture toughness of rocks. In this research, different cylindrical and disc shape samples, namely: chevron bend (CB), short rod (SR), cracked chevron notched Brazilian disc (CCNBD), and semi-circular bend (SCB) specimens were considered for investigating mode I fracture behavior of a marble rock. It is shown experimentally that the fracture toughness values of the tested rock material obtained from different test specimens are not consistent. Indeed, depending on the geometry and loading type of the specimen, noticeable discrepancies can be observed for the fracture toughness of a same rock material. The difference between the experimental mode I fracture resistance results is related to the magnitude and sign of T-stress that is dependent on the geometry and loading configuration of the specimen. For the chevron-notched samples, the critical value of T-stress corresponding to the critical crack length was determined using the finite element method. The CCNBD and SR specimens had the most negative and positive T-stress values, respectively. The dependency of mode I fracture resistance to the T-stress was shown using the extended maximum tangential strain (EMTSN) criterion and the obtained experimental rock fracture toughness data were predicted successfully with this criterion.
Analysis of fracture in sheet bending and roll forming
NASA Astrophysics Data System (ADS)
Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias
2018-05-01
The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.
Wei, Yaqiang; Dong, Yanhui; Yeh, Tian-Chyi J; Li, Xiao; Wang, Liheng; Zha, Yuanyuan
2017-11-01
There have been widespread concerns about solute transport problems in fractured media, e.g. the disposal of high-level radioactive waste in geological fractured rocks. Numerical simulation of particle tracking is gradually being employed to address these issues. Traditional predictions of radioactive waste transport using discrete fracture network (DFN) models often consider one particular realization of the fracture distribution based on fracture statistic features. This significantly underestimates the uncertainty of the risk of radioactive waste deposit evaluation. To adequately assess the uncertainty during the DFN modeling in a potential site for the disposal of high-level radioactive waste, this paper utilized the probabilistic distribution method (PDM). The method was applied to evaluate the risk of nuclear waste deposit in Beishan, China. Moreover, the impact of the number of realizations on the simulation results was analyzed. In particular, the differences between the modeling results of one realization and multiple realizations were demonstrated. Probabilistic distributions of 20 realizations at different times were also obtained. The results showed that the employed PDM can be used to describe the ranges of the contaminant particle transport. The high-possibility contaminated areas near the release point were more concentrated than the farther areas after 5E6 days, which was 25,400 m 2 .
Micromechanics based simulation of ductile fracture in structural steels
NASA Astrophysics Data System (ADS)
Yellavajjala, Ravi Kiran
The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under monotonic loading for a wide range of stress states. Novel differentiation procedures based on complex analyses along with existing finite difference methods and automatic differentiation are extended using perturbation techniques to evaluate tensor derivatives. These tensor differentiation techniques are then used to automate nonlinear constitutive models into implicit finite element framework. Finally, the efficiency of these automation procedures is demonstrated using benchmark problems.
The influence of open fracture anisotropy on CO2 movement within geological storage complexes
NASA Astrophysics Data System (ADS)
Bond, C. E.; Wightman, R.; Ringrose, P. S.
2012-12-01
Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These predictions have been compared with InSAR imagery of surface uplift, used as an indicator of fluid pressure and movement in the sub-surface, around the CO2 injection wells. The analysis shows that the permeability tensor with the greatest anisotropy, that for the DFN sub-set of open fractures, matches well with the anisotropy in surface uplift imaged by InSAR. We demonstrate that predicting fracture networks alone does not predict fluid movement in the sub-surface, and that fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our results show that a workflow of fracture network prediction combined with present day stress analysis can be used to successfully predict CO2 movement in the sub-surface at an active injection site.
Computational predictive methods for fracture and fatigue
NASA Technical Reports Server (NTRS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-01-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Computational predictive methods for fracture and fatigue
NASA Astrophysics Data System (ADS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Failed rib region prediction in a human body model during crash events with precrash braking.
Guleyupoglu, B; Koya, B; Barnard, R; Gayzik, F S
2018-02-28
The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. Kinematics between both methods were similar (peak max deviation: ΔX head = 17 mm; ΔZ head = 4 mm; ΔX thorax = 5 mm; ΔZ thorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.
Sliding contact fracture of dental ceramics: Principles and validation
Ren, Linlin; Zhang, Yu
2014-01-01
Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact—a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models. PMID:24632538
Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Lewicki, David G.
1996-01-01
Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Sil; Barker, Erin; Cheng, Guang
2016-01-06
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to themore » experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results. This indicates that the developed 3D extrinsic modeling method may be used to examine the influence of various aspects of pore sizes/distributions as well as intrinsic properties (i.e., matrix properties) on the ductility/fracture of Mg castings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, G.; Hu, X. H.; Choi, K. S.
Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different representative volume element (RVE) sizes are used to predict the size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson-Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the size-dependent fracture strains for multiphase materials. In addition to the RVE sizes, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Application of the derived fracture strain versus RVE size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiberbraided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiberbraided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
Hygrothermomechanical fracture stress criteria for fiber composites with sense-parity
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Ginty, C. A.
1983-01-01
Hygrothermomechanical fracture stress criteria are developed and evaluated for unidirectional composites (plies) with sense-parity. These criteria explicity quantify the individual contributions of applied, hygral and thermal stresses as well as couplings among these stresses. The criteria are for maximum stress, maximum strain, internal friction, work-to-fracture and combined-stress fracture. Predicted results obtained indicate that first ply failure will occur at stress levels lower than those predicted using criteria currently available in the literature. Also, the contribution of the various stress couplings (predictable only by fracture criteria with sense-parity) is significant to first ply failure and attendant fracture modes.
NASA Astrophysics Data System (ADS)
Raziperchikolaee, Samin
The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.
Laboratory research of fracture geometry in multistage HFF in triaxial state
NASA Astrophysics Data System (ADS)
Bondarenko, T. M.; Hou, B.; Chen, M.; Yan, L.
2017-05-01
Multistage hydraulic fracturing of formation (HFF) in wells with horizontal completion is an efficientmethod for intensifying oil extraction which, as a rule, is used to develop nontraditional collectors. It is assumed that the complicated character of HFF fractures significantly influences the fracture geometry in the rock matrix. Numerous theoretical models proposed to predict the fracture geometry and the character of interaction of mechanical stresses in the multistage HFF have not been proved experimentally. In this paper, we present the results of laboratory modeling of the multistage HFF performed on a contemporary laboratory-scale plant in the triaxial stress state by using a gel-solution as the HFF agent. As a result of the experiment, a fracturing pattern was formed in the cubic specimen of the model material. The laboratory results showed that a nearly plane fracture is formed at the firstHFF stage, while a concave fracture is formed at the second HFF stage. The interaction of the stress fields created by the two principal HFF fractures results in the growth of secondary fractures whose directions turned out to be parallel to the modeled well bore. But this stress interference leads to a decrease in the width of the second principal fracture. It is was discovered that the penny-shaped fracture model is more appropriate for predicting the geometry of HFF fractures in horizontal wells than the two-dimensional models of fracture propagation (PKN model, KGD model). A computational experiment based on the boundary element method was carried out to obtain the qualitative description of the multistage HFF processes. As a result, a mechanical model of fracture propagation was constructed,which was used to obtain the mechanical stress field (the stress contrast) and the fracture opening angle distribution over fracture length and fracture orientation direction. The conclusions made in the laboratory modeling of the multistage HFF technology agree well with the conclusions made in the computational experiment. Special attention must be paid to the design of the HFF stage spacing density in the implementation of the multistage HFF in wells with horizontal completion.
Review of hydraulic fracture mapping using advanced accelerometer-based receiver systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.; Uhl, J.E.; Engler, B.P.
Hydraulic fracturing is an important tool for natural gas and oil exploitation, but its optimization has been impeded by an inability to observe how the fracture propagates and what its overall dimensions are. The few experiments in which fractures have been exposed through coring or mineback have shown that hydraulic fractures are complicated multi-stranded structures that may behave much differently than currently predicted by models. It is clear that model validation, fracture optimization, problem identification and solution, and field development have all been encumbered by the absence of any ground truth information on fracture behavior in field applications. The solutionmore » to this problem is to develop techniques to image the hydraulic fracture in situ from either the surface, the treatment well, or offset wells. Several diagnostic techniques have been available to assess individual elements of the fracture geometry, but most of these techniques have limitations on their usefulness. For example, tracers and temperature logs can only measure fracture height at the wellbore, well testing and production history matching provide a productive length which may or may not be different from the true fracture length, and tiltmeters can provide accurate information on azimuth and type of fracture (horizontal or vertical), but length and height can only be extracted from a non-unique inversion of the data. However, there is a method, the microseismic technique, which possesses the potential for imaging the entire hydraulic fracture and, more importantly, its growth history. This paper discusses application of advanced technology to the microseismic method in order to provide detailed accurate images of fractures and their growth processes.« less
Cohen-Stavi, Chandra; Leventer-Roberts, Maya; Balicer, Ran D
2017-01-01
Objective To directly compare the performance and externally validate the three most studied prediction tools for osteoporotic fractures—QFracture, FRAX, and Garvan—using data from electronic health records. Design Retrospective cohort study. Setting Payer provider healthcare organisation in Israel. Participants 1 054 815 members aged 50 to 90 years for comparison between tools and cohorts of different age ranges, corresponding to those in each tools’ development study, for tool specific external validation. Main outcome measure First diagnosis of a major osteoporotic fracture (for QFracture and FRAX tools) and hip fractures (for all three tools) recorded in electronic health records from 2010 to 2014. Observed fracture rates were compared to probabilities predicted retrospectively as of 2010. Results The observed five year hip fracture rate was 2.7% and the rate for major osteoporotic fractures was 7.7%. The areas under the receiver operating curve (AUC) for hip fracture prediction were 82.7% for QFracture, 81.5% for FRAX, and 77.8% for Garvan. For major osteoporotic fractures, AUCs were 71.2% for QFracture and 71.4% for FRAX. All the tools underestimated the fracture risk, but the average observed to predicted ratios and the calibration slopes of FRAX were closest to 1. Tool specific validation analyses yielded hip fracture prediction AUCs of 88.0% for QFracture (among those aged 30-100 years), 81.5% for FRAX (50-90 years), and 71.2% for Garvan (60-95 years). Conclusions Both QFracture and FRAX had high discriminatory power for hip fracture prediction, with QFracture performing slightly better. This performance gap was more pronounced in previous studies, likely because of broader age inclusion criteria for QFracture validations. The simpler FRAX performed almost as well as QFracture for hip fracture prediction, and may have advantages if some of the input data required for QFracture are not available. However, both tools require calibration before implementation. PMID:28104610
Clinical prediction rule for suspected scaphoid fractures: A prospective cohort study.
Rhemrev, S J; Beeres, F J P; van Leerdam, R H; Hogervorst, M; Ring, D
2010-10-01
The low prevalence of true fractures amongst suspected fractures magnifies the shortcomings of the diagnostic tests used to triage suspected scaphoid fractures. The objective was to develop a clinical prediction rule that would yield a subset of patients who were more likely to have a scaphoid fracture than others who lacked the subset criteria. Seventy-eight consecutive patients diagnosed with a suspected scaphoid fracture were included. Standardised patient history, physical examination, range of motion (ROM) and strength measurements were studied. The reference standard for a true fracture was based on the results of magnetic resonance imaging, bone scintigraphy, follow-up radiographs and examination. Analysis revealed three significant independent predictors: extension <50%, supination strength ≤ 10% and the presence of a previous fracture. Clinical prediction rules have the potential to increase the prevalence of true fractures amongst patients with suspected scaphoid fractures, which can increase the diagnostic performance characteristics of radiological diagnostic tests used for triage. 2010 Elsevier Ltd. All rights reserved.
High serum total cholesterol is a long-term cause of osteoporotic fracture.
Trimpou, P; Odén, A; Simonsson, T; Wilhelmsen, L; Landin-Wilhelmsen, K
2011-05-01
Risk factors for osteoporotic fractures were evaluated in 1,396 men and women for a period of 20 years. Serum total cholesterol was found to be an independent osteoporotic fracture risk factor whose predictive power improves with time. The purpose of this study was to evaluate long-term risk factors for osteoporotic fracture. A population random sample of men and women aged 25-64 years (the Gothenburg WHO MONICA project, N = 1,396, 53% women) was studied prospectively. The 1985 baseline examination recorded physical activity at work and during leisure time, psychological stress, smoking habits, coffee consumption, BMI, waist/hip ratio, blood pressure, total, HDL and LDL cholesterol, triglycerides, and fibrinogen. Osteoporotic fractures over a period of 20 years were retrieved from the Gothenburg hospital registers. Poisson regression was used to analyze the predictive power for osteoporotic fracture of each risk factor. A total number of 258 osteoporotic fractures occurred in 143 participants (10.2%). As expected, we found that previous fracture, smoking, coffee consumption, and lower BMI each increase the risk for osteoporotic fracture independently of age and sex. More unexpectedly, we found that the gradient of risk of serum total cholesterol to predict osteoporotic fracture significantly increases over time (p = 0.0377). Serum total cholesterol is an independent osteoporotic fracture risk factor whose predictive power improves with time. High serum total cholesterol is a long-term cause of osteoporotic fracture.
Azagra, Rafael; Zwart, Marta; Encabo, Gloria; Aguyé, Amada; Martin-Sánchez, Juan Carlos; Puchol-Ruiz, Nuria; Gabriel-Escoda, Paula; Ortiz-Alinque, Sergio; Gené, Emilio; Iglesias, Milagros; Moriña, David; Diaz-Herrera, Miguel Angel; Utzet, Mireia; Manresa, Josep Maria
2016-06-17
The FRAX® tool estimates the risk of a fragility fracture among the population and many countries have been evaluating its performance among their populations since its creation in 2007. The purpose of this study is to update the first FRIDEX cohort analysis comparing FRAX with the bone mineral density (BMD) model, and its predictive abilities. The discriminatory ability of the FRAX was assessed using the 'area under curve' of the receiver operating characteristic (AUC-ROC). Predictive ability was assessed by comparing estimated risk fractures with incidence fractures after a 10-year follow up period. One thousand three hundred eight women ≥ 40 and ≤ 90 years followed up during a 10-year period. The AUC for major osteoporotic fractures using FRAX without DXA was 0.686 (95 % CI 0.630-0.742) and using FN T-score of DXA 0.714 (95 % CI 0.661-0.767). Using only the traditional parameters of DXA (FN T-score), the AUC was 0.706 (95 % CI 0.652-0.760). The AUC for hip osteoporotic fracture was 0.883 (95 % CI 0.827-0.938), 0.857 (95 % CI 0.773-0.941), and 0.814 (95 % CI 0.712-0.916) respectively. For major osteoporotic fractures, the overall predictive value using the ratio Observed fractures/Expected fractures calculated with FRAX without T-score of DXA was 2.29 and for hip fractures 2.28 and with the inclusion of the T-score 2.01 and 1.83 respectively. However, for hip fracture in women < 65 years was 1.53 and 1.24 respectively. The FRAX tool has been found to show a good discriminatory capacity for detecting women at high risk of fragility fracture, and is better for hip fracture than major fracture. The test of sensibility shows that it is, at least, not inferior than when using BMD model alone. The predictive capacity of FRAX tool needs some adjustment. This capacity is better for hip fracture prediction and better for women < 65 years. Further studies in Catalonia and other regions of Spain are needed to fine tune the FRAX tool's predictive capability.
Hasserius, R; Karlsson, M K; Nilsson, B E; Redlund-Johnell, I; Johnell, O
2003-01-01
The aim of this study was to evaluate whether a prevalent vertebral deformity predicts mortality and fractures in both men and women. In the city of Malmö, 598 individuals (298 men, 300 women; age 50-80 years) were selected from the city's population and were included in the Swedish part of the European Vertebral Osteoporosis Study (EVOS). At baseline the participants answered a questionnaire and lateral spine radiographs were performed. The prevalence of subjects with vertebral deformity was assessed using a morphometric method. The mortality during a 10-year follow-up period was determined through the register of the National Swedish Board of Health and Welfare. Eighty-five men and 43 women died during the study period. The subsequent fracture incidence during the follow-up period was ascertained by postal questionnaires, telephone interviews and by a survey of the archives of the Department of Radiology in the city hospital. Thirty-seven men and 69 women sustained a fracture during the study period. Data are presented as hazard ratios (HR) with 95% confidence interval (95% CI) within brackets. Prevalent vertebral deformity, defined as a reduction by more than 3 standard deviations (SD) in vertebral height ratio, predicted mortality during the forthcoming decade in both men [age-adjusted HR 2.4 (95% CI 1.6-3.9)] and women [age-adjusted HR 2.3 (95% CI 1.3-4.3)]. In men there was an increased mortality due to cardiovascular and pulmonary diseases and in women due to cancer. Prevalent vertebral deformity predicted an increased risk of any fracture during the forthcoming decade in both men [age-adjusted HR 2.7 (95% CI 1.4-5.3)] and women [age-adjusted HR 1.8 (95% CI 1.1-2.9)]. Prevalent vertebral deformity predicted an increased risk of any subsequent fragility fracture in women [age-adjusted HR 2.0 (95% CI 1.1-3.5)]; however, in men the increased risk was nonsignificant [age-adjusted HR 1.9 (95% CI 0.7-5.1)]. In summary, a prevalent vertebral deformity can predict both increased mortality and increased fracture incidence during the following decade in both men and women. We conclude that prevalent vertebral deformity could be used as a risk factor in both genders for mortality and future fracture.
Fracture prediction using modified mohr coulomb theory for non-linear strain paths using AA3104-H19
NASA Astrophysics Data System (ADS)
Dick, Robert; Yoon, Jeong Whan
2016-08-01
Experiment results from uniaxial tensile tests, bi-axial bulge tests, and disk compression tests for a beverage can AA3104-H19 material are presented. The results from the experimental tests are used to determine material coefficients for both Yld2000 and Yld2004 models. Finite element simulations are developed to study the influence of materials model on the predicted earing profile. It is shown that only the YLD2004 model is capable of accurately predicting the earing profile as the YLD2000 model only predicts 4 ears. Excellent agreement with the experimental data for earing is achieved using the AA3104-H19 material data and the Yld2004 constitutive model. Mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on specimens with a central hole and notched specimens. Torsion of a double bridge specimen is conducted to generate points near pure shear conditions. The Nakajima test is utilized to produce points in bi-axial tension. The data from the experiments is used to develop the fracture locus in the principal strain space. Mapping from principal strain space to stress triaxiality space, principal stress space, and polar effective plastic strain space is accomplished using a generalized mapping technique. Finite element modeling is used to validate the Modified Mohr-Coulomb (MMC) fracture model in the polar space. Models of a hole expansion during cup drawing and a cup draw/reverse redraw/expand forming sequence demonstrate the robustness of the modified PEPS fracture theory for the condition with nonlinear forming paths and accurately predicts the onset of failure. The proposed methods can be widely used for predicting failure for the examples which undergo nonlinear strain path including rigid-packaging and automotive forming.
Helminen, Heli; Luukkaala, Tiina; Saarnio, Juha; Nuotio, Maria
2017-04-01
Malnutrition is common among older hip fracture patients and associated with adverse outcomes. We examined Mini Nutritional Assessment short (MNA-SF) and long form (MNA-LF) and serum albumin as prognostic indicators of mobility, living arrangements and mortality after hip fracture. Population-based prospective data were collected on 594 hip fracture patients aged 65 and over. MNA-SF, MNA-LF and serum albumin were assessed on admission. Outcomes were poorer mobility; transfer to more assisted living accommodation and mortality one month, four months and one year post fracture. Logistic regression analyses for mobility and living arrangements with odds ratios (OR) and Cox proportional hazards model for mortality with hazard ratios (HR) and 95% confidence intervals (CI) were used, adjusted for age, gender, ASA grade and fracture type. All measures predicted mortality at all time-points. Risk of malnutrition and malnutrition measured by MNA-LF predicted mobility and living arrangements within four months of hip fracture. At one year, risk of malnutrition predicted mobility and malnutrition predicted living arrangements, when measured by MNA-LF. Malnutrition, but not risk thereof, measured by MNA-SF predicted living arrangements at all time-points. None of the measures predicted one-month mobility. All measures were strong indicators of short- and long-term mortality after hip fracture. MNA-LF was superior in predicting mobility and living arrangements, particularly at four months. All measures were relatively poor in predicting short-term outcomes of mobility and living arrangements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tiwana, Paul S; Kushner, George M; Alpert, Brian
2007-06-01
To review, retrospectively, the outcomes of 102 patients who underwent lag screw technique fixation of fractures of the anterior mandible. A total of 102 consecutive, skeletally mature patients who have undergone open reduction internal fixation for fractures of the anterior mandible utilizing the lag screw technique were reviewed. All patients had a clinically mobile fracture between the mental foramina of the mandible. The patients were followed at usual postoperative intervals with shortest long-term follow-up of 2 months. Intraoperative and long-term postoperative outcomes including status of union, infection, and intraoperative surgical misadventure were recorded. Data from the 102 patients showed that there was 1 fixation failure due to inappropriate patient selection, 1 nonunion requiring bone grafting, 1 with infected screws but with union, 1 with an infected screw and delayed union treated conservatively, and 6 with broken drills from intraoperative surgical misadventures. Lag screw osteosynthesis of anterior mandibular fractures is a sensitive, facile, predictable, and relatively inexpensive method for internal fixation of indicated fractures. As with all methods of rigid internal fixation, most failures or complications are the result of operator judgment or technique.
Hydraulic fracture propagation modeling and data-based fracture identification
NASA Astrophysics Data System (ADS)
Zhou, Jing
Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.
Structural behavior of composites with progressive fracture
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Murthy, P. L. N.; Chamis, C. C.
1989-01-01
The objective of the study is to unify several computational tools developed for the prediction of progressive damage and fracture with efforts for the prediction of the overall response of damaged composite structures. In particular, a computational finite element model for the damaged structure is developed using a computer program as a byproduct of the analysis of progressive damage and fracture. Thus, a single computational investigation can predict progressive fracture and the resulting variation in structural properties of angleplied composites.
Cheng, G.; Hu, X. H.; Choi, K. S.; ...
2017-07-08
Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different model sizes are used in this paper to predict the grid-size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson–Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the grid-size-dependent fracture strains for multiphase materials. In addition to the grid-size dependency, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Finally, application of the derived fracture strain versus model size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, G.; Hu, X. H.; Choi, K. S.
Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different model sizes are used in this paper to predict the grid-size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson–Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the grid-size-dependent fracture strains for multiphase materials. In addition to the grid-size dependency, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Finally, application of the derived fracture strain versus model size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less
Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys
NASA Astrophysics Data System (ADS)
Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi
The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.
Hip Fractures in Persons with Stroke
Andersson, Åsa G.; Seiger, Åke; Appelros, Peter
2013-01-01
Background. Our aim was to determine the incidence of hip fractures within two years after stroke, to identify associated factors, to evaluate which test instruments that best could identify people at risk, and to describe the circumstances that prevailed when they sustained their hip fractures. Method. A total of 377 persons with first-ever stroke were followed up for a 24-month period. Stroke severity, cognition, and associated medical conditions were registered. The following test instruments were used: National Institutes of Health Stroke Scale, Mini-Mental State Examination, Berg Balance Scale, Timed Up & Go, and Stops Walking When Talking. Result. Sixteen of the persons fractured their hip within the study period, which corresponds to an incidence of 32 hip fractures per 1000 person-years. Persons with fractures more often had impaired vision and cognitive impairment and more had had previous fractures. Of the investigated test instruments, Timed Up & Go was the best test to predict fractures. Conclusion. The incidence of hip fractures in persons with stroke was high in this study. Persons with previous fractures, and visual and cognitive defects are at the greatest risk. Certain test instruments could be used in order to find people at risk, which should be targeted for fall preventive measures. PMID:23691433
Wellman, Tristan P.; Poeter, Eileen P.
2006-01-01
Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large‐scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data‐conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.
Li, Guowei; Thabane, Lehana; Papaioannou, Alexandra; Adachi, Jonathan D
2015-08-01
A frailty index (FI) of deficit accumulation could quantify and predict the risk of fractures based on the degree of frailty in the elderly. We aimed to compare the predictive powers between the FI and the fracture risk assessment tool (FRAX) in predicting risk of major osteoporotic fracture (hip, upper arm or shoulder, spine, or wrist) and hip fracture, using the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort. There were 3985 women included in the study, with the mean age of 69.4 years (standard deviation [SD] = 8.89). During the follow-up, there were 149 (3.98%) incident major osteoporotic fractures and 18 (0.48%) hip fractures reported. The FRAX and FI were significantly related to each other. Both FRAX and FI significantly predicted risk of major osteoporotic fracture, with a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 1.02-1.05) and 1.02 (95% CI: 1.01-1.04) for per-0.01 increment for the FRAX and FI respectively. The HRs were 1.37 (95% CI: 1.19-1.58) and 1.26 (95% CI: 1.12-1.42) for an increase of per-0.10 (approximately one SD) in the FRAX and FI respectively. Similar discriminative ability of the models was found: c-index = 0.62 for the FRAX and c-index = 0.61 for the FI. When cut-points were chosen to trichotomize participants into low-risk, medium-risk and high-risk groups, a significant increase in fracture risk was found in the high-risk group (HR = 2.04, 95% CI: 1.36-3.07) but not in the medium-risk group (HR = 1.23, 95% CI: 0.82-1.84) compared with the low-risk women for the FI, while for FRAX the medium-risk (HR = 2.00, 95% CI: 1.09-3.68) and high-risk groups (HR = 2.61, 95% CI: 1.48-4.58) predicted risk of major osteoporotic fracture significantly only when survival time exceeded 18months (550 days). Similar findings were observed for hip fracture and in sensitivity analyses. In conclusion, the FI is comparable with FRAX in the prediction of risk of future fractures, indicating that measures of frailty status may aid in fracture risk assessment and fracture prevention in the elderly. Further evidence from randomized controlled trials of osteoporosis medication interventions is needed to support the FI and FRAX as validated measures of fracture risk. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Guowei; Thabane, Lehana; Papaioannou, Alexandra; Adachi, Jonathan D.
2016-01-01
A frailty index (FI) of deficit accumulation could quantify and predict the risk of fractures based on the degree of frailty in the elderly. We aimed to compare the predictive powers between the FI and the fracture risk assessment tool (FRAX) in predicting risk of major osteoporotic fracture (hip, upper arm or shoulder, spine, or wrist) and hip fracture, using the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort. There were 3985 women included in the study, with the mean age of 69.4 years (standard deviation [SD] = 8.89). During the follow-up, there were 149 (3.98%) incident major osteoporotic fractures and 18 (0.48%) hip fractures reported. The FRAX and FI were significantly related to each other. Both FRAX and FI significantly predicted risk of major osteoporotic fracture, with a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 1.02–1.05) and 1.02 (95% CI: 1.01–1.04) for per-0.01 increment for the FRAX and FI respectively. The HRs were 1.37 (95% CI: 1.19–1.58) and 1.26 (95% CI: 1.12–1.42) for an increase of per-0.10 (approximately one SD) in the FRAX and FI respectively. Similar discriminative ability of the models was found: c-index = 0.62 for the FRAX and c-index = 0.61 for the FI. When cut-points were chosen to trichotomize participants into low-risk, medium-risk and high-risk groups, a significant increase in fracture risk was found in the high-risk group (HR = 2.04, 95% CI: 1.36–3.07) but not in the medium-risk group (HR = 1.23, 95% CI: 0.82–1.84) compared with the low-risk women for the FI, while for FRAX the medium-risk (HR = 2.00, 95% CI: 1.09–3.68) and high-risk groups (HR = 2.61, 95% CI: 1.48–4.58) predicted risk of major osteoporotic fracture significantly only when survival time exceeded 18 months (550 days). Similar findings were observed for hip fracture and in sensitivity analyses. In conclusion, the FI is comparable with FRAX in the prediction of risk of future fractures, indicating that measures of frailty status may aid in fracture risk assessment and fracture prevention in the elderly. Further evidence from randomized controlled trials of osteoporosis medication interventions is needed to support the FI and FRAX as validated measures of fracture risk. PMID:25916552
Curtis, E M; Harvey, N C; D'Angelo, S; Cooper, C S; Ward, K A; Taylor, P; Pearson, G; Cooper, C
2016-12-01
We studied a prospective UK cohort of women aged 20 to 80 years, assessed by dual-energy X-ray absorptiometry (DXA) at baseline. Bone mineral content (BMC) and areal bone mineral density (aBMD), but not bone area (BA), at femoral neck, lumbar spine and the whole body sites were similarly predictive of incident fractures. Low aBMD, measured by DXA, is a well-established risk factor for future fracture, but little is known about the performance characteristics of other DXA measures such as BA and BMC in fracture prediction. We therefore investigated the predictive value of BA, BMC and aBMD for incident fracture in a prospective cohort of UK women. In this study, 674 women aged 20-80 years, recruited from four GP practices in Southampton, underwent DXA assessment (proximal femur, lumbar spine, total body) between 1991 and 1993. All women were contacted in 1998-1999 with a validated postal questionnaire to collect information on incident fractures and potential confounding factors including medication use. Four hundred forty-three women responded, and all fractures were confirmed by the assessment of images and radiology reports by a research nurse. Cox proportional hazard models were used to explore the risk of incident fracture, and the results are expressed as hazard ratio (HR) per 1 SD decrease in the predictor and 95% CI. Associations were adjusted for age, BMI, alcohol consumption, smoking, HRT, medications and history of fracture. Fifty-five women (12%) reported a fracture. In fully adjusted models, femoral neck BMC and aBMD were similarly predictive of incident fracture. Femoral neck BMC: HR/SD = 1.64 (95%CI: 1.19, 2.26; p = 0.002); femoral neck aBMD: HR/SD = 1.76 (95%CI: 1.19, 2.60; p = 0.005). In contrast, femoral neck BA was not associated with incident fracture, HR/SD = 1.15 (95%CI: 0.88, 1.50; p = 0.32). Similar results were found with bone indices at the lumbar spine and the whole body. In conclusion, BMC and aBMD appear to predict incident fracture with similar HR/SD, even after adjustment for body size. In contrast, BA only weakly predicted the future fracture. These findings support the use of DXA aBMD in fracture risk assessment, but also suggest that factors which specifically influence BMC will have a relevance to the risk of the incident fracture.
NASA Astrophysics Data System (ADS)
Benaafi, Mohammed; Hariri, Mustafa; Abdullatif, Osman; Makkawi, Mohammed; Korvin, Gabor
2016-04-01
The Cambro-Permian Wajid Group, SW Saudi Arabia, is the main groundwater aquifer in Wadi Al-Dawasir and Najran areas. In addition, it has a reservoir potentiality for oil and natural gas in Rub' Al-Khali Basin. Wajid Group divided into four formations, ascending Dibsiyah, Sanamah, Khussyayan and Juwayl. They are mainly sandstone and exposed in an area extend from Wadi Al-Dawasir southward to Najran city and deposited within fluvial, shallow marine and glacial environments. This study aims to investigate the sedimentological and stratigraphic controls on the distribution of natural fractures within Wajid Group outcrops. A scanline sampling method was used to study the natural fracture network within Wajid Group outcrops, where the natural fractures were measured and characterized in 12 locations. Four regional natural fracture sets were observed with mean strikes of 050o, 075o, 345o, and 320o. Seven lithofacies characterized the Wajid Group at these locations and include fine-grained sandstone, coarse to pebbly sandstone, cross-bedded sandstone, massive sandstone, bioturbated sandstone, conglomerate sandstone, and conglomerate lithofacies. We found that the fine-grained and small scale cross-bedded sandstones lithofacies are characterized by high fracture intensity. In contrast, the coarse-grained sandstone and conglomerate lithofacies have low fracture intensity. Therefore, the relative fracture intensity and spacing of natural fractures within Wajid Group in the subsurface can be predicted by using the lithofacies and their depositional environments. In terms of stratigraphy, we found that the bed thickness and the stratigraphic architecture are the main controls on fractures intensity. The outcomes of this study can help to understand and predict the natural fracture distribution within the subsurface fractured sandstone hosting groundwater and hydrocarbon in Wajid and Rub' Al-Khali Basins. Hence, the finding of this study might help to explore and develop the groundwater and hydrocarbon resources in the subsurface.
Frouzan, Arash; Masoumi, Kambiz; Delirroyfard, Ali; Mazdaie, Behnaz; Bagherzadegan, Elnaz
2017-01-01
Background Long bone fractures are common injuries caused by trauma. Some studies have demonstrated that ultrasound has a high sensitivity and specificity in the diagnosis of upper and lower extremity long bone fractures. Objective The aim of this study was to determine the accuracy of ultrasound compared with plain radiography in diagnosis of upper and lower extremity long bone fractures in traumatic patients. Methods This cross-sectional study assessed 100 patients admitted to the emergency department of Imam Khomeini Hospital, Ahvaz, Iran with trauma to the upper and lower extremities, from September 2014 through October 2015. In all patients, first ultrasound and then standard plain radiography for the upper and lower limb was performed. Data were analyzed by SPSS version 21 to determine the specificity and sensitivity. Results The mean age of patients with upper and lower limb trauma were 31.43±12.32 years and 29.63±5.89 years, respectively. Radius fracture was the most frequent compared to other fractures (27%). Sensitivity, specificity, positive predicted value, and negative predicted value of ultrasound compared with plain radiography in the diagnosis of upper extremity long bones were 95.3%, 87.7%, 87.2% and 96.2%, respectively, and the highest accuracy was observed in left arm fractures (100%). Tibia and fibula fractures were the most frequent types compared to other fractures (89.2%). Sensitivity, specificity, PPV and NPV of ultrasound compared with plain radiography in the diagnosis of upper extremity long bone fractures were 98.6%, 83%, 65.4% and 87.1%, respectively, and the highest accuracy was observed in men, lower ages and femoral fractures. Conclusion The results of this study showed that ultrasound compared with plain radiography has a high accuracy in the diagnosis of upper and lower extremity long bone fractures. PMID:28979747
Monitoring the mechanical properties of healing bone.
Claes, L E; Cunningham, J L
2009-08-01
Fracture healing is normally assessed through an interpretation of radiographs, clinical evaluation, including pain on weight bearing, and a manual assessment of the mobility of the fracture. These assessments are subjective and their accuracy in determining when a fracture has healed has been questioned. Viewed in mechanical terms, fracture healing represents a steady increase in strength and stiffness of a broken bone and it is only when these values are sufficiently high to support unrestricted weight bearing that a fracture can be said to be healed. Information on the rate of increase of the mechanical properties of a healing bone is therefore valuable in determining both the rate at which a fracture will heal and in helping to define an objective and measurable endpoint of healing. A number of techniques have been developed to quantify bone healing in mechanical terms and these are described and discussed in detail. Clinical studies, in which measurements of fracture stiffness have been used to identify a quantifiable end point of healing, compare different treatment methods, predictably determine whether a fracture will heal, and identify factors which most influence healing, are reviewed and discussed.
Impact extractive fracture of jointed steel plates of a bolted joint
NASA Astrophysics Data System (ADS)
Daimaruya, M.; Fujiki, H.; Ambarita, H.
2012-08-01
This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.
Nuclear Graphite - Fracture Behavior and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Battiste, Rick; Strizak, Joe P
2011-01-01
Evidence for the graphite fracture mechanism is reviewed and discussed. The roles of certain microstructural features in the graphite fracture process are reported. The Burchell fracture model is described and its derivation reported. The successful application of the fracture model to uniaxial tensile data from several graphites with widely ranging structure and texture is reported. The extension of the model to multiaxial loading scenarios using two criteria is discussed. Initially, multiaxial strength data for H-451 graphite were modeled using the fracture model and the Principle of Independent Action. The predicted 4th stress quadrant failure envelope was satisfactory but the 1stmore » quadrant predictions were not conservative and thus were unsatisfactory. Multiaxial strength data from the 1st and 4th stress quadrant for NBG-18 graphite are reported. To improve the conservatism of the predicted 1st quadrant failure envelope for NBG-18 the Shetty criterion has been applied to obtain the equivalent critical stress intensity factor, KIc (Equi), for each applied biaxial stress ratio. The equivalent KIc value is used in the Burchell fracture model to predict the failure envelope. The predicted 1st stress quadrant failure envelope is conservative and thus more satisfactory than achieved previously using the fracture model combined with the Principle of Independent Action.« less
The Correlation between the Orbital Volume Ratio and Enophthalmos in Unoperated Blowout Fractures
Choi, Su Hyun; Gu, Ja Hea
2016-01-01
Background Enophthalmos may not appear immediately after trauma due to periorbital swelling in a blowout fracture, and preoperative measurements of enophthalmos cannot be used as a reliable guideline. It is important to predict the eventual final extent of enophthalmos in order to determine whether to perform surgery, and there have been several attempts to predict the degree of late enophthalmos using preoperative orbital volume. The purpose of this study is to investigate the correlation between the orbital volume ratio (OVR) with final enophthalmos and the palpebral fissure, and to find the OVR that induced 2 mm of enophthalmos in unilateral unoperated blowout fractures. Methods We retrospectively reviewed the medical records of 38 patients and divided them into 3 groups, determined by the fracture location. The relationships between the OVR and both the degree of enophthalmos and the palpebral fissure ratio (PFR) were assessed and, in particular, the OVR that induced 2 mm of enophthalmos was sought. Results Enophthalmos increased in proportion to the OVR, and there was a highly significant correlation between the increase in the OVR and the degree of enophthalmos (P<0.05). On the other hand, there was no correlation between OVR and PFR (P>0.05). The OVR that induced 2-mm enophthalmos was 112.18%. Conclusions The final degree of enophthalmos can be estimated by the preoperative measurement of OVR. Preoperative measurements of OVR can be used as quantitative values to predict the final degree of enophthalmos in pure blowout fractures. PMID:27896181
NASA Astrophysics Data System (ADS)
Farlin, J.; Drouet, L.; Gallé, T.; Pittois, D.; Bayerle, M.; Braun, C.; Maloszewski, P.; Vanderborght, J.; Elsner, M.; Kies, A.
2013-06-01
A simple method to delineate the recharge areas of a series of springs draining a fractured aquifer is presented. Instead of solving the flow and transport equations, the delineation is reformulated as a mass balance problem assigning arable land in proportion to the pesticide mass discharged annually in a spring at minimum total transport cost. The approach was applied to the Luxembourg Sandstone, a fractured-rock aquifer supplying half of the drinking water for Luxembourg, using the herbicide atrazine. Predictions of the recharge areas were most robust in situations of strong competition by neighbouring springs while the catchment boundaries for isolated springs were extremely sensitive to the parameter controlling flow direction. Validation using a different pesticide showed the best agreement with the simplest model used, whereas using historical crop-rotation data and spatially distributed soil-leaching data did not improve predictions. The whole approach presents the advantage of integrating objectively information on land use and pesticide concentration in spring water into the delineation of groundwater recharge zones in a fractured-rock aquifer.
Trabecular bone score (TBS): Method and applications.
Martineau, P; Leslie, W D
2017-11-01
Trabecular bone score (TBS) is a texture index derived from standard lumbar spine dual energy X-ray absorptiometry (DXA) images and provides information about the underlying bone independent of the bone mineral density (BMD). Several salient observations have emerged. Numerous studies have examined the relationship between TBS and fracture risk and have shown that lower TBS values are associated with increased risk for major osteoporotic fracture in postmenopausal women and older men, with this result being independent of BMD values and other clinical risk factors. Therefore, despite being derived from standard DXA images, the information contained in TBS is independent and complementary to the information provided by BMD and the FRAX® tool. A procedure to generate TBS-adjusted FRAX probabilities has become available with the resultant predicted fracture risks shown to be more accurate than the standard FRAX tool. With these developments, TBS has emerged as a clinical tool for improved fracture risk prediction and guiding decisions regarding treatment initiation, particularly for patients with FRAX probabilities around an intervention threshold. In this article, we review the development, validation, clinical application, and limitations of TBS. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel
2016-03-01
The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.
Claessen, Femke M A P; Stoop, Nicky; Doornberg, Job N; Guitton, Thierry G; van den Bekerom, Michel P J; Ring, David
2016-10-01
Stable fixation of distal humerus fracture fragments is necessary for adequate healing and maintenance of reduction. The purpose of this study was to measure the reliability and accuracy of interpretation of postoperative radiographs to predict which implants will loosen or break after operative treatment of bicolumnar distal humerus fractures. We also addressed agreement among surgeons regarding which fracture fixation will loosen or break and the influence of years in independent practice, location of practice, and so forth. A total of 232 orthopedic residents and surgeons from around the world evaluated 24 anteroposterior and lateral radiographs of distal humerus fractures on a Web-based platform to predict which implants would loosen or break. Agreement among observers was measured using the multi-rater kappa measure. The sensitivity of prediction of failure of fixation of distal humerus fracture on radiographs was 63%, specificity was 53%, positive predictive value was 36%, the negative predictive value was 78%, and accuracy was 56%. There was fair interobserver agreement (κ = 0.27) regarding predictions of failure of fixation of distal humerus fracture on radiographs. Interobserver variability did not change when assessed for the various subgroups. When experienced and skilled surgeons perform fixation of type C distal humerus fracture, the immediate postoperative radiograph is not predictive of fixation failure. Reoperation based on the probability of failure might not be advisable. Diagnostic III. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hou, Fang
With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.
NASA Astrophysics Data System (ADS)
Lukić, Bratislav B.; Saletti, Dominique; Forquin, Pascal
2017-12-01
This paper presents a second part of the study aimed at investigating the fracture behavior of concrete under high strain rate tensile loading. The experimental method together with the identified stress-strain response of three tests conducted on ordinary concrete have been presented in the paper entitled Part I (Forquin and Lukić in Journal of Dynamic Behavior of Materials, 2017. https://doi.org/10.1007/s40870-017-0135-1). In the present paper, Part II, the investigation is extended towards directly determining the specific fracture energy of each observed fracture zone by visualizing the dynamic cracking process with a temporal resolution of 1 µs. Having access to temporal displacement fields of the sample surface, it is possible to identify the fracture opening displacement (FOD) and the fracture opening velocity of any principle (open) and secondary (closed) fracture at each measurement instance, that may or may not lead to complete physical failure of the sample. Finally, the local Stress-FOD curves were obtained for each observed fracture zone, opposed to previous works where indirect measurements were used. The obtained results indicated a much lower specific fracture energy compared to the results often found in the literature. Furthermore, numerical simulations were performed with a damage law to evaluate the validity of the proposed experimental data processing and compare it to the most often used one in the previous works. The results showed that the present method can reliably predict the specific fracture energy needed to open one macro-fracture and suggested that indirect measurement techniques can lead to an overestimate of specific fracture energy due to the stringent assumption of linear elasticity up-to the peak and the inability of having access to the real post-peak change of axial stress.
Gregoire, C.; Joesten, P.K.; Lane, J.W.
2006-01-01
Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature increased substantially during the steam injection experiment shows an increase in attenuation and a decrease in reflectivity in the vicinity of the borehole. Results of applying the reflection amplitude analysis method developed for this study indicate that steam did not totally replace the water in most of the fractures. The observed decreases in reflectivity were consistent with an increase in fracture-water temperature, rather than the presence of steam. A limiting assumption of the reflection amplitude analysis method is the requirement for complete displacement of water in a fracture by steam. ?? 2006 Elsevier B.V. All rights reserved.
Kaptoge, S; Armbrecht, G; Felsenberg, D; Lunt, M; Weber, K; Boonen, S; Jajic, I; Stepan, J J; Banzer, D; Reisinger, W; Janott, J; Kragl, G; Scheidt-Nave, C; Felsch, B; Matthis, C; Raspe, H H; Lyritis, G; Póor, G; Nuti, R; Miazgowski, T; Hoszowski, K; Armas, J Bruges; Vaz, A Lopes; Benevolenskaya, L I; Masaryk, P; Cannata, J B; Johnell, O; Reid, D M; Bhalla, A; Woolf, A D; Todd, C J; Cooper, C; Eastell, R; Kanis, J A; O'Neill, T W; Silman, A J; Reeve, J
2006-01-01
Vertebral fracture is a strong risk factor for future spine and hip fractures; yet recent data suggest that only 5-20% of subjects with a spine fracture are identified in primary care. We aimed to develop easily applicable algorithms predicting a high risk of future spine fracture in men and women over 50 years of age. Data was analysed from 5,561 men and women aged 50+ years participating in the European Prospective Osteoporosis Study (EPOS). Lateral thoracic and lumbar spine radiographs were taken at baseline and at an average of 3.8 years later. These were evaluated by an experienced radiologist. The risk of a new (incident) vertebral fracture was modelled as a function of age, number of prevalent vertebral fractures, height loss, sex and other fracture history reported by the subject, including limb fractures occurring between X-rays. Receiver Operating Characteristic (ROC) curves were used to compare the predictive ability of models. In a negative binomial regression model without baseline X-ray data, the risk of incident vertebral fracture significantly increased with age [RR 1.74, 95% CI (1.44, 2.10) per decade], height loss [1.08 (1.04, 1.12) per cm decrease], female sex [1.48 (1.05, 2.09)], and recalled fracture history; [1.65 (1.15, 2.38) to 3.03 (1.66, 5.54)] according to fracture site. Baseline radiological assessment of prevalent vertebral fracture significantly improved the areas subtended by ROC curves from 0.71 (0.67, 0.74) to 0.74 (0.70, 0.77) P=0.013 for predicting 1+ incident fracture; and from 0.74 (0.67, 0.81) to 0.83 (0.76, 0.90) P=0.001 for 2+ incident fractures. Age, sex and height loss remained independently predictive. The relative risk of a new vertebral fracture increased with the number of prevalent vertebral fractures present from 3.08 (2.10, 4.52) for 1 fracture to 9.36 (5.72, 15.32) for 3+. At a specificity of 90%, the model including X-ray data improved the sensitivity for predicting 2+ and 1+ incident fractures by 6 and 4 fold respectively compared with random guessing. At 75% specificity the improvements were 3.2 and 2.4 fold respectively. With the modelling restricted to the subjects who had BMD measurements (n=2,409), the AUC for predicting 1+ vs. 0 incident vertebral fractures improved from 0.72 (0.66, 0.79) to 0.76 (0.71, 0.82) upon adding femoral neck BMD (P=0.010). We conclude that for those with existing vertebral fractures, an accurately read spine X-ray will form a central component in future algorithms for targeting treatment, especially to the most vulnerable. The sensitivity of this approach to identifying vertebral fracture cases requiring anti-osteoporosis treatment, even when X-rays are ordered highly selectively, exceeds by a large margin the current standard of practice as recorded anywhere in the world.
Buchanan, Drew; Ural, Ani
2010-08-01
Distal forearm fracture is one of the most frequently observed osteoporotic fractures, which may occur as a result of low energy falls such as falls from a standing height and may be linked to the osteoporotic nature of the bone, especially in the elderly. In order to prevent the occurrence of radius fractures and their adverse outcomes, understanding the effect of both extrinsic and intrinsic contributors to fracture risk is essential. In this study, a nonlinear fracture mechanics-based finite element model is applied to human radius to assess the influence of extrinsic factors (load orientation and load distribution between scaphoid and lunate) and intrinsic bone properties (age-related changes in fracture properties and bone geometry) on the Colles' fracture load. Seven three-dimensional finite element models of radius were created, and the fracture loads were determined by using cohesive finite element modeling, which explicitly represented the crack and the fracture process zone behavior. The simulation results showed that the load direction with respect to the longitudinal and dorsal axes of the radius influenced the fracture load. The fracture load increased with larger angles between the resultant load and the dorsal axis, and with smaller angles between the resultant load and longitudinal axis. The fracture load also varied as a function of the load ratio between the lunate and scaphoid, however, not as drastically as with the load orientation. The fracture load decreased as the load ratio (lunate/scaphoid) increased. Multiple regression analysis showed that the bone geometry and the load orientation are the most important variables that contribute to the prediction of the fracture load. The findings in this study establish a robust computational fracture risk assessment method that combines the effects of intrinsic properties of bone with extrinsic factors associated with a fall, and may be elemental in the identification of high fracture risk individuals as well as in the development of fracture prevention methods including protective falling techniques. The additional information that this study brings to fracture identification and prevention highlights the promise of fracture mechanics-based finite element modeling in fracture risk assessment.
An analytical model for pressure of volume fractured tight oil reservoir with horizontal well
NASA Astrophysics Data System (ADS)
Feng, Qihong; Dou, Kaiwen; Zhang, Xianmin; Xing, Xiangdong; Xia, Tian
2017-05-01
The property of tight oil reservoir is worse than common reservoir that we usually seen before, the porosity and permeability is low, the diffusion is very complex. Therefore, the ordinary depletion method is useless here. The volume fracture breaks through the conventional EOR mechanism, which set the target by amplifying the contact area of fracture and reservoir so as to improving the production of every single well. In order to forecast the production effectively, we use the traditional dual-porosity model, build an analytical model for production of volume fractured tight oil reservoir with horizontal well, and get the analytical solution in Laplace domain. Then we construct the log-log plot of dimensionless pressure and time by stiffest conversion. After that, we discuss the influential factors of pressure. Several factors like cross flow, skin factors and threshold pressure gradient was analyzed in the article. This model provides a useful method for tight oil production forecast and it has certain guiding significance for the production capacity prediction and dynamic analysis.
A sophisticated simulation for the fracture behavior of concrete material using XFEM
NASA Astrophysics Data System (ADS)
Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili
2017-10-01
The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.
An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.
2010-01-01
Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures
NASA Astrophysics Data System (ADS)
Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio
2016-04-01
Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.
Turbine Engine Hot Section Technology, 1984
NASA Technical Reports Server (NTRS)
1984-01-01
Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.
NASA Astrophysics Data System (ADS)
Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng
2014-06-01
This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.
Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric
2017-04-01
Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less
NASA Astrophysics Data System (ADS)
Jin, G.
2015-12-01
Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant upward lateral spreading of CO2 resulting in accumulation of CO2 directly under the seal unit because of its buoyancy and strata-bound vertical fractures. Risk assessment shows that lateral movement of CO2 along interconnected fractures requires widespread seals with high integrity to confine the injected CO2.
Motion Predicts Clinical Callus Formation
Elkins, Jacob; Marsh, J. Lawrence; Lujan, Trevor; Peindl, Richard; Kellam, James; Anderson, Donald D.; Lack, William
2016-01-01
Background: Mechanotransduction is theorized to influence fracture-healing, but optimal fracture-site motion is poorly defined. We hypothesized that three-dimensional (3-D) fracture-site motion as estimated by finite element (FE) analysis would influence callus formation for a clinical series of supracondylar femoral fractures treated with locking-plate fixation. Methods: Construct-specific FE modeling simulated 3-D fracture-site motion for sixty-six supracondylar femoral fractures (OTA/AO classification of 33A or 33C) treated at a single institution. Construct stiffness and directional motion through the fracture were investigated to assess the validity of construct stiffness as a surrogate measure of 3-D motion at the fracture site. Callus formation was assessed radiographically for all patients at six, twelve, and twenty-four weeks postoperatively. Univariate and multivariate linear regression analyses examined the effects of longitudinal motion, shear (transverse motion), open fracture, smoking, and diabetes on callus formation. Construct types were compared to determine whether their 3-D motion profile was associated with callus formation. Results: Shear disproportionately increased relative to longitudinal motion with increasing bridge span, which was not predicted by our assessment of construct stiffness alone. Callus formation was not associated with open fracture, smoking, or diabetes at six, twelve, or twenty-four weeks. However, callus formation was associated with 3-D fracture-site motion at twelve and twenty-four weeks. Longitudinal motion promoted callus formation at twelve and twenty-four weeks (p = 0.017 for both). Shear inhibited callus formation at twelve and twenty-four weeks (p = 0.017 and p = 0.022, respectively). Titanium constructs with a short bridge span demonstrated greater longitudinal motion with less shear than did the other constructs, and this was associated with greater callus formation (p < 0.001). Conclusions: In this study of supracondylar femoral fractures treated with locking-plate fixation, longitudinal motion promoted callus formation, while shear inhibited callus formation. Construct stiffness was found to be a poor surrogate of fracture-site motion. Future implant design and operative fixation strategies should seek to optimize 3-D fracture-site motion rather than rely on surrogate measures such as axial stiffness. PMID:26888675
Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load
NASA Astrophysics Data System (ADS)
Hu, Yumei; Xiao, Yue; Jin, Xiaoqing; Zheng, Haoran; Zhou, Yinge; Shao, Jinhua
2016-11-01
Using the combination of experiment and simulation, the fracture behavior of the brittle metal named ADC12 aluminum alloy was studied. Five typical experiments were carried out on this material, with responding data collected on different stress states and dynamic strain rates. Fractographs revealed that the morphologies of fractured specimen under several rates showed different results, indicating that the fracture was predominantly a brittle one in nature. Simulations of the fracture processes of those specimens were conducted by Finite Element Method, whilst consistency was observed between simulations and experiments. In simulation, the Johnson- Cook model was chosen to describe the damage development and to predict the failure using parameters determined from those experimental data. Subsequently, an ADC12 engine mount bracket crashing simulation was conducted and the results indicated good agreement with the experiments. The accordance showed that our research can provide an accurate description for the deforming and fracture processes of the studied alloy.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in coupon tests and in full-scale fuselage panel tests. Both T-stress and fracture toughness orthotropy are found to be essential to predict the observed crack paths. The analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically while insuring continuous airworthiness. Consequently, it will improve the technology to support the safe operation of the current aircraft fleet as well as the design of more damage-tolerant aircraft for the next generation fleet.
New equations for predicting postoperative risk in patients with hip fracture.
Hirose, Jun; Ide, Junji; Irie, Hiroki; Kikukawa, Kenshi; Mizuta, Hiroshi
2009-12-01
Predicting the postoperative course of patients with hip fractures would be helpful for surgical planning and risk management. We therefore established equations to predict the morbidity and mortality rates in candidates for hip fracture surgery using the Estimation of Physiologic Ability and Surgical Stress (E-PASS) risk-scoring system. First we evaluated the correlation between the E-PASS scores and postoperative morbidity and mortality rates in all 722 patients surgically treated for hip fractures during the study period (Group A). Next we established equations to predict morbidity and mortality rates. We then applied these equations to all 633 patients with hip fractures treated at seven other hospitals (Group B) and compared the predicted and actual morbidity and mortality rates to assess the predictive ability of the E-PASS and Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity (POSSUM) systems. The ratio of actual to predicted morbidity and mortality rates was closer to 1.0 with the E-PASS than the POSSUM system. Our data suggest the E-PASS scoring system is useful for defining postoperative risk and its underlying algorithm accurately predicts morbidity and mortality rates in patients with hip fractures before surgery. This information then can be used to manage their condition and potentially improve treatment outcomes. Level II, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Crack turning in integrally stiffened aircraft structures
NASA Astrophysics Data System (ADS)
Pettit, Richard Glen
Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture resistance orthotropy---a second-order linear elastic method with a characteristic length parameter to incorporate T-stress/process-zone effects, and an elastic-plastic method that uses the Crack Tip Opening Displacement (CTOD) to determine the failure response. Together with a novel method for obtaining enhanced accuracy T-stress calculations, these methods are incorporated into an adaptive-mesh, finite-element fracture simulation code. A total of 43 fracture tests using symmetrically and asymmetrically loaded double cantilever beam specimens were run to develop crack turning parameters and compare predicted and observed crack paths.
NASA Astrophysics Data System (ADS)
Karimpouli, Sadegh; Hassani, Hossein; Malehmir, Alireza; Nabi-Bidhendi, Majid; Khoshdel, Hossein
2013-09-01
The South Pars, the largest gas field in the world, is located in the Persian Gulf. Structurally, the field is part of the Qatar-South Pars arch which is a regional anticline considered as a basement-cored structure with long lasting passive folding induced by salt withdrawal. The gas-bearing reservoir belongs to Kangan and Dalan formations dominated by carbonate rocks. The fracture role is still unknown in gas accumulation and distribution in this reservoir. In this paper, the Scattering Index (SI) and the semblance methods based on scattered waves and diffraction signal studies, respectively, were used to delineate the fracture locations. To find the relation between fractures and gas distribution, desired facies containing the gas, were defined and predicted using a method based on Bayesian facies estimation. The analysis and combination of these results suggest that preference of fractures and/or fractured zones are negligible (about 1% of the total volume studied in this paper) and, therefore, it is hard to conceive that they play an important role in this reservoir. Moreover, fractures have no considerable role in gas distribution (less than 30%). It can be concluded from this study that sedimentary processes such as digenetic, primary porosities and secondary porosities are responsible for the gas accumulation and distribution in this reservoir.
NASA Astrophysics Data System (ADS)
Narukawa, Takafumi; Yamaguchi, Akira; Jang, Sunghyon; Amaya, Masaki
2018-02-01
For estimating fracture probability of fuel cladding tube under loss-of-coolant accident conditions of light-water-reactors, laboratory-scale integral thermal shock tests were conducted on non-irradiated Zircaloy-4 cladding tube specimens. Then, the obtained binary data with respect to fracture or non-fracture of the cladding tube specimen were analyzed statistically. A method to obtain the fracture probability curve as a function of equivalent cladding reacted (ECR) was proposed using Bayesian inference for generalized linear models: probit, logit, and log-probit models. Then, model selection was performed in terms of physical characteristics and information criteria, a widely applicable information criterion and a widely applicable Bayesian information criterion. As a result, it was clarified that the log-probit model was the best among the three models to estimate the fracture probability in terms of the degree of prediction accuracy for both next data to be obtained and the true model. Using the log-probit model, it was shown that 20% ECR corresponded to a 5% probability level with a 95% confidence of fracture of the cladding tube specimens.
NASA Astrophysics Data System (ADS)
Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Jiu, Kai; Wang, Zhe; Li, Ang
2018-04-01
Natural fractures have long been considered important factors in the production of gas from shale reservoirs because they can connect pore spaces and enlarge transport channels, thereby influencing the migration, accumulation and preservation of shale gas. Industrial-level shale gas production has been initiated in the lower Silurian Longmaxi Formation in northern Guizhou, South China. However, it is important to quantitatively predict the distribution of natural fractures in the lower Silurian shale reservoirs to locate additional 'sweet spots' in northern Guizhou. In this study, data obtained from outcrops, cores, thin sections, field-emission scanning electron microscope (FE-SEM) images and X-ray diffraction (XRD) were used to determine the developmental characteristics and controlling factors of these fractures. Correlation analysis indicated that the mechanical parameters of the Longmaxi shale are mainly related to the total organic carbon (TOC), quartz, clay, calcite and dolomite contents. The spatial variations in the mechanical parameters of the Longmaxi shale were determined based on the spatial variations in the TOC and mineral contents. Then, a heterogeneous geomechanical model of the study area was established based on interpretations of the fault systems derived from seismic data and acoustic emission (AE) experiments performed on samples of the relevant rocks. The paleotectonic stress fields during the Yanshanian period were obtained using the finite element method (FEM). Finally, a fracture density calculation model was established to analyze the quantitative development of fractures, and the effects of faults and mechanical parameters on the development of fractures were determined. The results suggest that the main developmental period of tectonic fractures in the Longmaxi Formation was the Early Yanshanian period. During this time, the horizontal principal stress conditions were dominated by a SE-NW-trending (135-315°) compressional stress field, and the Longmaxi Formation experienced a maximum tectonic stress of 110-120 MPa. This simulated paleotectonic stress field was mainly controlled by faults and the contents of TOC, quartz, clay, calcite and dolomite; at different positions along the same fault, the degree of fracture development varies significantly. Overall, the distribution of fractures in the Longmaxi Formation can be used to optimize well deployment and provides a basis for the future exploration of shale gas.
NASA Astrophysics Data System (ADS)
Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.
2006-04-01
It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.
Hey, Hwee Weng Dennis; Hwee Weng, Dennis Hey; Tan, Jun Hao; Jun, Hao Tan; Tan, Chuen Seng; Chuen, Seng Tan; Tan, Hsi Ming Bryan; Ming, Bryan Tan Hsi; Lau, Puang Huh Bernard; Huh, Bernard Lau Puang; Hee, Hwan Tak; Hwan, Tak Hee
2015-12-01
A case-control study. In this study, we investigated the correlation between level-specific preoperative bone mineral density and subsequent vertebral fractures. We also identified factors associated with subsequent vertebral fractures. Complications of cement augmentation of the spine include subsequent vertebral fractures, leading to unnecessary morbidity and more treatment. Ability to predict at-risk vertebra will help guide management. We studied all patients with osteoporotic compression fractures who underwent cement augmentation in a single institution from November 2001 to December 2010 by a single surgeon. Association between level-specific bone mineral density T-scores and subsequent fractures was assessed. Multivariable analysis was performed to identify significant factors associated with subsequent vertebral fractures. 93 patients followed up for a mean duration of 25.1 months (12-96) had a mean age of 76.8 years (47-99). Vertebroplasty was performed in 58 patients (62.4%) on 68 levels and kyphoplasty in 35 patients (37.6%) on 44 levels. Refracture was seen in 16 patients (17.2%). The time to subsequent fracture post cement augmentation was 20.5 months (2-90). For refracture cases, 43.8% (7/16) fractured in the adjacent vertebrae. Subsequently fractured vertebra had a mean T-score of -2.860 (95% confidence interval -3.268 to -2.452) and nonfractured vertebra had a mean T-score of -2.180 (95% confidence interval -2.373 to -1.986). A T-score of -2.2 or lower is predictive of refracture at that vertebra (P = 0.047). Odds ratio increases with decreasing T-scores from -2.2 or lower to -2.6 or lower. A T-score of -2.6 or lower gives no additional predictive advantage. After multivariable analysis, age (P = 0.049) and loss of preoperative anterior vertebral height (P = 0.017) are associated with refracture. Level-specific T-scores are predictive of subsequent fractures and the odds ratio increases with lower T-scores from -2.2 or less to -2.6 or less. They have a low positive predictive value, but a high negative predictive value for subsequent fractures. Other significant associations with subsequent refractures include age and anterior vertebral height. 4.
The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Gilkey, Kelly M.; Sulkowski, Christina M.; Samorezov, Sergey; Myers, Jerry G.
2011-01-01
The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions.
Biomechanical comparison of fixation methods in transverse patella fractures.
Scilaris, T A; Grantham, J L; Prayson, M J; Marshall, M P; Hamilton, J J; Williams, J L
1998-01-01
To compare monofilament wire versus braided cable for stabilizing transverse patella fractures using the modified AO tension band technique. A randomized blocked (paired) study comparing two fixation methods. Statistical analysis was performed using a nested repeated measures analysis, followed by Bonferroni post hoc testing. Seven paired embalmed knees (mean age 71.8 years, SD 14.6 years) were dissected, and transverse fractures were simulated. The knees were reduced and randomly fixed by either two parallel 0.062-inch Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel monofilament wire tension loop or two Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel braided cable tension loop. Knees were tested by applying a cyclic load through the suprapatellar tendon between twenty and 300 newtons for thirty cycles. The maximum fracture displacement increased with each cycle of loading for both the braided cable and monofilament wire tension loop configurations (p = 0.0001). The average peak displacement at the thirtieth cycle was 2.25 millimeters for monofilament wire and 0.73 millimeters for the cable. When comparing both methods for all cycles, the braided cable allowed less fracture displacement than did the monofilament wire (p = 0.002), and the rate of increase per cycle of maximum fracture displacement was less for the cable than for the wire (p = 0.0001). In transverse, noncomminuted patella fractures, fixation with two Kirschner wires and a 1.0-millimeter braided cable tension loop was superior to the monofilament wire tension loop. Most importantly, the braided cable afforded more predictable results during cyclic loading.
Research on Fracture of Aluminum Foil in Microscale Laser Peen Forming
NASA Astrophysics Data System (ADS)
Zheng, Chao; Sun, Sheng; Liu, Jing; Ji, Zhong
2010-06-01
A novel numerical method for dynamic fracture in microscale laser peen forming (μLPF) of aluminum foils was presented and the role of the die diameter on fracture behavior at the ultra high strain rate was investigated via both experimental and numerical methods. μLPF is a process in which the plastic deformation is generated through laser-induced shock wave and compressive residual stresses can be imparted to improve the fatigue life of micro parts. During μLPF, the pressure exerted on the target is higher than 1 GPa and the strain rate is greater than 106s-1, so the mechanical behavior of materials in this dynamic process is very different from that under static or quasi-static conditions. In the present study, the finite element method with grain and grain boundary elements was used to analyze the μLPF process of aluminum foils with a thickness of 60 μm. The onset and propagation of crack were simulated in this way that the specified nodes were tied together until the equivalent plastic strain exceeded a certain value. Under a given value of plastic strain, the influence of die diameters of 0.6, 1.0, and 1.6 mm on the fracture mode of the material was predicted. A series of experiments were carried out to verify the numerical model. The geometrical morphologies of fracture regions were observed via optical microscope and scan electron microscope. In results from both experiments and simulations, the size of the die diameter affects the location of the fracture: (I) Fracture appeared at the entrance of the die for die diameters of 0.6 and 1.0 mm. (II) Fracture occurred near the centre of the formed dome for 1.6 mm die diameter. The generation mechanism of two fracture modes was explained. This work provides a preliminary insight into the fracture behavior of materials under the ultra high strain rate and lays the ground work for more in-depth simulations in the future study.
Gear Crack Propagation Path Studies: Guidelines for Ultra-Safe Design
NASA Technical Reports Server (NTRS)
Lewicki, David G.
2001-01-01
Design guidelines have been established to prevent catastrophic rim fracture failure modes when considering gear tooth bending fatigue. Analysis was performed using the finite element method with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth/rim fracture modes including effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 deg pressure angle teeth had an increased occurrence of tooth fractures over rim fractures when compared to 20 deg pressure angle teeth. For gears with constant number of teeth or gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narr, W.; Currie, J.B.
The occurrence of natural fracture systems in subsurface rock can be predicted if careful evaluation is made of the ecologic processes that affect sedimentary strata during their cycle of burial, diagenesis, uplift, and erosional unloading. Variations in the state of stress within rock arise, for example, from changes in temperature, pore pressure, weight of overburden, or tectonic loading. Hence geologic processes acting on a sedimentary unit should be analyzed for their several contributions to the state of stress, and this information used to compute a stress history. From this stress history, predictions may be made as to when in themore » burial cycle to expect fracture (joint) formation, what type of fractures (extension or shear) may occur, and which geologic factors are most favorable to development of fractures. A stress history is computed for strata of the naturally fractured Altamont oil field in Utah's Uinta basin. Calculations suggest that fractures formed in extension, that the well-cemented rocks are those most likely to be fractured, that fractures began to develop only after stata were uplifted and denuded of overburden. Geologic evidence on fracture genesis and development is in accord with the stress history prediction. Stress history can be useful in evaluating a sedimentary basin for naturally fractured reservoir exploration plays.« less
NASA Astrophysics Data System (ADS)
Xiong, Ziming; Wang, Mingyang; Shi, ShaoShuai; Xia, YuanPu; Lu, Hao; Bu, Lin
2017-12-01
The construction of tunnels and underground engineering in China has developed rapidly in recent years in both the number and the length of tunnels. However, with the development of tunnel construction technology, risk assessment of the tunnels has become increasingly important. Water inrush is one of the most important causes of engineering accidents worldwide, resulting in considerable economic and environmental losses. Accordingly, water inrush prediction is important for ensuring the safety of tunnel construction. Therefore, in this study, we constructed a three-dimensional discrete network fracture model using the Monte Carlo method first with the basic data from the engineering geological map of the Longmen Mountain area, the location of the Longmen Mountain tunnel. Subsequently, we transformed the discrete fracture networks into a pipe network model. Next, the DEM of the study area was analysed and a submerged analysis was conducted to determine the water storage area. Finally, we attempted to predict the water inrush along the Longmen Mountain tunnel based on the Darcy flow equation. Based on the contrast of water inrush between the proposed approach, groundwater dynamics and precipitation infiltration method, we conclude the following: the water inflow determined using the groundwater dynamics simulation results are basically consistent with those in the D2K91+020 to D2K110+150 mileage. Specifically, in the D2K91+020 to D2K94+060, D2K96+440 to D2K98+100 and other sections of the tunnel, the simulated and measured results are in close agreement and show that this method is effective. In general, we can predict the water inflow in the area of the Longmen Mountain tunnel based on the existing fracture joint parameters and the hydrogeological data of the Longmen Mountain area, providing a water inrush simulation and guiding the tunnel excavation and construction stages.
Li, Wei; Deng, Hailong; Liu, Pengfei
2016-10-18
The interior defect-induced fracture of surface-hardened metallic materials in the long life region has become a key issue on engineering design. In the present study, the axial loading test with fully reversed condition was performed to examine the fatigue property of a surface-carburized low alloy gear steel in the long life region. Results show that this steel represents the duplex S-N (stress-number of cycles) characteristics without conventional fatigue limit related to 10⁷ cycles. Fatigue cracks are all originated from the interior inclusions in the matrix region due to the inhabitation effect of carburized layer. The inclusion induced fracture with fisheye occurs in the short life region below 5 × 10⁵ cycles, whereas the inclusion induced fracture with fine granular area (FGA) and fisheye occurs in the long life region beyond 10⁶ cycles. The stress intensity factor range at the front of FGA can be regarded as the threshold value controlling stable growth of interior long crack. The evaluated maximum inclusion size in the effective damage volume of specimen is about 27.29 μm. Considering the size relationships between fisheye and FGA, and inclusion, the developed life prediction method involving crack growth can be acceptable on the basis of the good agreement between the predicted and experimental results.
An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs
NASA Astrophysics Data System (ADS)
Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang
2018-06-01
There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of fracturing layer and fracturing construction schemes and the improvement of oil recovery.
NASA Astrophysics Data System (ADS)
Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram
2017-02-01
A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.
Predictive Power of Distal Radial Metaphyseal Tenderness for Diagnosing Occult Fracture.
Glickel, Steven Z; Hinojosa, Lauren; Eden, Claire M; Balutis, Elaine; Barron, O Alton; Catalano, Louis W
2017-10-01
To correlate the physical examination finding of distal radial metaphyseal tenderness with plain radiographic and magnetic resonance imaging after acute wrist injury to diagnose occult distal radius fractures. We hypothesized that persistent distal radial metaphyseal tenderness 2 weeks after acute injuries is predictive of an occult fracture. Twenty-nine adult patients presented, after acute trauma, with distal radial metaphyseal tenderness and initial plain radiographs and/or fluoroscopic images that did not show a distal radius fracture. Patients were reevaluated clinically and radiographically at approximately 2 weeks after initial presentation. Patients with persistent distal radial tenderness and negative radiographs underwent magnetic resonance imaging to definitively diagnose an occult distal radius fracture. We calculated the sensitivity and positive predictive value for persistent distal radial metaphyseal tenderness using a 95% confidence interval and standard formulas. Both radiographs and magnetic resonance imaging were used as our endpoint diagnosis for a distal radius fracture. We diagnosed 28 occult distal radius fractures, 8 by follow-up radiograph and 20 by magnetic resonance imaging. The positive predictive value for patients who completed the protocol was 96%. One patient who did not have an occult distal radius fracture had a fracture of the ulnar styloid. Tenderness of the distal radial metaphysis after wrist injury is strongly suggestive of a distal radius fracture despite both normal plain radiographs and fluoroscopic images. Diagnostic III. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Hydro-mechanical model for wetting/drying and fracture development in geomaterials
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.; ...
2013-12-28
This study presents a modeling approach for studying hydro-mechanical coupled processes, including fracture development, within geological formations. This is accomplished through the novel linking of two codes: TOUGH2, which is a widely used simulator of subsurface multiphase flow based on the finite volume method; and an implementation of the Rigid-Body-Spring Network (RBSN) method, which provides a discrete (lattice) representation of material elasticity and fracture development. The modeling approach is facilitated by a Voronoi-based discretization technique, capable of representing discrete fracture networks. The TOUGH–RBSN simulator is intended to predict fracture evolution, as well as mass transport through permeable media, under dynamicallymore » changing hydrologic and mechanical conditions. Numerical results are compared with those of two independent studies involving hydro-mechanical coupling: (1) numerical modeling of swelling stress development in bentonite; and (2) experimental study of desiccation cracking in a mining waste. The comparisons show good agreement with respect to moisture content, stress development with changes in pore pressure, and time to crack initiation. Finally, the observed relationship between material thickness and crack patterns (e.g., mean spacing of cracks) is captured by the proposed modeling approach.« less
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; De Siena, L.
2015-12-01
The success of any model prediction is largely dependent on the accuracy with which its parameters are known. In characterising fracture networks in naturally fractured rocks, the main issues are related with the difficulties in accurately up- and down-scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (fracture lengths, apertures, orientations and densities) represents a fundamental step which can aid the estimation of permeability and fluid flow, which are of primary importance in a number of contexts ranging from hydrocarbon production in fractured reservoirs and reservoir stimulation by hydrofracturing, to geothermal energy extraction and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. This work focuses on linking fracture data collected directly from outcrops to permeability estimation and fracture network modelling. Outcrop studies can supplement the limited data inherent to natural fractured systems in the subsurface. The study area is a highly fractured upper Miocene biosiliceous mudstone formation cropping out along the coastline north of Santa Cruz (California, USA). These unique outcrops exposes a recently active bitumen-bearing formation representing a geological analogue of a fractured top seal. In order to validate field observations as useful analogues of subsurface reservoirs, we describe a methodology of statistical analysis for more accurate probability distribution of fracture attributes, using Maximum Likelihood Estimators. These procedures aim to understand whether the average permeability of a fracture network can be predicted reducing its uncertainties, and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models.
1978-03-01
for the risk of rupture for a unidirectionally laminat - ed composite subjected to pure bending. (5D This equation can be simplified further by use of...C EVALUATION OF THE THREE PARAMETER WEIBULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS. THESIS / AFIT/GAE...EVALUATION OF THE THREE PARAMETER WE1BULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS THESIS Presented
Jonasson, Grethe; Sundh, Valter; Ahlqwist, Margareta; Hakeberg, Magnus; Björkelund, Cecilia; Lissner, Lauren
2011-10-01
Bone structure is the key to the understanding of fracture risk. The hypothesis tested in this prospective study is that dense mandibular trabeculation predicts low fracture risk, whereas sparse trabeculation is predictive of high fracture risk. Out of 731 women from the Prospective Population Study of Women in Gothenburg with dental examinations at baseline 1968, 222 had their first fracture in the follow-up period until 2006. Mandibular trabeculation was defined as dense, mixed dense plus sparse, and sparse based on panoramic radiographs from 1968 and/or 1980. Time to fracture was ascertained and used as the dependent variable in three Cox proportional hazards regression analyses. The first analysis covered 12 years of follow-up with self-reported endpoints; the second covered 26 years of follow-up with hospital verified endpoints; and the third combined the two follow-up periods, totaling 38 years. Mandibular trabeculation was the main independent variable predicting incident fractures, with age, physical activity, alcohol consumption and body mass index as covariates. The Kaplan-Meier curve indicated a graded association between trabecular density and fracture risk. During the whole period covered, the hazard ratio of future fracture for sparse trabeculation compared to mixed trabeculation was 2.9 (95% CI: 2.2-3.8, p<0.0001), and for dense versus mixed trabeculation was 0.21 (95% CI: 0.1-0.4, p<0.0001). The trabecular pattern was a highly significant predictor of future fracture risk. Our findings imply that dentists, using ordinary dental radiographs, can identify women at high risk for future fractures at 38-54 years of age, often long before the first fracture occurs. Copyright © 2011 Elsevier Inc. All rights reserved.
Tanaka, Ryo; Umehara, Takuya; Fujimura, Takafumi; Ozawa, Junya
2016-12-01
To develop and assess a clinical prediction rule (CPR) to predict declines in activities of daily living (ADL) at 6 months after surgery for hip fracture repair. Prospective, cohort study. From hospital to home. Patients (N=104) with hip fractures after surgery. Not applicable. ADL were assessed using the Barthel Index at 6 months after surgery. At 6 months after surgery, 86 patients (82.6%) were known to be alive, 1 patient (1.0%) had died, and 17 (16.3%) were lost to follow-up. Thirty-two patients (37.2%) did not recover their ADL at 6 months after surgery to levels before fracture. The classification and regression trees methodology was used to develop 2 models to predict a decline in ADL: (1) model 1 included age, type of fracture, and care level before fracture (sensitivity=75.0%, specificity=81.5%, positive predictive value=70.6%, positive likelihood ratio=4.050); and (2) model 2 included the degree of independence 2 weeks postsurgery for ADL chair transfer, ADL ambulation, and age (sensitivity=65.6%, specificity=87.0%, positive predictive value=75.0%, positive likelihood ratio=5.063). The areas under the receiver operating characteristic curves of both CPR models were .825 (95% confidential interval, .728-.923) and .790 (95% confidence interval, .683-.897), respectively. CPRs with moderate accuracy were developed to predict declines in ADL at 6 months after surgery for hip fracture repair. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K
2015-07-01
The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
NASA Technical Reports Server (NTRS)
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining
2017-10-01
The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.
Prediction of thermal cycling induced matrix cracking
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1992-01-01
Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.
Probability of stress-corrosion fracture under random loading.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
A method is developed for predicting the probability of stress-corrosion fracture of structures under random loadings. The formulation is based on the cumulative damage hypothesis and the experimentally determined stress-corrosion characteristics. Under both stationary and nonstationary random loadings, the mean value and the variance of the cumulative damage are obtained. The probability of stress-corrosion fracture is then evaluated using the principle of maximum entropy. It is shown that, under stationary random loadings, the standard deviation of the cumulative damage increases in proportion to the square root of time, while the coefficient of variation (dispersion) decreases in inversed proportion to the square root of time. Numerical examples are worked out to illustrate the general results.
Mobility one week after a hip fracture - can it be predicted?
Fitzgerald, Michelle; Blake, Catherine; Askin, David; Quinlan, John; Coughlan, Tara; Cunningham, Caitriona
2018-05-01
Better patient outcomes and more efficient healthcare could be achieved by predicting post hip fracture function at an early stage. This study aimed to identify independent predictors of mobility outcome one week post hip fracture surgery. All hip fracture inpatients (n=77) were included in this 6 month prospective observational cohort study. Predictor variables were obtained on the first postoperative day and included premorbid function using the New Mobility Score (NMS). Mobility outcome measures one week postoperatively included the Cumulated Ambulatory Score (CAS). Data were analysed with SPSS using binary multiple logistic regression analysis RESULTS: Patients who fell outdoors (OR 3.848; 95% CI, 1.053-14.061), had no delay to surgery (OR 5.472; 95% CI, 1.073-27.907) and had high pre-fracture function (OR3.366; 95% CI, 1.042-10.879) were predicted to achieve independent mobility (CAS = 6) one week postoperatively. Fall location, time to surgery and baseline function predict independent mobility one week after hip fracture, and can be used for early rehabilitation stratification. The NMS and CAS are recommended as standardised hip fracture clinical measures. Orthogeriatric and physiotherapy service initiatives may improve early functional outcome. Copyright © 2017. Published by Elsevier Ltd.
Edge chipping and flexural resistance of monolithic ceramics☆
Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.
2014-01-01
Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756
Handbook of Analytical Methods for Textile Composites
NASA Technical Reports Server (NTRS)
Cox, Brian N.; Flanagan, Gerry
1997-01-01
The purpose of this handbook is to introduce models and computer codes for predicting the properties of textile composites. The handbook includes several models for predicting the stress-strain response all the way to ultimate failure; methods for assessing work of fracture and notch sensitivity; and design rules for avoiding certain critical mechanisms of failure, such as delamination, by proper textile design. The following textiles received some treatment: 2D woven, braided, and knitted/stitched laminates and 3D interlock weaves, and braids.
Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations
Meng, Zhaoxu; Bessa, Miguel A.; Xia, Wenjie; ...
2016-12-06
Predicting the macroscopic fracture energy of highly crosslinked glassy polymers from atomistic simulations is challenging due to the size of the process zone being large in these systems. Here, we present a scale-bridging approach that links atomistic molecular dynamics simulations to macroscopic fracture properties on the basis of a continuum fracture mechanics model for two different epoxy materials. Our approach reveals that the fracture energy of epoxy resins strongly depends on the functionality of epoxy resin and the component ratio between the curing agent (amine) and epoxide. The most intriguing part of our study is that we demonstrate that themore » fracture energy exhibits a maximum value within the range of conversion degrees considered (from 65% to 95%), which can be attributed to the combined effects of structural rigidity and post-yield deformability. Our study provides physical insight into the molecular mechanisms that govern the fracture characteristics of epoxy resins and demonstrates the success of utilizing atomistic molecular simulations towards predicting macroscopic material properties.« less
Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Zhaoxu; Bessa, Miguel A.; Xia, Wenjie
Predicting the macroscopic fracture energy of highly crosslinked glassy polymers from atomistic simulations is challenging due to the size of the process zone being large in these systems. Here, we present a scale-bridging approach that links atomistic molecular dynamics simulations to macroscopic fracture properties on the basis of a continuum fracture mechanics model for two different epoxy materials. Our approach reveals that the fracture energy of epoxy resins strongly depends on the functionality of epoxy resin and the component ratio between the curing agent (amine) and epoxide. The most intriguing part of our study is that we demonstrate that themore » fracture energy exhibits a maximum value within the range of conversion degrees considered (from 65% to 95%), which can be attributed to the combined effects of structural rigidity and post-yield deformability. Our study provides physical insight into the molecular mechanisms that govern the fracture characteristics of epoxy resins and demonstrates the success of utilizing atomistic molecular simulations towards predicting macroscopic material properties.« less
Compston, Juliet E.; Chapurlat, Roland D.; Pfeilschifter, Johannes; Cooper, Cyrus; Hosmer, David W.; Adachi, Jonathan D.; Anderson, Frederick A.; Díez-Pérez, Adolfo; Greenspan, Susan L.; Netelenbos, J. Coen; Nieves, Jeri W.; Rossini, Maurizio; Watts, Nelson B.; Hooven, Frederick H.; LaCroix, Andrea Z.; March, Lyn; Roux, Christian; Saag, Kenneth G.; Siris, Ethel S.; Silverman, Stuart; Gehlbach, Stephen H.
2014-01-01
Context: Several fracture prediction models that combine fractures at different sites into a composite outcome are in current use. However, to the extent individual fracture sites have differing risk factor profiles, model discrimination is impaired. Objective: The objective of the study was to improve model discrimination by developing a 5-year composite fracture prediction model for fracture sites that display similar risk profiles. Design: This was a prospective, observational cohort study. Setting: The study was conducted at primary care practices in 10 countries. Patients: Women aged 55 years or older participated in the study. Intervention: Self-administered questionnaires collected data on patient characteristics, fracture risk factors, and previous fractures. Main Outcome Measure: The main outcome is time to first clinical fracture of hip, pelvis, upper leg, clavicle, or spine, each of which exhibits a strong association with advanced age. Results: Of four composite fracture models considered, model discrimination (c index) is highest for an age-related fracture model (c index of 0.75, 47 066 women), and lowest for Fracture Risk Assessment Tool (FRAX) major fracture and a 10-site model (c indices of 0.67 and 0.65). The unadjusted increase in fracture risk for an additional 10 years of age ranges from 80% to 180% for the individual bones in the age-associated model. Five other fracture sites not considered for the age-associated model (upper arm/shoulder, rib, wrist, lower leg, and ankle) have age associations for an additional 10 years of age from a 10% decrease to a 60% increase. Conclusions: After examining results for 10 different bone fracture sites, advanced age appeared the single best possibility for uniting several different sites, resulting in an empirically based composite fracture risk model. PMID:24423345
A new experimental method for the accelerated characterization of composite materials
NASA Technical Reports Server (NTRS)
Brinson, H. F.; Morris, D. H.; Yeow, Y. T.
1978-01-01
A method which permits the prediction of long-term properties of graphite/epoxy laminates on the basis of short-term (15 min) laboratory tests is described. Demonstration of delayed viscoelastic fracture in one laminate configuration, and data on the time and temperature response of a matrix-dominated unidirectional laminate contributed to a characterization of the viscoelastic process in the graphite/epoxy composites. Master curves from short-term tests of certain laminate configurations can be employed to generate long-term master curves. In addition, analytical predictions from short-term results can be used to predict long-term (25-hour) laminate properties.
NASA Astrophysics Data System (ADS)
Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel
2015-03-01
While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.
NASA Astrophysics Data System (ADS)
Jones, T.; Detwiler, R. L.
2017-12-01
Fractures act as dominant pathways for fluid flow in low-permeability rocks. However, in many subsurface environments, fluid rock reactions can lead to mineral precipitation, which alters fracture surface geometry and reduces fracture permeability. In natural fractures, surface mineralogy and roughness are often heterogeneous, leading to variations in both velocity and reactive surface area. The combined effects of surface roughness and mineral heterogeneity can lead to large disparities in local precipitation rates that are difficult to predict due to the strong coupling between dissolved mineral transport and reactions at the fracture surface. Recent experimental observations suggest that mineral precipitation in a heterogeneous fracture may promote preferential flow and focus large dissolved ion concentrations into regions with limited reactive surface area. Here, we build on these observations using reactive transport simulations. Reactive transport is simulated with a quasi-steady-state 2D model that uses a depth-averaged mass-transfer relationship to describe dissolved mineral transport across the fracture aperture and local precipitation reactions. Mineral precipitation-induced changes to fracture surface geometry are accounted for using two different approaches: (1) by only allowing reactive minerals to grow vertically, and (2) by allowing three-dimensional mineral growth at reaction sites. Preliminary results from simulations using (1) suggest that precipitation-induced aperture reduction focuses flow into thin flow paths. This flow focusing causes a reduction in the fracture-scale precipitation rate, and precipitation ceases when the reaction zone extends the entire length of the fracture. This approach reproduces experimental observations at early time reasonably well, but as precipitation proceeds, reaction sites can grow laterally along the fracture surfaces, which is not predicted by (1). To account for three-dimensional mineral growth (2), we have incorporated a level-set-method based approach for tracking the mineral interfaces in three dimensions. This provides a mechanistic approach for simulating the dynamics of the formation, and eventual closing, of preferential flow paths by precipitation-induced aperture alteration, that do not occur using (1).
NASA Astrophysics Data System (ADS)
Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui
2018-06-01
Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.
Su, Y; Leung, J; Kwok, T
2018-06-01
Falls are a major concern in terms of fracture risk. Although awareness rising for the absence of falls in the FRAX algorithm, our study only identified the independent predictive role of previous recurrent falls and their better conjunction use with FRAX for major osteoporotic fracture prediction in older Chinese men.
Bending strength of delaminated aerospace composites.
Kinawy, Moustafa; Butler, Richard; Hunt, Giles W
2012-04-28
Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.
Hollaender, R; Hartl, F; Krieg, M-A; Tyndall, A; Geuckel, C; Buitrago-Tellez, C; Manghani, M; Kraenzlin, M; Theiler, R; Hans, D
2009-03-01
Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.
Preferential pathways in complex fracture systems and their influence on large scale transport
NASA Astrophysics Data System (ADS)
Willmann, M.; Mañé, R.; Tyukhova, A.
2017-12-01
Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.
NASA Astrophysics Data System (ADS)
Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong
According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.
Kwok, Timothy Chi Yui; Su, Yi; Khoo, Chyi Chyi; Leung, Jason; Kwok, Anthony; Orwoll, Eric; Woo, Jean; Leung, Ping Chung
2017-05-01
Clinical risk factors to predict fracture are useful in guiding management of patients with osteoporosis or falls. Clinical predictors may however be population specific because of differences in lifestyle, environment and ethnicity. Four thousand community-dwelling Chinese males and females with average ages of 72.4 and 72.6 years were followed up for incident fractures, with an average of 6.5 and 8.8 years, respectively. Clinical information was collected, and bone mineral density (BMD) measurements were carried out at baseline. Stepwise Cox regression models were used to identify risk factors of nonvertebral fractures, with BMD as covariate. Areas under the receiver-operating characteristic (ROC) curve (AUC) were compared among different risk models. The incidence rates of nonvertebral fractures were 10.3 and 20.5 per 1000 person years in males and females, respectively. In males, age ≥80, history of a fall in the past year, fracture history, chronic obstructive pulmonary disease, impaired visual depth perception and low physical health-related quality of life were significant fracture risk factors, independent of BMD. In females, the significant factors were fracture history, low visual acuity and slow narrow walking speed. The clinical risk factors had a significant influence on fracture risk irrespective of osteoporosis status, even having a better risk discrimination than BMD alone, especially in males. The best risk prediction model consisted both BMD and clinical risk factors. Clinical risk factors have additive value to hip BMD in predicting nonvertebral fractures in older Chinese people and may predict them better than BMD alone in older Chinese males.
Inclusion-Based Effective Medium Models for the Permeability of a 3D Fractured Rock Mass
NASA Astrophysics Data System (ADS)
Ebigbo, A.; Lang, P. S.; Paluszny, A.; Zimmerman, R. W.
2015-12-01
Following the work of Saevik et al. (Transp. Porous Media, 2013; Geophys. Prosp., 2014), we investigate the ability of classical inclusion-based effective medium theories to predict the macroscopic permeability of a fractured rock mass. The fractures are assumed to be thin, oblate spheroids, and are treated as porous media in their own right, with permeability kf, and are embedded in a homogeneous matrix having permeability km. At very low fracture densities, the effective permeability is given exactly by a well-known expression that goes back at least as far as Fricke (Phys. Rev., 1924). For non-trivial fracture densities, an effective medium approximation must be employed. We have investigated several such approximations: Maxwell's method, the differential method, and the symmetric and asymmetric versions of the self-consistent approximation. The predictions of the various approximate models are tested against the results of explicit numerical simulations, averaged over numerous statistical realizations for each set of parameters. Each of the various effective medium approximations satisfies the Hashin-Shtrikman (H-S) bounds. Unfortunately, these bounds are much too far apart to provide quantitatively useful estimates of keff. For the case of zero matrix permeability, the well-known approximation of Snow, which is based on network considerations rather than a continuum approach, is shown to essentially coincide with the upper H-S bound, thereby proving that the commonly made assumption that Snow's equation is an "upper bound" is indeed correct. This problem is actually characterized by two small parameters, the aspect ratio of the spheroidal fractures, α, and the permeability ratio, κ = km/kf. Two different regimes can be identified, corresponding to α < κ and κ < α, and expressions for each of the effective medium approximations are developed in both regimes. In both regimes, the symmetric version of the self-consistent approximation is the most accurate.
3D printing application and numerical simulations in a fracture system
NASA Astrophysics Data System (ADS)
Yoon, H.; Martinez, M. J.
2017-12-01
The hydrogeological and mechanical properties in fractured and porous media are fundamental to predicting coupled multiphysics processes in the subsurface. Recent advances in experimental methods and multi-scale imaging capabilities have revolutionized our ability to quantitatively characterize geomaterials and digital counterparts are now routinely used for numerical simulations to characterize petrophysical and mechanical properties across scales. 3D printing is a very effective and creative technique that reproduce the digital images in a controlled way. For geoscience applications, 3D printing can be co-opted to print reproducible porous and fractured structures derived from CT-imaging of actual rocks and theoretical algorithms for experimental testing. In this work we used a stereolithography (SLA) method to create a single fracture network. The fracture in shale was first scanned using a microCT system and then the digital fracture network was printed into two parts and assembled. Aperture ranges from 0.3 to 1 mm. In particular, we discuss the design of single fracture network and the progress of printing practices to reproduce the fracture network system. Printed samples at different scales are used to measure the permeability and surface roughness. Various numerical simulations including (non-)reactive transport and multiphase flow cases are performed to study fluid flow characterization. We will also discuss the innovative advancement of 3D printing techniques applicable for coupled processes in the subsurface. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Gettings, M.E.; Bultman, M.W.
2005-01-01
Some aquifers of the southwest Colorado Plateau, U.S.A., are deeply buried and overlain by several impermeable units, and thus recharge to the aquifer is probably mainly by seepage down penetrative fracture systems. This purpose of this study was to develop a method to map the location of candidate deep penetrative fractures over a 120,000 km2 area using gravity and aeromagnetic anomaly data together with surficial fracture data. The resulting database constitutes a spatially registered estimate of recharge location. Candidate deep fractures were obtained by spatial correlation of horizontal gradient and analytic signal maxima of gravity and magnetic anomalies vertically with major surficial lineaments obtained from geologic, topographic, side-looking airborne radar, and satellite imagery. The maps define a sub-set of possible penetrative fractures because of limitations of data coverage and the analysis technique. The data and techniques employed do not yield any indication as to whether fractures are open or closed. Correlations were carried out using image processing software in such a way that every pixel on the resulting grids was coded to uniquely identify which datasets correlated. The technique correctly identified known deep fracture systems and many new ones. Maps of the correlations also define in detail the tectonic fabrics of the Southwestern Colorado Plateau. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.
NASA Astrophysics Data System (ADS)
Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie
2018-05-01
A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.
Impact of ductility on hydraulic fracturing in shales
NASA Astrophysics Data System (ADS)
MacMinn, Chris; Auton, Lucy
2016-04-01
Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.
Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture
NASA Technical Reports Server (NTRS)
Wang, John T.
2011-01-01
This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.
Tyroch, Alan H; McGuire, Emmett L; McLean, Susan F; Kozar, Rosemary A; Gates, Keith A; Kaups, Krista L; Cook, Charles; Cowgill, Sarah M; Griswold, John A; Sue, Larry A; Craun, Michael L; Price, Jan
2005-05-01
The association between Chance fractures and intra-abdominal injuries is reported to be as high as 89 per cent. Because prior studies were small series or case reports, we conducted a multicenter review to learn the true association between Chance fractures and intra-abdominal injuries as well as diagnostic trends. Trauma registry data, medical records, and radiology reports from 7 trauma centers were used to characterize 79 trauma patients with Chance fractures. Initial methods of abdominal assessment were computed tomography (CT) scan (79%), clinical examination (16%), and diagnostic peritoneal lavage (DPL) (5%). Twenty-six (33%) patients had intraabdominal injuries of which hollow viscus injuries predominated (22%). Twenty patients (25%) underwent laparotomy. The presence of an abdominal wall contusion and automobile restraint use were highly predictive of intra-abdominal injury and the need for laparotomy. The association between a Chance fracture and intra-abdominal injury is not as high as previously reported. CT scan has become the primary modality to assess the abdominal cavity of patients with Chance fractures, whereas the role of DPL has diminished.
Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.
2013-08-01
Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.
A numerical procedure for transient free surface seepage through fracture networks
NASA Astrophysics Data System (ADS)
Jiang, Qinghui; Ye, Zuyang; Zhou, Chuangbing
2014-11-01
A parabolic variational inequality (PVI) formulation is presented for the transient free surface seepage problem defined for a whole fracture network. Because the seepage faces are specified as Signorini-type conditions, the PVI formulation can effectively eliminate the singularity of spillpoints that evolve with time. By introducing a continuous penalty function to replace the original Heaviside function, a finite element procedure based on the PVI formulation is developed to predict the transient free surface response in the fracture network. The effects of the penalty parameter on the solution precision are analyzed. A relative error formula for evaluating the flow losses at steady state caused by the penalty parameter is obtained. To validate the proposed method, three typical examples are solved. The solutions for the first example are compared with the experimental results. The results from the last two examples further demonstrate that the orientation, extent and density of fractures significantly affect the free surface seepage behavior in the fracture network.
Influence of bruxism on survival of porcelain laminate veneers
Agustín-Panadero, Rubén; Fons-Font, Antonio; Román-Rodríguez, Juan L.; Solá-Ruíz, María F.
2014-01-01
Objectives: This study aims to determine whether bruxism and the use of occlusal splints affect the survival of porcelain laminate veneers in patients treated with this technique. Material and Methods: Restorations were made in 70 patients, including 30 patients with some type of parafunctional habit. A total of 323 veneers were placed, 170 in patients with bruxism activity, and the remaining 153 in patients without it. A clinical examination determined the presence or absence of ceramic failure (cracks, fractures and debonding) of the restorations; these incidents were analyzed for association with bruxism and the use of splints. Results: Analysis of the ceramic failures showed that of the 13 fractures and 29 debonding that were present in our study, 8 fractures and 22 debonding were related to the presence of bruxism. Conclusions: Porcelain laminate veneers are a predictable treatment option that provides excellent results, recognizing a higher risk of failure in patients with bruxism activity. The use of occlusal splints reduces the risk of fractures. Key words:Veneer, fracture, debonding, bruxism, occlusal splint. PMID:23986018
Yu, Ruby; Leung, Jason; Woo, Jean
2014-08-01
We examined whether sarcopenia is predictive of incident fractures among older men, whether the inclusion of sarcopenia in models adds any incremental value to bone mineral density (BMD), and whether sarcopenia is associated with a higher risk of fractures in elderly with osteoporosis. A cohort of 2000 community-dwelling men aged ≥65 years were examined for which detailed information regarding demographics, socioeconomic, medical history, clinical, and lifestyle factors were documented. Body composition and BMD were measured using dual energy X-ray absorptiometry. Sarcopenia was defined according to the Asian Working Group for Sarcopenia (AWGS) algorithm. Incident fractures were documented during the follow-up period from 2001 to 2013, and related to sarcopenia and its component measures using Cox proportional hazard regressions. The contribution of sarcopenia for predicting fracture risk was evaluated by receiver operating characteristic analysis, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). During an average of 11.3 years of follow-up, 226 (11.3%) men sustained at least 1 incident fracture, making the incidence of fractures 1200.6/100,000 person-years. After multivariate adjustments, sarcopenia was associated with increased fracture risk (hazard ratio [HR], 1.87, 95% confidence interval [CI], 1.26-2.79) independent of BMD and other clinical risk factors. The addition of sarcopenia did not significantly increase area under curve or IDI but significantly improved the predictive ability on fracture risk over BMD and other clinical risk factors by 5.12% (P < .05) using the NRI approach. In addition, the combination of osteoporosis and sarcopenia (sarco-osteoporosis) resulted in a significantly increased risk of fractures (HR, 3.49, 95% CI, 1.76-6.90) compared with those with normal BMD and without sarcopenia. This study confirms that sarcopenia is a predictor of fracture risk in this elderly men cohort, establishes that sarcopenia provides incremental predictive value for fractures over the integration of BMD and other clinical risk factors, and suggests that the combination of osteoporosis and sarcopenia could identify a subgroup with a particularly high fracture risk. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Parker, B. L.; Chapman, S.
2015-12-01
Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.
Pluskiewicz, W; Adamczyk, P; Czekajło, A; Grzeszczak, W; Drozdzowska, B
2015-12-01
In 770 postmenopausal women, the fracture incidence during a 4-year follow-up was analyzed in relation to the fracture probability (FRAX risk assessment tool) and risk (Garvan risk calculator) predicted at baseline. Incident fractures occurred in 62 subjects with a higher prevalence in high-risk subgroups. Prior fracture, rheumatoid arthritis, femoral neck T-score and falls increased independent of fracture incidence. The aim of the study was to analyze the incidence of fractures during a 4-year follow-up in relation to the baseline fracture probability and risk. Enrolled in the study were 770 postmenopausal women with a mean age of 65.7 ± 7.3 years. Bone mineral density (BMD) at the proximal femur, clinical data, and fracture probability using the FRAX tool and risk using the Garvan calculator were determined. Each subject was asked yearly by phone call about the incidence of fracture during the follow-up period. Of the 770 women, 62 had a fracture during follow-up, and 46 had a major fracture. At baseline, BMD was significantly lower, and fracture probability and fracture risk were significantly higher in women who had a fracture. Among women with a major fracture, the percentage with a high baseline fracture probability (>10 %) was significantly higher than among those without a fracture (p < 0.01). Fracture incidence during follow-up was significantly higher among women with a high baseline fracture probability (12.7 % vs. 5.2 %) and a high fracture risk (9.2 vs. 5.3 %) so that the "fracture-free survival" curves were significantly different (p < 0.05). The number of clinical risk factors noted at baseline was significantly associated with fracture incidence (chi-squared = 20.82, p < 0.01). Prior fracture, rheumatoid arthritis, and femoral neck T-score were identified as significant risk factors for major fractures (for any fractures, the influence of falls was also significant). During follow-up, fracture incidence was predicted by baseline fracture probability (FRAX risk assessment tool) and risk (Garvan risk calculator). A number of clinical risk factors and a prior fracture, rheumatoid arthritis, femoral neck T-score, and falls were independently associated with an increased incidence of fractures. [Corrected
NASA Astrophysics Data System (ADS)
Kutemi, Titilope F.
The steady-state flow technique was employed to measure the flow rate of clean dry air through thirty core plugs (approximately 1" diameter) of the Ellenburger dolomite, drilled normal and parallel to the dominant fractures. Porosity was estimated by the method of imbibition. Electrical parameters (electrical conductivity and dielectric permittivity) were calculated from electrical resistance and capacitance measured as a function of frequency (100 Hz, 120 Hz, 1 KHz, and 10 KHz) and saturation (dry/ambient and brine saturated conditions). Another set of permeability data obtained by the method of pressure decay on similar samples was used for correlation. Anisotropies of permeability and electromagnetic parameters were established. Empirical relations between porosity (phi), permeability (k), electrical conductivity (sigma), and dielectric permittivity (epsilon) were defined via cross-plots and linear regressions. Prediction of k from sigma and epsilon was attempted; k from sigma was modeled from a combination of the Archie's relation and the Carman-Kozeny relation. Anisotropic EM responses are sensitive to saturation. Anisotropies of conductivity and permeability were observed to be controlled by the pore micro-structure. Although the rock is fractured, the fracture density appears insufficient to dominate the effects of primary structures in these samples of the Ellenburger dolomite. Model-based prediction of permeability from conductivity is generally unreliable, and is attributed to the underlying assumptions of the models, which are not consistent with the properties of the samples used for this study. Permeability was not predictable from dielectric permittivity.
Fractures of the cervical spine
Marcon, Raphael Martus; Cristante, Alexandre Fogaça; Teixeira, William Jacobsen; Narasaki, Douglas Kenji; Oliveira, Reginaldo Perilo; de Barros Filho, Tarcísio Eloy Pessoa
2013-01-01
OBJECTIVES: The aim of this study was to review the literature on cervical spine fractures. METHODS: The literature on the diagnosis, classification, and treatment of lower and upper cervical fractures and dislocations was reviewed. RESULTS: Fractures of the cervical spine may be present in polytraumatized patients and should be suspected in patients complaining of neck pain. These fractures are more common in men approximately 30 years of age and are most often caused by automobile accidents. The cervical spine is divided into the upper cervical spine (occiput-C2) and the lower cervical spine (C3-C7), according to anatomical differences. Fractures in the upper cervical spine include fractures of the occipital condyle and the atlas, atlanto-axial dislocations, fractures of the odontoid process, and hangman's fractures in the C2 segment. These fractures are characterized based on specific classifications. In the lower cervical spine, fractures follow the same pattern as in other segments of the spine; currently, the most widely used classification is the SLIC (Subaxial Injury Classification), which predicts the prognosis of an injury based on morphology, the integrity of the disc-ligamentous complex, and the patient's neurological status. It is important to correctly classify the fracture to ensure appropriate treatment. Nerve or spinal cord injuries, pseudarthrosis or malunion, and postoperative infection are the main complications of cervical spine fractures. CONCLUSIONS: Fractures of the cervical spine are potentially serious and devastating if not properly treated. Achieving the correct diagnosis and classification of a lesion is the first step toward identifying the most appropriate treatment, which can be either surgical or conservative. PMID:24270959
A theoretical and experimental technique to measure fracture properties in viscoelastic solids
NASA Astrophysics Data System (ADS)
Freitas, Felipe Araujo Colares De
Prediction of crack growth in engineering structures is necessary for better analysis and design. However, this prediction becomes quite complex for certain materials in which the fracture behavior is both rate and path dependent. Asphaltic materials used in pavements have that intrinsic complexity in their behavior. A lot of research effort has been devoted to better understanding viscoelastic behavior and fracture in such materials. This dissertation presents a further refinement of an experimental test setup, which is significantly different from standard testing protocols, to measure viscoelastic and fracture properties of nonlinear viscoelastic solids, such as asphaltic materials. The results presented herein are primarily for experiments with asphalt, but the test procedure can be used for other viscoelastic materials as well. Even though the test is designed as a fracture test, experiments on the investigated materials have uncovered very complex phenomena prior to fracture. Viscoelasticity and micromechanics are used to explain some of the physical phenomena observed in the tests. The material behavior prior to fracture includes both viscoelastic behavior and a necking effect, which is further discussed in the appendix of the present study. The dissertation outlines a theoretical model for the prediction of tractions ahead of the crack tip. The major contribution herein lies in the development of the experimental procedure for evaluating the material parameters necessary for deploying the model in the prediction of ductile crack growth. Finally, predictions of crack growth in a double cantilever beam specimens and asphalt concrete samples are presented in order to demonstrate the power of this approach for predicting crack growth in viscoelastic media.
Kic size effect study on two high-strength steels using notched bend specimens
NASA Technical Reports Server (NTRS)
Stonesifer, F. R.
1974-01-01
Five methods are used to calculate plane strain fracture toughness (K sub Q) values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid stress intensity factor (K sub IC) values from specimens of sizes well below that required by E399 standard tests.
Impact of ductility on hydraulic fracturing in shales
NASA Astrophysics Data System (ADS)
Auton, Lucy; MacMinn, Chris
2015-11-01
Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the injection of fluid at high pressure. This creates fractures in the rock, providing hydraulic access deeper into the reservoir and enabling gas to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We solve the model semi-analytically at steady state, and numerically in general. We find that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from purely elastic models.
Adhesion and interfacial fracture toughness between hard and soft materials
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Wolf, Kurt; Orana, Argjenta; Fennimore, Roy; Zong, Zong; Meng, Juan; Papandreou, George; Maryanoff, Cynthia; Soboyejo, Wole
2008-11-01
This paper presents the results of a combined experimental and theoretical study of adhesion between hard and soft layers that are relevant to medical devices such as drug-eluting stents and semiconductor applications. Brazil disk specimens were used to measure the interfacial fracture energies between model parylene C and 316L stainless steel over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Podgorney; Chuan Lu; Hai Huang
2012-01-01
Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions ofmore » EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.« less
NASA Astrophysics Data System (ADS)
Boehm, Holger F.; Körner, Markus; Baumert, Bernhard; Linsenmaier, Ulrich; Reiser, Maximilian
2011-03-01
Osteoporosis is a chronic condition characterized by demineralization and destruction of bone tissue. Fractures associated with the disease are becoming an increasingly relevant issue for public health institutions. Prediction of fracture risk is a major focus research and, over the years, has been approched by various methods. Still, bone mineral density (BMD) obtained by dual-energy X-ray absorptiometry (DXA) remains the clinical gold-standard for diagnosis and follow-up of osteoporosis. However, DXA is restricted to specialized diagnostic centers and there exists considerable overlap in BMD results between populations of individuals with and without fractures. Clinically far more available than DXA is conventional x-ray imaging depicting trabecular bone structure in great detail. In this paper, we demonstrate that bone structure depicted by clinical radiographs can be analysed quantitatively by parameters obtained from the Radon Transform (RT). RT is a global analysis-tool for detection of predefined, parameterized patterns, e.g. straight lines or struts, representing suitable approximations of trabecular bone texture. The proposed algorithm differentiates between patients with and without fractures of the hip by application of various texture-metrics based on the Radon-Transform to standard x-ray images of the proximal femur. We consider three different regions-of-interest in the proximal femur (femoral head, neck, and inter-trochanteric area), and conduct an analysis with respect to correct classification of the fracture status. Performance of the novel approach is compared to DXA. We draw the conclusion that performance of RT is comparable to DXA and may become a useful supplement to densitometry for the prediction of fracture risk.
Influence of cone beam CT enhancement filters on diagnosis ability of longitudinal root fractures
Nascimento, M C C; Nejaim, Y; de Almeida, S M; Bóscolo, F N; Haiter-Neto, F; Sobrinho, L C
2014-01-01
Objectives: To determine whether cone beam CT (CBCT) enhancement filters influence the diagnosis of longitudinal root fractures. Methods: 40 extracted human posterior teeth were endodontically prepared, and fractures with no separation of fragments were made in 20 teeth of this sample. The teeth were placed in a dry mandible and scanned using a Classic i-CAT® CBCT device (Imaging Sciences International, Inc., Hatfield, PA). Evaluations were performed with and without CBCT filters (Sharpen Mild, Sharpen Super Mild, S9, Sharpen, Sharpen 3 × 3, Angio Sharpen Medium 5 × 5, Angio Sharpen High 5 × 5 and Shadow 3 × 3) by three oral radiologists. Inter- and intraobserver agreement was calculated by the kappa test. Accuracy, sensitivity, specificity and positive and negative predictive values were determined. McNemar test was applied for agreement between all images vs the gold standard and original images vs images with filters (p < 0.05). Results: Means of intraobserver agreement ranged from good to excellent. Angio Sharpen Medium 5 × 5 filter obtained the highest positive predictive value (80.0%) and specificity value (76.5%). Angio Sharpen High 5 × 5 filter obtained the highest sensitivity (78.9%) and accuracy (77.5%) value. Negative predictive value was the highest (82.9%) for S9 filter. The McNemar test showed no statistically significant differences between images with and without CBCT filters (p > 0.05). Conclusions: Although no statistical differences was observed in the diagnosis of root fractures when using filters, these filters seem to improve diagnostic capacity for longitudinal root fractures. Further in vitro studies with endodontic-treated teeth and research in vivo should be considered. PMID:24408819
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
NASA Astrophysics Data System (ADS)
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.
Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment
NASA Technical Reports Server (NTRS)
Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.
1979-01-01
The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.
Somasundaram, K; Huber, C P; Babu, V; Zadeh, H
2013-04-01
The aim of our study is to analyse the results of our surgical technique for the treatment of proximal humeral fractures and fracture dislocations using locking plates in conjunction with calcium sulphate bone-substitute augmentation and tuberosity repair using high-strength sutures. We used the extended deltoid-splitting approach for fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Optimal surgical management of proximal humeral fractures remains controversial. Locking plates have become a popular method of fixation. However, failure of fixation may occur if they are used as the sole method of fixation in comminuted fractures, especially in osteopenic bone. We retrospectively analysed 22 proximal humeral fractures in 21 patients; 10 were male and 11 female with an average age of 64.6 years (range 37-77). Average follow-up was 24 months. Eleven of these fractures were exposed by the extended deltoid-splitting approach. Fractures were classified according to Neer and Hertel systems. Preoperative radiographs and computed tomography (CT) scans in three- and four-part fractures were done to assess the displacement and medial calcar length for predicting the humeral head vascularity. According to the Neer classification, there were five two-part, six three-part, five four-part fractures and six fracture-dislocations (two anterior and four posterior). Results were assessed clinically with disabilities of the arm, shoulder and hand (DASH) scores, modified Constant and Murley scores and serial postoperative radiographs. The mean DASH score was 16.18 and the modified Constant and Murley score was 64.04 at the last follow-up. Eighteen out of twenty-two cases achieved good clinical outcome. All the fractures united with no evidence of infection, failure of fixation, malunion, tuberosity failure, avascular necrosis or adverse reaction to calcium sulphate bone substitute. There was no evidence of axillary nerve injury. Four patients had a longer recovery period due to stiffness, associated wrist fracture and elbow dislocation. The CaSO4 bone substitute was replaced by normal appearing trabecular bone texture at an average of 6 months in all patients. In our experience, we have found the use of locking plates, calcium sulphate bone substitute and tuberosity repair with high-strength sutures to be a safe and reliable method of internal fixation for complex proximal humeral fractures and fracture-dislocations. Furthermore, we have also found the use of the extended deltoid-splitting approach to be safe and to provide excellent exposure facilitating accurate reduction for fixation of the fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Basic failure mechanisms in advanced composites
NASA Technical Reports Server (NTRS)
Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.
1972-01-01
Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.
Structural design methodologies for ceramic-based material systems
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.
1991-01-01
One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.
Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Licatta, Angelo; Griffin, Devon
2007-01-01
The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.
Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon
2008-01-01
The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.
Understanding hydraulic fracturing: a multi-scale problem.
Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N
2016-10-13
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).
Understanding hydraulic fracturing: a multi-scale problem
Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.
2016-01-01
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789
Tectonic lineations and frictional faulting on a relatively simple body (Ariel)
NASA Astrophysics Data System (ADS)
Nyffenegger, Paul; Davis, Dan M.; Consolmagno, Guy J.
1997-09-01
Anderson's model of faulting and the Mohr-Coulomb failure criterion can predict the orientations of faults generated in laboratory triaxial compression experiments, but do a much poorer job of explaining the orientations of outcrop- and map-scale faults on Earth. This failure may be due to the structural complexity of the Earth's lithosphere, the failure of laboratory experiments to predict accurately the strength of natural faults, or some fundamental flaw in the model. A simpler environment, such as the lithosphere of an icy satellite, allows us to test whether this model can succeed in less complex settings. A mathematical method is developed to analyze patterns in fracture orientations that can be applied to fractures in the lithospheres of icy satellites. In a initial test of the method, more than 300 lineations on Uranus' satellite Ariel are examined. A nonrandom pattern of lineations is looked for, and the source of the stresses that caused those features and the strength of the material in which they occur are constrained. It is impossible to observe directly the slip on these fractures. However, their orientations are clearly nonrandom and appear to be consistent with Andersonian strike-slip faulting in a relatively weak frictional lithosphere during one or more episodes of tidal flexing.
Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J
2015-06-01
Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Numerical investigations of rib fracture failure models in different dynamic loading conditions.
Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam
2016-01-01
Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.
The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang
2018-03-01
Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1 × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.
Cortical Porosity Identifies Women with Osteopenia at Increased Risk for Forearm Fractures
Bala, Yohann; Zebaze, Roger; Ghasem-Zadeh, Ali; Atkinson, Elizabeth J.; Iuliano, Sandra; Peterson, James M.; Amin, Shreyasee; Bjørnerem, Åshild; Melton, L. Joseph; Johansson, Helena; Kanis, John A.; Khosla, Sundeep; Seeman, Ego
2014-01-01
Background Most fragility fractures arise among the many women with osteopenia, not the smaller number with osteoporosis at high risk for fracture. Thus, most women at risk for fracture assessed only by measuring areal bone mineral density (aBMD) will remain untreated. Methods We measured cortical porosity and trabecular bone volume/total volume (BV/TV) of the ultradistal radius (UDR) using high-resolution peripheral quantitative computed tomography, aBMD using densitometry, and 10-year fracture probability using the country-specific FRAX tool in 68 postmenopausal women with forearm fractures and 70 age-matched community controls in Olmsted County, Minnesota. Results Women with forearm fractures had 0.4 standard deviations (SD) higher cortical porosity and 0.6 SD lower trabecular BV/TV. Compact-appearing cortical porosity predicted fracture independent of aBMD; odds ratio [OR] 1.92 (95%CI, 1.10–3.33). In women with osteoporosis at the UDR, cortical porosity did not distinguish those with, from those without, fractures because high porosity was present in 92% and 86% of each group respectively. By contrast, in women with osteopenia at the UDR, high porosity of the compact-appearing cortex conferred an OR for fracture of 4.00 (95%CI, 1.15–13.90). Conclusion In women with osteoporosis, porosity is captured by aBMD and so measuring UDR cortical porosity does not improve diagnostic sensitivity. However, in women with osteopenia, cortical porosity was associated with forearm fractures. PMID:24519558
NASA Technical Reports Server (NTRS)
Hochhalter, J. D.; Glaessgen, E. H.; Ingraffea, A. R.; Aquino, W. A.
2009-01-01
Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales.
Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
James W. Castle; Ronald W. Falta; David Bruce
2006-10-31
The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas,more » alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evaluate the ability of storage caverns produced by the acid-dissolution method to store natural gas. In addition, analyses were conducted to evaluate cavern stability during gas injection and withdrawal from storage caverns created in carbonate formations by the acid-dissolution method. The stability analyses were conducted using FLAC2D, a commercially available geotechnical analysis and design software. The analyses indicate that a tall cylindrical cavern with a domed roof and floor will be stable under the expected range of in situ and operational conditions. This result suggests that it should be feasible to avoid mechanical instabilities that could potentially diminish the effectiveness of the storage facility. The feasibility of using pressure transients measured at the ground surface was investigated as a means to evaluate (Abstract truncated)« less
Cummings, Steven R; Karpf, David B; Harris, Fran; Genant, Harry K; Ensrud, Kristine; LaCroix, Andrea Z; Black, Dennis M
2002-03-01
To estimate how much the improvement in bone mass accounts for the reduction in risk of vertebral fracture that has been observed in randomized trials of antiresorptive treatments for osteoporosis. After a systematic search, we conducted a meta-analysis of 12 trials to describe the relation between improvement in spine bone mineral density and reduction in risk of vertebral fracture in postmenopausal women. We also used logistic models to estimate the proportion of the reduction in risk of vertebral fracture observed with alendronate in the Fracture Intervention Trial that was due to improvement in bone mineral density. Across the 12 trials, a 1% improvement in spine bone mineral density was associated with a 0.03 decrease (95% confidence interval [CI]: 0.02 to 0.05) in the relative risk (RR) of vertebral fracture. The reductions in risk were greater than predicted from improvement in bone mineral density; for example, the model estimated that treatments predicted to reduce fracture risk by 20% (RR = 0.80), based on improvement in bone mineral density, actually reduce the risk of fracture by about 45% (RR = 0.55). In the Fracture Intervention Trial, improvement in spine bone mineral density explained 16% (95% CI: 11% to 27%) of the reduction in the risk of vertebral fracture with alendronate. Improvement in spine bone mineral density during treatment with antiresorptive drugs accounts for a predictable but small part of the observed reduction in the risk of vertebral fracture.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Jin, Dakai; Zhang, Xiaoliu; Levy, Steven M.; Saha, Punam K.
2017-03-01
Osteoporosis is associated with an increased risk of low-trauma fractures. Segmentation of trabecular bone (TB) is essential to assess TB microstructure, which is a key determinant of bone strength and fracture risk. Here, we present a new method for TB segmentation for in vivo CT imaging. The method uses Hessian matrix-guided anisotropic diffusion to improve local separability of trabecular structures, followed by a new multi-scale morphological reconstruction algorithm for TB segmentation. High sensitivity (0.93), specificity (0.93), and accuracy (0.92) were observed for the new method based on regional manual thresholding on in vivo CT images. Mechanical tests have shown that TB segmentation using the new method improved the ability of derived TB spacing measure for predicting actual bone strength (R2=0.83).
A close examination of healthcare expenditures related to fractures.
Kilgore, Meredith L; Curtis, Jeffrey R; Delzell, Elizabeth; Becker, David J; Arora, Tarun; Saag, Kenneth G; Morrisey, Michael A
2013-04-01
This study evaluated reasons for healthcare expenditures both before and after the occurrence of fractures among Medicare beneficiaries. In a previous study we examined healthcare expenditures in the 6 months before and after fractures. The difference-"incremental" expenditures-provides one estimate of the potentially avoidable costs associated with fractures. We constructed a second estimate of the cost burden-"attributable" expenditures-using only those costs recorded in claims with fracture diagnosis codes. Attributable expenditures accounted for only 24% to 60% of incremental expenditures, depending on the fracture site. We examined health care expenditures between 1999 and 2005 among Medicare beneficiaries who experienced fractures (cases) and among beneficiaries who did not experience fractures (controls), matched to cases on age, race, and sex. We also examined healthcare expenditures for cases and controls for 24 months prior to the fracture index date. When expenditures associated with diagnoses for aftercare, joint pain, and osteoporosis, other musculoskeletal diagnoses, pneumonia, and pressure ulcers were included, the proportion of incremental costs directly attributable to fracture care rose to 72% to 88%. Expenditures prior to fracture were higher for cases than controls, and the rate of increase accelerated over the 12 months prior to the hip fracture. Our findings confirm that the original incremental cost analysis constituted a satisfactory method for estimating avoidable costs associated with fractures. We also conclude that those with fractures had much higher and growing healthcare expenditures in the 12 months prior to the event, compared with age-, race-, and sex-matched controls. This suggests that patterns of healthcare services utilization may provide a means to improve fracture prediction rules. Copyright © 2013 American Society for Bone and Mineral Research.
NASA Astrophysics Data System (ADS)
Nguyen, Duong Thuy Thi
According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted treatment strategy should focus on simulating, in vitro, a physiological bone environment to predict clinical effectiveness of engineered bone and understand cellular responses due to the proposed agents and bioactive scaffolds. An in vitro test system can be the necessary catalyst to reduce implant failures and non-unions in fragility fractures.
Contact thermal shock test of ceramics
NASA Technical Reports Server (NTRS)
Rogers, W. P.; Emery, A. F.
1992-01-01
A novel quantitative thermal shock test of ceramics is described. The technique employs contact between a metal-cooling rod and hot disk-shaped specimen. In contrast with traditional techniques, the well-defined thermal boundary condition allows for accurate analyses of heat transfer, stress, and fracture. Uniform equibiaxial tensile stresses are induced in the center of the test specimen. Transient specimen temperature and acoustic emission are monitored continuously during the thermal stress cycle. The technique is demonstrated with soda-lime glass specimens. Experimental results are compared with theoretical predictions based on a finite-element method thermal stress analysis combined with a statistical model of fracture. Material strength parameters are determined using concentric ring flexure tests. Good agreement is found between experimental results and theoretical predictions of failure probability as a function of time and initial specimen temperature.
Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.
2015-01-01
Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257
Morphological Expressions of Crater Infill Collapse: Model Simulations of Chaotic Terrains on Mars
NASA Astrophysics Data System (ADS)
Roda, Manuel; Marketos, George; Westerweel, Jan; Govers, Rob
2017-10-01
Martian chaotic terrains are characterized by deeply depressed intensively fractured areas that contain a large number of low-strain tilted blocks. Stronger deformation (e.g., higher number of fractures) is generally observed in the rims when compared to the middle regions of the terrains. The distribution and number of fractures and tilted blocks are correlated with the size of the chaotic terrains. Smaller chaotic terrains are characterized by few fractures between undeformed blocks. Larger terrains show an elevated number of fractures uniformly distributed with single blocks. We investigate whether this surface morphology may be a consequence of the collapse of the infill of a crater. We perform numerical simulations with the Discrete Element Method and we evaluate the distribution of fractures within the crater and the influence of the crater size, infill thickness, and collapsing depth on the final morphology. The comparison between model predictions and the morphology of the Martian chaotic terrains shows strong statistical similarities in terms of both number of fractures and correlation between fractures and crater diameters. No or very weak correlation is observed between fractures and the infill thickness or collapsing depth. The strong correspondence between model results and observations suggests that the collapse of an infill layer within a crater is a viable mechanism for the peculiar morphology of the Martian chaotic terrains.
NASA Astrophysics Data System (ADS)
Ma, Xinfang; Zhou, Tong; Zou, Yushi
2017-05-01
Strike-slip fault geostress and dipping laminated structures in Lujiaping shale formation typically result in difficultly predicting hydraulic fracture (HF) geometries. In this study, a novel 3D fracture propagation model based on discrete element method (DEM) is established. A series of simulations is performed to illustrate the influence of vertical stress difference (△σv = σv-σh), fluid viscosity, and injection rate, on HF growth geometry in the dipping layered formation. Results reveal that the fracturing fluid can easily infiltrate the dipping bedding plane (BP) interfaces with low net pressure for △σv = 1 MPa. HF height growth is also restricted. With increased △σv, fracture propagation in the vertical direction is enhanced, and a fracture network is formed by VF and partially opened dipping BPs. However, it is likely to create simple VF for △σv = 20 MPa. Appropriately increasing fracturing fluid viscosity and injection rate is conductive to weakening the containment effect of BPs on HF growth by increasing the fluid net pressure. However, no indication is found on whether a higher fracturing fluid viscosity is better. Higher viscosity can reduce the activation of BPs, so a stimulated reservoir volume is not necessarily increased. All these results can serve as theoretical guidance for the optimization of fracturing treatments in Lujiaping shale formation.
Micromechanics Modeling of Fracture in Nanocrystalline Metals
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.
2002-01-01
Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.
A statistical model of brittle fracture by transgranular cleavage
NASA Astrophysics Data System (ADS)
Lin, Tsann; Evans, A. G.; Ritchie, R. O.
A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.
Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics
Yaghoobi, Amin; Chorzepa, Mi G.; Kim, S. Sonny; Durham, Stephan A.
2017-01-01
Concrete is a complex heterogeneous material, and thus, it is important to develop numerical modeling methods to enhance the prediction accuracy of the fracture mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates, interfacial transition zones, air voids and cementitious matrix is characterized as particle points in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform probability distributions, while a statistical study is provided to comprise the effect of random distributions of constituent materials. In obtaining the steady-state response, an incremental and iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage patterns are compared with available experimental and finite element analysis (FEA) results. Although the proposed model uses much simpler material damage models and discretization schemes, the load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of the proposed mesoscale model. PMID:28772518
Timashpolsky, Alisa; Dagum, Alexander B; Sayeed, Syed M; Romeiser, Jamie L; Rosenfeld, Elisheva A; Conkling, Nicole
2016-01-01
There are >150,000 patient visits per year to emergency rooms for facial trauma. The reliability of a computed tomography (CT) scan has made it the primary modality for diagnosing facial skeletal injury, with the physical examination playing more a cursory role. Knowing the predictive value of physical findings in facial skeletal injuries may enable more appropriate use of imaging and health care resources. A blinded prospective study was undertaken to assess the predictive value of physical examination findings in detecting maxillofacial fracture in trauma patients, and in determining whether a patient will require surgical intervention. Over a four-month period, the authors' team examined patients admitted with facial trauma to the emergency department of their hospital. The evaluating physician completed a standardized physical examination evaluation form indicating the physical findings. Corresponding CT scans and surgical records were then reviewed, and the results recorded by a plastic surgeon who was blinded to the results of the physical examination. A total of 57 patients met the inclusion criteria; there were 44 male and 13 female patients. The sensitivity, specificity, positive predictive value and negative predictive value of grouped physical examination findings were determined in major areas. In further analysis, specific examination findings with n≥9 (15%) were also reported. The data demonstrated a high negative predictive value of at least 90% for orbital floor, zygomatic, mandibular and nasal bone fractures compared with CT scan. Furthermore, none of the patients who did not have a physical examination finding for a particular facial fracture required surgery for that fracture. Thus, the instrument performed well at ruling out fractures in these areas when there were none. Ultimately, these results may help reduce unnecessary radiation and costly imaging in patients with facial trauma without facial fractures.
Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen
2015-09-01
Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.
Nonlinear fracture mechanics-based analysis of thin wall cylinders
NASA Technical Reports Server (NTRS)
Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.
1994-01-01
This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.
Identifying Wrist Fracture Patients with High Accuracy by Automatic Categorization of X-ray Reports
de Bruijn, Berry; Cranney, Ann; O’Donnell, Siobhan; Martin, Joel D.; Forster, Alan J.
2006-01-01
The authors performed this study to determine the accuracy of several text classification methods to categorize wrist x-ray reports. We randomly sampled 751 textual wrist x-ray reports. Two expert reviewers rated the presence (n = 301) or absence (n = 450) of an acute fracture of wrist. We developed two information retrieval (IR) text classification methods and a machine learning method using a support vector machine (TC-1). In cross-validation on the derivation set (n = 493), TC-1 outperformed the two IR based methods and six benchmark classifiers, including Naive Bayes and a Neural Network. In the validation set (n = 258), TC-1 demonstrated consistent performance with 93.8% accuracy; 95.5% sensitivity; 92.9% specificity; and 87.5% positive predictive value. TC-1 was easy to implement and superior in performance to the other classification methods. PMID:16929046
Relationship between Fetuin A, Vascular Calcification and Fracture Risk in Dialysis Patients
Chen, Hung Yuan; Chiu, Yen Ling; Hsu, Shih Ping; Pai, Mei Fen; Yang, Ju Yeh; Peng, Yu Sen
2016-01-01
Background Fractures are a common morbidity that lead to worse outcomes in dialysis patients. Fetuin A inhibits vascular calcification (VC), potentially promotes bone mineralization and its level positively correlates with bone mineral density in the general population. On the other hand, the presence of VC is associated with low bone volume in dialysis patients. Whether the fetuin A level and VC can predict the occurrence of fractures in dialysis patients remains unknown. Methods We performed this prospective, observational cohort study including 685 dialysis patients (629 hemodialysis and 56 peritoneal dialysis) from a single center in Taiwan for a median follow-up period of 3.4 years. The baseline fetuin A level and status of presence of aortic arch calcification (VC) and incidence of major fractures (hip, pelvis, humerus, proximal forearm, lower leg or vertebrae) were assessed using adjusted Cox proportional hazards models, recursive partitioning analysis and competing risk models. Results Overall, 177 of the patients had major fractures. The incidence rate of major fractures was 3.29 per 100 person-years. In adjusted analyses, the patients with higher baseline fetuin A levels had a lower incidence of fractures (adjusted hazard ratio (HR), 0.3; 95% CI, 0.18‒0.5, fetuin A tertile 3 vs. tertile 1 and HR, 0.52; 95% CI, 0.34‒0.78, tertile 2 vs. tertile 1). The presence of aortic arch calcification (VC) independently predicted the occurrence of fractures (adjusted HR, 1.95; 95% CI, 1.34‒2.84) as well. When accounting for death as an event in competing risk models, the patients with higher baseline fetuin A levels remained to have a lower incidence of fractures (SHR, 0.31; 95% CI, 0.17‒0.56, fetuin A tertile 3 vs. tertile 1 and 0.51; 95% CI, 0.32‒0.81, tertile 2 vs. tertile 1). Interpretations Lower baseline fetuin A levels and the presence of VC were independently linked to higher risk of incident fractures in prevalent dialysis patients. PMID:27398932
Liebl, Hans; Garcia, Eduardo Grande; Holzner, Fabian; Noel, Peter B.; Burgkart, Rainer; Rummeny, Ernst J.; Baum, Thomas; Bauer, Jan S.
2015-01-01
Purpose To experimentally validate a non-linear finite element analysis (FEA) modeling approach assessing in-vitro fracture risk at the proximal femur and to transfer the method to standard in-vivo multi-detector computed tomography (MDCT) data of the hip aiming to predict additional hip fracture risk in subjects with and without osteoporosis associated vertebral fractures using bone mineral density (BMD) measurements as gold standard. Methods One fresh-frozen human femur specimen was mechanically tested and fractured simulating stance and clinically relevant fall loading configurations to the hip. After experimental in-vitro validation, the FEA simulation protocol was transferred to standard contrast-enhanced in-vivo MDCT images to calculate individual hip fracture risk each for 4 subjects with and without a history of osteoporotic vertebral fractures matched by age and gender. In addition, FEA based risk factor calculations were compared to manual femoral BMD measurements of all subjects. Results In-vitro simulations showed good correlation with the experimentally measured strains both in stance (R2 = 0.963) and fall configuration (R2 = 0.976). The simulated maximum stress overestimated the experimental failure load (4743 N) by 14.7% (5440 N) while the simulated maximum strain overestimated by 4.7% (4968 N). The simulated failed elements coincided precisely with the experimentally determined fracture locations. BMD measurements in subjects with a history of osteoporotic vertebral fractures did not differ significantly from subjects without fragility fractures (femoral head: p = 0.989; femoral neck: p = 0.366), but showed higher FEA based risk factors for additional incident hip fractures (p = 0.028). Conclusion FEA simulations were successfully validated by elastic and destructive in-vitro experiments. In the subsequent in-vivo analyses, MDCT based FEA based risk factor differences for additional hip fractures were not mirrored by according BMD measurements. Our data suggests, that MDCT derived FEA models may assess bone strength more accurately than BMD measurements alone, providing a valuable in-vivo fracture risk assessment tool. PMID:25723187
Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Matthew W.
2014-05-16
The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetratingmore » radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water elevated 30 degrees C above the formation water was circulated between two wells pairs. One well pair had been identified in hydraulic and tracer testing as well connected and the other poorly connected. Temperature rise was measured in the adjacent rock matrix using coiled fiber optic cable interrogated for temperature using a DTS. This experimental design produced over 4000 temperature measurements every hour. We found that heat transfer between the fracture and the rock matrix was highly impacted by the character of the flow field. The strongly connected wells which had demonstrated flow channelization produced heat rise in a much more limited area than the more poorly connected wells. In addition, the heat increase followed the natural permeability of the fracture rather than the induced flow field. The primary findings of this work are (1) even in a single relatively planar fracture, the flow field can be highly heterogeneous and exhibit flow channeling, (2) channeling results from a combination of fracture permeability structure and the induced flow field, and (3) flow channeling leads to reduced heat transfer. Multi-ionic tracers effectively estimate relative surface area but an estimate of ion-exchange coefficients are necessary to provide an absolute measure of specific surface area. Periodic hydraulic tests also proved a relative indicator of connectivity but cannot prove an absolute measure of specific surface area.« less
NASA Astrophysics Data System (ADS)
Kokkalas, S.; Jones, R. R.; Long, J. J.; Zampos, M.; Wilkinson, M. W.; Gilment, S.
2017-12-01
The formation of folds and their associated fracture patterns plays an important role in controlling the migration and concentration of fluids within the upper crust. Prediction of fracture patterns from various fold shapes and kinematics still remains poorly understood in terms of spatial and temporal distribution of fracture sets. Thus, a more detailed field-based multi scale approach is required to better constrain 3D models of fold-fracture relationships, which are critical for reservoir characterization studies. In order to generate reservoir-scale fracture models representative fracture properties across a wider range of scales are needed. For this reason we applied modern geospatial technologies, including terrestrial LiDAR, photogrammetry and satellite images in the asymmetric, east verging, four-way closure Jebel Hafit anticline, in the eastern part of the United Arab Emirates. The excellent surface outcrops allowed the rapid acquisition of extensive areas of fracture data from both limbs and fold hinge area of the anticline, even from large areas of steep exposure that are practically inaccessible on foot. The digital outcrops provide longer 1D transects, and 2D or 3D surface datasets and give more robust data, particularly for fracture heights, lengths, spacing, clustering, termination and connectivity. The fracture patterns across the folded structure are more complex than those predicted from conceptual models and geomechanical fracture modeling. Mechanical layering, pre-existing structures and sedimentation during fold growth seem to exert a critical influence in the development of fracture systems within Jebel Hafit anticline and directly affect fracture orientations, spacing/intensity, segmentation and connectivity. Seismic and borehole data provide additional constraints on the sub-surface fold geometry and existence of large-scale thrusting in the core of the anticline. The complexity of the relationship between fold geometry and fracture intensity is presented and the implications for prediction of fracture networks in naturally fractured reservoirs are discussed.
Assessment of non‐vertebral fracture risk in postmenopausal women
Roux, Christian; Briot, Karine; Horlait, Stéphane; Varbanov, Alex; Watts, Nelson B; Boonen, Steven
2007-01-01
Background Non‐vertebral (NV) fractures are responsible for a great amount of morbidity, mortality and cost attributable to osteoporosis. Objectives To identify risk factors for NV fractures in postmenopausal women with osteoporosis, and to design an assessment tool for prediction of these fractures. Methods 2546 postmenopausal women with osteoporosis included in the placebo groups of three risedronate controlled trials were included (mean age 72 years, mean femoral T‐score −2.5; 60% and 53% of patients with prevalent vertebral and NV fractures, respectively). Over 3 years, 222 NV fractures were observed. Baseline data on 14 risk factors were included in a logistic regression analysis. Results 6 risk factors were associated with NV fracture risk: prevalent NV fracture (p = 0.004), number of prevalent vertebral fractures (p<0.001), femoral T‐score (p = 0.031), serum level of 25‐hydroxyvitamin D (p<0.001), age (p = 0.012) and height (p = 0.037). An NV risk index was developed by converting the multivariate logistic equation into an additive score. In the group of women with a score ⩾2.1, the incidence of NV fracture was 13.2% (95% CI 11.1 to 15.3), 1.5 times higher than that of the general population. Conclusions The NV risk index is a convenient tool for selection of patients with osteoporosis with a high risk for NV fractures, and may help to choose from available treatments those with a proven efficacy for reduction of NV fracture risk. PMID:17314119
Accuracy of three-dimensional facial soft tissue simulation in post-traumatic zygoma reconstruction.
Li, P; Zhou, Z W; Ren, J Y; Zhang, Y; Tian, W D; Tang, W
2016-12-01
The aim of this study was to evaluate the accuracy of novel software-CMF-preCADS-for the prediction of soft tissue changes following repositioning surgery for zygomatic fractures. Twenty patients who had sustained an isolated zygomatic fracture accompanied by facial deformity and who were treated with repositioning surgery participated in this study. Cone beam computed tomography (CBCT) scans and three-dimensional (3D) stereophotographs were acquired preoperatively and postoperatively. The 3D skeletal model from the preoperative CBCT data was matched with the postoperative one, and the fractured zygomatic fragments were segmented and aligned to the postoperative position for prediction. Then, the predicted model was matched with the postoperative 3D stereophotograph for quantification of the simulation error. The mean absolute error in the zygomatic soft tissue region between the predicted model and the real one was 1.42±1.56mm for all cases. The accuracy of the prediction (mean absolute error ≤2mm) was 87%. In the subjective assessment it was found that the majority of evaluators considered the predicted model and the postoperative model to be 'very similar'. CMF-preCADS software can provide a realistic, accurate prediction of the facial soft tissue appearance after repositioning surgery for zygomatic fractures. The reliability of this software for other types of repositioning surgery for maxillofacial fractures should be validated in the future. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, Michael P.; Kopetz, Scott; Bhosale, Priya R.
2009-07-01
Purpose: Sacral insufficiency (SI) fractures can occur as a late side effect of pelvic radiation therapy. Our goal was to determine the incidence, risk factors, and clinical course of SI fractures in patients treated with preoperative chemoradiation for rectal cancer. Materials and Methods: Between 1989 and 2004, 562 patients with non-metastatic rectal adenocarcinoma were treated with preoperative chemoradiation followed by mesorectal excision. The median radiotherapy dose was 45 Gy. The hospital records and radiology reports of these patients were reviewed to identify those with pelvic fractures. Radiology images of patients with pelvic fractures were then reviewed to identify those withmore » SI fractures. Results: Among the 562 patients, 15 had SI fractures. The 3-year actuarial rate of SI fractures was 3.1%. The median time to SI fractures was 17 months (range, 2-34 months). The risk of SI fractures was significantly higher in women compared to men (5.8% vs. 1.6%, p = 0.014), and in whites compared with non-whites (4% vs. 0%, p = 0.037). On multivariate analysis, gender independently predicted for the risk of SI fractures (hazard ratio, 3.25; p = 0.031). Documentation about the presence or absence of pain was available for 13 patients; of these 7 (54%) had symptoms requiring pain medications. The median duration of pain was 22 months. No patient required hospitalization or invasive intervention for pain control. Conclusions: SI fractures were uncommon in patients treated with preoperative chemoradiation for rectal cancer. The risk of SI fractures was significantly higher in women. Most cases of SI fractures can be managed conservatively with pain medications.« less
Outcomes of Pin and Plaster Versus Locking Plate in Distal Radius Intraarticular Fractures
Bahari-Kashani, Mahmoud; Taraz-Jamshidy, Mohammad Hosein; Rahimi, Hassan; Ashraf, Hami; Mirkazemy, Masoud; Fatehi, Amirreza; Asadian, Mariam; Rezazade, Jafar
2013-01-01
Background Distal radius fractures are among the most prevalent fractures predictive of probable occurrence of other osteoporotic fractures. They are treated via a variety of methods, but the best treatment has not been defined yet. Objectives This study was performed to compare the results of open reduction and internal fixation with locking plates versus the pin and plaster method. Materials and Methods In this prospective study, 114 patients aged 40 to 60 years with Fernandez type III fracture referring to Imam-Reza and Mehr hospitals of Mashhad from 2009 to 2011, were selected randomly; after obtaining informed consent, they were treated with pin and plaster fixation (n = 57) or internal fixation with the volar locking plate (n = 57). They were compared at the one year follow up. Demographic features and standard radiographic indices were recorded and MAYO, DASH and SF - 36 tests were performed. Data was analyzed by SPSS software version 13, with descriptive indices, Mann-Whitney and Chi-square tests. Results SF-36 test demonstrated a better general health (P < 0.001), mental health (P = 0.006), physical functioning (P < 0.001), social functioning (P < 0.001) and energy/fatigue (P < 0.001) in LCP group. However, pain (P = 0.647) was not significantly different between the groups. Physical limitation (P < 0.001) and emotional limitation (P < 0.001) were greater in the pin and plaster group. Also, in the LCP group mean MAYO score (P < 0.001) was more than pin and plaster group. Mean DASH score was not different between the groups (P = 0.218). The rate of acceptable results of radiographic indices (P < 0.001), grip strength (P < 0.001) and range of motion in supination-pronation (P < 0.001) in LCP method were better than the pin and plaster method. Conclusions In treatment of intra-articular distal radius fractures in middle-aged patients internal fixation with locking plates may be prefered to pin and plaster as the treatment of choice. PMID:24350132
Ismail, A A; Silman, A J; Reeve, J; Kaptoge, S; O'Neill, T W
2006-01-01
Population studies suggest that rib fractures are associated with a reduction in bone mass. While much is known about the predictive risk of hip, spine and distal forearm fracture on the risk of future fracture, little is known about the impact of rib fracture. The aim of this study was to determine whether a recalled history of rib fracture was associated with an increased risk of future limb fracture. Men and women aged 50 years and over were recruited from population registers in 31 European centres for participation in a screening survey of osteoporosis (European Prospective Osteoporosis Study). Subjects were invited to complete an interviewer-administered questionnaire that included questions about previous fractures including rib fracture, the age of their first fracture and also the level of trauma. Lateral spine radiographs were performed and the presence of vertebral deformity was determined morphometrically. Following the baseline survey, subjects were followed prospectively by annual postal questionnaire to determine the occurrence of clinical fractures. The subjects included 6,344 men, with a mean age of 64.2 years, and 6,788 women, with a mean age of 63.6 years, who were followed for a median of 3 years (range 0.4-5.9 years), of whom 135 men (2.3%) and 101 women (1.6%) reported a previous low trauma rib fracture. In total, 138 men and 391 women sustained a limb fracture during follow-up. In women, after age adjustment, those with a recalled history of low trauma rib fracture had an increased risk of sustaining 'any' limb fracture [relative hazard (RH)=2.3; 95% CI 1.3, 4.0]. When stratified by fracture type the predictive risk was more marked for hip (RH=7.7; 95% CI 2.3, 25.9) and humerus fracture (RH=4.5; 95% CI 1.4, 14.6) than other sites (RH=1.6; 95% CI 0.6, 4.3). Additional adjustment for prevalent vertebral deformity and previous (non-rib) low trauma fractures at other sites slightly reduced the strength of the association between rib fracture and subsequent limb fracture. In men, after age adjustment, there was a small though non-significant association between recalled history of rib fracture and future limb fracture. Our data highlight the importance of rib fracture as a marker of bone fragility in women.
NASA Astrophysics Data System (ADS)
Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan
2016-04-01
This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.
Acoustic Emission Based Surveillance System for Prediction of Stress Fractures
2007-09-01
aging are susceptible to such fractures in contexts of osteoporosis, diabetes, cerebral palsy, fibrous dysplasia and osteogenesis imperfecta . This...disease, or, healthy people who have excessive exercise regimes (soldiers and athletes) experience these fractures [2]. Stress fractures interrupt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell
Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictivemore » models and monitoring techniques. The project involved three major components: (1) study of two-phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-2013) and partially supported a post-doctoral scholar (Dr. Jean Elkhoury; 2010-2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-water or water-CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high--resolution mechanistic model that couples elastic deformation of contacts and aperture-dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.« less
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
2016-03-09
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.
Ankle fracture spur sign is pathognomonic for a variant ankle fracture.
Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G
2015-02-01
The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.
Delamination micromechanics analysis
NASA Technical Reports Server (NTRS)
Adams, D. F.; Mahishi, J. M.
1985-01-01
A three-dimensional finite element analysis was developed which includes elastoplastic, orthotropic material response, and fracture initiation and propagation. Energy absorption due to physical failure processes characteristic of the heterogeneous and anisotropic nature of composite materials is modeled. A local energy release rate in the presence of plasticity was defined and used as a criterion to predict the onset and growth of cracks in both micromechanics and macromechanics analyses. This crack growth simulation technique is based upon a virtual crack extension method. A three-dimensional finite element micromechanics model is used to study the effects of broken fibers, cracked matrix and fiber-matrix debond on the fracture toughness of the unidirectional composite. The energy release rates at the onset of unstable crack growth in the micromechanics analyses are used as critical energy release rates in the macromechanics analysis. This integrated micromechanical and macromechanical fracture criterion is shown to be very effective in predicting the onset and growth of cracks in general multilayered composite laminates by applying the criterion to a single-edge notched graphite/epoxy laminate subjected to implane tension normal to the notch.
NASA Astrophysics Data System (ADS)
Liu, Xiaofei; Wang, Enyuan
2018-06-01
A rockburst is a dynamic disaster that occurs during underground excavation or mining which has been a serious threat to safety. Rockburst prediction and control are as important as any other underground engineering in deep mines. For this paper, we tested electromagnetic radiation (EMR) signals generated during the deformation and fracture of rock samples from a copper mine under uniaxial compression, tension, and cycle-loading experiments, analyzed the changes in the EMR intensity, pulse number, and frequency corresponding to the loading, and a high correlation between these EMR parameters and the applied loading was observed. EMR apparently reflects the deformation and fracture status to the loaded rock. Based on this experimental work, we invented the KBD5-type EMR monitor and used it to test EMR signals generated in the rock surrounding the Hongtoushan copper mine. From the test results, it is determined the responding characteristics of EMR signals generated by changes in mine-generated stresses and stress concentrations and it is proposed that this EMR monitoring method can be used to provide early warning for rockbursts.
Stable tearing behavior of a thin-sheet material with multiple cracks
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with 1-5 collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: (1) saw cutting; (2) fatigue precracking at a low stress range; and (3) fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the Crack Tip Opening Angle (CTOA) fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with from one to five collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: saw cutting, fatigue precracking at a low stress range, and fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the CTOA fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
Turbine Engine Hot Section Technology, 1987
NASA Technical Reports Server (NTRS)
1987-01-01
Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.
A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.
1998-01-01
The translaminate fracture behavior of carbon/epoxy structural laminates with through-penetration notches was investigated to develop a residual strength prediction methodology for composite structures. An experimental characterization of several composite materials systems revealed a fracture resistance behavior that was very similar to the R-curve behavior exhibited by ductile metals. Fractographic examinations led to the postulate that the damage growth resistance was primarily due to fractured fibers in the principal load-carrying plies being bridged by intact fibers of the adjacent plies. The load transfer associated with this bridging mechanism suggests that a progressive damage analysis methodology will be appropriate for predicting the residual strength of laminates with through-penetration notches. A progressive damage methodology developed by the authors was used to predict the initiation and growth of matrix cracks and fiber fracture. Most of the residual strength predictions for different panel widths, notch lengths, and material systems were within about 10% of the experimental failure loads.
NASA Astrophysics Data System (ADS)
Klose, C. D.; Giese, R.; Löw, S.; Borm, G.
Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock fracturing than compression wave velocities. The velocity ratios indicate the mica content and the water content of the rocks.
Sensitivity Analysis of the Bone Fracture Risk Model
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane
2017-01-01
Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including environmental factors, factors associated with the fall event, mass and anthropometric values of the astronaut, BMD characteristics, characteristics of the relationship between BMD and bone strength and bone fracture characteristics. The uncertainty in these factors is captured through the use of parameter distributions and the fracture predictions are probability distributions with a mean value and an associated uncertainty. To determine parameter sensitivity, a correlation coefficient is found between the sample set of each model parameter and the calculated fracture probabilities. Each parameters contribution to the variance is found by squaring the correlation coefficients, dividing by the sum of the squared correlation coefficients, and multiplying by 100. Results: Sensitivity analyses of BFxRM simulations of preflight, 0 days post-flight and 365 days post-flight falls onto the hip revealed a subset of the twelve factors within the model which cause the most variation in the fracture predictions. These factors include the spring constant used in the hip biomechanical model, the midpoint FRI parameter within the equation used to convert FRI to fracture probability and preflight BMD values. Future work: Plans are underway to update the BFxRM by incorporating bone strength information from finite element models (FEM) into the bone strength portion of the BFxRM. Also, FEM bone strength information along with fracture outcome data will be incorporated into the FRI to fracture probability.
NASA Astrophysics Data System (ADS)
Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.
2018-03-01
Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.
NASA Technical Reports Server (NTRS)
Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.
1978-01-01
The limitations of linear elastic fracture mechanics in aircraft design and in the study of fatigue crack propagation in aircraft structures are discussed. NASA-Langley research to extend the capabilities of fracture mechanics to predict the maximum load that can be carried by a cracked part and to deal with aircraft design problems are reported. Achievements include: (1) improved stress intensity solutions for laboratory specimens; (2) fracture criterion for practical materials; (3) crack propagation predictions that account for mean stress and high maximum stress effects; (4) crack propagation predictions for variable amplitude loading; and (5) the prediction of crack growth and residual stress in built-up structural assemblies. These capabilities are incorporated into a first generation computerized analysis that allows for damage tolerance and tradeoffs with other disciplines to produce efficient designs that meet current airworthiness requirements.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
van Geel, Tineke A C M; Eisman, John A; Geusens, Piet P; van den Bergh, Joop P W; Center, Jacqueline R; Dinant, Geert-Jan
2014-02-01
There are two commonly used fracture risk prediction tools FRAX(®) and Garvan Fracture Risk Calculator (GARVAN-FRC). The objective of this study was to investigate the utility of these tools in daily practice. A prospective population-based 5-year follow-up study was conducted in ten general practice centres in the Netherlands. For the analyses, the FRAX(®) and GARVAN-FRC 10-year absolute risks (FRAX(®) does not have 5-year risk prediction) for all fractures were used. Among 506 postmenopausal women aged ≥60 years (mean age: 67.8±5.8 years), 48 (9.5%) sustained a fracture during follow-up. Both tools, using BMD values, distinguish between women who did and did not fracture (10.2% vs. 6.8%, respectively for FRAX(®) and 32.4% vs. 39.1%, respectively for GARVAN-FRC, p<0.0001) at group level. However, only 8.9% of those who sustained a fracture had an estimated fracture risk ≥20% using FRAX(®) compared with 53.3% using GARVAN-FRC. Although both underestimated the observed fracture risk, the GARVAN-FRC performed significantly better for women who sustained a fracture (higher sensitivity) and FRAX(®) for women who did not sustain a fracture (higher specificity). Similar results were obtained using age related cut off points. The discriminant value of both models is at least as good as models used in other medical conditions; hence they can be used to communicate the fracture risk to patients. However, given differences in the estimated risks between FRAX(®) and GARVAN-FRC, the significance of the absolute risk must be related to country-specific recommended intervention thresholds to inform the patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The cyclic fatigue behavior of adhesive joints
NASA Astrophysics Data System (ADS)
Kinloch, A. J.; Toh, T.
1995-06-01
In the last six months we have: (1) Concentrated our efforts on the fatigue failure of carbon-fiber PEEK/AFl63 lap joints, and in particular we have started to predict the life time of single-lap joints under cyclic fatigue loading. The analysis is based on data obtained from double cantilever beam (DCB) fracture mechanics tests; (2) Further, we have been successful in measuring the rate of crack growth in lap joints during fatigue fracture using ultrasonic scanning; (3) Preliminary test data on the static fracture of glass-fiber reinforced poly(phenylene sulphide) (PPS)/AF163 joints have also been studied; and (4) A comparison has been made in computing the critical strain energy release rate G(sub c) for the glass-fiber PPS/AF163 joints based on the compliance method, beam theory and corrected beam theory. The last method accounts for large non-linear deflections and the associated crack root rotations along with the necessary corrections for the increase in stiffness introduced by the presence of end blocks.
Hydraulic fracture height limits and fault interactions in tight oil and gas formations
NASA Astrophysics Data System (ADS)
Flewelling, Samuel A.; Tymchak, Matthew P.; Warpinski, Norm
2013-07-01
widespread use of hydraulic fracturing (HF) has raised concerns about potential upward migration of HF fluid and brine via induced fractures and faults. We developed a relationship that predicts maximum fracture height as a function of HF fluid volume. These predictions generally bound the vertical extent of microseismicity from over 12,000 HF stimulations across North America. All microseismic events were less than 600 m above well perforations, although most were much closer. Areas of shear displacement (including faults) estimated from microseismic data were comparatively small (radii on the order of 10 m or less). These findings suggest that fracture heights are limited by HF fluid volume regardless of whether the fluid interacts with faults. Direct hydraulic communication between tight formations and shallow groundwater via induced fractures and faults is not a realistic expectation based on the limitations on fracture height growth and potential fault slip.
NASA Astrophysics Data System (ADS)
Reinoso, J.; Paggi, M.; Linder, C.
2017-06-01
Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.
An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.
Ductile Fracture Initiation of Anisotropic Metal Sheets
NASA Astrophysics Data System (ADS)
Dong, Liang; Li, Shuhui; He, Ji
2017-07-01
The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a simple expression is formulated by the method of total strain theory under the assumption of proportional loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts, flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their longitudinal axis inclined with the angle of 0°, 45°, and 90° to the rolling direction, respectively. A 3D digital image correlation system is used in this study to measure the anisotropy parameter r 0, r 45, r 90 and the equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple expression proposed in this study.
Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures
NASA Technical Reports Server (NTRS)
Wagner, John A.; Gangloff, Richard P.
1990-01-01
The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.
NASA Astrophysics Data System (ADS)
Williams, T. R. N.; Baxter, S.; Hartley, L.; Appleyard, P.; Koskinen, L.; Vanhanarkaus, O.; Selroos, J. O.; Munier, R.
2017-12-01
Discrete fracture network (DFN) models provide a natural analysis framework for rock conditions where flow is predominately through a series of connected discrete features. Mechanistic models to predict the structural patterns of networks are generally intractable due to inherent uncertainties (e.g. deformation history) and as such fracture characterisation typically involves empirical descriptions of fracture statistics for location, intensity, orientation, size, aperture etc. from analyses of field data. These DFN models are used to make probabilistic predictions of likely flow or solute transport conditions for a range of applications in underground resource and construction projects. However, there are many instances when the volumes in which predictions are most valuable are close to data sources. For example, in the disposal of hazardous materials such as radioactive waste, accurate predictions of flow-rates and network connectivity around disposal areas are required for long-term safety evaluation. The problem at hand is thus: how can probabilistic predictions be conditioned on local-scale measurements? This presentation demonstrates conditioning of a DFN model based on the current structural and hydraulic characterisation of the Demonstration Area at the ONKALO underground research facility. The conditioned realisations honour (to a required level of similarity) the locations, orientations and trace lengths of fractures mapped on the surfaces of the nearby ONKALO tunnels and pilot drillholes. Other data used as constraints include measurements from hydraulic injection tests performed in pilot drillholes and inflows to the subsequently reamed experimental deposition holes. Numerical simulations using this suite of conditioned DFN models provides a series of prediction-outcome exercises detailing the reliability of the DFN model to make local-scale predictions of measured geometric and hydraulic properties of the fracture system; and provides an understanding of the reduction in uncertainty in model predictions for conditioned DFN models honouring different aspects of this data.
Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures
NASA Astrophysics Data System (ADS)
Advani (Deceased), S. H.; Lee, T. S.; Dean, R. H.; Pak, C. K.; Avasthi, J. M.
1997-04-01
Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).
A new quality of bone ultrasound research.
Gluer, C C
2008-07-01
Quantitative ultrasound (QUS) methods have strong power to predict osteoporotic fractures, but they are also very relevant for the assessment of bone quality. A representative sample of recent studies addressing these topics can be found in this special issue. Further pursuit of these methods will establish micro-QUS imaging methods as tools for measuring specific aspects of bone quality. Once this is achieved, we will be able to link such data to the clinical QUS methods used in vivo to determine which aspects of bone quality cause QUS to be a predictor of fracture risk that is independent of bone mineral density (BMD). Potentially this could lead to the development of a new generation of QUS devices for improved and expanded clinical assessment. Good quality of basic science work will thus lead to good quality of clinical patient examinations on the basis of a more detailed assessment of bone quality.
Acoustic emission during fatigue of porous-coated Ti-6Al-4V implant alloy.
Kohn, D H; Ducheyne, P; Awerbuch, J
1992-01-01
Acoustic emission (AE) events and event intensities (e.g., event amplitude, counts, duration, and energy counts) were recorded and analyzed during fatigue loading of uncoated and porous-coated Ti-6Al-4V. AE source location, spatial filtering, event, and event intensity distributions were used to detect, monitor, analyze, and predict failures. AE provides the ability to spatially and temporally locate multiple fatigue cracks, in real time. Fatigue of porous-coated Ti-6Al-4V is governed by a sequential, multimode fracture process of: transverse fracture in the porous coating; sphere/sphere and sphere/substrate debonding; substrate fatigue crack initiation; slow and rapid substrate fatigue crack propagation. Because of the porosity of the coating, the different stages of fracture within the coating occur in a discontinuous fashion. Therefore, the AE events generated are intermittent and the onset of each mode of fracture in the porous coating can be detected by increases in AE event rate. Changes in AE event rate also correspond to changes in crack extension rate, and may therefore be used to predict failure. AE offers two distinct advantages over conventional optical and microscopic methods of analyzing fatigue cracks--it is more sensitive and it can determine the time history of damage progression. The magnitude of the AE event intensities increased with increasing stress. Failure mechanisms are best differentiated by analyzing AE event amplitudes. Intergranular fracture and microvoid coalescence generated the highest AE event amplitudes (100 dB), whereas, plastic flow and friction generated the lowest AE event amplitudes (55-65 dB). Fractures in the porous coating were characterized by AE event amplitudes of less than 80 dB.
Efficacy of magnetic resonance imaging for diagnosis of penile fracture: A controlled study
Tarhan, Fatih; Hamarat, Mustafa B.; Can, Utku; Coskun, Alper; Camur, Emre; Sarica, Kemal
2017-01-01
Purpose To evaluate the diagnostic value of magnetic resonance imaging (MRI) in patients with suspected penile fracture. Materials and Methods A total of 122 patients admitted to our inpatient clinic with a suspicion of penile fracture following a recent history of penile trauma and who underwent surgical exploration were included this study. A thorough physical examination, a detailed medical history, description of the trauma, and preoperative International Index of Erectile Function (IIEF) scores were obtained for each patient prior to surgery. Thirty-eight of these patients were evaluated with MRI before the surgical exploration. Intraoperative findings were also recorded. Physical findings and IIEF scores were also recorded at postoperative 6 months. Results The mean age of our patient group was 36.5±12.3 years. Penile fracture was detected in 105 of 122 patients in whom surgical exploration was performed owing to a suspected diagnosis. The mean time interval from penile trauma to hospital admittance was 9.9±15.1 hours. No cavernosal defect was detected in 9 of 84 patients (10.7%) who were not evaluated with MRI prior to surgery. Compared with surgical exploration, MRI findings showed 100% (30 of 30) sensitivity and 87.5% (7 of 8) specificity in the diagnosis of penile fracture. MRI had a high negative predictive value of 100% (7 of 7) and a positive predictive value of 96.7% (30 of 31) with just 1 misdiagnosed patient. Conclusions MRI is a reliable diagnostic tool in the diagnosis of penile fractures. Compared to history and physical findings taken all together, the high sensitivity and specificity of this imaging technique can decrease the number of unnecessary surgical explorations. PMID:28681035
Yüksel, Mehmet Onur; Gürbüz, Mehmet Sabri; Gök, Şevki; Karaarslan, Numan; İş, Merih; Berkman, Mehmet Zafer
2016-01-01
Aim: Our aim was to determine whether a combination of sagittal index (SI), canal compromise (CC), and loss of vertebral body height (LVBH) is associated with the severity of neurological injury in patients with thoracolumbar burst fractures. Materials and Methods: Seventy-four patients with thoracolumbar burst fracture undergoing instrumentation between 2010 and 2015 were analyzed retrospectively. The degree of neurological injury was determined using the American Spinal Injury Association (ASIA) scoring system. The association between the morphology of the fracture and the severity of neurological injury was analyzed. Results: There was a strong association between fracture morphology and the severity of neurological injury. Of the patients, 77.5% with SI ≥20°, 81.6% with CC ≥40%, and 100% with LVBH ≥50% had lesion according to ASIA. All of 7 patients with ASIA A had SI ≥20°, CC ≥40%, and LVBH ≥50%. On the other hand, 79% of the patients with ASIA E had SI <20°, 83.7% of the patients with ASIA E had CC <40%, and all of the patients with ASIA E had LVBH <50%. SI, CC, and LVBH were lower in neurologically intact patients (ASIA E), whereas they were higher in patients with neurological deficits (ASIA A, B, C, D) (P = 0.001; P < 0.01). These measurements had 100% negative predictive values and relatively high positive predictive values. Conclusion: SI, CC, and LVBH are significantly associated with the severity of neurological injury in patients with thoracolumbar burst fractures. The patients with SI >25°, the patients with CC >40%, and the patients with LVBH >50% are likely to have a more severe neurological injury. PMID:28163505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paret, Paul P; DeVoto, Douglas J; Narumanchi, Sreekant V
Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. Amore » fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.« less
Hamrefors, Viktor; Härstedt, Maria; Holmberg, Anna; Rogmark, Cecilia; Sutton, Richard; Melander, Olle; Fedorowski, Artur
2016-01-01
Autonomic disorders of the cardiovascular system, such as orthostatic hypotension and elevated resting heart rate, predict mortality and cardiovascular events in the population. Low-energy-fractures constitute a substantial clinical problem that may represent an additional risk related to such autonomic dysfunction. To test the association between orthostatic hypotension, resting heart rate and incidence of low-energy-fractures in the general population. Using multivariable-adjusted Cox regression models we investigated the association between orthostatic blood pressure response, resting heart rate and first incident low-energy-fracture in a population-based, middle-aged cohort of 33 000 individuals over 25 years follow-up. The median follow-up time from baseline to first incident fracture among the subjects that experienced a low energy fracture was 15.0 years. A 10 mmHg orthostatic decrease in systolic blood pressure at baseline was associated with 5% increased risk of low-energy-fractures (95% confidence interval 1.01-1.10) during follow-up, whereas the resting heart rate predicted low-energy-fractures with an effect size of 8% increased risk per 10 beats-per-minute (1.05-1.12), independently of the orthostatic response. Subjects with a resting heart rate exceeding 68 beats-per-minute had 18% (1.10-1.26) increased risk of low-energy-fractures during follow-up compared with subjects with a resting heart rate below 68 beats-per-minute. When combining the orthostatic response and resting heart rate, there was a 30% risk increase (1.08-1.57) of low-energy-fractures between the extremes, i.e. between subjects in the fourth compared with the first quartiles of both resting heart rate and systolic blood pressure-decrease. Orthostatic blood pressure decline and elevated resting heart rate independently predict low-energy fractures in a middle-aged population. These two measures of subclinical cardiovascular dysautonomia may herald increased risks many years in advance, even if symptoms may not be detectable. Although the effect sizes are moderate, the easily accessible clinical parameters of orthostatic blood pressure response and resting heart rate deserve consideration as new risk predictors to yield more accurate decisions on primary prevention of low-energy fractures.
NASA Astrophysics Data System (ADS)
Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo
2016-04-01
Tube waves are low frequency guided waves that propagate along a fluid-filled borehole. The analysis of tube waves is a promising approach to image and characterize hydraulic fractures intersecting a borehole. It exploits tube waves generated by an external seismic wavefield which compresses fractures and injects fluid into the borehole. It also utilizes the attenuation of tube waves due to fluid exchange between the fracture and the borehole, which creates scattered waves (reflection and transmission). Conventional approaches consider tube waves due to a single fracture. However, when the spacing between multiple fractures is short relative to the wavelength of the tube waves, the generated and scattered tube waves interfere with each other, making it difficult to isolate the effect of a single fracture. The analysis of closely spaced fractures is important in highly fractured areas, such as a fault zone. In this study, we explore the possibility of prediction and utilization of generated and scattered tube waves due to multiple fractures. We derive a new integral equation of the full tube wavefield using 1D wavefield representation theory incorporating nonwelded interfaces. We adapt the recent developments in modeling tube wave generation/scattering at a fracture. In these models, a fracture is represented as a parallel wall or a thin poloelastic layer. This allowed us to consider the effects of a dynamic fracture aperture with fracture compliances and the permeability. The representation also leads to a new imaging method for the hydraulic fractures, using multiply-generated and scattered tube waves. This is achieved by applying an inverse operator to the observed tube waves, which focuses the tube waves to the depth where they are generated and/or scattered. The inverse operator is constructed by a tube wave Green's function with a known propagation velocity. The Median Tectonic Line (MTL) is the most significant fault in Japan, extending NE-SW for over 1000 km across the Japanese Islands. We observed multiple tube waves in a P-wave VSP experiment in a 250 m deep, vertical borehole located on the MTL at Shikoku, Japan. The borehole televiewer and the core studies show that below 40 m depth, the Sambagawa metamorphic rocks contain highly fractured zones which consist of more than 100 open fractures and more than 30 cataclasites. We predict the full tube wavefield using the values of fracture depth and thickness known from the borehole televiewer. We model the open fractures as parallel-wall fractures and the cataclasites as thin poroelastic layers. Furthermore, we estimate the depth of the hydraulic fractures by applying the inverse operator. The results show that the tube waves could be generated and scattered at these permeable structures. Our preliminary results also indicate the possibility that the effect of the open fractures is more dominant in the generation and scattering of tube waves than that of the cataclasites in this field. The formulation and the results presented in this study and the following discussion will be useful in analysis of tube waves in highly fractured zones, in order to localize and characterize hydraulic fractures.
Sajjan, S. G.; Barrett-Connor, E.; McHorney, C. A.; Miller, P. D.; Sen, S. S.; Siris, E.
2013-01-01
Summary A rib fracture history after age 45 was associated with a 5.4-fold increase in new rib fracture risk and a 2.4-fold increase in risk of any new clinical fracture in 155,031 postmenopausal women. A rib fracture history suggests osteoporosis and should be considered when evaluating patients for interventions to prevent fractures. Introduction Until recently, little attention was paid to rib fracture as an osteoporosis marker. Emerging evidence suggests rib fracture may be an osteoporotic fracture in men and women. We report the 5-year independent association between baseline rib fracture histories and self-reported future fractures by age (decade) in the NORA cohort (155,031 postmenopausal women, 50–99 years). Methods Participants reported fracture history and responded to follow-up surveys at years 1, 3, or 6. Women with a baseline rib fracture history without other fractures were compared with women with no fracture. Results At baseline, 4,758 (3.07%) women reported a rib fracture history without other fractures; 6,300 women reported 6,830 new clinical fractures, including wrist (2,271), rib (1,891), spine (1,136), hip (941), and forearm (591). Adjusted relative risk (ARR) values (95% confidence interval [CI]) for future fractures in women with rib fracture history versus women with no fracture history were 5.4 (4.8–6.1) at the rib, 2.1 (1.7–2.6) at the spine, and 1.4 (1.1–1.7) at the wrist, and not significant for forearm or hip fractures. Future fracture risk was at least doubled in women with a rib fracture history in all ages: ARR (95% CI) 3.4 (2.8–4.0) for ages 50–59, 2.5 (2.1–3.0) for ages 60–69, 2.0 (1.7–2.3) for ages 70–79, and 2.0 (1.6–2.6) for ages >80. Conclusions Rib fracture, the second most common clinical fracture in women (after wrist fracture), predicted future fractures of the rib, wrist, and spine at all ages. Women presenting with rib fractures should be evaluated for appropriate management to prevent future fractures. PMID:21904951
Emergency department management and follow-up of children with bicycle spoke injuries.
Chu, Gordon; Vlok, Laura; Zwaag-Pijls, Carlijn; Houser, Christine M; de Groot, Bas
2014-09-01
Evidence for a standard x-ray study and cast immobilization in emergency department (ED) management and follow-up of children with bicycle spoke injury (BSI) is absent. To describe the injury pattern and outpatient follow-up and care of ED patients with BSI. In addition, patient characteristics predicting the presence of a fracture and long-term follow-up were assessed. This was a retrospective study including BSI patients < 9 years of age. Kruskal-Wallis test was used to compare groups with a fracture, soft tissue injury, and mild skin abrasion. Multivariable logistic regression analysis was used to identify independent predictors of a fracture and long-term outpatient follow-up. Twenty-three percent of 141 included patients had a fracture, with a median (interquartile range) follow-up of 27 (23-40) days. For soft tissue injury and mild abrasions this was 9 (6-14) and 7 (5-9) days, respectively (p < 0.001). No clinical variables could predict a fracture. Fifty-six (40%) patients required no further care after the first outpatient visit at ∼1 week. Triage category yellow and swelling were independent predictors for more than one outpatient visit, besides presence of fracture. Corrected odds ratios (95% confidence interval) were 2.42 (0.99-5.88) and 4.76 (1.38-16.39), respectively. Only 12% of 141 patients had none of these predictors at ED presentation. A quarter of ED patients with BSI have a fracture with no clinical signs that could predict the presence of a fracture, justifying a standard x-ray study in ED management. Only 12% of ED patients with BSI have no fracture and no signs that predict long-term follow-up. In this group, further studies are warranted to investigate the benefit of cast immobilization for fractures and soft tissue injury. Copyright © 2014 Elsevier Inc. All rights reserved.
Cauley, Jane A.; Danielson, Michelle E.; Greendale, Gail A.; Finkelstein, Joel S.; Chang, Yue-Fang; Lo, Joan C.; Crandall, Carolyn J.; Neer, Robert M.; Ruppert, Kristine; Meyn, Leslie; Prairie, Beth A.; Sowers, MaryFran R.
2012-01-01
Objective Bone turnover markers (BTMs) predict fracture in older women, whereas data on younger women are lacking. To test the hypothesis that BTMs measured before and after menopause predict fracture risk, we performed a cohort study of 2,305 women. Methods Women attended up to nine clinic visits for an average of 7.6 ± 1.6 years; all were aged 42 to 52 years and were premenopausal or early perimenopausal at baseline. Incident fractures were self-reported. Serum osteocalcin and urinary cross-linked N-telopeptide of type I collagen (NTX) were measured at baseline. NTX was measured at each annual follow-up. Interval-censored survival models or generalized estimating equations were used to test whether baseline BTMs and changes in NTX, respectively, were associated with fracture risk. Hazard ratios (HRs) or odds ratios were calculated with 95% CIs. Results Women who fractured (n = 184) had about a 10% higher baseline median NTX (34.4 vs 31.5 nanomoles of bone collagen equivalents per liter per nanomole of creatinine per liter; P = 0.001), but there was no difference in osteocalcin. A 1-SD decrease in lumbar spine bone mineral density (BMD) measured premenopausally was associated with a higher fracture risk during menopause (HR, 1.55; 95% CI, 1.32–1.73). Women with a baseline NTX greater than the median had a 45% higher risk of fracture, multivariable-adjusted (HR, 1.45; 95% CI, 1.04–2.23). The HR of fracture among women with both the lowest spine BMD (quartile 1) and the highest NTX (quartile 4) at baseline was 2.87 (95% CI, 1.61–6.01), compared with women with lower NTX and higher BMD. Women whose NTX increased more than the median had a higher risk of fracture (odds ratio, 1.51; 95% CI, 1.08–2.10). Women who had baseline NTX greater than the median experienced greater loss of spine and hip BMD. Conclusions A higher urinary NTX excretion measured before menopause and across menopause is associated with a higher risk of fracture. Our results are consistent with the pathophysiology of transmenopausal changes in bone strength. PMID:22850443
Prognostic Factors for Predicting Outcomes After Intramedullary Nailing of the Tibia
Schemitsch, Emil H.; Bhandari, Mohit; Guyatt, Gordon; Sanders, David W.; Swiontkowski, Marc; Tornetta, Paul; Walter, Stephen D.; Zdero, Rad; Goslings, J.C.; Teague, David; Jeray, Kyle; McKee, Michael D.; Schemitsch, Emil H.; Bhandari, Mohit; Guyatt, Gordon; Sanders, David W.; Swiontkowski, Marc; Tornetta, Paul; Walter, Stephen D.; Zdero, Rad; Goslings, J.C.; Teague, David; Jeray, Kyle; McKee, Michael D.
2012-01-01
Background: Prediction of negative postoperative outcomes after long-bone fracture treatment may help to optimize patient care. We recently completed the Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial Fractures (SPRINT), a large, multicenter trial of reamed and unreamed intramedullary nailing of tibial shaft fractures in 1226 patients. Using the SPRINT data, we conducted an investigation of baseline and surgical factors to determine any associations with an increased risk of adverse events within one year of intramedullary nailing. Methods: Using multivariable logistic regression analysis, we investigated fifteen baseline and surgical factors for any associations with an increased risk of negative outcomes. Results: There was an increased risk of negative events in patients with a high-energy mechanism of injury (odds ratio [OR] = 1.57; 95% confidence interval [CI], 1.05 to 2.35), a stainless steel compared with a titanium nail (OR = 1.52; 95% CI, 1.10 to 2.13), a fracture gap (OR = 2.40; 95% CI, 1.47 to 3.94), and full weight-bearing status after surgery (OR = 1.63; 95% CI, 1.00 to 2.64). There was no increased risk with the use of nonsteroidal anti-inflammatory agents, late or early time to surgery, or smoking status. Open fractures had a higher risk of events among patients treated with reamed nailing (OR = 3.26; 95% CI, 2.01 to 5.28) but not in patients treated with unreamed nailing (OR = 1.50; 95% CI, 0.92 to 2.47). Patients with open fractures who had wound management either without any additional procedures or with delayed primary closure had a decreased risk of events compared with patients who required subsequent, more complex reconstruction (OR = 0.18 [95% CI, 0.09 to 0.35] and 0.29 [95% CI, 0.14 to 0.62], respectively). Conclusions: We identified several baseline fracture and surgical characteristics that may increase the risk of adverse events in patients with tibial shaft fractures. Surgeons should consider the predictors identified in our analysis to inform patients treated for tibial shaft fractures. Level of Evidence: Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence. PMID:23032589
Poroelastic Response of Orthotropic Fractured Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, James G.
In this paper, an algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented in this article quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton’s secondmore » coefficient and satisfies 0 ≤ B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further aim of the discussion is to determine the number of the poroelastic constants that needs to be known by other means to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a f ≃ 0.1 and the pore fluid is liquid water, then for several cases considered, Skempton’s B ≃ 0.9, and so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ≃ 0.1, in these examples. The results do, however, depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann’s equations for homogeneous—but anisotropic—poroelasticity. Relationships to Skempton’s analysis of saturated soils are also noted. Finally, the article concludes with a discussion of alternative methods of analyzing and quantifying fluid-substitution behavior in poroelastic systems, especially for those systems having heterogeneous constitution.« less
Prediction of Fracture Initiation in Hot Compression of Burn-Resistant Ti-35V-15Cr-0.3Si-0.1C Alloy
NASA Astrophysics Data System (ADS)
Zhang, Saifei; Zeng, Weidong; Zhou, Dadi; Lai, Yunjin
2015-11-01
An important concern in hot working of metals is whether the desired deformation can be accomplished without fracture of the material. This paper builds a fracture prediction model to predict fracture initiation in hot compression of a burn-resistant beta-stabilized titanium alloy Ti-35V-15Cr-0.3Si-0.1C using a combined approach of upsetting experiments, theoretical failure criteria and finite element (FE) simulation techniques. A series of isothermal compression experiments on cylindrical specimens were conducted in temperature range of 900-1150 °C, strain rate of 0.01-10 s-1 first to obtain fracture samples and primary reduction data. Based on that, a comparison of eight commonly used theoretical failure criteria was made and Oh criterion was selected and coded into a subroutine. FE simulation of upsetting experiments on cylindrical specimens was then performed to determine the fracture threshold values of Oh criterion. By building a correlation between threshold values and the deforming parameters (temperature and strain rate, or Zener-Hollomon parameter), a new fracture prediction model based on Oh criterion was established. The new model shows an exponential decay relationship between threshold values and Zener-Hollomon parameter (Z), and the relative error of the model is less than 15%. This model was then applied successfully in the cogging of Ti-35V-15Cr-0.3Si-0.1C billet.
NASA Astrophysics Data System (ADS)
Shan, Jia
As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.
Modeling propellant-based stimulation of a borehole with peridynamics
Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.
2017-02-27
A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less
Modeling propellant-based stimulation of a borehole with peridynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.
A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less
Nanoscale Stress-Corrosion of Geomaterials in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Criscenti, L. J.; Rimsza, J. M.; Matteo, E. N.; Jones, R. E.
2017-12-01
Predicting subcritical crack propagation in low-permeability geo-materials is an unsolved problem crucial to assessing shale caprocks at CO2 sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-material interfaces play a major role in subcritical crack growth by weakening the material and altering crack nucleation and growth rates. However, understanding subsurface fracture has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We are using both molecular simulation and experiment to develop an atomistic-level understanding of the chemical-mechanical coupling that controls subcritical crack propagation. We are investigating fracture of isotropic silica glass in different environments (air, distilled water, and Na+-rich solutions) and will extend our research to include clay minerals in shales. Molecular simulations are performed with ReaxFF, a reactive force field that allows for explicit modeling of bond breaking and formation processes during crack propagation. A coarse-graining method produces calculated fracture toughness values from the atomistic data. We are performing double cleavage drilled compression (DCDC) experiments in aqueous environmental chambers and monitoring crack propagation with either a confocal or atomic force microscope. Our results show that silica fracture toughness decreases as the environment changes from air to distilled water to Na+-rich solutions. These results suggest that our newly developed computational and experimental techniques can be used to investigate the impact of fluid composition on crack growth in geo-materials and that we will be able to use these methods to understand coupled chemo-mechanical processes and predict crack propagation in shale minerals. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.
Fractures Due to Gunshot Wounds: Do Retained Bullet Fragments Affect Union?
Riehl, John T.; Connolly, Keith; Haidukewych, George; Koval, Ken
2015-01-01
Background Many types of projectiles, including modern hollow point bullets, fragment into smaller pieces upon impact, particularly when striking bone. This study was performed to examine the effect on time to union with retained bullet material near a fracture site in cases of gunshot injury. Methods All gunshot injuries operatively treated with internal fixation at a Level 1 Trauma Center between March 2008 and August 2011 were retrospectively reviewed. Retained bullet load near the fracture site was calculated based on percentage of material retained compared to the cortical diameter of the involved bone. Analyses were performed to assess the effect of the lead-cortical ratio and amount of comminution on time to fracture union. Results Thirty-two patients (34 fractures) met the inclusion criteria, with an equal number of comminuted (17) and non-comminuted fractures (17). Seventeen of 34 fractures (50%) united within 4 months, 16/34 (47%) developed a delayed union, and 1/34 (3%) developed a nonunion requiring revision surgery. Sixteen of 17 fractures (94%) that united by 4 months had a cumulative amount of bullet fragmentation retained near the fracture site of less than 20% of the cortical diameter. Nine out of 10 fractures (90%) with retained fragments near the fracture site was equal to or exceeding 20% of the cortical diameter had delayed or nonunion. Fracture comminution had no effect on time to union. Conclusions The quantity of retained bullet material near the fracture site was more predictive of the rate of fracture union than was comminution. Fractures with bullet fragmentation equal to or exceeding 20% of the cortical width demonstrated a significantly higher rate of delayed union/nonunion compared to those fractures with less retained bullet material, which may indicate a local cytotoxic effect from lead on bone healing. These findings may influence decisions on timing of secondary surgeries. Level of Evidence Level III PMID:26361445
Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.
Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie
2015-01-01
Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.
In Situ Local Fracture Flow Measurement by the Double Packer Dilution Test
NASA Astrophysics Data System (ADS)
Englert, A.; Le Borgne, T.; Bour, O.; Klepikova, M.; Lavenant, N.
2011-12-01
For prediction of flow and transport in fractured media, prior estimation of the fracture network is essential, but challenging. Recent developments in hydraulic tomography have shown promising results for understanding connectivities between boreholes. However, as the hydraulic tomographic survey is typically based on the propagation of head only, it becomes a strongly non unique problem. To reduce the non uniqueness of tomographic surveys point conditioning has been found beneficial. Just as well, measurement of local flow in a fracture can serve as point conditioning for hydraulic and tracer tomographic surveys. Nevertheless, only few measurements of local fracture flow have been performed since this type of measurements implies several important technical issues. Dilution test in a packed off interval is a possible method for measuring fracture flow (e.g. Drost et al. 1968, Novakowski et al., 2005). However, a key issue for estimating flow with dilution tests is to ensure a full mixing of the tracer in the packed interval. This is typically done by including a mixing system within the packer. The design of such system can be challenging for deep wells and small diameters. Here, we propose a method where mixing is ensured by a recirculation loop including a surface tank. This method is adapted from the design proposed by Brouyere et al. (2008), who measured dilution in open wells. Dilution is quantified by measuring the concentration in the surface barrel as function of time. Together with the measurement of the circulating flow and the water filled volume in the surface barrel, the measured tracer dilution allows for calculation of the fracture flow. Since the method can be applied using a classical double packer system, it may provide a broader application of local flow measurements in heterogeneous media. We tested the approach on the Ploemeur fractured crystalline rock site. A one meter interval at depth 80 m with a single flowing fracture was isolated with a double packer dilution system. We performed a pumping test in the adjacent well. Different flow rates were estimated from the dilution curves for the different pumping rates in the adjacent well, showing a linear response. The obtained fracture flow rates provide important information on the flow geometry and connectivity between the two wells. Future joint interpretation of flow measurements, hydraulic head and tracer test data is expected to provide detailed insights in the flow and transport processes at the Ploemeur site. Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F., Rauert, W.: Point dilution methods of investigating ground water flow by means of radioisotopes, Water. Resour. Res., 4(1), 1968. Novakowski, K., Bickerton, G., Lapcevic, P., Voralek, J., Ross, N.: Measurements of groundwater velocity in discrete rock fractures: Jour. Cont. Hydr., 82(1-2), 2006. Brouyere, S., Batlle-Aguilar, J., Goderniaux, P., Dassargues, A.: A new tracer technique for monitoring groundwater fluxes: The Finite Volume Point Dilution Method, Jour. Cont. Hydr., 95(3-4), 121-140, 2008.
NASA Astrophysics Data System (ADS)
Qi, C.; Liu, J.
2017-12-01
Fractures are essential for unconventional hydrocarbon production. However, the observation of fractures in three-dimensional (3D) space is very difficult except using microtomography to obtain 3D fracture structures at micro-scales. Twelve shale samples taken from a specimen are analyzed in this study: six of them were isobarically and five were isothermally processed in experiments of simulating hydrocarbon generation and expulsion and one is unprocessed. The resolutions of microtomographic images are in the range from 5.83 to 9.12 μm. Fractures developed in different complexities: some samples have mostly parallel fractures, some have major parallel fractures plus irregular fractures forming crack-network and some samples have fully intersected fractures of various directions. To identify individual fractures in 3D network is crucial for the characterization of fractures and it needs to separate each fractures or disconnect intersections of fractures. For those samples with fewer intersections, it is not difficult to disconnect intersections manually slice by slice using Avizo®. For those samples with complex intersections, it is impractical to process manually. A patented method and corresponding programs are used to separate, identify and characterize individual fractures. By procedures of filtering, smoothing, thinning, separating and combining, intersected cracks are separated, the segments of a broken elongated cracks are identified as one crack, and the thinned thickness is restored, finally the shape, orientation and dimensions of individual fractures are characterized. Our results show that: 1) relatively large fractures are very thin, showing typical fracture morphology, while small fractures may have various shapes; 2) isothermal processed samples have stronger anisotropy, which implies that the fractures in isothermal series are thinner or flatter than in isobaric series; 3) the fractal dimension exists in the samples and there is good correlation between the fractal dimension and temperature/pressure. This study is a first trial of the characterization of individual cracks in 3D network. It lays a foundation for future research on the prediction of large-scale fractures in tight reservoirs.
Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Jenkins, Andrew
Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the stimulation treatment plan.
NASA Astrophysics Data System (ADS)
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas
2018-02-01
Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.
NASA Astrophysics Data System (ADS)
Amiri, Amir; Nikpour, Amin; Saraeian, Payam
2018-05-01
Forging is one of the manufacturing processes of aluminium parts which has two major categories: called hot and cold forging. In the cold forging, the dimensional and geometrical accuracy of final part is high. However, fracture may occur in some aluminium alloys during the process because of less workability. Fracture in cold forging can be in the form of ductile, brittle or combination of both depending on the alloy type. There are several criteria for predicting fracture in cold forging. In this study, cold forging process of 6063 aluminium alloy for three different parts is simulated in order to predict fracture. The results of numerical simulations of Freudenthal criterion is in conformity with experimental tests.
Damage accumulation of bovine bone under variable amplitude loads.
Campbell, Abbey M; Cler, Michelle L; Skurla, Carolyn P; Kuehl, Joseph J
2016-12-01
Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile ( 4000 μ ϵ ), brittle due to high cyclic amplitude loading (> 9000 μ ϵ ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 -6750 μ ϵ ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism.
Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Liu, Yan-Xing; Liu, Ge; Chen, Ming-Song; Huang, Yuan-Chun
2015-01-01
The ductile fracture behaviors of 42CrMo steel are studied by hot tensile tests with the deformation temperature range of 1123-1373 K and strain rate range of 0.0001-0.1 s-1. Effects of deformation temperature and strain rate on the flow stress and fracture strain of the studied steel are discussed in detail. Based on the experimental results, a ductile damage model is established to describe the combined effects of deformation temperature and strain rate on the ductile fracture behaviors of 42CrMo steel. It is found that the flow stress first increases to a peak value and then decreases, showing an obvious dynamic softening. This is mainly attributed to the dynamic recrystallization and material intrinsic damage during the hot tensile deformation. The established damage model is verified by hot forging experiments and finite element simulations. Comparisons between the predicted and experimental results indicate that the established ductile damage model is capable of predicting the fracture behaviors of 42CrMo steel during hot forging.
Electromagnetic Measurements in an Active Oilfield Environment
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Aur, K. A.; Schramm, K. A.; Aldridge, D. F.; O'rourke, W. T.
2016-12-01
An important issue in oilfield development is mapping fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring has been successful in constraining fracture system geometry and dynamics, accurate interpretation of microseismic data can be confounded by factors such as complex or poorly-understood velocity distributions, reactivation of previously unknown faults and fractures, and the problem of relating flow patterns to the cloud of hypocenter locations. For the particular problem of hydrocarbon production, the question of which fractures remain sufficiently "open" to allow economical fluid extraction is critical. As a supplement to microseismic analysis, we are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a hydrocarbon or geothermal reservoir by introducing an electrically conductive contrast agent into the fracturing fluid. In the field experiment presented here, a proppant-filled fracture zone is illuminated by a large engineered antenna consisting of an insulated current-carrying cable, grounded to `Earth' near the wellhead, and grounded at the other end to the steel-cased borehole near the target. Time-lapse measurements of horizontal electric field are subsequently made on Earth's surface to map the change in subsurface conductivity due to proppant emplacement. As predicted by 3D numerical modelling, observed differences in electric field values are very small. While these numbers are above the noise floor of electric field sensors, pervasive anthropogenic EM noise and regional-scale magnetotelluric signals make extraction of the differences from the observed time series especially difficult. We present field-acquired data on ambient EM noise in an active oilfield environment and demonstrate techniques for extracting the difference signal due to proppant emplacement. These techniques include classical spectral methods along with estimation of time-domain Green's function by regularized, linear least squares methods.
Site characterization in densely fractured dolomite: Comparison of methods
Muldoon, M.; Bradbury, K.R.
2005-01-01
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.
Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617
Site characterization in densely fractured dolomite: comparison of methods.
Muldoon, Maureen; Bradbury, Ken R
2005-01-01
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.
Morris, Rob; Harwood, Rowan H; Baker, Ros; Sahota, Opinder; Armstrong, Sarah; Masud, Tahir
2007-01-01
people with vertebral fractures are at high risk of developing hip fractures. Falls risk is important in the pathogenesis of hip fractures. to investigate if balance tests, in conjunction with a falls history, can predict falls in older women with vertebral fractures. a cohort study of community-dwelling women aged over 60 years, with vertebral fractures. Balance tests investigated were: 5 m-timed-up-and-go-test (5 m-TUG), timed 10 m walk, TURN180 test (number of steps to turn 180 degrees ), tandem walk, ability to stand from chair with arms folded. Leg extensor power was also measured. fallers (at least one fall in a 12 month follow-up period) versus non-fallers. one hundred and four women aged 63-91 years [mean=78 +/- 7], were recruited. Eighty-six (83%) completed the study. Four variables were significantly associated with fallers: previous recurrent faller (2+ falls) [OR=6.52; 95% CI=1.69-25.22], 5 m-TUG test [OR=1.03; 1.00-1.06], timed 10 m walk [OR=1.07; 1.01-1.13] and the TURN180 test [OR=1.22; 1.00-1.49] [P <0.05]. Multi-variable analysis showed that only two variables, previous recurrent faller [OR=5.60; 1.40-22.45] and the 5 m-TUG test [OR=1.04; 1.00-1.08], were independently significantly associated with fallers. The optimal cut-off time for performing the 5 m-TUG test in predicting fallers was 30 s (area under ROC=60%). Combining previous recurrent faller with the 5 m-TUG improved prediction of fallers [OR=16.79, specificity=100%, sensitivity=13%]. a previous history of recurrent falls and the inability to perform the 5 m-TUG test within 30 s predicted falls in older women with vertebral fractures. Combining these two measures can predict fallers with a high degree of specificity (although a low sensitivity), allowing the identification of a group of patients suitable for fall and fracture prevention measures.
Small-crack effects in high-strength aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.
1994-01-01
The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.
Bonaccorsi, Gloria; Fila, Enrica; Messina, Carmelo; Maietti, Elisa; Ulivieri, Fabio Massimo; Caudarella, Renata; Greco, Pantaleo; Guglielmi, Giuseppe
2017-10-01
To evaluate (a) the performance in predicting the presence of bone fractures of trabecular bone score (TBS) and hip structural analysis (HSA) in type 2 diabetic postmenopausal women compared to a control group and (b) the fracture prediction ability of TBS versus Fracture Risk Calculator (FRAX ® ) as well as whether TBS can improve the fracture prediction ability of FRAX ® in diabetic women. Eighty diabetic postmenopausal women were matched with 88 controls without major diseases for age and body mass index. The individual 10-year fracture risk was assessed by FRAX ® tool for Europe-Italy; bone mineral density (BMD) at lumbar spine, femoral neck and total hip was evaluated through dual-energy X-ray absorptiometry; TBS measurements were taken using the same region of interest as the BMD measurements; HSA was performed at proximal femur with the HSA software. Regarding variables of interest, the only significant difference between diabetic and control groups was observed for the value of TBS (median value: 1.215; IQR 1.138-1.285 in controls vs. 1.173; IQR 1.082-1.217 in diabetic; p = 0.002). The prevalence of fractures in diabetic women was almost tripled than in controls (13.8 vs. 3.4 %; p = 0.02). The receiver operator characteristic curve analysis showed that TBS alone (AUC = 0.71) had no significantly lower discriminative power for fracture prediction in diabetic women than FRAX major adjusted for TBS (AUC = 0.74; p = 0.65). In diabetic postmenopausal women TBS is an excellent tool in identifying fragility fractures.
Gislason, Magnus K; Coupaud, Sylvie; Sasagawa, Keisuke; Tanabe, Yuji; Purcell, Mariel; Allan, David B; Tanner, K Elizabeth
2014-02-01
The disuse-related bone loss that results from immobilisation following injury shares characteristics with osteoporosis in post-menopausal women and the aged, with decreases in bone mineral density leading to weakening of the bone and increased risk of fracture. The aim of this study was to use the finite element method to: (i) calculate the mechanical response of the tibia under mechanical load and (ii) estimate of the risk of fracture; comparing between two groups, an able-bodied group and spinal cord injury patients group suffering from varying degrees of bone loss. The tibiae of eight male subjects with chronic spinal cord injury and those of four able-bodied age-matched controls were scanned using multi-slice peripheral quantitative computed tomography. Images were used to develop full three-dimensional models of the tibiae in Mimics (Materialise) and exported into Abaqus (Simulia) for calculation of stress distribution and fracture risk in response to specified loading conditions - compression, bending and torsion. The percentage of elements that exceeded a calculated value of the ultimate stress provided an estimate of the risk of fracture for each subject, which differed between spinal cord injury subjects and their controls. The differences in bone mineral density distribution along the tibia in different subjects resulted in different regions of the bone being at high risk of fracture under set loading conditions, illustrating the benefit of creating individual material distribution models. A predictive tool can be developed based on these models, to enable clinicians to estimate the amount of loading that can be safely allowed onto the skeletal frame of individual patients who suffer from extensive musculoskeletal degeneration (including spinal cord injury, multiple sclerosis and the ageing population). The ultimate aim is to reduce fracture occurrence in these vulnerable groups.
Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine
2013-01-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349
Faisal, Tanvir R; Luo, Yunhua
2017-10-03
Hip fracture of elderly people-suffering from osteoporosis-is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject. Quantitative Computed Tomography (QCT) scan datasets of thirty anonymous patients' left and right femora have been considered for the FE models, which have been simulated with an equal magnitude of load applied to the aforementioned configurations. The requirement of bilateral hip assessment in predicting the fracture risk has been explored in this study. Comparing the sideways fall and single-legged stance, the FRI varies by 64 to 74% at the superior aspects and by 14 to 19% at the inferior surfaces of both the femora. The results of this in vivo analysis clearly substantiate that the fracture is expected to initiate at the superior surface of femoral neck region if a patient falls from his/her standing height. The distributions of FRI between the femurs vary considerably, and the variability is significant at the superior aspects. The p value (= 0.02) obtained from paired sample t-Test yields p value ≤ 0.05, which shows the evidence of variability of the FRI distribution between left and right femurs. Moreover, the comparison of FRIs between the left and right femur of men and women shows that women are more susceptible to hip fracture than men. The results and statistical variation clearly signify a need for bilateral hip scanning in predicting hip fracture risk, which is clinically conducted, at present, based on one hip chosen randomly and may lead to inaccurate fracture prediction. This study, although preliminary, may play a crucial role in assessing the hip fractures of the geriatric population and thereby, reducing the cost of treatment by taking predictive measure.
Toyabe, Shin-ichi
2014-01-01
Inpatient falls are the most common adverse events that occur in a hospital, and about 3 to 10% of falls result in serious injuries such as bone fractures and intracranial haemorrhages. We previously reported that bone fractures and intracranial haemorrhages were two major fall-related injuries and that risk assessment score for osteoporotic bone fracture was significantly associated not only with bone fractures after falls but also with intracranial haemorrhage after falls. Based on the results, we tried to establish a risk assessment tool for predicting fall-related severe injuries in a hospital. Possible risk factors related to fall-related serious injuries were extracted from data on inpatients that were admitted to a tertiary-care university hospital by using multivariate Cox’ s regression analysis and multiple logistic regression analysis. We found that fall risk score and fracture risk score were the two significant factors, and we constructed models to predict fall-related severe injuries incorporating these factors. When the prediction model was applied to another independent dataset, the constructed model could detect patients with fall-related severe injuries efficiently. The new assessment system could identify patients prone to severe injuries after falls in a reproducible fashion. PMID:25168984
Wang, Hao; Coppola, Marco; Robinson, Richard D.; Scribner, James T.; Vithalani, Veer; de Moor, Carrie E.; Gandhi, Raj R.; Burton, Mandy; Delaney, Kathleen A.
2013-01-01
Background It has been found that significantly different clinical outcomes occur in trauma patients with different mechanisms of injury. Ground level falls (GLF) are usually considered “minor trauma” with less injury occurred in general. However, it is not uncommon that geriatric trauma patients sustain cervical spine (C-spine) fractures with other associated injuries due to GLF or less. The aim of this study is to determine the injury patterns and the roles of clinical risk factors in these geriatric trauma patients. Methods Data were reviewed from the institutional trauma registry of our local level 1 trauma center. All patients had sustained C-spine fracture(s). Basic clinical characteristics, the distribution of C-spine fracture(s), and mechanism of injury in geriatric patients (65 years or older) were compared with those less than 65 years old. Furthermore, different clinical variables including age, gender, Glasgow coma scale (GCS), blood alcohol level, and co-existing injuries were analyzed by multivariate logistic regression in geriatric trauma patients due to GLF and internally validated by random bootstrapping technique. Results From 2006 - 2010, a total of 12,805 trauma patients were included in trauma registry, of which 726 (5.67%) had sustained C-spine fracture(s). Among all C-spine fracture patients, 19.15% (139/726) were geriatric patients. Of these geriatric patients 27.34% (38/139) and 53.96% (75/139) had C1 and C2 fractures compared with 13.63% (80/587) and 21.98% (129/587) in young trauma patients (P < 0.001). Of geriatric trauma patients 13.67% (19/139) and 18.71% (26/139) had C6 and C7 fractures compared with 32.03% (188/587) and 41.40% (243/587) in younger ones separately (P < 0.001). Furthermore, 53.96% (75/139) geriatric patients had sustained C-spine fractures due to GLF with more upper C-spine fractures (C1 and C2). Only 3.2% of those had positive blood alcohol levels compared with 52.9% of younger patients (P < 0.001). In addition, 6.34% of geriatric patients due to GLF had intracranial pathology (ICP) which was one of the most common co-injuries with C-spine fractures. Logistic regression analysis showed the adjusted odds ratios of 1.17 (age) and 91.57 (male) in geriatric GLF patients to predict this co-injury pattern of C-spine fracture and ICP. Conclusion Geriatric patients tend to sustain more upper C-spine fractures than non-geriatric patients regardless of the mechanisms. GLF or less not only can cause isolated C-spines fracture(s) but also lead to other significant injuries with ICP as the most common one in geriatric patients. Advanced age and male are two risk factors that can predict this co-injury pattern. In addition, it seems that alcohol plays no role in the cause of GLF in geriatric trauma patients. PMID:23519239
Hongisto, Markus T; Nuotio, Maria; Luukkaala, Tiina; Väistö, Olli; Pihlajamäki, Harri K
2016-10-22
Institutionalization after hip fracture is a socio-economical burden. We examined the predictive value of Instrumental Activities of Daily Living (IADL) and Mini Mental State Examination (MMSE) for institutionalization after hip fracture to identify patients at risk for institutionalization. Fragility hip fracture patients ≥65 years of age (n = 584) were comprehensively examined at a geriatric outpatient clinic 4 to 6 months after surgery and followed 1 year postoperatively. A telephone interview with a structured inquiry was performed at 1, 4, and 12 months after hip fracture. Age-adjusted univariate logistic regression analysis revealed that IADL and MMSE scores measured at the outpatient clinic were significantly associated with living arrangements 1 year after hip fracture. Multivariate logistic regression analysis established that institutionalization 1 year after hip fracture was significantly predicted by institutionalization at 4 months (odds ratio [OR] 16.26, 95 % confidence interval [CI] 7.37-35.86), IADL <5 (OR 12.96, 95 % CI 1.62-103.9), and MMSE <20 (OR 4.19, 95 % CI 1.82-9.66). A cut-off value of 5 was established for IADL with 100 % (95 % CI 96 %-100 %) sensitivity and 38 % (95 % CI 33 %-43 %) specificity and for MMSE, a cut-off value of 20 had 83 % (95 % CI 74 %-91 %) sensitivity and 65 % (95 % CI 60 %-70 %) specificity for institutionalization. During the time period from 4 to 12 months, 66 (11 %) patients changed living arrangements, and 36 (55 %) of these patients required more supportive accommodations. IADL and MMSE scores obtained 4 to 6 months after hospital discharge may be applicable for predicting institutionalization among fragility hip fracture patients ≥65 years of age at 1 year after hip fracture. An IADL score of ≥5 predicted the ability to remain in the community. Changes in living arrangements also often occur after 4 months.
Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; LaBolle, Eric; Reeves, Donald M
2012-07-01
Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the currentmore » dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for the parallel fracture system. Finally, we adopted the transient range approach proposed by Pan and Bodvarsson [2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be resolved without using very small time steps. It does not use any truncation of the first passage time distribution for particles. Hence it does not have the limitation identified above for the DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in fractured porous media for a full range of parameters without any practical or theoretical limitations.« less
Predicting the dynamic fracture of steel via a non-local strain-energy density failure criterion.
DOT National Transportation Integrated Search
2014-06-01
Predicting the onset of fracture in a material subjected to dynamic loading conditions has typically been heavily mesh-dependent, and often must be specifically calibrated for each geometric design. This can lead to costly models and even : costlier ...
Predictive modeling of dynamic fracture growth in brittle materials with machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Bryan A.; Rougier, Esteban; O’Malley, Daniel
We use simulation data from a high delity Finite-Discrete Element Model to build an e cient Machine Learning (ML) approach to predict fracture growth and coalescence. Our goal is for the ML approach to be used as an emulator in place of the computationally intensive high delity models in an uncertainty quanti cation framework where thousands of forward runs are required. The failure of materials with various fracture con gurations (size, orientation and the number of initial cracks) are explored and used as data to train our ML model. This novel approach has shown promise in predicting spatial (path tomore » failure) and temporal (time to failure) aspects of brittle material failure. Predictions of where dominant fracture paths formed within a material were ~85% accurate and the time of material failure deviated from the actual failure time by an average of ~16%. Additionally, the ML model achieves a reduction in computational cost by multiple orders of magnitude.« less
Predictive modeling of dynamic fracture growth in brittle materials with machine learning
Moore, Bryan A.; Rougier, Esteban; O’Malley, Daniel; ...
2018-02-22
We use simulation data from a high delity Finite-Discrete Element Model to build an e cient Machine Learning (ML) approach to predict fracture growth and coalescence. Our goal is for the ML approach to be used as an emulator in place of the computationally intensive high delity models in an uncertainty quanti cation framework where thousands of forward runs are required. The failure of materials with various fracture con gurations (size, orientation and the number of initial cracks) are explored and used as data to train our ML model. This novel approach has shown promise in predicting spatial (path tomore » failure) and temporal (time to failure) aspects of brittle material failure. Predictions of where dominant fracture paths formed within a material were ~85% accurate and the time of material failure deviated from the actual failure time by an average of ~16%. Additionally, the ML model achieves a reduction in computational cost by multiple orders of magnitude.« less
Mandell, Jacob C; Weaver, Michael J; Khurana, Bharti
2018-06-01
The purpose of this study was to evaluate the diagnostic performance of CT for assessment of occult fractures of the proximal femur, pelvis, and sacrum. A retrospective review was performed on patients who received a CT of the hip or pelvis for suspected occult fracture after negative or equivocal radiographs performed within 24 h. The official radiology report was utilized for the determination of CT findings and calculation of sensitivity and specificity. Surgical reports, MRI reports, and clinical follow-up were used as the standard of reference. Sensitivity and specificity were calculated with 95% confidence intervals. Seventy-four patients received CT of the hip or pelvis for clinical concern for occult fracture after negative or equivocal radiographs. By the reference standard, a total of 40 fractures were present in 25/74 (33.8%) patients, including 35 conservatively treated fractures of the greater trochanter, pelvis, and sacrum, and 5 operatively treated proximal femoral fractures. A total of 14/74 (18.9%) of patients had an MRI within 1 day of CT. MRI identified an operatively treated femoral neck fracture not seen on CT and an operatively treated intertrochanteric fracture, which CT described as a greater trochanteric fracture. There were two false negative conservatively treated pelvic fractures not seen on CT but diagnosed on MRI. On a per-patient basis, CT had an overall sensitivity of 88% (22/25; 95% confidence intervals 69-97%), specificity of 98% (48/49; 95% confidence intervals 89-100%), and negative predictive value of 94%. For the five operative proximal femoral fractures, the sensitivity of CT was 60% (3/5; 95% confidence intervals 15-95%), specificity was 99% (68/69; 95% confidence intervals 92-100%), and negative predictive value was 97%. In the clinical setting of suspected occult fracture, the sensitivity of clinical CT reports for detection of any type of fracture of the proximal femur, pelvis, or sacrum was 88%. For the small number of operatively treated proximal femoral fractures seen in the study, sensitivity of CT was 60% (3/5) and negative predictive value was 97%, although the relatively few patients needing fixation precludes statistical analysis.
Fracture network topology and characterization of structural permeability
NASA Astrophysics Data System (ADS)
Hansberry, Rowan; King, Rosalind; Holford, Simon
2017-04-01
There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with other permeability indicators such as drilling fluid losses, and pore pressure measurements. Initial work with these techniques has led to new developments in our ability to image subsurface faults and fractures at a variety of scales from independent datasets. We establish a strong relationship between features identified using seismic attribute analysis and interpreted natural fractures. However, care must be taken to use these methods in a case-by-case basis, as controls on fracture distribution and orientation can vary significantly with both regional and local influences. These results outline and effective method by which structural permeability can be assessed with existing petroleum datasets. However, unlike the broad stress field, mapping fracture orientation and characteristics within the Australian Continent is complicated as the distribution, geometry, areal extent and connectivity of fracture networks can vary significantly.
A coupled ductile fracture phase-field model for crystal plasticity
NASA Astrophysics Data System (ADS)
Hernandez Padilla, Carlos Alberto; Markert, Bernd
2017-07-01
Nowadays crack initiation and evolution play a key role in the design of mechanical components. In the past few decades, several numerical approaches have been developed with the objective to predict these phenomena. The objective of this work is to present a simplified, nonetheless representative phenomenological model to predict the crack evolution of ductile fracture in single crystals. The proposed numerical approach is carried out by merging a conventional elasto-plastic crystal plasticity model and a phase-field model modified to predict ductile fracture. A two-dimensional initial boundary value problem of ductile fracture is introduced considering a single-crystal setup and Nickel-base superalloy material properties. The model is implemented into the finite element context subjected to a quasi-static uniaxial tension test. The results are then qualitatively analyzed and briefly compared to current benchmark results in the literature.
Physical and numerical studies of a fracture system model
NASA Astrophysics Data System (ADS)
Piggott, Andrew R.; Elsworth, Derek
1989-03-01
Physical and numerical studies of transient flow in a model of discretely fractured rock are presented. The physical model is a thermal analogue to fractured media flow consisting of idealized disc-shaped fractures. The numerical model is used to predict the behavior of the physical model. The use of different insulating materials to encase the physical model allows the effects of differing leakage magnitudes to be examined. A procedure for determining appropriate leakage parameters is documented. These parameters are used in forward analysis to predict the thermal response of the physical model. Knowledge of the leakage parameters and of the temporal variation of boundary conditions are shown to be essential to an accurate prediction. Favorable agreement is illustrated between numerical and physical results. The physical model provides a data source for the benchmarking of alternative numerical algorithms.
Lee, Shyh-Chyang; Hu, Li-Yu; Huang, Min-Wei; Shen, Cheng-Che; Huang, Wei-Lun; Lu, Ti; Hsu, Chiao-Lin; Pan, Chih-Chuan
2017-01-01
OBJECTIVE: Previous studies have reported that depression may play a crucial role in the occurrence of vertebral fractures. However, a clear correlation between depressive disorders and osteoporotic fractures has not been established. We explored the association between depressive disorders and subsequent new-onset vertebral fractures. Additionally, we aimed to identify the potential risk factors for vertebral fracture in patients with a depressive disorder. METHODS: We studied patients listed in the Taiwan National Health Insurance Research Database who were diagnosed with a depressive disorder by a psychiatrist. The comparison cohort consisted of age- and sex-matched patients without a depressive disorder. The incidence rate and hazard ratios of subsequent vertebral fracture were evaluated. We used Cox regression analysis to evaluate the risk of vertebral fracture among patients with a depressive disorder. RESULTS: The total number of patients with and without a depressive disorder was 44,812. The incidence risk ratio (IRR) between these 2 cohorts indicated that depressive disorder patients had a higher risk of developing a subsequent vertebral fracture (IRR=1.41, 95% confidence interval [CI]=1.26–1.57, p<0.001). In the multivariate analysis, the depressive disorder cohort showed a higher risk of vertebral fracture than the comparison cohort (adjusted hazard ratio=1.24, 95% CI=1.11–1.38, p<0.001). Being older than 50 years, having a lower monthly income, and having hypertension, diabetes mellitus, cerebrovascular disease, chronic obstructive pulmonary disease, autoimmune disease, or osteoporosis were considered predictive factors for vertebral fracture in patients with depressive disorders. CONCLUSIONS: Depressive disorders may increase the risk of a subsequent new-onset vertebral fracture. PMID:28226032
Brittle fracture phase-field modeling of a short-rod specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, Ivana; Tupek, Michael R.; Bishop, Joseph E.
2015-09-01
Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.
ERIC Educational Resources Information Center
Ryder, K. M.; Williams, J.; Womack, C.; Nayak, N. G.; Nasef, S.; Bush, A.; Tylavsky, F. A.; Carbone, L.
2003-01-01
This study found a high incidence of nontraumatic fractures in adults with developmental disabilities living in a state-run facility, a 7.3% incidence among 391 adults. Factors associated with fractures included use of antiepileptic medication. Although bone mineral density (BMD) by heel ultrasound did not predict fracture, values were much lower…
Esmaeilzadeh, Sina; Cesme, Fatih; Oral, Aydan; Yaliman, Ayse; Sindel, Dilsad
2016-08-01
Dual-energy X-ray absorptiometry (DXA) is considered the "gold standard" in predicting osteoporotic fractures. Calcaneal quantitative ultrasound (QUS) variables are also known to predict fractures. Fracture risk assessment tools may also guide us for the detection of individuals at high risk for fractures. The aim of this case-control study was to evaluate the utility of DXA bone mineral density (BMD), calcaneal QUS parameters, FRAX® (Fracture Risk Assessment Tool), and Osteoporosis Risk Assessment Instrument (ORAI) for the discrimination of women with distal forearm or hip fractures. This case-control study included 20 women with a distal forearm fracture and 18 women with a hip fracture as cases and 76 age-matched women served as controls. BMD at the spine, proximal femur, and radius was measured using DXA and acoustic parameters of bone were obtained using a calcaneal QUS device. FRAX® 10-year probability of fracture and ORAI scores were also calculated in all participants. Receiver operating characteristic (ROC) analysis was used to assess fracture discriminatory power of all the tools. While all DXA BMD, and QUS variables and FRAX® fracture probabilities demonstrated significant areas under the ROC curves for the discrimination of hip-fractured women and those without, only 33% radius BMD, broadband ultrasound attenuation (BUA), and FRAX® major osteoporotic fracture probability calculated without BMD showed significant discriminatory power for distal forearm fractures. It can be concluded that QUS variables, particularly BUA, and FRAX® major osteoporotic fracture probability without BMD are good candidates for the identification of both hip and distal forearm fractures.
Mendoza, Erick S; Lopez, Amy A; Valdez, Valerie Ann U; Mercado-Asis, Leilani B
2016-09-01
Osteoporosis in men is markedly underdiagnosed and undertreated despite higher morbidity and mortality associated with fractures. This study aimed to characterize adult Filipino men with osteopenia, osteoporosis and prevalent fractures. A cross-sectional study of 184 Filipino men ≥50 years screened for bone mineral density was performed. Age, weight, body mass index (BMI), Osteoporosis Self-Assessment Tool for Asians (OSTA) score, smoking status, family history of fracture, diabetes mellitus, physical inactivity, and T-score were considered. Of the 184 patients, 40.2% and 29.9% have osteopenia and osteoporosis. Sixteen (21.6%) and 18 (32.1%) osteopenic and osteoporotic men have fragility hip, spine, or forearm fractures. Men aged 50 to 69 years have the same risk of osteoporosis and fractures as those ≥70 years. While hip fractures are higher in osteoporotic men, vertebral fractures are increased in both osteopenic and osteoporotic men. Mere osteopenia predicts the presence of prevalent fractures. A high risk OSTA score can predict fracture. A BMI <21 kg/m² (P<0.05) and current smoking are associated with osteoporosis. A significant fraction of Filipino men with osteopenia and osteoporosis have prevalent fractures. Our data suggest that fractures occur in men <70 years even before osteoporosis sets in. Low BMI, high OSTA score, and smoking are significant risk factors of osteoporosis.
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa
2015-01-01
The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.
An extravehicular suit impact load attenuation study to improve astronaut bone fracture prediction.
Sulkowski, Christina M; Gilkey, Kelly M; Lewandowski, Beth E; Samorezov, Sergey; Myers, Jerry G
2011-04-01
Understanding the contributions to the risk of bone fracture during spaceflight is essential for mission success. A pressurized extravehicular activity (EVA) suit analogue test bed was developed, impact load attenuation data were obtained, and the load at the hip of an astronaut who falls to the side during an EVA was characterized. Offset (representing the gap between the EVA suit and the astronaut's body), impact load magnitude, and EVA suit operating pressure were factors varied in the study. The attenuation data were incorporated into a probabilistic model of bone fracture risk during spaceflight, replacing the previous load attenuation value that was based on commercial hip protector data. Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offset values. Load attenuation factors for offsets between 0.1-1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22, and 0.35 +/- 0.18 for mean impact forces of 4827, 6400, and 8467 N, respectively. Load attenuation factors for offsets of 2.8-5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1, and 0.84 +/- 0.5 for the same mean impact forces. The mean and 95th percentile bone fracture risk index predictions were each reduced by 65-83%. The mean and 95th percentile bone fracture probability predictions were both reduced approximately 20-50%. The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and in-flight operational decisions.
Loesaus, Julia; Wobbe, Isabel; Stahlberg, Erik; Barkhausen, Joerg; Goltz, Jan Peter
2017-09-28
To evaluate the reliability of pronator quadratus fat pad sign to detect distal radius fracture and to predict its severity. Retrospectively we identified 89 consecutive patients (41 female, mean age 49 ± 18 years) who had X-ray (CR) and computed tomography (CT) within 24 h following distal forearm trauma. Thickness of pronator quadratus fat pad complex (PQC) was measured using lateral views (CR) and sagittal reconstructions (CT). Pearson's test was used to determine the correlation of the PQC thickness in CR and CT. A positive pronator quadratus sign (PQS) was defined as a PQC > 8.0 mm (female) or > 9.0 mm (male). Frykman classification was utilized to assess the severity of fractures. Forty-four/89 patients (49%) had a distal radius fracture (Frykman I n = 3, II n = 0, III n = 10, IV n = 5, V n = 2, VI n = 2, VII n = 9, VIII n = 13). Mean thickness of the PQC thickness can reliably be measured on X-ray views and was 7.5 ± 2.8 mm in lateral views (CR), respectively 9.4 ± 3.0 mm in sagittal reconstructions (CT), resulting in a significant correlation coefficient of 0.795. A positive PQS at CR was present in 21/44 patients (48%) with distal radius fracture and in 2/45 patients (4%) without distal radius fracture, resulting in a specificity of 96% and a sensitivity of 48% for the detection of distal radius fractures. There was no correlation between thickness of the PQC and severity of distal radius fractures. A positive PQS shows high specificity but low sensitivity for detection of distal radius fractures. The PQC thickness cannot predict the severity of distal radius fractures.
NASA Astrophysics Data System (ADS)
Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.
2017-10-01
Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.
Schwalbe, H J; Bamfaste, G; Franke, R P
1999-01-01
Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.
Integrated NDE and FEM characterization of composite rotors
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2001-08-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
An Integrated NDE and FEM Characterization of Composite Rotors
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2000-01-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
Structural Analysis of Composite Flywheels: an Integrated NDE and FEM Approach
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George; Trudell, Jeffrey
2001-01-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake-like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48,000 rpm for rotor A and 34,000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du
2014-03-01
Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.
Shih, Kao-Shang; Truong, Thanh An; Hsu, Ching-Chi; Hou, Sheng-Mou
2017-11-02
Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.
Simulation of seismic events induced by CO2 injection at In Salah, Algeria
NASA Astrophysics Data System (ADS)
Verdon, James P.; Stork, Anna L.; Bissell, Rob C.; Bond, Clare E.; Werner, Maximilian J.
2015-09-01
Carbon capture and storage technology has the potential to reduce anthropogenic CO2 emissions. However, the geomechanical response of the reservoir and sealing caprocks must be modelled and monitored to ensure that injected CO2 is safely stored. To ensure confidence in model results, there is a clear need to develop ways of comparing model predictions with observations from the field. In this paper we develop an approach to simulate microseismic activity induced by injection, which allows us to compare geomechanical model predictions with observed microseismic activity. We apply this method to the In Salah CCS project, Algeria. A geomechanical reconstruction is used to simulate the locations, orientations and sizes of pre-existing fractures in the In Salah reservoir. The initial stress conditions, in combination with a history matched reservoir flow model, are used to determine when and where these fractures exceed Mohr-Coulomb limits, triggering failure. The sizes and orientations of fractures, and the stress conditions thereon, are used to determine the resulting micro-earthquake focal mechanisms and magnitudes. We compare our simulated event population with observations made at In Salah, finding good agreement between model and observations in terms of event locations, rates of seismicity, and event magnitudes.
NASA Astrophysics Data System (ADS)
Takahashi, Kyouhei; Ogawa, Takeshi
Ultrasonic fatigue tests have been performed in austenitic stainless steel, SUS316NG, in order to investigate giga-cycle fatigue strength of pre-strained materials, i.e. 5, 10 and 20% tensile pre-strains and -20% compressive pre-strain. The pre-strains were applied before specimen machining. The austenitic stainless steels are known to exhibit remarkable self-heating during the fatigue experiment. Therefore, heat radiation method was established by setting fatigue specimens in a low temperature chamber at about -100°C. The self-heating was controlled by intermittent loading condition, which enabled us to maintain the test section of the specimens at about room temperature. The results revealed that the fatigue strength increased with increasing pre-strain levels. Fish-eye fracture was observed for -20% pre-strained specimen fractured at 4.11×107 cycles, while the other specimens exhibited ordinary fatigue fracture surface originated from stage I facet on the specimen surface. The increase in fatigue limit was predicted by Vickers hardness, HV, which depended on the size of indented region. The prediction was successful using HV values obtained by the size of the indented region similar to those of the stage I facets.
Numerical Analysis of AHSS Fracture in a Stretch-bending Test
NASA Astrophysics Data System (ADS)
Luo, Meng; Chen, Xiaoming; Shi, Ming F.; Shih, Hua-Chu
2010-06-01
Advanced High Strength Steels (AHSS) are increasingly used in the automotive industry due to their superior strength and substantial weight reduction advantage. However, their limited ductility gives rise to numerous manufacturing issues. One of them is the so-called `shear fracture' often observed on tight radii during stamping processes. Since traditional approaches, such as the Forming Limit Diagram (FLD), are unable to predict this type of fracture, efforts have been made to develop failure criteria that can predict shear fractures. In this paper, a recently developed Modified Mohr-Coulomb (MMC) ductile fracture criterion[1] is adopted to analyze the failure behavior of a Dual Phase (DP) steel sheet during stretch bending operations. The plasticity and ductile fracture of the present sheet are fully characterized by the Hill'48 orthotropic model and the MMC fracture model respectively. Finite Element models with three different element types (3D, shell and plane strain) were built for a Stretch Forming Simulator (SFS) test and numerical simulations with four different R/t ratios (die radius normalized by sheet thickness) were performed. It has been shown that the 3D and shell element models can accurately predict the failure location/mode, the upper die load-displacement responses as well as the wall stress and wrap angle at the onset of fracture for all R/t ratios. Furthermore, a series of parametric studies were conducted on the 3D element model, and the effects of tension level (clamping distance) and tooling friction on the failure modes/locations were investigated.
Boris, Kessel; Forat, Swaid; Itamar, Ashkenazi; Oded, Olsha; Kobi, Peleg; Adi, Givon; Igor, Jeroukhimov; Ricardo, Alfici
2014-05-01
Association between rib fractures and incidence of abdominal solid organs injury is well described. However, the correlation between the number of fractured ribs and severity of splenic injury is not clear. The purpose of this study was to assess whether an increasing number of rib fractures predicts the severity of splenic injury in blunt trauma patients. A retrospective cohort study involving blunt trauma patients with concomitant splenic injuries and rib fractures, between the years 1998 and 2012, registered in the Israeli National Trauma Registry. Of 321,618 patients with blunt mechanism of trauma, 57,130 had torso injuries, and of these 14,651 patients sustained rib fractures, and 3691 patients suffered from splenic injury. Concomitant splenic injury occurred in 1326 of the patients with rib fractures (9.1%), as compared to 2365 patients sustaining splenic injury without rib fractures (5.6%). The incidence of splenic injury among patients sustaining 5 or more rib fractures was significantly higher compared to patients suffering from 1 to 4 rib fractures. Among patients with splenic injury, the tendency to sustain associated rib fractures increased steadily with age. Patients with concomitant rib fractures had higher Injury Severity Score (ISS), but similar mortality rates, compared to patients with splenic injury without rib fractures. Among patients with concomitant rib fractures and splenic injury, there was no relation between the number of fractured ribs and the severity of splenic injury, neither as a whole group, nor after stratification according to the mechanism of injury. Although the presence of rib fractures increases the probability of splenic injury in blunt torso trauma, there is no relation between the number of fractured ribs and splenic injury severity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Turbine Engine Hot Section Technology 1986
NASA Technical Reports Server (NTRS)
1986-01-01
The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.
The prognostic value of the hawkins sign and diagnostic value of MRI after talar neck fractures.
Chen, Hao; Liu, Wenzhou; Deng, Lianfu; Song, Weidong
2014-12-01
The early diagnosis of avascular necrosis of the talus (AVN) and prediction of ankle function for talar fractures are important. The Hawkins sign, as a radiographic predictor, could exclude the possibility of developing ischemic bone necrosis after talar neck fractures, but its relationship with ankle function remains unclear. The purpose of this study was to illustrate the prognostic effect of the Hawkins sign on ankle function after talar neck fractures and to study the value of early MRI in detecting the AVN changes after talus fractures. Cases of talar neck fractures between November 2008 and November 2013 were evaluated. The occurrences of the Hawkins sign and AVN were studied. X-ray imaging was performed at multiple time points from the 4th to the 12th week after the fractures, and MRI examinations were used in the Hawkins sign negative group, with the time span ranging from 1.5 to 12 months. AOFAS scores of the Hawkins sign positive and negative groups were compared during the follow-up. Forty-four cases (48 feet) were evaluated. The occurrence of positive Hawkins sign was 50%, 30%, and 33.3%, the incidence of AVN was 0%, 10%, and 50%, respectively, in type I, type II, and type III and IV talus fractures, respectively. The AOFAS scores showed no statistically significant difference between Hawkins sign positive group and negative group in type I and II fractures. The Hawkins sign positive group had better AOFAS scores than the negative group in type III and IV fractures. However, there was no statistically significant difference between Hawkins sign positive and negative groups when AVN cases were excluded in type III and IV fractures. The Hawkins sign was a reliable predictor excluding the possibility of AVN. It did not have predictive value on the ankle function in low-energy fractures and may predict better ankle function in high-energy fractures. MRI can diagnose AVN during an earlier period, and we believe Hawkins sign negative patients should undergo MRI examinations 12 weeks after the fractures, especially in high-energy traumatic cases. Level III, comparative case series. © The Author(s) 2014.
Hovey, Kathleen M.; Andrews, Christopher A.; Cauley, Jane A.; Manson, JoAnn E.; Wactawski-Wende, Jean; Wright, Nicole C.; Li, Wenjun; Beavers, Kristen; Curtis, Jeffrey R.; LeBoff, Meryl S.
2015-01-01
Context: Wrist fractures are common among postmenopausal women. Associations of bone mineral density (BMD) and 10-year predicted risk of major osteoporotic fracture (MOF) with wrist fractures are poorly characterized. Objective: The objective was to examine associations between the Fracture Risk Assessment Tool (FRAX)-predicted risk of MOF, BMD, BMD change, and wrist fracture. Design: This was a prospective observational study with a mean follow-up of 8.5 years. Setting: This study included 40 US centers. Participants: A total of 11 392 participants from the Women's Health Initiative BMD Cohort aged 50–79 years at baseline were included in this study. Interventions: None. Main Outcome: The goal was to measure incident wrist fracture. Results: A FRAX-predicted MOF risk ≥9.3% identified 17% of the women aged <65 years who subsequently experienced wrist fracture. Each one standard deviation lower BMD was associated with higher wrist fracture risk, with adjusted hazard ratio (95% confidence interval) of 1.66 (1.42–1.93) for femoral neck (FN) BMD and 1.45 (1.28–1.64) for lumbar spine BMD. Compared with FN BMD T score ≥ −1.0, wrist fracture adjusted hazard ratios (95% confidence interval) were: 1.51 (1.06–2.16) for a T score between −1.01 and −1.49; 1.93 (1.36–2.72) for T score between −1.50 and −1.99; 2.52 (1.77–3.60) for a T score between −2.00 and −2.49; and 2.65 (1.78–3.95) for a T score ≤ −2.5. Decrease in FN BMD between baseline and year 3 was associated with increased risk of subsequent wrist fracture; however, change in lumbar spine BMD was not. Conclusions: Lumbar spine and femoral neck BMDs were associated with incident wrist fracture, but the FRAX threshold recommended to identify screening candidates did not identify the majority of women who subsequently experienced wrist fracture. Improved understanding of determinants of wrist fractures is warranted. PMID:26367200
Deep convolutional networks for automated detection of posterior-element fractures on spine CT
NASA Astrophysics Data System (ADS)
Roth, Holger R.; Wang, Yinong; Yao, Jianhua; Lu, Le; Burns, Joseph E.; Summers, Ronald M.
2016-03-01
Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of `positive', i.e. fractured posterior-elements and `negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.
Cerebral fat embolism: pulmonary contusion is a more important etiology than long bone fractures.
Aydin, M D; Akçay, F; Aydin, N; Gündogdu, C
2005-01-01
Lipid embolism is a serious and life-threatening problem and usually arises as a complication of severe trauma associated with long bone or pelvic fractures. It is generally thought that fat droplets enter the circulation at the site of fracture. In the systemic circulation, they become emboli to brain, kidney and other areas. Lipids are absorbed from the intestinal tract and transported into pulmonary tissue via thoracic duct and exposed to first catabolic procedures in the lungs. We have predicted that systemic lipid embolism may not occur unless bone fractures lead to pulmonary injury. This study was planned to investigate this hypothesis with respect to the role of pulmonary contusion and long bone fractures in the formation of cerebral fat embolism. Twenty male hybrid rabbits were included in this study. Pulmonary contusion was performed on half of the rabbits (n = 10) and femur fracture was applied to the remaining ones (n = 10). Ten days after procedure, all rabbits were sacrificed. Brain specimens were taken by frozen-section method and stained with Sudan black. Intraarteriolar lipid particles in the brain were examined microscopically. Cerebral fat embolism was detected in seven animals exposed to pulmonary contusion and only in one animal exposed to femur fracture. The mean number of branches of middle cerebral artery at midparietal level occluded with fat particles were higher in the pulmonary contusion group than in the long bone fracture group. In conclusion, we found that pulmonary contusion had more deleterious effects than long bone fracture in the formation of cerebral fat embolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, A. E.; Srinivasan, S.; Karra, S.
Understanding physical processes that control the long-term production of hydrocarbon from shale formations is important for both predicting the yield and increasing it. In this work, we explore the processes that could control the tail of the production curve by using a discrete fracture network method to calculate the total travel time from the rock matrix to small-scale fractures to the primary hydraulic fracture network. The factors investigated include matrix diffusion, extent of the small-scale fracture zone (or tributary fracture zone/TFZ) consisting of natural, reactivated and induced fractures, and the percentage of free hydrocarbon in the primary fracture network. Individualmore » and combined parameter spaces are explored for each of these to understand the limits of these parameters as well as any systematic correlations between pairs of parameters. Although recent studies have shown that the matrix diffusion in virgin shale influences the production tail only after nearly 20 years, we demonstrate that matrix diffusion in the region of the TFZ significantly impacts production within the first year itself. Additionally, we found that the depth of TFZ fracturing region had no effect on the shape of the production curves although the total mass of the hydrocarbon produced increases with the depth. We also show that one can fit the production data using a site-specific set of parameters representing the diffusion in the TFZ, depth of the TFZ and the free hydrocarbon in the large-scale fractures.« less
Lovell, A. E.; Srinivasan, S.; Karra, S.; ...
2018-04-24
Understanding physical processes that control the long-term production of hydrocarbon from shale formations is important for both predicting the yield and increasing it. In this work, we explore the processes that could control the tail of the production curve by using a discrete fracture network method to calculate the total travel time from the rock matrix to small-scale fractures to the primary hydraulic fracture network. The factors investigated include matrix diffusion, extent of the small-scale fracture zone (or tributary fracture zone/TFZ) consisting of natural, reactivated and induced fractures, and the percentage of free hydrocarbon in the primary fracture network. Individualmore » and combined parameter spaces are explored for each of these to understand the limits of these parameters as well as any systematic correlations between pairs of parameters. Although recent studies have shown that the matrix diffusion in virgin shale influences the production tail only after nearly 20 years, we demonstrate that matrix diffusion in the region of the TFZ significantly impacts production within the first year itself. Additionally, we found that the depth of TFZ fracturing region had no effect on the shape of the production curves although the total mass of the hydrocarbon produced increases with the depth. We also show that one can fit the production data using a site-specific set of parameters representing the diffusion in the TFZ, depth of the TFZ and the free hydrocarbon in the large-scale fractures.« less
Factors associated with infection following open distal radius fractures.
Glueck, Dane A; Charoglu, Constantine P; Lawton, Jeffrey N
2009-09-01
Open fractures are often classified according to a system described by Gustilo and Anderson. However, this system was applied to open long bone fractures, which may not predict the incidence of infection in open metaphyseal fractures of the upper extremity. Other studies have found that wound contamination and systemic illness were the best predictors of infections in open hand fractures. Our study assessed infection in open distal radius fractures and identifies factors that are associated with these infections. We hypothesize that contamination, rather than absolute wound size, is the best predictor of infection associated with open distal radius fractures. A review by CPT code yielded 42 patients with open distal radius fractures between 1997 and 2002 treated at a level one trauma center. Medical records and radiographic follow-up were reviewed to assess the time to irrigation and debridement, the number of debridements in initial treatment period, the method of operative stabilization, the Gustilo and Anderson type of fracture, the Swanson type of fracture, and description of wound contamination. Forty-two patients were followed up for an average of 15 months (range 4 to 68 months). Twenty-four fractures were classified as Gustilo and Anderson type I, ten were type II, and eight were type III, 30 were Swanson type I, and 12 were Swanson type II. Five of the 42 fractures were considered contaminated. Two were exposed to fecal contamination. The others were contaminated with tar, dirt/grass, and gravel, respectively. Three of 42 (7%) fractures developed infections. All three infected cases received a single irrigation and debridement. Two of five contaminated fractures (40%) developed a polymicrobial infection. Both were exposed to fecal contamination and, therefore, considered Swanson type II fractures. They were classified as Gustilo and Anderson type II and IIIB based solely upon the size of the wound. Both required multiple debridements and eventually wrist fusions. The third infection occurred in a Gustilo and Anderson type II and Swanson type I open fracture treated with one debridement and plate fixation. Hardware removal, debridement, and antibiotics resolved the infection. Three contaminated fractures that healed uneventfully received two debridements. Statistical analysis revealed a correlation with infection and contamination (p = 0.0331). The number of initial debridements played a role in infection, but was not statistically significant. No relationship between infection and time to initial irrigation and debridement, method of fixation, Gustilo and Anderson type, or Swanson type was found. We propose that open distal radius fractures behave differently than open long bone fractures. Infection developed in 7% of the distal radius fractures in our study and was significantly associated with wound contamination. We recommend that contamination be included as factor for prognosis in open distal radius fractures. Contaminated fractures should be treated with multiple debridements as part of the initial plan not based upon subsequent development of an infection.
Gajdoš, R; Pilný, J; Pokorná, A
2016-01-01
PURPOSE OF THE STUDY Injury to the scapholunate ligament is frequently associated with a fracture of the distal radius. At present neither a unified concept of treatment nor a standard method of diagnosis in these concomitant injuries is available. The aim of the study was to evaluate a group of surgically treated patients with distal radius fractures in order to assess a contribution of combined conventional X-ray and intra-operative fluoroscopic examinations to the diagnosis of associated lesions and to compare short-term functional outcomes of sugically treated patients with those of patients treated conservatively. MATERIAL AND METHODS A group of patients undergoiong surgery for distal radius fractures using plate osteosynthesis was evaluated retrospectively. The peri-operative diagnosis of associated injury to the scapholunate ligament was based on pre-operative standard X-ray views and intra-operative fluoroscopy. The latter consisted of images of maximum radial and ulnar deviation as well as an image of the forearm in traction exerted manually along the long axis. All views were in postero-anterior projection. Results were read directly on the monitor of a fluoroscopic device after its calibration or were obtained by comparing the thickness of an attached Kirschner wire with the distance to be measured. Subsequently, pixels were converted to millimetres. When a scapholunate ligament injury was found and confirmed by examination of the contralateral wrist, the finding was verified by open reduction or arthroscopy. Both static and dynamic instabilities were treated together with the distal radius fracture at one-stage surgery. After surgery, the patients without ligament injury had the wrist immobilised for 4 weeks, then rehabilitation followed. In the patients with a damaged ligament, immobilisation in a short brace lasted until transarticular wires were removed. All patients were followed up for a year at least. At follow-up, the injured wrist was examined for signs of clinical instability of the scapholunate joint, functional outcome was assessed using the Mayo Wrist Score (MWS) and pain intensity was evaluated on the Visual Analoque Scale (VAS). Restriction in daily activities was rated by the Quick Disabilities of the Arm, Shoulder and Hand (QDASH) score and plain X-ray was done. If any of the results was not satisfactory, MRI examination was indicated. RESULTS Of a total of 265 patients, 35 had injury to the scapholunate joint, 16 had static instability diagnosed by a standard fluoroscopic examination and nine patients with an acute phase of injury remained undiagnosed. For detection of associated scapholunate injuries, a standard X-ray examination had sensitivity of 46%, specificity of 99%, accuracy of 92%, positive predictive value of 84%, negative predictive value of 92%, positive likelihood ratio = 35.05 and negative likelihood ratio = 0.55. Dynamic fluoroscopic examination showed sensitivity of 53%, specificity of 99%, accuracy of 95%, positive predictive value of 77%, negative predictive value of 96%, positive likelihood ratio = 36.49 and negative likelihood ratio = 0.48. Using the MWS system, no differences in the outcome of scapholunate instability treatment were found between the patients undergoing surgery and those treated conservatively (p=0.35). Statistically significant differences were detected in the evaluation of subjective parameters - both VAS and QDASH scores were better in the treated than non-treated patients (p=0.02 and p=0.04, respectively). DISCUSSION The high negative predictive values of both standard X-ray and intra-operative fluoroscopy showed that combined use of the two method is more relevant for excluding than for confirming an injury to the scapholunate ligament concomitant with distal radius fracture. Similarly, the low negative likelihood ratio showed that a negative result decreases the pre-test probability of concomitant injury. CONCLUSIONS Negative findings of scapholunate ligament injury on standard X-ray views and intra-operative fluoroscopic images make it unnecessary to perform any further intra-operative examination to detect injury to the scapholunate ligament. Positive findings require verification of the degree of injury by another intra-operative modality, most ideally by arthroscopy. Patients with untreated instability associated with distal radius fracture have, at short-term follow-up, no statistically significant differences in functioning of the injured extremity in comparison with treated patients. Subjectively, however, they feel more pain and more restriction in performing daily activities. Therefore, the treatment of an injured scapholunate ligament together with distal radius fracture at one-stage surgery seems to be a good alternative for the patient. Key words: distal radius fractures, scapholunate ligament, radiographic, diagnosis, outcome distal radius fracture.
Modelling explicit fracture of nuclear fuel pellets using peridynamics
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2015-12-01
Three dimensional models of explicit cracking of nuclear fuel pellets for a variety of power ratings have been explored with peridynamics, a non-local, mesh free, fracture mechanics method. These models were implemented in the explicitly integrated molecular dynamics code LAMMPS, which was modified to include thermal strains in solid bodies. The models of fuel fracture, during initial power transients, are shown to correlate with the mean number of cracks observed on the inner and outer edges of the pellet, by experimental post irradiation examination of fuel, for power ratings of 10 and 15 W g-1 UO2. The models of the pellet show the ability to predict expected features such as the mid-height pellet crack, the correct number of radial cracks and initiation and coalescence of radial cracks. This work presents a modelling alternative to empirical fracture data found in many fuel performance codes and requires just one parameter of fracture strain. Weibull distributions of crack numbers were fitted to both numerical and experimental data using maximum likelihood estimation so that statistical comparison could be made. The findings show P-values of less than 0.5% suggesting an excellent agreement between model and experimental distributions.
Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids
NASA Astrophysics Data System (ADS)
Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja
2016-05-01
The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.
Gebauer, Matthias; Stark, Olaf; Vettorazzi, Eik; Grifka, Joachim; Püschel, Klaus; Amling, Michael; Beckmann, Johannes
2014-01-01
The validity of dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) measurements as predictors of pertrochanteric and femoral neck fracture loads was compared in an experimental simulation of a fall on the greater trochanter. 65 proximal femora were harvested from patients at autopsy. All specimens were scanned with use of DXA for areal bone mineral density and pQCT for volumetric densities at selected sites of the proximal femur. A three-point bending test simulating a side-impact was performed to determine fracture load and resulted in 16 femoral neck and 49 pertrochanteric fractures. Regression analysis revealed that DXA BMD trochanter was the best variable at predicting fracture load of pertrochanteric fractures with an adjusted R(2) of 0.824 (p < 0.0001). There was no correlation between densitometric parameters and the fracture load of femoral neck fractures. A significant correlation further was found between body weight, height, femoral head diameter, and neck length on the one side and fracture load on the other side, irrespective of the fracture type. Clinically, the DXA BMD trochanter should be favored and integrated routinely as well as biometric and geometric parameters, particularly in elderly people with known osteoporosis at risk for falls. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Hyun, Yoon; Byun, Thak Sang; Strizak, Joe P
2011-01-01
The mechanical properties of NBG-18 nuclear grade graphite have been characterized using small specimen test techniques and statistical treatment on the test results. New fracture strength and toughness test techniques were developed to use subsize cylindrical specimens with glued heads and to reuse their broken halves. Three sets of subsize cylindrical specimens with the different diameters of 4 mm, 8 mm, and 12 mm were tested to obtain tensile fracture strength. The longer piece of the broken halves was cracked from side surfaces and tested under three-point bend loading to obtain fracture toughness. Both the strength and fracture toughness datamore » were analyzed using Weibull distribution models focusing on size effect. The mean fracture strength decreased from 22.9 MPa to 21.5 MPa as the diameter increased from 4 mm to 12 mm, and the mean strength of 15.9 mm diameter standard specimen, 20.9 MPa, was on the extended trend line. These fracture strength data indicate that in the given diameter range the size effect is not significant and much smaller than that predicted by the Weibull statistics-based model. Further, no noticeable size effect existed in the fracture toughness data, whose mean values were in a narrow range of 1.21 1.26 MPa. The Weibull moduli measured for fracture strength and fracture toughness datasets were around 10. It is therefore believed that the small or negligible size effect enables to use the subsize specimens and that the new fracture toughness test method to reuse the broken specimens to help minimize irradiation space and radioactive waste.« less
Fracture Risk and Areal Bone Mineral Density in Adolescent Females with Anorexia Nervosa
Faje, Alexander T.; Fazeli, Pouneh K.; Miller, Karen K.; Katzman, Debra K.; Ebrahimi, Seda; Lee, Hang; Mendes, Nara; Snelgrove, Deirdre; Meenaghan, Erinne; Misra, Madhusmita; Klibanski, Anne
2014-01-01
Objective To (i) compare fracture prevalence in adolescent females with anorexia nervosa (AN) vs. normal-weight controls and (ii) examine whether reductions in areal bone mineral density (aBMD) predict fracture risk in females with AN. Methods 418 females (310 with active AN and 108 normal-weight controls) 12–22 years old were studied cross-sectionally. Lifetime fracture history was recorded by a physician during participant interviews. Body composition and aBMD measurements of the whole body, whole body less head, lumbar spine, and hip were assessed by dual-energy x-ray absorptiometry (DXA), and bone mineral apparent density (BMAD) was calculated for the lumbar spine. Results Participants with AN and normal-weight controls did not differ for chronological age, sexual maturity, or height. The lifetime prevalence of prior fracture was 59.8% higher in those with AN compared to controls (31.0 % versus 19.4 %, p = 0.02), and the fracture incidence rate peaked in our cohort after the diagnosis of AN. Lower aBMD and lumbar BMAD were not associated with a higher prevalence of fracture in the AN or control group on univariate or multivariate analyses. Compared to controls, fracture prevalence was significantly higher in the subgroup of girls with AN who had normal aBMD or only modest reductions of aBMD (Z-scores > −1 or −1.5). Discussion This is the first study to show that the risk of fracture during childhood and adolescence is significantly higher in patients with AN than in normal-weight controls. Fracture prevalence is increased in this cohort of subjects with AN even without significant reductions in aBMD. PMID:24430890
Analysis of PITFL injuries in rotationally unstable ankle fractures.
Warner, Stephen J; Garner, Matthew R; Schottel, Patrick C; Hinds, Richard M; Loftus, Michael L; Lorich, Dean G
2015-04-01
Reduction and stabilization of the syndesmosis in unstable ankle fractures is important for ankle mortise congruity and restoration of normal tibiotalar contact forces. Of the syndesmotic ligaments, the posterior inferior tibiofibular ligament (PITFL) provides the most strength for maintaining syndesmotic stability, and previous work has demonstrated the significance of restoring PITFL function when it remains attached to a posterior malleolus fracture fragment. However, little is known regarding the nature of a PITFL injury in the absence of a posterior malleolus fracture. The goal of this study was to describe the PITFL injury pattern based on magnetic resonance imaging (MRI) and intraoperative observation. A prospective database of all operatively treated ankle fractures by a single surgeon was used to identify all supination-external rotation (SER) types III and IV ankle fracture patients with complete preoperative orthogonal ankle radiographs and MRI. All patients with a posterior malleolus fracture were excluded. Using a combination of preoperative imaging and intraoperative findings, we analyzed the nature of injuries to the PITFL. In total, 185 SER III and IV operatively treated ankle fractures with complete imaging were initially identified. Analysis of the preoperative imaging and operative reports revealed 34% (63/185) had a posterior malleolus fracture and were excluded. From the remaining 122 ankle fractures, the PITFL was delaminated from the posterior malleolus in 97% (119/122) of cases. A smaller proportion (3%; 3/122) had an intrasubstance PITFL rupture. Accurate and stable syndesmotic reduction is a significant component of restoring the ankle mortise after unstable ankle fractures. In our large cohort of rotationally unstable ankle fractures without posterior malleolus fractures, we found that most PITFL injuries occur as a delamination off the posterior malleolus. This predictable PITFL injury pattern may be used to guide new methods for stabilizing the syndesmosis in these patients. Level IV, case series. © The Author(s) 2014.
Meteorite fractures and the behavior of meteoroids in the atmosphere
NASA Astrophysics Data System (ADS)
Bryson, K.; Ostrowski, D. R.; Sears, D. W. G.
2015-12-01
Arguably the major difficulty faced to model the atmospheric behavior of objects entering the atmosphere is that we know very little about the internal structure of these objects and their methods of fragmentation during fall. In a study of over a thousand meteorite fragments (mostly hand-sized, some 40 or 50 cm across) in the collections of the Natural History Museums in Vienna and London, we identified six kinds of fracturing behavior. (1) Chondrites usually showed random fractures with no particular sensitivity to meteorite texture. (2) Coarse irons fractured along kamacite grain boundaries, while (3) fine irons fragmented randomly, c.f. chondrites. (4) Fine irons with large crystal boundaries (e.g. Arispe) fragmented along the crystal boundaries. (5) A few chondrites, three in the present study, have a distinct and strong network of fractures making a brickwork or chicken-wire structure. The Chelyabinsk meteorite has the chicken-wire structure of fractures, which explains the very large number of centimeter-sized fragments that showered the Earth. Finally, (6) previous work on Sutter's Mill showed that water-rich meteorites fracture around clasts. To scale the meteorite fractures to the fragmentation behavior of near-Earth asteroids, it has been suggested that the fracturing behavior follows a statistical prediction made in the 1930s, the Weibull distribution, where fractures are assumed to be randomly distributed through the target and the likelihood of encountering a fracture increases with distance. This results in a relationship: σl = σs(ns/nl)α, where σs and σl refers to stress in the small and large object and ns and nl refer to the number of cracks per unit volume of the small and large object. The value for α, the Weibull coefficient, is unclear. Ames meteorite laboratory is working to measure the density and length of fractures observed in these six types of fracture to determine values for the Weibull coefficient for each type of object.
Osteoporosis: the emperor has no clothes
Järvinen, T L N; Michaëlsson, K; Aspenberg, P; Sievänen, H
2015-01-01
Current prevention strategies for low-trauma fractures amongst older persons depend on the notions that fractures are mainly caused by osteoporosis (pathophysiology), that patients at high risk can be identified (screening) and that the risk is amenable to bone-targeted pharmacotherapy (treatment). However, all these three notions can be disputed. Pathophysiology Most fracture patients have fallen, but actually do not have osteoporosis. A high likelihood of falling, in turn, is attributable to an ageing-related decline in physical functioning and general frailty. Screening Currently available fracture risk prediction strategies including bone densitometry and multifactorial prediction tools are unable to identify a large proportion of patients who will sustain a fracture, whereas many of those with a high fracture risk score will not sustain a fracture. Treatment The evidence for the viability of bone-targeted pharmacotherapy in preventing hip fracture and other clinical fragility fractures is mainly limited to women aged 65–80 years with osteoporosis, whereas the proof of hip fracture-preventing efficacy in women over 80 years of age and in men at all ages is meagre or absent. Further, the antihip fracture efficacy shown in clinical trials is absent in real-life studies. Many drugs for the treatment of osteoporosis have also been associated with increased risks of serious adverse events. There are also considerable uncertainties related to the efficacy of drug therapy in preventing clinical vertebral fractures, whereas the efficacy for preventing other fractures (relative risk reductions of 20–25%) remains moderate, particularly in terms of the low absolute risk reduction in fractures with this treatment. PMID:25809279
Variable life-adjusted display (VLAD) for hip fracture patients: a prospective trial.
Williams, H; Gwyn, R; Smith, A; Dramis, A; Lewis, J
2015-08-01
With restructuring within the NHS, there is increased public and media interest in surgical outcomes. The Nottingham Hip Fracture Score (NHFS) is a well-validated tool in predicting 30-day mortality in hip fractures. VLAD provides a visual plot in real time of the difference between the cumulative expected mortality and the actual death occurring. Survivors are incorporated as a positive value equal to 1 minus the probability of survival and deaths as a negative value equal to the probability of survival. Downward deflections indicate mortality and potentially suboptimal care. We prospectively included every hip fracture admitted to UHW that underwent surgery from January-August 2014. NHFS was then calculated and predicted survival identified. A VLAD plot was then produced comparing the predicted with the actual 30-day mortality. Two hundred and seventy-seven patients have completed the 30-day follow-up, and initial results showed that the actual 30-day mortality (7.2 %) was much lower than that predicted by the NHFS (8.0 %). This was reflected by a positive trend on the VLAD plot. Variable life-adjusted display provides an easy-to-use graphical representation of risk-adjusted survival over time and can act as an "early warning" system to identify trends in mortality for hip fractures.
NASA Astrophysics Data System (ADS)
Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.
2016-12-01
It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated geomechanical and reservoir simulation capability for an accurate prediction and assessment of hydrocarbon production and hydraulic fracturing performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Fracturing and brittleness index analyses of shales
NASA Astrophysics Data System (ADS)
Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje
2016-04-01
The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable candidate for hydraulic fracturing while if we would rely on stress-strain data (BI2) the Whitby mudstone would be a very good candidate. We are aiming to perform these kind of measurements on a wide variety of shales with varying compositions and origins etc. and compare all results and come up with a better brittleness index, as well as link the brittleness indices to the fracturing behaviour seen in the samples. References: Holt, R., Fjaer, E., Nes, O. & Alassi, H., 2011. A shaly look at brittleness. 45th U.S. Rock Mechanics / Geomechanics Symposium, ARMA-11-366 Jarvie, D., Hill, J., Ruble, T. & Pollastro, R., 2007. Unconventional shale-gas system: The Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment. AAPG, 91(doi: 10.1306/12190606068), pp. 475-499. Jin, X., Shah, S. N., Rogiers, J.-C. & Zhang, B., 2014. Fraccability Evaluation in Shale Reservoirs - An Integrated Petrophysics and Geomechanics Approach. Woodlands, Texas, SPE.
Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1977-01-01
A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.
Intrinsic Nano-Ductility of Glasses: The Critical Role of Composition
NASA Astrophysics Data System (ADS)
Wang, Bu; Yu, Yingtian; Lee, Young; Bauchy, Mathieu
2015-02-01
Understanding, predicting and eventually improving the resistance to fracture for silicate materials is of primary importance to design tougher new glasses suitable for advanced applications. However, the fracture mechanism at the atomic level in amorphous silicate materials is still a topic of debate. In particular, there are some controversies about the existence of ductility at the nanoscale during crack propagation. Here, we present simulations of fracture of three archetypical silicate glasses, using molecular dynamics. The simulations clearly show that, depending on their composition, silicate glasses can exhibit different degrees of ductility at the nanoscale. Additionally, we show that the methodology used in the present work can provide realistic predictions of fracture energy and toughness.
Insights into the epidemiology of postmenopausal osteoporosis: the Women's Health Initiative.
Jackson, Rebecca D; Mysiw, W Jerry
2014-11-01
Osteoporosis and its associated increased risk for fragility fracture is one of the most disabling consequences of aging in women. To successfully reduce the public health burden of this pervasive disease, it is necessary to develop strategies that permit the earlier identification of women at risk for fracture and ensure that preventive interventions to reduce the risk for fracture are both safe and effective. The Women's Health Initiative offers the unprecedented opportunity to systematically address both of these issues. Eleven clinically available risk factors (age, race/ethnicity, self-reported health, weight, height, physical activity, parental hip fracture, fracture history after age 54, current smoking, corticosteroid use, and history of treated diabetes), have been identified to predict 5-year hip fracture risk in white women. Two of these factors (age and fracture history) also predict risk for total fractures in women irrespective of race-ethnicity. Biomarkers including low vitamin D or bioavailable testosterone and/or high cystatin C, pro-inflammatory cytokines, osteoprotegerin and sex hormone-binding globulin also predict risk for hip fracture independent of clinical risk factors. Two cornerstones of therapy for postmenopausal osteoporosis-postmenopausal hormone therapy and calcium plus vitamin D supplementation- were rigorously studied. Estrogen with or without a progestin was effective at preventing bone loss and reducing risk for hip, clinical vertebral and total fractures but the balance of risks and benefits failed to show an overall benefit of taking estrogen-alone or estrogen plus progestin as a preventive strategy for skeletal health. Calcium plus vitamin D supplementation also demonstrated a small but significant favorable effect on hip bone density but in contrast, the modest effect did not translate into a significant reduction in the risk of fractures in intent-to-treat analyses. Data such as these have helped to lay a foundation for the more effective management of postmenopausal osteoporosis. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Tongue Blade Bite Test Predicts Mandible Fractures
Neiner, John; Free, Rachael; Caldito, Gloria; Moore-Medlin, Tara; Nathan, Cherie-Ann
2015-01-01
The aim of the study is to evaluate the utility of a simple tongue blade bite test in predicting mandible fractures and use this test as an alternative screening tool for further workup. This is a retrospective chart review. An institutional review board approved the retrospective review of patients evaluated by the Department of Otolaryngology at a single institution for facial trauma performed from November 1, 2011, to February 27, 2014. Patients who had a bite test documented were included in the study. CT was performed in all cases and was used as the gold standard to diagnose mandible fractures. Variables analyzed included age, sex, fracture type/location on CT, bite test positivity, and operative intervention. A total of 86 patients met the inclusion criteria and of those 12 were pediatric patients. Majority of the patients were male (80.2%) and adult (86.0%; average age: 34.3 years). Fifty-seven patients had a negative bite test and on CT scans had no mandible fracture. Twenty-three patients had a positive bite test and a CT scan confirmed fracture. The bite test revealed a sensitivity of 88.5% (95% CI: 69.8–97.6%), specificity of 95.0% (95% CI:86.1–99%), positive predictive value [PPV] of 88.5% (95% CI: 69.8–97.6%), and negative predictive value [NPV] of 95.0% (95% CI: 86.1–99.0%). Among pediatric patients, the sensitivity was 100% (95% CI: 29.9–100%), specificity was 88.9% (95% CI: 68.4–100%), PPV was 75.0% (95% CI: 19.4–99.4%), and NPV was 100% (95% CI: 63.1–100%). The tongue blade bite test is a quick inexpensive diagnostic tool for the otolaryngologist with high sensitivity and specificity for predicting mandible fractures. In the pediatric population, where avoidance of unnecessary CT scans is of highest priority, a wider range of data collection should be undertaken to better assess its utility. PMID:27162567
Acoustic method of damage sensing in composite materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Walker, James; Lansing, Matthew
1994-01-01
The use of acoustic emission and acousto-ultrasonics to characterize impact damage in composite structures is being performed on both graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology to include neural net analysis and/or other multivariate techniques will enhance the capability of the technique to identify failure mechanisms during fracture. The acousto-ultrasonics technique will be investigated to determine its ability to predict regions prone to failure prior to the burst tests. The combination of the two methods will allow for simple nondestructive tests to be capable of predicting the performance of a composite structure prior to being placed in service and during service.
Chen, G; Fan, W; Mishra, S; El-Atem, A; Schuetz, M A; Xiao, Y
2012-10-01
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, T.; Detwiler, R. L.
2016-12-01
Long-term subsurface energy production and contaminant storage strategies often rely on induced-mineralization to control the transport of dissolved ions. In low-permeability rocks, precipitation is most likely to occur in fractures that act as leakage pathways for fluids that are in chemical disequilibrium with the formation minerals. These fractures are commonly idealized as parallel-plate channels with uniform surface mineralogy, and as a result, our predictions often suggest that precipitation leads to fast permeability reduction. However, natural fractures contain both heterogeneous mineralogy and three-dimensional surface roughness, and our understanding of how precipitation affects local permeability in these environments is limited. To examine the impacts of local heterogeneity on the feedback between mineral precipitation and permeability, we performed two long-term experiments in transparent analog fractures: (i) uniform-aperture and (ii) variable-aperture. We controlled the initial heterogeneous surface mineralogy in both experiments by seeding the bottom borosilicate fracture surfaces with randomly distributed clusters of CaCO3 crystals. Continuous flow ISCO pumps injected a well-mixed CaCl2-NaHCO3 solution, log(ΩCaCO3) = 1.44, into the fracture at 0.5 ml/min and transmitted-light techniques provided high-resolution (83 x 83 µm), direct measurements of aperture and fluid transport across the fracture. In experiment (i), precipitation decreased local aperture at discrete CaCO3 reaction sites near the fracture inlet, but transport variations across the fracture remained relatively small due to the initial lack of aperture heterogeneity. In contrast, the feedback between precipitation and aperture in experiment (ii) focused flow into large-aperture, preferential flow paths that contained significantly less CaCO3 area than the fracture scale average. Precipitation-induced aperture reduction in (ii) reduced dissolved ion transport into small-aperture regions of the fracture that were abundant with CaCO3 and led to a 72% decrease in measured precipitation rate. These results suggest that incorporating the effects of local heterogeneity may dramatically improve our ability to predict precipitation-induced permeability alterations in fractured rocks.
Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W
2010-11-01
The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Morris, D. H.; Brinson, H. F.
1979-01-01
The paper compares the fracture behavior of a composite material by using the analytical models of Waddoups et al. (1971), Whitney and Nuismer (1974, 1975), and Snyder and Cruse (1975) with experimental results from tests performed on center-notched tensile strips. Laminate configurations of (0 deg)8s, (0 deg/90 deg)4s, (+ and -45 deg)4s, and (0 deg/+ and -45 deg/0 deg)2s from T300/934 graphite/epoxy are tested. These particular configurations are used so that the effect of various degrees of anisotropy can be studied. The procedure adopted uses the results from one test for crack size aspect ratio to predict the results of tests of other aspect ratios. For those methods that use a characteristic dimension, predictions are made by assuming the magnitude of this dimension to be constant. The validity of this assumption for a laminate is assessed by comparing predicted and experimental results. Analytical models using a characteristic dimension are compared to the model developed by Cruse (1973).
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.
2017-12-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari
2017-07-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Second and third NIR optical windows for imaging of bone microfractures
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.
2014-05-01
Microfractures in bone, secondary to repetitive stress, particularly in the lower extremities, are an important problem for military recruits and for athletes. They also may occur in those with brittle bones, such as the elderly, or in patients taking bisphosphonates for osteoporosis. Microfractures can be early predictors of major bone fracture and may be as important as changes in bone density in predicting where and how likely a major fracture will occur. Unlike major bone fractures, microfractures can be difficult to detect by conventional methods. We explored a second NIR spectral window from 1,100 nm to 1,350 nm, and a third spectral window from 1,600 nm to 1,870 nm to image microfractures through tissue media. Due to a reduction in scattering at longer NIR wavelengths, employment of the second and third NIR windows may allow for deeper penetration into tissue and higher contrast images of microfractures underneath the skin.
Fracture Tests of Etched Components Using a Focused Ion Beam Machine
NASA Technical Reports Server (NTRS)
Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)
2000-01-01
Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.
NASA Astrophysics Data System (ADS)
Wan, L. F.; Beckman, S. P.
2012-10-01
The orthorhombic boride crystal family XYB14, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this compound. We present here the results from a comprehensive investigation into the fracture strength of the archetypal AlLiB14 crystal. First principles, ab initio, methods are used to determine the ideal brittle cleavage strength for several high-symmetry orientations. The elastic tensor and the orientation-dependent Young’s modulus are calculated. From these results the lower bound fracture strength of AlLiB14 is predicted to be between 29 and 31 GPa, which is near the measured hardness reported in the literature. These results indicate that the intrinsic strength of AlLiB14 is limited by the interatomic B-B bonds that span between the B layers.
Hydroformability study of seamless tube using Gurson-Tvergaard-Needleman (GTN) fracture model
NASA Astrophysics Data System (ADS)
Harisankar, K. R.; Omar, A.; Narasimhan, K.
2017-09-01
Tube hydroforming process is an advanced manufacturing process in which tube acting as blank is placed in between the dies and deformed with the help of hydraulic pressure. It has several advantages over conventional stamping process such as high strength to weight ratio, higher reliability, less tooling cost etc. Fracture surface investigation of tube hydroformed samples reveal dimple formation in the form of void coalescence which is a characteristic feature of ductile fracture. Hence, in order to accurately predict the limiting strains at fracture it is important to model the process using ductile damage criteria. Fracture criteria are broadly classified into two, microscopic and macroscopic. In the present work Gurson-Tvergaard-Neeedleman (GTN) model, which is a microscopic based ductile damage criteria, was used for predicting the limiting strains at fracture for seamless steel tubes and implemented in explicit finite element software, ABAQUS, for variety of strain path and boundary conditions to obtain fracture based forming limit diagram. The original void porosity, the critical porosity and fracture porosity of the Gurson-Tvergaard-Needleman model were determined by image analysis of scanning electron micrographs of the specimen at different testing conditions of the uniaxial tensile test. The other parameters of the model were determined by using inverse approach combined with uniaxial tensile test and simulation. Predicted FLD is found to be in good agreement with the experimental FLD. Furthermore, numerical simulation based parametric study was carried out to understand the impact of various GTN parameters on different aspects of formability parameters such as bursting pressure, bulge height, principal strains and strain path to develop the understanding of deformation and fracture behaviour at the micro-level during tube hydroforming process.
Axial and appendicular bone density predict fractures in older women
NASA Technical Reports Server (NTRS)
Black, D. M.; Cummings, S. R.; Genant, H. K.; Nevitt, M. C.; Palermo, L.; Browner, W.
1992-01-01
To determine whether measurement of hip and spine bone mass by dual-energy x-ray absorptiometry (DEXA) predicts fractures in women and to compare the predictive value of DEXA with that of single-photon absorptiometry (SPA) of appendicular sites, we prospectively studied 8134 nonblack women age 65 years and older who had both DEXA and SPA measurements of bone mass. A total of 208 nonspine fractures, including 37 wrist fractures, occurred during the follow-up period, which averaged 0.7 years. The risk of fracture was inversely related to bone density at all measurement sites. After adjusting for age, the relative risks per decrease of 1 standard deviation in bone density for the occurrence of any fracture was 1.40 for measurement at the proximal femur (95% confidence interval 1.20-1.63) and 1.35 (1.15-1.58) for measurement at the spine. Results were similar for all regions of the proximal femur as well as SPA measurements at the calcaneus, distal radius, and proximal radius. None of these measurements was a significantly better predictor of fractures than the others. Furthermore, measurement of the distal radius was not a better predictor of wrist fracture (relative risk 1.64: 95% CI 1.13-2.37) than other sites, such as the lumbar spine (RR 1.56; CI 1.07-2.26), the femoral neck (RR 1.65; CI 1.12-2.41), or the calcaneus (RR 1.83; CI 1.26-2.64). We conclude that the inverse relationship between bone mass and risk of fracture in older women is similar for absorptiometric measurements made at the hip, spine, and appendicular sites.
Turbine Engine Hot Section Technology (HOST)
NASA Technical Reports Server (NTRS)
1982-01-01
Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.
Gnudi, S; Sitta, E; Pignotti, E
2012-08-01
To compare hip fracture incidence in post-menopausal females who were differently stratified for the fracture risk according to bone mineral density and proximal femur geometry. In a 5 year follow-up study, the hip fracture incidence in 729 post-menopausal females (45 of whom suffered from incident hip fracture) was assessed and compared. Forward logistic regression was used to select independent predictors of hip fracture risk, including age, age at menopause, height, weight, femoral neck bone mineral density (FNBMD), neck-shaft angle (NSA), hip axis length, femoral neck diameter and femoral shaft diameter as covariates. Fracture incidence was then calculated for the categories of young/old age, high/low FNBMD and wide/narrow NSA, which were obtained by dichotomising each hip fracture independent predictor at the value best separating females with and without a hip fracture. The hip fracture incidence of the whole cohort was significantly higher in females with a wide NSA (8.52%) than in those with a narrow NSA (3.51%). The combination of wide NSA and low FNBMD had the highest hip fracture incidence in the whole cohort (17.61%) and each age category. The combinations of narrow/wide NSA with low/high FNBMD, respectively, gave a significantly higher fracture incidence in older than in younger women, whereas women with a combined wide NSA and low FNBMD had no significantly different fracture incidence in young (14.60%) or old age (21.62%). Our study showed that NSA is effective at predicting the hip fracture risk and that the detection in early post-menopause of a wide NSA together with a low FNBMD should identify females at high probability of incident hip fracture.
Fall Risk Assessment Predicts Fall-Related Injury, Hip Fracture, and Head Injury in Older Adults.
Nilsson, Martin; Eriksson, Joel; Larsson, Berit; Odén, Anders; Johansson, Helena; Lorentzon, Mattias
2016-11-01
To investigate the role of a fall risk assessment, using the Downton Fall Risk Index (DFRI), in predicting fall-related injury, fall-related head injury and hip fracture, and death, in a large cohort of older women and men residing in Sweden. Cross sectional observational study. Sweden. Older adults (mean age 82.4 ± 7.8) who had a fall risk assessment using the DFRI at baseline (N = 128,596). Information on all fall-related injuries, all fall-related head injuries and hip fractures, and all-cause mortality was collected from the Swedish Patient Register and Cause of Death Register. The predictive role of DFRI was calculated using Poisson regression models with age, sex, height, weight, and comorbidities as covariates, taking time to outcome or end of study into account. During a median follow-up of 253 days (interquartile range 90-402 days) (>80,000 patient-years), 15,299 participants had a fall-related injury, 2,864 a head injury, and 2,557 a hip fracture, and 23,307 died. High fall risk (DFRI ≥3) independently predicted fall-related injury (hazard ratio (HR) = 1.43, 95% confidence interval (CI) = 1.39-1.49), hip fracture (HR = 1.51, 95% CI =1.38-1.66), head injury (HR = 1.12, 95% CI = 1.03-1.22), and all-cause mortality (HR = 1.39, 95% CI = 1.35-1.43). DFRI more strongly predicted head injury (HR = 1.29, 95% CI = 1.21-1.36 vs HR = 1.08, 95% CI = 1.04-1.11) and hip fracture (HR = 1.41, 95% CI = 1.30-1.53 vs HR = 1.08, 95% CI = 1.05-1.11) in 70-year old men than in 90-year old women (P < .001). Fall risk assessment using DFRI independently predicts fall-related injury, fall-related head injury and hip fracture, and all-cause mortality in older men and women, indicating its clinical usefulness to identify individuals who would benefit from interventions. © 2016 The Authors. The Journal of the American Geriatrics Society published by Wiley Periodicals, Inc. on behalf of The American Geriatrics Society.
A parametric study of fracture toughness of fibrous composite materials
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1987-01-01
Impacts to fibrous composite laminates by objects with low velocities can break fibers giving crack-like damage. The damage may not extend completely through a thick laminate. The tension strength of these damage laminates is reduced much like that of cracked metals. The fracture toughness depends on fiber and matrix properties, fiber orientations, and stacking sequence. Accordingly, a parametric study was made to determine how fiber and matrix properties and fiber orientations affect fracture toughness and notch sensitivity. The values of fracture toughness were predicted from the elastic constants of the laminate and the failing strain of the fibers using a general fracture toughness parameter developed previously. For a variety of laminates, values of fracture toughness from tests of center-cracked specimens and values of residual strength from tests of thick laminates with surface cracks were compared to the predictions to give credibility to the study. In contrast to the usual behavior of metals, it is shown that both ultimate tensile strength and fracture toughness of composites can be increased without increasing notch sensitivity.
Application of Reservoir Flow Simulation Integrated with Geomechanics in Unconventional Tight Play
NASA Astrophysics Data System (ADS)
Lin, Menglu; Chen, Shengnan; Mbia, Ernest; Chen, Zhangxing
2018-01-01
Multistage hydraulic fracturing techniques, combined with horizontal drilling, have enabled commercial production from the vast reserves of unconventional tight formations. During hydraulic fracturing, fracturing fluid and proppants are pumped into the reservoir matrix to create the hydraulic fractures. Understanding the propagation mechanism of hydraulic fractures is essential to estimate their properties, such as half-length. In addition, natural fractures are often present in tight formations, which might be activated during the fracturing process and contribute to the post-stimulation well production rates. In this study, reservoir simulation is integrated with rock geomechanics to predict the well post-stimulation productivities. Firstly, a reservoir geological model is built based on the field data collected from the Montney formation in the Western Canadian Sedimentary Basin. The hydraulic fracturing process is then simulated through an integrated approach of fracturing fluid injection, rock geomechanics, and tensile failure criteria. In such a process, the reservoir pore pressure increases with a continuous injection of the fracturing fluid and proppants, decreasing the effective stress exerted on the rock matrix accordingly as the overburden pressure remains constant. Once the effective stress drops to a threshold value, tensile failure of the reservoir rock occurs, creating hydraulic fractures in the formation. The early production history of the stimulated well is history-matched to validate the predicted fracture geometries (e.g., half-length) generated from the fracturing simulation process. The effects of the natural fracture properties and well bottom-hole pressures on well productivity are also studied. It has been found that nearly 40% of hydraulic fractures propagate in the beginning stage (the pad step) of the fracturing schedule. In addition, well post-stimulation productivity will increase significantly if the natural fractures are propped or partially propped by the proppants. This paper provides insights on fracture propagation and can be a reference for fracturing treatments in unconventional tight reservoirs.
Gonnelli, Stefano; Cepollaro, Chiara; Gennari, Luigi; Montagnani, Andrea; Caffarelli, Carla; Merlotti, Daniela; Rossi, Stefania; Cadirni, Alice; Nuti, Ranuccio
2005-08-01
Fragility fractures in men represent a major health problem, and this prompts a necessity for reliable tools for the identification of men at risk of fracture. In order to assess the ability of dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) in the prediction of fracture risk in men and whether their combination might be useful in a clinical setting, we studied 401 men (age range 45-82 years, mean 60.3+/-12.5), of whom 133 had osteoporotic fractures and 268 did not. In all subjects we measured bone mineral density at the lumbar spine (BMD-LS) and at the femur, calculating thereafter the standard femoral subregions: neck (BMD-FN), total hip (BMD-T), trochanter (BMD-TR), intertrochanter (BMD-ITR), and Ward's triangle (BMD-W), by DXA. We also performed ultrasound parameters at the calcaneus: speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness, by Achilles plus, and at the phalanxes: amplitude dependent speed of sound (AD-SoS) and the parameters of the graphic trace: bone transmission time (BTT), fast wave amplitude (FWA), signal dynamic (SDy) and ultrasound bone profile index (UBPI), by Bone Profiler. All DXA and QUS parameters, apart from FWA, were significantly (P<0.001) lower in patients with a history of fracture. BMD at the proximal femur showed the best ability in discriminating men with or without fractures. QUS at the heel showed discriminatory ability significantly better than QUS at the fingers. By logistic regression analysis, adjusted for age and BMI, BMD-T showed the best association with fragility fracture [odds ratio (OR)=3.43, 95% confidence interval (CI)=2.47-4.77]. Among QUS parameters, the highest value of the OR was shown by stiffness (OR=3.18, CI=2.27-4.48). FWA and SDy were not associated with fragility fractures in men. If DXA and QUS were combined, the prediction of the OR of fragility fracture events in men increases; in fact Stiffness was able to increase the OR when added to BMD-LS (OR=5.44, CI=3.16-10.13) and BMD-T (OR=6.08, CI=2.63-14.27). SOS and BUA showed a similar pattern. AD-SoS improved the prediction of fracture only when combined with BMD-LS (OR=4.36, CI=1.99-9.57). If BMD-LS and BMD-FN or BMD-T were combined, the value of the OR increases (OR=4.59, CI=2.27-9.25 and OR=4.68, CI=2.24-9.76), respectively. Our study supports the effectiveness of QUS in the identification of osteoporotic fractures in men. QUS seems to play an independent and complementary role, with respect to DXA, in order to enhance the power for predicting osteoporotic fractures in men.
Mui, Leonora W; Engelsohn, Eliyahu; Umans, Hilary
2007-02-01
(1) To determine the accuracy of computed tomography (CT) in the evaluation of ligament tear and avulsion in patients with tibial plateau fracture. (2) To evaluate whether the presence or severity of fracture gap and articular depression can predict meniscal injury. A fellowship-trained musculoskeletal radiologist retrospectively reviewed knee CT and MRI examinations of 41 consecutive patients presenting to a level 1 trauma center with tibial plateau fractures. Fracture gap, articular depression, ligament tear and footprint avulsions were assessed on CT examinations. The MRI studies were examined for osseous and soft tissue injuries, including meniscal tear, meniscal displacement, ligament tear, and ligament avulsion. CT demonstrated torn ligaments with 80% sensitivity and 98% specificity. Only 2% of ligaments deemed intact on careful CT evaluation had partial or complete tears on MRI. Although the degree of fracture gap and articular depression was significantly greater in patients with meniscal injury compared with those without meniscal injury, ROC analysis demonstrated no clear threshold for gap or depression that yielded a combination of high sensitivity and specificity. In the acute setting, CT offers high sensitivity and specificity for depicting osseous avulsions, as well as high negative predictive value for excluding ligament injury. However, MRI remains necessary for the preoperative detection of meniscal injury.
Fracture simulation of restored teeth using a continuum damage mechanics failure model.
Li, Haiyan; Li, Jianying; Zou, Zhenmin; Fok, Alex Siu-Lun
2011-07-01
The aim of this paper is to validate the use of a finite-element (FE) based continuum damage mechanics (CDM) failure model to simulate the debonding and fracture of restored teeth. Fracture testing of plastic model teeth, with or without a standard Class-II MOD (mesial-occusal-distal) restoration, was carried out to investigate their fracture behavior. In parallel, 2D FE models of the teeth are constructed and analyzed using the commercial FE software ABAQUS. A CDM failure model, implemented into ABAQUS via the user element subroutine (UEL), is used to simulate the debonding and/or final fracture of the model teeth under a compressive load. The material parameters needed for the CDM model to simulate fracture are obtained through separate mechanical tests. The predicted results are then compared with the experimental data of the fracture tests to validate the failure model. The failure processes of the intact and restored model teeth are successfully reproduced by the simulation. However, the fracture parameters obtained from testing small specimens need to be adjusted to account for the size effect. The results indicate that the CDM model is a viable model for the prediction of debonding and fracture in dental restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Stress Transfer and Structural Failure of Bilayered Material Systems
NASA Astrophysics Data System (ADS)
Prieto-Munoz, Pablo Arthur
Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture saturation ratio---which is the ratio of fracture spacing to the thickness of the weak layer where an increase in load will not cause any new fractures to form. Moreover, these specific material systems are looked at in the context of existing and novel experimental results, further demonstrating the advantage of the stress transfer analysis proposed. This research provides a closed-form stress solution for various structural systems that is applied to different failure analyses. The versatility of this method is in the flexibility and the ease upon which the stress and displacement field results can be applied to existing stress- or displacement-based structural failure criteria. As presented, this analysis can be directly used to: (1) design adhesive anchoring systems for long-term creep loading, (2) evaluate the fracture mechanics behind bilayered material coatings and pavement overlay systems, and (3) determine the fracture spacing to layer thickness ratio of layered sedimentary rocks. As is shown in the four material systems presented, this general solution has far reaching applications in facilitating design and analysis of typical bilayered structural systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlap, Neal E.; Cai, Jing; Biedermann, Gregory B.
Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving >=20, >=30, >=40, >=50, andmore » >=60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R{sup 2} = 0.9552). A volume threshold of 30 cm{sup 3} was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm{sup 3} receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to <30 cm{sup 3}, if possible, to reduce the risk of toxicity without compromising tumor coverage.« less
Biomechanical analysis on fracture risk associated with bone deformity
NASA Astrophysics Data System (ADS)
Kamal, Nur Amalina Nadiah Mustafa; Som, Mohd Hanafi Mat; Basaruddin, Khairul Salleh; Daud, Ruslizam
2017-09-01
Osteogenesis Imperfecta (OI) is a disease related to bone deformity and is also known as `brittle bone' disease. Currently, medical personnel predict the bone fracture solely based on their experience. In this study, the prediction for risk of fracture was carried out by using finite element analysis on the simulated OI bone of femur. The main objective of this research was to analyze the fracture risk of OI-affected bone with respect to various loadings. A total of 12 models of OI bone were developed by applying four load cases and the angle of deformation for each of the models was calculated. The models were differentiated into four groups, namely standard, light, mild and severe. The results show that only a small amount of load is required to increase the fracture risk of the bone when the model is tested with hopping conditions. The analysis also shows that the torsional load gives a small effect to the increase of the fracture risk of the bone.
Maggio, Dario; Ercolani, Sara; Andreani, Sonia; Ruggiero, Carmelinda; Mariani, Elena; Mangialasche, Francesca; Palmari, Nicola; Mecocci, Patrizia
2010-01-01
Elderly patients with dementia have a higher risk of falls and fractures as compared to cognitively intact elderly subjects. To investigate whether psychological distress of the caregiver might predispose older persons with Alzheimer disease (AD) to falls and fractures, we performed a prospective cohort study. A consecutive series of 110 subjects with dementia underwent baseline and follow-up clinical and functional evaluations. The burden of the caregivers was recorded at baseline. Any intervening fall or fracture was ascertained at the 1-year follow-up. The caregiver burden was significantly higher in persons involved in the care of patients with AD who subsequently fell. In a multivariate regression model, the caregiver burden score predicted falls and fractures. Part of the increased risk of falls and fractures in AD might be due to the distress of caregivers, a factor potentially amenable to treatment. Copyright 2010 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Darcel, C.; Davy, P.; Le Goc, R.; Maillot, J.; Selroos, J. O.
2017-12-01
We present progress on Discrete Fracture Network (DFN) flow modeling, including realistic advanced DFN spatial structures and local fracture transmissivity properties, through an application to the Forsmark site in Sweden. DFN models are a framework to combine fracture datasets from different sources and scales and to interpolate them in combining statistical distributions and stereological relations. The resulting DFN upscaling function - size density distribution - is a model component key to extrapolating fracture size densities between data gaps, from borehole core up to site scale. Another important feature of DFN models lays in the spatial correlations between fractures, with still unevaluated consequences on flow predictions. Indeed, although common Poisson (i.e. spatially random) models are widely used, they do not reflect these geological evidences for more complex structures. To model them, we define a DFN growth process from kinematic rules for nucleation, growth and stopping conditions. It mimics in a simplified way the geological fracturing processes and produces DFN characteristics -both upscaling function and spatial correlations- fully consistent with field observations. DFN structures are first compared for constant transmissivities. Flow simulations for the kinematic and equivalent Poisson DFN models show striking differences: with the kinematic DFN, connectivity and permeability are significantly smaller, down to a difference of one order of magnitude, and flow is much more channelized. Further flow analyses are performed with more realistic transmissivity distribution conditions (sealed parts, relations to fracture sizes, orientations and in-situ stress field). The relative importance of the overall DFN structure in the final flow predictions is discussed.
Geraets, W G; Van der Stelt, P F; Lips, P; Van Ginkel, F C
1998-02-01
Due to the increasing number of osteoporotic fractures of hip, spine, and wrist there is a growing need for methods to track down the subjects with inferior bone structure and to monitor the effects of therapeutic measures. This study aims at a noninvasive diagnostic tool, deriving architectural properties of trabecular bone from in vivo measurements on plane radiographic films. Pelvic radiographs of the nonfractured hips of 81 patients with hip fractures and of the right hips of 74 controls were studied. The regions of interest, 2 x 2 cm2, located in the femoral neck, were sampled and digitized with a video camera connected to an image analysis system. Several geometrical and directional measurements were made. The measurements were evaluated by statistical comparison with fracture risk, gender, and Singh index. By discriminant analysis, type of fracture, as well as gender and Singh index could be predicted correctly for 58% of the subjects, whereas guessing would be correct in only 8%. It was found that the geometrical parameters discriminate between hips of controls and patients. With respect to the directional measurements associations were found with gender and Singh index. Although the new parameters assess fracture risk less accurately than bone density measurements, some parameters suggest by their behavior that they are relevant with respect to femoral bone architecture and its mechanical behavior. Although interpretation of the measurements in histological concepts requires methods that have been reported in literature only recently, it is concluded that digital analysis of the radiographic trabecular pattern is an interesting option to increase the diagnostic yield of plane film radiographs and to study the structure of bone in vivo.
NASA Technical Reports Server (NTRS)
Waller, Jess; Saulsberry, Regor
2012-01-01
NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing and Materials (ASTM) Committee E07 on Nondestructive Testing. Similarly, in 2006 the NASA Engineering and Safety Center (NESC) recommended that nondestructive evaluation methods that can predict composite failure in COPVs should be developed and verified, and integrated into the damage control plan for these vessels
Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2018-03-01
Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.
Reliability analysis of structural ceramics subjected to biaxial flexure
NASA Technical Reports Server (NTRS)
Chao, Luen-Yuan; Shetty, Dinesh K.
1991-01-01
The reliability of alumina disks subjected to biaxial flexure is predicted on the basis of statistical fracture theory using a critical strain energy release rate fracture criterion. Results on a sintered silicon nitride are consistent with reliability predictions based on pore-initiated penny-shaped cracks with preferred orientation normal to the maximum principal stress. Assumptions with regard to flaw types and their orientations in each ceramic can be justified by fractography. It is shown that there are no universal guidelines for selecting fracture criteria or assuming flaw orientations in reliability analyses.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-10-02
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.
Fracture mechanics correlation of boron/aluminum coupons containing stress risers
NASA Technical Reports Server (NTRS)
Adsit, N. R.; Waszczak, J. P.
1975-01-01
The mechanical behavior of boron/aluminum near stress risers has been studied and reported. This effort was directed toward defining the tensile behavior of both unidirectional and (0/ plus or minus 45) boron/aluminum using linear elastic fracture mechanics (LEFM). The material used was 5.6-mil boron in 6061 aluminum, consolidated using conventional diffusion bonding techniques. Mechanical properties are reported for both unidirectional and (0/ plus or minus 45) boron/aluminum, which serve as control data for the fracture mechanics predictions. Three different flawed specimen types were studied. In each case the series of specimens remained geometrically similar to eliminate variations in finite size correction factors. The fracture data from these tests were reduced using two techniques. They both used conventional LEFM methods, but the existence of a characteristic flaw was assumed in one case and not the other. Both the data and the physical behavior of the specimens support the characteristic flaw hypothesis. Cracks were observed growing slowly in the (0/ plus or minus 45) laminates, until a critical crack length was reached at which time catastrophic failure occurred.
Extra-articular osteotomy for malunited unicondylar fractures of the proximal phalanx.
Harness, Neil G; Chen, Alvin; Jupiter, Jesse B
2005-05-01
To evaluate an extra-articular osteotomy rather than an intra-articular osteotomy in the treatment of malunited unicondylar fractures of the proximal phalanx. An extra-articular osteotomy was used to correct the deformity resulting from a malunion of a unicondylar fracture of the proximal phalanx in 5 patients. A closing wedge osteotomy that was stabilized with tension band fixation accomplished realignment of the joint. Each patient was evaluated at a minimum of 1 year after surgery for radiographic healing, correction of angulation, digital motion, postoperative complications, current level of pain with motion, and overall satisfaction with the procedure. All of the osteotomies healed by 10 to 12 weeks after surgery with an average angular correction from 25 degrees to 1 degrees . The average proximal interphalangeal joint motion improved to 86 degrees from the preoperative average of 40 degrees , whereas the average total digital motion improved from 154 degrees before surgery to 204 degrees at follow-up evaluation. This method of extra-articular osteotomy for malunited unicondylar fractures of the proximal phalanx is highly reproducible, avoids the risks of intra-articular surgery, and leads to a predictable outcome.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-01-01
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597
2011-01-01
Background The aim of this study was to develop a child-specific classification system for long bone fractures and to examine its reliability and validity on the basis of a prospective multicentre study. Methods Using the sequentially developed classification system, three samples of between 30 and 185 paediatric limb fractures from a pool of 2308 fractures documented in two multicenter studies were analysed in a blinded fashion by eight orthopaedic surgeons, on a total of 5 occasions. Intra- and interobserver reliability and accuracy were calculated. Results The reliability improved with successive simplification of the classification. The final version resulted in an overall interobserver agreement of κ = 0.71 with no significant difference between experienced and less experienced raters. Conclusions In conclusion, the evaluation of the newly proposed classification system resulted in a reliable and routinely applicable system, for which training in its proper use may further improve the reliability. It can be recommended as a useful tool for clinical practice and offers the option for developing treatment recommendations and outcome predictions in the future. PMID:21548939
A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys
NASA Astrophysics Data System (ADS)
Chan, Dennis K.
SnAgCu solder alloys exhibit significant rate-dependent constitutive behavior. Solder joints made of these alloys exhibit failure modes that are also rate-dependent. Solder joints are an integral part of microelectronic packages and are subjected to a wide variety of loading conditions which range from thermo-mechanical fatigue to impact loading. Consequently, there is a need for non-empirical rate-dependent failure theory that is able to accurately predict fracture in these solder joints. In the present thesis, various failure models are first reviewed. But, these models are typically empirical or are not valid for solder joints due to limiting assumptions such as elastic behavior. Here, the development and validation of a maximum entropy fracture model (MEFM) valid for low strain-rate fracture in SnAgCu solders is presented. To this end, work on characterizing SnAgCu solder behavior at low strain-rates using a specially designed tester to estimate parameters for constitutive models is presented. Next, the maximum entropy fracture model is reviewed. This failure model uses a single damage accumulation parameter and relates the risk of fracture to accumulated inelastic dissipation. A methodology is presented to extract this model parameter through a custom-built microscale mechanical tester for Sn3.8Ag0.7Cu solder. This single parameter is used to numerically simulate fracture in two solder joints with entirely different geometries. The simulations are compared to experimentally observed fracture in these same packages. Following the simulations of fracture at low strain rate, the constitutive behavior of solder alloys across nine decades of strain rates through MTS compression tests and split-Hopkinson bar are presented. Preliminary work on using orthogonal machining as novel technique of material characterization at high strain rates is also presented. The resultant data from the MTS compression and split-Hopkinson bar tester is used to demonstrate the localization of stress to the interface of solder joints at high strain rates. The MEFM is further extended to predict failure in brittle materials. Such an extension allows for fracture prediction within intermetallic compounds (IMCs) in solder joints. It has been experimentally observed that the failure mode shifts from bulk solder to the IMC layer with increasing loading rates. The extension of the MEFM would allow for prediction of the fracture mode within the solder joint under different loading conditions. A fracture model capable of predicting failure modes at higher strain rates is necessary, as mobile electronics are becoming ubiquitous. Mobile devices are prone to being dropped which can induce loading rates within solder joints that are much larger than experienced under thermo-mechanical fatigue. A range of possible damage accumulation parameters for Cu6Sn 5 is determined for the MEFM. A value within the aforementioned range is used to demonstrate the increasing likelihood of IMC fracture in solder joints with larger loading rates. The thesis is concluded with remarks about ongoing work that include determining a more accurate damage accumulation parameter for Cu6Sn 5 IMC, and on using machining as a technique for extracting failure parameters for the MEFM.
Mortality in the Vertebroplasty Population
McDonald, Robert J.; Achenbach, Sara; Atkinson, Elizabeth; Gray, Leigh A.; Cloft, Harry J.; Melton, L. Joseph; Kallmes, David F.
2011-01-01
Purpose Vertebroplasty is an effective treatment for painful compression fractures refractory to conservative management. Since there are limited data regarding the survival characteristics of this patient population, we compared the survival of a treated to an untreated vertebral fracture cohort to determine if vertebroplasty affects mortality rates. Materials and Methods The survival of a treated cohort, comprising 524 vertebroplasty recipients with refractory osteoporotic vertebral compression fractures, was compared to a separate, historical cohort of 589 subjects with fractures not treated by vertebroplasty who were identified from the Rochester Epidemiology Project. Mortality was compared between cohorts using Cox proportional hazard models adjusting for age, gender, and Charlson indices of co-morbidity. Mortality was also correlated with pre-, peri-, and post-procedural clinical metrics (e.g., cement volume utilization, Roland-Morris Disability Questionnaire score, analog pain scales, frequency of narcotic use, and improvements in mobility) within the treated cohort. Results Vertebroplasty recipients demonstrated 77% of the survival expected for individuals of similar age, ethnicity, and gender within the US population. When compared to individuals with both symptomatic and asymptomatic untreated vertebral fractures, vertebroplasty recipients retained a 17% greater mortality risk. However, when compared to symptomatic untreated vertebral fractures, vertebroplasty recipients had no increased mortality following adjustment for differences in age, sex and co-morbidity (HR 1.02; CI 0.82–1.25). In addition, no clinical metrics used to assess the efficacy of vertebroplasty were predictive of survival. Conclusion Vertebroplasty recipients have mortality rates similar to individuals with untreated symptomatic fractures but worse mortality compared to those with asymptomatic vertebral fractures. PMID:21998109
NASA Technical Reports Server (NTRS)
Reeder, James R.
2002-01-01
Accelerated tests for composite failure were investigated. Constant ramp transverse strength tests on thermoplastic composite specimens were conducted at four temperatures from 300 F to 450 F and five duration times from 0.5 sec to 24 hrs. Up to 400 F, the time-temperature-superposition method produces a master curve allowing strength at longer times to be estimated from strength tests conducted over shorter times but at higher temperatures. The shift factors derived from compliance tests applied well to the strength data. To explain why strength behaved similar to compliance, a viscoelastic fracture model was investigated based on the hypothesis that the work of fracture for crack initiation at some critical flaw remains constant with time and temperature. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with stress rate. Fracture tests using double cantilever beam specimens were conducted from 300 F to 450 F over time scales similar to the strength study. The toughness data showed a significant change with loading rate, less variation with temperature, did not form a master curve, and could not be correlated with the fracture model. Since the fracture model did not fit the fracture data, an alternative explanation based on the dilatational strain energy density was proposed. However the usefulness of this model is severely limited because it relies on a critical parameter which varies with loading rate.
NASA Astrophysics Data System (ADS)
Wang, Neng; Xia, Shuman
2017-01-01
A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.
Park, Jin-Sung; Lee, Jaewon; Park, Ye-Soo
2016-01-01
The study aimed to investigate the effectiveness of the clinical use of the Fracture Risk Assessment Tool (FRAX(®)) developed by the World Health Organization identifying patients at risk of osteoporotic fracture and to evaluate changes in osteoporotic fracture risk prediction according to bone mineral density (BMD) values. We identified the occurrence of osteoporotic fracture among patients whose BMD was measured in our hospital between April 2003 and March 2013. We then analyzed FRAX(®) scores obtained with or without BMD on the day before the occurrence of an osteoporotic fracture in actual osteoporotic fracture patients. According to the National Osteoporosis Foundation high-risk criteria, we identified the percentage of high-risk patients before the actual fracture. Among 445 osteoporotic fracture patients, when FRAX(®)-BMD was used, 281 patients (63%) were identified as high-risk before an actual osteoporotic fracture, and when FRAX(®) without BMD was used, 258 patients (58%) were identified (p = 0.115). In the 84 osteopenia patients, 39 patients (46.4%) were identified as high-risk when FRAX(®) without BMD was used, and 19 patients (22.6%) were identified when FRAX(®)-BMD was used (p = 0.001). The use of BMD in FRAX(®) does not seem to increase the clinical effectiveness of predicting osteoporotic fracture in osteopenia patients. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Beattie, J Renwick; Feskanich, Diane; Caraher, M Clare; Towler, Mark R
2018-01-01
Studies have shown that Raman spectroscopic analysis of fingernail clippings can help differentiate between post-menopausal women who have and who have not suffered a fracture. However, all studies to date have been retrospective in nature, comparing the proteins in nails sourced from women, post-fracture. The objective of this study was to investigate the potential of a prospective test for hip fracture based on spectroscopic analysis of nail tissue. Archived toenail samples from post-menopausal women aged 50 to 63 years in the Nurses’ Health Study were obtained and analysed by Raman spectroscopy. Nails were matched case-controls sourced from 161 women; 82 who underwent a hip fracture up to 20 years after nail collection and 81 age-matched controls. A number of clinical risk factors (CRFs) from the Fracture Risk Assessment (FRAX) tool had been assessed at toenail collection. Using 80% of the spectra, models were developed for increasing time periods between nail collection and fracture. Scores were calculated from these models for the other 20% of the sample and the ability of the score to predict hip fracture was tested in model with and without the CRFs by comparing the odds ratios (ORs) per 1 SD increase in standardised predictive values. The Raman score successfully distinguished between hip fracture cases and controls. With only the score as a predictor, a statistically significant OR of 2.2 (95% confidence interval [CI]: 1.5-3.1) was found for hip fracture for up to 20 years after collection. The OR increased to 3.8 (2.6-5.4) when the CRFs were added to the model. For fractures limited to 13 years after collection, the OR was 6.3 (3.0-13.1) for the score alone. The test based on Raman spectroscopy has potential for identifying individuals who may suffer hip fractures several years in advance. Higher powered studies are required to evaluate the predictive capability of this test. PMID:29371785
Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure.
De Iure, Federico; Lofrese, Giorgio; De Bonis, Pasquale; Cultrera, Francesco; Cappuccio, Michele; Battisti, Sofia
2018-06-01
The load sharing classification (LSC) laid foundations for a scoring system able to indicate which thoracolumbar fractures, after short-segment posterior-only fixations, would need longer instrumentations or additional anterior supports. We analyzed surgically treated thoracolumbar fractures, quantifying the vertebral body's fragment displacement with the aim of identifying a new parameter that could predict the posterior-only construct failure. This is a retrospective cohort study from a single institution. One hundred twenty-one consecutive patients were surgically treated for thoracolumbar burst fractures. Grade of kyphosis correction (GKC) expressed radiological outcome; Oswestry Disability Index and visual analog scale were considered. One hundred twenty-one consecutive patients who underwent posterior fixation for unstable thoracolumbar burst fractures were retrospectively evaluated clinically and radiologically. Supplementary anterior fixations were performed in 34 cases with posterior instrumentation failure, determined on clinic-radiological evidence or symptomatic loss of kyphosis correction. Segmental kyphosis angle and GKC were calculated according to the Cobb method. The displacement of fracture fragments was obtained from the mean of the adjacent end plate areas subtracted from the area enclosed by the maximum contour of vertebral fragmentation. The "spread" was derived from the ratio between this subtraction and the mean of the adjacent end plate areas. Analysis of variance, Mann-Whitney, and receiver operating characteristic were performed for statistical analysis. The authors report no conflict of interest concerning the materials or methods used in the present study or the findings specified in this paper. No funds or grants have been received for the present study. The spread revealed to be a helpful quantitative measurement of vertebral body fragment displacement, easily reproducible with the current computed tomography (CT) imaging technologies. There were no failures of posterior fixations with preoperative spreads <42% and losses of correction (LOC)<10°, whereas spreads >62.7% required supplementary anterior supports whenever LOC>10° were recorded. Most of the patients in a "gray zone," with spreads between 42% and 62.7%, needed additional anterior supports because of clinical-radiological evidence of impending mechanical failures, which developed independently from the GKC. Preoperative kyphosis (p<.001), load sharing score (p=.002), and spread (p<.001) significantly affected the final surgical treatment (posterior or circumferential). Twenty-two years after the LSC, both improvements in spinal stabilization systems and software imaging innovations have modified surgical concepts and approach on spinal trauma care. Spread was found to be an additional tool that could help in predicting the posterior construct failure, providing an objective preoperative indicator, easily reproducible with the modern viewers for CT images. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Ghosh, Asish; Salem, Jonathan A.
1990-01-01
Micromechanics fracture models are incorporated into three distinct fracture process zones which contribute to the crack growth resistance of fibrous composites. The frontal process zone includes microcracking, fiber debonding, and some fiber failure. The elastic process zone is related only to the linear elastic creation of new matrix and fiber fracture surfaces. The wake process zone includes fiber bridging, fiber pullout, and fiber breakage. The R-curve predictions of the model compare well with empirical results for a unidirectional, continuous fiber C/C composite. Separating the contributions of each process zone reveals the wake region to contain the dominant crack growth resistance mechanisms. Fractography showed the effects of the micromechanisms on the macroscopic fracture behavior.
Choi, Young; Kwon, Soon-Sun; Chung, Chin Youb; Park, Moon Seok; Lee, Seung Yeol; Lee, Kyoung Min
2014-07-16
The Lauge-Hansen classification system does not provide sufficient data related to syndesmotic injuries in supination-external rotation (SER)-type ankle fractures. The aim of the present study was to investigate factors helpful for the preoperative detection of syndesmotic injuries in SER-type ankle fractures using radiographs and computed tomography (CT). A cohort of 191 consecutive patients (104 male and eighty-seven female patients with a mean age [and standard deviation] of 50.7 ± 16.4 years) with SER-type ankle fractures who had undergone operative treatment were included. Preoperative ankle radiographs and CT imaging scans were made for all patients, and clinical data, including age, sex, and mechanism of injury (high or low-energy trauma), were collected. Patients were divided into two groups: the stable syndesmotic group and the unstable syndesmotic group, with a positive intraoperative lateral stress test leading to syndesmotic screw fixation. Fracture height, fracture length, medial joint space, extent of fracture, and bone attenuation were measured on radiographs and CT images and were compared between the groups. Binary logistic regression analysis was performed to identify the factors that significantly contributed to unstable syndesmotic injuries. Receiver operating characteristic curves were calculated, and cutoff values were suggested to predict unstable syndesmotic injuries on preoperative imaging measurements. Of the 191 patents with a SER-type ankle fracture, thirty-eight (19.9%) had a concurrent unstable syndesmotic injury. Age, sex, mechanism of injury, fracture height, medial joint space, and bone attenuation were significantly different between the two groups. In the binary logistic analysis, fracture height, medial joint space, and bone attenuation were found to be significant factors contributing to unstable syndesmotic injuries. The cutoff values for predicting unstable syndesmotic injuries were a fracture height of >3 mm and a medial joint space of >4.9 mm on CT scans, and a fracture height of >7 mm and medial joint space of >4.5 mm on radiographs. Fracture height, medial joint space, and bone attenuation were useful factors for the preoperative detection of unstable syndesmotic injuries in SER-type ankle fractures. Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Drury, Anne; Cunningham, Craig
2018-01-01
Radiographic fracture date estimation is a critical component of skeletal trauma analysis in the living. Several timetables have been proposed for how the appearance of radiographic features can be interpreted to provide a likely time frame for fracture occurrence. This study compares three such timetables for pediatric fractures, by Islam et al. (2000), Malone et al. (2011), and Prosser et al. (2012), in order to determine whether the fracture date ranges produced by using these methods are in agreement with one another. Fracture date ranges were estimated for 112 long bone fractures in 96 children aged 1-17 years, using the three different timetables. The extent of similarity of the intervals was tested by statistically comparing the overlap between the ranges. Results showed that none of the methods were in perfect agreement with one another. Differences seen included the size of the estimated date range for when a fracture occurred, and the specific dates given for both the upper and lower ends of the fracture date range. There was greater similarity between the ranges produced by Malone et al. (2011) and both the other two studies than there was between Islam et al. (2000) and Prosser et al. (2012). The greatest similarity existed between Malone et al. (2011) and Islam et al. (2000). The extent of differences between methods can vary widely, depending on the fracture analysed. Using one timetable gives an average earliest possible fracture date of less than 2 days before another, but the range was extreme, with one method estimating minimum time since fracture as 25 days before another method for a given fracture. In most cases, one method gave maximum time since fracture as a week less than the other two methods, but range was extreme and some estimates were nearly two months different. The variability in fracture date estimates given by these timetables indicates that caution should be exercised when estimating the timing of a juvenile fracture if relying solely on one of the published guides. Future research should be undertaken to compare these methods on a population of known fracture timing, and to better understand the relationship between age of the individual, skeletal health, fracture healing rates, and radiographic characteristics of fracture healing. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane
2017-01-01
Aim: The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. Methods: CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. Results: A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18–80) years and 18–27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Conclusions: Good matched case–control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures. PMID:29291177
Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.
Ren, Shuangpo; Parsekian, Andrew D; Zhang, Ye; Carr, Bradley J
2018-05-15
In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., K NMR ) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated K NMR are within one order of magnitude of K FLUTe . The empirical parameters obtained from calibrating the NMR data suggest that "intermediate diffusion" and/or "slow diffusion" during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, "intermediate diffusion" dominates the relaxation time, therefore assuming "fast diffusion" in the interpretation of NMR data from fractured rock may lead to inaccurate K NMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable K NMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements. © 2018, National Ground Water Association.
NASA Technical Reports Server (NTRS)
Gyekenyesi, John P.; Nemeth, Noel N.
1987-01-01
The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
NASA Technical Reports Server (NTRS)
Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.
2001-01-01
An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.
NASA Technical Reports Server (NTRS)
Liu, A. F.
1974-01-01
A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.
A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well
NASA Astrophysics Data System (ADS)
Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun
2017-11-01
Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.
Reactive transport studies at the Raymond Field Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freifeld, B.; Karasaki, K.; Solbau, R.
1995-12-01
To ensure the safety of a nuclear waste repository, an understanding of the transport of radionuclides from the repository nearfield to the biosphere is necessary. At the Raymond Field Site, in Raymond, California, tracer tests are being conducted to test characterization methods for fractured media and to evaluate the equipment and tracers that will be used for Yucca Mountain`s fracture characterization. Recent tracer tests at Raymond have used reactive cations to demonstrate transport with sorption. A convective-dispersive model was used to simulate a two-well recirculating test with reasonable results. However, when the same model was used to simulate a radiallymore » convergent tracer test, the model poorly predicted the actual test data.« less
Evaluation of Fatigue Crack Growth and Fracture Properties of Cryogenic Model Materials
NASA Technical Reports Server (NTRS)
Newman, John A.; Forth, Scott C.; Everett, Richard A., Jr.; Newman, James C., Jr.; Kimmel, William M.
2002-01-01
The criteria used to prevent failure of wind-tunnel models and support hardware were revised as part of a project to enhance the capabilities of cryogenic wind tunnel testing at NASA Langley Research Center. Specifically, damage-tolerance fatigue life prediction methods are now required for critical components, and material selection criteria are more general and based on laboratory test data. The suitability of two candidate model alloys (AerMet 100 and C-250 steel) was investigated by obtaining the fatigue crack growth and fracture data required for a damage-tolerance fatigue life analysis. Finally, an example is presented to illustrate the newly implemented damage tolerance analyses required of wind-tunnel model system components.
Fractography used with lifetime prediction tests on commercial grades of alumina and silicon carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuebler, J.; Woodtli, J.; Berroth, K.
1996-12-31
Fractographic investigations were conducted on alumina and {alpha}-SSiC bend bars from a round robin test comparing a static and a dynamic lifetime test method. The investigations revealed that not all fracture origins found on {alpha}-SSiC specimens had contact with the ambient medium and therefore the dynamic lifetime tests did not measure the materials` behaviour under stress in water. In addition to the conventional SEM fractography an alternate technique, using an auto focus scanning laser profilometer was applied for characterizing the fractures. This tool is very promising for fractography because of the ability to handle topographic data by imaging procedures andmore » fractal analysis.« less
Altering wettability to recover more oil from tight formations
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey; ...
2016-06-03
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Altering wettability to recover more oil from tight formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Edge delamination in angle-ply composite laminates, part 5
NASA Technical Reports Server (NTRS)
Wang, S. S.
1981-01-01
A theoretical method was developed for describing the edge delamination stress intensity characteristics in angle-ply composite laminates. The method is based on the theory of anisotropic elasticity. The edge delamination problem is formulated using Lekhnitskii's complex-variable stress potentials and an especially developed eigenfunction expansion method. The method predicts exact orders of the three-dimensional stress singularity in a delamination crack tip region. With the aid of boundary collocation, the method predicts the complete stress and displacement fields in a finite-dimensional, delaminated composite. Fracture mechanics parameters such as the mixed-mode stress intensity factors and associated energy release rates for edge delamination can be calculated explicity. Solutions are obtained for edge delaminated (theta/-theta theta/-theta) angle-ply composites under uniform axial extension. Effects of delamination lengths, fiber orientations, lamination and geometric variables are studied.
Li, Guowei; Thabane, Lehana; Ioannidis, George; Kennedy, Courtney; Papaioannou, Alexandra; Adachi, Jonathan D
2015-01-01
To compare the predictive accuracy of the frailty index (FI) of deficit accumulation and the phenotypic frailty (PF) model in predicting risks of future falls, fractures and death in women aged ≥55 years. Based on the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort (n = 3,985), we compared the predictive accuracy of the FI and PF in risks of falls, fractures and death using three strategies: (1) investigated the relationship with adverse health outcomes by increasing per one-fifth (i.e., 20%) of the FI and PF; (2) trichotomized the FI based on the overlap in the density distribution of the FI by the three groups (robust, pre-frail and frail) which were defined by the PF; (3) categorized the women according to a predicted probability function of falls during the third year of follow-up predicted by the FI. Logistic regression models were used for falls and death, while survival analyses were conducted for fractures. The FI and PF agreed with each other at a good level of consensus (correlation coefficients ≥ 0.56) in all the three strategies. Both the FI and PF approaches predicted adverse health outcomes significantly. The FI quantified the risks of future falls, fractures and death more precisely than the PF. Both the FI and PF discriminated risks of adverse outcomes in multivariable models with acceptable and comparable area under the curve (AUCs) for falls (AUCs ≥ 0.68) and death (AUCs ≥ 0.79), and c-indices for fractures (c-indices ≥ 0.69) respectively. The FI is comparable with the PF in predicting risks of adverse health outcomes. These findings may indicate the flexibility in the choice of frailty model for the elderly in the population-based settings.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.
2008-01-01
The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.