Sample records for fracturing multi-sites project

  1. Overview of DOE Oil and Gas Field Laboratory Projects

    NASA Astrophysics Data System (ADS)

    Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.

    2017-12-01

    America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.

  2. Microseismic and deformation imaging of hydraulic fracture growth and geometry in the C sand interval, GRI/DOE M-Site project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Uhl, J.E.; Engler, B.P.

    Six hydraulic-fracture injections into a fluvial sandstone at a depth of 4300 ft were monitored with multi-level tri-axial seismic receivers in two wells and an inclinometer array in one well, resulting in maps of the growth and final geometry of each fracture injection. These diagnostic images show the progression of height and length growth with fluid volume, rate and viscosity. Complexities associated with shut downs and high treatment pressures can be observed. Validation of the seismic geometry was made with the inclinometers and diagnostic procedures in an intersecting well. Fracture information related to deformation, such as fracture closure pressure, residualmore » widths, and final prop distribution, were obtained from the inclinometer data.« less

  3. Geomechanical Framework for Secure CO 2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in theMidwest United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sminchak, Joel

    This report presents final technical results for the project Geomechanical Framework for Secure CO 2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in the Midwest United States (DE-FE0023330). The project was a three-year effort consisting of seven technical tasks focused on defining geomechanical factors for CO 2 storage applications in deep saline rock formations in Ohio and the Midwest United States, because geomechancial issues have been identified as a significant risk factor for large-scale CO 2 storage applications. A basin-scale stress-strain analysis was completed to describe the geomechanical setting for rock formations of Ordovician-Cambrian age in Ohio andmore » adjacent areas of the Midwest United States in relation to geologic CO 2 storage applications. The tectonic setting, stress orientation-magnitude, and geomechanical and petrophysical parameters for CO 2 storage zones and caprocks in the region were cataloged. Ten geophysical image logs were analyzed for natural fractures, borehole breakouts, and drilling-induced fractures. The logs indicated mostly less than 10 fractures per 100 vertical feet in the borehole, with mostly N65E principal stress orientation through the section. Geophysical image logs and other logs were obtained for three wells located near the sites where specific models were developed for geomechanical simulations: Arches site in Boone County, Kentucky; Northern Appalachian Basin site in Chautauqua County, New York; and E-Central Appalachian Basin site in Tuscarawas County, Ohio. For these three wells, 9,700 feet of image logs were processed and interpreted to provide a systematic review of the distribution within each well of natural fractures, wellbore breakouts, faults, and drilling induced fractures. There were many borehole breakouts and drilling-induced tensile fractures but few natural fractures. Concentrated fractures were present at the Rome-basal sandstone and basal sandstone-Precambrian contacts at the Arches and East-Central Appalachian Basin sites. Geophysical logs were utilized to develop local-scale geologic models by determining geomechanical and petrophysical parameters within the geologic formations. These data were ported to coupled fluid-flow and reservoir geomechanics multi-phase CO 2 injection simulations. The models were developed to emphasize the geomechanical layers within the CO 2 storage zones and caprocks. A series of simulations were completed for each site to evaluate whether commercial-scale CO 2 could be safely injected into each site, given site-specific geologic and geomechanical controls. This involved analyzing the simulation results for the integrity of the caprock, intermediate, and reservoir zones, as well quantifying the areal uplift at the surface. Simulation results were also examined to ensure that the stress-stress perturbations were isolated within the subsurface, and that there was only limited upward migration of the CO 2. Simulations showed capacity to inject more than 10 million metric tons of CO 2 in a single well at the Arches and East Central Appalachian Basin sites without excessive geomechanical risks. Low-permeability rock layers at the Northern Appalachian Basin study area well resulted in very low CO 2 injection capacity. Fracture models developed for the sites suggests that the sites have sparse fracture network in the deeper Cambrian rocks. However, there were indicators in image logs of a moderate fracture matrix in the Rose Run Sandstone at the Northern Appalachian Basin site. Dual permeability fracture matrix simulations suggest the much higher injection rates may be feasible in the fractured interval. Guidance was developed for geomechanical site characterization in the areas of geophysical logging, rock core testing, well testing, and site monitoring. The guidance demonstrates that there is a suitable array of options for addressing geomechanical issues at CO 2 storage sites. Finally, a review of Marcellus and Utica-Point Pleasant shale gas wells and CO 2 storage intervals indicates that these items are vertically separated, except for the Oriskany sandstone and Marcellus wells in southwest Pennsylvania and northern West Virginia. Together, project results present a more realistic portrayal of geomechanical risk factors related to CO 2 storage for existing and future coal-fired power plants in Ohio.« less

  4. Characterization of a remotely intersected set of hydraulic fractures: Results of intersection well no. 1-B, GRI/DOE multi-site project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Peterson, R.E.; Warpinski, N.R.

    A deviated observation or {open_quotes}intersection{close_quotes} well (IW 1-B) was drilled, cored, logged and tested through an area in a fluvial sandstone reservoir that had previously been hydraulically fractured. The point of intersection with the fractured interval was located 126 ft from the fracture well along one wing of the fracture(s) at a measured depth of 4,675 ft. Direct observations from core and borehole imagery logs in IW 1-B indicate that a total of 11 far-field vertical fractures were created. Clustered in a narrow 2.6-ft-wide interval, these 11 fractures are the direct result of 6 experimental fracture treatments executed in themore » distant frac well over a 4-month period. Diagnostic data acquired through IW I-B included direct core observations and measurements, borehole log imagery, gamma ray (GR) tracer identification, well-to-well pressure transient and fracture conductivity tests, and production logging surveys. The explicit intent in the emplacement of IW 1-B was to provide direct observations and information to characterize the hydraulic fracture(s) in support of a remote-sensing fracture diagnostic program that included microseismic monitoring and inclinometer measurements.« less

  5. A fractured rock geophysical toolbox method selection tool

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  6. Measuring the hydraulic fracture-induced deformation of reservoirs and adjacent rocks employing a deeply buried inclinometer array: GRI/DOE multi-site project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Warpinski, N.R.; Engler, B.

    A vertical inclinometer array consisting of six biaxial tiltmeters was cemented behind pipe at depths between 4,273 and 4,628 ft. This wide-aperture array provided real-time tilt profiles corresponding to a series of seven hydraulic fractures being conducted in a nearby offset well in a fluvial sandstone reservoir. Array profiles for three KCl water fracs indicated that height growth was confined to the gross thickness of the reservoir despite extensive fracture length extension. Long-term monitoring of the array suggests that a substantial residual frac: width remained long after fracture closure occurred. For two 400-bbl linear gel minifracs, some height growth wasmore » observed but it was not extensive. Tilt amplitudes related to expanded frac widths were found to increase as would be expected with these thicker frac fluids. When cross-linker and proppant were included in the last fracture, tilt-derived heights were seen to grow rapidly extending into the bounding layers as the more complex fluids entered the fracture system. This inclinometer array was one of several independent, yet complimentary, fracture diagnostics tools that included crosswell multilevel microseismic arrays, FRACPRO{reg_sign} and a remote fracture intersection well. Their purpose was to provide integrated field-scale data regarding hydraulic fracture dynamics and geometry that would be used to construct accurate fracture mapping and diagnostic techniques.« less

  7. Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Joyce, Steven; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter

    2014-09-01

    Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1-10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.

  8. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    NASA Astrophysics Data System (ADS)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  9. Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures

    NASA Astrophysics Data System (ADS)

    James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.

    2017-12-01

    It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  10. Supplemental Perioperative Oxygen to Reduce Surgical Site Infection after High Energy Fracture Surgery

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-12-1-0588 TITLE: Supplemental Perioperative Oxygen to Reduce Surgical Site Infection after High- Energy Fracture Surgery...High- Energy Fracture Surgery 5a. CONTRACT NUMBER W81XWH-12-1-0588 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert V. O’Toole, MD...14 4 1. INTRODUCTION: The overall scope of this project is to address the treatment of high- energy military fractures, which has

  11. Zooplankton and micronekton biovolume at the Mid-Atlantic Ridge and Charlie-Gibbs Fracture Zone estimated by multi-frequency acoustic survey

    NASA Astrophysics Data System (ADS)

    Cox, Martin J.; Letessier, Tom B.; Brierley, Andrew S.

    2013-12-01

    To examine the potential influence of the Mid-Atlantic Ridge and Charlie-Gibbs Fracture Zone on zooplankton and micronekton biovolume in the upper 200 m of the water column, multi-frequency acoustic data (18, 38, 70, 120 and 200 kHz) were acquired at four study sites from the RRS James Cook using hull-mounted scientific echosounders. Multi-frequency inversion techniques were employed to classify each 20 m depth×500 m along-track region of the water column to a zooplankton or micronekton acoustic scatterering class, such as copepod or euphausiid, and to estimate biovolume. We found a highly significant north-south (across fracture zone) difference in areal biovolume (p-value=0.01) but no significant east-west (across ridge) difference (p-value=0.07). Areal biovolume at all sites was dominated by the acoustic scatter class ‘euphausiid’, with higher biovolumes occurring in the southern stations. Our acoustic observations suggest the existence of different pelagic communities to the north and south of the SPF, with the southern community having a greater proportion of fish.

  12. Multi-hazard risk assessment applied to hydraulic fracturing operations

    NASA Astrophysics Data System (ADS)

    Garcia-Aristizabal, Alexander; Gasparini, Paolo; Russo, Raffaella; Capuano, Paolo

    2017-04-01

    Without exception, the exploitation of any energy resource produces impacts and intrinsically bears risks. Therefore, to make sound decisions about future energy resource exploitation, it is important to clearly understand the potential environmental impacts in the full life-cycle of an energy development project, distinguishing between the specific impacts intrinsically related to exploiting a given energy resource and those shared with the exploitation of other energy resources. Technological advances as directional drilling and hydraulic fracturing have led to a rapid expansion of unconventional resources (UR) exploration and exploitation; as a consequence, both public health and environmental concerns have risen. The main objective of a multi-hazard risk assessment applied to the development of UR is to assess the rate (or the likelihood) of occurrence of incidents and the relative potential impacts on surrounding environment, considering different hazards and their interactions. Such analyses have to be performed considering the different stages of development of a project; however, the discussion in this paper is mainly focused on the analysis applied to the hydraulic fracturing stage of a UR development project. The multi-hazard risk assessment applied to the development of UR poses a number of challenges, making of this one a particularly complex problem. First, a number of external hazards might be considered as potential triggering mechanisms. Such hazards can be either of natural origin or anthropogenic events caused by the same industrial activities. Second, failures might propagate through the industrial elements, leading to complex scenarios according to the layout of the industrial site. Third, there is a number of potential risk receptors, ranging from environmental elements (as the air, soil, surface water, or groundwater) to local communities and ecosystems. The multi-hazard risk approach for this problem is set by considering multiple hazards (and their possible interactions) as possible sources of system's perturbation that might drive to the development of an incidental event. Given the complexity of the problem, we adopt a multi-level approach: first, perform a qualitative analysis oriented to the identification of a wide range of possible scenarios; this process is based on a review of potential impacts in different risk receptors reported in literature, which is condensed in a number of causal diagrams created for different stages of a UR development project. Second, the most important scenarios for quantitative multi-hazard risk analyses are selected for further quantification. This selection is based on the identification of major risks, i.e., those related with the occurrence of low probability/high impact extreme events. The general framework for the quantitative multi-hazard risk analysis is represented using a so-called bow-tie structure. It is composed of a fault tree on the left hand side of the graphic plot, identifying the possible events causing the critical (or top) event, and an event tree on the right-hand side showing the possible consequences of the critical event. This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project n.640896, funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1

  13. Features of cranio-maxillofacial trauma in the massive Sichuan earthquake: analysis of 221 cases with multi-detector row CT.

    PubMed

    Chu, Zhi-gang; Yang, Zhi-gang; Dong, Zhi-hui; Chen, Tian-wu; Zhu, Zhi-yu; Deng, Wen; Xiao, Jia-he

    2011-10-01

    In a massive earthquake, cranio-maxillofacial trauma was common. The present study was to determine the features of cranio-maxillofacial trauma sustained in the massive Sichuan earthquake by multi-detector row computed tomography (MDCT). The study included 221 consecutive patients (123 males and 98 females; age range, 1-83 years; median age, 35 years) with cranio-maxillofacial trauma in the Sichuan earthquake, who underwent cranio-maxillofacial MDCT scans. The image data were retrospectively reviewed focusing on the injuries of the cranio-maxillofacial soft tissue, facial bones and cranium. All patients had soft tissue injuries frequently with foreign bodies. Ninety-seven (43.9%) patients had fractures (1.5 involved sites per patient, range from 1 to 8) including single cranial fractures in 36 (37.1%) cases, single maxillofacial fractures were seen in 48 (49.5%) and cranio-maxillofacial fractures in 13 (13.4%). Single bone fracture was more common than multiple bone fractures (p<0.05). Nasal, ethmoid bones and the orbits were the most commonly involved sites of the craniofacial region. Thirty-eight (17.2%) patients had intracranial injuries, the commonest being subarachnoid haemorrhage and the commonest sites were the temporal and frontal regions. Coexisting intracranial injuries were more common in patients with cranial fractures than in patients with maxillofacial fractures (p<0.05). Our results indicate that the cranio-maxillofacial trauma arising from the massive Sichuan earthquake had some characteristic features, and a significant number of individuals had the potential for combined cranial and maxillofacial injuries, successful management of which required a multidisciplinary approach. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  14. Quality improvement for patients with hip fracture: experience from a multi-site audit.

    PubMed

    Freeman, C; Todd, C; Camilleri-Ferrante, C; Laxton, C; Murrell, P; Palmer, C R; Parker, M; Payne, B; Rushton, N

    2002-09-01

    The first East Anglian audit of hip fracture was conducted in eight hospitals during 1992. There were significant differences between hospitals in 90-day mortality, development of pressure sores, median lengths of hospital stay, and in most other process measures. Only about half the survivors recovered their pre-fracture physical function. A marked decrease in physical function (for 31%) was associated with postoperative complications. A re-audit was conducted in 1997 as part of a process of continuing quality improvement. This was an interview and record based prospective audit of process and outcome of care with 3 month follow up. Seven hospitals with trauma orthopaedic departments took part in both audits. Results from the 1992 audit and indicator standards for re-audit were circulated to all orthopaedic consultants, care of the elderly consultants, and lead audit facilitators at each hospital. Processes likely to reduce postoperative complications and improve patient outcomes at 90 days. As this was a multi-site audit, the project group had no direct power to bring about changes within individual NHS hospital trusts. Significant increases were seen in pharmaceutical thromboembolic prophylaxis (from 45% to 81%) and early mobilisation (from 56% to 70%) between 1992 and 1997. There were reduced levels of pneumonia, wound infection, pressure sores, and fatal pulmonary embolism, but no change was recorded in 3 month functional outcomes or mortality. While some hospitals had made improvements in care by 1997, others were failing to maintain their level of good practice. This highlights the need for continuous quality improvement by repeating the audit cycle in order to reach and then improve standards. Rehabilitation and long term support to improve functional outcomes are key areas for future audit and research.

  15. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in coupon tests and in full-scale fuselage panel tests. Both T-stress and fracture toughness orthotropy are found to be essential to predict the observed crack paths. The analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically while insuring continuous airworthiness. Consequently, it will improve the technology to support the safe operation of the current aircraft fleet as well as the design of more damage-tolerant aircraft for the next generation fleet.

  16. Engineering Evaluation of International Low Impact Docking System Latch Hooks

    NASA Technical Reports Server (NTRS)

    Martinez, J.; Patin, R.; Figert, J.

    2013-01-01

    The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0.48" and it was effectively centered about the mid-plane of the section. The numerous ratchet marks between the shear lips on the fracture initiation plane are indicative of multiple fatigue initiation sites within this region. The distribution of the fatigue damage about the centerline of the hook is consistent with the analytical results that demonstrate peak stress/strain response at the mid-plane that decreases in the direction of the hook outer surfaces. Scanning electron microscope images of the failed sections detected fatigue crack striations in close proximity to the free surface of the hook radius. These findings were documented at three locations on the fracture surface : 1) adjacent to the left shear lip, 2) adjacent to the right shear lip, and 3) near the centerline of the section. The features of the titanium fracture surface did not allow for a determination of a critical crack size via identification of the region where the fatigue crack propagation became unstable. The fracture based service life projections where benchmarked with strain-life analyses. The strainrange response in the hook radius was defined via the correlated finite element models and the modified method of universal slopes was incorporated to define the strain-life equation for the titanium alloy. The strain-life assessment confirmed that the fracture based projections were reasonable for the loading range of interest. Based upon the analysis and component level fatigue test data a preliminary service life capability for the iLIDS active and passive hooks of 2 lifetimes is projected (includes a scatter factor of 4).

  17. The EGS Collab Project: Stimulation Investigations for Geothermal Modeling Analysis and Validation

    NASA Astrophysics Data System (ADS)

    Blankenship, D.; Kneafsey, T. J.

    2017-12-01

    The US DOE's EGS Collab project team is establishing a suite of intermediate-scale ( 10-20 m) field test beds for coupled stimulation and interwell flow tests. The multiple national laboratory and university team is designing the tests to compare measured data to models to improve measurement and modeling toolsets available for use in field sites and investigations such as DOE's Frontier Observatory for Research in Geothermal Energy (FORGE) Project. Our tests will be well-controlled, in situexperiments focused on rock fracture behavior, seismicity, and permeability enhancement. Pre- and post-test modeling will allow for model prediction and validation. High-quality, high-resolution geophysical and other fracture characterization data will be collected, analyzed, and compared with models and field observations to further elucidate the basic relationships between stress, induced seismicity, and permeability enhancement. Coring through the stimulated zone after tests will provide fracture characteristics that can be compared to monitoring data and model predictions. We will also observe and quantify other key governing parameters that impact permeability, and attempt to understand how these parameters might change throughout the development and operation of an Enhanced Geothermal System (EGS) project with the goal of enabling commercial viability of EGS. The Collab team will perform three major experiments over the three-year project duration. Experiment 1, intended to investigate hydraulic fracturing, will be performed in the Sanford Underground Research Facility (SURF) at 4,850 feet depth and will build on kISMET Project findings. Experiment 2 will be designed to investigate hydroshearing. Experiment 3 will investigate changes in fracturing strategies and will be further specified as the project proceeds. The tests will provide quantitative insights into the nature of stimulation (e.g., hydraulic fracturing, hydroshearing, mixed-mode fracturing, thermal fracturing) in crystalline rock under reservoir-like stress conditions and generate high-quality, high-resolution, diverse data sets to be simulated allowing model validation. Monitoring techniques will also be evaluated under controlled conditions identifying technologies appropriate for deeper full-scale EGS sites.

  18. Fracture Strength of Fused Silica From Photonic Signatures Around Collision Sites

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K Elliott

    2015-01-01

    Impact sites in glass affect its fracture strength. An analytical model that predicts fracture strength from grey-field polariscope (GFP) readings (photoelastic retardations) has been developed and reported in the literature. The model is suggestive that stress fields, resulting from impact damage, destablizes sites within the glass, which lead to pathways that cause strength degradation. Using data collected from fused silica specimens fabricated from outer window panes that were designed for the space shuttle, the model was tested against four categories of inflicted damage. The damage sites were cored from the window carcasses, examined with the GFP and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and the photoelastic retardation measured at the damage site in each specimen. A least-squares fit is calculated. The results are compared with the predictions from the model. A plausible single-sided NDE damage site inspection method (a version of which is planned for glass inspection in the Orion Project) that relates photoelastic retardation in glass components to its fracture strength is presented.

  19. Tools and Methods for Risk Management in Multi-Site Engineering Projects

    NASA Astrophysics Data System (ADS)

    Zhou, Mingwei; Nemes, Laszlo; Reidsema, Carl; Ahmed, Ammar; Kayis, Berman

    In today's highly global business environment, engineering and manufacturing projects often involve two or more geographically dispersed units or departments, research centers or companies. This paper attempts to identify the requirements for risk management in a multi-site engineering project environment, and presents a review of the state-of-the-art tools and methods that can be used to manage risks in multi-site engineering projects. This leads to the development of a risk management roadmap, which will underpin the design and implementation of an intelligent risk mapping system.

  20. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or stimulation operations demonstrates the viability of French industrial deep geothermal projects in the URG was also confirmed by several geothermal projects in Germany that target the similar sediments-basement interface (Landau and Insheim) or the deep Triassic sediments (Bruchsal and Brühl). In France, future geothermal projects are planned in particular in Strasbourg suburb to exploit the permeability of deep-seated fractured sediment-basement interface.

  1. The Challenges and Benefits of Employing a Mobile Research Fellow to Facilitate Team Work on a Large, Interdisciplinary, Multi-Sited Project

    ERIC Educational Resources Information Center

    Sugden, Fraser; Punch, Samantha

    2014-01-01

    Over the last few years research funding has increasingly moved in favour of large, multi-partner, interdisciplinary and multi-site research projects. This article explores the benefits and challenges of employing a full-time research fellow to work across multiple field sites, with all the local research teams, on an international,…

  2. Ground penetrating radar for fracture mapping in underground hazardous waste disposal sites: A case study from an underground research tunnel, South Korea

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee

    2017-06-01

    Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.

  3. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  4. A multi-component cognitive behavioural intervention for the treatment of fear of falling after hip fracture (FIT-HIP): protocol of a randomised controlled trial.

    PubMed

    Scheffers-Barnhoorn, Maaike N; van Haastregt, Jolanda C M; Schols, Jos M G A; Kempen, Gertrudis I J M; van Balen, Romke; Visschedijk, Jan H M; van den Hout, Wilbert B; Dumas, Eve M; Achterberg, Wilco P; van Eijk, Monica

    2017-03-20

    Hip fracture is a common injury in the geriatric population. Despite surgical repair and subsequent rehabilitation programmes, functional recovery is often limited, particularly in individuals with multi-morbidity. This leads to high care dependency and subsequent use of healthcare services. Fear of falling has a negative influence on recovery after hip fracture, due to avoidance of activity and subsequent restriction in mobility. Although fear of falling is highly prevalent after hip fracture, no structured treatment programme is currently available. This trial will evaluate whether targeted treatment of fear of falling in geriatric rehabilitation after hip fracture using a multi-component cognitive behavioural intervention (FIT-HIP), is feasible and (cost) effective in reducing fear of falling and associated activity restriction and thereby improves physical functioning. This multicentre cluster randomised controlled trial will be conducted among older patients with hip fracture and fear of falling who are admitted to a multidisciplinary inpatient geriatric rehabilitation programme in eleven post-acute geriatric rehabilitation units. Fifteen participants will be recruited from each site. Recruitment sites will be allocated by computer randomisation to either the control group, receiving usual care, or to the intervention group receiving the FIT-HIP intervention in addition to usual care. The FIT-HIP intervention is conducted by physiotherapists and will be embedded in usual care. It consists of various elements of cognitive behavioural therapy, including guided exposure to feared activities (that are avoided by the participants). Participants and outcome assessors are blinded to group allocation. Follow-up measurements will be performed at 3 and 6 months after discharge from geriatric rehabilitation. (Cost)-effectiveness and feasibility of the intervention will be evaluated. Primary outcome measures are fear of falling and mobility. Targeted treatment of fear of falling may improve recovery and physical and social functioning after hip fracture, thereby offering benefits for patients and reducing healthcare costs. Results of this study will provide insight into whether fear of falling is modifiable in the (geriatric) rehabilitation after hip fracture and whether the intervention is feasible. Netherlands Trial Register: NTR 5695 .

  5. Understanding hydraulic fracturing: a multi-scale problem.

    PubMed

    Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N

    2016-10-13

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  6. Understanding hydraulic fracturing: a multi-scale problem

    PubMed Central

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  7. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes.

    PubMed

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie C C; Aravena, Ramon; Canals, Àngels; Binning, Philip J; Bjerg, Poul L; Otero, Neus; Soler, Albert

    2014-03-15

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ(13)C values from -15.6 to -40.5‰ for TCE and from -18.5 to -32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ(37)Cl values for TCE in the contaminant sources, ranging from +0.53 to +0.66‰. Variations of δ(37)Cl and δ(13)C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Understanding Hydraulic Fracturing: A Multi-Scale Problem

    DOE PAGES

    Hyman, Jeffrey De'Haven; Gimenez Martinez, Joaquin; Viswanathan, Hari S.; ...

    2016-09-05

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nano-meters to kilo-meters. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical, and experimental efforts. At the field scale, we use discrete fracture network modeling to simulate production at a well site whose fracture network is based on a site characterization of a shale formation. At the core scale, we use triaxial fracture experiments and a finite-element discrete-elementmore » fracture propagation model with a coupled fluid solver to study dynamic crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and real micromodels to study pore-scale flow phenomenon such as multiphase flow and mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs.« less

  9. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    PubMed

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Investigations at berkeley on fracture flow in rocks: From the parallel plate model to chaotic systems

    NASA Astrophysics Data System (ADS)

    Witherspoon, Paul A.

    This is a review of research at Berkeley over the past 35 years on characterization of fractured rocks and their hydrologic behavior when subjected to perturbations of various kinds. The parallel plate concept was useful as a first approach, but researchers have found that it has limitations when used to examine rough fractures and understand effects of aperture distributions on heterogeneous flow paths, especially when the fracture is deformed under stress. Results of investigations have been applied to fractured and faulted geothermal systems, where the inherent, nonisothermal conditions produce a different kind of perturbation. In 1977, the Stripa project in Sweden provided an unusual underground laboratory excavated in granite where new methods of investigating fractured rock were developed. New theoretical studies have been carried out on the fundamental role of heterogeneous flow paths in controlling fluid migration in fractured rocks. A major field study is now underway at the Yucca Mountain Project in Nevada, where a site for a radioactive waste repository may be constructed. The main effort has been to characterize the rock mass (fractured tuff) in sufficient detail so that a site scale model can be constructed and used to simulate operation of the repository. A new and entirely different problem has been identified through infiltration tests in the fractured basalt layers of the Eastern Snake River Plane in Idaho. Water flow through the unusual heterogeneities of these layers is so erratic that a model based on a hierarchy of scales is being investigated.

  11. Development of stimulation diagnostic technology. Annual report, May 1990--December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Lorenz, J.C.

    The objective of this project is to apply Sandia`s expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. Initial work has concentrated on experiment planning for a site where hydraulic fracturing could be evaluated and design models and fracture diagnostics could be validated and improved. Important issues have been defined and new diagnostics, such as inclinometers, identified. In the area of in situ stress, circumferential velocity analysis is proving to be a useful diagnostic for stress orientation. Natural fracture studies of the Frontier formation aremore » progressing; two fracture sets have been found and their relation to tectonic events have been hypothesized. Analyses of stimulation data have been performed for several sites, primarily for in situ stress information. Some new ideas in stimulation diagnostics have been proposed; these ideas may significantly improve fracture diagnostic capabilities.« less

  12. Development of stimulation diagnostic technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Lorenz, J.C.

    The objective of this project is to apply Sandia's expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. Initial work has concentrated on experiment planning for a site where hydraulic fracturing could be evaluated and design models and fracture diagnostics could be validated and improved. Important issues have been defined and new diagnostics, such as inclinometers, identified. In the area of in situ stress, circumferential velocity analysis is proving to be a useful diagnostic for stress orientation. Natural fracture studies of the Frontier formation aremore » progressing; two fracture sets have been found and their relation to tectonic events have been hypothesized. Analyses of stimulation data have been performed for several sites, primarily for in situ stress information. Some new ideas in stimulation diagnostics have been proposed; these ideas may significantly improve fracture diagnostic capabilities.« less

  13. Multi-Scale Transport Properties of Fine-Grained Rocks: A Case Study of the Kirtland Formation, San Juan Basin, USA

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Wilson, T. H.; Flach, T.

    2009-12-01

    Understanding and characterizing transport properties of fine-grained rocks is critical in development of shale gas plays or assessing retention of CO2 at geologic storage sites. Difficulties arise in that both small scale (i.e., ~ nm) properties of the rock matrix and much larger scale fractures, faults, and sedimentological architecture govern migration of multiphase fluids. We present a multi-scale investigation of sealing and transport properties of the Kirtland Formation, which is a regional aquitard and reservoir seal in the San Juan Basin, USA. Sub-micron dual FIB/SEM imaging and reconstruction of 3D pore networks in core samples reveal a variety of pore types, including slit-shaped pores that are co-located with sedimentary structures and variations in mineralogy. Micron-scale chemical analysis and XRD reveal a mixture of mixed-layer smectite/illite, chlorite, quartz, and feldspar with little organic matter. Analysis of sub-micron digital reconstructions, mercury capillary injection pressure, and gas breakthrough measurements indicate a high quality sealing matrix. Natural full and partially mineralized fractures observed in core and in FMI logs include those formed from early soil-forming processes, differential compaction, and tectonic events. The potential impact of both fracture and matrix properties on large-scale transport is investigated through an analysis of natural helium from core samples, 3D seismic data and poro-elastic modeling. While seismic interpretations suggest considerable fracturing of the Kirtland, large continuous fracture zones and faults extending through the seal to the surface cannot be inferred from the data. Observed Kirtland Formation multi-scale transport properties are included as part of a risk assessment methodology for CO2 storage. Acknowledgements: The authors gratefully acknowledge the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory for sponsoring this project. The DOE’s Basic Energy Science Office funded the dual FIB/SEM analysis. The Kirtland Formation overlies the coal seams of the Fruitland into which CO2 has been injected as a Phase II demonstration of the Southwest Regional Partnership on Carbon Sequestration. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-ACOC4-94AL85000.

  14. Patterns of Pediatric Mandible Fractures in the United States.

    PubMed

    Owusu, James A; Bellile, Emily; Moyer, Jeffrey S; Sidman, James D

    2016-01-01

    The mandible is arguably the most frequently fractured facial bone in children. However, facial fractures are rare in children compared with adults, resulting in few large studies on patterns of pediatric facial fractures. To report the patterns, demographics, and cause of pediatric mandible fractures across the United States. A retrospective analysis was conducted of the Healthcare Cost and Utilization Project's National Emergency Department Sample from January 1 to December 31, 2012, using the International Classification of Disease, Ninth Revision, codes for mandible fractures (802.20-802.39) among patients 18 years and younger who presented to emergency departments. Demographics, fracture site, and fracture mechanism were analyzed to identify factors associated with fractures. Analysis was conducted from July 9 to July 28, 2015. There were 1984 records, representing a weighted estimate of 8848 cases of pediatric mandible fracture. The mean patient age was 14.0 years (95% CI, 13.6-14.3). The male to female ratio was 4:1 and females were comparatively younger, with a mean age of 12.5 years (95% CI, 11.8-13.1; P < .001). The most frequently fractured sites were the condyle, in 1288 patients (14.6% [95% CI, 12.6%-16.5%]), and the angle, in 1252 patients (14.1% [12.4%-15.9%]). Associated intracranial injuries occurred in 756 patients (8.5% [7.1%-10.0%]), and cervical spine fractures occurred in 393 (4.4% [3.5%-5.4%]). The fracture site and mechanism of injury varied with age and sex. For patients 12 years and younger, the most frequent fracture site was the condyle, accounting for 636 fractures (27.9% [24.2%-31.6%]), and the most frequent cause was falls, accounting for 692 fractures (30.3% [25.9%-34.8%]). In teenaged patients (13-18 years), the angle was the most frequent fracture site, accounting for 1157 fractures (17.6% [15.6%-19.6%]), and the most frequent cause was assault, accounting for 2619 fractures (39.9% [36.4%-43.3%]). For male patients, the angle was the predominant site, accounting for 1053 fractures (15.0% [13.1%-16.8%]), and the leading cause was assault, accounting for 2360 fractures (33.5% [30.2%-36.9%]). For female patients, the condyle was the most frequent site, accounting for 369 fractures (20.3% [16.0%-24.6%]), and the leading cause was falls, accounting for 422 fractures (23.2% [18.6%-28.0%]). In this study, age and sex disparities among pediatric mandible fractures were identified. Younger patients and female patients tend to have condyle fractures caused more commonly by falls while older patients and male patients tend to have angle fractures caused by assault. NA.

  15. Ethics Review for a Multi-Site Project Involving Tribal Nations in the Northern Plains.

    PubMed

    Angal, Jyoti; Petersen, Julie M; Tobacco, Deborah; Elliott, Amy J

    2016-04-01

    Increasingly, Tribal Nations are forming ethics review panels, which function separately from institutional review boards (IRBs). The emergence of strong community representation coincides with a widespread effort supported by the U.S. Department of Health & Human Services and other federal agencies to establish a single IRB for all multi-site research. This article underscores the value of a tribal ethics review board and describes the tribal oversight for the Safe Passage Study-a multi-site, community-based project in the Northern Plains. Our experience demonstrates the benefits of tribal ethics review and makes a strong argument for including tribal oversight in future regulatory guidance for multi-site, community-based research. © The Author(s) 2016.

  16. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. Themore » technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLing, Travis; Carpenter, Michael; Brandon, William

    The Environmental Protection Agency (EPA) has teamed with Battelle Energy Alliance, LLC (BEA) at Idaho National Laboratory (INL) to facilitate further testing of geologic-fracture-identification methodology at a field site near the Monsanto Superfund Site located in Soda Springs, Idaho. INL has the necessary testing and technological expertise to perform this work. Battelle Memorial Institute (BMI) has engaged INL to perform this work through a Work for Others (WFO) Agreement. This study continues a multi-year collaborative effort between INL and EPA to test the efficacy of using field deployed Cr-39 radon in soil portals. This research enables identification of active fracturesmore » capable of transporting contaminants at sites where fractures are suspected pathways into the subsurface. Current state of the art methods for mapping fracture networks are exceedingly expensive and notoriously inaccurate. The proposed WFO will evaluate the applicability of using cheap, readily available, passive radon detectors to identify conductive geologic structures (i.e. fractures, and fracture networks) in the subsurface that control the transport of contaminants at fracture-dominated sites. The proposed WFO utilizes proven off-the-shelf technology in the form of CR-39 radon detectors, which have been widely deployed to detect radon levels in homes and businesses. In an existing collaborative EPA/INL study outside of this workscope,. CR-39 detectors are being utilized to determine the location of active transport fractures in a fractured granitic upland adjacent to a landfill site at the Fort Devens, MA that EPA-designated as National Priorities List (NPL) site. The innovative concept of using an easily deployed port that allows the CR-39 to measure the Rn-222 in the soil or alluvium above the fractured rock, while restricting atmospheric Rn-222 and soil sourced Ra from contaminating the detector is unique to INL and EPA approach previously developed. By deploying a series of these inexpensive detector-casing combinations statistical samples of the Rn-222 flux can be measured, elucidating the most communicative fractures (i.e. fractures that are actively transporting water and gasses). The Rn-222 measurements can then be used as an input to create a more accurate conceptual model to be used for transport modeling and related cleanup activities. If the team’s approach is demonstrated to be applicable to a wide variety of rock types and soil conditions it might potentially offer significant cost saving without a reduction in data quality at Monsanto Superfund and other sites underlain by fracture-dominated bedrock.« less

  18. THERMAL TECHNOLOGY TESTED FOR CONTAMINANT RECOVERY

    EPA Science Inventory

    A research project on steam enhanced remediation (SER) for the recovery of dense nonaqueous phase liquid (DNAPL) from fractured limestone has been undertaken at the former Loring Air Force Base Quarry site in Limestone, ME. Participants in the project include the Maine Departmen...

  19. Fracture Incidence and Characteristics in Young Adults Aged 18 to 49 Years: A Population-Based Study.

    PubMed

    Farr, Joshua N; Melton, L Joseph; Achenbach, Sara J; Atkinson, Elizabeth J; Khosla, Sundeep; Amin, Shreyasee

    2017-12-01

    Although fractures in both the pediatric and, especially, the elderly populations have been extensively investigated, comparatively little attention has been given to the age group in between. Thus, we used the comprehensive (inpatient and outpatient) data resources of the Rochester Epidemiology Project to determine incidence rates for all fractures among young adult (age range, 18 to 49 years) residents of Olmsted County, Minnesota, in 2009 to 2011, and compared the distribution of fracture sites and causes in this young adult cohort with those for older residents aged 50 years or older. During the 3-year study period, 2482 Olmsted County residents aged 18 to 49 years experienced 1 or more fractures. There were 1730 fractures among 1447 men compared with 1164 among 1035 women, and the age-adjusted incidence of all fractures was 66% greater among the men (1882 [95% confidence interval 1793-1971] versus 1135 [95% CI 1069-1201] per 100,000 person-years; p < 0.001). Of all fractures, 80% resulted from severe trauma (eg, motor vehicle accidents) compared with 33% in Olmsted County residents age ≥50 years who sustained a fracture in 2009 to 2011. Younger residents (aged 18 to 49 years), when compared with older residents (aged ≥50 years), had a greater proportion of fractures of the hands and feet (40% versus 18%) with relatively few fractures observed at traditional osteoporotic fracture sites (14% versus 43%). Vertebral fractures were still more likely to be the result of moderate trauma than at other sites, especially in younger women. In conclusion, whereas pediatric and elderly populations often fracture from no more than moderate trauma, young adults, and more commonly men, suffer fractures primarily at non-osteoporotic sites due to more significant trauma. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  20. Fat embolism: special situations bilateral femoral fractures and pathologic femoral fractures.

    PubMed

    Kontakis, George M; Tossounidis, Theodoros; Weiss, Kurt; Pape, Hans-Christoph; Giannoudis, Peter V

    2006-10-01

    Few data are available in the literature regarding fat embolism in cases of bilateral femoral and pathological femoral fractures. The incidence of bilateral femoral fractures ranges from 2-9.5% of the total number of patients with femoral fractures, and they usually occur in high energy trauma and multi-trauma patients. Although injury severity scores tend to underestimate the severity of these injuries, fat embolism seems to occur in increased frequency ranging from 4.8-7.5%. Intramedullary nailing, which is the preferred surgical treatment, triggers a systemic inflammatory response that poses an additional burden to pulmonary function. In addition, the femur is a common site of metastatic bone disease. The treatment of impending and actual pathological fractures is complicated by increased rates of lung damage due to various factors. Fat embolism during treatment--mainly with intramedullary nails--generally seems to range from 0-10%.

  1. Site systems engineering fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRYGIEL, M.L.

    1998-10-08

    Manage the Site Systems Engineering process to provide a traceable integrated requirements-driven, and technically defensible baseline. Through the Site Integration Group(SIG), Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering's primary interfaces are with the RL Project Managers, the Project Direction Office and with the Project Major Subcontractors, as well as with the Site Planning organization. Systems Implementation: (1) Develops, maintains, and controls the site integrated technical baseline, ensures the Systems Engineering interfaces between projects are documented, and maintain the Site Environmental Management Specification. (2) Develops and uses dynamic simulation models for verification of the baselinemore » and analysis of alternatives. (3) Performs and documents fictional and requirements analyses. (4) Works with projects, technology management, and the SIG to identify and resolve technical issues. (5) Supports technical baseline information for the planning and budgeting of the Accelerated Cleanup Plan, Multi-Year Work Plans, Project Baseline Summaries as well as performance measure reporting. (6) Works with projects to ensure the quality of data in the technical baseline. (7) Develops, maintains and implements the site configuration management system.« less

  2. Technology Transfer at Edgar Mine: Phase 1; October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad R.; Bauer, Stephen; Nakagawa, Masami

    The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed asmore » a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.« less

  3. Multi-Site Ethnography, Hypermedia and the Productive Hazards of Digital Methods: A Struggle for Liveness

    ERIC Educational Resources Information Center

    Gallagher, Kathleen; Freeman, Barry

    2011-01-01

    This article explores the possibilities and frustrations of using digital methods in a multi-sited ethnographic research project. The project, "Urban School Performances: The interplay, through live and digital drama, of local-global knowledge about student engagement", is a study of youth and teachers in drama classrooms in contexts of…

  4. Rationale, design, and methods for process evaluation in the Childhood Obesity Research Demonstration project

    USDA-ARS?s Scientific Manuscript database

    The cross-site process evaluation plan for the Childhood Obesity Research Demonstration (CORD) project is described here. The CORD project comprises 3 unique demonstration projects designed to integrate multi-level, multi-setting health care and public health interventions over a 4-year funding peri...

  5. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and fracture fill material. Nearly 50% of the sorbed Am was exchanged from the colloids to the fracture filling material in each of the three columns; whereas, less Cs and Pu was desorbed with each pass through a new column. Using a two-site kinetic model allowed for interrogation of desorption rates and dominant transport parameters.

  6. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less

  7. Middlesex FUSRAP Site - A Path to Site-Wide Closure - 13416

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David M.; Edge, Helen

    2013-07-01

    The road-map to obtaining closure of the Middlesex Sampling Plant FUSRAP site in Middlesex, New Jersey (NJ) has required a multi-faceted approach, following the CERCLA Process. Since 1998, the US ACE, ECC, and other contractors have completed much of the work required for regulatory acceptance of site closure with unrestricted use. To date, three buildings have been decontaminated, demolished, and disposed of. Two interim storage piles have been removed and disposed of, followed by the additional removal and disposal of over 87,000 tons of radiologically and chemically-impacted subsurface soils by the summer of 2008. The US ACE received a determinationmore » from the EPA for the soils Operable Unit, (OU)-1, in September 2010 that the remedial excavations were acceptable, and meet the criteria for unrestricted use as required by the 2004 Record of Decision (ROD) for OU-1. Following the completion of OU-1, the project delivery team performed additional field investigation of the final Operable Unit for Middlesex, OU-2, Groundwater. As of December 2012, the project delivery team has completed a Supplemental Remedial Investigation, which will be followed with a streamlined Feasibility Study, Proposed Plan, and ROD. Several years of historical groundwater data was available from previous investigations and the FUSRAP Environmental Surveillance Program. Historical data indicated sporadic detections of Volatile Organic Compounds (VOCs), primarily trichloroethylene (TCE), carbon tetrachloride (CT), and methyl tert-butyl ether (MTBE), with no apparent trend or pattern indicating extent or source of the VOC impact. In 2008, the project delivery team initiated efforts to re-assess the Conceptual Site Model (CSM) for groundwater. The bedrock was re-evaluated as a leaky multi-unit aquifer, and a plan was developed for additional investigations for adequate bedrock characterization and delineation of groundwater contaminated primarily by CT, TCE, and tetrachloroethene (PCE). The investigation was designed to accumulate multiple lines of evidence to determine the source and to delineate the extent of contamination, as required to complete the CERCLA Process and gain regulatory acceptance. Investigative techniques included in-well vertical flow tracing, borehole geophysics and packer testing of temporary test holes to characterize contamination in the bedrock fractures beneath the site, and to delineate likely source areas. (authors)« less

  8. Preliminary Fracture Description from Core, Lithological Logs, and Borehole Geophysical Data in Slimhole Wells Drilled for Project Hotspot: the Snake River Geothermal Drilling Project

    NASA Astrophysics Data System (ADS)

    Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.

    2011-12-01

    The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.

  9. The Growth of Multi-Site Fatigue Damage in Fuselage Lap Joints

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1999-01-01

    Destructive examinations were performed to document the progression of multi-site damage (MSD) in three lap joint panels that were removed from a full scale fuselage test article that was tested to 60,000 full pressurization cycles. Similar fatigue crack growth characteristics were observed for small cracks (50 microns to 10 mm) emanating from counter bore rivets, straight shank rivets, and 100 deg counter sink rivets. Good correlation of the fatigue crack growth data base obtained in this study and FASTRAN Code predictions show that the growth of MSD in the fuselage lap joint structure can be predicted by fracture mechanics based methods.

  10. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Xie, Jian; Zhang, Keni; Hu, Litang; Pavelic, Paul; Wang, Yongsheng; Chen, Maoshan

    2015-11-01

    Saline formations are considered to be candidates for carbon sequestration due to their great depths, large storage volumes, and widespread occurrence. However, injecting carbon dioxide into low-permeability reservoirs is challenging. An active demonstration project for carbon dioxide sequestration in the Ordos Basin, China, began in 2010. The site is characterized by a deep, multi-layered saline reservoir with permeability mostly below 1.0 × 10-14 m2. Field observations so far suggest that only small-to-moderate pressure buildup has taken place due to injection. The Triassic Liujiagou sandstone at the top of the reservoir has surprisingly high injectivity and accepts approximately 80 % of the injected mass at the site. Based on these key observations, a three-dimensional numerical model was developed and applied, to predict the plume dynamics and pressure propagation, and in the assessment of storage safety. The model is assembled with the most recent data and the simulations are calibrated to the latest available observations. The model explains most of the observed phenomena at the site. With the current operation scheme, the CO2 plume at the uppermost reservoir would reach a lateral distance of 658 m by the end of the project in 2015, and approximately 1,000 m after 100 years since injection. The resulting pressure buildup in the reservoir was below 5 MPa, far below the threshold to cause fracturing of the sealing cap (around 33 MPa).

  11. Geothermal reservoir characterization through active thermal testing

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Klepikova, Maria; Jalali, Mohammadreza; Fisch, Hansruedi; Loew, Simon; Amann, Florian

    2016-04-01

    Development and deployment of Enhanced Geothermal Systems (EGS) as renewable energy resources are part of the Swiss Energy Strategy 2050. To pioneer further EGS projects in Switzerland, a decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been launched at the Grimsel Test Site (GTS). The experiments are hosted in a low fracture density volume of the Grimsel granodiorite, similar to those expected at the potential enhanced geothermal system sites in the deep basement rocks of Northern Switzerland. One of the key goals of this multi-disciplinary experiment is to provide a pre- and post-stimulation characterization of the hydraulic and thermal properties of the stimulated fracture network with high resolution and to determine natural structures controlling the fluid flow and heat transport. Active thermal tests including thermal dilution tests and heat tracer tests allow for investigation of groundwater fluid flow and heat transport. Moreover, the spatial and temporal integrity of distributed temperature sensing (DTS) monitoring upgrades the potential and applicability of thermal tests in boreholes (e.g. Read et al., 2013). Here, we present active thermal test results and discuss the advantages and limitations of this method compared to classical approaches (hydraulic packer tests, solute tracer tests, flowing fluid electrical conductivity logging). The experimental tests were conducted in two boreholes intersected by a few low to moderately transmissive fault zones (fracture transmissivity of about 1E-9 m2/s - 1E-7 m2/s). Our preliminary results show that even in low-permeable environments active thermal testing may provide valuable insights into groundwater and heat transport pathways. Read T., O. Bour, V. Bense, T. Le Borgne, P. Goderniaux, M.V. Klepikova, R. Hochreutener, N. Lavenant, and V. Boschero (2013), Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing, Geophys. Res. Lett., 40, 2055-2059, doi:10.1002/grl.5039

  12. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  13. Mechanical Stability of Fractured Rift Basin Mudstones: from lab to basin scale

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.; Collins, D.; Swager, L.; Payne, W. G.

    2016-12-01

    Understanding petrophysical and mechanical properties of caprock mudstones is essential for ensuring good containment and mechanical formation stability at potential CO2 storage sites. Natural heterogeneity and presence of fractures, however, create challenges for accurate prediction of mudstone behavior under injection conditions and at reservoir scale. In this study, we present a multi-scale geomechanical analysis for Mesozoic mudstones from the Newark Rift basin, integrating petropyshical core and borehole data, in situ stress measurements, and caprock stability modeling. The project funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) focuses on the Newark basin as a representative locality for a series of the Mesozoic rift basins in eastern North America considered as potential CO2 storage sites. An extensive core characterization program, which included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, acoustic velocity measurements, and geomechanical testing under a range of confining pressures, revealed large variability and heterogeneity in both petrophysical and mechanical properties. Estimates of unconfined compressive strength for these predominantly lacustrine mudstones range from 5,000 to 50,000 psi, with only a weak correlation to clay content. Thinly bedded intervals exhibit up to 30% strength anisotropy. Mineralized fractures, abundant in most formations, are characterized by compressive strength as low as 10% of matrix strength. Upscaling these observations from core to reservoir scale is challenging. No simple one-to-one correlation between mechanical and petrophyscial properties exists, and therefore, we develop multivariate empirical relationships among these properties. A large suite of geophysical logs, including new measurements of the in situ stress field, is used to extrapolate these relationships to a basin-scale geomechanical model and predict mudstone behavior under injection conditions.

  14. A Methodology for Confirmatory Testing of Numerical Models of Groundwater Flow and Solute Transport in Fractured Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hartley, L.; Follin, S.; Rhen, I.; Selroos, J.

    2008-12-01

    Three-dimensional, regional, numerical models of groundwater flow and solute transport in fractured crystalline rock are used for two sites in Sweden that are considered for geological disposal of spent nuclear fuel. The models are used to underpin the conceptual modeling that is based on multi-disciplinary data and include descriptions of the geometry of geological features (deformation zones and fracture networks), transient hydrological and chemical boundary conditions, strong spatial heterogeneity in the hydraulic properties, density driven flow, solute transport including rock matrix diffusion, and mixing of different water types in a palaeo-hydrogeological perspective (last 10,000 years). From a credibility point of view, comparisons between measured and simulated data are important and provide a means to address our ability to understand complex hydrogeological systems, and hence what particular applications of a hydrogeological model of a physical system that are justified, e.g. in subsequent repository performance assessment studies. For instance, it has been suggested that an understanding of the hydrochemical evolution throughout geological time is a powerful tool to predict the future evolution of groundwater flow and its chemical composition. The general approach applied in the numerical modeling was to first parameterize the deformation zones and fracture networks hydraulically using fracture and inflow data from single-hole tests. Second, the confirmatory step relies on using essentially the same groundwater flow and solute transport model in terms of grid discretization and parameter settings for matching three types of independent field data: 1) large-scale cross-hole (interference) tests, 2) long-term monitoring of groundwater levels, and 3) hydrochemical composition of fracture water and matrix pore water in deep boreholes. We demonstrate here the modelling approach of the second step - confirmatory testing - using data from the site investigations undertaken at one of the sites in Sweden (Forsmark). Using the three types of data, a unified conceptual description of the groundwater system has been obtained. The integration of multi-disciplinary data and models in the confirmatory testing has provided a means to increase the level of confidence in the final site descriptive model. Specifically, discipline-specific data and models from hydrogeology (transmissivities, groundwater levels, hydraulic gradients), geology (genesis of structures, geometries), rock mechanics (principal stresses), hydrogeochemistry (fracture water and matrix pore water composition) and bedrock transport properties (flow wetted surface, advective residence time) have been utilized in the description of the groundwater system in the bedrock.

  15. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    NASA Astrophysics Data System (ADS)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from the parametric uncertainty. To quantify the conceptual uncertainty from a given site, we combine the outputs from the different conceptual models using Bayesian model averaging. The weight for each model is obtained by integrating available data and expert knowledge using Bayesian belief networks. The multi-model approach is applied to a contaminated site. At the site a DNAPL (dense non aqueous phase liquid) spill consisting of PCE (perchloroethylene) has contaminated a fractured clay till aquitard overlaying a limestone aquifer. The exact shape and nature of the source is unknown and so is the importance of transport in the fractures. The result of the multi-model approach is a visual representation of the uncertainty of the mass discharge estimates for the site which can be used to support the management options.

  16. 76 FR 15961 - Funding Priorities and Selection Criterion; Disability and Rehabilitation Research Projects and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... least one, but no more than two, site-specific research projects to test innovative approaches to... Criterion; Disability and Rehabilitation Research Projects and Spinal Cord Injury Model Systems Centers and Multi-Site Collaborative Research Projects AGENCY: Office of Special Education and Rehabilitative...

  17. Numerical Simulation Applications in the Design of EGS Collab Experiment 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; White, Mark D.; Fu, Pengcheng

    The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less

  18. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    NASA Astrophysics Data System (ADS)

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  19. Fracture risk in hepatitis C virus infected persons: results from the DANVIR cohort study.

    PubMed

    Hansen, Ann-Brit Eg; Omland, Lars Haukali; Krarup, Henrik; Obel, Niels

    2014-07-01

    The association between Hepatitis C virus (HCV)-infection and fracture risk is not well characterized. We compared fracture risk between HCV-seropositive (HCV-exposed) patients and the general population and between patients with cleared and chronic HCV-infection. Outcome measures were time to first fracture at any site, time to first low-energy and first non-low-energy (other) fracture in 12,013 HCV-exposed patients from the DANVIR cohort compared with a general population control cohort (n=60,065) matched by sex and age. Within DANVIR, 4500 patients with chronic HCV-infection and 2656 patients with cleared HCV-infection were studied. Compared with population controls, HCV-exposed patients had increased overall risk of fracture [adjusted incidence rate ratio (aIRR) 2.15, 95% Confidence Interval (CI) 2.03-2.28], increased risk of low-energy fracture (aIRR 2.13, 95% CI: 1.93-2.35) and of other fracture (aIRR 2.18, 95% CI: 2.02-2.34). Compared with cleared HCV-infection, chronic HCV-infection was not associated with increased risk of fracture at any site (aIRR 1.08, 95% CI: 0.97-1.20), or other fracture (aIRR 1.04, 95% CI: 0.91-1.19). The aIRR for low-energy fracture was 1.20 (95% CI: 0.99-1.44). HCV-exposed patients had increased risk of all fracture types. In contrast, overall risk of fracture did not differ between patients with chronic vs. cleared HCV-infection, although chronic HCV-infection might be associated with a small excess risk of low-energy fractures. Our study suggests that fracture risk in HCV-infected patients is multi-factorial and mainly determined by lifestyle-related factors associated with HCV-exposure. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Comparison of Fracture Gradient Methods for the FutureGen 2.0 Carbon Storage Site, Ill., USA.

    NASA Astrophysics Data System (ADS)

    Appriou, D.; Spane, F.; Wurstner White, S.; Kelley, M. E.; Sullivan, E. C.; Bonneville, A.; Gilmore, T. J.

    2014-12-01

    As part of a first-of-its-kind carbon dioxide storage project, FutureGen Industrial Alliance is planning to inject 1.1 MMt/yr of supercritical CO2 over a 20-year period within a 1240 m deep saline aquifer (Mount Simon Sandstone) located in Morgan County, Illinois, USA. Numerous aspects of the design and operational activities of the CO2 storage site are dependent on the geomechanical properties of the targeted reservoir zone, as well as of the overlying confining zone and the underlying crystalline Precambrian basement. Detailed determination of the state-of-stress within the subsurface is of paramount importance in successfully designing well drilling/completion aspects, as well as assessing the risk of induced seismicity and the potential for creating and/or reopening pre-existing fractures; all of which help ensure the safe long-term storage of injected CO2. The quantitative determination of the subsurface fracture gradient is one of the key geomechanical parameters for the site injection design and operational limits (e.g., maximum safe injection pressure). A characterization well drilled in 2011 provides subsurface geomechanical characterization information for the FutureGen 2.0 site, and includes: 1) continuous elastic properties inferred from sonic/acoustic wireline logs 2) discrete depth geomechanical laboratory core measurements and 3) results obtained from hydraulic fracturing tests of selected borehole/depth-intervals. In this paper, the precise fracture gradients derived from borehole geomechanical test results are compared with semi-empirical, fracture gradient calculation/relationships based on elastic property wireline surveys and laboratory geomechanical core test results. Implications for using various fracture-gradients obtained from the different methods are assessed using PNNL's subsurface multiphase flow and transport simulator STOMP-CO2. The implications for operational activities at the site (based on using different fracture gradients) are also discussed.

  1. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, C. M.; Dobson, P. F.; Wu, Y.

    In support of the U.S. DOE SubTER Crosscut initiative, we established a field test facility in a deep mine and designed and carried out in situ hydraulic fracturing experiments in the crystalline rock at the site to characterize the stress field, understand the effects of rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The project also included pre- and post-fracturing simulation and analysis, laboratory measurements and experiments, and we conducted an extended analysis of the local stress state using previously collected data. Some of these activities are still ongoing. The kISMET (permeability (k) and Induced Seismicitymore » Management for Energy Technologies) experiments meet objectives in SubTER’s “stress” pillar and the “new subsurface signals” pillar. The kISMET site was established in the West Access Drift of SURF 4850 ft (1478 m) below ground (on the 4850L) in phyllite of the Precambrian Poorman Formation. We drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume at ~1528 m (5013 ft). Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale (~1 cm or smaller) changes in the mechanical properties of the rock. The load-displacement record on the core suggests that the elastic stiffness is anisotropic. Tensile strength ranges between 3-7.5 MPa and 5-12 MPa. Permeability measurements are planned, as are two types of laboratory miniature hydraulic fracturing experiments to investigate the importance of rock fabric (anisotropy and heterogeneity) on near-borehole hydraulic fracture generation. Pre-fracturing numerical simulations with INL’s FALCON discrete element code predicted a fracture radius of 1.2 m for a corresponding injection volume of 1.2 L for the planned fractures, and negligible microseismicity. Field measurements of the stress field by hydraulic fracturing showed that the minimum horizontal stress at the kISMET site averages 21.7 MPa (3146 psi) pointing approximately N-S (356 degrees azimuth) and plunging slightly NNW at 12°. The vertical and horizontal maximum stress are similar in magnitude at 42-44 MPa (6090-6380 psi) for the depths of testing which averaged approximately 1530 m (5030 ft). Hydraulic fractures were remarkably uniform suggesting core-scale and larger rock fabric did not play a role in controlling fracture orientation. Monitoring using ERT and CASSM in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift, was carried out during the generation of a larger fracture (so-called stimulation test) at a depth of 40 m below the invert. ERT was not able to detect the fracture created, nor were the accelerometers in the drift, but microseismicity was detected for first (deepest) hydraulic-fracturing stress measurement. The CASSM data have not yet been analyzed. Analytical solutions suggest fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. The kISMET results for stress state are consistent with large-scale mid-continent estimates of stress. Currently we are using the orientation of the stress field we determined to interpret a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF. The efforts on the project have prompted a host of additional follow-on studies that we recommend be carried out at the kISMET site.« less

  2. Designing, Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock

    DTIC Science & Technology

    2017-03-27

    the project, and was based on CB&I’s experience at DoD sites, a literature review, and by discussions with site contractors , regulators, and DoD...to collection in the holding tank ( HT -1) for characterization and proper disposal. The use of GAC and diversion to the holding tank was only employed

  3. Trends in Fracture Incidence: A Population-Based Study Over 20 Years

    PubMed Central

    Amin, S.; Achenbach, S. J.; Atkinson, E. J.; Khosla, S.; Melton, L. J.

    2013-01-01

    To assess recent trends in fracture incidence from all causes at all skeletal sites, we used the comprehensive (inpatient and outpatient) data resources of the Rochester Epidemiology Project to estimate rates for Olmsted County, Minnesota, residents in 2009–11, compared to similar data from 1989–91. During the three-year study period, 2009–11, 3549 residents ≥ 50 years of age experienced 5244 separate fractures. The age- and sex-adjusted (to the 2010 United States white population) incidence of any fracture was 2704 per 100,000 person-years (95% CI 2614–2793) and that for all fractures was 4017 per 100,000 (95% CI 3908–4127). Fracture incidence increased with age in both sexes, but age-adjusted rates were 49% greater among the women. Overall, comparably adjusted fracture incidence rates increased by 11% (from 3627 to 4017 per 100,000 person-years; p = 0.008) between 1989–91 and 2009–2011. This was mainly due to a substantial increase in vertebral fractures (+47% for both sexes combined), which was partially offset by a decline in hip fractures (−25%) among the women. There was also a 26% reduction in distal forearm fractures among the women; an increase in distal forearm fractures among men age 50 years and over was not statistically significant. The dramatic increase in vertebral fractures, seen in both sexes and especially after age 75 years, was attributable in part to incidentally-diagnosed vertebral fractures. However, the fall in hip fracture incidence, observed in most age-groups, continues the steady decline observed among women in this community since 1950. More generally, these data indicate that the dramatic increases in the incidence of fractures at many skeletal sites that were observed decades ago have now stabilized. PMID:23959594

  4. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Matthew W.

    2014-05-16

    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetratingmore » radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water elevated 30 degrees C above the formation water was circulated between two wells pairs. One well pair had been identified in hydraulic and tracer testing as well connected and the other poorly connected. Temperature rise was measured in the adjacent rock matrix using coiled fiber optic cable interrogated for temperature using a DTS. This experimental design produced over 4000 temperature measurements every hour. We found that heat transfer between the fracture and the rock matrix was highly impacted by the character of the flow field. The strongly connected wells which had demonstrated flow channelization produced heat rise in a much more limited area than the more poorly connected wells. In addition, the heat increase followed the natural permeability of the fracture rather than the induced flow field. The primary findings of this work are (1) even in a single relatively planar fracture, the flow field can be highly heterogeneous and exhibit flow channeling, (2) channeling results from a combination of fracture permeability structure and the induced flow field, and (3) flow channeling leads to reduced heat transfer. Multi-ionic tracers effectively estimate relative surface area but an estimate of ion-exchange coefficients are necessary to provide an absolute measure of specific surface area. Periodic hydraulic tests also proved a relative indicator of connectivity but cannot prove an absolute measure of specific surface area.« less

  5. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  6. Borehole sampling of fracture populations - compensating for borehole sampling bias in crystalline bedrock aquifers, Mirror Lake, Grafton County, New Hampshire

    USGS Publications Warehouse

    McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.

    1997-01-01

    The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.

  7. Multi-Site Quality Assurance Project Plan for Wisconsin Public Service Corporation, Peoples Gas Light and Coke Company, and North Shore Gas

    EPA Pesticide Factsheets

    This Multi-Site QAPP presents the organization, data quality objectives (DQOs), a set of anticipated activities, sample analysis, data handling and specific Quality Assurance/Quality Control (QA/QC) procedures associated with Studies done in EPA Region 5

  8. In-situ stress measurements at DOE's Multi-Well Experiment site, Mesaverde Group, Rifle, CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of the vertical distribution of the minimum principal in situ stress in the lower Mesaverde group (7300 to 8100 ft depth) at DOE's Multi-Well Experiment site have been made by conducting small-volume, hydraulic-fracture stress tests through perforations. Accurate, reproducible results were obtained by conducting a number of repeat injections in each zone of interest using a specially designed pump system, modified high-resolution electronic equipment, and a down-hole shut-off tool with a bottom-hole pressure transducer. Stress tests were conducted in marine sandstones and shales as well as a coal, mudstone, and sandstone in a paludal depositional environment; these tests providemore » a detailed stress distribution in this region. The stress magnitudes were found to be dependent on lithology. Marine shales above and below the blanket sands have large horizontal stress - near lithostatic with a frac gradient greater than 1.0 psi/ft (23 kPa/m). This indicates that these rocks do not behave elastically and processes such as creep and possibly fracturing are the dominant mechanisms controlling the stress state. On the other hand, sandstones and siltstones have much lower stresses with a frac gradient of 0.85 to 0.9 psi/ft (19 to 20 kPa/m). Containment of hydraulic fractures would be expected under these conditions. Only three data points were obtained from the paludal interval; no significant stress differences were observed in the different lithologies. 19 references, 8 figures, 1 table.« less

  9. Healing Fractured Lives: How Three School-Based Projects Approach Violence Prevention and Mental Health Care.

    ERIC Educational Resources Information Center

    Fiester, Leila; Nathanson, Sara

    Many health and education practitioners agree that school-based violence prevention services can counteract the negative effects of violence by offering children access to mental health care. The lessons learned at three sites that implemented such programs in various schools are reported here. Although the sample of sites was small and diverse,…

  10. Archaeological Investigations at Site 45-DO-282, Chief Joseph Dam Project, Washington

    DTIC Science & Technology

    1984-01-01

    and Mr. Joseph, in particular. Excavations at 45-00-282 were carried out by a joint Western Washington University and University of Washington field...not terminate in a snap fracture . A few have been snapped jcross both the dorsal and proximal ends. Except for these few C4’ aa CL, cw V. .f q-1f1410... fractures , it is virtually •-:1 impossible to classify breakage as Intentional, or as an accidental product of manufacture. Many of the core flutes

  11. Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Siami-Irdemoosa, Elnaz

    In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.

  12. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; themore » importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.« less

  13. Potential Experimental Topics for EGS Collab Experiment 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; Mattson, Earl; Blankenship, Douglas

    To facilitate the success of FORGE, the DOE GTO has initiated a new research effort, the EGS Collab project, which will utilize readily accessible underground facilities that can refine our understanding of rock mass response to stimulation and provide a test bed at intermediate (~10 m) scale for the validation of thermal-hydrological-mechanical-chemical modeling approaches as well as novel monitoring tools. The first two EGS Experiments 1 and 2 are planned be performed under different stress/fracture conditions, and will evaluate different stimulation processes: Experiment 1 will focus on hydrofracturing of a competent rock mass, while Experiment 2 will concentrate on hydroshearingmore » of a rock mass that contains natural fractures. Experiment 3 is scheduled to begin in 2019 will build off the lessons learned in Experiments 1 and 2 and will investigate alternate stimulation and operation methods to improve heat extraction in an EGS reservoir. This paper evaluates potential experiments that could potentially be conducted in Experiment 3. The two technical parameters defining energy extracted from EGS reservoirs with the highest economic uncertainty and risk are the production well flow rates and the reservoir thermal drawdown rate. A review of historical and currently on-going EGS studies has identified that over 1/2 of the projects have identified heat extraction challenges during their operation associated with these two parameters as well as some additional secondary issues. At present, no EGS reservoir has continuously produced flow rates on the order of 80 kg/s. Short circuiting (i.e. early thermal breakthrough) has been identified in numerous cases. In addition, working fluid loss (i.e. the difference between the injected fluid mass and the extracted fluid mass as compared to the injected mass) has been as high as 90%. Finally, the engineering aspects of operating a true EGS multi-fracture reservoir such as repairing/modifying fractures and controlling working fluid fluxes within multiple fractures for the effective EGS fracture management has not been sufficiently studied. To examine issues such as these, EGS Collab Experiment 3 may be conducted in the testbeds prepared for Experiments 1 and 2 by improving the previously performed stimulations, or conducted at a new site performing new stimulations with alternate method. Potential experiments may include using different stimulation and working fluids, evaluating different stimulation methods, using proppants to enhance permeability, and other high-risk high-reward methods that can be evaluated at the 10-m scale environment.« less

  14. Mechanisms for Ductile Rupture - FY16 ESC Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip

    2017-01-01

    Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less

  15. "Less Clicking, More Watching": Results from the User-Centered Design of a Multi-Institutional Web Site for Art and Culture.

    ERIC Educational Resources Information Center

    Vergo, John; Karat, Clare-Marie; Karat, John; Pinhanez, Claudio; Arora, Renee; Cofino, Thomas; Riecken, Doug; Podlaseck, Mark

    This paper summarizes a 10-month long research project conducted at the IBM T.J. Watson Research Center aimed at developing the design concept of a multi-institutional art and culture web site. The work followed a user-centered design (UCD) approach, where interaction with prototypes and feedback from potential users of the web site were sought…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, R.D.; Lekia, S.D.L.

    This paper presents the results of parametric studies of two naturally fractured lenticular tight gas reservoirs, Fluvial E-1 and Puludal Zones 3 and 4, of the U.S. Department of Energy Multi-Well Experiment (MWX) site of Northwestern Colorado. The three-dimensional, two-phase, black oil reservoir simulator that was developed in a previous phase of this research program is also discussed and the capabilities further explored by applying it to several example problems.

  17. Naval Medical Research and Development News. Volume 7, Issue 10

    DTIC Science & Technology

    2015-10-01

    SR) product against adult Aedes aegypti the primary vector for DENV. The goal of this project is to obtain evidence that SRs lessen contact between...multi-site project designated to test the SR against the dengue vector Aedes aegypti. Four other sites will evaluate its impact against malarial

  18. Shale Gas Exploration and Exploitation Induced Risks - SHEER

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Cesca, Simone; Gunning, Andrew; jaroslawsky, Janusz; Garcia-Aristizabal, Alexander; Westwood, Rachel; Gasparini, Paolo

    2017-04-01

    Shale gas operations may affect the quality of air, water and landscapes; furthermore, it can induce seismic activity, with the possible impacts on the surrounding infrastructure. The SHEER project aims at setting up a probabilistic methodology to assess and mitigate the short and the long term environmental risks connected to the exploration and exploitation of shale gas. In particular we are investigating risks associated with groundwater contamination, air pollution and induced seismicity. A shale gas test site located in Poland (Wysin) has been monitored before, during and after the fracking operations with the aim of assessing environmental risks connected with groundwater contamination, air pollution and earthquakes induced by fracking and injection of waste water. The severity of each of these hazards depends strongly on the unexpected enhanced permeability pattern, which may develop as an unwanted by-product of the fracking processes and may become pathway for gas and fluid migration towards underground water reservoirs or the surface. The project is devoted to monitor and understand how far this enhanced permeability pattern develops both in space and time. The considered hazards may be at least partially inter-related as they all depend on this enhanced permeability pattern. Therefore they are being approached from a multi-hazard, multi parameter perspective. We expect to develop methodologies and procedures to track and model fracture evolution around shale gas exploitation sites and a robust statistically based, multi-parameter methodology to assess environmental impacts and risks across the operational lifecycle of shale gas. The developed methodologies are going to be applied and tested on a comprehensive database consisting of seismicity, changes of the quality of ground-waters and air, ground deformations, and operational data collected from the ongoing monitoring episode (Wysin) and past episodes: Lubocino (Poland), Preese Hall (UK), Oklahoma (USA), Groningen Field (Netherlands), Gross Schönebeck (Germany), The Geysers (USA), Cooper Basin(Australia). Best practices to be applied in Europe to monitor and minimize any environmental impacts will be worked out with the involvement of governmental decisional bodies, private industries and experts This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project n.640896, funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1

  19. Facies Modeling Using 3D Pre-Stack Simultaneous Seismic Inversion and Multi-Attribute Probability Neural Network Transform in the Wattenberg Field, Colorado

    NASA Astrophysics Data System (ADS)

    Harryandi, Sheila

    The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.

  20. Miniplate for osteosynthesis in a 9-year-old with symphysis fracture: clinical report.

    PubMed

    Srinivasan, Ila; Kumar, Naveen; Jaganathan, Udhya; Bhandari, Arihant

    2013-09-01

    Osteosynthesis using minimum material in pediatric mandibular fractures is the key, due to the limited space available in the mandible, especially in the mental foramen and apical region. There is an important role of open reduction and rigid internal fixation in re-establishing facial height, width and projection. During the early years of growth and development, there is a high osteogenic potential of the bones. The thick periosteum allows for rapid consolidation and remodeling at the site of fracture. Primary teeth have short, bulbous crowns which compromise stable maxillomandibular fixation during fracture reduction and stabilization using traditional methods. Further, stability of the fractured segments may be hampered because of the displaced or mobile permanent anterior teeth in the mixed dentition along the line of fracture. This clinical report outlines the use of miniplate with monocortical screws in a 9-year-old boy with symphysis fracture. How to cite this article: Srinivasan I, Kumar N, Jaganathan U, Bhandari A. Miniplate for Osteosynthesis in a 9-Year-Old with Symphysis Fracture: Clinical Report. Int J Clin Pediatr Dent 2013;6(3):213-216.

  1. A Distal Forearm Fracture in Childhood Is Associated With an Increased Risk for Future Fragility Fractures in Adult Men, but Not Women

    PubMed Central

    Amin, Shreyasee; Melton, L Joseph; Achenbach, Sara J; Atkinson, Elizabeth J; Dekutoski, Mark B; Kirmani, Salman; Fischer, Philip R; Khosla, Sundeep

    2014-01-01

    Distal forearm fractures are among the most common fractures during childhood, but it remains unclear whether they predict an increased fracture risk later in life. We studied a population-based cohort of 1776 children ≤18 years of age, from Olmsted County, MN, USA, who had a distal forearm fracture in 1935–1992. Incident fractures occurring at age ≥35 years were identified through review of complete medical records using the linkage system of the Rochester Epidemiology Project. Observed nonpathologic fractures resulting from no more than moderate trauma (fragility fractures) were compared with expected numbers estimated from fracture site–specific incidence rates, based on age, sex, and calendar year, for Olmsted County (standardized incidence ratios [SIR]). In 1086 boys (mean ± SD age; 11 ± 4 years) and 690 girls (10 ± 4 years) followed for 27,292 person-years after the age of 35 years, subsequent fragility fractures were observed in 144 (13%) men and 74 (11%) women. There was an increased risk for future fragility fractures in boys who had a distal forearm fracture (SIR, 1.9; 95% CI, 1.6–2.3) but not girls (SIR, 1.0; 95% CI, 0.8–1.2). Fragility fractures at both major osteoporotic (hip, spine, wrist, and shoulder) sites (SIR, 2.6; 95% CI, 2.1–3.3) and remaining sites (SIR, 1.7; 95% CI, 1.3–2.0) were increased in men, irrespective of age at distal forearm fracture as boys. A distal forearm fracture in boys, but not girls, is associated with an increased risk for fragility fractures as older adults. It is necessary to determine whether the increased fractures observed in men is due to persistent deficits of bone strength, continued high fracture risk activity, or both. Until then, men should be asked about a childhood distal forearm fracture and, if so, warrant further screening and counseling on measures to optimize bone health and prevent fractures. PMID:23456800

  2. Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Matthew

    The extraction of heat from hot rock requires circulation of fluid through fracture networks. Because the geometry and connectivity of these fractures determines the efficiency of fluid circulation, many tools are used to characterize fractures before and after development of the reservoir. Under this project, a new tool was developed that allows hydraulic connectivity between geothermal boreholes to be identified. Nanostrain in rock fractures is measured using fiber optic distributed acoustic sensing (DAS). This strain is measured in one borehole in response to periodic pressure pulses induced in another borehole. The strain in the fractures represents hydraulic connectivity between wells.more » DAS is typically used at frequencies of Hz to kHz, but strain at mHz frequencies were measured for this project. The tool was demonstrated in the laboratory and in the field. In the laboratory, strain in fiber optic cables was measured in response to compression due to oscillating fluid pressure. DAS recorded strains as small as 10 picometer/m in response to 1 cm of water level change. At a fractured crystalline rock field site, strain was measured in boreholes. Fiber-optic cable was mechanically coupled borehole walls using pressured flexible liners. In one borehole 30 m from the oscillating pumping source, pressure and strain were measured simultaneously. The DAS system measured fracture displacement at frequencies of less than 1 mHz (18 min periods) and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm of water). The attenuation and phase shift of the monitored strain signal is indicative of the permeability and storage (compliance) of the fracture network that connects the two wells. The strain response as a function of oscillation frequency is characteristic of the hydraulic structure of the formation. This is the first application of DAS to the measurement of low frequency strain in boreholes. It has enormous potential for monitoring geothermal reservoirs for purposes of understanding reservoir compliance and for assuring security of injection fluids. Periodic pressure pulses can be induced by oscillating injection or pumping during operation so the system could provide real time reservoir data. DAS cable may already be installed at a site as it is becoming increasingly used for seismic observation. Simulations conducted for this project indicate that strain should be propagated through borehole cements, so observations can be made outside of well casing. In uncased holes, the cable would need to be mechanically coupled to the borehole wall to provide measurements. One option would be to install fiber into cemented and abandoned boreholes to extend their utility.« less

  3. Relative Dating Via Fractures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image of the eastern part of the Tharsis region illustrates how fractures can be used in relative dating of a surface. The fractured materials on the right side of the image are embayed by younger volcanic flows originating to the west of the image. Note how the younger flows cover the ends of the fractures, and are not at all fractured themselves.

    Image information: VIS instrument. Latitude 43.2, Longitude 269.4 East (90.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. A Fracture Decoupling Experiment

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  5. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.

    1973-01-01

    Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.

  6. Eastgate Geothermal Borehole Project: Predicting Fracture Geometry at Depth

    NASA Astrophysics Data System (ADS)

    Beattie, Stewart; Shipton, Zoe K.; Johnson, Gareth; Younger, Paul L.

    2013-04-01

    In 2004 an exploratory borehole at the Eastgate Geothermal Project encountered part of a vein system within the Weardale granite. At 995m depth brine was at a temperature of around 46°C. The geothermal source is likely related to the Slitt vein system that cuts through c.270m of carboniferous sedimentary strata overlying the Weardale granite pluton. The economic success of the Eastgate geothermal project is dependent on exploiting this vein system in an otherwise low permeability and low geothermal gradient setting. The Slitt vein system has been extensively mined. Mining records show the attitude of the vein through the sedimentary strata, however, the trajectory and magnitude of the vein within the pluton itself is unknown. Using mine records, geological maps and published literature, models of the vein system up to the depth of the pluton were created. To extend this model into the pluton itself requires some knowledge regarding the geometry and evolution of the pluton and subsequently properties of vein systems and other fracture populations at depth. The properties of fracture and vein populations within the granite will depend on forming processes including; cooling and contraction of the pluton, deformation of host rocks during pluton emplacement, and post emplacement deformation. Using published literature and gravity data a 3D model of the geometry of the pluton was constructed. Shape analysis of the pluton allows an estimation of the orientation of fractures within the pluton. Further modelling of the structural evolution of the pluton will enable kinematic or geomechanical strain associated with the structural evolution to be captured and subsequently used as a proxy for modelling both intensity and orientation of fracturing within the pluton. The successful prediction of areas of high fracture intensity and thus increased permeability is critical to the development of potential geothermal resources in low geothermal gradient and low permeability settings. This is also important in EGS settings where stimulation will often re-activate existing fracture networks. The development at the Eastgate Geothermal Borehole project provides an opportunity to model fracture and vein populations within an intrusive body and validate those model predictions with production data from the site.

  7. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Kegang; Zeng, Zhengwen; He, Jun

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improvemore » the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.« less

  8. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    PubMed Central

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599

  9. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  10. EGS in sedimentary basins: sensitivity of early-flowback tracer signals to induced-fracture parameters

    NASA Astrophysics Data System (ADS)

    Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin

    2015-04-01

    Artificial-fracture design, and fracture characterization during or following stimulation treatment is a central aspect of many EGS ('enhanced' or 'engineered' geothermal system) projects. During the creation or stimulation of an EGS, the injection of fluids, followed by flowback and production stages offers the opportunity for conducting various tracer tests in a single-well (SW) configuration, and given the typical operational and time limitations associated with such tests, along with the need to assess treatment success in real time, investigators mostly favour using short-time tracer-test data, rather than awaiting long-term 'tailings' of tracer signals. Late-time tracer signals from SW injection-flowback and production tests have mainly been used for the purpose of multiple-fracture inflow profiling in multi-layer reservoirs [1]. However, the potential of using SW short-term tracer signals for fracture characterization [2, 3] remained little explored as yet. Dealing with short-term flowback signals, we face a certain degree of parameter interplay, leading to ambiguity in fracture parameter inversion from the measured signal of a single tracer. This ambiguity can, to a certain extent, be overcome by - combining different sources of information (lithostratigraphy, and hydraulic monitoring) in order to constrain the variation range of hydrogeologic parameters (matrix and fracture permeability and porosity, fracture size), - using different types of tracers, such as conservative tracer pairs with contrasting diffusivity, or tracers pairs with contrasting sorptivity onto target surfaces. Fracture height is likely to be constrained by lithostratigraphy, while fracture length is supposed to be determinable from hydraulic monitoring (pressure recordings); the flowback rate can be assumed as a known (measurable) quantity during individual-fracture flowback. This leaves us with one or two unknown parameters to be determined from tracer signals: - the transport-effective aperture, in a water fracture (WF), or - fracture thickness and porosity, for a gel-proppant fracture (GPF). We find that parameter determination from SW early signals can significantly be improved by concomitantly using a number of solute tracers with different transport and retardation behaviour. We considered tracers of different sorptivity to proppant coatings, and to matrix rock surfaces, for GPF, as well as contrasting-diffusivity or -sorptivity tracers, for WF. An advantage of this SW approach is that it requires only small chaser volumes (few times the fracture volume), not relying on advective penetration into the rock matrix. Thus, selected tracer species are to be injected during the very last stage of the fracturing process, when fracture sizes and thus target parameters are supposed to attain more or less stable values. We illustrate the application of these tracer test design principles using hydro- and lithostratigraphy data from the Geothermal Research Platform at Groß Schönebeck [4], targeting a multi-layer reservoir (sedimentary and crystalline formations in 4-5 km depth) in the NE-German Sedimentary Basin. Acknowledgments: This work benefited from long-term support from Baker Hughes (Celle) and from the Lower-Saxonian Science and Culture Ministry (MWK Niedersachsen) within the applied research project gebo (Geothermal Energy and High-Performance Drilling, 2009-2014). The first author gratefully acknowledges continued financial support from the DAAD (German Academic Exchange Service) to pursuing Ph. D. work. References: [1] http://www.sciencedirect.com/science/article/pii/S1876610214017391 [2] http://www.geothermal-energy.org/cpdb/record_detail.php?id=7215 [3] http://www.geothermal-energy.org/cpdb/record_detail.php?id=19034 [4] http://www.gfz-potsdam.de/en/scientific-services/laboratories/gross-schoenebeck/

  11. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    PubMed

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  12. Resolving controversies in hip fracture care: the need for large collaborative trials in hip fractures.

    PubMed

    Bhandari, Mohit; Sprague, Sheila; Schemitsch, Emil H

    2009-07-01

    Hip fractures are a significant cause of morbidity and mortality worldwide and the burden of disability associated with hip fractures globally vindicate the need for high-quality research to advance the care of patients with hip fractures. Historically, large, multi-centre randomized controlled trials have been rare in the orthopaedic trauma literature. Similar to other medical specialties, orthopaedic research is currently undergoing a paradigm shift from single centre initiatives to larger collaborative groups. This is evident with the establishment of several collaborative groups in Canada, in the United States, and in Europe, which has proven that multi-centre trials can be extremely successful in orthopaedic trauma research.Despite ever increasing literature on the topic of his fractures, the optimal treatment of hip fractures remains unknown and controversial. To resolve this controversy large multi-national collaborative randomized controlled trials are required. In 2005, the International Hip Fracture Research Collaborative was officially established following funding from the Canadian Institute of Health Research International Opportunity Program with the mandate of resolving controversies in hip fracture management. This manuscript will describe the need, the information, the organization, and the accomplishments to date of the International Hip Fracture Research Collaborative.

  13. Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring.

    PubMed

    Huang, Weilin; Wang, Runqiu; Li, Huijian; Chen, Yangkang

    2017-09-20

    Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing during the development of unconventional reservoirs. However, one of the challenges in microseismic monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. In the proposed technique, we decompose the recorded data into several morphological multi-scale components. In order to unveil weak signal, we propose an orthogonalization operator which acts as a time-varying weighting in the morphological reconstruction. The orthogonalization operator is obtained using an inversion process. This orthogonalized morphological reconstruction can be interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological reconstruction can make the extremely weak microseismic signals detectable.

  14. National Bone Health Alliance: an innovative public-private partnership improving America's bone health.

    PubMed

    Lee, David B; Lowden, Mia Rochelle; Patmintra, Valerie; Stevenson, Katie

    2013-12-01

    The U.S. National Bone Health Alliance (NBHA) is a public-private partnership launched in 2010 that brings together its 56 partners from the government, nonprofit, and for-profit sectors to collectively promote bone health and prevent disease; improve bone disease diagnosis and treatment; and enhance bone research, surveillance, and evaluation. NBHA is driven to achieve its 20/20 vision to reduce fractures 20 % by the year 2020 through projects including 2Million2Many, an osteoporosis awareness campaign; Fracture Prevention CENTRAL, an online resource center providing support to sites interested in launching a secondary fracture prevention program; bone turnover marker standardization project; and working groups in rare bone disease and the clinical diagnosis of osteoporosis. NBHA provides a platform to coordinate messaging among individuals and organizations on subjects important to bone health; pool funding and efforts around shared priorities; and work together towards the goals and recommendations of the National Action Plan on Bone Health.

  15. Unexpected hydrologic perturbation in an abandoned underground coal mine: Response to surface reclamation?

    USGS Publications Warehouse

    Harper, D.; Olyphant, G.A.; Hartke, E.J.

    1990-01-01

    A reclamation project at the abandoned Blackhawk Mine site near Terre Haute, Indiana, lasted about four months and involved the burial of coarse mine refuse in shallow (less than 9 m) pits excavated into loess and till in an area of about 16 ha. An abandoned flooded underground coal mine underlies the reclamation site at a depth of about 38 m; the total area underlain by the mine is about 10 km2. The potentiometric levels associated with the mine indicate a significant (2.7 m) and prolonged perturbation of the deeper confined groundwater system; 14 months after completing reclamation, the levels began to rise linearly (at an average rate of 0.85 cm/d) for 11 months, then fell exponentially for 25 months, and are now nearly stable. Prominent subsidence features exist near the reclamation site. Subsidence-related fractures were observed in cores from the site, and such fractures may have provided a connection between the shallower and deeper groundwater systems. ?? 1990 Springer-Verlag New York Inc.

  16. Evaluation of Child Care Subsidy Strategies: Implementation of Three Language and Literacy Interventions in Project Upgrade. OPRE 2011-4

    ERIC Educational Resources Information Center

    Layzer, Carolyn J.; Layzer, Jean I.; Wolf, Anne

    2010-01-01

    This report describes the design and implementation of the three interventions tested in Project Upgrade, one of four experiments conducted as part of the Evaluation of Child Care Subsidy Strategies. The evaluation was a multi-site, multi-year effort to determine whether and how different child care subsidy policies and procedures and quality…

  17. Development and Advanced Analysis of Dynamic and Static Casing Strain Monitoring to Characterize the Orientation and Dimensions of Hydraulic Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Michael; Ramos, Juan; Lao, Kang

    Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less

  18. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure and reduction of fracture length and productivity. The results also suggest that a fracturing fluid with appropriately designed salinity can minimize the chemically induced tensile damage and, thus, maximize the productivity from the created hydraulic fractures.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, J.B. Jr.

    Direct oblique sagittal CT was used to evaluate trauma to 77 orbits. Sixty-seven orbital wall fractures with intact orbital rims (36 floor, 22 medial wall, nine roof) were identified in 47 orbits. Since persistent diplopia and/or enophthalmos may warrant surgical repair of orbital floor fractures, optimal imaging should include an evaluation of extraocular muscle status, the nature and amount of displaced orbital contents, and an accurate definition of fracture margins. For orbital floor fractures, a combination of the direct oblique sagittal and direct coronal projections optimally displayed all fracture margins, the fracture's relationship to the inferior orbital rim and medialmore » orbital wall, and the amount of displacement into the maxillary sinus. Inferior rectus muscle status with 36 floor fractures was best seen on the direct oblique sagittal projection in 30 fractures (83.3%) and was equally well seen on sagittal and coronal projections in two fractures (5.5%). Floor fractures were missed on 100% of axial, 5.5% of sagittal, and 0% of coronal projections. Since the direct oblique sagittal projection complements the direct coronal projection in evaluating orbital floor fractures, it should not be performed alone. A technical approach to the CT evaluation or orbital wall fractures is presented.« less

  20. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.

    PubMed

    Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J

    2015-10-01

    The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.

  1. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Khasanov, A. O.; Danchenko, V. A.; Khasanov, O. L.

    2017-12-01

    Alumina composites reinforced with 3 vol.% multi-walled carbon nanotubes (MWCNTs) were prepared by spark plasma sintering (SPS). The influence of sintering temperature (1400-1600 °C) on the composites microstructure and mechanical properties was investigated. Microstructure observations of the composite shows that some CNTs site along alumina grains boundary, while others embed into the alumina grains and shows that CNTs bonded strongly with the alumina matrix contributing to fracture toughness and microhardness increase. MWCNTs reinforcing mechanisms including CNT pull-out and crack deflection were directly observed by scanning electron microscope (SEM). For Al2O3/CNT composite sintered at 1600 °C, fracture toughness and microhardness are 4.93 MPa·m1/2 and 23.26 GPa respectively.

  2. Combining outcrop, magnetic, and airborne LiDAR data in a course-based undergraduate research experience (CURE): interpretation of bedrock fracturing in the northeastern Deep River Basin and adjacent basement, North Carolina

    NASA Astrophysics Data System (ADS)

    Pedigo, R.; Waters-Tormey, C. L.; Styers, D.; Hurst, E.

    2017-12-01

    Course-based undergraduate research experiences (CUREs) are a way for students to learn the power of combining geological, geophysical, and geodetic datasets, while also generating new results to answer real questions. A 5-week undergraduate geophysics CURE combined newly released public domain LiDAR-derived ground models with outcrop and magnetic data. The goal was to see if this approach could improve understanding of bedrock fracture sets in the NC Piedmont, which in turn would improve decisions about groundwater resources and proposed hydraulic fracturing of "tight" shale reservoirs in the 230 Ma Deep River failed rift basin. The 10 km2 study area was selected because it straddles the fault contact between crystalline basement and basin sedimentary rocks, it contains 200 Ma NW-SE trending mafic dikes related to successful rifting of Pangea common in the Piedmont, bedrock exposure is typical of the Piedmont (poor), and its land use history is representative of much of the Piedmont. Students visited representative field sites to collect observations then manually identified lineaments in several adjacent LiDAR ground model tiles. Results suggest that (1) lineaments as short as a few m are easily identified except underneath Quaternary deposits, (2) the dominant lineament set trends NW-SE with m- to 10 m-scale spacing, (3) lineaments are better expressed in sedimentary rocks and (4) do not spatially coincide with dike traces. Using field observations, map patterns, and total magnetic intensity profiles across several dikes, the lineaments are interpreted to be edges of subvertical joint fractures recording extension parallel to the dikes' dilation direction. The CURE concluded with students in small groups proposing next steps for the larger research project. The CURE introduced geology majors to the power of using geophysical and remote sensing data with geological data to address geoscience questions. Student feedback was very positive even though the learning curve with software and dataset interpretation was steep. Two students opted to continue independent work on the project (one for a senior thesis), suggesting that the earlier students work with multi-disciplinary datasets, the more likely they will consider these approaches in their research and professional development.

  3. Long-term thermal effects on injectivity evolution during CO 2 storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarrasa, Victor; Rinaldi, Antonio P.; Rutqvist, Jonny

    Carbon dioxide (CO 2 ) is likely to reach the bottom of injection wells at a colder temperature than that of the storage formation, causing cooling of the rock. This cooling, together with overpressure, tends to open up fractures, which may enhance injectivity. Here, we investigate cooling effects on injectivity enhancement by modeling the In Salah CO 2 storage site and a theoretical, long-term injection case. We use stress-dependent permeability functions that predict an increase in permeability as the effective stress acting normal to fractures decreases. Normal effective stress can decrease either due to overpressure or cooling. We calibrate ourmore » In Salah model, which includes a fracture zone perpendicular to the well, obtaining a good fitting with the injection pressure measured at KB-502 and the rapid CO 2 breakthrough that occurred at the observation well KB-5 located 2 km away from the injection well. CO 2 preferentially advances through the fracture zone, which becomes two orders of magnitude more permeable than the rest of the reservoir. Nevertheless, the effect of cooling on the long-term injectivity enhancement is limited in pressure dominated storage sites, like at In Salah, because most of the permeability enhancement is due to overpressure. But, thermal effects enhance injectivity in cooling dominated storage sites, which may decrease the injection pressure by 20%, saving a significant amount of compression energy all over the duration of storage projects. Overall, our simulation results show that cooling has the potential to enhance injectivity in fractured reservoirs.« less

  4. Long-term thermal effects on injectivity evolution during CO 2 storage

    DOE PAGES

    Vilarrasa, Victor; Rinaldi, Antonio P.; Rutqvist, Jonny

    2017-08-22

    Carbon dioxide (CO 2 ) is likely to reach the bottom of injection wells at a colder temperature than that of the storage formation, causing cooling of the rock. This cooling, together with overpressure, tends to open up fractures, which may enhance injectivity. Here, we investigate cooling effects on injectivity enhancement by modeling the In Salah CO 2 storage site and a theoretical, long-term injection case. We use stress-dependent permeability functions that predict an increase in permeability as the effective stress acting normal to fractures decreases. Normal effective stress can decrease either due to overpressure or cooling. We calibrate ourmore » In Salah model, which includes a fracture zone perpendicular to the well, obtaining a good fitting with the injection pressure measured at KB-502 and the rapid CO 2 breakthrough that occurred at the observation well KB-5 located 2 km away from the injection well. CO 2 preferentially advances through the fracture zone, which becomes two orders of magnitude more permeable than the rest of the reservoir. Nevertheless, the effect of cooling on the long-term injectivity enhancement is limited in pressure dominated storage sites, like at In Salah, because most of the permeability enhancement is due to overpressure. But, thermal effects enhance injectivity in cooling dominated storage sites, which may decrease the injection pressure by 20%, saving a significant amount of compression energy all over the duration of storage projects. Overall, our simulation results show that cooling has the potential to enhance injectivity in fractured reservoirs.« less

  5. Empirically Based Composite Fracture Prediction Model From the Global Longitudinal Study of Osteoporosis in Postmenopausal Women (GLOW)

    PubMed Central

    Compston, Juliet E.; Chapurlat, Roland D.; Pfeilschifter, Johannes; Cooper, Cyrus; Hosmer, David W.; Adachi, Jonathan D.; Anderson, Frederick A.; Díez-Pérez, Adolfo; Greenspan, Susan L.; Netelenbos, J. Coen; Nieves, Jeri W.; Rossini, Maurizio; Watts, Nelson B.; Hooven, Frederick H.; LaCroix, Andrea Z.; March, Lyn; Roux, Christian; Saag, Kenneth G.; Siris, Ethel S.; Silverman, Stuart; Gehlbach, Stephen H.

    2014-01-01

    Context: Several fracture prediction models that combine fractures at different sites into a composite outcome are in current use. However, to the extent individual fracture sites have differing risk factor profiles, model discrimination is impaired. Objective: The objective of the study was to improve model discrimination by developing a 5-year composite fracture prediction model for fracture sites that display similar risk profiles. Design: This was a prospective, observational cohort study. Setting: The study was conducted at primary care practices in 10 countries. Patients: Women aged 55 years or older participated in the study. Intervention: Self-administered questionnaires collected data on patient characteristics, fracture risk factors, and previous fractures. Main Outcome Measure: The main outcome is time to first clinical fracture of hip, pelvis, upper leg, clavicle, or spine, each of which exhibits a strong association with advanced age. Results: Of four composite fracture models considered, model discrimination (c index) is highest for an age-related fracture model (c index of 0.75, 47 066 women), and lowest for Fracture Risk Assessment Tool (FRAX) major fracture and a 10-site model (c indices of 0.67 and 0.65). The unadjusted increase in fracture risk for an additional 10 years of age ranges from 80% to 180% for the individual bones in the age-associated model. Five other fracture sites not considered for the age-associated model (upper arm/shoulder, rib, wrist, lower leg, and ankle) have age associations for an additional 10 years of age from a 10% decrease to a 60% increase. Conclusions: After examining results for 10 different bone fracture sites, advanced age appeared the single best possibility for uniting several different sites, resulting in an empirically based composite fracture risk model. PMID:24423345

  6. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  7. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  8. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    NASA Technical Reports Server (NTRS)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  9. Planning a multi-site, complex intervention for homeless people with mental illness: the relationships between the national team and local sites in Canada's At Home/Chez Soi project.

    PubMed

    Nelson, Geoffrey; Macnaughton, Eric; Goering, Paula; Dudley, Michael; O'Campo, Patricia; Patterson, Michelle; Piat, Myra; Prévost, Natasha; Strehlau, Verena; Vallée, Catherine

    2013-06-01

    This research focused on the relationships between a national team and five project sites across Canada in planning a complex, community intervention for homeless people with mental illness called At Home/Chez Soi, which is based on the Housing First model. The research addressed two questions: (a) what are the challenges in planning? and (b) what factors that helped or hindered moving project planning forward? Using qualitative methods, 149 national, provincial, and local stakeholders participated in key informant or focus group interviews. We found that planning entails not only intervention and research tasks, but also relational processes that occur within an ecology of time, local context, and values. More specifically, the relationships between the national team and the project sites can be conceptualized as a collaborative process in which national and local partners bring different agendas to the planning process and must therefore listen to, negotiate, discuss, and compromise with one another. A collaborative process that involves power-sharing and having project coordinators at each site helped to bridge the differences between these two stakeholder groups, to find common ground, and to accomplish planning tasks within a compressed time frame. While local context and culture pushed towards unique adaptations of Housing First, the principles of the Housing First model provided a foundation for a common approach across sites and interventions. The implications of the findings for future planning and research of multi-site, complex, community interventions are noted.

  10. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.

  11. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    PubMed Central

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489

  12. Hydraulic-fracture diagnostic research. Final report, December 1989-December 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, J.E.; Adair, R.G.; Clawson, G.E.

    1992-05-01

    The results of the research in microseismic methods to determine hydraulic fracture dimensions during the contract were significant. The GRI Hydraulic Fracture Test Site (HFTS) development planning was a major effort. Ten meetings of the Planning Team were coordinated and hosted. A statement of the HFTS mission, scope, objectives, and requirements was created. The primary objectives were to provide for interdisciplinary experiments on fracture modeling and fracture diagnostics. A Conceptual Plan for the HFTS was compiled by Teledyne Geotech and distributed at the Project Advisors Group meeting. An experiment at the Shell South Belridge Field in California was a directmore » analog of the HFTS. Multiple fracture stimulations were monitored from 3 wells with cemented-in geophones. Methods of handling and processing large data volumes in real time were established. The final fracture geometry did not fit the circular model. Fracture diagnostics were monitored at two GRI cooperative wells: the Enron S. Hogsback No. 13-8A and the Phillips Ward C No. 11. Theoretical studies indicate that crack waves might be used as an estimate of fracture length. After applying advanced signal enhancement techniques to low-frequency signals from 14 surveys, it was concluded that the data from presently available sondes is contaminated by sonde resonances.« less

  13. Direct medical costs attributable to peripheral fractures in Canadian post-menopausal women.

    PubMed

    Bessette, L; Jean, S; Lapointe-Garant, M-P; Belzile, E L; Davison, K S; Ste-Marie, L G; Brown, J P

    2012-06-01

    This study determined the cost of treating fractures at osteoporotic sites (except spine fractures) for the year following fracture. While the average cost of treating a hip fracture was the highest of all fractures ($46,664 CAD per fracture), treating other fractures also accounted for significant expenditures ($5,253 to $10,410 CAD per fracture). This study aims to determine the mean direct medical cost of treating fractures at peripheral osteoporotic sites in the year post-fracture (through 2 years post-hip fracture). Health administrative databases from the province of Quebec, Canada were used to estimate the cost of treating peripheral fractures at osteoporotic sites for the year following fracture (through 2 years for hip fractures). Included in costs analyses were physician claims, emergency and outpatient clinic costs, hospitalization costs, and subsequent costs for treatment of complications. A total of 15,827 patients (mean age 72 years) who suffered one fracture at an osteoporotic site had data for analyses. Hip/femur fractures had the highest rate of hospital stays related to fracture (91%) and the highest rate of hospital stays associated with a post-fracture complication (8%). In the year following fracture, the mean (SD) costs (2009 Canadian dollars) of treating acute fractures and post-fracture complications were: hip/femur fracture $46,664 ($43,198), wrist fracture $5,253 ($18,982), and fractures at other peripheral sites $10,410 ($27,641). The average (SD) cost of treating post-fracture complications at the hip/femur in the second year post-fracture was $1,698 ($12,462). Hospitalizations associated with the fracture accounted for 88% of the total cost of fracture treatment. The treatment of hip fractures accounts for a significant proportion of the costs associated with the treatment of peripheral osteoporotic fractures. Interventions to reduce the incidence of fractures, particularly hip fractures, would result in significant cost savings to the health care system and would preserve quality of life in many patients.

  14. Geophysical Investigation using Two Dimensional Electrical Resistivity Tomography method to delineate Subsurface Geological Structures at Dudhkoshi-II (230 MW) Hydroelectric Project, Solukhumbu District, Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Ghimire, H.; Bhusal, U. C.; Khatiwada, B.; Pandey, D.

    2017-12-01

    Geophysical investigation using two dimensional electrical resistivity tomography (2D-ERT) method plays a significant role in determining the subsurface resistivity distribution by making measurement on the ground surface. This method was carried out at Dudhkoshi-II (230 MW) Hydroelectric Project, lies on Lesser Himalayan region of the Eastern Nepal to delineate the nature of the subsurface geology to assess its suitability for the construction of dam, desanding basin and powerhouse. The main objective of the proposed study consists of mapping vertical as well as horizontal variations of electrical resistivity to enable detection of the boundaries between unconsolidated materials and rocks of the different resistivity, possible geologic structures, such as possible presence of faults, fractures, and voids in intake and powerhouse area. For this purpose, the (WDJD-4 Multi-function Digital DC Resistivity/IP) equipment was used with Wenner array (60 electrodes). To fulfill these objectives of the study, the site area was mapped by Nine ERT profiles with different profile length and space between electrodes was 5 m. The depth of the investigation was 50 m. The acquired data were inverted to tomogram sections using tomographic inversion with RES2DINV commercial software. The Tomography sections show that the subsurface is classified into distinct geo-electric layers of dry unconsolidated overburden, saturated overburden, fractured rock and fresh bedrock of phyllites with quartzite and gneiss with different resistivity values. There were no voids and faults in the study area. Thickness of overburden at different region found to be different. Most of the survey area has bedrock of phyllites with quartzite; gneiss is also present in some location at intake area. Bedrock is found at the varies depth of 5-8 m at dam axis, 20-32 m at desanding basin and 3-10 m at powerhouse area. These results are confirmed and verified by using several boreholes data were drilled on the survey area. The results obtained from the study showed that the site is suitable for the construction of the proposed dam, desanding basin and powerhouse.

  15. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  16. The fracture sites of atypical femoral fractures are associated with the weight-bearing lower limb alignment.

    PubMed

    Saita, Yoshitomo; Ishijima, Muneaki; Mogami, Atsuhiko; Kubota, Mitsuaki; Baba, Tomonori; Kaketa, Takefumi; Nagao, Masashi; Sakamoto, Yuko; Sakai, Kensuke; Kato, Rui; Nagura, Nana; Miyagawa, Kei; Wada, Tomoki; Liu, Lizu; Obayashi, Osamu; Shitoto, Katsuo; Nozawa, Masahiko; Kajihara, Hajime; Gen, Hogaku; Kaneko, Kazuo

    2014-09-01

    Atypical femoral fractures (AFFs) are stress-related fractures that are speculated to associate with long-term treatment with bisphosphonates for osteoporosis. A history of AFF is a high risk factor for the development of a subsequent AFF in the same location of the contralateral femur, suggesting that a patient's individual anatomical factor(s) are related to the fracture site of AFFs. In this study, we investigated the radiographs of fourteen AFFs (four bilateral fractures among ten patients) treated at six hospitals associated with our university between 2005 and 2010. The fracture site and standing femorotibial angle (FTA), which reflects the mechanical axis of the lower limb, were measured on weight-bearing lower limb radiographs. The fracture site and FTA of patients with typical femoral fractures (TFF) were compared to those of patients with AFFs. The correlations were examined using Spearman's rank correlation coefficients. The fracture locations in the femora were almost the same in the patients with bilateral AFFs. There was a positive correlation between the fracture site and the standing FTA in the patients with AFFs (r=0.82, 95% confidence interval; 0.49 to 0.94), indicating that the larger the standing FTA (varus alignment), the more distal the site of the fracture in the femur. The FTA of the patients with atypical diaphyseal femoral fracture were significantly larger compared to that of those with not only atypical subtrochanteric fractures but also TFFs. In conclusion, the fracture sites of AFFs are associated with the standing lower limb alignment, while those of TFFs are not. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Shallow observatory installations unravel earthquake processes in the Nankai accretionary complex (IODP Expedition 365)

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Saffer, D. M.; Toczko, S.

    2016-12-01

    NanTroSEIZE is a multi-expedition IODP project to investigate fault mechanics and seismogenesis along the Nankai Trough subduction zone through direct sampling, in situ measurements, and long-term monitoring. Recent Expedition 365 had three primary objectives at a major splay thrust fault (termed the "megasplay") in the forearc: (1) retrieval of a temporary observatory (termed a GeniusPlug) that has been monitoring temperature and pore pressure within the fault zone at 400 meters below seafloor for since 2010; (2) deployment of a complex long-term borehole monitoring system (LTBMS) across the same fault; and (3) coring of key sections of the hanging wall, deformation zone and footwall of the shallow megasplay. Expedition 365 achieved its primary monitoring objectives, including recovery of the GeniusPlug with a >5-year record of pressure and temperature conditions, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 2011 M9 Tohoku and the 1 April Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the fault zone, and microbes were successfully cultivated from the colonization unit. The LTBMS incorporates multi-level pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. This multi-level hole completion was meanwhile connected to the DONET seafloor cabled network for tsunami early warning and earthquake monitoring. Coring the shallow megasplay site in the Nankai forearc recovered ca. 100m of material across the fault zone, which contained indurated silty clay with occasional ash layers and sedimentary breccias in the hangingwall and siltstones in the footwall of the megasplay. The mudstones show different degrees of deformation spanning from occasional fractures to intensely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2cm) is seen with both normal and reverse sense of slip. Post-cruise rock deformation experiments will relate physical properties to the earthquake response monitored by the observatory array.

  18. Tracer Tests in the Fractured Rock to Investigate Preferential Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Chan, W.; Chung, L.; Lee, T.; Liu, C.; Chia, Y.; Teng, M.

    2012-12-01

    Hydraulic tests are often used to obtain hydraulic conductivity in the aquifer. Test results usually reflect the average hydraulic conductivity in the surrounding strat. However, in fractured rock, groundwater flows primarily through a few fractures. Saltwater tracer test can be used to detect the direction of groundwater flow, but it was difficult to know the hydraulic connectivity between fractures. In this study, we use a variety of field tests, including tracer test, hydraulic test, and heat-pulse flowmeter test, to locate the permeable fractures and detect the hydraulic connections between boreholes. There are eight test wells and two observation wells on field experimental site in central Taiwan. Geological survey results show that there are at least three sets of joint planes. In order to realize the location of the preferential pathway of groundwater flow, heat-pulse flowmeter measurement was adopted to identify the depth of permeable fractures. Multi-well pumping test was also performed to investigate the hydraulic connectivity between these wells. Tracer tests were then used to detect the hydraulic connectivity of permeable fractures between two wells. Injection of nano zero valent iron in one well and and collection of iron tracer with a magnet array in the other well can specifically locate the permeable fracture and determine the connectivity. Saltwater tracer test result can be used to support that of nano-iron tracer test, and verify the relationship between well water conductivity increases and rock fracture location. The results show that tracer test is a useful tool to investigate the preferential groundwater flow in the fractured rock, but it is essential to flush the mud in fractures prior to the test.

  19. Site planning and integration fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHULTZ, E.A.

    The primary mission of the Site Planning and Integration (SP and I) project is to assist Fluor Daniel Project Direction to ensure that all work performed under the Project Hanford Management Contract (PHMC) is adequately planned, executed, controlled, and that performance is measured and reported in an integrated fashion. Furthermore, SP and I is responsible for the development, implementation, and management of systems and processes that integrate technical, schedule, and cost baselines for PHMC work.

  20. Arthroscopic fixation of the clavicle shaft fracture.

    PubMed

    Kim, Yang-Soo; Lee, Hyo-Jin; Kim, Jong-Ick; Yang, Hyo; Jin, Hong-Ki; Patel, Hiren Kirtibhai; Kim, Jong-Ho; Park, In

    2017-01-01

    This article describes an arthroscopic technique for the fixation of clavicle shaft fractures. A viewing portal is made 2 cm anterior to the fracture site, and a working portal is made 2 cm lateral to the fracture site. The guide wire for a 4.0-mm cannulated screw is inserted through the fracture site to the medial fracture fragment under arthroscopic guidance. Through the medial fragment, the guide wire is delivered through the skin anteriorly. The fracture is reduced, and then, the guide wire is drilled back across the fracture site to the lateral fracture fragment. After confirming the reduction under arthroscopy, the appropriately sized cannulated screw is inserted after reaming. This arthroscopic technique would be useful for the precise reduction and minimal invasive fixation of clavicle shaft fractures. Preliminary results are encouraging, and further studies with long-term follow-up are needed to determine the precise indications and limitations of the procedure.

  1. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility?

    PubMed

    Ferrari, Serge L; Chevalley, Thierry; Bonjour, Jean-Philippe; Rizzoli, René

    2006-04-01

    Whether peak bone mass is low among children with fractures remains uncertain. In a cohort of 125 girls followed over 8.5 years, 42 subjects reported 58 fractures. Among those, BMC gain at multiple sites and vertebral bone size at pubertal maturity were significantly decreased. Hence, childhood fractures may be markers of low peak bone mass acquisition and persistent skeletal fragility. Fractures in childhood may result from a deficit in bone mass accrual during rapid longitudinal growth. Whether low bone mass persists beyond this period however remains unknown. BMC at the spine, radius, hip, and femur diaphysis was prospectively measured over 8.5 years in 125 girls using DXA. Differences in bone mass and size between girls with and without fractures were analyzed using nonparametric tests. The contribution of genetic factors was evaluated by mother-daughter correlations and that of calcium intake by Cox proportional hazard models. Fifty-eight fractures occurred in 42 among 125 girls (cumulative incidence, 46.4%), one-half of all fractures affecting the forearm and wrist. Girls with and without fractures had similar age, height, weight. and calcium intake at all time-points. Before and during early puberty, BMC and width of the radius diaphysis was lower in the fracture compared with no-fracture group (p < 0.05), whereas aBMD and BMAD were similar in the two groups. At pubertal maturity (Tanner's stage 5, mean age +/- SD, 16.4 +/- 0.5 years), BMC at the ultradistal radius (UD Rad.), femur trochanter, and lumbar spine (LS), and LS projected bone area were all significantly lower in girls with fractures. Throughout puberty, BMC gain at these sites was also decreased in the fracture group (LS, -8.0%, p = 0.015; UD Rad., -12.0%, p = 0.004; trochanter, -8.4%, p = 0.05 versus no fractures). BMC was highly correlated between prepuberty and pubertal maturity (R = 0.54-0.81) and between mature daughters and their mothers (R = 0.32-0.46). Calcium intake was not related to fracture risk. Girls with fractures have decreased bone mass gain in the axial and appendicular skeleton and reduced vertebral bone size when reaching pubertal maturity. Taken together with the evidence of tracking and heritability for BMC, these observations indicate that childhood fractures may be markers for low peak bone mass and persistent bone fragility.

  2. Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections

    NASA Astrophysics Data System (ADS)

    Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco

    2017-03-01

    Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.

  3. Multiphase flow models for hydraulic fracturing technology

    NASA Astrophysics Data System (ADS)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.

  4. 3-D Resistivity Tomography for Cliff Stability Study at the D-Day Pointe du Hoc Historic Site in Normandy, France

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Everett, M. E.; Guenther, T.; Warden, R. R.

    2007-12-01

    The D-Day invasion site at Pointe du Hoc in Normandy, France is one of the most important World War II battlefields. The site remains today a valuable historic cultural resource. However the site is vulnerable to cliff collapses that could endanger the observation post building and U.S. Ranger memorial located just landward of the sea stack, and an anti-aircraft gun emplacement, Col. Rudder's command post, located on the cliff edge about 200 m east of the observation post. A 3-D resistivity tomography incorporating extreme topography is used in this study to provide a detailed site stability assessment with special attention to these two buildings. Multi-electrode resistivity measurements were made across the cliff face and along the top of the cliff around the two at-risk buildings to map major subsurface fracture zones and void spaces that could indicate possible accumulations and pathways of groundwater. The ingress of acidic groundwater through the underlying carbonate formations enlarges pre-existing tectonic fractures via limestone dissolution and weakens the overall structural integrity of the cliff. The achieved 3-D resistivity tomograms provide diagnostic subsurface resistivity distributions. Resistive zones associated with subsurface void spaces have been located. These void spaces constitute a stability geohazard as they become significant drainage routes during and after periods of heavy rainfalls.

  5. Experimental Investigation on the Basic Law of Directional Hydraulic Fracturing Controlled by Dense Linear Multi-Hole Drilling

    NASA Astrophysics Data System (ADS)

    Zhao, Xinglong; Huang, Bingxiang; Wang, Zhen

    2018-06-01

    Directional rupture is a significant and routine problem for ground control in mines. Directional hydraulic fracturing controlled by dense linear multi-hole drilling was proposed. The physical model experiment, performed by the large-scale true triaxial hydraulic fracturing experimental system, aims to investigate the basic law of directional hydraulic fracturing controlled by dense linear multi-hole drilling, the impact of three different pumping modes on the initiation and propagation of hydraulic fractures among boreholes are particular investigated. The experimental results indicated that there are mutual impacts among different boreholes during crack propagation, which leads to a trend of fracture connection. Furthermore, during propagation, the fractures not only exhibit an overall bias toward the direction in which the boreholes are scattered but also partially offset against the borehole axes and intersect. The directional fracturing effect of equivalent pumping rate in each borehole is better than the other two pumping modes. In practical applications, because of rock mass heterogeneity, there may be differences in terms of filtration rate and effective input volume in different boreholes; thus, water pressure increase and rupture are not simultaneous in different boreholes. Additionally, if the crack initiation directions of different boreholes at different times are not consistent with each other, more lamellar failure planes will occur, and the mutual influences of these lamellar failure planes cause fractures to extend and intersect.

  6. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, Michael

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less

  7. Project BACIS. O.E.E. Evaluation Report, 1982-1983.

    ERIC Educational Resources Information Center

    Villegas, Jose; And Others

    Project BACIS, a multi-site program in its first year of funding, provided instructional, resource, and supportive assistance to approximately 270 students of limited English proficiency in three New York City high schools. The project, which served recent immigrants from Cambodia, Vietnam, and Haiti, had as its primary stated goal "the…

  8. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    PubMed Central

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  9. The European FP7 ULTimateCO2 project: A comprehensive approach to study the long term fate of CO2 geological storage sites

    NASA Astrophysics Data System (ADS)

    Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.

    2013-12-01

    The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic' fracture, followed by a gas injection in the fracture plan, - An assessment of temperature influences on carbonate and water content which affect carbonate bearing fault gouge using shear experiments at 20C and 120C on simulated fault gouges prepared by crushed OPA samples. To evaluate the interactions between CO2 (and formation fluids) and the well environment (formation, cement, casing) and to assess the consequences of these interactions on the transport properties of well materials, a 1:1 scale experiment has been set in the OPA to reproduce classical well objects (cemented annulus, casing and cement plug) perforating caprock formations (OPA). Innovative probabilistic modelling tools are also under development in order to build robust calibration methods for uncertainty management of the simulated long term scenarios.

  10. Efficient multi-site two-photon functional imaging of neuronal circuits.

    PubMed

    Castanares, Michael Lawrence; Gautam, Vini; Drury, Jack; Bachor, Hans; Daria, Vincent R

    2016-12-01

    Two-photon imaging using high-speed multi-channel detectors is a promising approach for optical recording of cellular membrane dynamics at multiple sites. A main bottleneck of this technique is the limited number of photons captured within a short exposure time (~1ms). Here, we implement temporal gating to improve the two-photon fluorescence yield from holographically projected multiple foci whilst maintaining a biologically safe incident average power. We observed up to 6x improvement in the signal-to-noise ratio (SNR) in Fluorescein and cultured hippocampal neurons showing evoked calcium transients. With improved SNR, we could pave the way to achieving multi-site optical recording of fluorogenic probes with response times in the order of ~1ms.

  11. Efficient multi-site two-photon functional imaging of neuronal circuits

    PubMed Central

    Castanares, Michael Lawrence; Gautam, Vini; Drury, Jack; Bachor, Hans; Daria, Vincent R.

    2016-01-01

    Two-photon imaging using high-speed multi-channel detectors is a promising approach for optical recording of cellular membrane dynamics at multiple sites. A main bottleneck of this technique is the limited number of photons captured within a short exposure time (~1ms). Here, we implement temporal gating to improve the two-photon fluorescence yield from holographically projected multiple foci whilst maintaining a biologically safe incident average power. We observed up to 6x improvement in the signal-to-noise ratio (SNR) in Fluorescein and cultured hippocampal neurons showing evoked calcium transients. With improved SNR, we could pave the way to achieving multi-site optical recording of fluorogenic probes with response times in the order of ~1ms. PMID:28018745

  12. Sites, frequencies, and causes of self-reported fractures in 9,720 rheumatoid arthritis patients: a large prospective observational cohort study in Japan.

    PubMed

    Ochi, Kensuke; Furuya, Takefumi; Ikari, Katsunori; Taniguchi, Atsuo; Yamanaka, Hisashi; Momohara, Shigeki

    2013-01-01

    Sites, frequencies, and causes of self-reported fractures in Japanese patients with rheumatoid arthritis (RA) were evaluated in a prospective, observational cohort study. The incidence and cause of fracture differ by anatomical site, sex, and age. These differences may be considered in establishing custom strategies for preventing fractures in RA patients in the future. The literature contains limited data describing the details of fractures at different skeletal sites in patients with RA. We evaluated the details of fractures in Japanese RA patients on the basis of our Institute of Rheumatology Rheumatoid Arthritis cohort study in 9,720 RA patients (82 % women; mean age, 56 years) who were enrolled from 2000 to 2010. The details of fractures were obtained through biannual patient self-report questionnaires. Over a mean duration of 5.2 years, 1,317 patients (13.5 %) reported 2,323 incident fractures comprising 563 (24.2 %) clinical vertebral fractures and 1,760 (75.8 %) nonvertebral fractures. Rib fractures were the most common fractures in men, followed by clinical vertebral and hip fractures; the most common fractures in women were clinical vertebral fractures, followed by rib, foot, and hip fractures. There was a significant difference between sexes in the rates of rib, clavicle, shoulder, and ankle fractures. Spontaneous event was the primary cause of clinical vertebral fracture (65.4 %), whereas falls were the primary cause of upper extremity (76.5 %) and lower extremity (57.8 %) fractures. Rates of clinical vertebral and hip fractures increased, while those of rib and foot fractures decreased with increasing age. Incidence of falls, as causes of nonvertebral fractures, also increased in older age groups. Our results suggest that the causes of fractures may differ depending on anatomical site and that prevention of falls may be the most effective way to reduce upper and lower extremity fractures, especially in older patients with RA.

  13. Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis.

    PubMed

    Lin, Z L; Li, P F; Pang, Z H; Zheng, X H; Huang, F; Xu, H H; Li, Q L

    2015-11-01

    Hip fracture is a kind of osteoporotic fractures in elderly patients. Its important monitoring indicator is to measure bone mineral density (BMD) using DXA. The stress characteristics and material distribution in different parts of the bones can be well simulated by three-dimensional finite element analysis. Our previous studies have demonstrated a linear positive correlation between clinical BMD and the density of three-dimensional finite element model of the femur. However, the correlation between the density variation between intertrochanteric region and collum femoris region of the model and the fracture site has not been studied yet. The present study intends to investigate whether the regional difference in the density of three-dimensional finite element model of the femur can be used to predict hip fracture site in elderly females. The CT data of both hip joints were collected from 16 cases of elderly female patients with hip fractures. Mimics 15.01 software was used to reconstruct the model of proximal femur on the healthy side. Ten kinds of material properties were assigned. In Abaqus 6.12 software, the collum femoris region and intertrochanteric region were, respectively, drawn for calculating the corresponding regional density of the model, followed by prediction of hip fracture site and final comparison with factual fracture site. The intertrochanteric region/collum femoris region density was [(1.20 ± 0.02) × 10(6)] on the fracture site and [(1.22 ± 0.03) × 10(6)] on the non-fracture site, and the difference was statistically significant (P = 0.03). Among 16 established models of proximal femur on the healthy side, 14 models were consistent with the actual fracture sites, one model was inconsistent, and one model was unpredictable, with the coincidence rate of 87.5 %. The intertrochanteric region or collum femoris region with lower BMD is more prone to hip fracture of the type on the corresponding site.

  14. A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite

    DOE PAGES

    Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.

    2016-04-07

    The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This paper uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random sizemore » obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Finally, quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.« less

  15. Microseismic reverse time migration with a multi-cross-correlation staining algorithm for fracture imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Congcong; Jia, Xiaofeng; Liu, Shishuo; Zhang, Jie

    2018-02-01

    Accurate characterization of hydraulic fracturing zones is currently becoming increasingly important in production optimization, since hydraulic fracturing may increase the porosity and permeability of the reservoir significantly. Recently, the feasibility of the reverse time migration (RTM) method has been studied for the application in imaging fractures during borehole microseismic monitoring. However, strong low-frequency migration noise, poorly illuminated areas, and the low signal to noise ratio (SNR) data can degrade the imaging results. To improve the quality of the images, we propose a multi-cross-correlation staining algorithm to incorporate into the microseismic reverse time migration for imaging fractures using scattered data. Under the modified RTM method, our results are revealed in two images: one is the improved RTM image using the multi-cross-correlation condition, and the other is an image of the target region using the generalized staining algorithm. The numerical examples show that, compared with the conventional RTM, our method can significantly improve the spatial resolution of images, especially for the image of target region.

  16. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorie M. Dilley

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trappedmore » in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.« less

  17. Long-Wavelength Elastic Wave Propagation Across Naturally Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Mohd-Nordin, Mohd Mustaqim; Song, Ki-Il; Cho, Gye-Chun; Mohamed, Zainab

    2014-03-01

    Geophysical site investigation techniques based on elastic waves have been widely used to characterize rock masses. However, characterizing jointed rock masses by using such techniques remains challenging because of a lack of knowledge about elastic wave propagation in multi-jointed rock masses. In this paper, the roughness of naturally fractured rock joint surfaces is estimated by using a three-dimensional (3D) image-processing technique. The classification of the joint roughness coefficient (JRC) is enhanced by introducing the scan line technique. The peak-to-valley height is selected as a key indicator for JRC classification. Long-wavelength P-wave and torsional S-wave propagation across rock masses containing naturally fractured joints are simulated through the quasi-static resonant column (QSRC) test. In general, as the JRC increases, the S-wave velocity increases within the range of stress levels considered in this paper, whereas the P-wave velocity and the damping ratio of the shear wave decrease. In particular, the two-dimensional joint specimen underestimates the S-wave velocity while overestimating the P-wave velocity. This suggests that 3D joint surfaces should be implicated to obtain the reliable elastic wave velocity in jointed rock masses. The contact characteristic and degree of roughness and waviness of the joint surface are identified as a factor influencing P-wave and S-wave propagation in multi-jointed rock masses. The results indicate a need for a better understanding of the sensitivity of contact area alterations to the elastic wave velocity induced by changes in normal stress. This paper's framework can be a reference for future research on elastic wave propagation in naturally multi-jointed rock masses.

  18. Facial Fractures: Pearls and Perspectives.

    PubMed

    Chaudhry, Obaid; Isakson, Matthew; Franklin, Adam; Maqusi, Suhair; El Amm, Christian

    2018-05-01

    After studying this article, the participant should be able to: 1. Describe the A-frame configuration of anterior facial buttresses, recognize the importance of restoring anterior projection in frontal sinus fractures, and describe an alternative design and donor site of pericranial flaps in frontal sinus fractures. 2. Describe the symptoms and cause of pseudo-Brown syndrome, describe the anatomy and placement of a buttress-spanning plate in nasoorbitoethmoid fractures, and identify appropriate nasal support alternatives for nasoorbitoethmoid fractures. 3. Describe the benefits and disadvantages of different lower lid approaches to the orbital floor and inferior rim, identify late exophthalmos as a complication of reconstructing the orbital floor with nonporous alloplast, and select implant type and size for correction of secondary enophthalmos. 4. Describe closed reduction of low-energy zygomatic body fractures with the Gillies approach and identify situations where internal fixation may be unnecessary, identify situations where plating the inferior orbital rim may be avoided, and select fixation points for osteosynthesis of uncomplicated displaced zygomatic fractures. 5. Understand indications and complications of use for intermaxillary screw systems, understand sequencing panfacial fractures, describe the sulcular approach to mandible fractures, and describe principles and techniques of facial reconstruction after self-inflicted firearm injuries. Treating patients with facial trauma remains a core component of plastic surgery and a significant part of the value of a plastic surgeon to a health system.

  19. Continuous TDEM for monitoring shale hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yan, Liang-Jun; Chen, Xiao-Xiong; Tang, Hao; Xie, Xing-Bing; Zhou, Lei; Hu, Wen-Bao; Wang, Zhong-Xin

    2018-03-01

    Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, timeconsuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.

  20. Testing Omega P’s 650 KW, 1.3 GHZ Low-Voltage Multi-Beam Klystron for the Project X Pulsed LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Omega-P Inc.

    Omega-P Inc. had developed a multi beam 1.3 GHz klystron (MBK) for the Project X pulsed linac application. Testing of the klystron require a special hardware such as a modulator, RF components, control system, power supplies, etc, as well as associated infrastructure( electricity, water, safety). This is an expensive part of klystron development for which Omega-P does not have the required equipment. Fermilab will test the MBK at Fermilab site providing contribution to the project all the necessary facilities, infrastructure and manpower for MBK test performance and analysis.

  1. Defining hip fracture with claims data: outpatient and provider claims matter.

    PubMed

    Berry, S D; Zullo, A R; McConeghy, K; Lee, Y; Daiello, L; Kiel, D P

    2017-07-01

    Medicare claims are commonly used to identify hip fractures, but there is no universally accepted definition. We found that a definition using inpatient claims identified fewer fractures than a definition including outpatient and provider claims. Few additional fractures were identified by including inconsistent diagnostic and procedural codes at contiguous sites. Medicare claims data is commonly used in research studies to identify hip fractures, but there is no universally accepted definition of fracture. Our purpose was to describe potential misclassification when hip fractures are defined using Medicare Part A (inpatient) claims without considering Part B (outpatient and provider) claims and when inconsistent diagnostic and procedural codes occur at contiguous fracture sites (e.g., femoral shaft or pelvic). Participants included all long-stay nursing home residents enrolled in Medicare Parts A and B fee-for-service between 1/1/2008 and 12/31/2009 with follow-up through 12/31/2011. We compared the number of hip fractures identified using only Part A claims to (1) Part A plus Part B claims and (2) Part A and Part B claims plus discordant codes at contiguous fracture sites. Among 1,257,279 long-stay residents, 40,932 (3.2%) met the definition of hip fracture using Part A claims, and 41,687 residents (3.3%) met the definition using Part B claims. 4566 hip fractures identified using Part B claims would not have been captured using Part A claims. An additional 227 hip fractures were identified after considering contiguous fracture sites. When ascertaining hip fractures, a definition using outpatient and provider claims identified 11% more fractures than a definition with only inpatient claims. Future studies should publish their definition of fracture and specify if diagnostic codes from contiguous fracture sites were used.

  2. Differences in childhood adiposity influence upper limb fracture site

    PubMed Central

    Moon, Rebecca J; Lim, Adelynn; Farmer, Megan; Segaran, Avinash; Clarke, Nicholas MP; Dennison, Elaine M; Harvey, Nicholas C; Cooper, Cyrus; Davies, Justin H

    2015-01-01

    Introduction Although it has been suggested that overweight and obese children have an increased risk of fracture, recent studies in post-menopausal women have shown that the relationship between obesity and fracture risk varies by fracture site. We therefore assessed whether adiposity and overweight/obesity prevalence differed by upper limb fracture site in children. Methods Height, weight, BMI, triceps and subscapular skinfold thickness (SFT) were measured in children aged 3-18 years with an acute upper limb fracture. Data was compared across three fracture sites (hand, forearm and upper arm/shoulder [UA]), and to published reference data. Results 401 children (67.1% male, median age 11.71 years (range 3.54-17.27 years) participated. 34.2%, 50.6% and 15.2% had fractures of the hand, forearm and UA, respectively. Children with forearm fractures had higher weight, BMI and SFT z-scores than those with UA fractures (p<0.05 for all). SFT z-scores were also higher in children with forearm fractures compared to hand fractures, but children withor hand and UA fractures did not differ. Overweight and obesity prevalence was higher in children with forearm fractures (37.6%) than those with UA fractures (19.0%, p=0.009). This prevalence was also higher than the published United Kingdom population prevalence (27.9%, p=0.003), whereas that of children with either UA (p=0.13) or hand fractures (29.1%, p=0.76) did not differ. The differences in anthropometry and overweight/obesity were similar for boys, but not present in girls. Conclusion Measurements of adiposity and the prevalence of overweight/obesity differ by fracture site in children, and in particular boys, with upper limb fractures. PMID:26027507

  3. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Astrophysics Data System (ADS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.

  4. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Technical Reports Server (NTRS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-01-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.

  5. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    NASA Astrophysics Data System (ADS)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  6. SEM stereo-section fractography (SSF) observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.J.; Tregoning, R.L.; Armstrong, R.W.

    1997-12-31

    Cleavage initiation in engineering materials is governed by local microstructural inhomogeneities. These features are often the principal reason for the large scatter evident in fracture toughness measurements which, in extreme cases, can mask the fundamental relationship between cracking resistance and global material properties. The SEM stereo-section fractography (SSF) technique can be used to carefully evaluate these local inhomogeneities through simultaneous observation of both the fracture surface and the underlying microstructure. By sectioning the fracture surface close to the cleavage initiation site (within 10 {micro}m), and perpendicular to both the fracture surface and the precrack front, a direct correspondence between initiationmore » and the local microstructure can be established. Information obtained from this technique can provide quantitative input about important, local microstructural features which can then be used to calibrate or create realistic micromechanical models. A compendium of SSF results is presented herein for cleavage cracking in disparate materials (A533B steel plates, MIL-70S multi-pass weldments, and Ti6A14V forgings), under various testing conditions. In each case, the SSF technique was able to unambiguously identify the dominant, local features which triggered cleavage initiation.« less

  7. SEM stereo-section fractography observations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.J.; Tregoning, R.L.; Armstrong, R.W.

    1998-05-01

    Cleavage initiation in engineering materials is governed by local microstructural inhomogeneities. These features are often the principal reason for the large scatter evident in fracture toughness measurements which, in extreme cases, can mask the fundamental relationship between cracking resistance and global material properties. The SEM stereo-section fractography (SSF) technique can be used to carefully evaluate these local inhomogeneities through simultaneous observation of both the fracture surface and the underlying microstructure. By sectioning the fracture surface close to the cleavage initiation site (within 10 microns), and perpendicular to both the fracture surface and the pre crack front, a direct correspondence betweenmore » initiation and the local microstructure can be established. Information obtained from this technique can provide quantitative input about important, local microstructural features which can then be used to calibrate or create realistic micromechanical models. A compendium of SSF results is presented herein for cleavage cracking in disparate materials (A533B steel plates, MIL-70S multi-pass weldments, and Ti6A14V forgings), under various testing conditions. In each case, the SSF technique was able to unambiguously identify the dominant, local features which triggered cleavage initiation.« less

  8. The Geomatics Contribution for the Valorisation Project in the Rocca of San Silvestro Landscape Site

    NASA Astrophysics Data System (ADS)

    Brocchini, D.; Chiabrando, F.; Colucci, E.; Sammartano, G.; Spanò, A.; Teppati Losè, L.; Villa, A.

    2017-05-01

    This paper proposes an emblematic project where several multi-sensor strategies for spatial data acquisition and management, range based and image based, were combined to create a series of integrated territorial and architectural scale products characterized by a rich multi-content nature. The work presented here was finalized in a test site that is composed by an ensemble of diversified cultural deposits; the objects that were surveyed and modelled range from the landscape with its widespread mining sites, the main tower with its defensive role, the urban configuration of the settlement, the building systems and techniques, a medieval mine. For this reason, the Rocca of San Silvestro represented a perfect test case, due to its complex and multi-stratified character. This archaeological site is a medieval fortified village near the municipality of Campiglia Marittima (LI), Italy. The Rocca is part of an Archaeological Mines Park and is included in the Parchi della Val di Cornia (a system of archaeological parks, natural parks and museums in the south-west of Tuscany). The fundamental role of a deep knowledge about a cultural artefact before the planning of a restoration and valorisation project is globally recognized; the qualitative and quantitative knowledge provided by geomatics techniques is part of this process. The paper will present the different techniques that were used, the products that were obtained and will focus on some mapping and WEB GIS applications and analyses that were performed and considerations that were made.

  9. Petrophysical properties, mineralogy, fractures, and flow tests in 25 deep boreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Nelson, Philip H.; Kibler, Joyce E.

    2014-01-01

    As part of a site investigation for the disposal of radioactive waste, numerous boreholes were drilled into a sequence of Miocene pyroclastic flows and related deposits at Yucca Mountain, Nevada. This report contains displays of data from 25 boreholes drilled during 1979–1984, relatively early in the site investigation program. Geophysical logs and hydrological tests were conducted in the boreholes; core and cuttings analyses yielded data on mineralogy, fractures, and physical properties; and geologic descriptions provided lithology boundaries and the degree of welding of the rock units. Porosity and water content were computed from the geophysical logs, and porosity results were combined with mineralogy from x-ray diffraction to provide whole-rock volume fractions. These data were composited on plates and used by project personnel during the 1990s. Improvements in scanning and computer technology now make it possible to publish these displays.

  10. Ethical issues in using data from quality management programs.

    PubMed

    Nerenz, David R

    2009-08-01

    Since the advent of formal, data-driven quality improvement programs in health care in the late 1980s and early 1990s, there are have been questions raised about requirements for ethical committee review of quality improvement activities. A form of consensus emerged through a series of articles published between 1996 and 2007, but there is still significant variation among ethics review committees and individual project leaders in applying broad policies on requirements for committee review and/or written informed consent by participants. Recent developments in quality management, particularly the creation and use of multi-site disease registries, have raised new questions about requirements for review and consent, since the activities often have simultaneous research and quality improvement goals. This article discusses ways in which policies designed for local quality improvement projects and data bases may be adapted to apply to multi-site registries and research projects related to them.

  11. Project KANPE, 1982-1983. O.E.E. Evaluation Report.

    ERIC Educational Resources Information Center

    Clesca, Monique; And Others

    This report describes Project KANPE, a multi-site program. In its final year of a three-year funding cycle, the project served approximately 275 Haitian students of limited English proficiency in grades nine through twelve at three New York City high schools. Ninety-six percent of the target population were born in Haiti and all spoke either…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

    In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of “blind” geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awardedmore » the “Best Geophysics Paper” at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the fault zones is constrained by geological, drilling, and geothermal production data. The objective is to determine interpretation techniques for evaluating structural controls of fluid circulation in hydrothermal systems. The conclusions are: • directions of MT polarization and anisotropy and MEQ S-splitting correlate. Polarization and anisotropy are caused by fluid filled fractures at the base of the clay cap. •Microearthquakes occur mainly on the boundary of low resistivity within the fracture zone and high resistivity in the host rock. Resistivity is lowest within the core of the fracture zone and increases towards the margins of the fracture zone. The heat source and the clay cap for the hydrothermal have very low resistivity of less than 5Ωm. •Fracture porosity imaged by resistivity indicates that it varies between 45-5% with most between 10-20%, comparable to values from core samples in volcanic areas in Kenya and Iceland. For resistivity values above 60Ωm, the porosity reduces drastically and therefore this might be used as the upper limit for modeling fracture porosity from resistivity. When resistivity is lower than 5Ωm, the modeled fracture porosity increases drastically indicating that this is the low resistivity limit. This is because at very low resistivity in the heat source and the clay cap, the resistivity is dominated by ionic conduction rather than fracture porosity. •Microearthquakes occur mainly above the heat source which is defined by low resistivity at a depth of 3-4.5 km at the Krafla hydrothermal system and 4-7 km in the Longonot hydrothermal system. •Conversions of S to P waves occur for microearthquakes located above the heat source within the hydrothermal system. Shallow microearthquakes occur mainly in areas that show both MT and S-wave anisotropy. •S-wave splitting and MT anisotropy occurs at the base of the clay cap and therefore reflects the variations in fracture porosity on top of the hydrothermal system. •In the Krafla hydrothermal system in Iceland, both MT polarization and MEQ splitting directions align with zones that have high fracture porosity below the clay cap. These zones coincide with fault zones trending in the NNE-SSW and NW-SE directions in otherwise uniform volcanic rocks and laterally continuous geology. The NW-SE orientation is parallel to the regional shear fractures while the NNE-SSW trending polarizations align parallel to rift zone fracture swarms. This suggest that correlations between MT polarizations and MEQ splitting may be related to fluid filled fractures. •In areas of high resistivity (60Ωm), the P-wave velocity approaches that of the rock matrix. •S-wave splitting polarization is determined from measurements of angles of rotation to get the optimum direction of polarization. •The use of MEQ and resistivity for imaging fractures requires that the MEQ data acquisition system be located close to the fracture zone.« less

  13. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women.

    PubMed

    Tanaka, S; Kuroda, T; Saito, M; Shiraki, M

    2013-01-01

    This cohort study of 1,614 postmenopausal Japanese women followed for 6.7 years showed that overweight/obesity and underweight are both risk factors for fractures at different sites. Fracture risk assessment may be improved if fracture sites are taken into account and BMI is categorized. The effect of body mass index (BMI) on fracture at a given level of bone mineral density (BMD) is controversial, since varying associations between BMI and fracture sites have been reported. A total of 1,614 postmenopausal Japanese women were followed for 6.7 years in a hospital-based cohort study. Endpoints included incident vertebral, femoral neck, and long-bone fractures. Rate ratios were estimated by Poisson regression models adjusted for age, diabetes mellitus, BMD, prior fracture, back pain, and treatment by estrogen. Over a mean follow-up period of 6.7 years, a total of 254 clinical and 335 morphometric vertebral fractures, 48 femoral neck fractures, and 159 long-bone fractures were observed. Incidence rates of vertebral fracture in underweight and normal weight women were significantly lower than overweight or obese women by 0.45 (95 % confidence interval: 0.32 to 0.63) and 0.61 (0.50 to 0.74), respectively, if BMD and other risk factors were adjusted, and by 0.66 (0.48 to 0.90) and 0.70 (0.58 to 0.84) if only BMD was not adjusted. Incidence rates of femoral neck and long-bone fractures in the underweight group were higher than the overweight/obese group by 2.15 (0.73 to 6.34) and 1.51 (0.82 to 2.77) and were similar between normal weight and overweight/obesity. Overweight/obesity and underweight are both risk factors for fractures at different sites. Fracture risk assessment may be improved if fracture sites are taken into account and BMI is categorized.

  14. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Benally, Deputy Director,

    2012-05-15

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketingmore » tools to support outreach efforts targeting the public, vendors, investors and government audiences.« less

  15. Lidar-based fracture characterization: An outcrop-scale study of the Woodford Shale, McAlister Shale Pit, Oklahoma

    NASA Astrophysics Data System (ADS)

    Hanzel, Jason

    The use of lidar (light detection and ranging), a remote sensing tool based on principles of laser optometry, in mapping complex, multi-scale fracture networks had not been rigorously tested prior to this study despite its foreseeable utility in interpreting rock fabric with imprints of complex tectonic evolution. This thesis demonstrates lidar-based characterization of the Woodford Shale where intense fracturing could be due to both tectonism and mineralogy. The study area is the McAlister Shale Pit in south-central Oklahoma where both the upper and middle sections of the Woodford Shale are exposed and can be lidar-mapped. Lidar results are validated using hand-measured strike and dips of fracture planes, thin sections and mineral chemistry of selected samples using X-ray diffraction (XRD). Complexity of the fracture patterns as well as inaccessibility of multiple locations within the shale pit makes hand-measurement prone to errors and biases; lidar provides an opportunity for less biased and more efficient field mapping. Fracture mapping with lidar is a multi-step process. The lidar data are converted from point clouds into a mesh through triangulation. User-defined parameters such as size and orientation of the individual triangular elements are then used to group similar elements into surfaces. The strike and dip attribute of the simulated surfaces are visualized in an equal area lower hemisphere projection stereonet. Three fracture sets were identified in the upper and middle sections with common orientation but substantially different spatial density. Measured surface attributes and spatial density relations from lidar were validated using their hand-measured counterparts. Thin section analysis suggests that high fracture density in the upper Woodford measured by both the lidar and the hand-measured data could be due to high quartz. A significant finding of this study is the reciprocal relation between lidar intensity and gamma-ray (GR), which is generally used to infer outcrop mineralogy. XRD analysis of representative samples along the common profiles show that both GR and lidar intensity were influenced by the same minerals in essentially opposite ways. Results strongly suggest that the lidar cannot only remotely map the geomorphology, but also the relative mineralogical variations to the first order of approximation.

  16. Impact of hydrogeological and geomechanical properties on surface uplift at a CO2 injection site: Parameter estimation and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.

    2013-12-01

    It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Activities and interim outcomes of a multi-site development project to promote cognitive support technology use and employment success among postsecondary students with traumatic brain injuries.

    PubMed

    Hendricks, Deborah J; Sampson, Elaine; Rumrill, Phillip; Leopold, Anne; Elias, Eileen; Jacobs, Karen; Nardone, Amanda; Scherer, Marcia; Stauffer, Callista

    2015-01-01

    This article describes the activities and interim outcomes of a multi-site development project called Project Career, designed to promote cognitive support technology (CST) use and employment success for college and university students with traumatic brain injuries (TBIs). To obtain early intervention results from participants in Project Career's first 18 months of operation. Fifty-six students with TBI have participated to date across three implementation sites in Massachusetts, Ohio, and West Virginia, with 25 of these participants being military veterans. Descriptive analyses provide information regarding the participants, the barriers they face due to their TBI in obtaining a post-secondary education, and the impact services provided by Project Career have had to date in ameliorating those difficulties. Inferential statistical analyses provide preliminary results regarding program effectiveness. Preliminary results indicate the program is encouraging students to use CST strategies in the form of iPads and cognitive enhancement applications (also known as 'apps'). Significant results indicate participants are more positive, independent, and social; participants have a more positive attitude toward technology after six months in the program; and participants reported significantly improved experiences with technology during their first six months in the program. Participating students are actively preparing for their careers after graduation through a wide range of intensive vocational supports provided by project staff members.

  18. High resolution digital elevation modelling from TLS and UAV campaign reveals structural complexity at the 2014/15 Holuhraun eruption site, Iceland

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Walter, Thomas R.; Schöpa, Anne; Witt, Tanja; Steinke, Bastian; Gudmundsson, Magnús T.; Dürig, Tobias

    2017-07-01

    Fissure eruptions are commonly linked to magma dikes at depth, associated with elastic and anelastic surface deformation. Elastic deformation is well described by subsidence above, uplift and lateral widening perpendicular to the dike plane. The anelastic part is associated with the formation of a graben, bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally secondary structures, like push ups, bends and step overs yield information about the deforming domain. The formation of such structures associated with fissure eruptions, however, is barely preserved in nature because of the rapid erosion or sediment coverage. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland), evidence is increasing that the developing fractures are showing variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) based aerophoto analysis was realized. From this data, we generated locally high resolution Digital Elevation Models (DEMs) and a structural map that allows for identification of kinematic indicators and assessing particularities of the observed structures. We identified 315 fracture segments from satellite data. For single segments we measured strike directions including the amount of opening and opening angles, indicating that many of the measured fractures show transtensional dislocations. Out of these, 81 % are showing significant left-lateral slip, only 17% right-lateral slip and 2% pure tensile opening. We show that local complexities in the fracture traces and geometries are closely related to variations in the transtensional opening direction. Moreover, we identified local changes in fracture azimuths and offsets close to eruption sites, which we speculate to be associated with geometrical changes in the magma feeder itself. Results highlight that opening of fractures associated with an erupting fissure commonly show transtensional modes having both, left-lateral and right-lateral slip, with important implications for interpreting the expression of surface structures at rift zones elsewhere. Results further highlight the great value of UAV based high resolution data to contribute to the integrity of observations of structural complexities at local geologic events.

  19. Project SMART (Summer Migrants Access Resources through Technology).

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin. Div. of Migrant Education.

    The SMART (Summer Migrants Access Resources through Technology) project provides Texas migrant students with supplemental instruction using a multi-media, nontraditional approach. Migrant students who remain in Texas during the summer are taught in their homes or other sites via televised instruction with additional instructional support from…

  20. Biomechanics of the Upper Extremity in Response to Dynamic Impact Loading Indicative of a Forward Fall: An Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Burkhart, Timothy A.

    The distal radius is one of the most common fracture sites in humans, often resulting from a forward fall with more than 60 % of all fractures to the wrist requiring some form of surgical intervention. Although there is a general consensus regarding the risk factors for distal radius fractures resulting from forward falling, prevention of these injuries requires a more thorough understanding of the injury mechanisms. Therefore the overall purpose of this dissertation was to assess the response of the upper extremity to impact loading to improve the understanding of distal radius fracture mechanisms and the effectiveness of joint kinematic strategies for reducing the impact effects. Three main studies were conducted that utilized in vivo, in vitro and numerical techniques. In vitro impact testing of the distal radius revealed that fracture will occur at a mean (SD) resultant impact force and velocity of 2142.1(1228.7) N and 3.4 (0.7) m/s, respectively. Based on the failure data, multi-variate injury criteria models were produced, highlighting the dynamic and multidirectional nature of distal radius fractures The in vitro investigation was also used to develop and validate a finite element model of the distal radius. Dynamic impacts were simulated in LS-DYNARTM and the resulting z-axis force validation metrics (0.23--0.54) suggest that this is a valid model. A comparison of the experimental fracture patterns to those predicted numerically (i.e. von-Mises stress criteria) shows the finite element model is capable of accurately predicting bone failure. Finally, an in vivo fall simulation apparatus was designed and built that was found to reliably (Intraclass Correlation Coefficients > 0.6) apply multi-directional motion and upper extremity impacts indicative of forward falls. This study revealed that, to some extent, individuals are capable of selected an impact strategy that minimizes the significant injury variables that were outlined in the in vitro investigation, with very little instruction. The body of work presented here has the potential to be used to develop distal radius fracture prevention methods in an attempt to improve the health and well being of those individuals currently at the highest risk of sustaining these injuries.

  1. Multi-Variable and Multi-Site Calibration and Validation of SWAT for Water Quality in the Kaskaskia River Watershed

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the U.S. Environmental Protection Agency’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes and streams affect ...

  2. Using weighted trait indices to select the best performing broccoli hybrids in multi-site and multi-year trials

    USDA-ARS?s Scientific Manuscript database

    Understanding and implementing evaluation data from vegetable trials conducted across multiple years and environments by multiple raters presents numerous challenges. In order to select new broccoli hybrids suitable for eastern production, the SCRI East Coast Broccoli Project has conducted over 32 p...

  3. Lower limb fracture presentations at a regional hospital.

    PubMed

    Holloway, K L; Yousif, D; Bucki-Smith, G; Hosking, S; Betson, A G; Williams, L J; Brennan-Olsen, S L; Kotowicz, M A; Sepetavc, A; Pasco, J A

    2017-08-28

    We found that lower limb fractures, which were largely the result of minimal trauma, had high levels of hospitalisation, length of stay and surgery. It is therefore important to prevent fractures at all sites to avoid the associated morbidity and mortality. Hip fractures are a major cause of morbidity and mortality, particularly in older women. In comparison, less is known about the epidemiology and burden of other lower limb fractures. The study aimed to investigate the epidemiology and burden of these fractures. Incident fractures of the hip, femur, tibia/fibula, ankle and foot in women (≥ 20 years) managed through the University Hospital Geelong, Australia, were ascertained from 1 Jan. 2014 to 31 Dec. 2014 from radiology reports. Age, cause of fracture, post-fracture hospitalisation, surgery, length of stay and discharge location were ascertained from medical records. We identified 585 fractures of the lower limb (209 hip, 42 femur, 41 tibia/fibula, 162 ankle, 131 foot). Most fractures were sustained by women aged ≥ 50 years. Fractures were largely a result of minimal trauma. Most women with hip or femur fractures were hospitalised; fewer were hospitalised for fractures at other sites. Surgery for fracture followed the same pattern as hospitalisations. Length of stay was the highest for hip and femur fractures and the lowest for foot fractures. Women with hip or femur fractures were discharged to rehabilitation more often than home. Fractures at other sites were most commonly discharged home. Fractures of the lower limb occurred frequently in older women. Hospitalisation and subsequent surgery were common in cases of hip and femur fractures. It is important for prevention strategies to target fractures at a range of skeletal sites to reduce costs, hospitalisations, loss of independence and reduced quality of life.

  4. Sedimentation in the Kane fracture zone, western North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaroslow, G.E.

    1991-03-01

    The Kane fracture zone, a deep narrow trough in oceanic crust, has provided an ideal depocenter for reservation on the seismic stratigraphic record of the North Atlantic basin. The acoustic stratigraphy in single-channel and multichannel seismic reflection profiles crossing the Kane fracture zone in the western North Atlantic has been examined in order to scrutinize age processes within a fracture zone. Maps of total sediment thickness have provided insight into overall sediment distribution and the influence of topography on sedimentation. Eight reflectors have been traced and correlated with lithostratigraphy at Deep Sea Drilling Project (DSDP) sites. The Bermuda Rise, amore » prominent topographic feature, has had a profound effect on the distribution of sediments within the fracture zone. Since late Eocene, the rise has blocked transport by turbidity currents of terrigenous sediments to distal portions of the fracture valley. A 1,000-m-thick turbidite pond within the fracture zone east of the Bermuda Rise has been determined to have been derived from local sources. Within the ponded sequence a seismic discontinuity is estimated to be early Oligocene and postdates the emergence of the Bermuda Rise, adding an independent age constraint on the development of the rise. The pond terminates against a structural dam at 55{degree}20W, east of which the fracture zone is essentially sediment starved.« less

  5. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused onmore » multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.« less

  6. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview

    USGS Publications Warehouse

    Ruppel, C.; Boswell, R.; Jones, E.

    2008-01-01

    The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor at the Keathley Canyon site. This paper provides an overview of the results of the initial phases of the JIP work and introduces the 15 papers that make up this special volume on the scientific results related to the 2005 logging and drilling expedition.

  7. Bone mineral density at different sites and vertebral fractures in Serbian postmenopausal women.

    PubMed

    Ilic Stojanovic, O; Vuceljic, M; Lazovic, M; Gajic, M; Radosavljevic, N; Nikolic, D; Andjic, M; Spiroski, D; Vujovic, S

    2017-02-01

    This randomized study aimed to evaluate the correlation between bone mineral densities (BMD) measured at different sites and the frequency of vertebral fractures in a group of Serbian postmenopausal women. BMD was measured in 130 naïve postmenopausal women by dual X-ray absorptiometry (DXA) at the ultra-distal part of the forearms, at the hip and at the lumbar spine. At each of the measurement sites, the patients were categorized as osteoporotic, or osteopenic, or in the reference range. Vertebral fractures were examined using thoracic and lumbar spine radiography. A T-score at different skeletal sites showed discordance in the site-specific region. Vertebral fractures were found in 58.82% of patients with hip osteopenia, in 45% with forearm osteopenia and in 54.54% with lumbar spine osteoporosis. The study confirmed that the reduction of BMD depends on age and choice of measurement site. The best correlation was obtained in the women with osteopenia at all measurement sites. The discovery of vertebral fractures by lateral thoracic and lumbar spine radiography improves prompt treatment. Reference values of BMD do not exclude vertebral fractures. Of vertebral fractures, 72.5% were asymptomatic and thus spine radiographies are obligatory. Currently discussed is the position of DXA for measuring BMD as a method of detection for patients at risk of fracture.

  8. Motion Predicts Clinical Callus Formation

    PubMed Central

    Elkins, Jacob; Marsh, J. Lawrence; Lujan, Trevor; Peindl, Richard; Kellam, James; Anderson, Donald D.; Lack, William

    2016-01-01

    Background: Mechanotransduction is theorized to influence fracture-healing, but optimal fracture-site motion is poorly defined. We hypothesized that three-dimensional (3-D) fracture-site motion as estimated by finite element (FE) analysis would influence callus formation for a clinical series of supracondylar femoral fractures treated with locking-plate fixation. Methods: Construct-specific FE modeling simulated 3-D fracture-site motion for sixty-six supracondylar femoral fractures (OTA/AO classification of 33A or 33C) treated at a single institution. Construct stiffness and directional motion through the fracture were investigated to assess the validity of construct stiffness as a surrogate measure of 3-D motion at the fracture site. Callus formation was assessed radiographically for all patients at six, twelve, and twenty-four weeks postoperatively. Univariate and multivariate linear regression analyses examined the effects of longitudinal motion, shear (transverse motion), open fracture, smoking, and diabetes on callus formation. Construct types were compared to determine whether their 3-D motion profile was associated with callus formation. Results: Shear disproportionately increased relative to longitudinal motion with increasing bridge span, which was not predicted by our assessment of construct stiffness alone. Callus formation was not associated with open fracture, smoking, or diabetes at six, twelve, or twenty-four weeks. However, callus formation was associated with 3-D fracture-site motion at twelve and twenty-four weeks. Longitudinal motion promoted callus formation at twelve and twenty-four weeks (p = 0.017 for both). Shear inhibited callus formation at twelve and twenty-four weeks (p = 0.017 and p = 0.022, respectively). Titanium constructs with a short bridge span demonstrated greater longitudinal motion with less shear than did the other constructs, and this was associated with greater callus formation (p < 0.001). Conclusions: In this study of supracondylar femoral fractures treated with locking-plate fixation, longitudinal motion promoted callus formation, while shear inhibited callus formation. Construct stiffness was found to be a poor surrogate of fracture-site motion. Future implant design and operative fixation strategies should seek to optimize 3-D fracture-site motion rather than rely on surrogate measures such as axial stiffness. PMID:26888675

  9. The opportunities and challenges of multi-site evaluations: lessons from the jail diversion and trauma recovery national cross-site evaluation.

    PubMed

    Stainbrook, Kristin; Penney, Darby; Elwyn, Laura

    2015-06-01

    Multi-site evaluations, particularly of federally funded service programs, pose a special set of challenges for program evaluation. Not only are there contextual differences related to project location, there are often relatively few programmatic requirements, which results in variations in program models, target populations and services. The Jail Diversion and Trauma Recovery-Priority to Veterans (JDTR) National Cross-Site Evaluation was tasked with conducting a multi-site evaluation of thirteen grantee programs that varied along multiple domains. This article describes the use of a mixed methods evaluation design to understand the jail diversion programs and client outcomes for veterans with trauma, mental health and/or substance use problems. We discuss the challenges encountered in evaluating diverse programs, the benefits of the evaluation in the face of these challenges, and offer lessons learned for other evaluators undertaking this type of evaluation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer.

  11. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing.

    PubMed

    Matsumoto, Tomoyuki; Mifune, Yutaka; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Shoji, Taro; Iwasaki, Hiroto; Suzuki, Takahiro; Oyamada, Akira; Horii, Miki; Yokoyama, Ayumi; Nishimura, Hiromi; Lee, Sang Yang; Miwa, Masahiko; Doita, Minoru; Kurosaka, Masahiro; Asahara, Takayuki

    2008-04-01

    We recently reported that systemic administration of peripheral blood (PB) CD34+ cells, an endothelial progenitor cell (EPC)-enriched population, contributed to fracture healing via vasculogenesis/angiogenesis. However, pathophysiological role of EPCs in fracture healing process has not been fully clarified. Therefore, we investigated the hypothesis whether mobilization and incorporation of bone marrow (BM)-derived EPCs may play a pivotal role in appropriate fracture healing. Serial examinations of Laser doppler perfusion imaging and histological capillary density revealed that neovascularization activity at the fracture site peaked at day 7 post-fracture, the early phase of endochondral ossifification. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the frequency of BM cKit+Sca1+Lineage- (Lin-) cells and PB Sca1+Lin- cells, which are EPC-enriched fractions, significantly increased post-fracture. The Sca1+ EPC-derived vasuculogenesis at the fracture site was confirmed by double immunohistochemistry for CD31 and Sca1. BM transplantation from transgenic donors expressing LacZ transcriptionally regulated by endothelial cell-specific Tie-2 promoter into wild type also provided direct evidence that EPCs contributing to enhanced neovascularization at the fracture site were specifically derived from BM. Animal model of systemic administration of PB Sca1+Lin- Green Fluorescent Protein (GFP)+ cells further confirmed incorporation of the mobilized EPCs into the fracture site for fracture healing. These findings indicate that fracture may induce mobilization of EPCs from BM to PB and recruitment of the mobilized EPCs into fracture sites, thereby augment neovascularization during the process of bone healing. EPCs may play an essential role in fracture healing by promoting a favorable environment through neovascularization in damaged skeletal tissue. (c) 2008 Wiley-Liss, Inc.

  12. Deep Vadose Zone Flow and Transport Behavior at T-Tunnel Complex, Rainier Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Parashar, R.; Reeves, D. M.

    2010-12-01

    Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 450 m below the top of the mesa and 500 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of the T-tunnel complex indicate the presence of a perched saturation zone located approximately 100 m above the T-tunnel complex. This upper zone of saturation extends downward through most of the Tertiary sequence. The groundwater table is located at an elevation of 1300 m within a thrust sheet of Paleozoic carbonates, corresponding to the lower carbonate aquifer hydrostratigraphic unit (LCA3). The LCA3 is considered to be hydraulically connected to the Death Valley regional flow system. The objective of this project is to simulate complex downward patterns of fluid flow and radionuclide transport from the T-tunnel complex through the matrix and fault networks of the Tertiary tuff units to the water table. We developed an improved fracture characterization and mapping methodology consisting of displacement-length scaling relationships, simulation of realistic fault networks based on site-specific data, and the development of novel fracture network upscaling techniques that preserves fracture network flow and transport properties on coarse continuum grid. Development of upscaling method for fracture continua is based on the concepts of discrete fracture network modeling approach which performs better at honoring network connectivity and anisotropy of sparse networks in comparison to other established methods such as a tensor approach. Extensive flow simulations in the dual-continuum framework demonstrate that the characteristics of fault networks strongly influences the saturation profile and formation of perched zones, although they may not conduct a large amount of flow when compared to the matrix continua. The simulated results are found to be very sensitive to distribution of fracture aperture, density of the network, and spatial pattern of fracture clustering. The faults provide rapid pathways for radionuclide transport and the conceptual modeling of diffusional mass transfer between matrix and fracture continua plays a vital role in prediction of the overall behavior of the breakthrough curve.

  13. Evaluation of stormwater harvesting sites using multi criteria decision methodology

    NASA Astrophysics Data System (ADS)

    Inamdar, P. M.; Sharma, A. K.; Cook, Stephen; Perera, B. J. C.

    2018-07-01

    Selection of suitable urban stormwater harvesting sites and associated project planning are often complex due to spatial, temporal, economic, environmental and social factors, and related various other variables. This paper is aimed at developing a comprehensive methodology framework for evaluating of stormwater harvesting sites in urban areas using Multi Criteria Decision Analysis (MCDA). At the first phase, framework selects potential stormwater harvesting (SWH) sites using spatial characteristics in a GIS environment. In second phase, MCDA methodology is used for evaluating and ranking of SWH sites in multi-objective and multi-stakeholder environment. The paper briefly describes first phase of framework and focuses chiefly on the second phase of framework. The application of the methodology is also demonstrated over a case study comprising of the local government area, City of Melbourne (CoM), Australia for the benefit of wider water professionals engaged in this area. Nine performance measures (PMs) were identified to characterise the objectives and system performance related to the eight alternative SWH sites for the demonstration of the application of developed methodology. To reflect the stakeholder interests in the current study, four stakeholder participant groups were identified, namely, water authorities (WA), academics (AC), consultants (CS), and councils (CL). The decision analysis methodology broadly consisted of deriving PROMETHEE II rankings of eight alternative SWH sites in the CoM case study, under two distinct group decision making scenarios. The major innovation of this work is the development and application of comprehensive methodology framework that assists in the selection of potential sites for SWH, and facilitates the ranking in multi-objective and multi-stakeholder environment. It is expected that the proposed methodology will assist the water professionals and managers with better knowledge that will reduce the subjectivity in the selection and evaluation of SWH sites.

  14. Fixation using alternative implants for the treatment of hip fractures (FAITH): design and rationale for a multi-centre randomized trial comparing sliding hip screws and cancellous screws on revision surgery rates and quality of life in the treatment of femoral neck fractures.

    PubMed

    2014-06-26

    Hip fractures are a common type of fragility fracture that afflict 293,000 Americans (over 5,000 per week) and 35,000 Canadians (over 670 per week) annually. Despite the large population impact the optimal fixation technique for low energy femoral neck fractures remains controversial. The primary objective of the FAITH study is to assess the impact of cancellous screw fixation versus sliding hip screws on rates of revision surgery at 24 months in individuals with femoral neck fractures. The secondary objective is to determine the impact on health-related quality of life, functional outcomes, health state utilities, fracture healing, mortality and fracture-related adverse events. FAITH is a multi-centre, multi-national randomized controlled trial utilizing minimization to determine patient allocation. Surgeons in North America, Europe, Australia, and Asia will recruit a total of at least 1,000 patients with low-energy femoral neck fractures. Using central randomization, patients will be allocated to receive surgical treatment with cancellous screws or a sliding hip screw. Patient outcomes will be assessed at one week (baseline), 10 weeks, 6, 12, 18, and 24 months post initial fixation. We will independently adjudicate revision surgery and complications within 24 months of the initial fixation. Outcome analysis will be performed using a Cox proportional hazards model and likelihood ratio test. This study represents major international efforts to definitively resolve the treatment of low-energy femoral neck fractures. This trial will not only change current Orthopaedic practice, but will also set a benchmark for the conduct of future Orthopaedic trials. The FAITH trial is registered at ClinicalTrials.gov (Identifier NCT00761813).

  15. Fracture characteristics of gas hydrate-bearing sediments in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Gil Young; Narantsetseg, Buyanbat; Yoo, Dong Geun; Ryu, Byong Jae

    2015-04-01

    The LWD (Logging-While-Drilling) logging (including wireline logging) and coring (including pressure coring) were conducted during UBGH2 (Ulleung Basin Gas Hydrate) expedition. The LWD data from 13 logged sites were obtained and most of the sites showed typical log data indicating the presence of gas hydrate. In particular, prominent fractures were clearly identified on the resistivity borehole images from the seismic chimney structures. The strike and dip of each fracture in all sites was calculated and displayed on the stereographic plot and rosette diagram. Fracture orientations on the stereographic plot are more broadly distributed, indicating that the fracture pattern is not well-ordered on the rosette diagram, although the maximum horizontal stress dominates NW-SE direction at most sites. This indicates that accurate horizontal stress directions cannot be completely resolved from the fractures. Moreover, the fractures may be developed from overburden (e.g., gravitational effect) compaction associated with sediment dewatering after deposition. Thus we should consider various factors affecting formation of fractures in order to interpret the origin of fractures. Nevertheless, the results of fracture analysis can be used to interpret distribution pattern and type of gas hydrate in the Ulleung Basin. .

  16. The Effects of Collaborative Strategic Reading Instruction on the Reading Comprehension of Middle School Students: Year 1

    ERIC Educational Resources Information Center

    Mohammed, Sarojani S.; Swanson, Elizabeth; Roberts, Greg; Vaughn, Sharon; Klingner, Janette K.; Boardman, Alison Gould

    2010-01-01

    This project is a multi-site, multi-year study designed to test the efficacy of a fully developed intervention, Collaborative Strategic Reading (CSR), with adolescent readers. In year 1, the research questions were: (1) "Does CSR improve reading comprehension for adolescent readers attending relatively low SES schools?"; and (2)…

  17. Resolution and sensitivity of boat-towed RMT data to delineate fracture zones - Example of the Stockholm bypass multi-lane tunnel

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.

    2017-04-01

    The resolution and sensitivity of water-borne boat-towed multi-frequency radio-magnetotelluric (RMT) data for delineating zones of weaknesses in bedrock are examined in this study. 2D modeling of RMT data along 40 profiles in joint transverse electric (TE) and transverse magnetic (TM) as well as determinant mode was used for this purpose. The RMT data were acquired over two water passages from the Lake Mälaren near the city of Stockholm where one of the largest underground infrastructure projects, a multi-lane tunnel, in Europe is currently being developed. Comparison with available borehole coring, refraction seismic and bathymetric data was used to scrutinize the RMT resistivity models. A low-resistivity zone observed in the middle of all the profiles is suggested to be from fracture/fault zones striking in the same direction as the water passages. Drilling observations confirm the presence of brittle structures in the bedrock, which manifest themselves as zones of low-resistivity and low-velocity in the RMT and refraction seismic data, respectively. Nevertheless, RMT is an inductive electromagnetic method hence the presence of conductive lake sediments may shield detecting the underlying fractured bedrock. The loss of resolution at depth implies that the structures within the bedrock under the lake sediments cannot reliably be delineated. To support this, a synthetic data analysis was carried out providing useful information on how to improve and plan the lake measurements for future studies. Synthetic modeling results for example suggested that frequencies as low as 3 kHz would be required to reliably resolve the bedrock and fracture zone within it in the study area. The modeling further illustrated the advantage of a fresh water layer that acts as a near-surface homogeneous medium eliminating the static shift effects. While boat-towed RMT data provided substantial information about the subsurface geology, the acquisition system should be upgraded to enable controlled-source data acquisition to increase the penetration depth and to overcome the shortcomings of using only radio-frequencies.

  18. Fractures Due to Gunshot Wounds: Do Retained Bullet Fragments Affect Union?

    PubMed

    Riehl, John T; Connolly, Keith; Haidukewych, George; Koval, Ken

    2015-01-01

    Many types of projectiles, including modern hollow point bullets, fragment into smaller pieces upon impact, particularly when striking bone. This study was performed to examine the effect on time to union with retained bullet material near a fracture site in cases of gunshot injury. All gunshot injuries operatively treated with internal fixation at a Level 1 Trauma Center between March 2008 and August 2011 were retrospectively reviewed. Retained bullet load near the fracture site was calculated based on percentage of material retained compared to the cortical diameter of the involved bone. Analyses were performed to assess the effect of the lead-cortical ratio and amount of comminution on time to fracture union. Thirty-two patients (34 fractures) met the inclusion criteria, with an equal number of comminuted (17) and non-comminuted fractures (17). Seventeen of 34 fractures (50%) united within 4 months, 16/34 (47%) developed a delayed union, and 1/34 (3%) developed a nonunion requiring revision surgery. Sixteen of 17 fractures (94%) that united by 4 months had a cumulative amount of bullet fragmentation retained near the fracture site of less than 20% of the cortical diameter. Nine out of 10 fractures (90%) with retained fragments near the fracture site was equal to or exceeding 20% of the cortical diameter had delayed or nonunion. Fracture comminution had no effect on time to union. The quantity of retained bullet material near the fracture site was more predictive of the rate of fracture union than was comminution. Fractures with bullet fragmentation equal to or exceeding 20% of the cortical width demonstrated a significantly higher rate of delayed union/nonunion compared to those fractures with less retained bullet material, which may indicate a local cytotoxic effect from lead on bone healing. These findings may influence decisions on timing of secondary surgeries. Level III.

  19. Fractures Due to Gunshot Wounds: Do Retained Bullet Fragments Affect Union?

    PubMed Central

    Riehl, John T.; Connolly, Keith; Haidukewych, George; Koval, Ken

    2015-01-01

    Background Many types of projectiles, including modern hollow point bullets, fragment into smaller pieces upon impact, particularly when striking bone. This study was performed to examine the effect on time to union with retained bullet material near a fracture site in cases of gunshot injury. Methods All gunshot injuries operatively treated with internal fixation at a Level 1 Trauma Center between March 2008 and August 2011 were retrospectively reviewed. Retained bullet load near the fracture site was calculated based on percentage of material retained compared to the cortical diameter of the involved bone. Analyses were performed to assess the effect of the lead-cortical ratio and amount of comminution on time to fracture union. Results Thirty-two patients (34 fractures) met the inclusion criteria, with an equal number of comminuted (17) and non-comminuted fractures (17). Seventeen of 34 fractures (50%) united within 4 months, 16/34 (47%) developed a delayed union, and 1/34 (3%) developed a nonunion requiring revision surgery. Sixteen of 17 fractures (94%) that united by 4 months had a cumulative amount of bullet fragmentation retained near the fracture site of less than 20% of the cortical diameter. Nine out of 10 fractures (90%) with retained fragments near the fracture site was equal to or exceeding 20% of the cortical diameter had delayed or nonunion. Fracture comminution had no effect on time to union. Conclusions The quantity of retained bullet material near the fracture site was more predictive of the rate of fracture union than was comminution. Fractures with bullet fragmentation equal to or exceeding 20% of the cortical width demonstrated a significantly higher rate of delayed union/nonunion compared to those fractures with less retained bullet material, which may indicate a local cytotoxic effect from lead on bone healing. These findings may influence decisions on timing of secondary surgeries. Level of Evidence Level III PMID:26361445

  20. Benefits of applying technology to Devonian shale wells. Topical report, July-December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voneiff, G.W.; Gatens, J.M.

    1993-01-01

    The report summarizes the benefits of applying technology to Devonian Shales wells in the Appalachian Basin. The results of the work suggest that an intermediate level of technology application, with an incremental cost of $6,700/well, is best for routine application in the Devonian Shales. The technology level uses conventional well tests, rock mechanical properties logs, a borehole camera, and a moderate logging suite. Most of these tools and technologies should be used on only a portion of the wells in multi-well projects, reducing the per well cost of the technology. Determining the correct reservoir description is critical to optimizing themore » stimulation treatment. The most critical reservoir properties are bulk and matrix permeabilities, net pay, stress profile, and natural fracture spacing in the direction perpendicular to induced hydraulic fractures. Applying technology to improve the accuracy of the reservoir description can significantly increase well profitability.« less

  1. Network Access to Visual Information: A Study of Costs and Uses.

    ERIC Educational Resources Information Center

    Besser, Howard

    This paper summarizes a subset of the findings of a study of digital image distribution that focused on the Museum Educational Site Licensing (MESL) project--the first large-scale multi-institutional project to explore digital delivery of art images and accompanying text/metadata from disparate sources. This Mellon Foundation-sponsored study…

  2. Veiny Garden City Site and Surroundings on Mount Sharp, Mars

    NASA Image and Video Library

    2015-11-11

    This view from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows a site with a network of prominent mineral veins below a cap rock ridge on lower Mount Sharp. Researchers used the rover in March 2015 to examine the structure and composition of the crisscrossing veins at the "Garden City" site in the center of this scene. For geologists, the vein complex offers a three-dimensional exposure of mineralized fractures in a geological setting called the Pahrump section of the Lower Murray Formation. Curiosity spent several months examining sites in the Pahrump section below this site, before arriving at Garden City. Mineral veins such as these form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. In this case, the veins have been more resistant to erosion than the surrounding host rock. The component images of this mosaic view were taken by the left-eye camera of Mastcam on March 27, 2015, during the 938th Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks would appear under daytime lighting conditions on Earth. For scale, the cap rock scarp is about 3 feet (1 meter) tall. Figure 1 includes scale bars of 1 meter (3.3 feet) vertically and 2 meters (6.7 feet) horizontally. Malin Space Science Systems, San Diego, built and operates Curiosity's Mastcam. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. http://photojournal.jpl.nasa.gov/catalog/PIA19921

  3. Managing personal health information in distributed research network environments.

    PubMed

    Bredfeldt, Christine E; Butani, Amy L; Pardee, Roy; Hitz, Paul; Padmanabhan, Sandy; Saylor, Gwyn

    2013-10-08

    Studying rare outcomes, new interventions and diverse populations often requires collaborations across multiple health research partners. However, transferring healthcare research data from one institution to another can increase the risk of data privacy and security breaches. A working group of multi-site research programmers evaluated the need for tools to support data security and data privacy. The group determined that data privacy support tools should: 1) allow for a range of allowable Protected Health Information (PHI); 2) clearly identify what type of data should be protected under the Health Insurance Portability and Accountability Act (HIPAA); and 3) help analysts identify which protected health information data elements are allowable in a given project and how they should be protected during data transfer. Based on these requirements we developed two performance support tools to support data programmers and site analysts in exchanging research data. The first tool, a workplan template, guides the lead programmer through effectively communicating the details of multi-site programming, including how to run the program, what output the program will create, and whether the output is expected to contain protected health information. The second performance support tool is a checklist that site analysts can use to ensure that multi-site program output conforms to expectations and does not contain protected health information beyond what is allowed under the multi-site research agreements. Together the two tools create a formal multi-site programming workflow designed to reduce the chance of accidental PHI disclosure.

  4. Supplemental Perioperative Oxygen to Reduce Surgical Site Infection After High Energy Fracture Surgery

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-12-1-0588 TITLE: Supplemental Perioperative Oxygen to Reduce Surgical Site Infection After High Energy Fracture Surgery...3. DATES COVERED (From - To) 30 Sep 2015 – 29 Sep 2016 30129/29/124. TITLE AND SUBTITLE Supplemental Perioperative Oxygen to Reduce Surgical Site...prospective randomized treatment trial investigating if supplemental perioperative oxygen use will reduce surgical site infection after surgery on fractures

  5. Prevalence of overweight in children with bone fractures: a case control study.

    PubMed

    Valerio, Giuliana; Gallè, Francesca; Mancusi, Caterina; Di Onofrio, Valeria; Guida, Pasquale; Tramontano, Antonino; Ruotolo, Edoardo; Liguori, Giorgio

    2012-10-22

    Children's fractures have been enlisted among orthopaedics complaints of childhood obesity. Unhealthy lifestyle behaviours may contribute to increased risk. This study described the prevalence of overweight/obesity in children and adolescents reporting a recent fracture in relation to gender, dynamic of trauma, and site of fracture. Four-hundred-forty-nine children and adolescents with fracture and 130 fracture-free controls were recruited from a large children's hospital. The interaction between overweight and gender, dynamic of trauma, site of fracture was explored. Sports participation, television viewing, and calcium intake were also investigated. Overweight/obesity rate was increased in girls with fracture either at the upper or the lower limb (p= 0.004), while it was increased only in boys with fracture at the lower limb (p <0.02). Overweight/obesity rate did not differ between groups with low or moderate trauma. TV viewing ≥ 2 hrs was more frequent in children with fractures than controls (61.5% vs 34.5%, p =0.015) in the overweight/obese group. The increased prevalence of overweight/obesity in children with fractures is related to gender and site of fracture. Higher levels of sedentary behaviours characterize overweight children reporting fractures.

  6. Prevalence of overweight in children with bone fractures: a case control study

    PubMed Central

    2012-01-01

    Background Children's fractures have been enlisted among orthopaedics complaints of childhood obesity. Unhealthy lifestyle behaviours may contribute to increased risk. This study described the prevalence of overweight/obesity in children and adolescents reporting a recent fracture in relation to gender, dynamic of trauma, and site of fracture. Methods Four-hundred-forty-nine children and adolescents with fracture and 130 fracture-free controls were recruited from a large children’s hospital. The interaction between overweight and gender, dynamic of trauma, site of fracture was explored. Sports participation, television viewing, and calcium intake were also investigated. Results Overweight/obesity rate was increased in girls with fracture either at the upper or the lower limb (p= 0.004), while it was increased only in boys with fracture at the lower limb (p <0.02). Overweight/obesity rate did not differ between groups with low or moderate trauma. TV viewing ≥ 2 hrs was more frequent in children with fractures than controls (61.5% vs 34.5%, p =0.015) in the overweight/obese group. Conclusions The increased prevalence of overweight/obesity in children with fractures is related to gender and site of fracture. Higher levels of sedentary behaviours characterize overweight children reporting fractures. PMID:23088687

  7. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2017-07-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  8. Gypsy Field project in reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castagna, John P.; Jr., O'Meara, Daniel J.

    The overall objective of this project was to use extensive Gypsy Field Laboratory and data as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. This report describes progress since project report DOE/BC/14970-7 and covers the period June 1997-September 1998 and represents one year of funding originally allocated for the year 1996. During the course of the work previously performed, high resolution geophysical and outcrop data revealed the importance of fractures at the Gypsy site. In addition, personnel changes and alternative funding (OCAST and oil company support of various kinds) allowedmore » the authors to leverage DOE contributions and focus more on geophysical characterization.« less

  9. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions related to the MSC event. Several proposal ideas also emerged to support the Multi-phase drilling project concept: Salt tectonics and fluids, Deep stratigraphic and crustal drilling in the Gulf of Lion (deriving from the GOLD drilling project), Deep stratigraphic and crustal drilling in the Ionian Sea, Deep Biosphere, Sapropels, and the Red Sea. A second MagellanPlus workshop held in January 2014 in Paris (France), has proceeded a step further towards the drafting of the Multi-phase Drilling Project and a set of pre-proposals for submission to IODP.

  10. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    PubMed

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  11. Origin of Permeability and Structure of Flows in Fractured Media

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and its consequence for crustal hydromechanics, Journal of Geophysical Research-Solid Earth, 115, 13. de Dreuzy, J.-R., et al. (2012a), Influence of fracture scale heterogeneity on the flow properties of three-dimensional Discrete Fracture Networks (DFN), J. Geophys. Res.-Earth Surf., 117(B11207), 21 PP. de Dreuzy, J.-R., et al. (2012b), Synthetic benchmark for modeling flow in 3D fractured media, Computers and Geosciences(0). Pichot, G., et al. (2010), A Mixed Hybrid Mortar Method for solving flow in Discrete Fracture Networks, Applicable Analysis, 89(10), 1729-1643. Pichot, G., et al. (2012), Flow simulation in 3D multi-scale fractured networks using non-matching meshes, SIAM Journal on Scientific Computing (SISC), 34(1). Figure: (a) Fracture network with a broad-range of fracture lengths. (b) Flows (log-scale) with homogeneous fractures. (c) Flows (log-scale) with heterogeneous fractures [de Dreuzy et al., 2012a]. The impact of the fracture apertures (c) is illustrated on the organization of flows.

  12. Geology and preliminary hydrogeologic characterization of the cell-house site, Berlin, New Hampshire, 2003-04

    USGS Publications Warehouse

    Degnan, James R.; Clark, Stewart F.; Harte, Philip T.; Mack, Thomas J.

    2005-01-01

    At the cell-house site, thin, generally less than 20-foot thick overburden, consisting of till and demolition materials, overlies fractured crystalline bedrock. Bedrock at the site consists of gneiss with thin discontinuous lenses of chlorite schist and discontinuous tabular pegmatite. Two distinct fracture domains, with principal trends to the west and northwest, and to the north, overlap near the site. The cell-house site shows principal trends common to both domains. Gneiss is the most abundant rock at the site. Steeply dipping fractures within the gneiss terminate on subhorizontal contacts with pegmatite and on moderately dipping contacts with chlorite schist. Steeply northwest-dipping en Echelon fracture zones, parallel joint zones, and silicified brittle faults show consistent strikes to the northeast. Gently east-dipping to subhorizontal fractures, sub-parallel to gneissosity, strike northeast. The impermeable cap, barrier wall, and bedrock surface topography affect ground-water flow in the overburden. There is relatively little ground-water flow in the overburden in the capped area and a poor hydraulic connection between the overburden and the underlying bedrock over most of the site. The overburden beneath the cap may receive inflow through or beneath the barrier wall, or by flow through vertical fractures in the underlying bedrock beneath the barrier wall. The bedrock aquifer near the river is well connected to the river and head difference in the bedrock across the site are large (greater than 13 ft). Horizontal hydraulic conductivities of 0.2 to 20 ft/d were estimated for the bedrock. Individual fractures or fracture zones likely have hydraulic conductivities greater than the bulk rock. Subhorizontal fractures occur at pegmatite contacts or along chlorite schist lenses and may serve as ground-water conduits to the steeply dipping fractures in gneiss. The effective hydraulic conductivity across the site is likely to be in the low range of the estimated values (0.2 ft/d). Ground water discharges to the river from the bedrock aquifer and is greatest during periods of large river stage fluctuations.

  13. Recalibrating Baseline Evidence in Burundi, Malawi, Senegal and Uganda: Exploring the Potential of Multi-Site, National-Level Stakeholder Engagement in Participatory Evaluation

    ERIC Educational Resources Information Center

    Edge, Karen; Marphatia, Akanksha A.

    2015-01-01

    This paper details our collaborative work on the Improving Learning Outcomes in Primary Schools (ILOPS) project in Burundi, Malawi, Uganda and Senegal. ILOPS set out to establish an innovative template for multi-stakeholder, multinational participatory evaluation (PE) and examine the fundamental roles, relationships and evidence that underpin the…

  14. A comparison of bone density and bone morphology between patients presenting with hip fractures, spinal fractures or a combination of the two

    PubMed Central

    2013-01-01

    Background Currently it is uncertain how to define osteoporosis and who to treat after a hip fracture. There is little to support the universal treatment of all such patients but how to select those most in need of treatment is not clear. In this study we have compared cortical and trabecular bone status between patients with spinal fractures and those with hip fracture with or without spinal fracture with the aim to begin to identify, by a simple clinical method (spine x-ray), a group of hip fracture patients likely to be more responsive to treatment with current antiresorptive agents. Methods Comparison of convenience samples of three groups of 50 patients, one with spinal fractures, one with a hip fracture, and one with both. Measurements consist of bone mineral density at the lumbar spine, at the four standard hip sites, number, distribution and severity of spinal fractures by the method of Genant, cortical bone thickness at the infero-medial femoral neck site, femoral neck and axis length and femoral neck width. Results Patients with spinal fractures alone have the most deficient bones at both trabecular and cortical sites: those with hip fracture and no spinal fractures the best at trabecular bone and most cortical bone sites: and those with both hip and spinal fractures intermediate in most measurements. Hip axis length and neck width did not differ between groups. Conclusion The presence of the spinal fracture indicates poor trabecular bone status in hip fracture patients. Hip fracture patients without spinal fractures have a bone mass similar to the reference range for their age and gender. Poor trabecular bone in hip fracture patients may point to a category of patient more likely to benefit from therapy and may be indicated by the presence of spinal fractures. PMID:23432767

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Marte

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluidmore » flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in underground formations, and the evaluation of the risk of potential CO{sub 2} leakage to the atmosphere and underground aquifers.« less

  16. Designing a monitoring network for contaminated ground water in fractured chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nativ, R.; Adar, E.M.; Becker, A.

    1999-01-01

    One of the challenges of monitoring network design in a fractured rock setting is the heterogeneity of the rocks. This paper summarizes the activities and problems associated with the monitoring of contaminated groundwater in porous, low-permeability fractured chalk in the Negev Desert, Israel. Preferential flow documented in the study area required siting the monitoring boreholes in the predominant fracture systems. Lineaments traced from aerial photographs were examined in the field to sort out the large-extension, through-going, multilayer fracture systems crossing the study area. At each proposed drilling site, these fractures were exposed below the sediment cover using trenches. Slanted boreholesmore » were drilled at a distance from the fracture systems so that each borehole would intersect the targeted fracture plane below the water table. Based on their short recovery period and contaminated ground water, these newly drilled, fracture-oriented boreholes appeared to be better connected to preferential flowpaths crossing the industrial site than the old boreholes existing on site. Other considerations concerning the drilling and logging of monitoring boreholes in a fractured media were: (1) coring provides better documentation of the vertical fracture distribution, but dry augering is less costly and enables immediate ground water sampling and the sampling of vadose rock for contaminant analysis; (2) caliper and TV camera logs appear to provide only partial information regarding the vertical fracture distribution; and (3) the information gained by deepening the monitoring boreholes and testing fractures crossing their uncased walls has to be carefully weighed against the risk of potential cross-contamination through the monitoring boreholes, which is enhanced in fractured media.« less

  17. Paratrooper's Ankle Fracture: Posterior Malleolar Fracture

    PubMed Central

    Young, Ki Won; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-01-01

    Background We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Methods Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. Results The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Conclusions Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to undergo surgical repairs. PMID:25729514

  18. Paratrooper's ankle fracture: posterior malleolar fracture.

    PubMed

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to undergo surgical repairs.

  19. Expected Time to Return to Athletic Participation After Stress Fracture in Division I Collegiate Athletes.

    PubMed

    Miller, Timothy L; Jamieson, Marissa; Everson, Sonsecharae; Siegel, Courtney

    2017-12-01

    Few studies have documented expected time to return to athletic participation after stress fractures in elite athletes. Time to return to athletic participation after stress fractures would vary by site and severity of stress fracture. Retrospective cohort study. Level 3. All stress fractures diagnosed in a single Division I collegiate men's and women's track and field/cross-country team were recorded over a 3-year period. Site and severity of injury were graded based on Kaeding-Miller classification system for stress fractures. Time to return to full unrestricted athletic participation was recorded for each athlete and correlated with patient sex and site and severity grade of injury. Fifty-seven stress fractures were diagnosed in 38 athletes (mean age, 20.48 years; range, 18-23 years). Ten athletes sustained recurrent or multiple stress fractures. Thirty-seven injuries occurred in women and 20 in men. Thirty-three stress fractures occurred in the tibia, 10 occurred in the second through fourth metatarsals, 3 occurred in the fifth metatarsal, 6 in the tarsal bones (2 navicular), 2 in the femur, and 5 in the pelvis. There were 31 grade II stress fractures, 11 grade III stress fractures, and 2 grade V stress fractures (in the same patient). Mean time to return to unrestricted sport participation was 12.9 ± 5.2 weeks (range, 6-27 weeks). No significant differences in time to return were noted based on injury location or whether stress fracture was grade II or III. The expected time to return to full unrestricted athletic participation after diagnosis of a stress fracture is 12 to 13 weeks for all injury sites. Athletes with grade V (nonunion) stress fractures may require more time to return to sport.

  20. A Framework for Multi-Scale, Multi-Disciplinary Arctic Terrestrial Field Research Design, Nomenclature and Data Management

    NASA Astrophysics Data System (ADS)

    Charsley-Groffman, L.; Killeffer, T.; Wullschleger, S. D.; Wilson, C. J.

    2016-12-01

    The Next Generation Ecosystem Experiment, NGEE Arctic, project aims to improve the representation of arctic terrestrial processes and properties in Earth System Models, ESMs, through coordinated multi-disciplinary field-based observations and experiments. NGEE involves nearly one hundred research staff, post docs and students from multiple DOE laboratories and universities who deploy a wide range of in-situ and remote field observation techniques to quantify and understand interactions between the climate system and surface and subsurface coupled thermal-hydrologic, biogeochemical and vegetation processes. Careful attention was given to the design and management of co-located long-term and one off data collection efforts, as well as their data streams. Field research sites at the Barrow Environmental Observatory near Barrow AK and on the Seward Peninsula were designed around the concept of "ecotypes" which co-evolved with readily identified and classified hydro-geomorphic features characteristic of arctic landscapes. NGEE sub-teams focused on 5 unique science questions collaborated to design field sites and develop naming conventions for locations and data types to develop coherent data sets to parameterize, initialize and test a range of site-specific process resolving models to ESMs. Multi-layer mapping products were a critical means of developing a coordinated and coherent observation design, and a centralized data portal and data reporting framework was critical to ensuring meaningful data products for NGEE modelers and Arctic scientific community at large. We present examples of what works and lessons learned for a large multi-disciplinary terrestrial observational research project in the Arctic.

  1. The TARGET project in Tuscany: the first disease management model of a regional project for the prevention of hip re-fractures in the elderly.

    PubMed

    Piscitelli, Prisco; Brandi, Maria Luisa; Nuti, Ranuccio; Rizzuti, Carla; Giorni, Loredano; Giovannini, Valtere; Metozzi, Alessia; Merlotti, Daniela

    2010-09-01

    The official inquiry on osteoporosis in Italy, promoted by the Italian Senate in 2002 concluded that proper preventive strategies should be adopted at regional level in order to prevent osteoporotic fractures. Tuscany is the first Italian region who has promoted an official program (the TARGET project) aimed to reduce osteoporotic fractures by ensuring adequate treatment to all people aged ≥65 years old who experience a hip fragility fracture. this paper provides information concerning the implementation of TARGET project in Tuscany, assuming that it may represent an useful model for similar experiences to be promoted in other Italian Regions and across Europe. we have examined the model proposed for the regional program, and we have particularly analyzed the in-hospital and post-hospitalization path of hip fractured patients aged >65 years old in Tuscany after the adoption of TARGET project by Tuscany healthcare system and during its ongoing start-up phase. orthopaedic surgeons have been gradually involved in the project and are increasingly fulfilling all the clinical prescriptions and recommendations provided in the project protocol. Different forms of cooperation between orthopaedic surgeons and other clinical specialists have been adopted at each hospital for the treatment of hip fractured elderly patients. GPs involvement needs to be fostered both at regional and local level. The effort of Tuscany region to cope with hip fractures suffered from elderly people must be acknowledged as an interesting way of addressing this critical health problem. Specific preventive strategies modelled on the Tuscany TARGET project should be implemented in other Italian regions.

  2. Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database

    PubMed Central

    Everett, Kay D.; Conway, Claire; Desany, Gerard J.; Baker, Brian L.; Choi, Gilwoo; Taylor, Charles A.; Edelman, Elazer R.

    2016-01-01

    Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006–2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices. PMID:26467552

  3. Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database.

    PubMed

    Everett, Kay D; Conway, Claire; Desany, Gerard J; Baker, Brian L; Choi, Gilwoo; Taylor, Charles A; Edelman, Elazer R

    2016-02-01

    Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006-2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices.

  4. Anisotropy Characterization of Fractured Crystalline Bedrock Using Asymmetric Azimuthal Geoelectric Techniques

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.; Slater, L. D.

    2007-05-01

    We examined the potential for geophysical characterization of fractured rock anisotropy by combining asymmetric configurations of azimuthal self potential (ASP) and azimuthal resistivity surveys (ARS), as previously demonstrated in the laboratory, at four field sites in the New Jersey Highlands (NJH) Province. There is a striking correlation between ASP measurements and fracture strike orientations at three of four sites investigated. ARS (electrical) data suggest three sites are overall heterogeneous and the fourth is anisotropic. The characteristic anisotropicity at the fourth site is controlled by a master structure; the NE-SW trending Lake Inez Fault Zone (LIFZ) that strikes at N10ºE and parallels the Wanaque River to the east side of the site. Inferred groundwater flow directions are comparable to the (1) positive polarity (+ve) and magnitude of site-specific SP, (2) local surface drainage, and (3) also conformable with the regional northwest and northeast fracture trend of the NJH. The ASP is ineffective at one heterogeneous site where there is a lack of correlation between ASP and fracture strike data, probably due to poor drainage where there are no distinct paths of flow defined along fractures. Quantitative analysis of the magnitude of the energy observed in the odd and even coefficients of the power spectra of self potential (SP) datasets analyzed using a Fourier series was useful for characterizing anisotropic or heterogeneous flow in the fracture network. For anisotropic flow, the odd coefficients (harmonics) were close to zero, whereas heterogeneous flow resulted in significant energy in the odd coefficients. The employment of asymmetric geoelectric arrays has allowed this quantitative distinction between anisotropy and heterogeneity in fractured bedrock. The results of our study suggest the ability to quantify hydraulic anisotropy with azimuthal self potential and the distinction between electrically-anisotropic and electrically-heterogeneous in the subsurface. These results represent a significant advancement over the use of traditional resistivity arrays in site characterization of fracture- dominated systems.

  5. Prioritizing ecological restoration among sites in multi-stressor landscapes.

    PubMed

    Neeson, Thomas M; Smith, Sigrid D P; Allan, J David; McIntyre, Peter B

    2016-09-01

    Most ecosystems are impacted by multiple local and long-distance stressors, many of which interact in complex ways. We present a framework for prioritizing ecological restoration efforts among sites in multi-stressor landscapes. Using a simple model, we show that both the economic and sociopolitical costs of restoration will typically be lower at sites with a relatively small number of severe problems than at sites with numerous lesser problems. Based on these results, we propose using cumulative stress and evenness of stressor impact as complementary indices that together reflect key challenges of restoring a site to improved condition. To illustrate this approach, we analyze stressor evenness across the world's rivers and the Laurentian Great Lakes. This exploration reveals that evenness and cumulative stress are decoupled, enabling selection of sites where remediating a modest number of high-intensity stressors could substantially reduce cumulative stress. Just as species richness and species evenness are fundamental axes of biological diversity, we argue that cumulative stress and stressor evenness constitute fundamental axes for identifying restoration opportunities in multi-stressor landscapes. Our results highlight opportunities to boost restoration efficiency through strategic use of multi-stressor datasets to identify sites that maximize ecological response per stressor remediated. This prioritization framework can also be expanded to account for the feasibility of remediation and the expected societal benefits of restoration projects. © 2016 by the Ecological Society of America.

  6. Crystal Growth Texture in Light Vein at Garden City

    NASA Image and Video Library

    2015-11-11

    This view from the Mars Hand Lens Imager (MAHLI) on the arm of NASA's Curiosity Mars rover shows texture within a light-toned vein at a site called "Garden City" on lower Mount Sharp. The area shown is roughly 0.9 inch (2.2 centimeters) wide. It was taken during the 946th Martian day, or sol, of Curiosity's work on Mars (April 4, 2015). Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This vein's texture shows indications of crystal growth, suggesting that crystallization may have exerted a force for opening the fracture filled by the vein. Different examples are at PIA19926 and PIA19927. Mineral veins often form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. At Garden City, the veins have been more resistant to erosion than the surrounding host rock. The fluid movement through fractures at Garden City occurred later than wet environmental conditions in which the host rock formed, before it hardened and cracked. Malin Space Science Systems, San Diego, built and operates MAHLI. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19925

  7. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committeemore » also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.« less

  8. Insufficiency Fractures After Pelvic Radiation Therapy for Uterine Cervical Cancer: An Analysis of Subjects in a Prospective Multi-institutional Trial, and Cooperative Study of the Japan Radiation Oncology Group (JAROG) and Japanese Radiation Oncology Study Group (JROSG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokumaru, Sunao, E-mail: tokumaru@cc.saga-u.ac.jp; Toita, Takafumi; Oguchi, Masahiko

    2012-10-01

    Purpose: To investigate pelvic insufficiency fractures (IF) after definitive pelvic radiation therapy for early-stage uterine cervical cancer, by analyzing subjects of a prospective, multi-institutional study. Materials and Methods: Between September 2004 and July 2007, 59 eligible patients were analyzed. The median age was 73 years (range, 37-84 years). The International Federation of Gynecologic Oncology and Obstetrics stages were Ib1 in 35, IIa in 12, and IIb in 12 patients. Patients were treated with the constant method, which consisted of whole-pelvic external-beam radiation therapy of 50 Gy/25 fractions and high-dose-rate intracavitary brachytherapy of 24 Gy/4 fractions without chemotherapy. After radiation therapymore » the patients were evaluated by both pelvic CT and pelvic MRI at 3, 6, 12, 18, and 24 months. Diagnosis of IF was made when the patients had both CT and MRI findings, neither recurrent tumor lesions nor traumatic histories. The CT findings of IF were defined as fracture lines or sclerotic linear changes in the bones, and MRI findings of IF were defined as signal intensity changes in the bones, both on T1- and T2-weighted images. Results: The median follow-up was 24 months. The 2-year pelvic IF cumulative occurrence rate was 36.9% (21 patients). Using Common Terminology Criteria for Adverse Events version 3.0, grade 1, 2, and 3 IF were seen in 12 (21%), 6 (10%), and 3 patients (5%), respectively. Sixteen patients had multiple fractures, so IF were identified at 44 sites. The pelvic IF were frequently seen at the sacroileal joints (32 sites, 72%). Nine patients complained of pain. All patients' pains were palliated by rest or non-narcotic analgesic drugs. Higher age (>70 years) and low body weight (<50 kg) were thought to be risk factors for pelvic IF (P=.007 and P=.013, Cox hazard test). Conclusions: Cervical cancer patients with higher age and low body weight may be at some risk for the development of pelvic IF after pelvic radiation therapy.« less

  9. The implications of episodic nonequilibrium fracture-matrix flow on site suitability and total system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitao, J.J.; Buscheck, T.A.; Chesnut, D.A.

    1992-04-01

    We apply our work on fracture- and matrix-dominated flow to develop a conceptual model of hydrological flow processes in the unsaturated zone at Yucca Mountain. The possibility of fracture-dominated flow is discussed, and various deductions are made on its impact on natural and total system performance, site characterization activities, and site suitability determination.

  10. Cortical thickness estimation of the proximal femur from multi-view dual-energy X-ray absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Tsaousis, N.; Gee, A. H.; Treece, G. M.; Poole, K. E. S.

    2013-02-01

    Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 +/- 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 +/- 0:79 mm.

  11. Project MAS, 1982-1983. O.E.E. Evaluation Report.

    ERIC Educational Resources Information Center

    Villegas, Ana; Villegas, Jose

    This multi-site instructional program, in its first year of a three-year funding cycle, provided instruction in English as a Second Language (ESL) and native language arts, as well as bilingual instruction in various content areas, to 400 Spanish speaking students of limited English proficiency in grades 3-8. The functional goal of Project MAS,…

  12. Educating for Good Work: From Research to Practice

    ERIC Educational Resources Information Center

    Mucinskas, Daniel; Gardner, Howard

    2013-01-01

    Launched in 1995, the GoodWork Project is a long-term, multi-site effort to understand the nature of good work across the professional landscape and to promote its achievement by relevant groups of students and professionals. In this essay, the authors review the goals and methods of the initial research project and its most salient findings. They…

  13. Cliff stability assessment using electrical resistivity tomography at the historic WWII D-Day invasion site, Pointe du Hoc, France

    NASA Astrophysics Data System (ADS)

    Everett, M. E.; Udphuay, S.; Warden, R.

    2007-05-01

    The 1944 D-Day invasion site at Pointe du Hoc, Normandy, France is an important WWII battlefield and cultural resource but is at risk from chalk cliff collapse. The American Battle Monuments Commission tasked us to evaluate the geohazard to the observation post and other cliff-side buildings of historical significance. Geophysical multi-electrode resistivity profiling is used to study cliff stability and the condition of the observation- post foundations. Preliminary 2-D geological interpretations are provided of individual profiles. The copious steel, concrete and void spaces at the site renders hydrogeological interpretation challenging but tractable. The cliff face appears to be relatively intact and well-drained. Several routes taken by groundwater into fractures within the chalk were identified mainly on the western side of the site. The eastern side is drier and somewhat sheltered from the Atlantic storms but may contain large void spaces that could efficiently transmit groundwater flow during heavy precipitation events, thereby imperiling the major antiaircraft gun emplacement occupied by Col. Rudder in the early days of the Allied invasion. The forward German observation post perched close to the sea stack, which now hosts the U.S. Ranger memorial, may be moving with the soil and not securely anchored to bedrock. A complex failure mechanism is identified as a combination of groundwater dissolution of the fractured chalk and sea wave attack at the cliff base.

  14. Geophysical investigations of well fields to characterize fractured-bedrock aquifers in southern New Hampshire

    USGS Publications Warehouse

    Degnan, James R.; Moore, Richard Bridge; Mack, Thomas J.

    2001-01-01

    Bedrock-fracture zones near high-yield bedrock wells in southern New Hampshire well fields were located and characterized using seven surface and six borehole geophysical survey methods. Detailed surveys of six sites with various methods provide an opportunity to integrate and compare survey results. Borehole geophysical surveys were conducted at three of the sites to confirm subsurface features. Hydrogeologic settings, including a variety of bedrock and surface geologic materials, were sought to gain an insight into the usefulness of the methods in varied terrains. Results from 15 survey lines, 8 arrays, and 3 boreholes were processed and interpreted from the 6 sites. The surface geophysical methods used provided physical properties of fractured bedrock. Seismic refraction and ground-penetrating radar (GPR) primarily were used to characterize the overburden materials, but in a few cases indicated bedrock-fracture zones. Magnetometer surveys were used to obtain background information about the bedrock to compare with other results, and to search for magnetic lows, which may result from weathered fractured rock. Electromagnetic terrain conductivity surveys (EM) and very-low-frequency electromagnetic surveys (VLF) were used as rapid reconnaissance techniques with the primary purpose of identifying electrical anomalies, indicating potential fracture zones in bedrock. Direct-current (dc) resistivity methods were used to gather detailed subsurface information about fracture depth and orientation. Two-dimensional (2-D) dc-resistivity surveys using dipole-dipole and Schlumberger arrays located and characterized the overburden, bedrock, and bedrock-fracture zones through analysis of data inversions. Azimuthal square array dc-resistivity survey results indicated orientations of conductive steep-dipping bedrock-fracture zones that were located and characterized by previously applied geophysical methods. Various available data sets were used for site selection, characterizations, and interpretations. Lineament data, developed as a part of a statewide and regional scale investigation of the bedrock aquifer, were available to identify potential near-vertical fracture zones. Geophysical surveys indicated fracture zones coincident with lineaments at 4 of the sites. Geologic data collected as a part of the regional scale investigation provided outcrop fracture measurements, ductile fabric, and contact information. Dominant fracture trends correspond to the trends of geophysical anomalies at 4 of the sites. Water-well drillers? logs from water supply and environmental data sets also were used where available to characterize sites. Regional overburden information was compiled from stratified-drift aquifer maps and surficial-geological maps.

  15. Why do nickel-titanium archwires fracture intraorally? Fractographic analysis and failure mechanism of in-vivo fractured wires.

    PubMed

    Zinelis, Spiros; Eliades, Theodore; Pandis, Nikolaos; Eliades, George; Bourauel, Christoph

    2007-07-01

    The aim of this study was to characterize intraorally fractured nickel-titanium (Ni-Ti) archwires, determine the type of fracture, assess changes in the alloy's hardness and structure, and propose a mechanism of failure. Eleven Ni-Ti SE 200 and 19 copper-Ni-Ti (both, Ormco, Glendora, Calif) intraorally fractured archwires were collected. The location of fracture (anterior or posterior), wire type, cross section, and period of service before fracture were recorded. The retrieved wires and brand-, type-, and size-matched specimens of unused wires were subjected to scanning electron microscopy to assess the fracture type and morphological variation of fracture site of retrieved specimens, and to Vickers hardness (HV200) testing to investigate the hardness of as-received and in-vivo fractured specimens. Fracture site distribution was statistically analyzed with the chi-square test (alpha = 0.05), whereas the results of the hardness testing were analyzed with 2-way ANOVA with state (control vs in-vivo fractured) and composition (Ni-Ti SE vs copper-Ni-Ti) serving as discriminating variables and the Student-Newman-Keuls test at the 95% confidence level. The fracture site distribution showed a preferential location at the midspan between the premolar and the molar, suggesting that masticatory forces and complex loading during engagement of the wire to the bracket slot and potential intraoral aging might account for fracture incidence. All retrieved wires had the distinct features of brittle fracture without plastic deformation or crack propagation, whereas no increase in hardness was observed for the retrieved specimens. Most fractures sites were in the posterior region of the arch, probably because of the high-magnitude masticatory forces. Brittle fracture without plastic deformation was observed in most Ni-Ti wires regardless of archwire composition. There was no increase in the hardness of the intraorally exposed specimens regardless of wire type. This contradicts previous in-vitro studies and rules out hydrogen embrittlement as the cause of fracture.

  16. Use of surface and borehole geophysical surveys to determine fracture orientation and other site characteristics in crystalline bedrock terrain, Millville and Uxbridge, Massachusetts

    USGS Publications Warehouse

    Hansen, Bruce P.; Lane, John W.

    1995-01-01

    Four geophysical techniques were used to determine bedrock-fracture orientation and other site characteristics that can be used to determine ground-water movement and contaminant transport at a fractured crystalline bedrock site in Millville and Uxbridge, Massachusetts. Azimuthal seismic- refraction and azimuthal square-array direct-current resistivity surveys were conducted at three sites. Borehole-radar surveys were conducted in a cluster of three wells. Ground-penetrating radar surveys were conducted along roads in the study area. Azimuthal seismic-refraction data indicated a primary fracture strike between 56 and 101 degrees at three sites. Graphical and analytical analysis of azimuthal square-array resistivity data indicated a primary fracture strike from 45 to 90 degrees at three sites. Directional borehole-radar data from three wells indicated 46 fractures or fracture zones located as far as 147 feet from the surveyed wells. Patterns of low radar-wave velocity and high radar- wave attenuation from cross-hole radar surveys of two well pairs were interpreted as a planar fracture zone that strikes 297 degrees and dips 55 degrees south. Ground-penetrating radar surveys with 100-MHz antennas penetrated as much as 150 feet of bedrock where the bedrock surface was at or near land surface. Horizontal and subhorizontal fractures were observed on the ground-penetrating radar records at numerous locations. Correlation of data sets indicates good agreement and indicates primary high- angle fracturing striking east-northeast. Secondary bedrock porosity and average fracture aperture determined from square-array resistivity data averaged 0.0044 and 0.0071 foot. Depths to bedrock observed on the ground-penetrating radar records were 0 to 20 feet below land surface along most of the area surveyed. A bedrock depth from 45 to 50 feet below land surface was observed along one section of Conestoga Drive.

  17. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.

    PubMed

    White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-06-17

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone.

  18. Assessing the fracture strength of geological and related materials via an atomistically based J-integral

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Criscenti, L. J.; Rimsza, J.

    2016-12-01

    Predicting fracture initiation and propagation in low-permeability geomaterials is a critical yet un- solved problem crucial to assessing shale caprocks at carbon dioxide sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-geomaterial interfaces play a major role in subcritical crack growth by weakening the material and altering crack nu- cleation and growth rates. Engineering the subsurface fracture environment, however, has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We have developed a fundamental atomic-level understanding of the chemical-mechanical mecha- nisms that control subcritical cracks through coarse-graining data from reactive molecular simulations. Previous studies of fracture at the atomic level have typically been limited to producing stress-strain curves, quantifying either the system-level stress or energy at which fracture propagation occurs. As such, these curves are neither characteristic of nor insightful regarding fracture features local to the crack tip. In contrast, configurational forces, such as the J-integral, are specific to the crack in that they measure the energy available to move the crack and truly quantify fracture resistance. By development and use of field estimators consistent with the continuum conservation properties we are able to connect the data produced by atomistic simulation to the continuum-level theory of fracture mechanics and thus inform engineering decisions. In order to trust this connection we have performed theoretical consistency tests and validation with experimental data. Although we have targeted geomaterials, this capability can have direct impact on other unsolved technological problems such as predicting the corrosion and embrittlement of metals and ceramics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpo- ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. A tale of three Brownfields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, F.R.; Worthington, M.A.; Belli, E.

    Contaminated site remediation and reuse, or Brownfield redevelopment, has become an increasingly important approach to site development in the northeast corridor, yet the scale of this activity is but a fraction of its full potential. The problem lies in the multi-jurisdictional quagmire that confronts a Brownfield project. Permitting such projects is an overly taxing dynamic process that has become a staple diet for adept multidisciplinary consulting firms. Limited government sanctions such as clean sites initiatives and economic revitalization zones are at best, when successful, interesting bench studies. The central hypothesis that, if regulations are streamlined then site reuse will occur,more » is sound. Yet streamlining brings concerns that the protection of public health and the environment will be compromised and that the result will be a lower standard of public protection for urban populations. The authors postulate that the permitting of Brownfield projects can be streamlined without creating a double standard of risk tolerance. The authors present evidence of this by comparing publicly and privately funded projects.« less

  20. Quantitative analysis of the patella following the harvest of a quadriceps tendon autograft with a bone block.

    PubMed

    Ferrer, Gerald A; Miller, R Matthew; Murawski, Christopher D; Tashman, Scott; Irrgang, James J; Musahl, Volker; Fu, Freddie H; Debski, Richard E

    2016-09-01

    The objective of this study was to determine parameters associated with patellar fracture after quadriceps tendon autograft harvest. Thirteen non-fractured and five fractured patella surface models were created based on patient data obtained from a prospective randomized clinical trial in order to assess geometric parameters and bending stress. Measurements that describe the bone block harvest site geometry were used to calculate three normalized parameters. The relative depth parameter describes the thickness of the bone block harvest site with respect to the thickness of the patella at the harvest site. The asymmetry parameter defines the medial-lateral location of the bone bock harvest site. The normalized bending stress parameter assesses the bending stress experienced by the remaining bone beneath the bone block harvest site. The relative depth of the bone block harvest site in the non-fractured patellae was 27 ± 12 % and for the fractured patellae was 42 ± 14 % (p < 0.05). With a value <1 indicating a more lateral location of the harvest site, asymmetry for the non-fractured group was 1.0 ± 0.5 and 0.7 ± 0.4 for the fractured group (n.s.). The maximum bending stress experienced by the non-fractured patellae was (1.8 × 10(-3) ± 1.3 × 10(-3)) mm(-3) × M and for the fractured patellae was over three times greater (6.3 × 10(-3) ± 3.7 × 10(-3)) mm(-3) × M (p < 0.05). Based on the non-uniform geometry of the patella, an emphasis should be made on harvesting a standard percentage of patella thickness rather than a fixed depth. In order to minimize the incidence of a patellar fracture, bone blocks should not be taken laterally and should not exceed 30 % of the total patella thickness at the harvest site.

  1. Risks of all-cause and site-specific fractures among hospitalized patients with COPD

    PubMed Central

    Liao, Kuang-Ming; Liang, Fu-Wen; Li, Chung-Yi

    2016-01-01

    Abstract Patients with chronic obstructive pulmonary disease (COPD) have a high prevalence of osteoporosis. The clinical sequel of osteoporosis is fracture. Patients with COPD who experience a fracture also have increased morbidity and mortality. Currently, the types of all-cause and site-specific fracture among patients with COPD are unknown. Thus, we elucidated the all-cause and site-specific fractures among patients with COPD. A retrospective, population-based, cohort study was conducted utilizing the Taiwan Longitudinal Health Insurance Database. Patients with COPD were defined as those who were hospitalized with an International Classification of Diseases, Ninth Revision, Clinical Modification code of 490 to 492 or 496 between 2001 and 2011. The index date was set as the date of discharge. The study patients were followed from the index date to the date when they sought care for any type of fracture, date of death, date of health insurance policy termination, or the last day of 2013. The types of fracture analyzed in this study included vertebral, rib, humeral, radial and ulnar/wrist, pelvic, femoral, and tibial and fibular fractures. The cohort consisted of 11,312 patients with COPD. Among these patients, 1944 experienced fractures. The most common site-specific fractures were vertebral, femoral, rib, and forearm fractures (radius, ulna, and wrist) at 32.4%, 31%, 12%, and 11.8%, respectively. The adjusted hazard ratios of fracture were 1.71 [95% confidence interval (95% CI) = 1.56–1.87] for female patient with COPD and 1.50 (95% CI = 1.39–1.52) for patients with osteoporosis after covariate adjustment. Vertebral and hip fractures are common among patients with COPD, especially among males with COPD. Many comorbidities contribute to the high risk of fracture among patients with COPD. PMID:27749576

  2. Risks of all-cause and site-specific fractures among hospitalized patients with COPD.

    PubMed

    Liao, Kuang-Ming; Liang, Fu-Wen; Li, Chung-Yi

    2016-10-01

    Patients with chronic obstructive pulmonary disease (COPD) have a high prevalence of osteoporosis. The clinical sequel of osteoporosis is fracture. Patients with COPD who experience a fracture also have increased morbidity and mortality. Currently, the types of all-cause and site-specific fracture among patients with COPD are unknown. Thus, we elucidated the all-cause and site-specific fractures among patients with COPD.A retrospective, population-based, cohort study was conducted utilizing the Taiwan Longitudinal Health Insurance Database.Patients with COPD were defined as those who were hospitalized with an International Classification of Diseases, Ninth Revision, Clinical Modification code of 490 to 492 or 496 between 2001 and 2011. The index date was set as the date of discharge. The study patients were followed from the index date to the date when they sought care for any type of fracture, date of death, date of health insurance policy termination, or the last day of 2013. The types of fracture analyzed in this study included vertebral, rib, humeral, radial and ulnar/wrist, pelvic, femoral, and tibial and fibular fractures.The cohort consisted of 11,312 patients with COPD. Among these patients, 1944 experienced fractures. The most common site-specific fractures were vertebral, femoral, rib, and forearm fractures (radius, ulna, and wrist) at 32.4%, 31%, 12%, and 11.8%, respectively. The adjusted hazard ratios of fracture were 1.71 [95% confidence interval (95% CI) = 1.56-1.87] for female patient with COPD and 1.50 (95% CI = 1.39-1.52) for patients with osteoporosis after covariate adjustment.Vertebral and hip fractures are common among patients with COPD, especially among males with COPD. Many comorbidities contribute to the high risk of fracture among patients with COPD.

  3. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivitymore » values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.« less

  4. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    EPA Science Inventory

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  5. Fixation using alternative implants for the treatment of hip fractures (FAITH): design and rationale for a multi-centre randomized trial comparing sliding hip screws and cancellous screws on revision surgery rates and quality of life in the treatment of femoral neck fractures

    PubMed Central

    2014-01-01

    Background Hip fractures are a common type of fragility fracture that afflict 293,000 Americans (over 5,000 per week) and 35,000 Canadians (over 670 per week) annually. Despite the large population impact the optimal fixation technique for low energy femoral neck fractures remains controversial. The primary objective of the FAITH study is to assess the impact of cancellous screw fixation versus sliding hip screws on rates of revision surgery at 24 months in individuals with femoral neck fractures. The secondary objective is to determine the impact on health-related quality of life, functional outcomes, health state utilities, fracture healing, mortality and fracture-related adverse events. Methods/Design FAITH is a multi-centre, multi-national randomized controlled trial utilizing minimization to determine patient allocation. Surgeons in North America, Europe, Australia, and Asia will recruit a total of at least 1,000 patients with low-energy femoral neck fractures. Using central randomization, patients will be allocated to receive surgical treatment with cancellous screws or a sliding hip screw. Patient outcomes will be assessed at one week (baseline), 10 weeks, 6, 12, 18, and 24 months post initial fixation. We will independently adjudicate revision surgery and complications within 24 months of the initial fixation. Outcome analysis will be performed using a Cox proportional hazards model and likelihood ratio test. Discussion This study represents major international efforts to definitively resolve the treatment of low-energy femoral neck fractures. This trial will not only change current Orthopaedic practice, but will also set a benchmark for the conduct of future Orthopaedic trials. Trial registration The FAITH trial is registered at ClinicalTrials.gov (Identifier NCT00761813). PMID:24965132

  6. A progress report on the ARRA-funded geotechnical site characterization project

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.

    2011-12-01

    For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.

  7. Lower Trabecular Volumetric BMD at Metaphyseal Regions of Weight-Bearing Bones is Associated With Prior Fracture in Young Girls

    PubMed Central

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-01-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research. PMID:20721933

  8. Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls.

    PubMed

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-02-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1-1.9) and 1.3 (1.0-1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. Copyright © 2011 American Society for Bone and Mineral Research.

  9. Successful Multi-Leg Completion of KS-13 ML-1 & Increased Power Generation of Puna Geothermal Venture (PGV), Hawai'i

    NASA Astrophysics Data System (ADS)

    Drakos, P. S.; Spielman, P.; Peters, B.

    2017-12-01

    Located in the Puna district on the Big Island in Hawaii, Puna Geothermal Venture (PGV) is the only geothermal power plant in the state. PGV is comprised of two air-cooled power plants with a total generating capacity of 38 MW. Commercial operation commenced in 1993 and the project was acquired by Ormat in June 2004. Over the years, generation has increased by upgrading the plant through resource development and with the addition of a bottoming OEC (Ormat Energy Converter) in 2011. The geothermal reservoir at PGV is hosted within a step-over along the axis of the Kilauea Lower East Rift Zone (LERZ). Subsurface permeability at PGV is controlled by sub-vertical and rift-parallel fractures/faults and dike swarms which are the result of active tectonic dilation across the rift and shallow volcanic activity related to Kilauea. At PGV, the location and attitude of these fractures are well constrained at depth by drilling to be orientated at N63°E and dipping at 5° NW. These fractures are aligned en-echelon and form a major left-step along the rift axis which results in a localized zone of enhanced dilation. In 2016, a program was initiated to increase injection capacity and enthalpy in the PGV wellfield. Existing injection well KS-13 was selected as a candidate for re-drill based on a comprehensive resource model and reservoir modeling predictions. KS-13 ML1 was designed as a multi-leg completion from the existing KS-13 well, whereby the final completion is a forked well composed of the original wellbore and the newly completed second wellbore. The target area for the new multi-leg (ML) were large aperture, steeply dipping fractures associated with the 1955 eruptive fissure. Well KS-13 ML1 was drilled using PGV's Rig and a retrievable whipstock to mill a casing exit window. With the original wellbore temporarily plugged, a multi-rate water loss test was performed and an injectivity of 6 gpm/psi was measured. Following the removal of the whipstock ramp and packer from the original hole a 2nd test was performed on both KS-13+KS-13ML1. An injectivity of 7.2 gpm/psi was measured. KS-13 injection tripled from 600 kph prior to the redrill to 1800 kph afterward, and allowed an injection well that was cooling production to be shut in. This increased production enthalpy from 500 Btu/lbm to 580 Btu/lbm and available plant output increased 41% from 27 to 38 MW.

  10. Statistical Analyses for Probabilistic Assessments of the Reactor Pressure Vessel Structural Integrity: Building a Master Curve on an Extract of the 'Euro' Fracture Toughness Dataset, Controlling Statistical Uncertainty for Both Mono-Temperature and multi-temperature tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josse, Florent; Lefebvre, Yannick; Todeschini, Patrick

    2006-07-01

    Assessing the structural integrity of a nuclear Reactor Pressure Vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients is extremely important to safety. In addition to conventional deterministic calculations to confirm RPV integrity, Electricite de France (EDF) carries out probabilistic analyses. Probabilistic analyses are interesting because some key variables, albeit conventionally taken at conservative values, can be modeled more accurately through statistical variability. One variable which significantly affects RPV structural integrity assessment is cleavage fracture initiation toughness. The reference fracture toughness method currently in use at EDF is the RCCM and ASME Code lower-bound K{sub IC} based on the indexing parameter RT{submore » NDT}. However, in order to quantify the toughness scatter for probabilistic analyses, the master curve method is being analyzed at present. Furthermore, the master curve method is a direct means of evaluating fracture toughness based on K{sub JC} data. In the framework of the master curve investigation undertaken by EDF, this article deals with the following two statistical items: building a master curve from an extract of a fracture toughness dataset (from the European project 'Unified Reference Fracture Toughness Design curves for RPV Steels') and controlling statistical uncertainty for both mono-temperature and multi-temperature tests. Concerning the first point, master curve temperature dependence is empirical in nature. To determine the 'original' master curve, Wallin postulated that a unified description of fracture toughness temperature dependence for ferritic steels is possible, and used a large number of data corresponding to nuclear-grade pressure vessel steels and welds. Our working hypothesis is that some ferritic steels may behave in slightly different ways. Therefore we focused exclusively on the basic french reactor vessel metal of types A508 Class 3 and A 533 grade B Class 1, taking the sampling level and direction into account as well as the test specimen type. As for the second point, the emphasis is placed on the uncertainties in applying the master curve approach. For a toughness dataset based on different specimens of a single product, application of the master curve methodology requires the statistical estimation of one parameter: the reference temperature T{sub 0}. Because of the limited number of specimens, estimation of this temperature is uncertain. The ASTM standard provides a rough evaluation of this statistical uncertainty through an approximate confidence interval. In this paper, a thorough study is carried out to build more meaningful confidence intervals (for both mono-temperature and multi-temperature tests). These results ensure better control over uncertainty, and allow rigorous analysis of the impact of its influencing factors: the number of specimens and the temperatures at which they have been tested. (authors)« less

  11. Improvements in osteoporosis testing and care are found following the wide scale implementation of the Ontario Fracture Clinic Screening Program: An interrupted time series analysis.

    PubMed

    Beaton, Dorcas E; Mamdani, Muhammad; Zheng, Hong; Jaglal, Susan; Cadarette, Suzanne M; Bogoch, Earl R; Sale, Joanna E M; Sujic, Rebeka; Jain, Ravi

    2017-12-01

    We evaluated a system-wide impact of a health intervention to improve treatment of osteoporosis after a fragility fracture. The intervention consisted of assigning a screening coordinator to selected fracture clinics to identify, educate, and follow up with fragility fracture patients and inform their physicians of the need to evaluate bone health. Thirty-seven hospitals in the province of Ontario (Canada) were assigned a screening coordinator. Twenty-three similar hospitals were control sites. All hospitals had orthopedic services and handled moderate-to-higher volumes of fracture patients. Administrative health data were used to evaluate the impact of the intervention.Fragility fracture patients (≥50 years; hip, humerus, forearm, spine, or pelvis fracture) were identified from administrative health records. Cases were fractures treated at 1 of the 37 hospitals assigned a coordinator. Controls were the same types of fractures at the control sites. Data were assembled for 20 quarters before and 10 quarters after the implementation (from January 2002 to March 2010). To test for a shift in trends, we employed an interrupted time series analysis-a study design used to evaluate the longitudinal effects of interventions, through regression modelling. The primary outcome measure was bone mineral density (BMD) testing. Osteoporosis medication initiation and persistence rates were secondary outcomes in a subset of patients ≥66 years of age.A total of 147,071 patients were used in the analysis. BMD testing rates increased from 17.0% pre-intervention to 20.9% post-intervention at intervention sites (P < .01) compared with no change at control sites (14.9% and 14.9%, P = .33). Medication initiation improved significantly at intervention sites (21.6-23.97%; P = .02) but not at control sites (17.5-18.5%; P = .27). Persistence with bisphosphonates decreased at all sites, from 59.9% to 56.4% at intervention sites (P = .02) and more so from 62.3% to 54.2% at control sites (P < .01) using 50% proportion of days covered (PDC 50).Significant improvements in BMD testing and treatment initiation were observed after the initiation of a coordinator-based screening program to improve osteoporosis management following fragility fracture.

  12. Improvements in osteoporosis testing and care are found following the wide scale implementation of the Ontario Fracture Clinic Screening Program

    PubMed Central

    Beaton, Dorcas E.; Mamdani, Muhammad; Zheng, Hong; Jaglal, Susan; Cadarette, Suzanne M.; Bogoch, Earl R.; Sale, Joanna E. M.; Sujic, Rebeka; Jain, Ravi

    2017-01-01

    Abstract We evaluated a system-wide impact of a health intervention to improve treatment of osteoporosis after a fragility fracture. The intervention consisted of assigning a screening coordinator to selected fracture clinics to identify, educate, and follow up with fragility fracture patients and inform their physicians of the need to evaluate bone health. Thirty-seven hospitals in the province of Ontario (Canada) were assigned a screening coordinator. Twenty-three similar hospitals were control sites. All hospitals had orthopedic services and handled moderate-to-higher volumes of fracture patients. Administrative health data were used to evaluate the impact of the intervention. Fragility fracture patients (≥50 years; hip, humerus, forearm, spine, or pelvis fracture) were identified from administrative health records. Cases were fractures treated at 1 of the 37 hospitals assigned a coordinator. Controls were the same types of fractures at the control sites. Data were assembled for 20 quarters before and 10 quarters after the implementation (from January 2002 to March 2010). To test for a shift in trends, we employed an interrupted time series analysis—a study design used to evaluate the longitudinal effects of interventions, through regression modelling. The primary outcome measure was bone mineral density (BMD) testing. Osteoporosis medication initiation and persistence rates were secondary outcomes in a subset of patients ≥66 years of age. A total of 147,071 patients were used in the analysis. BMD testing rates increased from 17.0% pre-intervention to 20.9% post-intervention at intervention sites (P < .01) compared with no change at control sites (14.9% and 14.9%, P = .33). Medication initiation improved significantly at intervention sites (21.6–23.97%; P = .02) but not at control sites (17.5–18.5%; P = .27). Persistence with bisphosphonates decreased at all sites, from 59.9% to 56.4% at intervention sites (P = .02) and more so from 62.3% to 54.2% at control sites (P < .01) using 50% proportion of days covered (PDC 50). Significant improvements in BMD testing and treatment initiation were observed after the initiation of a coordinator-based screening program to improve osteoporosis management following fragility fracture. PMID:29310418

  13. Analysis of stress fractures in athletes based on our clinical experience

    PubMed Central

    Iwamoto, Jun; Sato, Yoshihiro; Takeda, Tsuyoshi; Matsumoto, Hideo

    2011-01-01

    AIM: To analyze stress fractures in athletes based on experience from our sports medicine clinic. METHODS: We investigated the association between stress fractures and age, sex, sports level, sports activity, and skeletal site in athletes seen at our sports medicine clinic between September 1991 and April 2009. Stress fractures of the pars interarticularis were excluded from this analysis. RESULTS: During this period (18 years and 8 mo), 14276 patients (9215 males and 5061 females) consulted our clinic because of sports-related injuries, and 263 patients (1.8%) [171 males (1.9%) and 92 females (1.8%)] sustained stress fractures. The average age of the patients with stress fractures was 20.2 years (range 10-46 years); 112 patients (42.6%) were 15-19 years of age and 90 (34.2%) were 20-24 years of age. Altogether, 90 patients (34.2%) were active at a high recreational level and 173 (65.8%) at a competitive level. The highest proportion of stress fractures was seen in basketball athletes (21.3%), followed by baseball (13.7%), track and field (11.4%), rowing (9.5%), soccer (8.4%), aerobics (5.3%), and classical ballet (4.9%). The most common sites of stress fractures in these patients were the tibia (44.1%), followed by the rib (14.1%), metatarsal bone (12.9%), ulnar olecranon (8.7%) and pelvis (8.4%). The sites of the stress fractures varied from sport to sport. The ulnar olecranon was the most common stress fracture site in baseball players, and the rib was the most common in rowers. Basketball and classical ballet athletes predominantly sustained stress fractures of the tibia and metatarsal bone. Track and field and soccer athletes predominantly sustained stress fractures of the tibia and pubic bone. Aerobics athletes predominantly sustained stress fractures of the tibia. Middle and long distance female runners who sustained multiple stress fractures had the female athlete triad. CONCLUSION: The results of this analysis showed that stress fractures were seen in high-level young athletes, with similar proportions for males and females, and that particular sports were associated with specific sites for stress fractures. Middle and long distance female runners who suffered from multiple stress fractures had the female athlete triad. PMID:22474626

  14. 78 FR 13904 - Notice of Availability of Funds and Solicitation for Grant Applications for Intermediary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... to operate multi-site projects to serve juvenile offenders and in-school youth at-risk of involvement... development, education and training, case management, mentoring, restorative justice, community- wide violence...

  15. Previous Fractures at Multiple Sites Increase the Risk for Subsequent Fractures: The Global Longitudinal Study of Osteoporosis in Women

    PubMed Central

    Gehlbach, Stephen; Saag, Kenneth G.; Adachi, Jonathan D.; Hooven, Fred H.; Flahive, Julie; Boonen, Steven; Chapurlat, Roland D.; Compston, Juliet E.; Cooper, Cyrus; Díez-Perez, Adolfo; Greenspan, Susan L.; LaCroix, Andrea Z.; Netelenbos, J. Coen; Pfeilschifter, Johannes; Rossini, Maurizio; Roux, Christian; Sambrook, Philip N.; Silverman, Stuart; Siris, Ethel S.; Watts, Nelson B.; Lindsay, Robert

    2016-01-01

    Previous fractures of the hip, spine, or wrist are well-recognized predictors of future fracture, but the role of other fracture sites is less clear. We sought to assess the relationship between prior fracture at 10 skeletal locations and incident fracture. The Global Longitudinal Study of Osteoporosis in Women (GLOW) is an observational cohort study being conducted in 17 physician practices in 10 countries. Women ≥ 55 years answered questionnaires at baseline and at 1 and/or 2 years (fractures in previous year). Of 60,393 women enrolled, follow-up data were available for 51,762. Of these, 17.6%, 4.0%, and 1.6% had suffered 1, 2, or ≥3 fractures since age 45. During the first 2 years of follow-up, 3149 women suffered 3683 incident fractures. Compared with women with no prior fractures, women with 1, 2, or ≥ 3 prior fractures were 1.8-, 3.0-, and 4.8-fold more likely to have any incident fracture; those with ≥3 prior fractures were 9.1-fold more likely to sustain a new vertebral fracture. Nine of 10 prior fracture locations were associated with an incident fracture. The strongest predictors of incident spine and hip fractures were prior spine fracture (hazard ratio 7.3) and hip (hazard ratio 3.5). Prior rib fractures were associated with a 2.3-fold risk of subsequent vertebral fracture, previous upper leg fracture predicted a 2.2-fold increased risk of hip fracture; women with a history of ankle fracture were at 1.8-fold risk of future fracture of a weight-bearing bone. Our findings suggest that a broad range of prior fracture sites are associated with an increased risk of incident fractures, with important implications for clinical assessments and risk model development. PMID:22113888

  16. HYDRAULIC CHARACTERIZATION FOR STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    EPA Science Inventory

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. This is primarily the result of the complexity of the fracture framework, which governs the groundwater flow pathways and...

  17. Outcome of bone marrow instillation at fracture site in intracapsular fracture of femoral neck treated by head preserving surgery.

    PubMed

    Verma, Nikhil; Singh, M P; Ul-Haq, Rehan; Rajnish, Rajesh K; Anshuman, Rahul

    2017-08-01

    The aim of present study is to evaluate the outcome of bone marrow instillation at the fracture site in fracture of intracapsular neck femur treated by head preserving surgery. This study included 32 patients of age group 18-50 years with closed fracture of intracapsular neck femur. Patients were randomized into two groups as per the plan generated via www.randomization.com. The two groups were Group A (control), in which the fracture of intracapsular neck femur was treated by closed reduction and cannulated cancellous screw fixation, and Group B (intervention), in which additional percutaneous autologous bone marrow aspirate instillation at fracture site was done along with cannulated cancellous screw fixation. Postoperatively the union at fracture site and avascular necrosis of the femoral head were assessed on serial plain radiographs at final follow-up. Functional outcome was evaluated by Harris hip score. The average follow-up was 19.6 months. Twelve patients in each group had union and 4 patients had signs of nonunion. One patient from each group had avascular necrosis of the femoral head. The average Harris hip score at final follow-up in Group A was 80.50 and in Group B was 75.73, which was found to be not significant. There is no significant role of adding on bone marrow aspirate instillation at the fracture site in cases of fresh fracture of intracapsular neck femur treated by head preserving surgery in terms of accelerating the bone healing and reducing the incidence of femoral head necrosis. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  18. Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili

    2017-08-01

    A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.

  19. Selection of the optimal completion of horizontal wells with multi-stage hydraulic fracturing of the low-permeable formation, field C

    NASA Astrophysics Data System (ADS)

    Bozoev, A. M.; Demidova, E. A.

    2016-03-01

    At the moment, many fields of Western Siberia are in the later stages of development. In this regard, the multilayer fields are actually involved in the development of hard to recover reserves by conducting well interventions. However, most of these assets may not to be economical profitable without application of horizontal drilling and multi-stage hydraulic fracturing treatment. Moreover, location of frac ports in relative to each other, number of stages, volume of proppant per one stage are the main issues due to the fact that the interference effect could lead to the loss of oil production. The optimal arrangement of horizontal wells with multi-stage hydraulic fracture was defined in this paper. Several analytical approaches have been used to predict the started oil flow rate and chose the most appropriate for field C reservoir J1. However, none of the analytical equations could not take into account the interference effect and determine the optimum number of fractures. Therefore, the simulation modelling was used. Finally, the universal equation is derived for this field C, the reservoir J1. This tool could be used to predict the flow rate of the horizontal well with hydraulic fracturing treatment on the qualitative level without simulation model.

  20. Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland.

    PubMed

    López-Comino, J A; Cesca, S; Jarosławski, J; Montcoudiol, N; Heimann, S; Dahm, T; Lasocki, S; Gunning, A; Capuano, P; Ellsworth, W L

    2018-06-05

    Shale oil and gas exploitation by hydraulic fracturing experienced a strong development worldwide over the last years, accompanied by a substantial increase of related induced seismicity, either consequence of fracturing or wastewater injection. In Europe, unconventional hydrocarbon resources remain underdeveloped and their exploitation controversial. In UK, fracturing operations were stopped after the M w 2.3 Blackpool induced earthquake; in Poland, operations were halted in 2017 due to adverse oil market conditions. One of the last operated well at Wysin, Poland, was monitored independently in the framework of the EU project SHEER, through a multidisciplinary system including seismic, water and air quality monitoring. The hybrid seismic network combines surface mini-arrays, broadband and shallow borehole sensors. This paper summarizes the outcomes of the seismological analysis of these data. Shallow artificial seismic noise sources were detected and located at the wellhead active during the fracturing stages. Local microseismicity was also detected, located and characterised, culminating in two events of M w 1.0 and 0.5, occurring days after the stimulation in the vicinity of the operational well, but at very shallow depths. A sharp methane peak was detected ~19 hours after the M w 0.5 event. No correlation was observed between injected volumes, seismicity and groundwater parameters.

  1. A case report of phosphaturic mesenchymal tumor-induced osteomalacia

    PubMed Central

    Wu, Weiqian; Wang, Chongyang; Ruan, Jianwei; Chen, Feng; Li, Ningjun; Chen, Fanghu

    2017-01-01

    Abstract Rationale: Tumor-induced osteomalacia (TIO) is a rare and often misdiagnosed syndrome. Surgical resection is currently the first line treatment for TIO. Patient concerns: Here we report the case of a 49-year-old woman presented with intermittent pain in the right chest and bilateral hip that had persisted for over two years. Diagnoses: She was diagnosed of TIO caused by a phosphaturic mesenchymal tumor based on the following examinations. Laboratory tests revealed high serum alkaline phosphatase, high urinary phosphorus, hypophosphatemia and normal serum calcium levels. 18-FDG PET/CT indicated a systemic multi-site symmetrical pseudo fracture and a tumor in the 7th right rib. Interventions: Curettage of the tumor was performed, and pathological analysis also confirmed our diagnoses as a phosphaturic mesenchymal tumor. Outcomes: At seven months post-surgery, the symptoms were relieved, proximal muscle strength was improved and serum levels of phosphorus and alkaline phosphatase normalized. The bilateral femoral neck and bilateral pubic bone fractures were blurred in the pelvic plain X-ray, suggesting that the fracture was healing. Lessons: This case report strengthened the importance of recognition of this rare disease to avoid delay of diagnosis and surgical removal of the causative tumor is recommended. PMID:29390586

  2. Project A.B.C. Bronx Academic Bilingual Career Program, 1982-1983. O.E.E. Evaluation Report.

    ERIC Educational Resources Information Center

    DiMartino, Vincent James; Schulman, Robert

    This multi-site program, in its final year of a two-year funding cycle, provided special resources and supportive services to approximately 200 recently arrived students of limited English proficiency in grades 9-12 at three Bronx (New York) high schools. The project served Vietnamese (Chinese ethnics), Italians, and Hispanics. Services provided…

  3. Fracture Mechanics of Transverse Cracks and Edge Delamination in Graphite-Epoxy Composite Laminates.

    DTIC Science & Technology

    1982-03-01

    Fracture failure in multi-layer epoxy-based composite laminates seldom begins with breaking of the load-carrying reinforcing fibers. Rather, smeall...often observed sub-laminate fracture mudes in, e.g., glass-epoxy and graph- ite-epoxy composite laminates. Although these matrix-dominated crackings...the uicrostructures of any given fibrous composite , fracture analysis of sub-laminate cracks based on micro leanie [I Is almost Impossible If not

  4. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis.

    PubMed

    Mandell, Jacob C; Khurana, Bharti; Smith, Stacy E

    2017-09-01

    Stress fractures of the foot and ankle are a commonly encountered problem among athletes and individuals participating in a wide range of activities. This illustrated review, the second of two parts, discusses site-specific etiological factors, imaging appearances, treatment options, and differential considerations of stress fractures of the foot and ankle. The imaging and clinical management of stress fractures of the foot and ankle are highly dependent on the specific location of the fracture, mechanical forces acting upon the injured site, vascular supply of the injured bone, and the proportion of trabecular to cortical bone at the site of injury. The most common stress fractures of the foot and ankle are low risk and include the posteromedial tibia, the calcaneus, and the second and third metatarsals. The distal fibula is a less common location, and stress fractures of the cuboid and cuneiforms are very rare, but are also considered low risk. In contrast, high-risk stress fractures are more prone to delayed union or nonunion and include the anterior tibial cortex, medial malleolus, navicular, base of the second metatarsal, proximal fifth metatarsal, hallux sesamoids, and the talus. Of these high-risk types, stress fractures of the anterior tibial cortex, the navicular, and the proximal tibial cortex may be predisposed to poor healing because of the watershed blood supply in these locations. The radiographic differential diagnosis of stress fracture includes osteoid osteoma, malignancy, and chronic osteomyelitis.

  5. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influencedmore » by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.« less

  6. Clinical Analysis of Midfacial Fractures

    PubMed Central

    Yamamoto, Kazuhiko; Matsusue, Yumiko; Horita, Satoshi; Murakami, Kazuhiro; Sugiura, Tsutomu; Kirita, Tadaaki

    2014-01-01

    Purpose: To analyze the features of midfacial fractures. Methods: Data of 320 patients treated for midfacial fractures during the past 10 years were retrospectively analyzed. Results: Patients were 192 male and 128 female. Their age ranged from 1 to 96 years old with the average of 42.1. Injury most frequently occurred by traffic accidents in 168 patients, followed by falls in 78, assaults in 31 and sports in 25. Pattern of the fractures was classified into zygoma in 159 patients, alveolus in 60, multiple sites in 54, maxilla in 45 and nasal bone in 2. Facial injury severity scale ranged from 1 to 12 with the average of 1.52. Injuries to other sites of the body were found in 90 patients. Fractures of multiple sites showed higher facial injury severity scale and were associated with injuries to other sites of the body at a higher rate. Observation was most frequently chosen in 153 patients, followed by open reduction and internal fixation in 72, intramaxillary fixation in 43 and transcutaneous reduction in 26. Conclusions: Midfacial fractures showed a variety of features in terms of the site and severity and associated injuries. Understanding these features is important to manage these patients properly. PMID:24757396

  7. The Potential Economic Benefits of Improved Postfracture Care: A Cost-Effectiveness Analysis of a Fracture Liaison Service in the US Health-Care System

    PubMed Central

    Solomon, Daniel H; Patrick, Amanda R; Schousboe, John; Losina, Elena

    2014-01-01

    Fractures related to osteoporosis are associated with $20 billion in cost in the United States, with the majority of cost born by federal health-care programs, such as Medicare and Medicaid. Despite the proven fracture reduction benefits of several osteoporosis treatments, less than one-quarter of patients older than 65 years of age who fracture receive such care. A postfracture liaison service (FLS) has been developed in many health systems but has not been widely implemented in the United States. We developed a Markov state-transition computer simulation model to assess the cost-effectiveness of an FLS using a health-care system perspective. Using the model, we projected the lifetime costs and benefits of FLS, with or without a bone mineral density test, in men and women who had experienced a hip fracture. We estimated the costs and benefits of an FLS, the probabilities of refracture while on osteoporosis treatment, as well as the utilities associated with various health states from published literature. We used multi-way sensitivity analyses to examine impact of uncertainty in input parameters on cost-effectiveness of FLS. The model estimates that an FLS would result in 153 fewer fractures (109 hip, 5 wrist, 21 spine, 17 other), 37.43 more quality-adjusted life years (QALYs), and save $66,879 compared with typical postfracture care per every 10,000 postfracture patients. Doubling the cost of the FLS resulted in an incremental cost-effectiveness ratio (ICER) of $22,993 per QALY. The sensitivity analyses showed that results were robust to plausible ranges of input parameters; assuming the least favorable values of each of the major input parameters results in an ICER of $112,877 per QALY. An FLS targeting patients post-hip fracture should result in cost savings and reduced fractures under most scenarios. PMID:24443384

  8. Lithofacies and Diagenetic Controls on Formation-scale Mechanical, Transport, and Sealing Behavior of Caprocks: A Case Study of the Morrow shale and Thirteen Finger Limestone, Farnsworth Unit, Texas

    NASA Astrophysics Data System (ADS)

    Trujillo, N. A.; Heath, J. E.; Mozley, P.; Dewers, T. A.; Cather, M.

    2016-12-01

    Assessment of caprock sealing behavior for secure CO2 storage is a multiscale endeavor. Sealing behavior arises from the nano-scale capillarity of pore throats, but sealing lithologies alone do not guarantee an effective seal since bypass systems, such as connected, conductive fractures can compromise the integrity of the seal. We apply pore-to-formation-scale data to characterize the multiscale caprock sealing behavior of the Morrow shale and Thirteen Finger Limestone. This work is part of the Southwest Regional Partnership on Carbon Sequestration's Phase III project at the Farnsworth Unit, Texas. The caprock formations overlie the Morrow sandstone, the target for enhanced oil recovery and injection of over one million metric tons of anthropogenically-sourced CO2. Methods include: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; multi-stress path mechanical testing and constitutive modeling; core examinations of sedimentary structures and fractures; and a noble gas profile for formation-scale transport of the sealing lihologies and the reservoir. We develop relationships between diagenetic characteristics of lithofacies to mechanical and petrophysical measurements of the caprocks. The results are applied as part of a caprock sealing behavior performance assessment. Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    NASA Astrophysics Data System (ADS)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  10. Can PET-CT imaging and radiokinetic analyses provide useful clinical information on atypical femoral shaft fracture in osteoporotic patients?

    PubMed

    Chesnut, C Haile; Chesnut, Charles H

    2012-03-01

    Atypical femoral shaft fractures are associated with the extended usage of nitrogen-containing bisphosphonates as therapy for osteoporosis. For such fractures, the positron emission tomography (PET) procedure, coupled with computerized tomography (CT), provides a potential imaging modality for defining aspects of the pathogenesis, site specificity, and possible prodromal abnormalities prior to fracture. PET-CT may assess the radiokinetic variables K1 (a putative marker for skeletal blood flow) and Ki (a putative marker for skeletal bone formation), and when combined with PET imaging modalities and CT skeletal site localization, may define the site of such radiokinetic findings. Further studies into the clinical usage of PET-CT in patients with atypical femoral shaft fractures are warranted.

  11. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laubach, S.E.; Marrett, R.; Rossen, W.

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less

  12. A Multi-Parameter Approach for Calculating Crack Instability

    NASA Technical Reports Server (NTRS)

    Zanganeh, M.; Forman, R. G.

    2014-01-01

    An accurate fracture control analysis of spacecraft pressure systems, boosters, rocket hardware and other critical low-cycle fatigue cases where the fracture toughness highly impacts cycles to failure requires accurate knowledge of the material fracture toughness. However, applicability of the measured fracture toughness values using standard specimens and transferability of the values to crack instability analysis of the realistically complex structures is refutable. The commonly used single parameter Linear Elastic Fracture Mechanics (LEFM) approach which relies on the key assumption that the fracture toughness is a material property would result in inaccurate crack instability predictions. In the past years extensive studies have been conducted to improve the single parameter (K-controlled) LEFM by introducing parameters accounting for the geometry or in-plane constraint effects]. Despite the importance of the thickness (out-of-plane constraint) effects in fracture control problems, the literature is mainly limited to some empirical equations for scaling the fracture toughness data] and only few theoretically based developments can be found. In aerospace hardware where the structure might have only one life cycle and weight reduction is crucial, reducing the design margin of safety by decreasing the uncertainty involved in fracture toughness evaluations would result in lighter hardware. In such conditions LEFM would not suffice and an elastic-plastic analysis would be vital. Multi-parameter elastic plastic crack tip field quantifying developments combined with statistical methods] have been shown to have the potential to be used as a powerful tool for tackling such problems. However, these approaches have not been comprehensively scrutinized using experimental tests. Therefore, in this paper a multi-parameter elastic-plastic approach has been used to study the crack instability problem and the transferability issue by considering the effects of geometrical constraints as well as the thickness. The feasibility of the approach has been examined using a wide range of specimen geometries and thicknesses manufactured from 7075-T7351 aluminum alloy.

  13. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography.

    PubMed

    Dong, Zhi-Hui; Yang, Zhi-Gang; Chen, Tian-Wu; Chu, Zhi-Gang; Deng, Wen; Shao, Heng

    2011-01-01

    Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  14. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    PubMed Central

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR = 1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR = 1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR = 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR = 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR = 1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  15. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    NASA Astrophysics Data System (ADS)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution/volatilization in order to identify when the assumption of instantaneous equilibrium is reasonable. These efforts will aid us in our application of such models to larger, field-scale tests and improve our ability to predict gas breakthrough times.

  16. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern expressed as a 2nd rank crack tensor.

  17. Assessing groundwater accessibility in the Kharga Basin, Egypt: A remote sensing approach

    NASA Astrophysics Data System (ADS)

    Parks, Shawna; Byrnes, Jeffrey; Abdelsalam, Mohamed G.; Laó Dávila, Daniel A.; Atekwana, Estella A.; Atya, Magdy A.

    2017-12-01

    We used multi-map analysis of remote sensing and ancillary data to identify potentially accessible sites for groundwater resources in the Kharga Basin in the Western Desert of Egypt. This basin is dominated by Cretaceous sandstone formations and extends within the Nubian Sandstone Aquifer. It is dissected by N-S and E-W trending faults, possibly acting as conduits for upward migration of groundwater. Analysis of paleo-drainage using Digital Elevation Model (DEM) generated from the Shuttle Radar Topography Mission (SRTM) data shows that the Kharga was a closed basin that might have been the site of a paleo-lake. Lake water recharged the Nubian Sandstone Aquifer during the wetter Holocene time. We generated the following layers for the multi-map analysis: (1) Fracture density map from the interpretation of Landsat Operational Land Imager (OLI), SRTM DEM, and RADARSAT data. (2) Thermal Inertia (TI) map (for moisture content imaging) from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. (3) Hydraulic conductivity map from mapping lithological units using the Landsat OLI and previously published data. (4) Aquifer thickness map from previously published data. We quantitatively ranked the Kharga Basin by considering that regions of high fracture density, high TI, thicker aquifer, and high hydraulic conductivity have higher potential for groundwater accessibility. Our analysis shows that part of the southern Kharga Basin is suitable for groundwater extraction. This region is where N-S and E-W trending faults intersect, has relatively high TI and it is underlain by thick aquifer. However, the suitability of this region for groundwater use will be reduced significantly when considering the changes in land suitability and economic depth to groundwater extraction in the next 50 years.

  18. Landlord project multi-year program plan, fiscal year 1999, WBS 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallas, M.D.

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The mission of Landlord Project is to provide more maintenance replacement of general infrastructure facilities and systems to facilitate the Hanford Site cleanup mission. Also, once an infrastructure facility or system is no longer needed the Landlord Project transitions the facility to final closure/removal through excess, salvage or demolition. Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Landlord Project consists of the following facilities systems: steam, water, liquid sanitary waste,more » electrical distribution, telecommunication, sanitary landfill, emergency services, general purpose offices, general purpose shops, general purpose warehouses, environmental supports facilities, roads, railroad, and the site land. The objectives for general infrastructure support are reflected in two specific areas, (1) Core Infrastructure Maintenance, and (2) Infrastructure Risk Mitigation.« less

  19. DUSEL and the future of deep terrestrial microbiology (Invited)

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Peters, C. A.; Murdoch, L. C.; Elsworth, D.; Sonnenthal, E. L.; Kieft, T.; Boutt, D. F.; Germanovich, L.; Glaser, S. D.; Wang, H. F.; Roggenthen, B.; Lesko, K.; Cushman, P.; Stetler, L. D.; Bang, S.; Anderson, C.

    2009-12-01

    DUSEL will take advantage of the existing subsurface architecture of the deepest mine in the U.S. to provide a platform for launching new exploration into the deep terrestrial biosphere. Multi-year experiments are currently being designed to delineate the relationships between microbial diversity and activity and hydraulic connectivity, temperature, pressure, strain rate and multiphase fluids. Unlike the physics experiments, which will be located close to the center of the mine, most of these experiments will be located at the periphery in existing tunnels at 100 to 2400 m depth in order to access fluid fill fractures with boreholes. Hydrological models suggest that DUSEL could sample ~100 km3 volume for microbial biogeographic and transport studies. The high-capacity underground water filtration plant used to generate ultrapure water for neutrino detectors will readily supply water for microbiology coring projects reducing microbial contamination. This will be essential for the drilling platform located at 2400 m depth that will drill down to 7+ km and 120oC in search of the upper temperature limit for life. Another advantage of underground coring is that the drilling fluid pressure will be much less than that of the fracture water, which means that when the coring bit intersects a water-filled fracture, the fracture water will flow into the core barrel reducing the contamination of fracture surfaces in the cores. The ultra-low radiation background counting facility to be located at 1475 m depth will potentially enable 106 times improvement in the detection limit for subsurface microbial respiration rates using radioactive tracers. The Coupled Thermal-Hydrological-Mechanical-Chemical-Biological, block-heating experiment will examine how the microbial communities within fractures respond to the increased thermal and fluid flux. The Fracture Processes Facility is not only designed to determine what controls rock strength, but could also determine to what extent subsurface chemoautotrophic activity is regulated by tectonic episodicity. The DUSEL CO2 Facility will investigate how microbial activity is impacted by CO2 injection and whether microbial activity has a significant impact upon long-term sequestration of CO2. These three experiments represent a subset of the integrated suite of experiments planned for the first 5 years, but many more microbial experiments can be accommodated within DUSEL. With its unique experimental assets, km-scale spatial access and multi-decade observational lifetime, DUSEL will usher in the next generation of exploration into the deep terrestrial biosphere and not only reveal the answers to many of its well-hidden secrets, but perhaps to the origin of life itself.

  20. Ultrasonography in the diagnosis of nasal bone fractures: a comparison with conventional radiography and computed tomography.

    PubMed

    Lee, In Sook; Lee, Jung-Hoon; Woo, Chang-Ki; Kim, Hak Jin; Sol, Yu Li; Song, Jong Woon; Cho, Kyu-Sup

    2016-02-01

    The purpose of this study was to evaluate and compare the diagnostic efficacy of ultrasonography (US) with radiography and multi-detector computed tomography (CT) for the detection of nasal bone fractures. Forty-one patients with a nasal bone fracture who underwent prospective US examinations were included. Plain radiographs and CT images were obtained on the day of trauma. For US examinations, radiologist used a linear array transducer (L17-5 MHz) in 24 patients and hockey-stick probe (L15-7 MHz) in 17. The bony component of the nose was divided into three parts (right and left lateral nasal walls, and midline of nasal bone). Fracture detection by three modalities was subjected to analysis. Furthermore, findings made by each modality were compared with intraoperative findings. Nasal bone fractures were located in the right lateral wall (n = 28), midline of nasal bone (n = 31), or left lateral wall (n = 31). For right and left lateral nasal walls, CT had greater sensitivity and specificity than US or radiography, and better agreed with intraoperative findings. However, for midline fractures of nasal bone, US had higher specificity, positive predictive value, and negative predictive value than CT. Although two US evaluations showed good agreements at all three sites, US findings obtained by the hockey-stick probe showed closer agreement with intraoperative findings for both lateral nasal wall and midline of nasal bone. Although CT showed higher sensitivity and specificity than US or radiography, US found to be helpful for evaluating the midline of nasal bone. Furthermore, for US examinations of the nasal bone, a smaller probe and higher frequency may be required.

  1. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    NASA Astrophysics Data System (ADS)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  2. NADIR: A Flexible Archiving System Current Development

    NASA Astrophysics Data System (ADS)

    Knapic, C.; De Marco, M.; Smareglia, R.; Molinaro, M.

    2014-05-01

    The New Archiving Distributed InfrastructuRe (NADIR) is under development at the Italian center for Astronomical Archives (IA2) to increase the performances of the current archival software tools at the data center. Traditional softwares usually offer simple and robust solutions to perform data archive and distribution but are awkward to adapt and reuse in projects that have different purposes. Data evolution in terms of data model, format, publication policy, version, and meta-data content are the main threats to re-usage. NADIR, using stable and mature framework features, answers those very challenging issues. Its main characteristics are a configuration database, a multi threading and multi language environment (C++, Java, Python), special features to guarantee high scalability, modularity, robustness, error tracking, and tools to monitor with confidence the status of each project at each archiving site. In this contribution, the development of the core components is presented, commenting also on some performance and innovative features (multi-cast and publisher-subscriber paradigms). NADIR is planned to be developed as simply as possible with default configurations for every project, first of all for LBT and other IA2 projects.

  3. An Epidemiological Study on Pattern and Incidence of Mandibular Fractures

    PubMed Central

    Natu, Subodh S.; Pradhan, Harsha; Gupta, Hemant; Alam, Sarwar; Gupta, Sumit; Pradhan, R.; Mohammad, Shadab; Kohli, Munish; Sinha, Vijai P.; Shankar, Ravi; Agarwal, Anshita

    2012-01-01

    Mandible is the second most common facial fracture. There has been a significant increase in the number of cases in recent years with the advent of fast moving automobiles. Mandibular fractures constitute a substantial proportion of maxillofacial trauma cases in Lucknow. This study was undertaken to study mandibular fractures clinicoradiologically with an aim to calculate incidence and study pattern and the commonest site of fractures in population in and around Lucknow. Patient presenting with history of trauma at various centers of maxillofacial surgery in and around Lucknow were included in this study. Detailed case history was recorded followed by thorough clinical examination, and radiological interpretation was done for establishing the diagnosis and the data obtained was analyzed statistically. Out of 66 patients with mandibular fractures, highest percentage was found in 21–30 years of age with male predominance. Road traffic accidents were the most common cause of fracture with parasymphysis being commonest site. Commonest combination was parasymphysis with subcondyle. There was no gender bias in etiology with number of fracture sites. The incidence and causes of mandibular fracture reflect trauma patterns within the community and can provide a guide to the design of programs geared toward prevention and treatment. PMID:23227327

  4. SIMPLE ANALYTICAL MODEL FOR HEAT FLOW IN FRACTURES-APPLICATION TO STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    EPA Science Inventory

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...

  5. SIMPLE ANALYTICAL MODEL FOR HEAT FLOW IN FRACTURES - APPLICATION TO STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    EPA Science Inventory

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...

  6. A Multi-centre Study to Assess the Long-term Performance of the Summit™ Hip in Primary Total Hip Replacement

    ClinicalTrials.gov

    2016-08-03

    Rheumatoid Arthritis; Osteoarthritis; Post-traumatic Arthritis; Collagen Disorders; Avascular Necrosis; Traumatic Femoral Fractures; Nonunion of Femoral Fractures; Congenital Hip Dysplasia; Slipped Capital Femoral Epiphysis

  7. Femoral neck shortening in adult patients under the age of 55 years is associated with worse functional outcomes: Analysis of the prospective multi-center study of hip fracture outcomes in China (SHOC).

    PubMed

    Slobogean, Gerard P; Stockton, David J; Zeng, Bing-Fang; Wang, Dong; Ma, Baotong; Pollak, Andrew N

    2017-08-01

    Young femoral neck fracture patients require surgical fixation to preserve the native hip joint and accommodate increased functional demands. Recent reports have identified a high incidence of fracture shortening and this may have negative functional consequences. We sought to determine if fracture shortening is associated with poor functional outcome in young femoral neck fracture patients. One hundred and forty-two patients with femoral neck fractures age 18-55 were recruited in this prospective cohort study across three Level 1 trauma hospitals in Mainland China. Patient-reported and objective functional outcomes were measured with the Harris Hip Score (HHS), Timed Up and Go (TUG), and SF-36 Physical Component Summary (SF-36 PCS) at 12 months. Radiographic fracture shortening was measured along the long axis of the femoral neck and corrected for magnification. Severe shortening was defined as ≥10mm. The primary analysis measured associations between severe radiographic shortening and HHS at one-year post-fixation. One hundred and two patients had complete radiographic and functional outcomes available for analysis at one year. The mean age of participants was 43.7±10.8years and 53% were male. Fifty-five percent of fractures were displaced and 37% were vertically orientated (Pauwels Type 3). The mean functional outcome scores were: HHS 90.0±10.8, TUG 12.0±5.1s, and PCS 48.5±8.6. Severe shortening occurred in 13% of patients and was associated with worse functional outcome scores: HHS mean difference 9.9 (p=0.025), TUG mean difference 3.2s (p=0.082), and PCS mean difference 5.4 (p=0.055). Severe shortening is associated with clinically important decreases in functional outcome as measured by HHS following fixation of young femoral neck fractures, occurring in 13% of patients in this population. The principle of fracture site compression utilized by modern constructs may promote healing; however, excessive shortening is associated with worse patient-reported outcomes and objective functional measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Utility of Postoperative Antibiotics After Percutaneous Pinning of Pediatric Supracondylar Humerus Fractures.

    PubMed

    Schroeder, Nicholas O; Seeley, Mark A; Hariharan, Arun; Farley, Frances A; Caird, Michelle S; Li, Ying

    2017-09-01

    Pediatric supracondylar humerus fractures are common injuries that are often treated surgically with closed reduction and percutaneous pinning. Although surgical-site infections are rare, postoperative antibiotics are frequently administered without evidence or guidelines for their use. With the increasing prevalence of antibiotic-resistant organisms and heightened focus on health care costs, appropriate and evidence-based use of antibiotics is needed. We hypothesized that postoperative antibiotic administration would not decrease the rate of surgical-site infection. A billing query identified 951 patients with operatively treated supracondylar humerus fractures at our institution over a 15-year period. Records were reviewed for demographic data, perioperative antibiotic use, and the presence of surgical-site infection. Exclusion criteria were open fractures, open reduction, pathologic fractures, metabolic bone disease, the presence of other injuries that required operative treatment, and follow-up <2 weeks after pin removal. χ and Fisher exact test were used to compare antibiotic use to the incidence of surgical-site infection. Six hundred eighteen patients met our inclusion criteria. Two hundred thirty-eight patients (38.5%) received postoperative antibiotics. Eleven surgical-site infections were identified for an overall rate of 1.8%. The use of postoperative antibiotics was not associated with a lower rate of surgical-site infection (P=0.883). Patients with a type III fracture (P<0.001), diminished preoperative vascular (P=0.001) and neurological status (P=0.019), and postoperative hospital admission (P<0.001) were significantly more likely to receive postoperative antibiotics. Administration of postoperative antibiotics after closed reduction and percutaneous pinning of pediatric supracondylar humerus fractures does not decrease the rate of surgical-site infection. Level III-therapeutic.

  9. Incidence and risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture: A systematic review and meta-analysis.

    PubMed

    Shao, Jiashen; Chang, Hengrui; Zhu, Yanbin; Chen, Wei; Zheng, Zhanle; Zhang, Huixin; Zhang, Yingze

    2017-05-01

    This study aimed to quantitatively summarize the risk factors associated with surgical site infection after open reduction and internal fixation of tibial plateau fracture. Medline, Embase, CNKI, Wanfang database and Cochrane central database were searched for relevant original studies from database inception to October 2016. Eligible studies had to meet quality assessment criteria according to the Newcastle-Ottawa Scale, and had to evaluate the risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture. Stata 11.0 software was used for this meta-analysis. Eight studies involving 2214 cases of tibial plateau fracture treated by open reduction and internal fixation and 219 cases of surgical site infection were included in this meta-analysis. The following parameters were identified as significant risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture (p < 0.05): open fracture (OR 3.78; 95% CI 2.71-5.27), compartment syndrome (OR 3.53; 95% CI 2.13-5.86), operative time (OR 2.15; 95% CI 1.53-3.02), tobacco use (OR 2.13; 95% CI 1.13-3.99), and external fixation (OR 2.07; 95% CI 1.05-4.09). Other factors, including male sex, were not identified as risk factors for surgical site infection. Patients with the abovementioned medical conditions are at risk of surgical site infection after open reduction and internal fixation of tibial plateau fracture. Surgeons should be cognizant of these risks and give relevant preoperative advice. Copyright © 2017. Published by Elsevier Ltd.

  10. Assessing the monitoring performance using a synthetic microseismic catalogue for hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Kriegerowski, Marius; Cesca, Simone; Dahm, Torsten; Mirek, Janusz; Lasocki, Stanislaw

    2016-04-01

    Hydraulic fracturing is considered among the human operations which could induce or trigger seismicity or microseismic activity. The influence of hydraulic fracturing operations is typically expected in terms of weak magnitude events. However, the sensitivity of the rock mass to trigger seismicity varies significantly for different sites and cannot be easily predicted prior to operations. In order to assess the sensitivity of microseismity to hydraulic fracturing operations, we perform a seismic monitoring at a shale gas exploration/exploitation site in the central-western part of the Peribaltic synclise at Pomerania (Poland). The monitoring will be continued before, during and after the termination of hydraulic fracturing operations. The fracking operations are planned in April 2016 at a depth 4000 m. A specific network setup has been installed since summer 2015, including a distributed network of broadband stations and three small-scale arrays. The network covers a region of 60 km2. The aperture of small scale arrays is between 450 and 950 m. So far no fracturing operations have been performed, but seismic data can already be used to assess the seismic noise and background microseismicity, and to investigate and assess the detection performance of our monitoring setup. Here we adopt a recently developed tool to generate a synthetic catalogue and waveform dataset, which realistically account for the expected microseismicity. Synthetic waveforms are generated for a local crustal model, considering a realistic distribution of hypocenters, magnitudes, moment tensors, and source durations. Noise free synthetic seismograms are superposed to real noise traces, to reproduce true monitoring conditions at the different station locations. We estimate the detection probability for different magnitudes, source-receiver distances, and noise conditions. This information is used to estimate the magnitude of completeness at the depth of the hydraulic fracturing horizontal wells. Our technique is useful to evaluate the efficiency of the seismic network and validate detection and location algorithms, taking into account the signal to noise ratio. The same dataset may be used at a later time, to assess the performance of other seismological analysis, such as hypocentral location, magnitude estimation and source parameters inversion. This work is funded by the EU H2020 SHEER project.

  11. Monitoring electrical properties for improving the lithological and hydrological characterization of landslides

    NASA Astrophysics Data System (ADS)

    Malet, J. P.; Gance, J.; Lajaunie, M.; Gallistl, J.; Denchik, N.; Flores Orozco, A.; Ottowitz, D.; Supper, R.; Sailhac, P.; Gautier, S.; Schmutz, M.

    2017-12-01

    Imaging water flows in landslides is of critical importance as the distribution of pore-fluid pressures controls the dynamics (acceleration, deceleration) of the material. Detecting and imaging water is a difficult task, not only because of the complex topography and the small dimensions of the geological structures, but also because the landslide material consists of unsaturated porous and heterogeneous fractured media, leading to multi-scale water-flow properties. Further, these properties can change in time, in relation to temperature, rainfall and biological forcings. Electrical properties are relevant proxies of the sub-surface hydrological properties. In order to image water in landslide bodies, we propose to combine multi-frequency electrical and electromagnetic measurements using campaigns or permanent instruments, and surface/boreole investigations, installed on several unstable slopes in France. To evaluate the information gained from electrical properties for different geological conditions, we discuss electrical and electro-magnetic imaging results for data collected at four different landslides located in France (Super-Sauze and La Valette in the South East Alps, Lodève lin the southern border of the Massif Central Massif, and Séchilienne in the North French Alps). Time-lapse electrical DC resistivity observations, complex electrical conductivity (conduction and polarization/chargeability) measured by IP imaging methods, and controlled-source electromagnetic (CS-AMT) methods are discussed. Imaging results demonstrate an improved lithological characterization of the landslide structures (delineation of the sliding planes, identification of the fractures, discrimination of clay lenses with enhanced resolution); further, water infiltration within the soil matrix and/or the fractures is discriminated allowing better modelling of the hydrological regime of the landslides at the slope scale. This research is conducted in the frame of the project HYDROSLIDE - Hydrogeophysical Monitoring of Clay-Rich Landslides funded by the Austrian Science Fund (FWF) and the French Research Agency (ANR).

  12. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image logs run within the horizontal wellbores and augmented with microseismic data. Limitations of these datasets included the potential to induce biased interpretations; but the data collected during the outcrop study aided in removing the bias. All four fracture sets observed at the quarry were also interpreted in the subsurface; however there was a limitation on statistical validity for one of the four sets due to a low frequency of observed occurrence potentially caused by wellbore orientation. Microseismic data was used for identification of one of the reactivated natural fracture sets. An interesting phenomenon observed in the microseismic data trends was the low frequency of event occurrence within dense populations of open natural fracture swarms suggesting that zones of higher natural fracture intensities are capable of absorbing and transmitting energy resulting in lower levels of microseismicity. Thus currently open natural fractures could be challenging to detect using microseismic. Through this study I identified a significant variability in fracture intensity at a localized scale due to lithological composition and structural features. The complex faulting styles observed at the outcrop were utilized as an analog and verified by horizontal well log data and seismic volume interpretations creating a high resolution structural model for the subsurface. A lithofacies model was developed based on the well log, core, and seismic inversion analysis. These models combined served to accurately distribute fracture intensity information within the geological model for further use in DFN. As a product of this study, a workflow was developed to aid in fracture network model creation allowing for more intelligent decisions to be made during well planning and completion optimization aiming to improve recovery. A high resolution integrated discrete fracture network model serves to advance dynamic reservoir characterization in the subsurface at a sub-seismic scale resulting in improved reservoir characterization.

  13. Reassessment of osteoporosis-related femoral fractures and economic burden in Saudi Arabia.

    PubMed

    Sadat-Ali, Mir; Al-Dakheel, Dakheel A; Azam, Md Q; Al-Bluwi, Mohammed T; Al-Farhan, Mohammed F; AlAmer, Hussein A; Al-Meer, Zakaria; Al-Mohimeed, Abdallah; Tabash, Ibrahim K; Karry, Maher O; Rassasy, Yaseen M; Baragaba, Mohammed A; Amer, Ahmed S; AlJawder, Abdallah; Al-Bouri, Kamil M; ElTinay, Mohammed; Badawi, Hamed A; Al-Othman, Abdallah A; Tayara, Badar K; Al-Faraidy, Moaad H; Amin, Ahmed H

    2015-01-01

    The current study reassesses the prevalence of fragility fractures and lifetime costs in the Eastern Province of Saudi Arabia. Forty-two percent (391) of the fractures were at the neck of the femur, and 38.6 % (354) were inter-trochanteric fractures. The overall incidence was assessed to be 7528 (1,300,336 population 55 years or older) with the direct cost of SR564.75 million ($150.60 million). A National Fracture Registry and osteoporosis awareness programs are recommended. Proximal femur fragility fractures are reported to be increasing worldwide due to increased life expectancy. The current study is carried out to assess the incidence of such fractures in the Eastern Province of Saudi Arabia and to assess the costs incurred in managing them annually. Finally, by extrapolating the data, the study can calculate the overall economic burden in Saudi Arabia. The data of fragility proximal femur fractures was collected from 24 of 28 hospitals in the Eastern Province. The data included age, sex, mode of injury, type of fracture, prescribed drug (and its cost), and length of hospital stay. Population statistics were obtained from the Department of Statistics of the Saudi Arabian government Web site. Twenty-four hospitals (85 %) participated in the study. A total of 780 fractures were sustained by 681 patients. Length of stay in the hospital averaged 23.28 ± 13.08 days. The projected fracture rate from all the hospitals would be 917 (an incidence of 5.81/1000), with a total cost of SR68.77 million. Further extrapolation showed that the overall incidence could be 7528 (1,300,336 population 55 years or older) with the direct cost of SR564.75 million ($150.60 million). Osteoporosis-related femoral fractures in Saudi Arabia are significant causes of morbidity besides incurring economic burden. We believe that a National Fracture Registry needs to be established, and osteoporosis awareness programs should be instituted in every part of Saudi Arabia so that these patients can be diagnosed early and treated appropriately to reduce both the number of fractures and the economic burden of the fractures.

  14. Site characterization in densely fractured dolomite: Comparison of methods

    USGS Publications Warehouse

    Muldoon, M.; Bradbury, K.R.

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.

  15. Site characterization in densely fractured dolomite: comparison of methods.

    PubMed

    Muldoon, Maureen; Bradbury, Ken R

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.

  16. Optimization of multi-image pose recovery of fluoroscope tracking (FTRAC) fiducial in an image-guided femoroplasty system

    NASA Astrophysics Data System (ADS)

    Liu, Wen P.; Armand, Mehran; Otake, Yoshito; Taylor, Russell H.

    2011-03-01

    Percutaneous femoroplasty [1], or femoral bone augmentation, is a prospective alternative treatment for reducing the risk of fracture in patients with severe osteoporosis. We are developing a surgical robotics system that will assist orthopaedic surgeons in planning and performing a patient-specific, augmentation of the femur with bone cement. This collaborative project, sponsored by the National Institutes of Health (NIH), has been the topic of previous publications [2],[3] from our group. This paper presents modifications to the pose recovery of a fluoroscope tracking (FTRAC) fiducial during our process of 2D/3D registration of X-ray intraoperative images to preoperative CT data. We show improved automata of the initial pose estimation as well as lower projection errors with the advent of a multiimage pose optimization step.

  17. The effect of search term on the quality and accuracy of online information regarding distal radius fractures.

    PubMed

    Dy, Christopher J; Taylor, Samuel A; Patel, Ronak M; Kitay, Alison; Roberts, Timothy R; Daluiski, Aaron

    2012-09-01

    Recent emphasis on shared decision making and patient-centered research has increased the importance of patient education and health literacy. The internet is rapidly growing as a source of self-education for patients. However, concern exists over the quality, accuracy, and readability of the information. Our objective was to determine whether the quality, accuracy, and readability of information online about distal radius fractures vary with the search term. This was a prospective evaluation of 3 search engines using 3 different search terms of varying sophistication ("distal radius fracture," "wrist fracture," and "broken wrist"). We evaluated 70 unique Web sites for quality, accuracy, and readability. We used comparative statistics to determine whether the search term affected the quality, accuracy, and readability of the Web sites found. Three orthopedic surgeons independently gauged quality and accuracy of information using a set of predetermined scoring criteria. We evaluated the readability of the Web site using the Fleisch-Kincaid score for reading grade level. There were significant differences in the quality, accuracy, and readability of information found, depending on the search term. We found higher quality and accuracy resulted from the search term "distal radius fracture," particularly compared with Web sites resulting from the term "broken wrist." The reading level was higher than recommended in 65 of the 70 Web sites and was significantly higher when searching with "distal radius fracture" than "wrist fracture" or "broken wrist." There was no correlation between Web site reading level and quality or accuracy. The readability of information about distal radius fractures in most Web sites was higher than the recommended reading level for the general public. The quality and accuracy of the information found significantly varied with the sophistication of the search term used. Physicians, professional societies, and search engines should consider efforts to improve internet access to high-quality information at an understandable level. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Fatigue and Fracture Branch: A compendium of recently completed and on-going research projects

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1984-01-01

    This compendium of recently completed and ongoing research projects from the Fatigue and Fracture Branch at NASA Langley Research Center provides technical descriptions and key results of all such projects expected to lead to publication of significant findings. The common thread to all these studies is the application of fracture mechanics analyses to engineering problems in metals and composites, with particular emphasis on airframe structural materials. References to recent publications are included where appropriate.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mo; Nakshatrala, Kalyana; William, Kasper

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less

  20. Multi-scale Fracture Patterns Associated with a Complex Anticline Structure: Insights from Field Outcrop Analogues of the Jebel Hafit Pericline, Al Ain-UAE

    NASA Astrophysics Data System (ADS)

    Kokkalas, S.; Jones, R. R.; Long, J. J.; Zampos, M.; Wilkinson, M. W.; Gilment, S.

    2017-12-01

    The formation of folds and their associated fracture patterns plays an important role in controlling the migration and concentration of fluids within the upper crust. Prediction of fracture patterns from various fold shapes and kinematics still remains poorly understood in terms of spatial and temporal distribution of fracture sets. Thus, a more detailed field-based multi scale approach is required to better constrain 3D models of fold-fracture relationships, which are critical for reservoir characterization studies. In order to generate reservoir-scale fracture models representative fracture properties across a wider range of scales are needed. For this reason we applied modern geospatial technologies, including terrestrial LiDAR, photogrammetry and satellite images in the asymmetric, east verging, four-way closure Jebel Hafit anticline, in the eastern part of the United Arab Emirates. The excellent surface outcrops allowed the rapid acquisition of extensive areas of fracture data from both limbs and fold hinge area of the anticline, even from large areas of steep exposure that are practically inaccessible on foot. The digital outcrops provide longer 1D transects, and 2D or 3D surface datasets and give more robust data, particularly for fracture heights, lengths, spacing, clustering, termination and connectivity. The fracture patterns across the folded structure are more complex than those predicted from conceptual models and geomechanical fracture modeling. Mechanical layering, pre-existing structures and sedimentation during fold growth seem to exert a critical influence in the development of fracture systems within Jebel Hafit anticline and directly affect fracture orientations, spacing/intensity, segmentation and connectivity. Seismic and borehole data provide additional constraints on the sub-surface fold geometry and existence of large-scale thrusting in the core of the anticline. The complexity of the relationship between fold geometry and fracture intensity is presented and the implications for prediction of fracture networks in naturally fractured reservoirs are discussed.

  1. Selection of adequate site location during early stages of construction project management: A multi-criteria decision analysis approach

    NASA Astrophysics Data System (ADS)

    Marović, Ivan; Hanak, Tomaš

    2017-10-01

    In the management of construction projects special attention should be given to the planning as the most important phase of decision-making process. Quality decision-making based on adequate and comprehensive collaboration of all involved stakeholders is crucial in project’s early stages. Fundamental reasons for existence of this problem arise from: specific conditions of construction industry (final products are inseparable from the location i.e. location has a strong influence of building design and its structural characteristics as well as technology which will be used during construction), investors’ desires and attitudes, and influence of socioeconomic and environment aspects. Considering all mentioned reasons one can conclude that selection of adequate construction site location for future investment is complex, low structured and multi-criteria problem. To take into account all the dimensions, the proposed model for selection of adequate site location is devised. The model is based on AHP (for designing the decision-making hierarchy) and PROMETHEE (for pairwise comparison of investment locations) methods. As a result of mixing basis feature of both methods, operational synergies can be achieved in multi-criteria decision analysis. Such gives the decision-maker a sense of assurance, knowing that if the procedure proposed by the presented model has been followed, it will lead to a rational decision, carefully and systematically thought out.

  2. Introduction to the hydrogeochemical investigations within the International Stripa Project

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Olsson, T.; Carlsson, L.; Fritz, P.

    1989-01-01

    The International Stripa Project (1980-1990) has sponsored hydrogeochemical investigations at several subsurface drillholes in the granitic portion of an abandoned iron ore mine, central Sweden. The purpose has been to advance our understanding of geochemical processes in crystalline bedrock that may affect the safety assessment of high-level radioactive waste repositories. More than a dozen investigators have collected close to a thousand water and gas samples for chemical and isotopic analyses to develop concepts for the behavior of solutes in a granitic repository environment. The Stripa granite is highly radioactive and has provided an exceptional opportunity to study the behavior of natural radionuclides, especially subsurface production. Extensive microfracturing, low permeability with isolated fracture zones of high permeability, unusual water chemistry, and a typical granitic mineral assemblage with thin veins and fracture coatings of calcite, chlorite, seriate, epidote and quartz characterize the site. Preliminary groundwater flow modeling indicates that the mine has perturbed the flow environment to a depth of about 3 km and may have induced deep groundwaters to flow into the mine. ?? 1989.

  3. The association between type of spine fracture and the mechanism of trauma: A useful tool for identifying mechanism of trauma on legal medicine field.

    PubMed

    Aghakhani, Kamran; Kordrostami, Roya; Memarian, Azadeh; Asl, Nahid Dadashzadeh; Zavareh, Fatemeh Noorian

    2018-05-01

    Determining the association between mechanism of trauma, and the type of spine column fracture is a useful approach for exactly describing spine injury on forensic medicine field. We aimed to determine mechanism of trauma based on distribution of the transition of spinal column fractures. This cross-sectional survey was performed on 117 consecutive patients with the history of spinal trauma who were admitted to emergency ward of Rasoul-e-Akram Hospital in Tehran, Iran from April 2015 to March 2016. The baseline characteristics were collected by reviewing the hospital recorded files. With respect to mechanism of fracture, 63.2% of fractures were caused by falling, 30.8% by collisions with motor vehicles, and others caused by the violence. Regarding site of fracture, lumbosacral was affected in 47.9%, thoracic in 29.9%, and cervical in 13.7%. Regarding type of fracture, burst fracture was the most common type (71.8%) followed by compressive fracture (14.5%). The site of fracture was specifically associated with the mechanism of injury; the most common injuries induced by falling from height were found in lumbosacral and cervical sites, and the most frequent injuries by traffic accidents were found in thoracic site; also the injuries following violence were observed more in lumbar vertebrae. The burst fractures were more revealed in the patients affected by falling from height and by traffic accidents, and both burst and compressive fractures were more observed with the same result in the patients injured with violence (p = 0.003). The type of spine fracture due to trauma is closely associated with the mechanism of trauma that can be helpful in legal medicine to identify the mechanism of trauma in affected patients. Copyright © 2018. Published by Elsevier Ltd.

  4. Approaching a universal scaling relationship between fracture stiffness and fluid flow

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, Laura J.; Nolte, David D.

    2016-02-01

    A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.

  5. Analysis of stress-induced oval fractures in a borehole at Deep Sea Drilling Project Site 504, eastern equatorial Pacific

    USGS Publications Warehouse

    Morin, R.H.; Flamand, R.

    1999-01-01

    Deep Sea Drilling Project (DSDP) Hole 504B is located in the eastern equatorial Pacific Ocean and extends to a total depth of 2111 m beneath the seafloor (mbsf). Several acoustic televiewer logs have been obtained in this well during successive stages of drilling, and the resulting digital images have revealed numerous oval-shaped fractures seemingly etched into the borehole wall. A theoretical examination of these stress-induced features identifies a unique and ephemeral set of stress distributions and magnitudes that are necessary for their production. Consequently, the ovals provide a basis for quantifying the magnitudes and orientations of the maximum and minimum horizontal principal stresses, SH and Sh, at this site. Vertical, truncated breakouts and horizontal tensile fractures define the spatial boundaries of the ovals. Explicit criteria for their occurrence are combined with estimates for various physical properties of the rock to yield a range of possible values for the horizontal principal stresses. The conspicuous oval geometry is completed by a curved fracture that joins the vertical and horizontal components. Its degree of curvature is delineated by the modified Griffith failure criterion and is directly related to the principal stress difference (SH - Sh). Matching a series of type curves corresponding to specific values for (SH - Sh) with the actual undistorted well bore images allows the magnitude of the stress difference to be further constrained. With a value for (SH - Sh) of 45 ?? 5 MPa the individual magnitudes of SH and Sh are determined more precisely. Final estimates for the horizontal principal stresses in DSDP Hole 504B at a depth of 1200 mbsf are 141 MPa ??? SH ??? 149 MPa and 91 MPa ??? Sh ??? 109 MPa. Stress magnitudes derived from this approach rely heavily upon the values of a variety of physical properties, and complementary laboratory measurements performed on relevant rock samples provide critical information. Uncertainties in estimating these properties translate into less precise predictions of principal stresses. Copyright 1999 by the American Geophysical Union.

  6. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  7. Technical considerations to avoid delayed and non-union.

    PubMed

    McMillan, Tristan E; Johnstone, Alan J

    2017-06-01

    For many years intramedullary nails have been a well accepted and successful method of diaphyseal fracture fixation. However, delayed and non unions with this technique do still occur and are associated with significant patient morbidity. The reason for this can be multi-factorial. We discuss a number of technical considerations to maximise fracture reduction, fracture stability and fracture vascularity in order to achieve bony union. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Clinical usefulness of fracture site in situ block on lumbar spine transverse process fracture.

    PubMed

    Park, Jun-Mo; Kwak, Kyung-Hwa

    2014-11-01

    Lumbar spine transverse process fractures (LSTPFs) are uncommon and frequently overlooked on plain film radiographs. Even when recognized, they are often regarded as trivial and minimally painful injuries compared with combined serious major abdominal, pelvic, and spinal injuries. Conservative treatments are usually offered to patients with LSTPFs. This report presents 4 cases of LSTPFs where symptoms did not improve after more than 1 week of conservative management. Local anesthetics and steroids were injected directly into the fracture site under computed tomography guidance, referred to as a fracture site in situ block, in an attempt to accelerate the return to daily lives and professional activities. Three of the 4 patients returned to their daily lives almost immediately after completing the procedure. Although the procedure was appropriately performed at L4, 1 patient still complained of pain. This patient's all films were meticulously re-examined, and it was determined that a transverse process fracture was present at not only L4 but also L1. This report introduces a method of active treatment to help patients with LSTPFs quickly return to their daily lives and professional activities. The positive results in these cases suggest that fracture site in situ block might be a useful option for treating patients with LSTPFs. © 2014 World Institute of Pain.

  9. The Sulcis Storage Project: Status of the First Italian Initiative for Pilot-Scale Geological Sequestration of CO2

    NASA Astrophysics Data System (ADS)

    Plaisant, A.; Maggio, E.; Pettinau, A.

    2016-12-01

    The deep aquifer located at a depth of about 1000-1500 m within fractured carbonate in the Sulcis coal basin (South-West Sardinia, Italy) constitutes a potential reservoir to develop a pilot-scale CO2 storage site. The occurrence of several coal mines and the geology of the basin also provide favourable condition to install a permanent infrastructures where advanced CO2 storage technologies can be developed. Overall, the Sulcis project will allow to characterize the Sulcis coal basin (South West Sardinia, Italy) and to develop a permanent infrastructure (know-how, equipment, laboratories, etc.) for advanced international studies on CO2 storage. The research activities are structured in two different phases: (i) site characterization, including the construction of an underground and a fault laboratories and (ii) the installation of a test site for small-scale injection of CO2. In particular, the underground laboratory will host geochemical and geophysical experiments on rocks, taking advantages of the buried environment and the very well confined conditions in the galleries; in parallel, the fault laboratory will be constructed to study CO2 leakage phenomena in a selected fault. The project is currently ongoing and some preliminary results will be presented in this work as well as the structure of the project as a whole. More in detail, preliminary activities comprise: (i) geochemical monitoring; (ii) the minero-petrographycal, physical and geophysical characterization of the rock samples; (iii) the development of both static and dynamic geological models of the reservoir; (iv) the structural geology and fault analysis; (v) the assessment of natural seismicity through a monitoring network (vi) the re-processing and the analysis of the reflection seismic data. Future activities will comprise: (i) the drilling of shallow exploration wells near the faults; (ii) the construction of both the above mentioned laboratories; (iii) drilling of a deep exploration well (1,500 m); (iv) injection tests. Preliminary analyses show that the rocks of the carbonate formation present a low porosity, but the formation is characterized by a good permeability for fractures and karst. The faults are typically sealed and petrophysical properties of caprock and reservoir are spatially heterogeneous.

  10. Outlook for grid service technologies within the @neurIST eHealth environment.

    PubMed

    Arbona, A; Benkner, S; Fingberg, J; Frangi, A F; Hofmann, M; Hose, D R; Lonsdale, G; Ruefenacht, D; Viceconti, M

    2006-01-01

    The aim of the @neurIST project is to create an IT infrastructure for the management of all processes linked to research, diagnosis and treatment development for complex and multi-factorial diseases. The IT infrastructure will be developed for one such disease, cerebral aneurysm and subarachnoid haemorrhage, but its core technologies will be transferable to meet the needs of other medical areas. Since the IT infrastructure for @neurIST will need to encompass data repositories, computational analysis services and information systems handling multi-scale, multi-modal information at distributed sites, the natural basis for the IT infrastructure is a Grid Service middleware. The project will adopt a service-oriented architecture because it aims to provide a system addressing the needs of medical researchers, clinicians and health care specialists (and their IT providers/systems) and medical supplier/consulting industries.

  11. An i2b2-based, generalizable, open source, self-scaling chronic disease registry

    PubMed Central

    Quan, Justin; Ortiz, David M; Bousvaros, Athos; Ilowite, Norman T; Inman, Christi J; Marsolo, Keith; McMurry, Andrew J; Sandborg, Christy I; Schanberg, Laura E; Wallace, Carol A; Warren, Robert W; Weber, Griffin M; Mandl, Kenneth D

    2013-01-01

    Objective Registries are a well-established mechanism for obtaining high quality, disease-specific data, but are often highly project-specific in their design, implementation, and policies for data use. In contrast to the conventional model of centralized data contribution, warehousing, and control, we design a self-scaling registry technology for collaborative data sharing, based upon the widely adopted Integrating Biology & the Bedside (i2b2) data warehousing framework and the Shared Health Research Information Network (SHRINE) peer-to-peer networking software. Materials and methods Focusing our design around creation of a scalable solution for collaboration within multi-site disease registries, we leverage the i2b2 and SHRINE open source software to create a modular, ontology-based, federated infrastructure that provides research investigators full ownership and access to their contributed data while supporting permissioned yet robust data sharing. We accomplish these objectives via web services supporting peer-group overlays, group-aware data aggregation, and administrative functions. Results The 56-site Childhood Arthritis & Rheumatology Research Alliance (CARRA) Registry and 3-site Harvard Inflammatory Bowel Diseases Longitudinal Data Repository now utilize i2b2 self-scaling registry technology (i2b2-SSR). This platform, extensible to federation of multiple projects within and between research networks, encompasses >6000 subjects at sites throughout the USA. Discussion We utilize the i2b2-SSR platform to minimize technical barriers to collaboration while enabling fine-grained control over data sharing. Conclusions The implementation of i2b2-SSR for the multi-site, multi-stakeholder CARRA Registry has established a digital infrastructure for community-driven research data sharing in pediatric rheumatology in the USA. We envision i2b2-SSR as a scalable, reusable solution facilitating interdisciplinary research across diseases. PMID:22733975

  12. An i2b2-based, generalizable, open source, self-scaling chronic disease registry.

    PubMed

    Natter, Marc D; Quan, Justin; Ortiz, David M; Bousvaros, Athos; Ilowite, Norman T; Inman, Christi J; Marsolo, Keith; McMurry, Andrew J; Sandborg, Christy I; Schanberg, Laura E; Wallace, Carol A; Warren, Robert W; Weber, Griffin M; Mandl, Kenneth D

    2013-01-01

    Registries are a well-established mechanism for obtaining high quality, disease-specific data, but are often highly project-specific in their design, implementation, and policies for data use. In contrast to the conventional model of centralized data contribution, warehousing, and control, we design a self-scaling registry technology for collaborative data sharing, based upon the widely adopted Integrating Biology & the Bedside (i2b2) data warehousing framework and the Shared Health Research Information Network (SHRINE) peer-to-peer networking software. Focusing our design around creation of a scalable solution for collaboration within multi-site disease registries, we leverage the i2b2 and SHRINE open source software to create a modular, ontology-based, federated infrastructure that provides research investigators full ownership and access to their contributed data while supporting permissioned yet robust data sharing. We accomplish these objectives via web services supporting peer-group overlays, group-aware data aggregation, and administrative functions. The 56-site Childhood Arthritis & Rheumatology Research Alliance (CARRA) Registry and 3-site Harvard Inflammatory Bowel Diseases Longitudinal Data Repository now utilize i2b2 self-scaling registry technology (i2b2-SSR). This platform, extensible to federation of multiple projects within and between research networks, encompasses >6000 subjects at sites throughout the USA. We utilize the i2b2-SSR platform to minimize technical barriers to collaboration while enabling fine-grained control over data sharing. The implementation of i2b2-SSR for the multi-site, multi-stakeholder CARRA Registry has established a digital infrastructure for community-driven research data sharing in pediatric rheumatology in the USA. We envision i2b2-SSR as a scalable, reusable solution facilitating interdisciplinary research across diseases.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Liner

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery inmore » 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.« less

  14. Transition Fracture Toughness Characterization of Eurofer 97 Steel using Pre-Cracked Miniature Multi-notch Bend Bar Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A.; Linton, Kory D.

    In this report, we present the feasibility study of using pre-cracked miniature multi-notch bend bar specimens (M4CVN) with a dimension of 45mm (length) x 3.3mm (width) x 1.65mm (thickness) to characterize the transition fracture toughness of Eurofer97 based on the ASTM E1921 Master Curve method. From literature survey results, we did not find any obvious specimen size effects on the measured fracture toughness of unirradiated Eurofer97. Nonetheless, in order to exclude the specimen size effect on the measured fracture toughness of neutron irradiated Eurofer97, comparison of results obtained from larger size specimens with those from smaller size specimens after neutronmore » irradiation is necessary, which is not practical and can be formidably expensive. However, limited literature results indicate that the transition fracture toughness of Eurofer97 obtained from different specimen sizes and geometries followed the similar irradiation embrittlement trend. We then described the newly designed experimental setup to be used for testing neutron irradiated Eurofer97 pre-cracked M4CVN bend bars in the hot cell. We recently used the same setup for testing neutron irradiated F82H pre-cracked miniature multi-notch bend bars with great success. Considering the similarity in materials, specimen types, and the nature of tests between Eurofer97 and F82H, we believe the newly designed experimental setup can be used successfully in fracture toughness testing of Eurofer97 pre-cracked M4CVN specimens.« less

  15. A new approach to tracer transport analysis: From fracture systems to strongly heterogeneous porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Chin-Fu

    Many current development and utilization of groundwater resources include a study of their flow and transport properties. These properties are needed in evaluating possible changes in groundwater quality and potential transport of hazardous solutes through the groundwater system. Investigation of transport properties of fractured rocks is an active area of research. Most of the current approaches to the study of flow and transport in fractured rocks cannot be easily used for analysis of tracer transport field data. A new approach is proposed based on a detailed study of transport through a fracture of variable aperture. This is a two-dimensional stronglymore » heterogeneous permeable system. It is suggested that tracer breakthrough curves can be analyzed based on an aperture or permeability probability distribution function that characterizes the tracer flow through the fracture. The results are extended to a multi-fracture system and can be equally applied to a strongly heterogeneous porous medium. Finally, the need for multi-point or line and areal tracer injection and observation tests is indicated as a way to avoid the sensitive dependence of point measurements on local permeability variability. 30 refs., 15 figs.« less

  16. Two-dimensional distribution of microbial activity and flow patterns within naturally fractured chalk.

    PubMed

    Arnon, Shai; Ronen, Zeev; Adar, Eilon; Yakirevich, Alexander; Nativ, Ronit

    2005-10-01

    The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity. The transmissivity of the fractures was continuously reduced due to biomass accumulation in the fracture concurrent with TBP biodegradation. From multi-tracer experiments conducted prior to and following the microbial activity, it was found that biomass accumulation causes redistribution of the preferential flow channels. Zones of slow flow near the fracture inlet were clogged, thus further diverting the flow through zones of fast flow, which were also partially clogged. Quantitative evaluation of biodegradation and bacterial counts supported the results of the multi-tracer tests, indicating that most of the bacterial activity occurs close to the inlet. The changing flow patterns, which control the nutrient supply, resulted in variations in the concentrations of the chemical constituents (TBP, bromide and oxygen), used as indicators of biodegradation.

  17. Patterns Associated with Adult Mandibular Fractures in Southern Taiwan—A Cross-Sectional Retrospective Study

    PubMed Central

    Lin, Ko-Chien; Peng, Shu-Hui; Kuo, Pao-Jen; Chen, Yi-Chun; Rau, Cheng-Shyuan; Hsieh, Ching-Hua

    2017-01-01

    Purpose: This study aimed to determine the patterns associated with adult mandibular fractures from a Level-I trauma center in southern Taiwan. Methods: The data of adult trauma patients admitted between 1 January 2009 and 31 December 2014 were retrieved from the Trauma Registry System and retrospectively reviewed. Fracture site and cause of injury were categorized into groups for comparison, and corresponding odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by multivariate logistic regression. Results: Motorcycle accidents were the most common cause of mandibular fractures (76.3%), followed by falls (10.9%), motor vehicle accidents (4.8%), and being struck by/against objects (4.5%). Of the 503 cases of mandibular fractures, the condylar neck and head were the most common sites (32.0%), followed by the parasymphysis (21.7%), symphysis (19.5%), angle and ramus (17.5%), and body (9.3%). The location of mandibular fractures in patients who had motorcycle accidents was similar to that in all patients. Motor vehicle accidents resulted in a significantly higher number of body fractures (OR 3.3, 95% CI 1.24–8.76, p = 0.017) and struck injury in a significantly higher number of angle and ramus fractures (OR 3.9, 95% CI 1.48–10.26, p = 0.006) compared to motorcycle accidents. The helmet-wearing status and body weight were not associated with the location of mandibular fractures in motorcycle accidents. Conclusions: Our study revealed that the anatomic fracture sites of mandible were specifically related to different etiologies. In southern Taiwan, motorcycle accidents accounted for the major cause of mandibular fractures and were associated with the condylar neck and head as the most frequent fracture sites. In contrast, motor vehicle accidents and struck injuries tended to cause more body fracture as well as angle and ramus fracture compared to motorcycle accidents. Furthermore, the status of helmet-wearing and body weight were not associated with the location of mandible fractures caused by motorcycle accidents. PMID:28737727

  18. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing.

    PubMed

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Tom; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBN(Δ5-6) truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  19. The Ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing

    PubMed Central

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla; Diekwisch, Thomas G.H.; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBNΔ5-6 truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. PMID:26899203

  20. [Diagnosis of the scaphoid bone : Fractures, nonunion, circulation, perfusion].

    PubMed

    Kahl, T; Razny, F K; Benter, J P; Mutig, K; Hegenscheid, K; Mutze, S; Eisenschenk, A

    2016-11-01

    The clinical relevance of scaphoid bone fractures is reflected by their high incidence, accounting for approximately 60 % among carpal fractures and for 2-3 % of all fractures. With adequate therapy most scaphoid bone fractures heal completely without complications. Insufficient immobilization or undiagnosed fractures increase the risk of nonunion and the development of pseudarthrosis.X-ray examination enables initial diagnosis of scaphoid fracture in 70-80 % of cases. Positive clinical symptoms by negative x‑ray results require further diagnostics by multi-slice spiral CT (MSCT) or MRI to exclude or confirm a fracture. In addition to the diagnosis and description of fractures MSCT is helpful for determining the stage of nonunion. Contrast enhanced MRI is the best method to assess the vitality of scaphoid fragments.

  1. Borehole geophysical investigation of a formerly used defense site, Machiasport, Maine, 2003-2006

    USGS Publications Warehouse

    Johnson, Carole D.; Mondazzi, Remo A.; Joesten, Peter K.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole geophysical logs in 18 boreholes and interpreted the data along with logs from 19 additional boreholes as part of an ongoing, collaborative investigation at three environmental restoration sites in Machiasport, Maine. These sites, located on hilltops overlooking the seacoast, formerly were used for military defense. At each of the sites, chlorinated solvents, used as part of defense-site operations, have contaminated the fractured-rock aquifer. Borehole geophysical techniques and hydraulic methods were used to characterize bedrock lithology, fractures, and hydraulic properties. In addition, each geophysical method was evaluated for effectiveness for site characterization and for potential application for further aquifer characterization and (or) evaluation of remediation efforts. Results of borehole geophysical logging indicate the subsurface is highly fractured, metavolcanic, intrusive, metasedimentary bedrock. Selected geophysical logs were cross-plotted to assess correlations between rock properties. These plots included combinations of gamma, acoustic reflectivity, electromagnetic induction conductivity, normal resistivity, and single-point resistance. The combined use of acoustic televiewer (ATV) imaging and natural gamma logs proved to be effective for delineating rock types. Each of the rock units in the study area could be mapped in the boreholes, on the basis of the gamma and ATV reflectivity signatures. The gamma and mean ATV reflectivity data were used along with the other geophysical logs for an integrated interpretation, yielding a determination of quartz monzonite, rhyolite, metasedimentary units, or diabase/gabbro rock types. The interpretation of rock types on the basis of the geophysical logs compared well to drilling logs and geologic mapping. These results may be helpful for refining the geologic framework at depth. A stereoplot of all fractures intersecting the boreholes indicates numerous fractures, a high proportion of steeply dipping fractures, and considerable variation in fracture orientation. Low-dip-angle fractures associated with unloading and exfoliation are also present, especially at a depth of less than 100 feet below the top of casing. These sub-horizontal fractures help to connect the steeply dipping fractures, making this a highly connected fracture network. The high variability in the fracture orientations also increases the connectivity of the fracture network. A preliminary comparison of all fracture data from all the boreholes suggests fracturing decreases with depth. Because all the boreholes were not drilled to the same depth, however, there is a clear sampling bias. Hence, the deepest boreholes are analyzed separately for fracture density. For the deepest boreholes in the study, the intensity of fracturing does not decline significantly with depth. It is possible the fractures observed in these boreholes become progressively tighter or closed with depth, but this is difficult to verify with the borehole methods used in this investigation. The fact that there are more sealed fractures at depth (observed in optical televiewer logs in some of the boreholes) may indicate less opening of the sealed fractures, less water moving through the rock, and less weathering of the fracture infilling minerals. Although the fracture orientation remained fairly constant with depth, differences in the fracture patterns for the three restoration sites indicate the orientation of fractures varies across the study area. The fractures in boreholes on Miller Mountain predominantly strike northwest-southeast, and to a lesser degree they strike northeast. The fractures on or near the summit of Howard Mountain strike predominantly east-west and dip north and south, and the fractures near the Transmitter Site strike northeast-southwest and dip northwest and southeast. The fracture populations for the boreholes on or near the summit of Howard Mountain show more variation than at the other two sites. This variation may be related to the proximity of the fault, which is northeast of the summit of Howard Mountain. In a side-by-side comparison of stereoplots from selected boreholes, there was no clear correspondence between fracture orientation and proximity to the fault. There is, however, a difference in the total populations of fractures for the boreholes on or near the summit of Howard Mountain and the boreholes near the Transmitter Site. Further to the southwest and further away from the fault, the fractures at the Transmitter Site predominantly strike northeast-southwest and northwest-southeast.Heat-pulse flowmeter (HPFM) logging was used to identify transmissive fractures and to estimate the hydraulic properties along the boreholes. Ambient downflow was measured in 13 boreholes and ambient upflow was measured in 9 boreholes. In nine other bedrock boreholes, the HPFM did not detect measurable vertical flow. The observed direction of vertical flow in the boreholes generally was consistent with the conceptual flow model of downward movement in recharge locations and upward flow in discharge locations or at breaks in the slope of land surface. Under low-rate pumping or injection rates [0.25 to 1 gallon per minute (gal/min)], one to three inflow zones were identified in each borehole. Two limitations of HPFM methods are (1) the HPFM can only identify zones within 1.5 to 2 orders of magnitude of the most transmissive zone in each borehole, and (2) the HPFM cannot detect flow rates less than 0.010 + or - 0.005 gal/min, which corresponds to a transmissivity of about 1 foot squared per day (ft2/d). Consequently, the HPFM is considered an effective tool for identifying the most transmissive fractures in a borehole, down to its detection level. Transmissivities below that cut-off must be measured with another method, such as packer testing or fluid-replacement logging. Where sufficient water-level and flowmeter data were available, HPFM results were numerically modeled. For each borehole model, the fracture location and measured flow rates were specified, and the head and transmissivity of each fracture zone were adjusted until a model fit was achieved with the interpreted ambient and stressed flow profiles. The transmissivities calculated by this method are similar to the results of an open-hole slug test; with the added information from the flowmeter, however, the head and transmissivity of discrete zones also can be determined. The discrete-interval transmissivities ranged from 0.16 to 330 ft2/d. The flowmeter-derived open-hole transmissivity, which is the combined total of each of the transmissive zones, ranged from 1 to 511 ft2/d. The whole-well open-hole transmissivity values determined with HPFM methods were compared to the results of open-hole hydraulic tests. Despite the fact that the flowmeter-derived transmissivities consistently were lower than the estimates derived from open-hole hydraulic tests alone, the correlation was very strong (with a coefficient of determination, R2, of 0.9866), indicating the HPFM method provides a reasonable estimate of transmissivities for the most transmissive fractures in the borehole. Geologic framework, fracture characterization, and estimates of hydraulic properties were interpreted together to characterize the fracture network. The data and interpretation presented in this report should provide information useful for site investigators as the conceptual site groundwater flow model is refined. Collectively, the results and the conceptual site model are important for evaluating remediation options and planning or implementing the design of a well field and borehole completions that will be adequate for monitoring flow, remediation efforts, groundwater levels, and (or) water quality. Similar kinds of borehole geophysical logging (specifically the borehole imaging, gamma, fluid logs, and HPFM) should be conducted in any newly installed boreholes and integrated with interpretations of any nearby boreholes. If boreholes are installed close to existing or other new boreholes, cross-hole flowmeter surveys may be appropriate and may help characterize the aquifer properties and connections between the boreholes.

  2. Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2012-09-01

    The site investigations at Yucca Mountain, Nevada, have provided us with an outstanding data set, one that has significantly advanced our knowledge of multiphysics processes in partially saturated fractured geological media. Such advancement was made possible, foremost, by substantial investments in multiyear field experiments that enabled the study of thermally driven multiphysics and testing of numerical models at a large spatial scale. The development of coupled-process models within the project have resulted in a number of new, advanced multiphysics numerical models that are today applied over a wide range of geoscientific research and geoengineering applications. Using such models, the potential impact of thermal-hydrological-mechanical (THM) multiphysics processes over the long-term (e.g., 10,000 years) could be predicted and bounded with some degree of confidence. The fact that the rock mass at Yucca Mountain is intensively fractured enabled continuum models to be used, although discontinuum models were also applied and are better suited for analyzing some issues, especially those related to predictions of rockfall within open excavations. The work showed that in situ tests (rather than small-scale laboratory experiments alone) are essential for determining appropriate input parameters for multiphysics models of fractured rocks, especially related to parameters defining how permeability might evolve under changing stress and temperature. A significant laboratory test program at Yucca Mountain also made important contributions to the field of rock mechanics, showing a unique relation between porosity and mechanical properties, a time dependency of strength that is significant for long-term excavation stability, a decreasing rock strength with sample size using very large core experiments, and a strong temperature dependency of the thermal expansion coefficient for temperatures up to 200°C. The analysis of in situ heater experiments showed that fracture closure/opening caused by changes in normal stress across fractures was the dominant mechanism for thermally induced changes in intrinsic fracture permeability during rock mass heating/cooling and that fracture shear dilation appears to be less significant. Significant effort was devoted to predicting the long-term stability of underground excavations under (mechanical) strength degradation and seismic loading, perhaps one of the most challenging tasks within the project. We note that such long-term strength degradation is actually an example of a chemically mediated process governed by underlying (microscopic) stress corrosion and chemical diffusion processes. In the Yucca Mountain Project, such chemically mediated mechanical changes were considered implicitly through model calibrations against laboratory and in situ heater experiments at temperatures anticipated to be experienced by the rock. A possible future research direction would be to simulate such processes mechanistically in a complete coupled THMC framework where C denotes chemical processes.

  3. Epidemiology and patterns of facial fractures due to road traffic accidents in Taiwan: A 15-year retrospective study.

    PubMed

    Yang, Cheng-San; Chen, Solomon Chih-Cheng; Yang, Yung-Cheng; Huang, Li-Chung; Guo, How-Ran; Yang, Hsin-Yi

    2017-10-03

    The facial region is a commonly fractured site, but the etiology varies widely by country and geographic region. To date, there are no population-based studies of facial fractures in Taiwan. We conducted a retrospective study of patients diagnosed with facial fracture and registered in the National Health Insurance Research Database of Taiwan between 1997 and 2011. The epidemiological characteristics of this cohort were analyzed, including the etiology, fracture site, associated injuries, and sex and age distributions. A total of 6,013 cases were identified that involved facial fractures. Most patients were male (69.8%), aged 18-29 years (35.8%), and had fractures caused by road traffic accidents (RTAs; 55.2%), particularly motorcycle accidents (31.5%). Falls increased in frequency with advancing age, reaching 23.9% among the elderly (age > 65 years). The most common sites of involvement were the malar and maxillary bones (54.0%), but nasal bone fractures were more common among those younger than 18 years. Most facial injuries in Taiwan occur in young males and typically result from RTAs, particularly involving motorcycles. However, with increasing age, there is an increase in the proportion of facial injuries due to falls.

  4. Advantages of active love wave techniques in geophysical characterizations of seismographic station - Case studies in California and the central and eastern United States

    USGS Publications Warehouse

    Martin, Antony; Yong, Alan K.; Salomone, Larry A.

    2014-01-01

    Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.

  5. Observation of ground deformation associated with hydraulic fracturing and seismicity in the Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kubanek, J.; Liu, Y.; Harrington, R. M.; Samsonov, S.

    2017-12-01

    In North America, the number of induced earthquakes related to fluid injection due to the unconventional recovery of oil and gas resources has increased significantly within the last five years. Recent studies demonstrate that InSAR is an effective tool to study surface deformation due to large-scale wastewater injection, and highlight the value of surface deformation monitoring with respect to understanding evolution of pore pressure and stress at depth - vital parameters to forecast fault reactivation, and thus, induced earthquakes. In contrast to earthquakes related to the injection of large amounts of wastewater, seismic activity related to the hydraulic fracturing procedure itself was, until recently, considered to play a minor role without significant hazard. In the Western Canadian Sedimentary Basin (WCSB), however, Mw>4 earthquakes have recently led to temporary shutdown of industrial injection activity, causing multi-million dollar losses to operators and raising safety concerns with the local population. Recent studies successfully utilize seismic data and modeling to link seismic activity with hydraulic fracturing in the WCSB. Although the study of surface deformation is likely the most promising tool for monitoring integrity of a well and to derive potential signatures prior to moderate or large induced events, InSAR has, to date, not been utilized to detect surface deformation related to hydraulic fracturing and seismicity. We therefore plan to analyze time-series of SAR data acquired between 1991 to present over two target sites in the WCSB that will enable the study of long- and short-term deformation. Since the conditions for InSAR are expected to be challenging due to spatial and temporal decorrelation, we have designed corner reflectors that will be installed at one target site to improve interferometric performance. The corner reflectors will be collocated with broadband seismometers and Trimble SeismoGeodetic Systems that simultaneously measure GNSS positioning and acceleration. We expect the joint data analysis of dense seismic and geodetic observations to give new insights about the correlation between surface deformation, fluid injection, and induced seismicity that can be used to assess the hazard potential of hydraulic fracturing in the WCSB.

  6. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  7. Root bark of Sambucus Williamsii Hance promotes rat femoral fracture healing by the BMP-2/Runx2 signaling pathway.

    PubMed

    Yang, Bingyou; Lin, Xiaoying; Tan, Jinyan; She, Xian; Liu, Yan; Kuang, Haixue

    2016-09-15

    Sambucus Williamsii Hance (SWH) is a plant from a family of Caprifoliaceae, which has a long medical history of use as an effective folk treatment for fracture bruises. To evaluate the effects of 50% ethanol extracts of root-bark of Sambucus Williamsii Hance(EE-rbSWH) on fracture healing of rats and explore its mechanism of actions related to the BMP-2 signaling pathway. EE-rbSWH was orally administered at the doses of 340 and 680mg/kg to adult Sprague-Dawley rats with operation of open femur fracture completely for 2, 4 and 8 weeks. And the rats of sham operation and Model groups were administered Vehicle (distilled water 0.8mL/200g/day). Firstly, the bone X-ray morphology and bone mineral density(BMD) of the fracture site were observed and measured after anesthesia the rats at weeks 2, 4, and 8 after surgery, then the serum levels of alkaline phosphatase(ALP) and osteocalcin (BGP) were measured; Secondly, the tissue morphology of the fracture site was observed after sacrificed the rats; Thirdly, the formation of mineralized nodules in bone marrow stromal cells(BMSC) were evaluated at week 2; Lastly, the genes levels of BMP-2 and Runx2 in the femur were detected at week 2 and 4, and the proteins expression of BMP-2 signaling pathway (BMP-2, BMPRIB, BMPRII and Runx2) in the femur also were detected at week 2. EE-rbSWH remarkably accelerated fracture healing by promoting bone formation at all the time points of fracture healing. Mainly by increasing the BMD level at the fracture site, the levels of serum ALP and BGP, and also the numbers increasing of calcified nodules in BMSC. The mechanism studies, EE-rbSWH can promote fracture healing by enhancing the expressions of BMP-2 and Runx2 mRNA, and also the proteins of BMP-2, BMPRIB, BMPRII and Runx2 at the fracture site of rats. Our results suggested that 50% ethanol extracts of root-bark of Sambucus Williamsii Hance can accelerate fracture healing by recruitment of osteoblasts at the fracture site and through up-regulation of the BMP-2 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  9. Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia.

    PubMed

    Seeman, Ego; Devogelaer, Jean-Pierre; Lorenc, Roman; Spector, Timothy; Brixen, Kim; Balogh, Adam; Stucki, Gerold; Reginster, Jean-Yves

    2008-03-01

    Many fractures occur in women with moderate fracture risk caused by osteopenia. Strontium ranelate was studied in 1431 postmenopausal women with osteopenia. Vertebral fracture risk reduction of 41-59% was shown depending on the site and fracture status at baseline. This is the first report of antivertebral fracture efficacy in women with vertebral osteopenia. Women with osteoporosis are at high risk for fracture. However, more than one half of all fractures in the community originate from the larger population at more moderate risk of fracture caused by osteopenia. Despite this, evidence for antifracture efficacy in these persons is limited. The aim of this study was to determine whether strontium ranelate, a new drug that reduces fracture risk in women with osteoporosis, is also effective in women with osteopenia. Data from the Spinal Osteoporosis Therapeutic Intervention study (SOTI; n = 1649) and the TReatment Of Peripheral OSteoporosis (TROPOS; n = 5091) were pooled to evaluate the antivertebral fracture efficacy of strontium ranelate in women with lumbar spine (LS) osteopenia with any BMD value at the femoral neck (FN; N = 1166) and in 265 women with osteopenia at both sites (intention-to-treat analysis). The women were randomized to strontium ranelate 2 g/d orally or placebo for 3 yr. No group differences were present in baseline characteristics that may influence fracture outcome independent of therapy. In women with LS osteopenia, treatment reduced the risk of vertebral fracture by 41% (RR = 0.59; 95% CI, 0.43-0.82), by 59% (RR = 0.41; 95% CI, 0.17-0.99) in the 447 patients with no prevalent fractures, and by 38% (RR = 0.62; 95% CI, 0.44-0.88) in the 719 patients with prevalent fractures. In women with osteopenia at both sites, treatment reduced the risk of fracture by 52% (RR = 0.48; 95% CI, 0.24-0.96). Strontium ranelate safely reduces the risk of vertebral fractures in women with osteopenia with or without a prevalent fracture.

  10. Lessons Learned for Collaborative Clinical Content Development

    PubMed Central

    Collins, S.A.; Bavuso, K.; Zuccotti, G.; Rocha, R.A.

    2013-01-01

    Background Site-specific content configuration of vendor-based Electronic Health Records (EHRs) is a vital step in the development of standardized and interoperable content that can be used for clinical decision-support, reporting, care coordination, and information exchange. The multi-site, multi-stakeholder Acute Care Documentation (ACD) project at Partners Healthcare Systems (PHS) aimed to develop highly structured clinical content with adequate breadth and depth to meet the needs of all types of acute care clinicians at two academic medical centers. The Knowledge Management (KM) team at PHS led the informatics and knowledge management effort for the project. Objectives We aimed to evaluate the role, governance, and project management processes and resources for the KM team’s effort as part of the standardized clinical content creation. Methods We employed the Center for Disease Control’s six step Program Evaluation Framework to guide our evaluation steps. We administered a forty-four question, open-ended, semi-structured voluntary survey to gather focused, credible evidence from members of the KM team. Qualitative open-coding was performed to identify themes for lessons learned and concluding recommendations. Results Six surveys were completed. Qualitative data analysis informed five lessons learned and thirty specific recommendations associated with the lessons learned. The five lessons learned are: 1) Assess and meet knowledge needs and set expectations at the start of the project; 2) Define an accountable decision-making process; 3) Increase team meeting moderation skills; 4) Ensure adequate resources and competency training with online asynchronous collaboration tools; 5) Develop focused, goal-oriented teams and supportive, consultative service based teams. Conclusions Knowledge management requirements for the development of standardized clinical content within a vendor-based EHR among multi-stakeholder teams and sites include: 1) assessing and meeting informatics knowledge needs, 2) setting expectations and standardizing the process for decision-making, and 3) ensuring the availability of adequate resources and competency training. PMID:23874366

  11. Brief Overlook on the Occupational Accidents Occurring During the Geotechnical Site Works

    NASA Astrophysics Data System (ADS)

    Akboğa Kale, Özge; Eskişar, Tuğba

    2017-10-01

    The aim of this paper is to evaluate occupational accidents reported in geotechnical site works. Variables of the accidents are categorized as the year and month of accidents, the technical codes used for defining the scope of work trades, end use and project type and cost, nature and cause of accidents, occupation of the victims and finally the cause of fatality. As a result, it is seen that the majority of victims were construction laborers or in special trade constructors who were working on a new project or new additions to an existing project. The geotechnical phase of the projects was whether excavation, landfill, sewer-water treatment, pipeline construction, commercial building or road construction. As the outcomes of the study it is evaluated that excavation, trenching and installing pipe or pile driving were the main causes of the accidents while trench collapse, struck by a falling object / projectile and wall collapse were the main causes of fatality. Moreover, it is established that more than half of the fatalities were due to asphyxia followed by fracture. These findings show that accidents occurred in geotechnical works do not only have high frequency but also high severity. This study emphasizes project specific countermeasures should be taken regarding the nature, cost and importance of the project and the occupation variabilities working on the project.

  12. CCS Site Optimization by Applying a Multi-objective Evolutionary Algorithm to Semi-Analytical Leakage Models

    NASA Astrophysics Data System (ADS)

    Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.

    2011-12-01

    Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass of CO2 sequestered. This heuristic optimization method is chosen because of its robustness in optimizing large-scale, highly non-linear problems. Trade-off curves are developed for multiple fictional sites with the intent of clarifying how variations in domain characteristics (aquifer thickness, aquifer and weak cap rock permeability, the number of weak cap rock areas, and the number of aquifer-cap rock layers) affect Pareto-optimal fronts. Computational benefits of using semi-analytical leakage models are explored and discussed. [1] Birkholzer, J. (2008) "Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater" Berkeley (CA): Lawrence Berkeley National Laboratory (US); 2008 Oct. 473 p. Report No.: 510-486-7134. [2] Celia, M.A. and Nordbotten, J.M. (2011) "Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells" International Journal of Greenhouse Gas Control, 5 (2011), 257-269. [3] Nordbotten, J.M. and Celia, M.A. (2009) "Model for CO2 leakage including multiple geological layers and multiple leaky wells" Environ. Sci. Technol., 43, 743-749.

  13. Geophysical logging data from the Mills Gap Road area near Asheville, North Carolina

    USGS Publications Warehouse

    Chapman, Melinda J.; Huffman, Brad A.

    2011-01-01

    In September 2009, the U.S. Geological Survey (USGS) was requested to assist the Environmental Protection Agency (EPA) Region 4 Superfund Section in the development of a conceptual groundwater flow model in the area of the Mills Gap Road contaminant investigation near Asheville, North Carolina (Site ID A4P5) through an Interagency Grant and work authorization IAD DW number 14946085. The USGS approach included the application of established and state-of-the-science borehole geophysical tools and methods used to delineate and characterize fracture zones in the regolith-fractured bedrock groundwater system. Borehole geophysical logs were collected in eight wells in the Mills Gap Road project area from January through June 2010. These subsurface data were compared to local surface geologic mapping data collected by the North Carolina Geological Survey (NCGS) from January through May 2010.

  14. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.« less

  15. Patterns of Maxillofacial Fractures in Uttar Pradesh, India

    PubMed Central

    Agarwal, Padmanidhi; Mehrotra, Divya; Agarwal, Rajul; Kumar, Sumit; Pandey, Rahul

    2016-01-01

    This study aimed to obtain dependable epidemiologic data of the variation in cause and characteristics of maxillofacial fractures by identifying, describing, and quantifying trauma. This retrospective study was conducted in the state of Uttar Pradesh, India, over 1 year, based on a systematic computer-assisted database search from March 2015 to March 2016 for maxillofacial fractures. The demographics, etiology, geographic distribution, date of injury, site and number of fractures, and type of intervention were recorded for each. The study population consisted of 1,000 patients with 1,543 fractures. The male:female ratio was 8:1. A peak incidence of fractures was seen in the third decade (mean age: 30.3) with maximum patients younger than 40 years (80.8%). The incidence of fractures was highest in spring (42.9%). Road traffic accidents were the most common cause of trauma (64.4%) and mainly involved two wheelers (60.2%). Single-site fractures were most common. Mostly zygomatic (45.1%) and mandibular fractures (44.4%) were encountered, accounting for approximately 90% of all fractures. The main site of mandibular fractures was the body (34.4%); 46.2% of fractures underwent open reduction and internal fixation (ORIF) while 53.8% were treated by closed methods. The study provides important data to contrive future plans for injury prevention. The trend of most traffic-related injuries continues with the increasing traffic on roads. Zygomatic complex and mandibular fractures remain the most frequent. The major populations at risk are young men and those driving two wheelers. The use of helmets could achieve a large reduction in maxillofacial fractures. Awareness for preventive measures and safety guidelines should be propagated and legislation on traffic rules strictly reinforced. PMID:28210408

  16. Investigating the age distribution of fracture discharge using multiple environmental tracers, Bedrichov Tunnel, Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, W. Payton; Hokr, Milan; Shao, Hua

    We investigated the transit time distribution (TTD) of discharge collected from fractures in the Bedrichov Tunnel, Czech Republic, using lumped parameter models and multiple environmental tracers. We then utilize time series of δ 18O, δ 2H and 3H along with CFC measurements from individual fractures in the Bedrichov Tunnel of the Czech Republic to investigate the TTD, and the uncertainty in estimated mean travel time in several fracture networks of varying length and discharge. We also compare several TTDs, including the dispersion distribution, the exponential distribution, and a developed TTD which includes the effects of matrix diffusion. The effect ofmore » seasonal recharge is explored by comparing several seasonal weighting functions to derive the historical recharge concentration. We identify best fit mean ages for each TTD by minimizing the error-weighted, multi-tracer χ2 residual for each seasonal weighting function. We use this methodology to test the ability of each TTD and seasonal input function to fit the observed tracer concentrations, and the effect of choosing different TTD and seasonal recharge functions on the mean age estimation. We find that the estimated mean transit time is a function of both the assumed TTD and seasonal weighting function. Best fits as measured by the χ2 value were achieved for the dispersion model using the seasonal input function developed here for two of the three modeled sites, while at the third site, equally good fits were achieved with the exponential model and the dispersion model and our seasonal input function. The average mean transit time for all TTDs and seasonal input functions converged to similar values at each location. The sensitivity of the estimated mean transit time to the seasonal weighting function was equal to that of the TTD. These results indicated that understanding seasonality of recharge is at least as important as the uncertainty in the flow path distribution in fracture networks and that unique identification of the TTD and mean transit time is difficult given the uncertainty in the recharge function. But, the mean transit time appears to be relatively robust to the structural model uncertainty. The results presented here should be applicable to other studies using environmental tracers to constrain flow and transport properties in fractured rock systems.« less

  17. Investigating the age distribution of fracture discharge using multiple environmental tracers, Bedrichov Tunnel, Czech Republic

    DOE PAGES

    Gardner, W. Payton; Hokr, Milan; Shao, Hua; ...

    2016-10-19

    We investigated the transit time distribution (TTD) of discharge collected from fractures in the Bedrichov Tunnel, Czech Republic, using lumped parameter models and multiple environmental tracers. We then utilize time series of δ 18O, δ 2H and 3H along with CFC measurements from individual fractures in the Bedrichov Tunnel of the Czech Republic to investigate the TTD, and the uncertainty in estimated mean travel time in several fracture networks of varying length and discharge. We also compare several TTDs, including the dispersion distribution, the exponential distribution, and a developed TTD which includes the effects of matrix diffusion. The effect ofmore » seasonal recharge is explored by comparing several seasonal weighting functions to derive the historical recharge concentration. We identify best fit mean ages for each TTD by minimizing the error-weighted, multi-tracer χ2 residual for each seasonal weighting function. We use this methodology to test the ability of each TTD and seasonal input function to fit the observed tracer concentrations, and the effect of choosing different TTD and seasonal recharge functions on the mean age estimation. We find that the estimated mean transit time is a function of both the assumed TTD and seasonal weighting function. Best fits as measured by the χ2 value were achieved for the dispersion model using the seasonal input function developed here for two of the three modeled sites, while at the third site, equally good fits were achieved with the exponential model and the dispersion model and our seasonal input function. The average mean transit time for all TTDs and seasonal input functions converged to similar values at each location. The sensitivity of the estimated mean transit time to the seasonal weighting function was equal to that of the TTD. These results indicated that understanding seasonality of recharge is at least as important as the uncertainty in the flow path distribution in fracture networks and that unique identification of the TTD and mean transit time is difficult given the uncertainty in the recharge function. But, the mean transit time appears to be relatively robust to the structural model uncertainty. The results presented here should be applicable to other studies using environmental tracers to constrain flow and transport properties in fractured rock systems.« less

  18. The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago.

    PubMed

    Politis, Gustavo G; Gutiérrez, María A; Rafuse, Daniel J; Blasi, Adriana

    The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P.) and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.). Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM) in the North America.

  19. Real-time 4D electrical resistivity imaging of tracer transport within an energically stimulated fracture zone

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.

    2016-12-01

    Hydraulic fracture stimulation is used extensively in the subsurface energy sector to improve access between energy bearing formations and production boreholes. However, large uncertainties exist concerning the location and extent of stimulated fractures, and concerning the behavior of flow within those fractures. This uncertainty often results in significant risks, including induced seismicity and contamination of potable groundwater aquifers. Time-lapse electrical resistivity tomography (ERT) is a proven method of imaging fluid flow within fracture networks, by imaging the change in bulk conductivity induced by the presence of an electrically anomalous tracer within the fracture. In this work we demonstrate characterization and flow monitoring of a stimulated fracture using real-time four-dimensional ERT imaging within an unsaturated rhyolite formation. After stimulation, a conductive tracer was injected into the fracture zone. ERT survey data were continuously and autonomously collected, pre-processed on site, submitted to an off-site high performance computing system for inversion, and returned to the field for inspection. Surveys were collected at approximately 12 minute intervals. Data transmission and inversion required approximately 2 minutes per survey. The time-lapse imaging results show the dominant flow-paths within the stimulated fracture zone, thereby revealing the location and extent of the fracture, and the behavior of tracer flow within the fracture. Ultimately real-time imaging will enable site operators to better understand stimulation operations, and control post-stimulation reservoir operations for optimal performance and environmental protection.

  20. A Randomised Multi-centre Study to Compare the Long-term Performance of the Future Hip to 3 Other Implants in Primary Total Hip Replacement

    ClinicalTrials.gov

    2016-10-06

    Osteoarthritis; Post-traumatic Arthritis; Collagen Disorders; Avascular Necrosis; Traumatic Femoral Fractures; Nonunion of Femoral Fractures; Congenital Hip Dysplasia; Slipped Capital Femoral Epiphysis; Perthes Disease

  1. A Multi-centre Study to Assess the Long-term Performance of the Pinnacle™ Cup With a Polyethylene-on-metal Bearing in Primary Total Hip Replacement

    ClinicalTrials.gov

    2017-06-27

    Rheumatoid Arthritis; Osteoarthritis; Post-traumatic Arthritis; Collagen Disorders; Avascular Necrosis; Traumatic Femoral Fractures; Nonunion of Femoral Fractures; Congenital Hip Dysplasia; Slipped Capital Femoral Epiphysis

  2. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  3. [Topographological-anatomic changes in the structure of temporo-mandibular joint in case of fracture of the mandible condylar process at cervical level].

    PubMed

    Volkov, S I; Bazhenov, D V; Semkin, V A

    2011-01-01

    Pathological changes in soft tissues surrounding the fracture site as well as in the structural elements of temporo-mandibular joint always occured in condylar process fracture with shift at cervical mandibular jaw level. Other changes were also seen in the joint on the opposite normal side. Modelling of condylar process fracture at mandibular cervical level by means of three-dimensional computer model of temporo-mandibular joint contributed to proper understanding of this pathology emergence as well as to prediction and elimination of disorders arising in adjacent to the fracture site tissues.

  4. Final Scientific/Technical Report for project “Geomechanical Monitoring for CO 2 Hub Storage: Production and Injection at Kevin Dome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, Thomas M.; Vasco, Don; Ajo-Franklin, Jonathan

    After learning that the TDS value in the target injection formation at the Kevin Dome site is too low to qualify for an EPA Class VI CO2 injection permit, the BSCSP project was re-scoped such that injection of CO2 is no longer planned. With no injection planned, the Geomechanics project was closed. In this final report, we describe the objective and approach of the project as proposed, and the limited results obtained before stopping work. The objective of the proposed research was the development & validation of an integrated monitoring approach for quantifying the interactions between large-scale geological carbon storagemore » (GCS) and subsurface geomechanical state, particularly perturbations relevant to reservoir integrity such as fault reactivation and induced fracturing. In the short period of work before knowing the fate of the Kevin Dome project, we (1) researched designs for both the proposed InSAR corner reflectors as well as the near-surface 3C seismic stations; (2) developed preliminary elastic geomechanical models; (3) developed a second generation deformation prediction for the BSCSP Kevin Dome injection site; and (4) completed a preliminary map of InSAR monuments and shallow MEQ wells in the vicinity of the BSCSP injection pad.« less

  5. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    NASA Astrophysics Data System (ADS)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow channeling than conservative solute transport. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal systems may be controlled by fracture geometry. This highlights the interest of thermal tracer tests as a complement to solute tracers tests to infer fracture aperture and geometry.

  6. A case report of phosphaturic mesenchymal tumor-induced osteomalacia.

    PubMed

    Wu, Weiqian; Wang, Chongyang; Ruan, Jianwei; Chen, Feng; Li, Ningjun; Chen, Fanghu

    2017-12-01

    Tumor-induced osteomalacia (TIO) is a rare and often misdiagnosed syndrome. Surgical resection is currently the first line treatment for TIO. Here we report the case of a 49-year-old woman presented with intermittent pain in the right chest and bilateral hip that had persisted for over two years. She was diagnosed of TIO caused by a phosphaturic mesenchymal tumor based on the following examinations. Laboratory tests revealed high serum alkaline phosphatase, high urinary phosphorus, hypophosphatemia and normal serum calcium levels. 18-FDG PET/CT indicated a systemic multi-site symmetrical pseudo fracture and a tumor in the 7th right rib. Curettage of the tumor was performed, and pathological analysis also confirmed our diagnoses as a phosphaturic mesenchymal tumor. At seven months post-surgery, the symptoms were relieved, proximal muscle strength was improved and serum levels of phosphorus and alkaline phosphatase normalized. The bilateral femoral neck and bilateral pubic bone fractures were blurred in the pelvic plain X-ray, suggesting that the fracture was healing. This case report strengthened the importance of recognition of this rare disease to avoid delay of diagnosis and surgical removal of the causative tumor is recommended. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  7. Nationwide cohort study of hip fractures: time trends in the incidence rates and projections up to 2035.

    PubMed

    Chen, I-J; Chiang, C-Y F; Li, Y-H; Chang, C-H; Hu, C-C; Chen, D W; Chang, Y; Yang, W-E; Shih, H-N; Ueng, S W-N; Hsieh, P-H

    2015-02-01

    A growing elderly population is expected worldwide, and the burden of hip fractures on health care system will continue to increase. By 2035, there will be a 2.7-fold increase in the number of hip fractures in Taiwan. The study provides quantitative basis for the future distribution of medical resources. Hip fractures have long been recognized as a major public health concern. The study aimed to determine time trends in the incidence of hip fractures and to forecast the number of hip fractures expected in Taiwan up to 2035. A nationwide survey was conducted using data from the Taiwan National Health Insurance Research Database from 2004 to 2011. A total of 141,397 hip fractures were identified, with a mean of 17,675 fractures/year. Annual incidences of hip fractures were calculated and tested for trends. Projections of the incidence rates of hip fractures and bed days associated with hip fractures were calculated using Poisson regression on the historical incidence rates in combination with population projections from 2012 to 2035. The incidence rates of hip fracture during 2004-2011 were 317 and 211 per 100,000 person-years among women and men, respectively. Over this 8-year period, the age-standardized incidence of hip fracture decreased by 13.4% among women and 12.2% among men. Despite the decline in the age-standardized incidence, the absolute number of hip fractures increased owing to the aging population. The number of hip fractures is expected to increase from 18,338 in 2010 to 50,421 in 2035-a 2.7-fold increase. The number of bed days for 2010 and 2035 was estimated at 161,248 and 501,995, respectively, representing a 3.1-fold increase. The socioeconomic impact of hip fractures will be high in the near future. This study provides a quantitative basis for future policy decisions to serve this need.

  8. The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo.

    PubMed

    Briggs, Andrew M; Wrigley, Tim V; van Dieën, Jaap H; Phillips, Bev; Lo, Sing Kai; Greig, Alison M; Bennell, Kim L

    2006-12-01

    The aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 +/- 6.4 years, 162.2 +/- 5.1 cm, 69.1 +/- 11.2 kg) and 19 without fractures (62.9 +/- 7.9 years, 158.3 +/- 4.4 cm, 59.3 +/- 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.

  9. [Comparison of effect between early and delayed in primary intramedullary nailing combined with locked plate fixation for the treatment of multi-segments tibial fractures of type].

    PubMed

    Gao, Wei-qiang; Hu, Jiang-hai; Gu, Zhu-chao; Zhang, Huai-xian; Min, Peng; Zhang, Lin-jun; Yu, Wen-wen; Wang, Guang-lin

    2015-02-01

    To compare the clinical results of early and delayed intramedullary nailing and locked plating for the treatment of multi-segments tibial fractures of type AO/ASIF-42C2. Between January 2010 and January 2013,45 patients with multi-segments closed tibial fractures of AO/ASIF-42C2 were treated by early primary intramedullary nailing and locked plating in 20 cases as early group and delayed in 25 cases as delayed group. In early group,20 cases included 13 males and 7 females with an average age of (37.9±14.3) years old ranging from 20 to 56 years;according to soft tissue injury Tscherne classification, 8 fractures were frade I,12 were grade II. In delayed group, 25 cases included 17 males and 8 females with an average age of (38.7±17.2) years old ranging from 24 to 55 years,4 fractures were grade I ,19 were grade II ,2 were grade III. The operative time, blood loss, hospital stay,fracture healing time and complications were recorded. At final follow-up, the Johner-Wruhs score were used to evaluate functional efficacy, and the posterior-anterior and lateral X-ray to evaluate fracture reduction and alignment. All the patients were followed up for (12.5±2.5) months in early group and (13.2±2.8) months in delayed group (P>0.05). No wounds infections were happened. At the last follow-up, the mean range of knee joint was 10°-0°-120°. According to Johner-Wruhs scoring,there were 15 cases in excellent,3 in good,fair in 2 in early group; 21 in excellent,2 in good,2 in fair. The average operative time,blood loss had no significant differences between two groups (P>0.05), but hospital stay in early group was significantly shorter than those in delayed group(P<0.05). Average fracture healing time of early group and delayed group were (5.3±2.6) months and (6.0±2.9) months, respectively (P>0.05). For multi-segments tibial fractures of type AO/ASIF-42C2 with preoperative minor soft tissue injuries lighter of Tscherne grade I or II, early primary intramedullary nailing and locked plating does not significantly increase the postoperative incidence of soft tissue complications for patients. The early and delayed primary intramedullary nailing and locked plating for treatment of AO/ASIF-42C2 proximal third tibial fractures can get similar curative effect.

  10. Garden City Vein Complex on Lower Mount Sharp, Mars

    NASA Image and Video Library

    2015-11-11

    Prominent mineral veins at the "Garden City" site examined by NASA's Curiosity Mars rover vary in thickness and brightness, as seen in this image from Curiosity's Mast Camera (Mastcam). The image covers and area roughly 2 feet (60 centimeters) across. Types of vein material evident in the area include: 1) thin, dark-toned fracture filling material; 2) thick, dark-toned vein material in large fractures; 3) light-toned vein material, which was deposited last. Figure 1 includes annotations identifying each of those three major kinds and a scale bar indicating 10 centimeters (3.9 inches). Researchers used the Mastcam and other instruments on Curiosity in March and April 2015 to study the structure and composition of mineral veins at Garden City, for information about fluids that deposited minerals in fractured rock there. Malin Space Science Systems, San Diego, built and operates Curiosity's Mastcam. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. http://photojournal.jpl.nasa.gov/catalog/PIA19922

  11. Injection of Light Material into an Older Dark Vein

    NASA Image and Video Library

    2015-11-11

    Light material emplaced within darker vein material is seen in this view of a mineral vein at the "Garden City" site on lower Mount Sharp, Mars. The Mars Hand Lens Imager (MAHLI) on the arm of NASA's Curiosity Mars Rover took the image on April 4, 2015, during the 946th Martian day, or sol, of Curiosity's work on Mars. The area shown is roughly 0.4 inch (1 centimeter) wide. Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This example shows where injection of light material into a prior dark vein suggests high fluid pressure. Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This vein's texture shows indications of crystal growth, suggesting that crystallization may have exerted a force for opening the fracture filled by the vein. Different examples are at PIA19925 and PIA19927. Mineral veins often form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. At Garden City, the veins have been more resistant to erosion than the surrounding host rock. The fluid movement through fractures at Garden City occurred later than wet environmental conditions in which the host rock formed, before it hardened and cracked. Malin Space Science Systems, San Diego, built and operates MAHLI. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19926

  12. Structure and stress state of Hawaiian island basalts penetrated by the Hawaii Scientific Drilling Project deep core hole

    USGS Publications Warehouse

    Morin, R.H.; Wilkens, R.H.

    2005-01-01

    As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.

  13. Delineation of fractures, foliation, and groundwater of the bedrock at a geothermal feasibility site on Roosevelt Island, New York County, New York

    USGS Publications Warehouse

    Stumm, Frederick; Chu, Anthony; Como, Michael D.; Noll, Michael L.; Joesten, Peter K.

    2015-01-01

    Advanced borehole-geophysical methods were used to investigate the hydrogeology of the crystalline bedrock in three boreholes on Roosevelt Island, New York County, New York. Cornell University was evaluating the feasibility of using geothermal energy for a future campus at the site. The borehole-logging techniques were used to delineate bedrock fractures, foliation, and groundwater-flow zones of the Fordham Gneiss in test boreholes at the site. Three fracture populations dominated by small (0.04 in or less) fractures were delineated in the three boreholes. A sub-horizontal population with low to moderate dipping fractures, a northeast dipping population with moderate to high angle fractures, and a small northwest dipping high angle fracture population. One large southwest dipping transmissive fracture underlies the entire study area with a mean dip azimuth of 235º southwest and a dip angle of 31º (N325ºW 31ºSW). The mean foliation dip azimuth was 296º northwest with a mean dip angle of 73º (N26ºE 73ºNW). Groundwater appears to flow through a network of fractures dominated by a large fracture underlying the site that is affected by tidal variations from the nearby East River. The total number of fractures penetrated by each borehole was 95, 63, and 68, with fracture indices of 0.26, 0.20, and 0.20 in GT-1 (NY292), GT-2 (NY293), and GT-3 (NY294), respectively. Aquifer test data indicate the specific capacity of boreholes GT-1 (NY292), GT-2 (NY293), and GT-3 (NY294) was 1.9, 1.5, and 3.7 gal/min/ft, respectively. The large contribution of flow from the leaking casing in borehole GT-3 (NY294) caused the doubling in specific capacity compared to boreholes GT-1 (NY292) and GT-2 (NY293). The transmissivities of the large fracture intersected by the three boreholes tested (GT-1, GT-2, and GT-3), calculated from aquifer-test analyses of time-drawdown data and flowmeter differencing, were 133, 124, and 65 feet squared per day (ft2/d), respectively. Gringarten analysis indicated the large fracture intersects a low transmissivity boundary or distant fracture network with an average transmissivity of 69 ft2/d, this distant hydraulic boundary averages about 200 ft away from boreholes GT-1 and GT-2. Field measurements of specific conductance of the three boreholes under ambient conditions at the site indicate an increase in conductivity toward the southwest part of the site. Specific conductance was 5, 6, and 23 millisiemens per centimeter (mS/cm) in boreholes GT-2, GT-3, and GT-1, respectively. Three borehole radar reflection logs collected at each of the boreholes indicated increased penetration with depth and the large fracture intersecting all three boreholes was imaged as far as 80 ft from the boreholes. A borehole radar attenuation tomogram from GT-1 to GT-2 indicated the large fracture intersected by the boreholes extends between the boreholes with a low angle southwest dip.

  14. PACS project management utilizing web-based tools

    NASA Astrophysics Data System (ADS)

    Patel, Sunil; Levin, Brad; Gac, Robert J., Jr.; Harding, Douglas, Jr.; Chacko, Anna K.; Radvany, Martin; Romlein, John R.

    2000-05-01

    As Picture Archiving and Communications Systems (PACS) implementations become more widespread, the management of deploying large, multi-facility PACS will become a more frequent occurrence. The tools and usability of the World Wide Web to disseminate project management information obviates time, distance, participant availability, and data format constraints, allowing for the effective collection and dissemination of PACS planning, implementation information, for a potentially limitless number of concurrent PACS sites. This paper will speak to tools, such as (1) a topic specific discussion board, (2) a 'restricted' Intranet, within a 'project' Intranet. We will also discuss project specific methods currently in use in a leading edge, regional PACS implementation concerning the sharing of project schedules, physical drawings, images of implementations, site-specific data, point of contacts lists, project milestones, and a general project overview. The individual benefits realized for the end user from each tool will also be covered. These details will be presented, balanced with a spotlight on communication as a critical component of any project management undertaking. Using today's technology, the web arguably provides the most cost and resource effective vehicle to facilitate the broad based, interactive sharing of project information.

  15. The CSAICLAWPS project: a multi-scalar, multi-data source approach to providing climate services for both modelling of climate change impacts on crop yields and development of community-level adaptive capacity for sustainable food security

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Fowler, H. J.

    2017-12-01

    The "Climate-smart agriculture implementation through community-focused pursuit of land and water productivity in South Asia" (CSAICLAWPS) project is a research initiative funded by the (UK) Royal Society through its Challenge Grants programme which is part of the broader UK Global Challenges Research Fund (GCRF). CSAICLAWPS has three objectives: a) development of "added-value" - bias assessed, statistically down-scaled - climate projections for selected case study sites across South Asia; b) investigation of crop failure modes under both present (observed) and future (projected) conditions; and c) facilitation of developing local adaptive capacity and resilience through stakeholder engagement. At AGU we will be presenting both next steps and progress to date toward these three objectives: [A] We have carried out bias assessments of a substantial multi-model RCM ensemble (MME) from the CORDEX South Asia (CORDEXdomain for case studies in three countries - Pakistan, India and Sri Lanka - and (stochastically) produced synthetic time-series for these sites from local observations using a Python-based implementation of the principles underlying the Climate Research Unit Weather Generator (CRU-WG) in order to enable probabilistic simulation of current crop yields. [B] We have characterised present response of local crop yields to climate variability in key case study sites using AquaCrop simulations parameterised based on input (agronomic practices, soil conditions, etc) from smallholder farmers. [C] We have implemented community-based hydro-climatological monitoring in several case study "revenue villages" (panchayats) in the Nainital District of Uttarakhand. The purpose of this is not only to increase availability of meteorological data, but also has the aspiration of, over time, leading to enhanced quantitative awareness of present climate variability and potential future conditions (as projected by RCMs). Next steps in our work will include: 1) future crop yield simulations driven by "perturbation" of synthetic time-series using "change factors from the CORDEX-SA MME; 2) stakeholder dialogues critically evaluating potential strategies at the grassroots (implementation) level to mitigate impacts of climate variability and change on crop yields.

  16. Diagnostic tools in maxillofacial fractures: Is there really a need of three-dimensional computed tomography?

    PubMed Central

    Shah, Sheerin; Uppal, Sanjeev K.; Mittal, Rajinder K.; Garg, Ramneesh; Saggar, Kavita; Dhawan, Rishi

    2016-01-01

    Introduction: Because of its functional and cosmetic importance, facial injuries, especially bony fractures are clinically very significant. Missed and maltreated fractures might result in malocclusion and disfigurement of the face, thus making accurate diagnosis of the fracture very essential. In earlier times, conventional radiography along with clinical examination played a major role in diagnosis of maxillofacial fractures. However, it was noted that the overlapping nature of bones and the inability to visualise soft tissue swelling and fracture displacement, especially in face, makes radiography less reliable and useful. Computed tomography (CT), also called as X-ray computed radiography, has helped in solving this problem. This clinical study is to compare three-dimensional (3D) CT reconstruction with conventional radiography in evaluating the maxillofacial fractures preoperatively and effecting the surgical management, accordingly. Materials and Methods: Fifty patients, with suspected maxillofacial fractures on clinical examination, were subjected to conventional radiography and CT face with 3D reconstruction. The number and site of fractures in zygoma, maxilla, mandible and nose, detected by both the methods, were enumerated and compared. The final bearing of these additional fractures, on the management protocol, was analysed. Results: CT proved superior to conventional radiography in diagnosing additional number of fractures in zygoma, maxilla, mandible (subcondylar) and nasal bone. Coronal and axial images were found to be significantly more diagnostic in fracture sites such as zygomaticomaxillary complex, orbital floor, arch, lateral maxillary wall and anterior maxillary wall. Conclusion: 3D images gave an inside out picture of the actual sites of fractures. It acted as mind's eye for pre-operative planning and intra-operative execution of surgery. Better surgical treatment could be given to 33% of the cases because of better diagnostic ability of CT. PMID:27833286

  17. Diagnostic tools in maxillofacial fractures: Is there really a need of three-dimensional computed tomography?

    PubMed

    Shah, Sheerin; Uppal, Sanjeev K; Mittal, Rajinder K; Garg, Ramneesh; Saggar, Kavita; Dhawan, Rishi

    2016-01-01

    Because of its functional and cosmetic importance, facial injuries, especially bony fractures are clinically very significant. Missed and maltreated fractures might result in malocclusion and disfigurement of the face, thus making accurate diagnosis of the fracture very essential. In earlier times, conventional radiography along with clinical examination played a major role in diagnosis of maxillofacial fractures. However, it was noted that the overlapping nature of bones and the inability to visualise soft tissue swelling and fracture displacement, especially in face, makes radiography less reliable and useful. Computed tomography (CT), also called as X-ray computed radiography, has helped in solving this problem. This clinical study is to compare three-dimensional (3D) CT reconstruction with conventional radiography in evaluating the maxillofacial fractures preoperatively and effecting the surgical management, accordingly. Fifty patients, with suspected maxillofacial fractures on clinical examination, were subjected to conventional radiography and CT face with 3D reconstruction. The number and site of fractures in zygoma, maxilla, mandible and nose, detected by both the methods, were enumerated and compared. The final bearing of these additional fractures, on the management protocol, was analysed. CT proved superior to conventional radiography in diagnosing additional number of fractures in zygoma, maxilla, mandible (subcondylar) and nasal bone. Coronal and axial images were found to be significantly more diagnostic in fracture sites such as zygomaticomaxillary complex, orbital floor, arch, lateral maxillary wall and anterior maxillary wall. 3D images gave an inside out picture of the actual sites of fractures. It acted as mind's eye for pre-operative planning and intra-operative execution of surgery. Better surgical treatment could be given to 33% of the cases because of better diagnostic ability of CT.

  18. Leisure time physical activity and risk of non-vertebral fracture in men and women aged 55 years and older: the Tromsø Study.

    PubMed

    Morseth, Bente; Ahmed, Luai A; Bjørnerem, Åshild; Emaus, Nina; Jacobsen, Bjarne K; Joakimsen, Ragnar; Størmer, Jan; Wilsgaard, Tom; Jørgensen, Lone

    2012-06-01

    Our aim was to examine associations between leisure time physical activity and risk of non-vertebral fractures in men and women aged ≥55 years, with focus on the anatomical fracture location. Self-reported physical activity was registered in 3,450 men and 4,072 women aged 55-97 years at baseline in the Tromsø Study, Norway, in 1994-1995. Non-vertebral fractures were registered through December 31, 2009. During 75,546 person-years at risk, 1,693 non-vertebral fractures were identified. Risk of any non-vertebral fracture decreased with increasing physical activity level in men (P (trend) = 0.006) and non-significantly in women (P (trend) = 0.15), after adjustment for age, body mass index, height, smoking, and previous fracture. The reduced fracture risk was due to a reduced risk in the weight-bearing skeleton, particular at the hip, whereas risk of fracture in the non-weight-bearing skeleton was not related to physical activity. At weight-bearing sites, an inverse relationship between physical activity and fracture risk was present in both sexes (P (trend) ≤ 0.013). Compared with sedentary subjects, the most active men and women had respectively 37% (HR = 0.63, 95% CI: 0.45, 0.88) and 23% (HR = 0.77, 95% CI: 0.62, 0.95) reduced fracture risk in the weight-bearing skeleton. Physical activity is associated with reduced fracture risk at weight-bearing sites, with no associations at non-weight-bearing sites, in both sexes. Habitual physical activity is an important amendable approach to prevent hip fracture.

  19. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa

    2014-11-01

    Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.

  20. Evaluation of a multidisciplinary rehabilitation programme for elderly patients with hip fracture: A prospective cohort study.

    PubMed

    Cheung, Wing-Hoi; Shen, Wan-Yiu; Dai, David Lok-Kwan; Lee, Kin Bong; Zhu, Tracy Y; Wong, Ronald Man-Yeung; Leung, Kwok-Sui

    2018-02-28

    To investigate the effectiveness and cost of an 18-month multi-disciplinary Comprehensive Fragility Fracture Management Program (CFFMP) for fragility hip fracture patients. Prospective cohort study. Elderly patients with hip fracture were recruited at their first postoperative follow-up in 2 district hospitals. The intervention group comprised patients from the hospital undergoing CFFMP, and the control group comprised patients from another hospital undergoing conventional care. CFFMP provided geri-orthopaedic co-management, physician consultations, group-exercise and vibration-therapy. Timed-up-and-go test (TUG), Elderly Mobility Scale (EMS), Berg Balance Scale (BBS) and fall risk screening (FS) were used to assess functional performance. Incidences of falls and secondary fractures, the cost of the programme and related healthcare resources were recorded. A total of 76 patients were included in the intervention group (mean age 77.9 years ((standard deviation; SD) 6.1) ) and 77 in the control group (79.9 (SD 7.2)), respectively. The re-fracture rate in the control group (10.39%) was significantly higher than in the intervention group (1.32%) (p = 0.034). The intervention group improved significantly in TUG, EMS and FS after a 1-year programme. The overall healthcare costs per patient in the intervention and control groups were US$22,450 and US$25,313, respectively. Multi-disciplinary CFFMP is effective, with reduced overall cost, reduced length of hospital stay and reduced secondary fracture rate. The rehabilitation community service favours rehabilitation and improved quality of life of hip fracture patients.

  1. Characteristics of fractures in crystalline bedrock determined by surface and borehole geophysical surveys, eastern surplus superfund site, Meddybemps, Maine

    USGS Publications Warehouse

    Hansen, Bruce P.; Stone, Janet Radway; Lane, John W.

    1999-01-01

    Surface and borehole geophysical methods were used to determine fracture orientation in crystalline bedrock at the Eastern Surplus Superfund Site in Meddybemps, Maine. Fracture-orientation information is needed to address concerns about the fate of contaminants in ground water at the site. Azimuthal square-array resistivity surveys were conducted at 3 locations at the site, borehole-acoustic televiewer and borehole-video logs were collected in 10 wells, and single-hole directional radar surveys were conducted in 9 wells. Borehole-video logs were used to supplement the results of other geophysical techniques and are not described in this report. Analysis of azimuthal square-array resistivity data indicated that high-angle fracturing generally strikes northeast-southwest at the three locations. Borehole-acoustic televiewer logs detected one prominent low-angle and two prominent high-angle fracture sets. The low-angle fractures strike generally north-northeast and dip about 20 degrees west-northwest. One high-angle fracture set strikes north-northeast and dips east-southeast; the other high-angle set strikes east-northeast and dips south-southeast. Single-hole directional radar surveys identified two prominent fracture sets: a low-angle set striking north-northeast, dipping west-northwest; and a high-angle fracture set striking north-northeast, dipping east-southeast. Two additional high-angle fracture sets are defined weakly, one striking east-west, dipping north; and a second striking east-west, dipping south. Integrated results from all of the geophysical surveys indicate the presence of three primary fracture sets. A low-angle set strikes north-northeast and dips west-northwest. Two high-angle sets strike north-northeast and east-northeast and dip east-southeast and south-southeast. Statistical correction of the fracture data for orientation bias indicates that high-angle fractures are more numerous than observed in the data but are still less numerous than the low-angle fractures. The orientation and distribution of water-yielding fractures sets were determined by correlating the fracture data from this study with previously collected borehole-flowmeter data. The water-yielding fractures are generally within the three prominent fracture sets observed for the total fracture population. The low-angle water-yielding fractures primarily strike north-northeast to west-northwest and dip west-northwest to south-southwest. Most of the high-angle water-yielding fractures strike either north-northeast or east-west and dip east-southeast or south. The spacing between water-yielding fractures varies but the probable average spacing is estimated to be 30 feet for low-angle fractures; 27 feet for the east-southeast dipping, high-angle fractures; and 43 feet for the south-southeast dipping, high-angle fractures. The median estimated apparent transmissivity of individual water-yielding fractures or fracture zones was 0.3 feet squared per day and ranged from 0.01 to 382 feet squared per day. Ninety-five percent of the water-yielding fractures or fracture zones had an estimated apparent transmissivity of 19.5 feet squared per day or less. The orientation, spacing, and hydraulic properties of water-yielding fractures identified during this study can be used to help estimate recharge, flow, and discharge of ground water contaminants. High-angle fractures provide vertical pathways for ground water to enter the bedrock, interconnections between low-angle fractures, and, subsequently, pathways for water flow within the bedrock along fracture planes. Low-angle fractures may allow horizontal ground-water flow in all directions. The orientation of fracturing and the hydraulic properties of each fracture set strongly affect changes in ground-water flow under stress (pumping) conditions.

  2. Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Salomone, L.

    2014-12-01

    Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible to model Rayleigh wave data using multi- or effective-mode techniques; however, in many cases extraction of adequate Rayleigh wave dispersion data for modeling was difficult. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to collect Love wave data when warranted.

  3. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    PubMed Central

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941

  4. Governing Universities. Changing the Culture?

    ERIC Educational Resources Information Center

    Bargh, Catherine; Scott, Peter; Smith, David

    This book reports on a British research project involving a questionnaire survey of 494 university governors and a multi-site case study analysis to examine how different types of higher education institutions (especially "old" and "new" universities and colleges) converge and/or diverge in their governance styles. Chapter 1…

  5. Axial and appendicular bone density predict fractures in older women

    NASA Technical Reports Server (NTRS)

    Black, D. M.; Cummings, S. R.; Genant, H. K.; Nevitt, M. C.; Palermo, L.; Browner, W.

    1992-01-01

    To determine whether measurement of hip and spine bone mass by dual-energy x-ray absorptiometry (DEXA) predicts fractures in women and to compare the predictive value of DEXA with that of single-photon absorptiometry (SPA) of appendicular sites, we prospectively studied 8134 nonblack women age 65 years and older who had both DEXA and SPA measurements of bone mass. A total of 208 nonspine fractures, including 37 wrist fractures, occurred during the follow-up period, which averaged 0.7 years. The risk of fracture was inversely related to bone density at all measurement sites. After adjusting for age, the relative risks per decrease of 1 standard deviation in bone density for the occurrence of any fracture was 1.40 for measurement at the proximal femur (95% confidence interval 1.20-1.63) and 1.35 (1.15-1.58) for measurement at the spine. Results were similar for all regions of the proximal femur as well as SPA measurements at the calcaneus, distal radius, and proximal radius. None of these measurements was a significantly better predictor of fractures than the others. Furthermore, measurement of the distal radius was not a better predictor of wrist fracture (relative risk 1.64: 95% CI 1.13-2.37) than other sites, such as the lumbar spine (RR 1.56; CI 1.07-2.26), the femoral neck (RR 1.65; CI 1.12-2.41), or the calcaneus (RR 1.83; CI 1.26-2.64). We conclude that the inverse relationship between bone mass and risk of fracture in older women is similar for absorptiometric measurements made at the hip, spine, and appendicular sites.

  6. Structure and clay mineralogy: borehole images, log interpretation and sample analyses at Site C0002 Nankai Trough accretionary prism

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Schleicher, Anja

    2015-04-01

    Our research focused on the characterization of fracture and fault structures from the deep Nankai Trough accretionary prism in Japan. Logging Data and cuttings samples from the two most recent International Ocean Discovery Program (IODP) Expeditions 338 and 348 of the NanTroSEIZE project were analyzed by Logging While Drilling (LWD) oriented images, geophysical logs and clay mineralogy. Both expeditions took place at Site C0002, but whereas Hole C0002F (Expedition 338) was drilled down to 2004.5 mbsf, Hole C0002N and C0002P (Expedition 348) reached a depth of 2325.5 mbsf and 3058.8 mbsf respectively. The structural interpretation of borehole imaging data illustrates the deformation within the fractured and faulted sections of the accretionary prism. All drill holes show distinct areas of intense fracturing and faulting within a very clay-dominated lithology. Here, smectite and illite are the most common clay minerals, but the properties and the role they may play in influencing the fractures, faults and folds in the accretionary prism is still not well understood. When comparing clay mineralogy and fracture/fault areas in hole C0002F (Expedition 338), a trend in the abundance of illite and smectite, and in particular the swelling behavior of smectite is recognizable. In general, the log data provided a good correlation with the actual mineralogy and the relative abundance of clay. Ongoing postcruise preliminary research on hole C0002 N and C0002P (Expedition 348) should confirm these results. The relationship between fracture and fault structures and the changes in clay mineralogy could be explained by the deformation of specific areas with different compaction features, fluid-rock interaction processes, but could also be related to beginning diagenetic processes related to depth. Our results show the integration of logging data and cutting sample analyses as a valuable tool for characterization of petrophysical and mineralogical changes of the structures of the Nankai accretionary prism. This is critical for our understanding of clay-fluid interaction and mechanical properties duing fault displacements and seismogenesis.

  7. The At Home/Chez Soi trial protocol: a pragmatic, multi-site, randomised controlled trial of a Housing First intervention for homeless individuals with mental illness in five Canadian cities

    PubMed Central

    Streiner, David L; Adair, Carol; Aubry, Tim; Barker, Jayne; Distasio, Jino; Hwang, Stephen W; Komaroff, Janina; Latimer, Eric; Somers, Julian; Zabkiewicz, Denise M

    2011-01-01

    Introduction Housing First is a complex housing and support intervention for homeless individuals with mental health problems. It has a sufficient knowledge base and interest to warrant a test of wide-scale implementation in various settings. This protocol describes the quantitative design of a Canadian five city, $110 million demonstration project and provides the rationale for key scientific decisions. Methods A pragmatic, mixed methods, multi-site field trial of the effectiveness of Housing First in Vancouver, Winnipeg, Toronto, Montreal and Moncton, is randomising approximately 2500 participants, stratified by high and moderate need levels, into intervention and treatment as usual groups. Quantitative outcome measures are being collected over a 2-year period and a qualitative process evaluation is being completed. Primary outcomes are housing stability, social functioning and, for the economic analyses, quality of life. Hierarchical linear modelling is the primary data analytic strategy. Ethics and dissemination Research ethics board approval has been obtained from 11 institutions and a safety and adverse events committee is in place. The results of the multi-site analyses of outcomes at 12 months and 2 years will be reported in a series of core scientific journal papers. Extensive knowledge exchange activities with non-academic audiences will occur throughout the duration of the project. Trial registration number This study has been registered with the International Standard Randomised Control Trial Number Register and assigned ISRCTN42520374. PMID:22102645

  8. Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland

    NASA Astrophysics Data System (ADS)

    Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul

    2017-04-01

    Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.

  9. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Health diplomacy the adaptation of global health interventions to local needs in sub-Saharan Africa and Thailand: Evaluating findings from Project Accept (HPTN 043)

    PubMed Central

    2012-01-01

    Background Study-based global health interventions, especially those that are conducted on an international or multi-site basis, frequently require site-specific adaptations in order to (1) respond to socio-cultural differences in risk determinants, (2) to make interventions more relevant to target population needs, and (3) in recognition of ‘global health diplomacy' issues. We report on the adaptations development, approval and implementation process from the Project Accept voluntary counseling and testing, community mobilization and post-test support services intervention. Methods We reviewed all relevant documentation collected during the study intervention period (e.g. monthly progress reports; bi-annual steering committee presentations) and conducted a series of semi-structured interviews with project directors and between 12 and 23 field staff at each study site in South Africa, Zimbabwe, Thailand and Tanzania during 2009. Respondents were asked to describe (1) the adaptations development and approval process and (2) the most successful site-specific adaptations from the perspective of facilitating intervention implementation. Results Across sites, proposed adaptations were identified by field staff and submitted to project directors for review on a formally planned basis. The cross-site intervention sub-committee then ensured fidelity to the study protocol before approval. Successfully-implemented adaptations included: intervention delivery adaptations (e.g. development of tailored counseling messages for immigrant labour groups in South Africa) political, environmental and infrastructural adaptations (e.g. use of local community centers as VCT venues in Zimbabwe); religious adaptations (e.g. dividing clients by gender in Muslim areas of Tanzania); economic adaptations (e.g. co-provision of income generating skills classes in Zimbabwe); epidemiological adaptations (e.g. provision of ‘youth-friendly’ services in South Africa, Zimbabwe and Tanzania), and social adaptations (e.g. modification of terminology to local dialects in Thailand: and adjustment of service delivery schedules to suit seasonal and daily work schedules across sites). Conclusions Adaptation selection, development and approval during multi-site global health research studies should be a planned process that maintains fidelity to the study protocol. The successful implementation of appropriate site-specific adaptations may have important implications for intervention implementation, from both a service uptake and a global health diplomacy perspective. PMID:22716131

  11. Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins

    NASA Astrophysics Data System (ADS)

    Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan

    2015-02-01

    Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the surrounding host rock increases slightly toward the intrusion at approximately 3 m from the contact. We conclude by presenting a conceptual fluid flow model, showing permeability enhancement and a high potential for fluid flow-channeling along the intrusion-host rock interfaces.

  12. Fracture Characterization

    EPA Science Inventory

    The goal of this volume is to compare and assess various techniques for understanding fracture patterns at a site at Pease International Tradeport, NH, and to give an overview of the site as a whole. Techniques included are: core logging, geophysical logging, radar studies, and...

  13. Computational predictive methods for fracture and fatigue

    NASA Technical Reports Server (NTRS)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-01-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  14. The Importance of Field Demonstration Sites: The View from the Unconventional Resource Region of the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Carr, T.

    2017-12-01

    The Appalachian basin with the Marcellus and Utica shale units is one of the most active unconventional resource plays in North America. Unconventional resource plays are critical and rapidly-growing areas of energy, where research lags behind exploration and production activity. There remains a poor overall understanding of physical, chemical and biological factors that control shale gas production efficiency and possible environmental impacts associated with shale gas development. We have developed an approach that works with local industrial partners and communities and across research organizations. The Marcellus Shale Energy and Environment Laboratory (MSEEL) consists of a multidisciplinary and multi-institutional team undertaking integrated geoscience, engineering and environmental studies in cooperation with the Department of Energy. This approach is being expanded to other sites and to the international arena. MSEEL consists of four horizontal production wells, which are instrumented, a cored and logged vertical pilot bore-hole, and a microseismic observation well. MSEEL has integrated geophysical observations (microseismic and surface), fiber-optic monitoring for distributed acoustic (DAS) and temperature sensing (DTS), well logs, core data and production logging and continued monitoring, to characterize subsurface rock properties, and the propagation pattern of induced fractures in the stimulated reservoir volume. Significant geologic heterogeneity along the lateral affects fracture stimulation efficiency - both completion efficiency (clusters that receive effective stimulation), and production efficiency (clusters effectively contributing to production). MSEEL works to develop new knowledge of subsurface geology and engineering, and surface environmental impact to identify best practices that can optimize hydraulic fracture stimulation to increase flow rates, estimated ultimate recovery in order to reduce the number of wells and environmental impact.

  15. Computational predictive methods for fracture and fatigue

    NASA Astrophysics Data System (ADS)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-09-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  16. Fracture trauma in a medieval British farming village.

    PubMed

    Judd, M A; Roberts, C A

    1999-06-01

    Farming is among the three most hazardous occupations in modern society and perhaps also held a similar position during the medieval period. The goal of this study was to determine if there is a significant difference in frequencies and patterns of longbone fracture trauma observed between rural and urban activity bases that distinguish farming as a particularly dangerous occupation during the medieval period. The longbones of 170 individuals excavated from Raunds, a rural medieval British site (10th-12th centuries AD) were examined for fractures and compared to data collected from four contemporary British medieval sites, one rural and three urban. The fracture frequency for the Raunds individuals (19.4%) was significantly different from the urban sites (4.7-5.5%). Female fractures were characterized by injury to the forearm, while the males were predisposed to diverse fracture locations. Clinical research provided a source of documented farm-related trauma from North America and Europe where the crops and animals raised, the manual chores performed, and the equipment used in traditional or small-scale farms have changed little in form or function since the medieval period. Nonmechanized causes of injury contribute to approximately 40% of all modern farm-related injuries and are attributed to falls from lofts and ladders, animal assaults and bites, and falls from moving vehicles. These hazardous situations were also present in the medieval period and may explain some of the fracture trauma from the rural sites. A high fracture frequency for both medieval males and females is significantly associated with farming subsistence when compared to craft-orientated urban dwellers.

  17. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both Sierra Madre and the Bowen Basin span similar ranges, indicating that the factor of increase in frequency (F) for a doubling of aperture size (A) shows similar relationships and variability from both sites. Despite their limitations, we conclude that fracture aperture-frequency power-law relationships are valid and, when interpreted carefully, provide a useful basis for comparing rock fracture distributions across different sites.

  18. The Maunakea Spectroscopic Explorer: Design and Project Status

    NASA Astrophysics Data System (ADS)

    Murowinski, Rick

    2015-08-01

    The Maunakea Spectroscopic Explorer (MSE) will be a 10-m class telescope feeding a dedicated massively-multiplexed multi-object spectrometer. The project formally kicked off in March 2014, with a Project Office hosted at the Canada France Hawaii Telescope's (CFHT's) Waimea office facility. The MSE observatory will be ultimately realized my means of an upgrade to the CFHT telescope and partnership, resulting in a new observatory with forefront transformational capability and serving a new international partnership. This new observatory will be housed within the facade of the current CFHT and using the same summit site that CFHT now occupies. We present a description, and the status, of the project. We will show the level one design choices that have been made and those under consideration. We will show our progress in gaining permitting permission as the first major observatory that will re-use an existing Maunakea telescope site.

  19. Light Material Ripped Up Older Dark Vein Material

    NASA Image and Video Library

    2015-11-11

    This view from the Mars Hand Lens Imager (MAHLI) on the arm of NASA's Curiosity Mars rover shows a combination of dark and light material within a mineral vein at a site called "Garden City" on lower Mount Sharp. The image was taken on April 4, 2015, during the 946th Martian day, or sol, of Curiosity's work on Mars. The area shown is roughly 1 inch (2.5 centimeters) wide. Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This example shows where a later addition of light-toned material into a vein ripped up prior dark material, suggesting both high fluid pressure and potentially explosive release of high pressures. Different examples are at PIA19925 and PIA19926. Mineral veins often form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. At Garden City, the veins have been more resistant to erosion than the surrounding host rock. The fluid movement through fractures at Garden City occurred later than wet environmental conditions in which the host rock formed, before it hardened and cracked. Malin Space Science Systems, San Diego, built and operates MAHLI. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19927

  20. STEAM INJECTION INTO FRACTURED LIMESTONE AT LORING AIR FORCE BASE

    EPA Science Inventory

    A research project on steam injection for the remediation of spent chlorinated solvents from fractured limestone was recently undertaken at the former Loring AFB in Limestone, ME. Participants in the project include the Maine Department of Environmental Protection, EPA Region I,...

  1. Histology of 8 atypical femoral fractures: remodeling but no healing.

    PubMed

    Schilcher, Jörg; Sandberg, Olof; Isaksson, Hanna; Aspenberg, Per

    2014-06-01

    The pathophysiology behind bisphosphonate-associated atypical femoral fractures remains unclear. Histological findings at the fracture site itself may provide clues. Between 2008 and 2013, we collected bone biopsies including the fracture line from 4 complete and 4 incomplete atypical femoral fractures. 7 female patients reported continuous bisphosphonate use for 10 years on average. 1 patient was a man who was not using bisphosphonates. Dual-energy X-ray absorptiometry of the hip and spine showed no osteoporosis in 6 cases. The bone biopsies were evaluated by micro-computed tomography, infrared spectroscopy, and qualitative histology. Incomplete fractures involved the whole cortical thickness and showed a continuous gap with a mean width of 180 µm. The gap contained amorphous material and was devoid of living cells. In contrast, the adjacent bone contained living cells, including active osteoclasts. The fracture surfaces sometimes consisted of woven bone, which may have formed in localized defects caused by surface fragmentation or resorption. Atypical femoral fractures show signs of attempted healing at the fracture site. The narrow width of the fracture gap and its necrotic contents are compatible with the idea that micromotion prevents healing because it leads to strains within the fracture gap that preclude cell survival.

  2. SITE TECHNOLOGY CAPSULE; MULTI-VENDOR BIOREMEDIATION DEMONSTRATION PROJECT: ENVIRONMENTAL LABORATORIES/SBP TECHNOLOGIES' UVB VACUUM VAPORIZATION WELL PROCESS

    EPA Science Inventory

    This technology capsule summarizes the findings of an evaluation of the Unterdruck-Verdampfer-Brunnen (UVB) technology developed by IEG Technologies (IEG) and licensed in the eastern United States by Environmental Laboratories, Inc. (ELI) and SBP Technologies, Inc. (SBP). This e...

  3. INFORMATION MANAGEMENT AND RELATED QUALITY ASSURANCE FOR A LARGE SCALE, MULTI-SITE RESEARCH PROJECT

    EPA Science Inventory

    During the summer of 2000, as part of a U.S. Environmental Protection Agency study designed to improve microbial water quality monitoring protocols at public beaches, over 11,000 water samples were collected at five selected beaches across the country. At each beach, samples wer...

  4. The influence of renal dialysis and hip fracture sites on the 10-year mortality of elderly hip fracture patients

    PubMed Central

    Hung, Li-Wei; Hwang, Yi-Ting; Huang, Guey-Shiun; Liang, Cheng-Chih; Lin, Jinn

    2017-01-01

    Abstract Hip fractures in older people requiring dialysis are associated with high mortality. Our study primarily aimed to evaluate the specific burden of dialysis on the mortality rate following hip fracture. The secondary aim was to clarify the effect of the fracture site on mortality. A retrospective cohort study was conducted using Taiwan's National Health Insurance Research Database to analyze nationwide health data regarding dialysis and non-dialysis patients ≥65 years who sustained a first fragility-related hip fracture during the period from 2001 to 2005. Each dialysis hip fracture patient was age- and sex-matched to 5 non-dialysis hip fracture patients to construct the matched cohort. Survival status of patients was followed-up until death or the end of 2011. Survival analyses using multivariate Cox proportional hazards models and the Kaplan-Meier estimator were performed to compare between-group survival and impact of hip fracture sites on mortality. A total of 61,346 hip fracture patients were included nationwide. Among them, 997 dialysis hip fracture patients were identified and matched to 4985 non-dialysis hip fracture patients. Mortality events were 155, 188, 464, and 103 in the dialysis group, and 314, 382, 1505, and 284 in the non-dialysis group, with adjusted hazard ratios (associated 95% confidence intervals) of 2.58 (2.13–3.13), 2.95 (2.48–3.51), 2.84 (2.55–3.15), and 2.39 (1.94–2.93) at 0 to 3 months, 3 months to 1 year, 1 to 6 years, and 6 to 10 years after the fracture, respectively. In the non-dialysis group, survival was consistently better for patients who sustained femoral neck fractures compared to trochanteric fractures (0–10 years’ log-rank test, P < .001). In the dialysis group, survival of patients with femoral neck fractures was better than that of patients with trochanteric fractures only within the first 6 years post-fracture (0–6 years’ log-rank, P < .001). Dialysis was a significant risk factor of mortality in geriatric hip fracture patients. Survival outcome was better for non-dialysis patients with femoral neck fractures compared to those with trochanteric fractures throughout 10 years. However, the survival advantage of femoral neck fractures was limited to the first 6 years postinjury among dialysis patients. PMID:28906354

  5. Fracture Surface Analysis of Clinically Failed Fixed Partial Dentures

    PubMed Central

    Taskonak, B.; Mecholsky, J.J.; Anusavice, K.J.

    2008-01-01

    Ceramic systems have limited long-term fracture resistance, especially when they are used in posterior areas or for fixed partial dentures. The objective of this study was to determine the site of crack initiation and the causes of fracture of clinically failed ceramic fixed partial dentures. Six Empress 2® lithia-disilicate (Li2O·2SiO2)-based veneered bridges and 7 experimental lithia-disilicate-based non-veneered ceramic bridges were retrieved and analyzed. Fractography and fracture mechanics methods were used to estimate the stresses at failure in 6 bridges (50%) whose fracture initiated from the occlusal surface of the connectors. Fracture of 1 non-veneered bridge (8%) initiated within the gingival surface of the connector. Three veneered bridges fractured within the veneer layers. Failure stresses of the all-core fixed partial dentures ranged from 107 to 161 MPa. Failure stresses of the veneered fixed partial dentures ranged from 19 to 68 MPa. We conclude that fracture initiation sites are controlled primarily by contact damage. PMID:16498078

  6. Stress magnitude and orientation in deep coalbed biosphere off Shimokita ~IODP Expedition337 drilling project

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Lin, W.; Yamada, Y.

    2015-12-01

    One of IODP expedition (Borehole C0020A) is located in the forearc basin formed by the subducting between Pacific plate and Eurasian plate off Shimokita Peninsula. This ~2.5km deep scientific drilling collected the high-resolution wire-line resistivity logging, caliper data, Dipole Sonic waveforms; geophysical properties measurements and core samples. The riser drilling operations produced one good conditions borehole even this drilling operation was applied right after 311 Tohoku earthquake. Based on the high-resolutions Formation Micro Imager (FMI) images, both breakout and tensile fractures along the borehole wall indicating the in-situ stress orientation are detected in the unwrapped resistivity images. In this research, a reasonable geomechanical model based on the breakout width and physical properties is constructed to estimate the stress magnitude profile in this borehole. Besides, the openhole leak-off test revealed the information of Shmin magnitude. In general, stress direction along the borehole is slight rotated to east with drilling to the bottom of the borehole. Geomechanical model constarined the principal stresses in Strike-slip stress regime to satisfy the occurrences of borehole enlargements and tensile fractures. Some blank zones with no borehole wall failure and vertical fractures indicated the stress anomaly might be controlled by local lithological facies. Comparing to the JFAST drilling, this site is out of Japan trench slip zone and shows almost parallel stress direcion to the trench (~90 degree apart of Shmin with Site C0019).

  7. Model Comparison in Subsurface Science: The DECOVALEX and Sim-SEQ Initiatives (Invited)

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Mukhopadhyay, S.; Rutqvist, J.; Tsang, C.

    2013-12-01

    Building predictive model for flow and transport processes in the subsurface is a challenging task, even more so if these processes are coupled to geomechanical and/or geochemical effects. Modelers must take into consideration a multiplicity of length scales, a wide range of time scales, the coupling between processes, different model components, and the spatial variability in the value of most model input parameters (and often limited knowledge about them). Consequently, modelers have to make choices while developing their conceptual models. Such model choices may cause a wide range in the predictions made by different models and different modeling groups, even if each of the underlying simulators has been perfectly verified against appropriate benchmarks. In other words, the modeling activity itself is prone to uncertainty and bias. This uncertainty, referred to here as model selection uncertainty, forms one of the greatest sources of uncertainty for predictive modeling. In this paper, we discuss two examples of model intercomparison exercises that are currently undertaken to better understand model selection uncertainty, elucidate system behavior, inform needs for data collection and better physics parameterizations, and enhance community understanding of capabilities. The first example is the international DECOVALEX project, which was launched in 1992 by a group of countries dealing with modeling issues related to geologic disposal of radioactive waste. DECOVALEX is an acronym for DEvelopment of COupled THM models and their VALidation against Experiments. To date, the project has progressed successfully through five stages, each of which featuring a small number of test cases for model comparison related to coupled thermo-hydro-mechanical (THM) processes in geologic systems. The test cases are proposed and developed by the organizations participating in DECOVALEX; they typically involve results from major field and laboratory experiments. Over the past decades, the DECOVALEX project has played a major role in improving our understanding of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance to performance assessment of a radioactive waste geologic repository. The second example is the Sim-SEQ project, a relatively recent model comparison initiative addressing multi-phase processes relevant in geologic carbon sequestration. Like DECOVALEX, Sim-SEQ is not about benchmarking, but rather about evaluating model building efforts in a broad and comprehensive sense. In Sim-SEQ, sixteen international modeling teams are building their own models for a specific carbon sequestration site referred to as the Sim-SEQ Study site (the S-3 site). The S-3 site is patterned after the ongoing SECARB Phase III Early Test site in southwestern Mississippi, where CO2 is injected into a fluvial sandstone unit with high vertical and lateral heterogeneity. The complex geology of the S-3 site, its location in the water leg of a CO2-EOR field with a strong water drive, and the presence of methane in the reservoir brine make this a challenging task, requiring the modelers to use their best judgment in making a large number of choices about how to model various processes and properties of the system.

  8. NASA airframe structural integrity program

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.

    1991-01-01

    NASA has initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging commercial transport fleet. The interdisciplinary program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-site damage (MSD) at riveted connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD has been completed. Also, a successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at riveted lap splice joints has been conducted. All long-term program elements have been initiated and the plans for the methodology verification program are being coordinated with the airframe manufacturers.

  9. TOUGHREACT: a new code of the TOUGH Family for Non-Isothermal multiphase reactive geochemical transport in variably saturated geologic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.

  10. Use of focus groups in multi-site, multi-ethnic research projects for women's health: a Study of Women Across the Nation (swan) example.

    PubMed

    Kagawa-Singer, Marjorie; Adler, Shelley R; Mouton, Charles E; Ory, Marcia; Underwood, Lynne G

    2009-01-01

    To outline the lessons learned about the use of focus groups for the multisite, multi-ethnic longitudinal Study of Women Across the Nation (SWAN). Focus groups were designed to identify potential cultural differences in the incidence of symptoms and the meaning of transmenopause among women of diverse cultures, and to identify effective recruitment and retention strategies. Inductive and deductive focus groups for a multi-ethnic study. Seven community research sites across the United States conducted focus groups with six ethnic populations: African American, Chinese American, Japanese American, Mexican American, non-Hispanic white, and Puerto Rican. Community women from each ethnic group of color. A set of four/five focus groups in each ethnic group as the formative stage of the deductive, quantitative SWAN survey. Identification of methodological advantages and challenges to the successful implementation of formative focus groups in a multi-ethnic, multi-site population-based epidemiologic study. We provide recommendations from our lessons learned to improve the use of focus groups in future studies with multi-ethnic populations. Mixed methods using inductive and deductive approaches require the scientific integrity of both research paradigms. Adequate resources and time must be budgeted as essential parts of the overall strategy from the outset of study. Inductive cross-cultural researchers should be key team members, beginning with inception through each subsequent design phase to increase the scientific validity, generalizability, and comparability of the results across diverse ethnic groups, to assure the relevance, validity and applicability of the findings to the multicultural population of focus.

  11. Malunion of Long-Bone Fractures in a Conflict Zone in the Democratic Republic of Congo.

    PubMed

    Bauhahn, Grace; Veen, Harald; Hoencamp, Rigo; Olim, Nelson; Tan, Edward C T H

    2017-09-01

    Malunion is a well-recognized complication of long-bone fractures which accounts for more than 25% of injuries in conflict zones. The aim of this study was to investigate the rate of malunion sustained by casualties with penetrating gunshot wounds in an International Committee of the Red Cross (ICRC) surgical substitution project in the Democratic Republic of Congo (DRC) and compare these results with current literature. A retrospective cohort study was performed. All patients admitted to the ICRC facility between the periods of 01.10.2014 and 31.12.2015 with long-bone fractures caused by gunshot wound were included, and data were collected retrospectively from the patient's hospital notes. A total of 191 fractures caused by gunshot were treated in the DRC at the ICRC surgical substitution project during the study period. On average, the fractures were 3 days old on admission and were all open, with 62% also being comminuted. The ICRC management protocol, which emphasizes debridement, antibiotic prophylaxis and conservative fracture stabilization, was followed in all cases. Forty-eight percentage of the fractures were finally classified as 'union without complication'; however, 17% were classified as 'malunion'. This study indicates that open long-bone fractures that are managed by the ICRC surgical substitution project in DRC may have an increased likelihood of malunion as compared to long-bone fractures treated in developed countries. Patient delay and mechanism of injury may have caused increased rates of infection which are likely behind these increased rates of malunion, alongside the lack of definitive fracture treatment options made available to the surgical team.

  12. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mo; Nakshatrala, Kalyana; William, Kasper

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less

  13. Multiscale Multiphysics Caprock Seal Analysis: A Case Study of the Farnsworth Unit, Texas, USA

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; Mozley, P.

    2015-12-01

    Caprock sealing behavior depends on coupled processes that operate over a variety of length and time scales. Capillary sealing behavior depends on nanoscale pore throats and interfacial fluid properties. Larger-scale sedimentary architecture, fractures, and faults may govern properties of potential "seal-bypass" systems. We present the multiscale multiphysics investigation of sealing integrity of the caprock system that overlies the Morrow Sandstone reservoir, Farnsworth Unit, Texas. The Morrow Sandstone is the target injection unit for an on-going combined enhanced oil recovery-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). Methods include small-to-large scale measurement techniques, including: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; core examinations of sedimentary architecture and fractures; geomechanical testing; and a noble gas profile through sealing lithologies into the reservoir, as preserved from fresh core. The combined data set is used as part of a performance assessment methodology. The authors gratefully acknowledge the U.S. Department of Energy's (DOE) National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Immersive telepresence system using high-resolution omnidirectional movies and a locomotion interface

    NASA Astrophysics Data System (ADS)

    Ikeda, Sei; Sato, Tomokazu; Kanbara, Masayuki; Yokoya, Naokazu

    2004-05-01

    Technology that enables users to experience a remote site virtually is called telepresence. A telepresence system using real environment images is expected to be used in the field of entertainment, medicine, education and so on. This paper describes a novel telepresence system which enables users to walk through a photorealistic virtualized environment by actual walking. To realize such a system, a wide-angle high-resolution movie is projected on an immersive multi-screen display to present users the virtualized environments and a treadmill is controlled according to detected user's locomotion. In this study, we use an omnidirectional multi-camera system to acquire images real outdoor scene. The proposed system provides users with rich sense of walking in a remote site.

  15. Supine vs decubitus lateral patient positioning in vertebral fracture assessment.

    PubMed

    Paggiosi, Margaret Anne; Finigan, Judith; Peel, Nicola; Eastell, Richard; Ferrar, Lynne

    2012-01-01

    In vertebral fracture assessment (VFA), lateral scans are obtained with the patient positioned supine (C-arm densitometers) or lateral decubitus (fixed-arm densitometers). We aimed to determine the impact of positioning on image quality and fracture definition. We performed supine and decubitus lateral VFA in 50 postmenopausal women and used the algorithm-based qualitative method to identify vertebral fractures. We compared the 2 techniques for the identification of fractures (kappa analysis) and compared the numbers of unreadable vertebrae (indiscernible endplates) and vertebrae that were projected obliquely (Wilcoxon matched-pairs signed-rank test). The kappa score for agreement between the VFA techniques (to identify women with vertebral fractures) was 0.84 (95% confidence interval [CI]: 0.68-0.99), and for agreement with fracture assessments made from radiographs, kappa was 0.76 (95% CI: 0.57-0.94) for both supine and decubitus lateral VFA. There were more unreadable vertebrae with supine lateral (48 vertebrae in supine lateral compared with 14 in decubitus lateral; p=0.001), but oblique projection was less common (93 vertebrae compared with 145 in decubitus lateral; p=0.002). We conclude that there were significantly different projection effects with supine and decubitus lateral VFA, but these differences did not influence the identification of vertebral fractures in our study sample. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  16. Coordinating Centers in Cancer-Epidemiology Research: The Asia Cohort Consortium Coordinating Center

    PubMed Central

    Rolland, Betsy; Smith, Briana R; Potter, John D

    2011-01-01

    Although it is tacitly recognized that a good Coordinating Center (CC) is essential to the success of any multi-site collaborative project, very little study has been done on what makes a CC successful, why some CCs fail, or how to build a CC that meets the needs of a given project. Moreover, very little published guidance is available, as few CCs outside the clinical-trial realm write about their work. The Asia Cohort Consortium (ACC) is a collaborative cancer-epidemiology research project that has made strong scientific and organizational progress over the past three years by focusing its CC on the following activities: collaboration development; operations management; statistical and data management; and communications infrastructure and tool development. Our hope is that, by sharing our experience building the ACC CC, we can begin a conversation about what it means to run a coordinating center for multi-institutional collaboration in cancer epidemiology, help other collaborative projects solve some of the issues associated with collaborative research, and learn from others. PMID:21803842

  17. Monitoring Induced Fractures with Electrical Measurements using Depth to Surface Resistivity: A Field Case Study

    NASA Astrophysics Data System (ADS)

    Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.

    2016-12-01

    Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the measurements to the high salinity frac stages. Data inversion is presently ongoing.

  18. Application of Viscoelastic Fracture Model and Non-uniform Crack Initiation at Clinically Relevant Notches in Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare M.

    2012-01-01

    The mechanism of crack initiation from a clinically relevant notch is not well-understood for crosslinked ultra high molecular weight polyethylene (UHMWPE) used in total joint replacement components. Static mode driving forces, rather than the cyclic mode conditions typically associated with fatigue processes, have been shown to drive crack propagation in this material. Thus, in this study, crack initiation in a notched specimen under a static load was investigated. A video microscope was used to monitor the notch surface of the specimen and crack initiation time was measured from the video by identifying the onset of crack initiation at the notch. Crack initiation was considered using a viscoelastic fracture theory. It was found that the mechanism of crack initiation involved both single layer and a distributed multi-layer phenomenon and that multi-layer crack initiation delayed the crack initiation time for all loading conditions examined. The findings of this study support that the viscoelastic fracture theory governs fracture mechanics in crosslinked UHMWPE. The findings also support that crack initiation from a notch in UHMWPE is a more complex phenomenon than treated by traditional fracture theories for polymers. PMID:23127638

  19. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men.

    PubMed

    Chalhoub, Didier; Orwoll, Eric S; Cawthon, Peggy M; Ensrud, Kristine E; Boudreau, Robert; Greenspan, Susan; Newman, Anne B; Zmuda, Joseph; Bauer, Douglas; Cummings, Steven; Cauley, Jane A

    2016-11-01

    Although many studies have examined the association between low bone mineral density (BMD) and fracture risk in older men, none have simultaneously studied the relationship between multiple BMD sites and risk of different types of fractures. Using data from the Osteoporotic Fractures in Men study, we evaluated the association between areal BMD (aBMD) by dual-energy X-ray absorptiometry (DXA) and volumetric BMD (vBMD) by quantitative computed tomography (QCT) measurements, and different types of fractures during an average of 9.7years of follow-up. Men answered questionnaires about fractures every 4months (>97% completions). Fractures were confirmed by centralized review of radiographic reports; pathological fractures were excluded. Risk of fractures was assessed at the hip, spine, wrist, shoulder, rib/chest/sternum, ankle/foot/toe, arm, hand/finger, leg, pelvis/coccyx, skull/face and any non-spine fracture. Age and race adjusted Cox proportional-hazards modeling was used to assess the risk of fracture in 3301 older men with both aBMD (at the femoral neck (FN) and lumbar spine) and vBMD (at the trabecular spine and FN, and cortical FN) measurements, with hazard ratios (HRs) expressed per standard deviation (SD) decrease. Lower FN and spine aBMD were associated with an increased risk of fracture at the hip, spine, wrist, shoulder, rib/chest/sternum, arm, and any non-spine fracture (statistically significant HRs per SD decrease ranged from 1.24-3.57). Lower trabecular spine and FN vBMD were associated with increased risk of most fractures with statistically significant HRs ranging between 1.27 and 3.69. There was a statistically significant association between FN cortical vBMD and fracture risk at the hip (HR=1.55) and spine sites (HR=1.26), but no association at other fracture sites. In summary, both lower aBMD and vBMD were associated with increased fracture risk. The stronger associations observed for trabecular vBMD than cortical vBMD may reflect the greater metabolic activity of the trabecular compartment. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Areal and volumetric Bone Mineral Density and risk of multiple types of fracture in older men

    PubMed Central

    Chalhoub, Didier; Orwoll, Eric S.; Cawthon, Peggy M.; Ensrud, Kristine E.; Boudreau, Robert; Greenspan, Susan; Newman, Anne B.; Zmuda, Joseph; Bauer, Douglas; Cummings, Steven; Cauley, Jane A.

    2016-01-01

    Although many studies have examined the association between low bone mineral density (BMD) and fracture risk in older men, none have simultaneously studied the relationship between multiple BMD sites and risk of different types of fractures. Using data from the Osteoporotic Fractures in Men study, we evaluated the association between areal BMD (aBMD) by dual-energy X-ray absorptiometry (DXA) and volumetric BMD (vBMD) by quantitative computed tomography (QCT) measurements, and different types of fractures during an average of 9.7 years of follow up. Men answered questionnaires about fractures every 4 months (>97% completions). Fractures were confirmed by centralized review of radiographic reports; pathological fractures were excluded. Risk of fractures was assessed at the hip, spine, wrist, shoulder, rib/chest/sternum, ankle/foot/toe, arm, hand/finger, leg, pelvis/coccyx, skull/face and any non-spine fracture. Age and race adjusted Cox proportional-hazards modeling was used to assess the risk of fracture in 3301 older men with both aBMD (at the femoral neck (FN) and lumbar spine) and vBMD (at the trabecular spine and FN, and cortical FN) measurements, with hazard ratios (HRs) expressed per standard deviation (SD) decrease. Lower FN and spine aBMD were associated with an increased risk of fracture at the hip, spine, wrist, shoulder, rib/chest/sternum, arm, and any non-spine fracture (statistically significant HRs per SD decrease ranged from 1.24 - 3.57). Lower trabecular spine and FN vBMD were associated with increased risk of most fractures with statistically significant HRs ranging between 1.27 and 3.69. There was a statistically significant association between FN cortical vBMD and fracture risk at the hip (HR=1.55) and spine sites (HR=1.26), but no association at other fracture sites. In summary, both lower aBMD and vBMD were associated with increased fracture risk. The stronger associations observed for trabecular vBMD than cortical vBMD may reflect the greater metabolic activity of the trabecular compartment. PMID:27554426

  1. a Framework for Low-Cost Multi-Platform VR and AR Site Experiences

    NASA Astrophysics Data System (ADS)

    Wallgrün, J. O.; Huang, J.; Zhao, J.; Masrur, A.; Oprean, D.; Klippel, A.

    2017-11-01

    Low-cost consumer-level immersive solutions have the potential to revolutionize education and research in many fields by providing virtual experiences of sites that are either inaccessible, too dangerous, or too expensive to visit, or by augmenting in-situ experiences using augmented and mixed reality methods. We present our approach for creating low-cost multi-platform virtual and augmented reality site experiences of real world places for education and research purposes, making extensive use of Structure-from-Motion methods as well as 360° photography and videography. We discuss several example projects, for the Mayan City of Cahal Pech, Iceland's Thrihnukar volcano, the Santa Marta informal settlement in Rio, and for the Penn State Campus, and we propose a framework for creating and maintaining such applications by combining declarative content specification methods with a central linked-data based spatio-temporal information system.

  2. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  3. Prevalence of Sarcopenia and Its Relationship with Sites of Fragility Fractures in Elderly Chinese Men and Women.

    PubMed

    Hong, Wei; Cheng, Qun; Zhu, Xiaoying; Zhu, Hanmin; Li, Huilin; Zhang, Xuemei; Zheng, Songbai; Du, Yanping; Tang, Wenjing; Xue, Sihong; Ye, Zhibin

    2015-01-01

    Sarcopenia might be associated with bone fragility in elderly individuals. This study aimed to investigate the prevalence of sarcopenia and its association with fragility fracture sites in elderly Chinese patients. Patients (322 men and 435 women) aged 65-94 years and with a history of fragility fractures in the ankle, wrist, vertebrae or hip, and healthy men (n = 1263) and women (n = 1057) aged 65-92 years without a history of fractures were enrolled. Whole-body dual energy X-ray absorptiometry was used to analyze skeletal muscle mass index (SMI), fat mass and bone mineral density. Sarcopenia was defined as SMI less than two standard deviations below the mean of a young reference group. Sarcopenia occurrence varied with fracture location. Sarcopenia was more common in females with vertebral and hip fractures and in men with hip and ankle fractures than in the non-fracture group). Sarcopenia was significantly more prevalent in men with wrist, hip and ankle fractures than in women. SMI was correlated with BMD in different fracture groups. Logistic regression analyses revealed that lower SMI was associated with an increased risk of hip fracture both in men and women and ankle fracture in men. Sarcopenia may be an independent risk factor for hip and ankle fractures in men, and for hip fractures in women.

  4. Where Does Water Go During Hydraulic Fracturing?

    PubMed

    O'Malley, D; Karra, S; Currier, R P; Makedonska, N; Hyman, J D; Viswanathan, H S

    2016-07-01

    During hydraulic fracturing millions of gallons of water are typically injected at high pressure into deep shale formations. This water can be housed in fractures, within the shale matrix, and can potentially migrate beyond the shale formation via fractures and/or faults raising environmental concerns. We describe a generic framework for producing estimates of the volume available in fractures and undamaged shale matrix where water injected into a representative shale site could reside during hydraulic fracturing, and apply it to a representative site that incorporates available field data. The amount of water that can be stored in the fractures is estimated by calculating the volume of all the fractures associated with a discrete fracture network (DFN) based on real data and using probability theory to estimate the volume of smaller fractures that are below the lower cutoff for the fracture radius in the DFN. The amount of water stored in the matrix is estimated utilizing two distinct methods-one using a two-phase model at the pore-scale and the other using a single-phase model at the continuum scale. Based on these calculations, it appears that most of the water resides in the matrix with a lesser amount in the fractures. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Field Evaluation of Fracture Control in Tunnel Blasting

    DOT National Transportation Integrated Search

    1979-12-01

    The objective of this research was to implement fracture control procedures in a tunnel project and to assess the practicality, advantages, disadvantages, performance and cost effectiveness of fracture control methods against smooth blasting procedur...

  6. Pre-operative urinary tract infection: is it a risk factor for early surgical site infection with hip fracture surgery? A retrospective analysis.

    PubMed

    Yassa, Rafik Rd; Khalfaoui, Mahdi Y; Veravalli, Karunakar; Evans, D Alun

    2017-03-01

    The aims of the current study were to determine whether pre-operative urinary tract infections in patients presenting acutely with neck of femur fractures resulted in a delay to surgery and whether such patients were at increased risk of developing post-operative surgical site infections. A retrospective review of all patients presenting with a neck of femur fracture, at a single centre over a one-year period. The hospital hip fracture database was used as the main source of data. UK University Teaching Hospital. All patients ( n  = 460) presenting across a single year study period with a confirmed hip fracture. The presence of pre-operative urinary tract infection, the timing of surgical intervention, the occurrence of post-operative surgical site infection and the pathogens identified. A total of 367 patients were operated upon within 24 hours of admission. Urinary infections were the least common cause of delay. A total of 99 patients (21.5%) had pre-operative urinary tract infection. Post-operatively, a total of 57 (12.4%) patients developed a surgical site infection. Among the latter, 31 (54.4%) did not have a pre-operative urinary infection, 23 (40.4%) patients had a pre-operative urinary tract infection, 2 had chronic leg ulcers and one patient had a pre-operative chest infection. Statistically, there was a strong relationship between pre-operative urinary tract infection and the development of post-operative surgical site infection ( p -value: 0.0005). The results of our study indicate that pre-operative urinary tract infection has a high prevalence amongst those presenting with neck of femur fractures, and this is a risk factor for the later development of post-operative surgical site infection.

  7. The effect of different torque wrenches on rotational stiffness in compressive femoral nails: a biomechanical study.

    PubMed

    Karaarslan, A A; Acar, N

    2018-02-01

    Rotation instability and locking screws failure are common problems. We aimed to determine optimal torque wrench offering maximum rotational stiffness without locking screw failure. We used 10 conventional compression nails, 10 novel compression nails and 10 interlocking nails with 30 composite femurs. We examined rotation stiffness and fracture site compression value by load cell with 3, 6 and 8 Nm torque wrenches using torsion apparatus with a maximum torque moment of 5 Nm in both directions. Rotational stiffness of composite femur-nail constructs was calculated. Rotational stiffness of composite femur-compression nail constructs compressed by 6 Nm torque wrench was 3.27 ± 1.81 Nm/angle (fracture site compression: 1588 N) and 60% more than that compressed with 3 Nm torque wrench (advised previously) with 2.04 ± 0.81 Nm/angle (inter fragmentary compression: 818 N) (P = 0.000). Rotational stiffness of composite-femur-compression nail constructs compressed by 3 Nm torque wrench was 2.04 ± 0.81 Nm/angle (fracture site compression: 818 N) and 277% more than that of interlocking nail with 0.54 ± 0.08 Nm/angle (fracture site compression: 0 N) (P = 0.000). Rotational stiffness and fracture site compression value produced by 3 Nm torque wrench was not satisfactory. To obtain maximum rotational stiffness and fracture site compression value without locking screw failure, 6 Nm torque wrench in compression nails and 8 Nm torque wrench in novel compression nails should be used.

  8. Proton-pump inhibitors and risk of fractures: an update meta-analysis.

    PubMed

    Zhou, B; Huang, Y; Li, H; Sun, W; Liu, J

    2016-01-01

    To identify the relationship between proton-pump inhibitors (PPIs) and the risk of fracture, we conducted an update meta-analysis of observational studies. Results showed that PPI use was associated with a modestly increased risk of hip, spine, and any-site fracture. Many studies have investigated the association of proton-pump inhibitors (PPIs) with fracture risk, but the results have been inconsistent. To evaluate this question, we performed a meta-analysis of relevant observational studies. A systematic literature search up to February 2015 was performed in PubMed. We combined relative risks (RRs) for fractures using random-effects models and conducted subgroup and stratified analyses. Eighteen studies involving a total of 244,109 fracture cases were included in this meta-analysis. Pooled analysis showed that PPI use could moderately increase the risk of hip fracture [RR = 1.26, 95 % confidence intervals (CIs) 1.16–1.36]. There was statistically significant heterogeneity among studies (p < 0.001; I 2 = 71.9 %). After limiting to cohort studies, there was also a moderate increase in hip fracture risk without evidence of study heterogeneity. Pooling revealed that short-term use (<1 year) and longer use (>1 year) were similarly associated with increased risk of hip fracture. Furthermore, a moderately increased risk of spine (RR = 1.58, 95 % CI 1.38–1.82) and any-site fracture (RR = 1.33, 95 % CI 1.15–1.54) was also found among PPI users. In this update meta-analysis of observational studies, PPI use modestly increased the risk of hip, spine, and any-site fracture, but no evidence of duration effect in subgroup analysis.

  9. Potential role of fibroblast growth factor in enhancement of fracture healing.

    PubMed

    Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W

    1998-10-01

    Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.

  10. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.

    PubMed

    Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei

    2018-04-17

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.

  11. Geophysical investigation of liquefaction and surface ruptures at selected sites in Oklahoma post the 2016 Mw 5.8 Pawnee, OK earthquake

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Ismail, A. M.; Pickens, C. M.; Beckendorff, D.; Mayle, M. V.; Goussi, J. F.; Nyalugwe, V.; Aghayan, A.; Tim, S.; Atekwana, E. A.

    2016-12-01

    To date, the Mw 5.8 Pawnee, Oklahoma, earthquake on September 3, 2016 produced the largest moment release in the central and eastern United States, linked to saline waste water injection into the underlying formations. This earthquake occurred in a region of complex fault interactions, and typical of most of the earthquake activity in Oklahoma the earthquake ruptured a previously unknown left-lateral strike-slip fault striking 109°. Moreover, unlike the 2011 Mw 5.7 Prague, Oklahoma earthquake, the Pawnee earthquake produced surface deformation including fractures and liquefaction features. In this study, we use high resolution electrical resistivity, ground penetrating radar (GPR) and surface fracture mapping to image the zones of surface disruption. Our objective was to report some of the near-surface deformations that are associated with the recent earthquake and compare them with deep structures. We selected two sites for this study. We observed linear fractures and liquefaction at the first site which is 5 km away from the earthquake epicenter, while the second site, 7.5 km away from the epicenter, showed mostly curvilinear fractures. The resistivity and GPR sections showed indication of saturated sediments at about 2 m - 5 m below ground surface and settlement-sag structure within the liquefaction dominated area, and less saturated sediments in areas dominated by fractures only. GPS mapping of fractures at the first site revealed a pattern of en-echelon fractures oriented 93°-116°, sub-parallel to the orientation of the slip direction of the earthquake, while the fractures at the second site trend along the bank of a river meander. We infer that the liquefaction was enhanced by the occurrence of loose, wet, fluvial deposits of the Arkansas River flood plain and adequate near-surface pore pressure at the liquefaction dominated areas. Our results suggest the greater influence of surface morphological heterogeneity on the ruptures farther away from the epicenter, while the relationship between the deep structures, displacement kinematics and the linear fractures closer to the epicenter are unclear. We conclude that high resolution geophysical imaging can be used as a rapid response tool for evaluating areas susceptible to failure during earthquakes and can help improve hazard mitigation measures.

  12. Ovariectomized Rats with Established Osteopenia have Diminished Mesenchymal Stem Cells in the Bone Marrow and Impaired Homing, Osteoinduction and Bone Regeneration at the Fracture Site.

    PubMed

    Tewari, Deepshikha; Khan, Mohd Parvez; Sagar, Nitin; China, Shyamsundar P; Singh, Atul K; Kheruka, Subhash C; Barai, Sukanta; Tewari, Mahesh C; Nagar, Geet K; Vishwakarma, Achchhe L; Ogechukwu, Omeje E; Bellare, Jayesh R; Gambhir, Sanjay; Chattopadhyay, Naibedya

    2015-04-01

    We investigated deleterious changes that take place in mesenchymal stem cells (MSC) and its fracture healing competence in ovariectomy (Ovx)-induced osteopenia. MSC from bone marrow (BM) of ovary intact (control) and Ovx rats was isolated. (99m)Tc-HMPAO (Technitium hexamethylpropylene amine oxime) labeled MSC was systemically transplanted to rats and fracture tropism assessed by SPECT/CT. PKH26 labeled MSC (PKH26-MSC) was bound in scaffold and applied to fracture site (drill-hole in femur metaphysis). Osteoinduction was quantified by calcein binding and microcomputed tomography. Estrogen receptor (ER) antagonist, fulvestrant was used to determine ER dependence of osteo-induction by MSC. BM-MSC number was strikingly reduced and doubling time increased in Ovx rats compared to control. SPECT/CT showed reduced localization of (99m)Tc-HMPAO labeled MSC to the fracture site, 3 h post-transplantation in Ovx rats as compared with controls. Post-transplantation, Ovx MSC labeled with PKH26 (Ovx PKH26-MSC) localized less to fracture site than control PKH26-MSC. Transplantation of either control or Ovx MSC enhanced calcein binding and bone volume at the callus of control rats over placebo group however Ovx MSC had lower efficacy than control MSC. Fulvestrant blocked osteoinduction by control MSC. When scaffold bound MSC was applied to fracture, osteoinduction by Ovx PKH26-MSC was less than control PKH26-MSC. In Ovx rats, control MSC/E2 treatment but not Ovx MSC showed osteoinduction. Regenerated bone was irregularly deposited in Ovx MSC group. In conclusion, Ovx is associated with diminished BM-MSC number and its growth, and Ovx MSC displays impaired engraftment to fracture and osteoinduction besides disordered bone regeneration.

  13. Complex association between body weight and fracture risk in postmenopausal women.

    PubMed

    Mpalaris, V; Anagnostis, P; Goulis, D G; Iakovou, I

    2015-03-01

    Osteoporosis is a common disease, characterized by low bone mass with micro-architectural disruption and skeletal fragility, resulting in an increased risk of fracture. A substantial number of studies has examined the possible relationship between body weight, bone mineral density and fracture risk in post-menopausal women, with the majority of them concluding that low body weight correlates with increased risk of fracture, especially hip fracture. Controversies about the potential protective effect of obesity on osteoporosis and consequent fracture risk still exist. Several recent studies question the concept that obesity exerts a protective effect against fractures, suggesting that it stands as a risk factor for fractures at specific skeletal sites, such as upper arm. The association between body weight and fracture risk is complex, differs across skeletal sites and body mass index, and is modified by the interaction between body weight and bone mineral density. Some potential explanations that link obesity with increased fracture risk may be the pattern of falls and impaired mobility in obese individuals, comorbidities, such as asthma, diabetes and early menopause, as well as, increased parathyroid hormone and reduced 25-hydroxy-vitamin D concentrations. © 2015 World Obesity.

  14. DFN Modeling for the Safety Case of the Final Disposal of Spent Nuclear Fuel in Olkiluoto, Finland

    NASA Astrophysics Data System (ADS)

    Vanhanarkaus, O.

    2017-12-01

    Olkiluoto Island is a site in SW Finland chosen to host a deep geological repository for high-level nuclear waste generated by nuclear power plants of power companies TVO and Fortum. Posiva, a nuclear waste management organization, submitted a construction license application for the Olkiluoto repository to the Finnish government in 2012. A key component of the license application was an integrated geological, hydrological and biological description of the Olkiluoto site. After the safety case was reviewed in 2015 by the Radiation and Nuclear Safety Authority in Finland, Posiva was granted a construction license. Posiva is now preparing an updated safety case for the operating license application to be submitted in 2022, and an update of the discrete fracture network (DFN) model used for site characterization is part of that. The first step describing and modelling the network of fractures in the Olkiluoto bedrock was DFN model version 1 (2009), which presented an initial understanding of the relationships between rock fracturing and geology at the site and identified the important primary controls on fracturing. DFN model version 2 (2012) utilized new subsurface data from additional drillholes, tunnels and excavated underground facilities in ONKALO to better understand spatial variability of the geological controls on geological and hydrogeological fracture properties. DFN version 2 connected fracture geometric and hydraulic properties to distinct tectonic domains and to larger-scale hydraulically conductive fault zones. In the version 2 DFN model, geological and hydrogeological models were developed along separate parallel tracks. The version 3 (2017) DFN model for the Olkiluoto site integrates geological and hydrogeological elements into a single consistent model used for geological, rock mechanical, hydrogeological and hydrogeochemical studies. New elements in the version 3 DFN model include a stochastic description of fractures within Brittle Fault Zones (BFZ), integration of geological and hydrostructural interpretations of BFZ, greater use of 3D geological models to better constrain the spatial variability of fracturing and fractures using hydromechanical principles to account for material behavior and in-situ stresses.

  15. Enhanced Geothermal Systems (EGS) - Where Are We Now

    NASA Astrophysics Data System (ADS)

    Wyborn, D.

    2011-12-01

    There were seven major EGS projects in which reservoir circulation was achieved prior to the Geodynamics Limited project in the Innamincka granite in northern South Australia which commenced in 2002. Six other projects did not achieve significant circulation. Importantly all but one of these projects were located in granitic bodies in which it is assumed that families of existing natural fractures are present. Evidence from all these EGS projects indicated that: 1 Stimulation in granite rock resulting from water injection with no added chemicals enhanced rock fracture permeability by 2-3 orders of magnitude. 2 The increased permeability resulted from increased fracture porosity associated with slippage on existing natural fractures during the stimulation. 3The extent of the resulting reservoir could be accurately mapped by acoustic (micro-seismic) monitoring of the fracture slippages. 4 The orientation of the reservoir is strongly dependent on the relative directions of the three principle rock stress axes. 5 The stimulation pumping pressures required were 50-75% of the minimum principle stress for the depth of reservoir creation in accord with geomechanical theory, and are therefore lower than those required to open tensile fractures (fracking). 6 The size of the resulting stimulated reservoir is proportional to the volume of water injected. New space created by the increase in fracture porosity associated with the micro-seismic events is taken up by the injected water. 7 Most projects to 2002 were carried out in strike-slip and normal faulting stress regimes with minimum stress direction horizontal and the resulting reservoirs were oriented close to vertically. 8 Volcanic activity can only occur in strike-slip and normal faulting stress regimes so EGS reservoirs in volcanic areas will be oriented close to vertically. 9 The Fjallbacka project in Sweden was the only project carried out in an overthrust stress regime (minimum stress direction vertical) and the reservoir was oriented horizontally. It is with these understandings that the Geodynamics field program commenced near Innamincka in 2002 where high temperature granite basement had been intersected at 3.6 km depth by petroleum exploration wells. Gravity and heat flow models indicated the basement granite to be 10 km thick and that most of the heat flow (> 100 mW/m2) was derived from elevated thorium and uranium levels in the granite. The stress environment was thought to be overthrust, but this was not certain.The results of the Geodynamics field program consists of drilling 5 wells to the granite, stimulation in three of those wells, flow testing in two of those wells and circulation between two of those wells. There are now four main barriers to economic deployment of EGS throughout the world for electricity generation. One is the cost of drilling and new technologies need to be developed to increase drilling ROP in high strength rocks. The other three relate to reservoir development and increased flow rate. These are (i) new geophysical tools to locate large fractures remotely (ii) deployment of temporary fracture sealing agents to allow enhancement in more than one fracture, and (iii) decreased flow impedance in a given fracture at the production well. New projects at different locations around the world are required to test ways of overcoming these barriers.

  16. Nonstandard Lumbar Region in Predicting Fracture Risk.

    PubMed

    Alajlouni, Dima; Bliuc, Dana; Tran, Thach; Pocock, Nicholas; Nguyen, Tuan V; Eisman, John A; Center, Jacqueline R

    Femoral neck (FN) bone mineral density (BMD) is the most commonly used skeletal site to estimate fracture risk. The role of lumbar spine (LS) BMD in fracture risk prediction is less clear due to osteophytes that spuriously increase LS BMD, particularly at lower levels. The aim of this study was to compare fracture predictive ability of upper L1-L2 BMD with standard L2-L4 BMD and assess whether the addition of either LS site could improve fracture prediction over FN BMD. This study comprised a prospective cohort of 3016 women and men over 60 yr from the Dubbo Osteoporosis Epidemiology Study followed up for occurrence of minimal trauma fractures from 1989 to 2014. Dual-energy X-ray absorptiometry was used to measure BMD at L1-L2, L2-L4, and FN at baseline. Fracture risks were estimated using Cox proportional hazards models separately for each site. Predictive performances were compared using receiver operating characteristic curve analyses. There were 565 women and 179 men with a minimal trauma fracture during a mean of 11 ± 7 yr. L1-L2 BMD T-score was significantly lower than L2-L4 T-score in both genders (p < 0.0001). L1-L2 and L2-L4 BMD models had a similar fracture predictive ability. LS BMD was better than FN BMD in predicting vertebral fracture risk in women [area under the curve 0.73 (95% confidence interval, 0.68-0.79) vs 0.68 (95% confidence interval, 0.62-0.74), but FN was superior for hip fractures prediction in both women and men. The addition of L1-L2 or L2-L4 to FN BMD in women increased overall and vertebral predictive power compared with FN BMD alone by 1% and 4%, respectively (p < 0.05). In an elderly population, L1-L2 is as good as but not better than L2-L4 site in predicting fracture risk. The addition of LS BMD to FN BMD provided a modest additional benefit in overall fracture risk. Further studies in individuals with spinal degenerative disease are needed. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  17. The impact of high total cholesterol and high low-density lipoprotein on avascular necrosis of the femoral head in low-energy femoral neck fractures.

    PubMed

    Zeng, Xianshang; Zhan, Ke; Zhang, Lili; Zeng, Dan; Yu, Weiguang; Zhang, Xinchao; Zhao, Mingdong; Lai, Zhicheng; Chen, Runzhen

    2017-02-17

    Avascular necrosis of the femoral head (AVNFH) typically constitutes 5 to 15% of all complications of low-energy femoral neck fractures, and due to an increasingly ageing population and a rising prevalence of femoral neck fractures, the number of patients who develop AVNFH is increasing. However, there is no consensus regarding the relationship between blood lipid abnormalities and postoperative AVNFH. The purpose of this retrospective study was to investigate the relationship between blood lipid abnormalities and AVNFH following the femoral neck fracture operation among an elderly population. A retrospective, comparative study was performed at our institution. Between June 2005 and November 2009, 653 elderly patients (653 hips) with low-energy femoral neck fractures underwent closed reduction and internal fixation with cancellous screws (Smith and Nephew, Memphis, Tennessee). Follow-up occurred at 1, 6, 12, 18, 24, 30, and 36 months after surgery. Logistic multi-factor regression analysis was used to assess the risk factors of AVNFH and to determine the effect of blood lipid levels on AVNFH development. Inclusion and exclusion criteria were predetermined to focus on isolated freshly closed femoral neck fractures in the elderly population. The primary outcome was the blood lipid levels. The secondary outcome was the logistic multi-factor regression analysis. A total of 325 elderly patients with low-energy femoral neck fractures (AVNFH, n = 160; control, n = 165) were assessed. In the AVNFH group, the average TC, TG, LDL, and Apo-B values were 7.11 ± 3.16 mmol/L, 2.15 ± 0.89 mmol/L, 4.49 ± 1.38 mmol/L, and 79.69 ± 17.29 mg/dL, respectively; all of which were significantly higher than the values in the control group. Logistic multi-factor regression analysis showed that both TC and LDL were the independent factors influencing the postoperative AVNFH within femoral neck fractures. This evidence indicates that AVNFH was significantly associated with blood lipid abnormalities in elderly patients with low-energy femoral neck fractures. The findings of this pilot trial justify a larger study to determine whether the result is more generally applicable to a broader population.

  18. Assessment of Sex Differences in Fracture Risk among Patients with Anorexia Nervosa: A Population-Based Cohort Study using The Health Improvement Network

    PubMed Central

    Nagata, Jason M.; Golden, Neville H.; Leonard, Mary B.; Copelovitch, Lawrence; Denburg, Michelle R.

    2017-01-01

    Though previous studies have demonstrated an increased fracture risk in females with anorexia nervosa (AN), fracture risk in males is not well characterized. The objective of this study was to examine sex differences in fracture risk and site-specific fracture incidence in AN. We performed a population-based retrospective cohort study using The Health Improvement Network. The median calendar year for the start of the observation period was 2004–5. We identified 9,239 females and 556 males <60 years of age with AN, and 97,889 randomly selected sex-, age-, and practice-matched participants without eating disorders (92,329 females and 5560 males). Multivariable Cox regression was used to estimate the hazard ratio (HR) for incident fracture. Median age at start of observation was 29.8 years in females and 30.2 years in males. The HR for fracture associated with AN differed by sex and age (interaction p = 0.002). Females with AN had an increased fracture risk at all ages (HR 1.59; 95% confidence interval [95% CI], 1.45–1.75). AN was associated with a higher risk of fracture among males >40 years of age (HR 2.54, 95% CI 1.32–4.90; p = 0.005) but not among males ≤40 years. Females with AN had a higher risk of fracture at nearly all anatomic sites. The greatest excess fracture risk was noted at the hip/femur (HR 5.59; 95% CI, 3.44–9.09) and pelvis (HR 4.54; 95% CI 2.42–8.50) in females and at the vertebrae (HR 7.25; 95% CI, 1.21–43.45) for males with AN. AN was associated with higher incident fracture risk in females across all age groups and in males >40 years old. Sites of highest fracture risk include the hip/femur and pelvis in females and vertebrae in males with AN. PMID:28019700

  19. Clavicle fractures: epidemiology, classification and treatment of 2 422 fractures in the Swedish Fracture Register; an observational study.

    PubMed

    Kihlström, Caroline; Möller, Michael; Lönn, Katarina; Wolf, Olof

    2017-02-15

    Large multi-centre studies of clavicle fractures have so far been missing. The aim of this observational study was to describe the epidemiology, classification and treatment of clavicle fractures in the The Swedish Fracture Register (SFR) that collects national prospective data from large fracture populations. Data were retrieved from the SFR on all clavicle fractures sustained by patients ≥ 15 years of age in 2013-2014 (n = 2 422) with regards to date of injury, cause of injury, fracture classification and treatment. Sixty-eight per cent of the clavicle fractures occurred in males. The largest subgroup was males aged 15-24 years, representing 21% of clavicle fractures. At the ages of 65 years and above, females sustained more clavicle fractures than males. Same-level falls and bicycle accidents were the most common injury mechanisms. Displaced midshaft fractures constituted 43% of all fractures and were the most frequently operated fractures. Seventeen per cent of the patients underwent operative treatment within 30 days of the injury, where plate fixation was the choice of treatment in 94% of fractures. The largest patient group was young males. Displaced midshaft fractures were the most common type of clavicle fracture as well as the most frequently operated type of fracture.

  20. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-03-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  1. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  2. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less

  3. Paper 58714 - Exploring activated faults hydromechanical processes from semi-controled field injection experiments

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Nussbaum, C.

    2015-12-01

    The appreciation of the sensitivity of fractures and fault zones to fluid-induced-deformations in the subsurface is a key question in predicting the reservoir/caprock system integrity around fluid manipulations with applications to reservoir leakage and induced seismicity. It is also a question of interest in understanding earthquakes source, and recently the hydraulic behavior of clay faults under a potential reactivation around nuclear underground depository sites. Fault and fractures dynamics studies face two key problems (1) the up-scaling of laboratory determined properties and constitutive laws to the reservoir scale which is not straightforward when considering faults and fractures heterogeneities, (2) the difficulties to control both the induced seismicity and the stimulated zone geometry when a fault is reactivated. Using instruments dedicated to measuring coupled pore pressures and deformations downhole, we conducted field academic experiments to characterize fractures and fault zones hydromechanical properties as a function of their multi-scale architecture, and to monitor their dynamic behavior during the earthquake nucleation process. We show experiments on reservoir or cover rocks analogues in underground research laboratories where experimental conditions can be optimized. Key result of these experiments is to highlight how important the aseismic fault activation is compared to the induced seismicity. We show that about 80% of the fault kinematic moment is aseismic and discuss the complex associated fault friction coefficient variations. We identify that the slip stability and the slip velocity are mainly controlled by the rate of the permeability/porosity increase, and discuss the conditions for slip nucleation leading to seismic instability.

  4. kISMET: Stress analysis and intermediate-scale hydraulic fracturing at the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Dobson, P. F.; Oldenburg, C. M.; Wu, Y.; Cook, P. J.; Kneafsey, T. J.; Nakagawa, S.; Ulrich, C.; Siler, D. L.; Guglielmi, Y.; Ajo Franklin, J. B.; Rutqvist, J.; Daley, T. M.; Birkholzer, J. T.; Wang, H. F.; Lord, N.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Ingraham, M. D.; Huang, H.; Mattson, E.; Johnson, T. C.; Zhou, J.; Zoback, M. D.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.

    2017-12-01

    In 2015, we established a field test facility at the Sanford Underground Research Facility (SURF), and in 2016 we carried out in situ hydraulic fracturing experiments to characterize the stress field, understand the effects of crystalline rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) project test site was established in the West Access Drift at the 4850 ft level, 1478 m below ground in phyllite of the Precambrian Poorman Formation. The kISMET team drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume 40 m below the drift invert (floor) at a total depth of 1518 m. Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale ( 1 cm or smaller) changes in the mechanical properties of the rock. Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. Pre-fracturing numerical simulations with a discrete element code were carried out to predict fracture size and magnitude of microseismicity. Field measurements of the stress field were made using hydraulic fracturing, which produced remarkably uniformly oriented fractures suggesting rock fabric did not play a significant role in controlling fracture orientation. Electrical resistivity tomography (ERT) and continuous active seismic source monitoring (CASSM) were deployed in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift were carried out during the generation of a larger fracture (so-called stimulation test). ERT was not able to detect the fracture created, nor did the accelerometers in the drift, but microseismicity was detected for the first (deepest) hydraulic-fracturing stress measurement. Analytical solutions suggest that the fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. Currently kISMET team members are analyzing a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF.

  5. Cost and Performance Report - Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2002-12-01

    methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost advantages at deep sites...while still keeping the implementation cost relatively low. Beyond these depths, innovative methods (such as jetting and hydraulic fracturing ) can...type excavator and a trench-type barrier. For sites where the affected aquifer is deeper, innovative methods, such as jetting and hydraulic

  6. Quantitative CMMI Assessment for Offshoring through the Analysis of Project Management Repositories

    NASA Astrophysics Data System (ADS)

    Sunetnanta, Thanwadee; Nobprapai, Ni-On; Gotel, Olly

    The nature of distributed teams and the existence of multiple sites in offshore software development projects pose a challenging setting for software process improvement. Often, the improvement and appraisal of software processes is achieved through a turnkey solution where best practices are imposed or transferred from a company’s headquarters to its offshore units. In so doing, successful project health checks and monitoring for quality on software processes requires strong project management skills, well-built onshore-offshore coordination, and often needs regular onsite visits by software process improvement consultants from the headquarters’ team. This paper focuses on software process improvement as guided by the Capability Maturity Model Integration (CMMI) and proposes a model to evaluate the status of such improvement efforts in the context of distributed multi-site projects without some of this overhead. The paper discusses the application of quantitative CMMI assessment through the collection and analysis of project data gathered directly from project repositories to facilitate CMMI implementation and reduce the cost of such implementation for offshore-outsourced software development projects. We exemplify this approach to quantitative CMMI assessment through the analysis of project management data and discuss the future directions of this work in progress.

  7. Rapid Diagnosis of an Ulnar Fracture with Portable Hand-Held Ultrasound

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Andrew W.; Brown, Ross; Diebel, Lawrence N.; Nicolaou, Savvas; Marshburn, Tom; Dulchavsky, Scott A.

    2002-01-01

    Orthopedic fractures are a common injury in operational activities, injuries that often occur in isolated or hostile environments. Clinical ultrasound devices have become more user friendly and lighter allowing them to be easily transported with forward medical teams. The bone-soft tissue interface has a very large acoustic impedance, with a high reflectance that can be used to visualize breaks in contour including fractures. Herein reported is a case of an ulnar fracture that was quickly visualized in the early phase of a multi-system trauma resuscitation with a hand-held ultrasound device. The implications for operational medicine are discussed.

  8. Prediction of accrual closure date in multi-center clinical trials with discrete-time Poisson process models.

    PubMed

    Tang, Gong; Kong, Yuan; Chang, Chung-Chou Ho; Kong, Lan; Costantino, Joseph P

    2012-01-01

    In a phase III multi-center cancer clinical trial or a large public health study, sample size is predetermined to achieve desired power, and study participants are enrolled from tens or hundreds of participating institutions. As the accrual is closing to the target size, the coordinating data center needs to project the accrual closure date on the basis of the observed accrual pattern and notify the participating sites several weeks in advance. In the past, projections were simply based on some crude assessment, and conservative measures were incorporated in order to achieve the target accrual size. This approach often resulted in excessive accrual size and subsequently unnecessary financial burden on the study sponsors. Here we proposed a discrete-time Poisson process-based method to estimate the accrual rate at time of projection and subsequently the trial closure date. To ensure that target size would be reached with high confidence, we also proposed a conservative method for the closure date projection. The proposed method was illustrated through the analysis of the accrual data of the National Surgical Adjuvant Breast and Bowel Project trial B-38. The results showed that application of the proposed method could help to save considerable amount of expenditure in patient management without compromising the accrual goal in multi-center clinical trials. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Development of a health information technology-based data system in community-based hospice and palliative care.

    PubMed

    Abernethy, Amy P; Wheeler, Jane L; Bull, Janet

    2011-05-01

    Few hospice and palliative care organizations use health information technology (HIT) for data collection and management; the feasibility and utility of a HIT-based approach in this multi-faceted, interdisciplinary context is unclear. To develop a HIT-based data infrastructure that serves multiple hospice and palliative care sites, meeting clinical and administrative needs with data, technical, and analytic support. Through a multi-site academic/community partnership, a data infrastructure was collaboratively developed, pilot-tested at a community-based site, refined, and demonstrated for data collection and preliminary analysis. Additional sites, which participated in system development, became prepared to contribute data to the growing aggregate database. Electronic data collection proved feasible in community-based hospice and palliative care. The project highlighted "success factors" for implementing HIT in this field: engagement of site-based project "champions" to promote the system from within; involvement of stakeholders at all levels of the organization, to promote culture change and buy-in; attention to local needs (e.g., data for quality reporting) and requirements (e.g., affordable cost, efficiency); consideration of practical factors (e.g., potential to interfere with clinical flow); provision of adequate software, technical, analytic, and statistical support; availability of flexible HIT options (e.g., different data-collection platforms); and adoption of a consortium approach in which sites can support one another, learn from each others' experiences, pool data, and benefit from economies of scale. In hospice and palliative care, HIT-based data collection/management has potential to generate better understanding of populations and outcomes, support quality assessment/quality improvement, and prepare sites to participate in research. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Optimisation of composite bone plates for ulnar transverse fractures.

    PubMed

    Chakladar, N D; Harper, L T; Parsons, A J

    2016-04-01

    Metallic bone plates are commonly used for arm bone fractures where conservative treatment (casts) cannot provide adequate support and compression at the fracture site. These plates, made of stainless steel or titanium alloys, tend to shield stress transfer at the fracture site and delay the bone healing rate. This study investigates the feasibility of adopting advanced composite materials to overcome stress shielding effects by optimising the geometry and mechanical properties of the plate to match more closely to the bone. An ulnar transverse fracture is characterised and finite element techniques are employed to investigate the feasibility of a composite-plated fractured bone construct over a stainless steel equivalent. Numerical models of intact and fractured bones are analysed and the mechanical behaviour is found to agree with experimental data. The mechanical properties are tailored to produce an optimised composite plate, offering a 25% reduction in length and a 70% reduction in mass. The optimised design may help to reduce stress shielding and increase bone healing rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Multi-Scale/Multi-Functional Probabilistic Composite Fatigue

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2008-01-01

    A multi-level (multi-scale/multi-functional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.

  12. Conceptualizing Indicator Domains for Evaluating Action Research

    ERIC Educational Resources Information Center

    Piggot-Irvine, Eileen; Rowe, Wendy; Ferkins, Lesley

    2015-01-01

    The focus of this paper is to share thinking about meta-level evaluation of action research (AR), and to introduce indicator domains for assessing and measuring inputs, outputs and outcomes. Meta-level and multi-site evaluation has been rare in AR beyond project implementation and participant satisfaction. The paper is the first of several…

  13. Becoming an Engineer in Public Universities: Pathways for Women and Minorities. Palgrave Studies in Urban Education

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; Tyson, Will, Ed.; Halperin, Rhoda H., Ed.

    2010-01-01

    Based on research conducted in a three-year, mixed-method, multi-site National Science Foundation, Science, Technology, Engineering and Mathematics Talent Expansion Program (STEP) Project, this book offers a comprehensive look into how engineering department culture and climate impacts the successful retention of female and under-represented…

  14. Data-Model Comparison of Pliocene Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  15. Maquoketa Shale Caprock Integrity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes

    2014-09-30

    The Knox Project objective is to evaluate the potential of formations within the Cambrian-Ordovician strata above the Mt. Simon Sandstone (St. Peter Sandstone and Potosi Dolomite) as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. The suitability of the St. Peter Sandstone and Potosi Dolomite to serve as reservoirs for CO2 sequestration is discussed in separate reports. In this report the data gathered from the Knox project, the Illinois Basin – Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Sequestration project (IL-ICCS) are used to make some conclusions about the suitability of the Maquoketamore » shale as a confining layer for CO2 sequestration. These conclusions are then upscaled to basin-wide inferences based on regional knowledge. Data and interpretations (stratigraphic, petrophysical, fractures, geochemical, risk, seismic) applicable to the Maquoketa Shale from the above mentioned projects was inventoried and summarized. Based on the analysis of these data and interpretations, the Maquoketa Shale is considered to be an effective caprock for a CO2 injection project in either the Potosi Dolomite or St. Peter Sandstone because it has a suitable thickness (~200ft. ~61m), advantageous petrophysical properties (low effective porosity and low permeability), favorable geomechanical properties, an absence of observable fractures and is regionally extensive. Because it is unlikely that CO2 would migrate upward through the Maquoketa Shale, CO2, impact to above lying fresh water aquifers is unlikely. Furthermore, the observations indicate that CO2 injected into the St. Peter Sandstone or Potosi Dolomite may never even migrate up into the Maquoketa Shale at a high enough concentrations or pressure to threaten the integrity of the caprock. Site specific conclusions were reached by unifying the data and conclusions from the IBDP, ICCS and the Knox projects. In the Illinois Basin, as one looks further away from these sites, the formation characteristics are expected to vary. The degree of how well this data can be extrapolated throughout the Basins (regionalized) is difficult to quantify because of the limited amount of data collected on the Maquoketa Shale away from IBDP, IL-ICCS and the Knox projects. Data gathered from the IBDP/IL-ICCS/Knox projects were used to make conclusions about the suitability of the Maquoketa shale as a confining layer for CO2 sequestration. This study indicates that the Maquoketa Shale would be a suitable caprock for a CO2 injection program in either the Potosi Dolomite or St. Peter Sandstone.« less

  16. Treatment of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures.

    PubMed

    Xu, Xiaofeng; Shi, Jun; Xu, Bing; Dai, Jiewen; Zhang, Shilei

    2015-03-01

    To evaluate the treatment methods of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures (MSF&DICF) and to compare the effect of different treatment methods of condylar fractures. Twenty-eight patients with MSF&DICF were included in this study. Twenty-two sites were treated by open reduction, and all the medial condylar fragments were fixed with titanium screws; whereas the other 22 sites underwent close treatment. The surgical effect between these 2 groups was compared based on clinical examination and radiographic examination results. Seventeen of 22 condyle fractures were repositioned in the surgery group, whereas 4 of 22 condyle fractures were repositioned in the close treatment group. Statistical difference was observed between these 2 groups (P < 0.01). Functional outcomes of the patients treated in the surgical treatment group also were better than those in the close treatment group. The dislocated intracapsular condyle fractures should be treated by surgical reduction with the maintenance of the attachment of lateral pterygoid muscle, which is beneficial to repositioning the dislocated condyle to its original physiological position, to closure of the mandibular lingual gap, to restore the mandibular width.

  17. Field investigation into unsaturated flow and transport in a fault: Model analyses

    USGS Publications Warehouse

    Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.

    2004-01-01

    Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.

  18. The Effects of Age, Adiposity, and Physical Activity on the Risk of Seven Site‐Specific Fractures in Postmenopausal Women

    PubMed Central

    Lacombe, Jason; Cairns, Benjamin J; Green, Jane; Reeves, Gillian K; Beral, Valerie

    2016-01-01

    ABSTRACT Risk factors for fracture of the neck of the femur are relatively well established, but those for fracture at other sites are little studied. In this large population study we explore the role of age, body mass index (BMI), and physical activity on the risk of fracture at seven sites in postmenopausal women. As part of the Million Women Study, 1,154,821 postmenopausal UK women with a mean age of 56.0 (SD 4.8) years provided health and lifestyle data at recruitment in 1996 to 2001. All participants were linked to National Health Service (NHS) hospital records for day‐case or overnight admissions with a mean follow‐up of 11 years per woman. Adjusted absolute and relative risks for seven site‐specific incident fractures were calculated using Cox regression models. During follow‐up, 4931 women had a fracture of the humerus; 2926 of the forearm; 15,883 of the wrist; 9887 of the neck of the femur; 1166 of the femur (not neck); 3199 a lower leg fracture; and 10,092 an ankle fracture. Age‐specific incidence rates increased gradually with age for fractures of forearm, lower leg, ankle, and femur (not neck), and steeply with age for fractures of neck of femur, wrist, and humerus. When compared to women with desirable BMI (20.0 to 24.9 kg/m2), higher BMI was associated with a reduced risk of fracture of the neck of femur, forearm, and wrist, but an increased risk of humerus, femur (not neck), lower leg, and ankle fractures (p < 0.001 for all). Strenuous activity was significantly associated with a decreased risk of fracture of the humerus and femur (both neck and remainder of femur) (p < 0.001), but was not significantly associated with lower leg, ankle, wrist, and forearm fractures. Postmenopausal women are at a high lifetime risk of fracture. BMI and physical activity are modifiable risk factors for fracture, but their associations with fracture risk differ substantially across fracture sites. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR) PMID:26950269

  19. Uniaxial Compression Analysis and Microdeformation Characterization of Kevin Dome Anhydrite Caprock

    NASA Astrophysics Data System (ADS)

    Malenda, M. G.; Frash, L.; Carey, J. W.

    2015-12-01

    The Department of Energy currently manages the Regional Carbon Sequestration Partnership (RCSP) in efforts to develop techniques to characterize promising CO2 storage sites, efficient and durable technology for injection, and suitable regulations for future CO2 storage. Within the RCSP, the Montana State University-Bozeman led Big Sky Carbon Sequestration Project has focused on potential CO2 storage sites, including the Kevin Dome in northern Montana. The 750mi2 large dome lies along the north-southwest trending Sweetgrass Arch and is a natural CO2 reservoir with the potential to produce one million tonnes of CO2. The Project intends to extract and reinject this one million tonnes of CO2back into the water-leg of the Dome within the dolomitic, middle Duperow Formation to monitor impacts on the surrounding environment and communities. The caprock system includes extremely low porosity dolomite in the upper Duperow that is overlain by the anhydrite-dominated Potlatch caprock. Core was extracted by the Project from the Wallawein 22-1 well. Six 1"-diameter sub-samples were taken at depths of 3687 and 3689' of the 4"-diameter core in both vertical and horizontal directions. Unconfined uniaxial compression tests were conducted at room temperature using an Instron 4483 load frame with a 150kN load cell operated at a strain rate of 6.835-5mm per second. Samples were instrumented with four strain gages to record elastic moduli and characterize fracture behavior. The Potlatch anhydrite has demonstrated to be both strong and stiff with an average uniaxial compressive strength of 150.62±23.95MPa, a Young's modulus of 89.96±10.22GPa, and a Poisson's ratio of 0.32±0.05. These three variables are essential to developing geomechanical models that assess caprock responses to injection during CO2 sequestration. Petrographic characterizations of the fractured samples reveal an 80% groundmass of subeuhedral anhydrite crystals measuring 97-625μm and 20% 0.12-1mm wide veins comprised of 9-35μm wide dolomite grains that become increasingly anhedral toward vein centers. Petrographic observations of tightly aligned anhydrite grains support the porosity of 7.5% calculated from sample densities. Such microscopic observations are key to understanding fracture propogation and permeability responses on a reservoir scale.

  20. Cost And Performance Report Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2003-12-01

    construction methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost... hydraulic fracturing , are available, but there is not as much widespread experience yet with these techniques for PRBs. Also, these innovative... hydraulic fracturing ) can be used at relatively higher cost. The cost comparison of a PRB versus an active remedy, such as a pump-and-treat system, often

  1. Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation.

    PubMed

    Teoh, Joanne Ee Mei; An, Jia; Feng, Xiaofan; Zhao, Yue; Chua, Chee Kai; Liu, Yong

    2018-03-03

    In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds) has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young's modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall designs could be further explored. In addition, creating a more precise prediction by investigating sets of in between hinge thicknesses and comparing the folding times before fracture, will be the subject of future work.

  2. Multi-scale fracture networks within layered shallow water tight carbonates

    NASA Astrophysics Data System (ADS)

    Panza, Elisa; Agosta, Fabrizio; Rustichelli, Andrea; Vinciguerra, Sergio; Zambrano, Miller; Prosser, Giacomo; Tondi, Emanuele

    2015-04-01

    The work is aimed at deciphering the contribution of background deformation and persistent fracture zones on the fluid flow properties of tight platform carbonates. Taking advantage of 3D exposures present in the Murge area of southern Italy, the fracture networks crosscutting at different scales the layered Cretaceous limestone of the Altamura Fm. were analyzed. The rock multi-layer is characterized by 10's of cm-thick, sub-horizontal, laterally continuous carbonate beds. Each bed commonly represents a shallowing-upward peritidal cycle made up of homogeneous micritic limestones grading upward to cm-thick stromatolitic limestones and/or fenestral limestones. The bed interfaces are formed by sharp maximum flooding surfaces. Porosity measurements carried out on 40 limestone samples collected from a single carbonate bed show values ranging between 0,5% and 5,5%. Background deformation includes both stratabound and non-stratabound fractures. The former elements consist of bed-perpendicular joints and sheared joints, which are confined within a single bed and often displace small, bed-parallel stylolites. Non-stratabound fractures consist of incipient, cm offset, sub-vertical strike-slip faults, which crosscut the bed interfaces. The aforementioned elements are often confined within individual bed-packages, which are identified by presence of pronounced surfaces locally marked by veneers of reddish clayey paleosoils. Persistent fracture zones consist of 10's of m-high, 10's of cm-offset strike-slip faults that offset the bed-package interfaces and are confined within individual bed-packages association. Laterally discontinuous, cm- to a few m-thick paleokarstic breccia levels separate the different bed-packages associations. Persistent fracture zones include asymmetric fractured damage zones and mm-thick veneers of discontinuous fault rocks. The fracture networks that pervasively crosscut the study limestone multi-layer are investigated by mean of scanline and scanarea methodologies. The dimensional, spatial and scaling properties of both stratabound and non-stratabound fractures are documented along single beds and bed-packages, respectively. Persistent fracture zones are studied from individual bed-package associations. By computing the intensity, height distribution, aspect ratio, aperture of each fracture/fault set, DFN (Discrete Fracture Network) models are built for the aforementioned different scales of observation. DFN models of single beds and bed-packages include stratabound and non-stratabound fractures. Differently, the DFN model of a bed-packages association also includes persistent fracture zones and related damage zones. To check the results of our computations, we also build up a smaller scale, 1m3 geocellular volume in which fractures are inserted one at time in the model. All DFN models do not include the matrix porosity. Porosity and 3D permeability (Kx, Ky, Kz) values are obtained as outputs of the DFN models. The results are consistent with the most prominet set of non-stratabound fractures being the major control on the petrophysical properties of both single beds and bed-packages. As expected, the persistent fractures zones strongly affect both porosity and permeability of the bed-packages association. The results of ongoing laboratory analyses on representative limestone samples not only will provide a quantitative assessment of the physical properties of the matrix in terms of porosity and permeability, but also will shed new light on the geometry, density and anisotropy of microfractures and their role on fluid flow properties.

  3. Characterization of the 3-D fracture setting of an unstable rock mass: From surface and seismic investigations to numerical modeling

    NASA Astrophysics Data System (ADS)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Vinciguerra, S.

    2017-08-01

    The characterization of the fracturing state of a potentially unstable rock cliff is a crucial requirement for stability assessments and mitigation purposes. Classical measurements of fracture location and orientation can however be limited by inaccessible rock exposures. The steep topography and high-rise morphology of these cliffs, together with the widespread presence of fractures, can additionally condition the success of geophysical prospecting on these sites. In order to mitigate these limitations, an innovative approach combining noncontact geomechanical measurements, active and passive seismic surveys, and 3-D numerical modeling is proposed in this work to characterize the 3-D fracture setting of an unstable rock mass, located in NW Italian Alps (Madonna del Sasso, VB). The 3-D fracture geometry was achieved through a combination of field observations and noncontact geomechanical measurements on oriented pictures of the cliff, resulting from a previous laser-scanning and photogrammetric survey. The estimation of fracture persistence within the rock mass was obtained from surface active seismic surveys. Ambient seismic noise and earthquakes recordings were used to assess the fracture control on the site response. Processing of both data sets highlighted the resonance properties of the unstable rock volume decoupling from the stable massif. A finite element 3-D model of the site, including all the retrieved fracture information, enabled both validation and interpretation of the field measurements. The integration of these different methodologies, applied for the first time to a complex 3-D prone-to-fall mass, provided consistent information on the internal fracturing conditions, supplying key parameters for future monitoring purposes and mitigation strategies.

  4. Characterization of fractures and flow zones in a contaminated shale at the Watervliet Arsenal, Albany County, New York

    USGS Publications Warehouse

    Williams, John H.; Paillet, Frederick L.

    2002-01-01

    Flow zones in a fractured shale in and near a plume of volatile organic compounds at the Watervliet Arsenal in Albany County, N. Y. were characterized through the integrated analysis of geophysical logs and single- and cross-hole flow tests. Information on the fracture-flow network at the site was needed to design an effective groundwater monitoring system, estimate offsite contaminant migration, and evaluate potential containment and remedial actions.Four newly drilled coreholes and four older monitoring wells were logged and tested to define the distribution and orientation of fractures that intersected a combined total of 500 feet of open hole. Analysis of borehole-wall image logs obtained with acoustic and optical televiewers indicated 79 subhorizontal to steeply dipping fractures with a wide range of dip directions. Analysis of fluid resistivity, temperature, and heat-pulse and electromagnetic flowmeter logs obtained under ambient and short-term stressed conditions identified 14 flow zones, which consist of one to several fractures and whose estimated transmissivity values range from 0.1 to more than 250 feet squared per day.Cross-hole flow tests, which were used to characterize the hydraulic connection between fracture-flow zones intersected by the boreholes, entailed (1) injection into or extraction from boreholes that penetrated a single fracture-flow zone or whose zones were isolated by an inflatable packer, and (2) measurement of the transient response of water levels and flow in surrounding boreholes. Results indicate a wellconnected fracture network with an estimated transmissivity of 80 to 250 feet squared per day that extends for at least 200 feet across the site. This interconnected fracture-flow network greatly affects the hydrology of the site and has important implications for contaminant monitoring and remedial actions.

  5. Evaluation of permeable fractures in rock aquifers

    NASA Astrophysics Data System (ADS)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  6. Preliminary study report: topological texture features extracted from standard radiographs of the heel bone are correlated with femoral bone mineral density

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Lutz, J.; Koerner, M.; Notohamiprodjo, M.; Reiser, M.

    2009-02-01

    With the growing number of eldery patients in industrialized nations the incidence of geriatric, i.e. osteoporotic fractures is steadily on the rise. It is of great importance to understand the characteristics of hip fractures and to provide diagnostic tests for the assessment of an individual's fracture-risk that allow to take preventive action and give therapeutic advice. At present, bone-mineral-density (BMD) obtained from DXA (dual-energy x-ray-absorptiometry) is the clinical standard of reference for diagnosis and follow-up of osteoporosis. Since availability of DXA - other than that of clinical X-ray imaging - is usually restricted to specialized medical centers it is worth trying to implement alternative methods to estimate an individual's BMD. Radiographs of the peripheral skeleton, e.g. the ankle, range among the most ordered diagnostic procedures in surgery for exclusion or confirmation of fracture. It would be highly beneficial if - as a by-product of conventional imaging - one could obtain a quantitative parameter that is closely correlated with femoral BMD in addition to the original diagnostic information, e.g. fracture status at the peripheral site. Previous studies could demonstrate a correlation between calcaneal BMD and osteoporosis. The objective of our study was to test the hypothesis that topological analysis of calcaneal bone texture depicted by a lateral x-ray projection of the ankle allows to estimate femoral BMD. Our analysis on 34 post-menopausal patients indicate that texture properties based on graylevel topology in calcaneal x-ray-films are closely correlated with BMD at the hip and may qualify as a substitute indicator of femoral fracture risk.

  7. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  8. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  9. Geophysical characterization of fractured bedrock at Site 8, former Pease Air Force Base, Newington, New Hampshire

    USGS Publications Warehouse

    Mack, Thomas J.; Degnan, James R.

    2003-01-01

    Borehole-geophysical logs collected from eight wells and direct-current resistivity data from three survey lines were analyzed to characterize the fractured bedrock and identify transmissive fractures beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter. The logs indicate several foliation and fracture trends in the bedrock. Two fracture-correlated lineaments trending 28? and 29?, identified with low-altitude aerial photography, are coincident with the dominant structural trend. The eight boreholes logged at Site 8 generally have few fractures and have yields ranging from 0 to 40 gallons per minute. The fractures that probably resulted in high well yields (20?40 gallons per minute) strike northeast-southwest or by the right hand rule, have an orientation of 215?, 47?, and 51?. Two-dimensional direct-current resistivity methods were used to collect detailed subsurface information about the overburden, bedrock-fracture zone depths, and apparent-dip directions. Analysis of data inversions from data collected with dipole-dipole and Schlumberger arrays indicated electrically conductive zones in the bedrock that are probably caused by fractured rock. These zones are coincident with extensions of fracture-correlated lineaments. The fracture-correlated lineaments and geophysical-survey results indicate a possible northeast-southwest anisotropy to the fractured rock.

  10. Data management integration for biomedical core facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David

    2007-03-01

    We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.

  11. Challenges and Solutions for the Integration of Structural and Hydrogeological Understanding of Fracture Systems - Insights from the Olkiluoto Site, Finland

    NASA Astrophysics Data System (ADS)

    Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.

    2017-12-01

    A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to pumping and underground construction. This work offers ideas and proposed solutions on how some of the challenges in describing fractured rock hydrogeology can be tackled.

  12. Three-dimensional DFN Model Development and Calibration: A Case Study for Pahute Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.

    2017-12-01

    Pahute Mesa, located in the north-western region of the Nevada National Security Site, is an area where numerous underground nuclear tests were conducted. The mesa contains several fractured aquifers that can potentially provide high permeability pathways for migration of radionuclides away from testing locations. The BULLION Forced-Gradient Experiment (FGE) conducted on Pahute Mesa injected and pumped solute and colloid tracers from a system of three wells for obtaining site-specific information about the transport of radionuclides in fractured rock aquifers. This study aims to develop reliable three-dimensional discrete fracture network (DFN) models to simulate the BULLION FGE as a means for computing realistic ranges of important parameters describing fractured rock. Multiple conceptual DFN models were developed using dfnWorks, a parallelized computational suite developed by Los Alamos National Laboratory, to simulate flow and conservative particle movement in subsurface fractured rocks downgradient from the BULLION test. The model domain is 100x200x100 m and includes the three tracer-test wells of the BULLION FGE and the Pahute Mesa Lava-flow aquifer. The model scenarios considered differ from each other in terms of boundary conditions and fracture density. For each conceptual model, a number of statistically equivalent fracture network realizations were generated using data from fracture characterization studies. We adopt the covariance matrix adaptation-evolution strategy (CMA-ES) as a global local stochastic derivative-free optimization method to calibrate the DFN models using groundwater levels and tracer breakthrough data obtained from the three wells. Models of fracture apertures based on fracture type and size are proposed and the values of apertures in each model are estimated during model calibration. The ranges of fracture aperture values resulting from this study are expected to enhance understanding of radionuclide transport in fractured rocks and support development of improved large-scale flow and transport models for Pahute Mesa.

  13. Multi-scale heterogeneity of the 2011 Great Tohoku-oki Earthquake from dynamic simulations

    NASA Astrophysics Data System (ADS)

    Aochi, H.; Ide, S.

    2011-12-01

    In order to explain the scaling issues of earthquakes of different sizes, multi-scale heterogeneity conception is necessary to characterize earthquake faulting property (Ide and Aochi, JGR, 2005; Aochi and Ide, JGR, 2009).The 2011 Great Tohoku-oki earthquake (M9) is characterized by a slow initial phase of about M7, a M8 class deep rupture, and a M9 main rupture with quite large slip near the trench (e.g. Ide et al., Science, 2011) as well as the presence of foreshocks. We dynamically model these features based on the multi-scale conception. We suppose a significantly large fracture energy (corresponding to slip-weakening distance of 3.2 m) in most of the fault dimension to represent the M9 rupture. However we give local heterogeneity with relatively small circular patches of smaller fracture energy, by assuming the linear scaling relation between the radius and fracture energy. The calculation is carried out using 3D Boundary Integral Equation Method. We first begin only with the mainshock (Aochi and Ide, EPS, 2011), but later we find it important to take into account of a series of foreshocks since the 9th March (M7.4). The smaller patches including the foreshock area are necessary to launch the M9 rupture area of large fracture energy. We then simulate the ground motion in low frequencies using Finite Difference Method. Qualitatively, the observed tendency is consistent with our simulations, in the meaning of the transition from the central part to the southern part in low frequencies (10 - 20 sec). At higher frequencies (1-10 sec), further small asperities are inferred in the observed signals, and this feature matches well with our multi-scale conception.

  14. Bone fractures among postmenopausal patients with endocrine-responsive early breast cancer treated with 5 years of letrozole or tamoxifen in the BIG 1-98 trial.

    PubMed

    Rabaglio, M; Sun, Z; Price, K N; Castiglione-Gertsch, M; Hawle, H; Thürlimann, B; Mouridsen, H; Campone, M; Forbes, J F; Paridaens, R J; Colleoni, M; Pienkowski, T; Nogaret, J-M; Láng, I; Smith, I; Gelber, R D; Goldhirsch, A; Coates, A S

    2009-09-01

    To compare the incidence and timing of bone fractures in postmenopausal women treated with 5 years of adjuvant tamoxifen or letrozole for endocrine-responsive early breast cancer in the Breast International Group (BIG) 1-98 trial. We evaluated 4895 patients allocated to 5 years of letrozole or tamoxifen in the BIG 1-98 trial who received at least some study medication (median follow-up 60.3 months). Bone fracture information (grade, cause, site) was collected every 6 months during trial treatment. The incidence of bone fractures was higher among patients treated with letrozole [228 of 2448 women (9.3%)] versus tamoxifen [160 of 2447 women (6.5%)]. The wrist was the most common site of fracture in both treatment groups. Statistically significant risk factors for bone fractures during treatment included age, smoking history, osteoporosis at baseline, previous bone fracture, and previous hormone replacement therapy. Consistent with other trials comparing aromatase inhibitors to tamoxifen, letrozole was associated with an increase in bone fractures. Benefits of superior disease control associated with letrozole and lower incidence of fracture with tamoxifen should be considered with the risk profile for individual patients.

  15. Technical tip: tightrope fixation of neer type II distal clavicle fracture supported by a case series.

    PubMed

    Haque, Syed; Khan, Anwar; Sharma, A; Sundararajan, Sabapathy

    2014-03-27

    We present a case series of 3 patients who underwent a novel technique of tight rope fixation for Neer type II distal clavicle fracture. 2-3 cm incision was made lateral to the fracture site moving inferomedially. Part of the distal end of clavicle was exposed close to fracture site and further dissection was carried out to reveal the coracoid process. Tight rope fixation of the distal ends of clavicle and coracoid was performed to achieve satisfactory fracture reduction on x-ray. 4 weeks of sling with gentle pendulum movement were followed by active shoulder movement exercises. Radiographic union was reached at 6 weeks' time, while the patients achieved proper shoulder functionality 3 months following the operation. Neer type II distal clavicle fractures are characterized by disruption of the coracoclavicular ligament with wide proximal fragment displacement. Overall, type II distal clavicle fractures have a 20-30% nonunion rate if treated non-surgically. Various techniques have been described for the treatment of these fractures, including hook plate and nailing. Tight rope fixation provides proper apposition of the fracture fragments for union by maintaining a reduced coracoclavicular interval.

  16. The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition

    NASA Astrophysics Data System (ADS)

    Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng

    2014-06-01

    This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.

  17. The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago

    PubMed Central

    Politis, Gustavo G.; Gutiérrez, María A.; Blasi, Adriana

    2016-01-01

    The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P.) and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.). Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM) in the North America. PMID:27683248

  18. Incidence and pattern of mandibular fractures in Rohilkhand region, Uttar Pradesh state, India: A retrospective study

    PubMed Central

    Giri, Kolli Yada; Singh, Aishwarya Pratap; Dandriyal, Ramakant; Indra, Niranjanaprasad; Rastogi, Sanjay; Mall, Sunil Kumar; Chowdhury, Shouvik; Singh, Himanshu Pratap

    2015-01-01

    Aims To understand and evaluate the significance of various aetiological factors in determining the incidence and dictating the patterns of mandibular fractures in Rohilkhand region. Methods The patient records and radiographs for 144 patients treated for mandibular fractures were reviewed between the time periods from January 2012 to December 2013. Data on age, gender, aetiology, use of intoxicants, head injury, associated injuries, days of the week, anatomic site and multiple fractures within the mandible were recorded and assessed. Results Maximum incidence of fractures was observed among the individuals in 3rd decade (35.4%) followed by 2nd and 4th decades, which exhibited 32 and 30 cases (22.2% and 20.8%), respectively. Male to female ratio was biased (4:1) portraying a male predominance. Road traffic accidents (RTAs) were observed to be the predominant aetiological factor responsible accounting for 79.2% of the total injuries followed by assaults (11.8%) and falls (9%). Parasymphysis exhibited the highest incidence (32.63%) amongst the anatomic sites, followed by body (18.75%), angle (16.66%), condyle (15.27%), symphysis (12.50%), ramus (2.77%) and coronoid (1.38%). Conclusion The study reveals that majority of affected patients were in the 2nd and 3rd decades. A definitive relationship existed between RTA and the incidence of mandibular fractures. The frequency further increased with consumption of social intoxicants. The most commonly fractured site was parasymphysis either isolated or associated with other fractures in the mandible. PMID:26587379

  19. Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling.

    PubMed

    Fouad, H

    2011-05-01

    In previous work by Fouad (Medical Engineering and Physics 2010 [23]), 3D finite element (FE) models for fractured bones with function-graded (FG) bone-plates and traditional bone-plates made of stainless steel (SS) and titanium (Ti) alloy were examined under compressive loading conditions using the ABAQUS Code. In this study, the effects of the presence of the torsional load in addition to the compressive load on the predicted stresses of the fracture fixation bone-plate system are examined at different healing stages. The effects on the stress on the fracture site when using contacted and non-contacted bone-plate systems are also studied. The FE modelling results indicate that the torsional load has significant effects on the resultant stress on the fracture fixation bone-plate system, which should be taken into consideration during the design and the analysis. The results also show that the stress shielding at the fracture site decreases significantly when using FG bone-plates compared to Ti alloy or SS bone-plates. The presence of a gap between the bone and the plate results in a remarkable reduction in bone stress shielding at the fracture site. Therefore, the significant effects of using an FG bone-plate with a gap and the presence of torsional load on the resultant stress on the fracture fixation bone-plate system should be taken into consideration. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. A small interfering RNA targeting Lnk accelerates bone fracture healing with early neovascularization.

    PubMed

    Kawakami, Yohei; Ii, Masaaki; Matsumoto, Tomoyuki; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Akimaru, Hiroshi; Mifune, Yutaka; Shoji, Taro; Fukui, Tomoaki; Asahi, Michio; Kurosaka, Masahiro; Asahara, Takayuki

    2013-09-01

    Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions.

  1. Validation of fragility fractures in primary care electronic medical records: A population-based study.

    PubMed

    Martinez-Laguna, Daniel; Soria-Castro, Alberto; Carbonell-Abella, Cristina; Orozco-López, Pilar; Estrada-Laza, Pilar; Nogues, Xavier; Díez-Perez, Adolfo; Prieto-Alhambra, Daniel

    2017-11-28

    Electronic medical records databases use pre-specified lists of diagnostic codes to identify fractures. These codes, however, are not specific enough to disentangle traumatic from fragility-related fractures. We report on the proportion of fragility fractures identified in a random sample of coded fractures in SIDIAP. Patients≥50 years old with any fracture recorded in 2012 (as per pre-specified ICD-10 codes) and alive at the time of recruitment were eligible for this retrospective observational study in 6 primary care centres contributing to the SIDIAP database (www.sidiap.org). Those with previous fracture/s, non-responders, and those with dementia or a serious psychiatric disease were excluded. Data on fracture type (traumatic vs fragility), skeletal site, and basic patient characteristics were collected. Of 491/616 (79.7%) patients with a registered fracture in 2012 who were contacted, 331 (349 fractures) were included. The most common fractures were forearm (82), ribs (38), and humerus (32), and 225/349 (64.5%) were fragility fractures, with higher proportions for classic osteoporotic sites: hip, 91.7%; spine, 87.7%; and major fractures, 80.5%. This proportion was higher in women, the elderly, and patients with a previously coded diagnosis of osteoporosis. More than 4 in 5 major fractures recorded in SIDIAP are due to fragility (non-traumatic), with higher proportions for hip (92%) and vertebral (88%) fracture, and a lower proportion for fractures other than major ones. Our data support the validity of SIDIAP for the study of the epidemiology of osteoporotic fractures. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  2. Analysis of Shock and High-Rate Data for Ceramics: Strength and Failure of Brittle Solids

    DTIC Science & Technology

    2007-07-01

    Fracture Damage............................................................................... 31 Residual Projectile Velocity... Fracture ............................................................................................ 36 VI Closure...Project No. 17168 2 exploration of ceramic strength in the ballistic event – in particular the failure, or fracture , wave phenomena. Another objective is

  3. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of examining rate-dependent behavior for determining the longevity of structures manufactured from composite materials.

  4. Some open issues in the analysis of the storage and migration properties of fractured carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio

    2017-04-01

    Underground CO2 storage in depleted hydrocarbon reservoirs may become a common practice in the future to lower the concentration of greenhouse gases in the atmosphere. Results from the first experiments conducted in carbonate rocks, for instance the Lacq integrated CCS Pilot site, SW France, are quite exciting. All monitored parameters, such as the CO2 concentration at well sites, well pressures, cap rock integrity and environmental indicators show the long-term integrity of this type of geological reservoirs. Other positive news arise from the OXY-CFB-300 Compostilla Project, NW Spain, where most of the injected CO2 dissolved into the formation brines, suggesting the long-term security of this method. However, in both cases, the CO2- rich fluids partially dissolved the carbonate minerals during their migration through the fractured reservoir, modifying the overall pore volume and pressure regimes. These results support the growing need for a better understanding of the mechanical behavior of carbonate rocks over geological time of scales. In fact, it is well known that carbonates exhibit a variety of deformation mechanisms depending upon many intrinsic factors such as composition, texture, connected pore volume, and nature of the primary heterogeneities. Commonly, tight carbonates are prone to opening-mode and/or pressure solution deformation. The interplay between these two mechanisms likely affects the petrophysical properties of the fault damage zones, which form potential sites for CO2 storage due to their high values of both connected porosity and permeability. On the contrary, cataclastic deformation produces fault rocks that often form localized fluid barriers for cross-fault fluid flow. Nowadays, questions on the conditions of sealing/leakage of carbonate fault rocks are still open. In particular, the relative role played by bulk crushing, chipping, cementation, and pressure solution on connected porosity of carbonate fault rocks during structural evolution and diagenesis is not determined yet. Differently, porous rocks are mainly affected by deformation banding. The latter process involves the collapse of primary porosity within narrow bands, which often localize into well-developed clusters. Currently, researchers focus on the assessment of the 3D pore geometry of the shear bands, which may act as possible sites for residual C02 trapping. The fault-bounded rock volumes are mainly crosscut by background fractures. These diffuse fractures are often compartmentalized into discrete mechanical units, which are bounded by primary heterogeneities such as bed interfaces and transgressive erosional surfaces. Moreover, bed-parallel pressure solution seams, structural elements that commonly form in limestone rocks during burial diagenesis, can also act as mechanical interfaces during growth of background fractures. However, early embrittlement of carbonates was also documented, suggesting to further investigate their diagenetic evolution to determine the conditions at which the latter phenomenon takes place. Results could shed new lights into the storage properties and, hence, the amount of CO2 that can be securely stored within significant volumes of fractured carbonates in the underground.

  5. Anisotropic Velocities of Gas Hydrate-Bearing Sediments in Fractured Reservoirs

    USGS Publications Warehouse

    Lee, Myung W.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-01), one of the richest marine gas hydrate accumulations was discovered at drill site NGHP-01-10 in the Krishna-Godavari Basin, offshore of southeast India. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Gas hydrate saturations estimated from P- and S-wave velocities, assuming that gas hydrate-bearing sediments (GHBS) are isotropic, are much higher than those estimated from the pressure cores. To reconcile this difference, an anisotropic GHBS model is developed and applied to estimate gas hydrate saturations. Gas hydrate saturations estimated from the P-wave velocities, assuming high-angle fractures, agree well with saturations estimated from the cores. An anisotropic GHBS model assuming two-component laminated media - one component is fracture filled with 100-percent gas hydrate, and the other component is the isotropic water-saturated sediment - adequately predicts anisotropic velocities at the research site.

  6. Raman Spectroscopic Analysis of Fingernail Clippings Can Help Differentiate Between Postmenopausal Women Who Have and Have Not Suffered a Fracture

    PubMed Central

    Beattie, James R.; Cummins, Niamh M.; Caraher, Clare; O’Driscoll, Olive M.; Bansal, Aruna T.; Eastell, Richard; Ralston, Stuart H.; Stone, Michael D.; Pearson, Gill; Towler, Mark R.

    2016-01-01

    Raman spectroscopy was applied to nail clippings from 633 postmenopausal British and Irish women, from six clinical sites, of whom 42% had experienced a fragility fracture. The objective was to build a prediction algorithm for fracture using data from four sites (known as the calibration set) and test its performance using data from the other two sites (known as the validation set). Results from the validation set showed that a novel algorithm, combining spectroscopy data with clinical data, provided area under the curve (AUC) of 74% compared to an AUC of 60% from a reduced QFracture score (a clinically accepted risk calculator) and 61% from the dual-energy X-ray absorptiometry T-score, which is in current use for the diagnosis of osteoporosis. Raman spectroscopy should be investigated further as a noninvasive tool for the early detection of enhanced risk of fragility fracture. PMID:27429561

  7. Hydrogeological characterization of soil/weathered zone and underlying fractured bedrocks in DNAPL contaminated areas using the electromagnetic flowmeter

    NASA Astrophysics Data System (ADS)

    Kang, E.; Yeo, I.

    2011-12-01

    Flowmeter tests were carried out to characterize hydrogeology at DNAPL contaminated site in Wonju, Korea. Aquifer and slug tests determined hydraulic conductivity of soil/weathered zone and underlying fractured bed rocks to be 2.95×10-6 to 7.11×10-6 m/sec and 9.14×10-7 to 2.59×10-6 m/sec, respectively. Ambient flowmeter tests under natural hydraulic conditions revealed that the inflow and outflow take place through the borehole of soil/weathered zone with a tendency of down flow in the borehole. In particular, the most permeable layer of 22 to 30 m below the surface was found to form a major groundwater flow channel. On the contrary, a slight inflow and outflow was observed in the borehole, and the groundwater that inflows in the bottom section of the fractured bedrock flows up and exits through to the most permeable layer. Hydraulic heads measured at nearby multi-level boreholes confirmed the down flow in the soil/weathered zone and the up flow in fractured bedrocks. It was also revealed that the groundwater flow converges to the most permeable layer. TCE concentration in groundwater was measured at different depths, and in the borehole of the soil/weathered zone, high TCE concentration was found with higher than 10 mg/L near to the water table and decreased to about 6 mg/L with depth. The fractured bedrocks have a relatively constant low TCE concentration through a 20 m thick screen at less than l mg/L. The hydrogeology of the up flow in the soil/weathered zone and the down flow in underlying fractured bedrock leads the groundwater flow, and subsequently TCE plume, mainly to the most permeable layer that also restricts the advective transport of TCE plume to underlying fractured bedrocks. The cross borehole flowmeter test was carried out to find any hydrogeological connection between the soil/weathered zone and underlying fractured bedrocks. When pumping groundwater from the soil/weathered zone, no induced flow by groundwater extraction was observed at the underlying fractured bedrocks, and the hydraulic connection was identified only within the soil/weathered zone. However, when pumping groundwater from the fractured bedrocks, the hydraulic response was observed in the soil/weathered zone rather than another fractured bedrock borehole. Thus, when pump-and-treat is adopted for remediating the dissolved plume of DNAPL, the pumping well should be placed in the soil/weathered zone. Otherwise, the pumping of groundwater from the underlying fractured bedrocks will disperse the TCE plume into underlying fractured bedrocks.

  8. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    EPA Science Inventory

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  9. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites

    PubMed Central

    Wu, Weili; Gong, Zhili

    2018-01-01

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release. PMID:29673236

  10. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    NASA Astrophysics Data System (ADS)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  11. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion.

    PubMed

    Könnecke, Ireen; Serra, Alessandro; El Khassawna, Thaqif; Schlundt, Claudia; Schell, Hanna; Hauser, Anja; Ellinghaus, Agnes; Volk, Hans-Dieter; Radbruch, Andreas; Duda, Georg N; Schmidt-Bleek, Katharina

    2014-07-01

    Fracture healing is a regenerative process in which bone is restored without scar tissue formation. The healing cascade initiates with a cycle of inflammation, cell migration, proliferation and differentiation. Immune cells invade the fracture site immediately upon bone damage and contribute to the initial phase of the healing process by recruiting accessory cells to the injury site. However, little is known about the role of the immune system in the later stages of fracture repair, in particular, whether lymphocytes participate in soft and hard callus formation. In order to answer this question, we analyzed femoral fracture healing in mice by confocal microscopy. Surprisingly, after the initial inflammatory phase, when soft callus developed, T and B cells withdrew from the fracture site and were detectable predominantly at the femoral neck and knee. Thereafter lymphocytes massively infiltrated the callus region (around day 14 after injury), during callus mineralization. Interestingly, lymphocytes were not found within cartilaginous areas of the callus but only nearby the newly forming bone. During healing B cell numbers seemed to exceed those of T cells and B cells progressively underwent effector maturation. Both, osteoblasts and osteoclasts were found to have direct cell-cell contact with lymphocytes, strongly suggesting a regulatory role of the immune cells specifically in the later stages of fracture healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. MuSET, A High Precision Logging Sensor For Downhole Spontaneous Electrical Potential.

    NASA Astrophysics Data System (ADS)

    Pezard, P. A.; Gautier, S.; Le Borgne, T.; Deltombe, J.

    2008-12-01

    MuSET has been designed by ALT and CNRS in the context of the EC ALIANCE research project. It is based on an existing multi-parameter borehole fluid sensor (p, T, Cw, pH, Eh) built by ALT. The new downhole geophysical tool aims to measure subsurface spontaneous electrical potentials (SP) in situ with great precision (< µV). For this, the device includes an unpolazirable Pb/PbCl2 electrode referred to a similar one at surface. Initial field testing in Montpellier (Languedoc, France), Ploemeur (Brittany, France) and Campos (Mallorca, Spain) took advantage of the set of field sites developed as part of ALIANCE then as part of the environmental research observatory (ORE) network for hydrogeology "H+". While Cretaceous marly limestone at Lavalette (Montpellier) proved to be almost exclusively the source of membrane potential, the clay-starved Miocene reefal carbonates of Campos generate a signal dominated by electrokinetic potential. This signal is generated due to nearby agricultural pumping, and associated strong horizontal flow. At the top of the salt to fresh water transtion, a discrepancy between the SP signal and the absence of vertical flow measured with a heat-pulse flowmeter hints at a capacity to detect the "fluid-junction", diffusion potential. At Ploemeur, the altered granite found in the vicinity of faults and fractures is also the source of a SP signal, mostly surface related while most fractures appear to be closed. In all, the MuSET demonstrates a capacity to identify several subsurface sources of natural electrical potential such as diffusion ones (membrane potential in the presence of clays, fickean processes due to pore fluid salinity gradients), or else the electrokinetic potential with pore fluid pressure gradients. While spontaneous electrical currents often loop out of the borehole, MuSET might be used as a radial electrical flowmeter once the diffusion components taken into account.

  13. Determination and maintenance of DE minimis risk for migration of residual tritium (3H) from the 1969 Project Rulison nuclear test to nearby hydraulically fractured natural gas wells.

    PubMed

    Daniels, Jeffrey I; Chapman, Jenny B

    2013-05-01

    The Project Rulison underground nuclear test was a proof-of-concept experiment that was conducted under the Plowshare Program in 1969 in the Williams Fork Formation of the Piceance Basin in west-central Colorado. Today, commercial production of natural gas is possible from low permeability, natural gas bearing formations like that of the Williams Fork Formation using modern hydraulic fracturing techniques. With natural gas exploration and production active in the Project Rulison area, this human health risk assessment was performed in order to add a human health perspective for site stewardship. Tritium (H) is the radionuclide of concern with respect to potential induced migration from the test cavity leading to subsequent exposure during gas-flaring activities. This analysis assumes gas flaring would occur for up to 30 d and produce atmospheric H activity concentrations either as low as 2.2 × 10 Bq m (6 × 10 pCi m) from the minimum detectable activity concentration in produced water or as high as 20.7 Bq m (560 pCi m), which equals the highest atmospheric measurement reported during gas-flaring operations conducted at the time of Project Rulison. The lifetime morbidity (fatal and nonfatal) cancer risks calculated for adults (residents and workers) and children (residents) from inhalation and dermal exposures to such activity concentrations are all below 1 × 10 and considered de minimis. The implications for monitoring production water for conforming health-protective, risk-based action levels also are examined.

  14. Differences in Site-Specific Fracture Risk Among Older Women with Discordant Results for Osteoporosis at Hip and Spine: the Study of Osteoporotic Fractures

    PubMed Central

    Fink, Howard A.; Harrison, Stephanie L.; Taylor, Brent C.; Cummings, Steven R.; Schousboe, John T.; Kuskowski, Michael A.; Stone, Katie L.; Ensrud, Kristine E.

    2009-01-01

    To examine the fracture pattern in older women whose bone mineral density (BMD) T-score criteria for osteoporosis at hip and spine disagree, hip and spine BMD were measured in Study of Osteoporotic Fractures participants using dual energy x-ray absorptiometry (DXA). Hip osteoporosis was defined as T-score ≤-2.5 at femoral neck or total hip, and spine osteoporosis as T-score ≤-2.5 at lumbar spine. Incident clinical fractures were self-reported and centrally adjudicated. Incident radiographic spine fractures were defined morphometrically. Compared to women with osteoporosis at neither hip nor spine, those osteoporotic only at hip had a 3.0-fold age and weight-adjusted increased risk for hip fracture (95%CI 2.4-3.6), and smaller increases in risk of nonhip nonspine (HR=1.6), clinical spine (OR=2.2), and radiographic spine fractures (OR=1.5). Women osteoporotic only at spine had a 2.8-fold increased odds of radiographic spine fracture (95%CI 2.1-3.8), and smaller increases in risk of clinical spine (OR=1.4), nonhip nonspine (HR=1.6), and hip fractures (HR=1.2). Discordant BMD results predict different fracture patterns. DXA fracture risk estimation in these patients should be site-specific. Women osteoporotic only at spine would not have been identified from hip BMD measurement alone, and may have a sufficiently high fracture risk to warrant preventive treatment. PMID:18296090

  15. Concomitant upper limb fractures and short-term functional recovery in hip fracture patients: does the site of upper limb injury matter?

    PubMed

    Di Monaco, Marco; Castiglioni, Carlotta; Vallero, Fulvia; Di Monaco, Roberto; Tappero, Rosa

    2015-05-01

    The aim of this study was to evaluate functional recovery in a subgroup of hip fracture patients who sustained a simultaneous fracture at the upper limb, taking into account the site of upper limb injury. Of 760 patients admitted consecutively to the authors' rehabilitation hospital because of a fall-related hip fracture, 700 were retrospectively investigated. Functional outcome was assessed using Barthel Index scores. In 49 of the 700 patients, a single fall resulted in both a hip fracture and a fracture of either wrist (n = 34) or proximal humerus (n = 15). The patients with concomitant shoulder fractures had lower median Barthel Index scores after rehabilitation (70 vs. 90, P = 0.003), lower median Barthel Index effectiveness (57.1 vs. 76.9, P = 0.018), and prolonged median length of stay (42 vs. 36 days, P = 0.011) than did the patients with isolated hip fractures. Significant differences persisted after adjustment for six potential confounders. The adjusted odds ratio for achieving a Barthel Index score lower than 85 was 6.71 (95% confidence interval, 1.68-26.81; P = 0.007) for the patients with concomitant shoulder fractures. Conversely, no prognostic disadvantages were associated with concomitant wrist fractures. Data show a worse functional recovery and a prolonged length of stay in the subgroup of hip fracture patients who sustained a concomitant fracture at the proximal humerus, but not at the wrist.

  16. Novel Therapy for Bone Regeneration in Large Segmental Defects

    DTIC Science & Technology

    2017-12-01

    HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda K, Ritter G, Degreif J, Rudigier J. Pathogenesis of pul...morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 16. SECURITY CLASSIFICATION OF: 17... fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT SUMMARY: Project start date 30/09/2013 Project end date 29/09/2017 (with 1 year NCE

  17. Novel Therapy for Bone Regeneration in Large Segmental Defects

    DTIC Science & Technology

    2017-12-01

    healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda...mechanisms to elicit bone healing. 15. SUBJECT TERMS Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing...thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT SUMMARY: Project start date 30/09/2013 Project end

  18. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India

    USGS Publications Warehouse

    Riedel, M.; Collett, T.S.; Kumar, P.; Sathe, A.V.; Cook, A.

    2010-01-01

    Gas hydrate was discovered in the Krishna-Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ~2.5 km2 defined using seismic attributes of the seafloor reflection, as well as " seismic sweetness" at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ~6 km NW of Site NGHP-01-10. ?? 2010.

  19. Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique

    NASA Astrophysics Data System (ADS)

    Chirindja, F. J.; Dahlin, T.; Juizo, D.

    2017-08-01

    Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (<600 L/h). Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.

  20. Assessing the induced seismicity by hydraulic fracturing at the Wysin site (Poland)

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Cesca, Simone; Kriegerowski, Marius; Heimann, Sebastian; Dahm, Torsten; Mirek, Janusz; Lasocky, Stanislaw

    2017-04-01

    Induced seismicity related to industrial processes including shale gas and oil exploitation is a current issues that implies enough reasons to be concerned. Hydraulic fracturing usually induces weak events. However, scenarios with larger earthquakes are possible, e.g. if the injected fluids alter friction conditions and trigger the failure of neighbouring faults. This work is focused on a hydrofracking experiment monitored in the framework of the SHEER (SHale gas Exploration and Exploitation induced Risks) EU project at the Wysin site, located in the central-western part of the Peribaltic synclise of Pomerania, Poland. A specific network setup has been installed combining surface installation with three small-scale arrays and a shallow borehole installation. The fracking operations were carried out in June and July 2016 at a depth 4000 m. The monitoring has been operational before, during and after the termination of hydraulic fracturing operations. We apply a recently developed automated full waveform detection algorithm based on the stacking of smooth characteristic function and the identification of high coherence in the signals recorded at different stations. The method was tested with synthetic data and different detector levels yielding values of magnitude of completeness around 0.1. An unsupervised detection catalogue is generated with real data for a time period May-September 2016. We identify strong temporal changes (day/night) of the detection performance. A manual revision of the detected signals reveals that most detections are associated to local and regional seismic signals. Only two events could be assigned to the volume potentially affected by the fracking operations.

  1. Viruses and Bacteria in Karst and Fractured Rock Aquifers in East Tennessee, USA

    EPA Science Inventory

    A survey of enteric viruses and indicator bacteria was carried out in eight community water supply sources (four wells and four springs) in east Tennessee. Seven of the sites were in carbonate aquifers and the other was in fractured sandstone. Four sites (three wells and one sp...

  2. Appropriate Domain Size for Groundwater Flow Modeling with a Discrete Fracture Network Model.

    PubMed

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2017-01-01

    When a discrete fracture network (DFN) is constructed from statistical conceptualization, uncertainty in simulating the hydraulic characteristics of a fracture network can arise due to the domain size. In this study, the appropriate domain size, where less significant uncertainty in the stochastic DFN model is expected, was suggested for the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) site. The stochastic DFN model for the site was established, and the appropriate domain size was determined with the density of the percolating cluster and the percolation probability using the stochastically generated DFNs for various domain sizes. The applicability of the appropriate domain size to our study site was evaluated by comparing the statistical properties of stochastically generated fractures of varying domain sizes and estimating the uncertainty in the equivalent permeability of the generated DFNs. Our results show that the uncertainty of the stochastic DFN model is acceptable when the modeling domain is larger than the determined appropriate domain size, and the appropriate domain size concept is applicable to our study site. © 2016, National Ground Water Association.

  3. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia.

    PubMed

    Chou, Loretta B; Mann, Roger A; Coughlin, Michael J; McPeake, William T; Mizel, Mark S

    2007-02-01

    Autogenous bone graft from the distal tibia provides cancellous bone graft for foot and ankle operations, and it has osteogenic and osteoconductive properties. The site is in close proximity to the foot and ankle, and published retrospective studies show low morbidity from the procedure. One-hundred autografts were obtained from the distal tibia between 2000 and 2003. In four cases the distal tibial bone graft harvest resulted in a stress fracture. There were three women and one man. The average time of diagnosis of the stress fracture from the operation was 1.8 months. All stress fractures healed with a short course (average 2.4 months) of cast immobilization. This study demonstrated that a stress fracture from the donor site of autogenous bone graft of the distal tibia occurs and can be successfully treated nonoperatively.

  4. A multi-scale experimental and simulation approach for fractured subsurface systems

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.

    2017-12-01

    Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.

  5. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    PubMed

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  6. Newberry Volcano EGS Demonstration - Phase I Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, William L.; Petty, Susan; Cladouhos, Trenton T.

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project's water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly informmore » stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.« less

  7. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  8. The Risk of Fractures Associated with Thiazolidinediones: A Self-controlled Case-Series Study

    PubMed Central

    Douglas, Ian J.; Evans, Stephen J.; Pocock, Stuart; Smeeth, Liam

    2009-01-01

    Background The results of clinical trials have suggested that the thiazolidinedione antidiabetic agents rosiglitazone and pioglitazone are associated with an increased risk of fractures, but such studies had limited power. The increased risk in these trials appeared to be limited to women and mainly involved fractures of the arm, wrist, hand, or foot: risk patterns that could not be readily explained. Our objective was to further investigate the risk of fracture associated with thiazolidinedione use. Methods and Findings The self-controlled case-series design was used to compare rates of fracture during thiazolidinedione exposed and unexposed periods and thus estimate within-person rate ratios. We used anonymised primary care data from the United Kingdom General Practice Research Database (GPRD). All patients aged 40 y or older with a recorded fracture and at least one prescription for a thiazolidinedione were included (n = 1,819). We found a within-person rate ratio of 1.43 (95% confidence interval [CI] 1.25–1.62) for fracture at any site comparing exposed with unexposed periods among patients prescribed any thiazolidinedione. This association was similar in men and women and in patients treated with either rosiglitazone or pioglitazone. The increased risk was also evident at a range of fracture sites, including hip, spine, arm, foot, wrist, or hand. The risk increased with increasing duration of thiazolidinedione exposure: rate ratio 2.00 (95% CI 1.48–2.70) for 4 y or more of exposure. Conclusion Within individuals who experience a fracture, fracture risk is increased during periods of exposure to thiazolidinediones (both rosiglitazone and pioglitazone) compared with unexposed periods. The increased risk is observed in both men and women and at a range of fracture sites. The risk also increases with longer duration of use. Please see later in the article for the Editors' Summary PMID:19787025

  9. Multi-Criteria Decision Analysis for the Selection of a Near Road Ambient Air Monitoring Site for the Measurement of Mobile Source Air Toxics

    EPA Science Inventory

    The Federal Highway Administration (FHWA) was involved in a legal action concerning the U.S. 95 Widening Project in Las Vegas, Nevada. In that action, the Sierra Club challenged FHWA's and the Nevada Department of Transportation's (DOT) National Environmental Policy Act (NEPA) en...

  10. "It's an Amazing Learning Curve to Be Part of the Project": Exploring Academic Identity in Collaborative Research

    ERIC Educational Resources Information Center

    Leibowitz, Brenda; Ndebele, Clever; Winberg, Christine

    2014-01-01

    This article reports on an investigation into the role of academic identity within collaborative research in higher education in South Africa. The study was informed by the literature on academic identities, collaborative research and communities of practice. It was located within a multi-site study, with involvement of researcher collaborators…

  11. Standards of Competence: A Multi-Site Case Study of School Reform. Project: Effects of Testing Reforms and Standards.

    ERIC Educational Resources Information Center

    Ellwein, Mary Catherine; Glass, Gene V.

    A qualitative case study involving five educational institutions assessed the use of competency testing as a prerequisite for high school graduation, criterion for admission into college, criterion for teacher certification, and statewide assessment tool. Focus was on persons and processes involved in setting educational standards associated with…

  12. Identity Projects in Complementary and Mainstream Schools: The Views of Albanian and Bulgarian Students in England

    ERIC Educational Resources Information Center

    Tereshchenko, Antonina; Archer, Louise

    2015-01-01

    This paper contributes to the literature on complementary schools as sites of learning and social and cultural identification. We draw on a small-scale multi-method qualitative study conducted in Albanian and Bulgarian community schools in London to explore the agendas of "new" Eastern European complementary schools with respect to…

  13. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  14. Project Anqa: Digitizing and Documenting Cultural Heritage in the Middle East

    NASA Astrophysics Data System (ADS)

    Akhtar, S.; Akoglu, G.; Simon, S.; Rushmeier, H.

    2017-08-01

    The practice of digitizing cultural heritage sites is gaining ground among conservation scientists and scholars in architecture, art history, computer science, and related fields. Recently, the location of such sites in areas of intense conflict has highlighted the urgent need for documenting cultural heritage for the purposes of preservation and posterity. The complex histories of such sites requires more than just their digitization, and should also include the meaningful interpretation of buildings and their surroundings with respect to context and intangible values. Project Anqa is an interdisciplinary and multi-partner effort that goes beyond simple digitization to record at-risk heritage sites throughout the Middle East and Saharan Africa, most notably in Syria and Iraq, before they are altered or destroyed. Through a collaborative process, Anqa assembles documentation, historically contextualizes it, and makes data accessible and useful for scholars, peers, and the wider public through state-of-the-art tools. The aim of the project is to engage in capacity-building on the ground in Syria and Iraq, as well as to create an educational web platform that informs viewers about cultural heritage in the region through research, digital storytelling, and the experience of virtual environments.

  15. [Fracture strength of elastic and conventional fibre-reinforced composite intraradicular posts--an in vitro pilot study].

    PubMed

    Fráter, Mark; Forster, András; Jantyik, Ádám; Braunitzer, Gábor; Nagy, Katalin

    2015-12-01

    The purpose of this in vitro investigation was to evaluate the reinforcing effect of different fibre-reinforced composite (FRC) posts and insertion techniques in premolar teeth when using minimal invasive post space preparation. Thirty two extracted and endodontically treated premolar teeth were used and divided into four groups (n = 8) depending on the post used (Group 1-4). 1: one single conventional post, 2: one main conventional and one collateral post, 3: one flexible post, 4: one main flexible and one collateral post. After cementation and core build-up the specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were recorded and evaluated. The multi-post techniques (group 2 and 4) showed statistically higher fracture resistance compared to group one. Regarding fracture patterns there was no statistically significant difference between the tested groups. The application of multiple posts seems to be beneficial regarding fracture resistance independent from the used FRC post. Fracture pattern was not influenced by the elasticity of the post.

  16. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  17. Full waveform approach for the automatic detection and location of acoustic emissions from hydraulic fracturing at Äspö (Sweden)

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Cesca, Simone; Heimann, Sebastian; Grigoli, Francesco; Milkereit, Claus; Dahm, Torsten; Zang, Arno

    2017-04-01

    A crucial issue to analyse the induced seismicity for hydraulic fracturing is the detection and location of massive microseismic or acoustic emissions (AE) activity, with robust and sufficiently accurate automatic algorithms. Waveform stacking and coherence analysis have been tested for local seismic monitoring and mining induced seismicity improving the classical detection and location methods (e.g. short-term-average/long-term-average and automatic picking of the P and S waves first arrivals). These techniques are here applied using a full waveform approach for a hydraulic fracturing experiment (Nova project 54-14-1) that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). Continuous waveform recording with a near field network composed by eleven AE sensors are processed. The piezoelectric sensors have their highest sensitive in the frequency range 1 to 100 kHz, but sampling rates were extended to 1 MHz. We present the results obtained during the conventional, continuous water-injection experiment HF2 (Hydraulic Fracture 2). The event detector is based on the stacking of characteristic functions. It follows a delay-and-stack approach, where the likelihood of the hypocenter location in a pre-selected seismogenic volume is mapped by assessing the coherence of the P onset times at different stations. A low detector threshold is chosen, in order not to loose weaker events. This approach also increases the number of false detections. Therefore, the dataset has been revised manually, and detected events classified in terms of true AE events related to the fracturing process, electronic noise related to 50 Hz overtones, long period and other signals. The location of the AE events is further refined using a more accurate waveform stacking method which uses both P and S phases. A 3D grid is generated around the hydraulic fracturing volume and we retrieve a multidimensional matrix, whose absolute maximum corresponds to the spatial coordinates of the seismic event. The relative location accuracy is improved using a master event approach to correct for travel time perturbations. The master event is selected based on a good signal to noise ratio leading to a robust location with small uncertainties. Relative magnitudes are finally estimated upon the decay of the maximal recorded amplitude from the AE location. The resulting catalogue is composed of more than 4000 AEs. Their hypocenters are spatially clustered in a planar region, resembling the main fracture plane; its orientation and size are estimated from the spatial distribution of AEs. This work is funded by the EU H2020 SHEER project. Nova project 54-14-1 was financially supported by the GFZ German Research Center for Geosciences (75%), the KIT Karlsruhe Institute of Technology (15%) and the Nova Center for University Studies, Research and Development (10%). An additional in-kind contribution of SKB for using Äspö Hard Rock Laboratory as test site for geothermal research is greatly acknowledged.

  18. Nevada National Security Site: Site-Directed Research and Development (SDRD) Fiscal Year 2015 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Howard A.

    This report presents results of multiple research projects, new and ongoing, funded under the Site-Directed Research and Development Program for the Nevada National Security Site during federal fiscal year 2015. The Site's legacy capabilities in remote sensing combined with new paradigms for emergency response and consequence management help drive the need to develop advanced aerial sensor platforms. Likewise, dynamic materials science is a critical area of scientific research for which basic physics issues are still unresolved. New methods of characterizing materials in extreme states are vitally needed, and these efforts are paving the way with new knowledge. Projects selected inmore » FY 2015 for the Exploratory Research portfolio exhibit a strong balance of NNSS mission relevance. Geoscience, seismology, and techniques for detecting underground nuclear events are still essential focus areas. Many of the project reports in the second major section of this annual report are ongoing continuations in multi-year lifecycles. Diagnostic techniques for stockpile and nuclear security science figured prominently as well, with a few key efforts coming to fruition, such as phase transition detection. In other areas, modeling efforts toward better understanding plasma focus physics has also started to pay dividends for major program needs.« less

  19. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  20. Fracture Characteristics of Structural Steels and Weldments

    DTIC Science & Technology

    1975-11-01

    CARACTERISTICS 0F.$ýTRUCTURAL TEL/ - "AD E NTSA .INAL 1 A7 sk S. CONTRACT OR GRANT NUMBER(&) Y.2G. im 9. PERFORMING ORGANIZATION NAME AND ADDRESS -017...36, T- 1,and HY-Y130 Steel and AX. Il 30 15 I Tensile F~racture Surface of A-36 Steel, 12x 31 16 Dimple Rupture in A-6Sel 0X 31 17 Plastic ...sites and the relative plasticity of thle The objective of this study was to use a scanning metal. If many fracture icleation sites initiate mticro

  1. Orbital fractures due to domestic violence: an epidemiologic study.

    PubMed

    Goldberg, Stuart H.; McRill, Connie M.; Bruno, Christopher R.; Ten Have, Tom; Lehman, Erik

    2000-09-01

    Domestic violence is an important cause of orbital fractures in women. Physicians who treat patients with orbital fractures may not suspect this mechanism of injury. The purpose of this study was to assess the association between domestic violence and orbital fractures. A medical center-based case-control study with matching on age and site of admission was done. Medical center databases were searched using ICD-9 codes to identify all cases of orbital fractures encountered during a three-year period. Medical records of female patients age 13 and older were reviewed along with those of age, gender and site of admission matched controls. A stratified exact test was employed to test the association between domestic violence and orbital fracture. Among 41 adult female cases with orbital fractures treated at our medical center, three (7.3%) reported domestic violence compared to zero among the matched controls (p = 0.037). We believe that domestic violence may be under-reported in both orbital fracture cases and controls. This may result in an underestimate of the orbital fracture versus domestic violence association. Domestic violence is a serious women's health and societal problem. Domestic violence may have a variety of presentations, including illnesses and injuries. Orbital fracture is an identifiable manifestation of domestic violence. Domestic violence is more likely to be detected in adult female hospital patients with orbital fracture than in matched controls with any other diagnosis. Physicians who treat patients with orbital fractures should be familiar with this mechanism of injury.

  2. Causes and treatment of mandibular and condylar fractures in children and adolescents: a review of 104 cases.

    PubMed

    Shi, Jun; Chen, Zhibiao; Xu, Bing

    2014-03-01

    There are no uniform treatments, standards, and specifications for conservative and surgical management of mandibular fractures in children and adolescents. To review the management of mandibular fractures in children and adolescents at our institution. The medical records of 104 children and adolescents (60 male and 44 female) treated for mandibular fractures from 2005 to 2012 at the Ninth People's Hospital, Shanghai, China, were retrospectively reviewed. The participants were classified as having deciduous dentition (age ≤6 years), mixed dentition (age >6 but <12 years), and permanent dentition (age ≥12 but ≤16 years). Conservative treatment and surgical management. Helkimo clinical dysfunction and anamnestic indices. Condylar process fractures accounted for 55.7% of the fractures (112 fractures of 201 total fracture sites), and symphysis fractures, parasymphysis fractures, fractures of the body, and fractures of the angle accounted for 20.9%, 11.9%, 7.0%, and 3.5% of the fractures, respectively. A total of 83 cases with 159 fracture sites with complete follow-up data were included in the treatment analysis. In these 83 patients, 77 fractures were dentigerous bone fractures, 46 were intracapsular fractures, and 36 were extracapsular fractures. Dentigerous bone fractures of the mandible were managed by closed or open reduction in children younger than 12 years and were managed more often by open reduction and fixation in those between ages 12 and 16 years. Closed treatment was performed for 22 condylar process fractures (28.6%), and open reduction was carried out for 55 condylar process fractures (71.4%). In patients with intracapsular fractures, there was no significant relationship between dentation age and treatment method (P = .06). Most patients with extracapsular fractures with permanent dentition underwent surgical fixation (73.3%), whereas most with deciduous dentition received conservative treatment (87.5%). In patients with condylar process fractures, there was no significant difference in Ai and Di based on treatment method (P = .49 and P = .76, respectively). The treatment of mandibular fractures in children and adolescents should be determined by clinical factors including age, location, and type of fracture.

  3. Conversion of external fixation to open reduction and internal fixation for complex distal radius fractures.

    PubMed

    Natoli, R M; Baer, M R; Bednar, M S

    2016-05-01

    Distal radius fractures are common injuries treated in a multitude of ways. One treatment paradigm not extensively studied is initial treatment by external fixation (EF) followed by conversion to open reduction internal fixation (ORIF). Such a paradigm may be beneficial in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available for immediate internal fixation. There is no increased risk of infection when converting EF to ORIF in the treatment of complex distal radius fractures when conversion occurs early or if EF pin sites are overlapped by the definitive fixation. Using an IRB approved protocol, medical records over nine years were queried to identify patients with distal radius fractures that had undergone initial EF and were later converted to ORIF. Charts were reviewed for demographic data, injury characteristics, operative details, time to conversion from EF to ORIF, assessment of whether the EF pin sites overlapped the definitive fixation, presence of infection after ORIF, complications, and occupational therapy measurements of range of motion and strength. In total, 16 patients were identified, only one of which developed an infection following conversion to ORIF. Fisher's exact testing showed that infection did not depend on open fracture, time to conversion of one week or less, presence of EF pin sites overlapping definitive fixation, fracture classification, high energy mechanism of injury, or concomitant injury to the DRUJ. Planned staged conversion from EF to ORIF for complex distal radius fractures does not appear to result in an increased rate of infection if conversion occurs early or if the EF pin sites are overlapped by definitive fixation. This treatment paradigm may be reasonable for treating complex distal radius fractures in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available for immediate internal fixation. IV, retrospective case series. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Halovest treatment in traumatic cervical spine injury.

    PubMed

    Razak, M; Basir, T; Hyzan, Y; Johari, Z

    1998-09-01

    This is a cross-sectional study on the use of halovest appliance in the Orthopaedic and Traumatology Department, Kuala Lumpur Hospital from June 1993 to September 1996. Fifty-three patients with cervical spine injuries were treated by halovest stabilization. Majority of cases was caused by motor-vehicle accident; others were fall from height at construction sites, fall at home, hit by falling object and assault. The injuries were Jefferson fracture of C1, odontoid fractures, hangman fractures, open spinous process fracture and fracture body of C2, and fracture, and fracture-dislocation of the lower cervical spines. Majority of patients had hospital stay less than 30 days. The use of the halovest ranges from 4 to 16 weeks and the healing rate was 96%. Two patients of lower cervical spine injury had redislocation and one of them was operated. There was one case of non-union of type II odontoid fracture and treated by posterior fusion. Other complications encountered during halovest treatment were minor. They were pin-site infection, pin-loosening, clamp loosening and neck pain or neck stiffness. This method of treatment enables patient to ambulate early and reduces hospital stay. We found that halovest is easy to apply, safe and tolerable to most of the patients.

  5. The Effects of Injury Magnitude on the Kinetics of the Acute Phase Response

    PubMed Central

    Bauzá, Graciela; Miller, Glenn; Kaseje, Neema; Wigner, Nathan A.; Wang, Zhongyan; Gerstenfeld, Louis C.; Burke, Peter A.

    2013-01-01

    Background The acute-phase response (APR) is critical to the body's ability to successfully respond to injury. A murine model of closed unilateral femur fractures and bilateral femur fracture were used to study the effect of injury magnitude on this response. Methods Standardized unilateral femur fracture and bilateral femur fracture in mice were performed. The femur fracture sites, livers, and serum were harvested over time after injury. Changes in mRNA expression of cytokines, hepatic acute-phase proteins, and serum cytokines overtime were measured. Results There was a rapid and short-lived hepatic APR to fracture injuries. The overall pattern in both models was similar. Both acute-phase proteins' mRNA (fibrinogen-γ and serum amyloid A-3) showed increased mRNA expression over baseline within the first 48 hours and their levels positively correlated with the extent of injury. However, increased severity of injury resulted in a delayed induction of the APR. A similar effect on the gene expression of cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) at the fracture site was seen. Serum IL-6 levels increased with increased injury and showed no delay between injury models. Conclusions Greater severity of injury resulted in a delayed induction of the liver's APR and a diminished expression of cytokines at the fracture site. Serum IL-6 levels were calibrated to the extent of the injury, and changes may represent mechanisms by which the local organ responses to injury are regulated by the injury magnitude. PMID:20693926

  6. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell

    Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictivemore » models and monitoring techniques. The project involved three major components: (1) study of two-­phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­2013) and partially supported a post-­doctoral scholar (Dr. Jean Elkhoury; 2010-­2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­water or water-­CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high--resolution mechanistic model that couples elastic deformation of contacts and aperture-­dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.« less

  8. Hydraulic Fracture Induced Seismicity During A Multi-Stage Pad Completion in Western Canada: Evidence of Activation of Multiple, Parallel Faults

    NASA Astrophysics Data System (ADS)

    Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.

    2017-12-01

    Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close to the pad operations providing information about the local ground motion at near offsets, although no ground motion was recorded that exceeds the minimum levels requiring mandatory reporting to the regulator.

  9. Distinct Element Modeling of the Large Block Test

    NASA Astrophysics Data System (ADS)

    Carlson, S. R.; Blair, S. C.; Wagoner, J. L.

    2001-12-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada as a potential nuclear waste repository site. As part of this effort, the Large Block, a 3m x 3m x 4.5m rectangular prism of Topopah Spring tuff, was excavated at Fran Ridge near Yucca Mountain. The Large Block was heated to a peak temperature of 145\\deg C along a horizontal plane 2.75m below the top of the block over a period of about one-year. Displacements were measured in three orthogonal directions with an array of six Multiple Point Borehole Extensometers (MPBX) and were numerically simulated in three dimensions with 3DEC, a distinct element code. The distinct element method was chosen to incorporate discrete fractures in the simulations. The model domain was extended 23m below the ground surface and, in the subsurface, 23m outward from each vertical face so that fixed displacement boundary conditions could be applied well away from the heated portion of the block. A single continuum model and three distinct element models, incorporating six to twenty eight mapped fractures, were tested. Two thermal expansion coefficients were tested for the six-fracture model: a higher value taken from laboratory measurements and a lower value from an earlier field test. The MPBX data show that the largest displacements occurred in the upper portion of the block despite the higher temperatures near the center. The continuum model was found to under-predict the MPBX displacements except in the east west direction near the base of the block. The high thermal expansion model over-predicted the MPBX displacements except in the north south direction near the top of the block. The highly fractured model under-predicted most of the MPBX displacements and poorly simulated the cool-down portion of the test. Although no model provided the single best fit to all of the MPBX data, the six and seven fracture models consistently provided good fits and in most cases showed much improvement over the other three models. Both provided particularly good fits to the east west displacements in the upper portion of the block throughout the entire test. This exercise demonstrates that distinct element models can surpass continuum models in their ability to simulate fractured rock mass deformation, but care needs to be taken in the selection of fractures incorporated in the models. *This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  10. Maxillofacial fractures among Sudanese children at Khartoum Dental Teaching Hospital.

    PubMed

    Almahdi, Hatim M; Higzi, Mohammed A

    2016-02-23

    Maxillofacial fractures in children are less frequent compared to adults but result in special complications affecting the growth, function and esthetics. The study aimed at assessing the characteristics and the pattern of facial fractures among children seen at Khartoum Teaching Dental Hospital (KTDH). The study included 390 patients presenting with maxillofacial trauma at KTDH during a year period (2010-2011). A total of 390 patients, diagnosed with facial fractures, were seen at KTDH; 14.1% (55) were children below 16 years of age with the mean age of 10 years (SD ± 3.9). The ratio of males to females was 2.2:1. Most fractures were due to road traffic accidents (RTA) 56.4%, followed by daily living activities 21.8% and assault 16.4%. The most prevalent anatomic sites of fractures were mandible 77%; combination fractures i.e. more than one site 32.7% and zygomatic-complex (13.5%). Concomitant injuries were found in 9.1%. Almost half of the patients were managed conservatively 49.1%, closed reduction 34.5% and surgical open reduction 16.4%. The findings of this study indicated that pediatric facial fractures constitute 14.1% of the total number of facial fractures. RTA was the main cause, which should be considered in legislative and preventive strategies.

  11. Bone fractures among postmenopausal patients with endocrine-responsive early breast cancer treated with 5 years of letrozole or tamoxifen in the BIG 1-98 trial

    PubMed Central

    Rabaglio, M.; Sun, Z.; Castiglione-Gertsch, M.; Hawle, H.; Thürlimann, B.; Mouridsen, H.; Campone, M.; Forbes, J. F.; Paridaens, R. J.; Colleoni, M.; Pienkowski, T.; Nogaret, J.-M.; Láng, I.; Smith, I.; Gelber, R. D.; Goldhirsch, A.; Coates, A. S.

    2009-01-01

    Background: To compare the incidence and timing of bone fractures in postmenopausal women treated with 5 years of adjuvant tamoxifen or letrozole for endocrine-responsive early breast cancer in the Breast International Group (BIG) 1-98 trial. Methods: We evaluated 4895 patients allocated to 5 years of letrozole or tamoxifen in the BIG 1-98 trial who received at least some study medication (median follow-up 60.3 months). Bone fracture information (grade, cause, site) was collected every 6 months during trial treatment. Results: The incidence of bone fractures was higher among patients treated with letrozole [228 of 2448 women (9.3%)] versus tamoxifen [160 of 2447 women (6.5%)]. The wrist was the most common site of fracture in both treatment groups. Statistically significant risk factors for bone fractures during treatment included age, smoking history, osteoporosis at baseline, previous bone fracture, and previous hormone replacement therapy. Conclusions: Consistent with other trials comparing aromatase inhibitors to tamoxifen, letrozole was associated with an increase in bone fractures. Benefits of superior disease control associated with letrozole and lower incidence of fracture with tamoxifen should be considered with the risk profile for individual patients. PMID:19474112

  12. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  13. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  14. Challenges and opportunities from a combined research study and community groundwater testing program for residents living near hydraulic fracturing sites in Appalachian Ohio

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.

    2017-12-01

    People living in rural areas of the United States often depend on groundwater as the only domestic and agricultural water resource. Hydraulic fracturing (or "fracking") has led to widespread fears of groundwater contamination, and many people lack resources for monitoring their water. To help in this effort, I led a three-year free groundwater monitoring program for residents of parts of the Utica Shale drilling region of Ohio from early 2012 to early 2015. Our team took samples and made laboratory measurements of species meant to act as indicators of the presence of natural gas or fracking fluid in groundwater. All data were made available to participants, and all participation was voluntary. The project team also made several presentations about our findings at community meetings. In this presentation, I will discuss challenges associated with obtaining funding and communicating results with the media, the oil and gas industry, Congress, and my university. However, opportunities have arisen from this work as well, beyond the obvious opportunity for public service, including recruitment of undergraduate and graduate students to the project team; generation of scientific data in an emerging area of research; and a better understanding of policy needs for rural residents in Appalachia.

  15. Concurrent Use of an Audience Response System at a Multi-Campus College of Pharmacy

    PubMed Central

    Alkhateeb, Fadi M.; Singh-Franco, Devada

    2012-01-01

    Objective. To assess the impact of an audience response system (ARS) on student engagement at a multi-campus college of pharmacy. Methods. An online questionnaire was designed and administered to measure the impact of an ARS on student engagement, distance education, projected use, and satisfaction among pharmacy students for a course delivered across 3 sites via synchronous video transmission. Results. Students reported that use of the ARS made it easier to participate (85.3%) and helped them to focus (75.7%) in classes when the lecturer was physically at a different site. They also valued that the ARS allowed them to respond anonymously (93.2%). A minority of students indicated that use of the ARS was distracting (11.8%). Conclusions. Implementation of an ARS was associated with positive student perceptions of engagement and may improve feelings of connectedness among students at schools with multiple sites. Use of ARSs could also represent a cognitive intercession strategy to help reduce communication apprehension. PMID:22412205

  16. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    EPA Science Inventory

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  17. Implementation of secondary fracture prevention services after hip fracture: a qualitative study using extended Normalization Process Theory.

    PubMed

    Drew, Sarah; Judge, Andrew; May, Carl; Farmer, Andrew; Cooper, Cyrus; Javaid, M Kassim; Gooberman-Hill, Rachael

    2015-04-23

    National and international guidance emphasizes the need for hospitals to have effective secondary fracture prevention services, to reduce the risk of future fractures in hip fracture patients. Variation exists in how hospitals organize these services, and there remain significant gaps in care. No research has systematically explored reasons for this to understand how to successfully implement these services. The objective of this study was to use extended Normalization Process Theory to understand how secondary fracture prevention services can be successfully implemented. Forty-three semi-structured interviews were conducted with healthcare professionals involved in delivering secondary fracture prevention within 11 hospitals that receive patients with acute hip fracture in one region in England. These included orthogeriatricians, fracture prevention nurses and service managers. Extended Normalization Process Theory was used to inform study design and analysis. Extended Normalization Process Theory specifies four constructs relating to collective action in service implementation: capacity, potential, capability and contribution. The capacity of healthcare professionals to co-operate and co-ordinate their actions was achieved using dedicated fracture prevention co-ordinators to organize important processes of care. However, participants described effective communication with GPs as challenging. Individual potential and commitment to operationalize services was generally high. Shared commitments were promoted through multi-disciplinary team working, facilitated by fracture prevention co-ordinators. Healthcare professionals had capacity to deliver multiple components of services when co-ordinators 'freed up' time. As key agents in its intervention, fracture prevention coordinators were therefore indispensable to effective implementation. Aside from difficulty of co-ordination with primary care, the intervention was highly workable and easily integrated into practice. Nevertheless, implementation was threatened by under-staffed and under-resourced services, lack of capacity to administer scans and poor patient access. To ensure ongoing service delivery, the contributions of healthcare professionals were shaped by planning, in multi-disciplinary team meetings, the use of clinical databases to identify patients and define the composition of clinical work and monitoring to improve clinical practice. Findings identify and describe elements needed to implement secondary fracture prevention services successfully. The study highlights the value of Normalization Process Theory to achieve comprehensive understanding of healthcare professionals' experiences in enacting a complex intervention.

  18. What is the benefit of driving a hydrological model with data from a multi-site weather generator compared to data from a simple delta change approach?"

    NASA Astrophysics Data System (ADS)

    Rössler, Ole; Keller, Denise; Fischer, Andreas

    2016-04-01

    In 2011 the Swiss national consortium C2SM providednew climate change scenarios were released in Switzerland that came with a comprehensive data set of temperature and precipitation changes under climate change conditions for every a large network of meteorological stations, and for aggregated as well as regions in across Switzerland. These climate change signals were generated for three emission scenarios and three different future time-periods and designed to be used asbased on a delta change factors approach. This data set proved to be very successful in Switzerland as many different users, researchers, private companies, and societal users were able to use and interpret the climate data set. Thus, a range of applications that are all based on the same climate data set enabled a comparable view on climate change impact in several disciplines. The main limitation and criticism to this data set was the usage of the delta change approach for downscaling as it comes with severe limitations such as underestimatinges changes in extreme values and neglecting changes in variability and changes in temporal sequencesneglecting changes in variability, be it year-to-year or day-to-day, and changes in temporal sequences . lacks a change in the day-to-day-variability. One way to overcome this the latter limitation is the usage of stochastic weather generators in a downscaling context. Weather generators are known to be one suitable downscaling technique, but A common limitation of most weather generators is the absence of spatial consistency rrelation in the generated daily time-series, resulting in an underestimation of areal means over several stations that are often low-biased. refer to one point scale (single-site) and lacks the spatial representation of weather. The latter A realistic representation of the inter-station correlation in the downscaled time-series This is of high particular importance in some impact studies, especially infor any hydrological impact studiesy. Recently, a multi-site weather generator was developed and tested for downscaling purposes over Switzerland. The weather generator is of type Richardson, that is run with spatially correlated random number streams to ensure spatial consistency. As a downside, multi-site weather generators are much more complex to develop, but they are a very promising alternative downscaling technique. A new multi-site-weather generator was developed for Switzerland in a previous study (Keller et al. 2014). In this study, we tested this new multi-site-weather generator against the "standard" delta change derived data in a hydrological impact assessment study that focused on runoff in the meso-scale catchment of the river Thur catchment. Two hydrological models of different complexity were run with the data sets under present (1980-2009) and under future conditions (2070-2099), assuming the SRES A1B emission2070-2100 scenario conditions. Eight meteorological stations were used to interpolate a meteorological field that served as input to calibrate and validate the two hydrological models against runoff. The downscaling intercomparison was done for We applied 10 GCM-RCM combinations simulations of the ENSEMBLES. In case of the weather generator, that allows for multiple synthetic realizations, we generated for which change factors for each station (delta change approach) were available and generated 25 realizations of multi-site weather. with each climate model projection. Results show that the delta change driven data constitutes only one appropriate representation compared to theof a bandwidth of runoff projections yielded by the multi-site weather generator data. Especially oOn average, differences between both the two approaches are small. Low and high runoff Runoff values to both extremes are however better reproduced with the weather generator driven data set. The stochastic representation of multiday rainfall events are considered as the main reason. Hence, tThere is a clear yet small added value to the delta change approach that in turn performs rather well. Although these small but considerable differences might questioning the need to construct a multi-site-weather generator with a huge effort, the potential and possibilities to further develop the multi-site weather generator is undoubted.

  19. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as being formed from stress relief. As stress-relief fractures have been described in other valleys of the Appalachian Plateaus, the same aquifer conditions may exist in those valleys.

  20. Biodegradable nanofiber-membrane for sustainable release of lidocaine at the femoral fracture site as a periosteal block: In vitro and in vivo studies in a rabbit model.

    PubMed

    Chou, Ying-Chao; Cheng, Yi-Shiun; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung

    2016-04-01

    The aim of this study was to evaluate the efficacy of a biodegradable, lidocaine-embedded, nanofibrous membrane for the sustainable analgesic release onto fragments of a segmental femoral fracture site. Membranes of three different lidocaine concentrations (10%, 30%, and 50%) were produced via an electrospinning technique. In vitro lidocaine release was assessed by high-performance liquid chromatography. A femoral segmental fracture, with intramedullary Kirschner-wire fixation and polycaprolactone stent enveloping the fracture site, was set-up in a rabbit model for in vivo assessment of post-operative recovery of activity. Eighteen rabbits were randomly assigned to three groups (six rabbits per group): group A comprised of rabbits with femoral fractures and underwent fixation; group B comprised of a comparable fracture model to that of group A with the implantation of lidocaine-loaded nanofibers; and group C, the control group, received only anesthesia. The following variables were measured: change in body weight, food and water intake before and after surgery, and total activity count post-surgery. All membranes eluted effective levels of lidocaine for more than 3 weeks post-surgery. Rabbits in group B showed faster recovery of activity post-operatively, compared with those in group A, which confirmed the pain relief efficacy of the lidocaine-embedded nanofibers. Nanofibers with sustainable lidocaine release have adequate efficacy and durability for pain relief in rabbits with segmental long bone fractures. Copyright © 2016 Elsevier B.V. All rights reserved.

Top