del-Val, Ek; Armesto, Juan J; Barbosa, Olga; Marquet, Pablo A
2007-09-01
The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant-animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30 degrees S), where the effects of the surrounding semiarid matrix and forest patch size (0.1-22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 x 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation-restoration plans.
Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape.
Belinchón, Rocío; Martínez, Isabel; Otálora, Mónica A G; Aragón, Gregorio; Dimas, Jesús; Escudero, Adrián
2009-11-01
Destruction and fragmentation of habitats represent one of the most important threats for biodiversity. Here, we examined the effects of fragmentation in Mediterranean forests on the epiphytic lichen Lobaria pulmonaria (Lobariaceae). We tested the hypothesis that not only the level of fragmentation affects L. pulmonaria populations, but also the quality of the habitat and the nature of the surrounding matrix affect them. The presence and abundance of the lichen was recorded on 2039 trees in a total of 31 stands. We recorded habitat quality and landscape variables at three hierarchical levels: tree, plot, and patch. We found that L. pulmonaria tends to occur in trees with larger diameters in two types of surveyed forests. In Quercus pyrenaica patches, the mean diameter of colonized trees was smaller, suggesting the importance of bark roughness. Factors affecting the presence and cover of the lichen in each type of forest were different. There was a strong positive influence of distance from a river in beech forests, whereas proximity to forest edge positively affected in oak forests. The influence of the surrounding matrix was also an important factor explaining the epiphytic lichen abundance.
Robert M. Scheller; David J. Mladenoff
2008-01-01
The reproductive success, growth, and mortality rates of tree species in the northern United States will be differentially affected by projected climate change over the next century. As a consequence, the spatial distributions of tree species will expand or contract at differential rates. In addition, human fragmentation of the landscape may limit effective seed...
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.
Jarausch, W; Saillard, C; Dosba, F; Bové, J M
1994-01-01
A 1.8-kb chromosomal DNA fragment of the mycoplasmalike organism (MLO) associated with apple proliferation was sequenced. Three putative open reading frames were observed on this fragment. The protein encoded by open reading frame 2 shows significant homologies with bacterial nitroreductases. From the nucleotide sequence four primer pairs for PCR were chosen to specifically amplify DNA from MLOs associated with European diseases of fruit trees. Primer pairs specific for (i) Malus-affecting MLOs, (ii) Malus- and Prunus-affecting MLOs, and (iii) Malus-, Prunus-, and Pyrus-affecting MLOs were obtained. Restriction enzyme analysis of the amplification products revealed restriction fragment length polymorphisms between Malus-, Prunus, and Pyrus-affecting MLOs as well as between different isolates of the apple proliferation MLO. No amplification with either primer pair could be obtained with DNA from 12 different MLOs experimentally maintained in periwinkle. Images PMID:7916180
Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires
2015-02-01
The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.
[Effects of sampling plot number on tree species distribution prediction under climate change].
Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu
2013-05-01
Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.
Santos, Bráulio A; Tabarelli, Marcelo; Melo, Felipe P L; Camargo, José L C; Andrade, Ana; Laurance, Susan G; Laurance, William F
2014-01-01
Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest. The magnitude of the phylogenetic diversity loss was low (<2% relative to before-fragmentation values) but widespread throughout the study landscape, occurring in 32 of 40 1-ha plots. Consistent with this loss in phylogenetic diversity, we observed a significant decrease of 50% in phylogenetic dispersion since forest isolation, irrespective of plot location. Analyses based on tree genera that have significantly increased (28 genera) or declined (31 genera) in abundance and basal area in the landscape revealed that increasing genera are more phylogenetically related than decreasing ones. Also, the loss of phylogenetic diversity was greater in tree communities where increasing genera proliferated and decreasing genera reduced their importance values, suggesting that this taxonomic replacement is partially underlying the phylogenetic impoverishment at the landscape scale. This finding has clear implications for the current debate about the role human-modified landscapes play in sustaining biodiversity persistence and key ecosystem services, such as carbon storage. Although the generalization of our findings to other fragmented tropical forests is uncertain, it could negatively affect ecosystem productivity and stability and have broader impacts on coevolved organisms.
Centennial impacts of fragmentation on the canopy structure of tropical montane forest
Nicholas Vaughn; Greg Asner; Christian Giardina
2014-01-01
Fragmentation poses one of the greatest threats to tropical forests with short-term changes to the structure of forest canopies affecting microclimate, tree mortality, and growth. Yet the long-term effects of fragmentation are poorly understood because (1) most effects require many decades to materialize, but long-term studies are very rare, (2) the effects of edges on...
Dispersal of remnant endangered trees in a fragmented and disturbed forest by frugivorous birds.
Li, Ning; Bai, Bing; Li, Xin-Hai; An, Shu-Qing; Lu, Chang-Hu
2017-07-01
Most endangered plant species in a fragmented forest behave as a unique source population, with a high dependence on frugivorous birds for recruitment and persistence. In this study, we combined field data of dispersal behavior of birds and GIS information of patch attributes to estimate how frugivorous birds could affect the effective dispersal pattern of Chinese yew (Taxus chinensis) in a fragmented and disturbed forest. Nine bird species were observed to visit T. chinensis trees, with Urocissa erythrorhyncha, Zoothera dauma and Picus canus being the most common dispersers. After foraging, six disperser species exhibited different perching patterns. Three specialist species, P. canus, Turdus hortulorum, and Z. dauma stayed in the source patch, while three generalist species, U. erythrorhyncha, Hypsipetes mcclellandii, and H. castanonotus, could perch in bamboo patches and varied in movement ability due to body size. As a consequence of perching, dispersers significantly contributed to the seed bank, but indirectly affected seedling recruitment. Moreover, the recruitment of T. chinensis was also affected by patch attributes in a fragmented forest (distances to source patch, patch type, size). Our results highlighted the ability of unique source population regeneration of T. chinensis in a fragmented forest, with high dependence on both frugivorous birds and patch attributes, which should be considered in future planning for forest management and conservation.
Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation.
Davies, Richard G
2002-10-01
Biomass collapse and its associated microclimatic stresses within recently isolated rain forest fragments may negatively affect species diversity of most resident taxa. However, for some decomposer organisms, increased resource availability via accompanying tree die-off may effect positive responses, at least for a time, with implications for rates of nutrient cycling and greenhouse gas release. This study investigates the early effects of forest fragmentation on a Neotropical termite assemblage. Numbers of encounters (surrogate for relative abundance) and species richness of wood and leaf-litter feeders, soil feeders, and the whole assemblage, were studied across true forest islands and mainland sites at a hydroelectric reservoir in French Guiana. Results showed no overall effect of fragmentation on either total termite encounters or species richness. However, numbers of encounters and species richness of wood and leaf-litter feeders showed positive responses to forest fragmentation. By contrast, soil feeders showed a negative response for numbers of encounters and no significant effect for species richness. Environmental data suggest that increased tree die-off, and other edge effects associated with biomass collapse, were underway at the time of sampling. Resulting increase in resource availability may therefore explain the positive influence on wood and leaf-litter feeders. A possible decrease in predation pressure from ants with decrease in island size was not tested for, but was a likely effect of the flooded matrix habitat. Fragmentation effects on soil feeder encounters may be due to the energetic and microclimatic constraints of feeding lower down the humification gradient of termite food substrates, but were not sufficient to affect species richness. The patterns revealed suggest that rates of wood decomposition following tree die-off, and of soil nutrient cycling, under different rain forest fragmentation scenarios, merit further study.
Carneiro, Magda Silva; Campos, Caroline Cambraia Furtado; Beijo, Luiz Alberto; Ramos, Flavio Nunes
2016-01-01
Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to manage fragmented landscapes.
2016-01-01
Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to manage fragmented landscapes. PMID:27760218
Rain forest fragmentation and the proliferation of successional trees.
Laurance, William F; Nascimento, Henrique E M; Laurance, Susan G; Andrade, Ana C; Fearnside, Philip M; Ribeiro, José E L; Capretz, Robson L
2006-02-01
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.
Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F
2018-04-01
Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.
Rapid decay of tree-community composition in Amazonian forest fragments
Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya
2006-01-01
Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598
Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects
NASA Astrophysics Data System (ADS)
Levia, D. F., Jr.; Shiklomanov, A.
2014-12-01
The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.
Fragment-based prediction of skin sensitization using recursive partitioning
NASA Astrophysics Data System (ADS)
Lu, Jing; Zheng, Mingyue; Wang, Yong; Shen, Qiancheng; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2011-09-01
Skin sensitization is an important toxic endpoint in the risk assessment of chemicals. In this paper, structure-activity relationships analysis was performed on the skin sensitization potential of 357 compounds with local lymph node assay data. Structural fragments were extracted by GASTON (GrAph/Sequence/Tree extractiON) from the training set. Eight fragments with accuracy significantly higher than 0.73 ( p < 0.1) were retained to make up an indicator descriptor fragment. The fragment descriptor and eight other physicochemical descriptors closely related to the endpoint were calculated to construct the recursive partitioning tree (RP tree) for classification. The balanced accuracy of the training set, test set I, and test set II in the leave-one-out model were 0.846, 0.800, and 0.809, respectively. The results highlight that fragment-based RP tree is a preferable method for identifying skin sensitizers. Moreover, the selected fragments provide useful structural information for exploring sensitization mechanisms, and RP tree creates a graphic tree to identify the most important properties associated with skin sensitization. They can provide some guidance for designing of drugs with lower sensitization level.
Mathiasen, Paula; Rovere, Adriana E; Premoli, Andrea C
2007-02-01
Deforestation of temperate forests has created landscapes of forest remnants in matrices of intense human use. We studied the genetic effects of fragmentation in southern Chile on Embothrium coccineum J.R. et G. Forster, an early colonizing, bird-pollinated tree. We tested the hypothesis that, because of its self-incompatibility and life-history strategy, E. coccineum is less strongly affected by fragmentation. We studied the effects of reduced population size and increased isolation on population genetic structure and early performance of progeny. Samples were collected from spatially isolated trees and six fragments of differing sizes (small, 1 ha; medium, 20 ha; large, >150 ha). Based on isozyme polymorphisms we estimated parameters of genetic diversity, divergence, and inbreeding for adults and greenhouse-grown progeny. We also measured germination, seedling growth, and outcrossing rates on progeny arrays. Genetic variation of adults did not correlate significantly with population size, as expected, given that fragmentation occurred relatively recently. Weak effects of fragmentation were measured on progeny. Only adults yielded significant inbreeding. Similar total genetic diversity was found in adults and progeny. Low but significant genetic differentiation existed among adult and progeny populations. Seedling growth correlated positively with the effective number of alleles, showing deleterious effects of inbreeding on progeny. Seeds from small fragments had the highest outcrossing rates and germination success, indicating that higher pollinator activity in such fragments reduced selfing, thereby buffering genetic erosion and maintaining adaptive variation. The effects of forest fragmentation were detectable in E. coccineum, but these effects will probably not be detrimental to the viability of remnant populations because small, fragmented populations demonstrated higher levels of gene flow and lower inbreeding than larger stands. Pioneer species that are insensitive to forest clearing may be crucial in recovery plans to facilitate the establishment of species intolerant to such disturbance.
Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.
Vaniya, Arpana; Fiehn, Oliver
2015-06-01
Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.
Khansaritoreh, Elmira; Dulamsuren, Choimaa; Klinge, Michael; Ariunbaatar, Tumurbaatar; Bat-Enerel, Banzragch; Batsaikhan, Ganbaatar; Ganbaatar, Kherlenchimeg; Saindovdon, Davaadorj; Yeruult, Yolk; Tsogtbaatar, Jamsran; Tuya, Daramragchaa; Leuschner, Christoph; Hauck, Markus
2017-09-01
Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland-dominated forest-steppe area and small forest patches in a grassland-dominated area. We found increasing climate sensitivity and decreasing first-order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland-dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland-dominated area, the increase was much greater than in the forest-dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure. © 2017 John Wiley & Sons Ltd.
Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.
Semizer-Cuming, Devrim; Kjær, Erik Dahl; Finkeldey, Reiner
2017-01-01
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback.
Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape
Kjær, Erik Dahl; Finkeldey, Reiner
2017-01-01
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55–64%) and seedlings (75–98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26–45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback. PMID:29053740
Spatial variability in oviposition damage by periodical cicadas in a fragmented landscape.
Cook, William M; Holt, Robert D; Yao, Jin
2001-03-01
Effects of the periodical cicada (Magicicada spp.) on forest dynamics are poorly documented. A 1998 emergence of M. cassini in eastern Kansas led to colonization of a fragmented experimental landscape undergoing secondary succession. We hypothesized that per-tree rates of oviposition damage by cicadas would reflect: (1) distance from the source of the emergence, (2) patch size, and (3) local tree density. Ovipositing females displayed clear preferences for host species and damage incidence showed predictable spatial patterns. Two species (smooth sumac, Rhus glabra, and eastern red cedar, Juniperus virginiana) were rarely attacked, whereas others (rough-leaved dogwood, Cornus drummondii; slippery elm, Ulmus rubra; box elder, Acer negundo, and honey locust, Gleditsia triacanthos) were strongly attacked. The dominant early successional tree, dogwood, received on average the most attacks. As predicted, attacks per stem declined strongly with distance from the emergence source, and with local stem density (a "dilution" effect). Contrary to expectations, there were more attacks per stem on larger patches. Because ovipositing cicadas cut damaging slits in host tree branches, potentially affecting tree growth rate, competitive ability, and capacity to reproduce, cicada damage could potentially influence spatial variation in secondary succession.
High gene flow in epiphytic ferns despite habitat loss and fragmentation.
Winkler, Manuela; Koch, Marcus; Hietz, Peter
2011-01-01
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata , is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron , is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.
NASA Astrophysics Data System (ADS)
Rouini, N.; Lepley, K. S.; Messaoudene, M.
2017-12-01
Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.
Metabolite identification through multiple kernel learning on fragmentation trees.
Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho
2014-06-15
Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.
Ramos, Carolina; Buitrago, Sindy P; Pulido, Karen L; Vanegas, Leidy J
2013-03-01
Polylepis cuadrijuga is an endemic woody species from the Colombian Eastern range, being the only tree species with capacity to live on mountainous environments beyond 4 000m of altitude. Grazing and agriculture have transformed at least 30% of the Guantiva-La Rusia region, turning continuous extensions of high Andean forest in a fragmented landscape, and P cuadrijuga remnants have become smaller and more isolated. The aim of this study was to establish the environmental differences between a matrix of grazing pastures and the interior of fragments, to evaluate the physiological responses of P cuadrijuga and determining the edge effect. Air temperature and humidity, soil water holding capacity and photosynthetic active radiation, were measured along two 50X2m transects from the matrix toward the center of fragment. Six trees inside the transects were chosen in each one of three sites (matrix, edge and interior) to measure the index chlorophyll content and to sample leaves to assess the leaf area, leaf biomass, specific leaf area, anatomy, health condition and pubescence. Results showed significantly differences between the matrix and the interior and intermediate conditions in the edge. Radiation, temperature and air desiccation were higher in the matrix than in the interior, submitting P cuadrijuga trees to a stressing environment, where they presented stratification of epidermis and palisade parenchyma, and a higher leaf area, leaf thickness, chlorophyll content and pubescence than in the interior of fragments. All these physiological traits allow avoiding the photoxidation and damages by freezing or desiccation to which trees are exposed in a grazing pasture matrix. Nevertheless, there was a higher frequency of healthy leaves in the interior of fragments, showing that high irradiations and extreme air temperature and humidity reach adversely affect to P cuadrijuga. Individuals in the edge had ecophysiological traits similar to the matrix ones, which confirm an edge effect that could penetrate 17m inside the fragments. We conclude that P cuadrijuga is a plastic species, able to overcome the stress conditions from anthropogenic transformations, species able to be used in high Andean forest restoration programs
Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo
2010-09-08
Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.
Girão, Luciana Coe; Lopes, Ariadna Valentina; Tabarelli, Marcelo; Bruna, Emilio M.
2007-01-01
Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits) and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems) in 10 fragments and 10 tracts of forest interior (control plots). As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated). The most conspicuous differences were the lack of three pollination systems in fragments-pollination by birds, flies and non-flying mammals-and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores) for pollination systems (−30.3%), floral types (−23.6%), and floral sizes (−20.8%) in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and greatly reduces the functional diversity of tree assemblages in fragmented landscapes. PMID:17878943
NASA Astrophysics Data System (ADS)
Coelho, Luís Francisco Mello; Ribeiro, Milton Cezar; Pereira, Rodrigo Augusto Santinelo
2014-05-01
The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests.
Magrach, Ainhoa; Larrinaga, Asier R.; Santamaría, Luis
2011-01-01
One and a half centuries after Darwin visited Chiloe Island, what he described as “…an island covered by one great forest…” has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and “edge effects” can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58–73% more isolated and 11–50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km2) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation. PMID:21738723
Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis
2011-01-01
One and a half centuries after Darwin visited Chiloe Island, what he described as "…an island covered by one great forest…" has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and "edge effects" can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58-73% more isolated and 11-50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km(2)) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation.
Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A
2017-01-01
Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).
Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis
2012-01-01
Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges) rather than patch and landscape features (such as patch size, shape or connectivity). These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches). Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.
Genetic effects of chronic habitat fragmentation in a wind-pollinated tree
Jump, Alistair S.; Peñuelas, Josep
2006-01-01
Habitat fragmentation poses a serious threat to plants through genetic changes associated with increased isolation and reduced population size. However, the longevity of trees, combined with effective seed or pollen dispersal, can enhance their resistance to these effects. The European beech (Fagus sylvatica) dominates forest over large regions of Europe. We demonstrate that habitat fragmentation in this species has led to genetic bottlenecks and the disruption of the species' breeding system, leading to significantly elevated levels of inbreeding, population divergence, and reduced genetic diversity within populations. These results show that, in contrast with the findings of previous studies, forest fragmentation has a negative genetic impact, even in this widespread, wind-pollinated tree. The identification of significant effects of forest fragmentation in beech demonstrates that trees are not at reduced risk from environmental change. This should be accounted for in the management of remaining natural and seminatural forest throughout the world. PMID:16698935
Gomes, Juliana P; Iannuzzi, Luciana; Leal, Inara R
2010-01-01
The objective of this study was to determine the effects of forest fragmentation on ant richness in a landscape of Atlantic Forest in Northeast Brazil. More specifically, the ant richness was related to the attributes of fragments (area and distance from the fragment central point to the edge), landscape (forest cover surrounding the fragments), and tree community (plant density, richness, and percentage of shade tolerant species). The surveys were carried out in 19 fragments located in Alagoas State from October 2007 to March 2008. Samples were collected through a 300 m transect established in the center of each fragment, where 30 1-m² leaf litter samples were collected at 10 m intervals. A total of 146 ant species was collected, which belonged to 42 genera, 24 tribes and nine subfamilies. The attributes of fragments and landscape did not influence ant richness. On the other hand, tree density explained ca. 23% of ant richness. In relation to functional groups, both density and richness of trees explained the richness of general myrmicines (the whole model explained ca. 42% of the variation in this group) and percentage of shade tolerant trees explained the richness of specialist predator ants (30% for the whole model). These results indicate that ant fauna is more influenced by vegetation integrity than by fragment size, distance to edge or forest cover surrounding fragments.
Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.
Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252
C.D. Nelson; Thomas L. Kubisiak; M. Stine; W.L. Nance
1994-01-01
Eight megagametophyte DNA samples from a single longleaf pine (Pinus palustris Mill.) tree were used to screen 576 oligonucleotide primers for random amplified polymorphic DNA (RAPD) fragments. Primers amplifying repeatable polymorphic fragments were further characterized within a sample of 72 megagametophytes from the same tree. Fragments...
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.
The first report of detection of a phytoplasma in olive trees in a botanic collection in Iran.
Ahangaran, A; Khezri, S; Habibi, M Koohi; Alizadeh, A; Mohammadi, Gh Mosahebi
2006-01-01
In a survey in 2005 some symptoms were observed on three olive trees in a collection of different olive cultivars in one of the central provinces in Iran (Yazd Province). Affected trees exhibited a variable range of symptoms: dwarfing, shoot proliferation, internode shortening, small leaves, leaf rolling, abortive buds, appearance of very small shoots, hypertrophied, and die- back. The possibility of association of a phytoplasma with the disease was evaluated using polymerase chain reaction (PCR). Total DNA was extracted from midribs of symptomatic and healthy olive plants using phytoplasma enriched procedure and tested for the presence of phytoplasma by nested-PCR using phytoplasmal- universal primers R16F2/R16R2, followed by primers fU5/rU3 which amplify 1200 and 880bp DNA fragments of 16SrDNA, respectively. PCR resulted in amplification of expected DNA fragments in symptomatic but not in healthy olive by both primer pairs. On the basis of symptoms and positive reaction in PCR, these plants can be infected with a phytoplasma. This is the first report of olive trees phytoplasmal disease in Iran. Identification of the agent and its comparison with other phytoplasmal isolates reported from other plants (hosts) in Iran are being studied. Based on the quarantine requirements, one of these trees was eradicated and two of them were transplanted in an isolated green house for further studies.
Louis-Etienne Robert; Brian R. Sturtevant; Barry J. Cooke; Patrick M. A. James; Marie-Josée Fortin; Philip A. Townsend; Peter T. Wolter; Daniel Kneeshaw
2018-01-01
Landscape-level forest management has long been hypothesized to affect forest insect outbreak dynamics, but empirical evidence remains elusive. We hypothesized that the combination of increased hardwood relative to host tree species, prevalence of younger forests, and fragmentation of those forests due to forest harvesting legacies would reduce outbreak intensity,...
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A.; Stoner, Kathryn E.
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium. PMID:23056486
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A; Stoner, Kathryn E
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium.
Leaf litter breakdown of native and exotic tree species in two Hawaiian streams that differ in flow
Megan Roberts; Ayron M. Strauch; Tracy Wiegner; Richard A. Mackenzie
2016-01-01
Riparian leaf litter is a major source of allochthonous organic material to temperate and tropical streams, promoting primary and secondary productivity in lotic and nearshore habitats. In tropical island streams, where native leaf-shredding macroinvertebrates are absent, physical fragmentation from stream flow is an important factor affecting leaf litter breakdown and...
Chapman, Colin A; Wasserman, Michael D; Gillespie, Thomas R; Speirs, Michaela L; Lawes, Michael J; Saj, Tania L; Ziegler, Toni E
2006-12-01
Identifying factors that influence animal density is a fundamental goal in ecology that has taken on new importance with the need to develop informed management plans. This is particularly the case for primates as the tropical forest that supports many species is being rapidly converted. We use a system of forest fragments adjacent to Kibale National Park, Uganda, to examine if food availability and parasite infections have synergistic affects on red colobus (Piliocolobus tephrosceles) abundance. Given that the size of primate populations can often respond slowly to environmental changes, we also examined how these factors influenced cortisol levels. To meet these objectives, we monitored gastrointestinal parasites, evaluated fecal cortisol levels, and determined changes in food availability by conducting complete tree inventories in eight fragments in 2000 and 2003. Red colobus populations declined by an average of 21% among the fragments; however, population change ranged from a 25% increase to a 57% decline. The cumulative basal area of food trees declined by an average of 29.5%; however, forest change was highly variable (a 2% gain to a 71% decline). We found that nematode prevalence averaged 58% among fragments (range 29-83%). The change in colobus population size was correlated both with food availability and a number of indices of parasite infections. A path analysis suggests that change in food availability has a strong direct effect on population size, but it also has an indirect effect via parasite infections. 2006 Wiley-Liss, Inc.
Miller, Rose T; Raharison, Jean-Luc; Irwin, Mitchell T
2017-04-01
The destruction and degradation of forest habitats are major threats to the sustainability of lemur populations in Madagascar. Madagascan landscapes often contain forest fragments that represent refuges for native fauna, while also being used for firewood and timber by local human populations. As undisturbed forest becomes increasingly scarce, understanding resource competition between humans and wildlife in disturbed habitats will be increasingly important. We tested the hypothesis that Malagasy and aye-ayes (Daubentonia madagascariensis) compete for the limited number of dead trees in rainforest fragments at Tsinjoarivo, Madagascar. We surveyed 2.16 ha within five fragments (range 5-228 ha) surrounding human settlements to quantify the density of dead trees and traces of both human and aye-aye activity. Neither aye-aye nor human traces were distributed according to the availability of particular trees species, and aye-ayes and Malagasy apparently preferred several different species. Although overlap was recorded in tree species used, human use tended to be positively correlated with a species' desirability as firewood, while a negative relationship was seen for aye-ayes. Both consumers used trees of similar diameter at breast height, but those used by aye-ayes tended to be older, suggesting that human use might precede usefulness for aye-ayes. Finally, the density of dead trees and aye-aye traces were highest in smaller fragments, but human traces did not vary across fragment size. Although further study is needed to better quantify the aye-aye diet in this region, these data suggest that aye-ayes and local people compete for dead trees, and this competition could constitute a pressure on aye-aye populations.
Sandoval Rodríguez, Carla; Cognato, Anthony I; Righi, Ciro Abbud
2017-12-08
Land use changes and forest fragmentation result in biodiversity loss and displacement, with insects among the most affected groups. Among these, bark beetles (Curculionidae: Scolytinae) occupy a prominent position due to their close ties to food resources, i.e., trees, and importance as primary decomposers in forest ecosystems. Therefore, our study aimed to document scolytine biodiversity associated with landscape components that vary based on their physical or botanical composition. Bark beetle diversity was sampled monthly for 12 mo in an Atlantic forest remnant and five adjacent vegetation plots (mixed Agroforestry System-AFS, of native trees and fruit species; AFS of rubber trees and coffee plants; coffee monoculture; rubber monoculture; and pasture). In total, 1,833 individuals were sampled from 38 species of which 24 (63%) were detected in very low abundance. The remaining 14 species were more abundant and widespread almost in all areas. Hypothenemus hampei (Westwood), Premnobius cavipennis (Eichhoff), Hypothenemus sp1., and Xyleborus volvulus (Fabricius) were the most abundant. The greatest abundance and richness of bark beetles were found in the dry and cold season. The varied microclimatic conditions of the vegetation plots greatly affected the diversity of the Scolytinae. Solar radiation presented a significant negative effect on abundance in almost all the studied areas. The greatest scolytine diversity was found in anthropic areas with tree canopy structure. Open areas (pasture and coffee monocrop) had a lower species diversity. Similarly, a lower abundance and species richness were found for the Atlantic forest remnant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Comparison of habitat quality and diet of Colobus vellerosus in forest fragments in Ghana.
Wong, Sarah N P; Saj, Tania L; Sicotte, Pascale
2006-10-01
The forest fragments surrounding the Boabeng-Fiema Monkey Sanctuary (BFMS) in central Ghana shelter small populations of Colobus vellerosus. Little is known about these populations or the ability of the fragments to support them, despite the fact that these fragments represent potentially important habitat for the colobus in this region. We compared the diet of three groups of C. vellerosus in the fragments to two groups in BFMS. We also examined the differences in plant species composition and food abundance among fragments. The study took place from June to November 2003. Dietary data were collected using scan sampling. Plant species composition and food abundance were evaluated using tree plots and large tree surveys. As in BFMS groups, leaves constituted the highest proportion of the diet of fragment groups, yet the colobus in fragments fed on more lianas than did those in BFMS. Over 50% of all species observed eaten by colobus in the fragments were not consumed in BFMS groups during the same season. Food abundance was similar between fragments and BFMS, although species composition differed. There was no relationship between the density of colobus and the density of food trees or percentage of food species, suggesting that other factors may be influencing the number of colobus present. This study highlights the broad dietary range of C. vellerosus, which may be a factor allowing its survival in these fragments.
Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Morante-Filho, José Carlos; Meave, Jorge A; Martínez-Ramos, Miguel
2018-05-04
Understanding the patterns and processes driving biodiversity maintenance in fragmented tropical forests is urgently needed for conservation planning, especially in species-rich forest reserves. Of particular concern are the effects that habitat modifications at the landscape scale may have on forest regeneration and ecosystem functioning: a topic that has received limited attention. Here, we assessed the effects of landscape structure (i.e., forest cover, open area matrices, forest fragmentation, and mean inter-patch isolation distance) on understory plant assemblages in the Los Tuxtlas Biosphere Reserve, Mexico. Previous studies suggest that the demographic burst of the strong competitor palm Astrocaryum mexicanum in the core area of this reserve limits plant recruitment and imperils biodiversity conservation within this protected area. Yet, the local and landscape predictors of this palm, and its impact on tree recruitment at a regional scale are unknown. Thus, we used structural equation modeling to assess the direct and cascading effects of landscape structure on stem and species density in the understory of 20 forest sites distributed across this biodiversity hotspot. Indirect paths included the effect of landscape structure on tree basal area (a proxy of local disturbance), and the effects of these variables on A. mexicanum. Density of A. mexicanum mainly increased with decreasing both fragmentation and open areas in the matrix (matrix contrast, hereafter), and such an increase in palm density negatively affected stem and species density in the understory. The negative direct effect of matrix contrast on stem density was overridden by the indirect positive effects (i.e., through negative cascading effects on A. mexicanum), resulting in a weak effect of matrix contrast on stem density. These findings suggest that dispersal limitation and negative edge effects in more fragmented landscapes dominated by open areas prevent the proliferation of this palm species, enhancing the diversity and abundance of understory trees. This "positive" news adds to an increasing line of evidence suggesting that fragmentation may have some positive effects on biodiversity, in this case by preventing the proliferation of species that can jeopardize biodiversity conservation within tropical reserves. © 2018 by the Ecological Society of America.
Tarcz, Sebastian; Potekhin, Alexey; Rautian, Maria; Przyboś, Ewa
2012-05-01
This is the first phylogenetic study of the intraspecific variability within Paramecium multimicronucleatum with the application of two-loci analysis (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA) carried out on numerous strains originated from different continents. The species has been shown to have a complex structure of several sibling species within taxonomic species. Our analysis revealed the existence of 10 haplotypes for the rDNA fragment and 15 haplotypes for the COI fragment in the studied material. The mean distance for all of the studied P. multimicronucleatum sequence pairs was p=0.025/0.082 (rDNA/COI). Despite the greater variation of the COI fragment, the COI-derived tree topology is similar to the tree topology constructed on the basis of the rDNA fragment. P. multimicronucleatum strains are divided into three main clades. The tree based on COI fragment analysis presents a greater resolution of the studied P. multimicronucleatum strains. Our results indicate that the strains of P. multimicronucleatum that appear in different clades on the trees could belong to different syngens. Copyright © 2012 Elsevier Inc. All rights reserved.
Ismail, Sascha A; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G; Uma Shaanker, Ramanan; Kettle, Chris J
2017-05-01
Despite the importance of seed dispersal for survival of plant species in fragmented landscapes, data on seed dispersal at landscape scales remain sparse. Effective seed dispersal among fragments determines recolonization and plant species persistence in such landscapes. We present the first large-scale (216-km 2 ) direct estimates of realized seed dispersal of a high-value timber tree (Dysoxylum malabaricum) across an agro-forest landscape in the Western Ghats, India. Based upon an exhaustive inventory of adult trees and a sample of 488 seedlings all genotyped at 10 microsatellite loci, we estimated realized seed dispersal using parentage analysis and the neighbourhood model. Our estimates found that most realized seed dispersal was within 200 m, which is insufficient to effectively bridge the distances between forest patches. We conclude that using mobility of putative animal dispersers can be misleading when estimating tropical tree species vulnerability to habitat fragmentation. This raises serious concerns about the potential of many tropical trees to recolonize isolated forest patches where high-value tree species have already been removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Vranckx, Guy; Jacquemyn, Hans; Muys, Bart; Honnay, Olivier
2012-04-01
Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape. ©2011 Society for Conservation Biology.
Lesser prairie-chicken avoidance of trees in a grassland landscape
Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.
2016-01-01
Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities < 2 trees ∙ ha− 1; however, we could not test if nest survival was affected at greater tree densities as no nests were detected at densities > 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.
Climate and landscape drivers of tree decline in a Mediterranean ecoregion
Brouwers, Niels C; Mercer, Jack; Lyons, Tom; Poot, Pieter; Veneklaas, Erik; Hardy, Giles
2013-01-01
Climate change and anthropogenic land use are increasingly affecting the resilience of natural ecosystems. In Mediterranean ecoregions, forests and woodlands have shown progressive declines in health. This study focuses on the decline of an endemic woodland tree species, Eucalyptus wandoo (wandoo), occurring in the biodiversity hotspot of southwest Western Australia. We determined the change in health of wandoo stands between 2002 and 2008 across its geographic and climatic range, and associated this change in health with non-biotic variables focusing on: (1) fragment metrics; (2) topography; (3) soil characteristics; and (4) climate. Only fragment metrics and climate variables were found to be significantly related to the observed change in health. Stands that were small with high perimeter/area ratios were found to be most sensitive to health declines. Recent increases in autumn temperatures and decreases in annual rainfall were negatively affecting health of wandoo most prominently in the low rainfall zone of its climatic range. Together, these results suggest the onset of range contraction for this ecologically important species, which is likely to be exacerbated by projected future changes in climate. Our results emphasize the importance of establishing monitoring programs to identify changes in health and decline trends early to inform management strategies, particularly in the sensitive Mediterranean ecoregions. PMID:23403899
Camargo, Maria Gabriela G; Souza, Regina M; Reys, Paula; Morellato, Leonor P C
2011-09-01
The Brazilian cerrado has undergone an intense process of fragmentation, which leads to an increase in the number of remnants exposed to edge effects and associated changes on environmental conditions that may affect the phenology of plants. This study aimed to verify whether the reproductive phenology of Xylopia aromatica (Lam.) Mart. (Annonaceae) differs under different light conditions in a cerrado sensu stricto (a woody savanna) of southeastern Brazil. We compared the reproductive phenology of X. aromatica trees distributed on east and south cardinal faces of the cerrado during monthly observations, from January 2005 to December 2008. The east face had a higher light incidence, higher temperatures and canopy openness in relation to south face. X. aromatica showed seasonal reproduction at both faces of the cerrado, but the percentage of individuals, the synchrony and duration of phenophases were higher at the east face. The study demonstrated the influence of the environmental conditions associated to the cardinal orientation of the cerrado faces on the phenological pattern of X. aromatica. Similar responses may be observed for other species, ultimately affecting patterns of floral visitation and fruit production, which reinforces the importance of considering the cardinal direction in studies of edge effects and fragmentation.
Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest.
Ockinger, Erik; Nilsson, Sven G
2010-07-01
The population dynamics of organisms living in short-lived habitats will largely depend on the turnover of habitat patches. It has been suggested that epiphytes, whose host plants can be regarded as habitat patches, often form such patch-tracking populations. However, very little is known about the long-term fate of epiphyte individuals and populations. We estimated life span and assessed environmental factors influencing changes in vitality, fertility, abundance, and distribution of the epiphytic lichen species Lobaria pulmonaria on two spatial scales, individual trees and forest patches, over a period of approximately 10 years in 66 old-growth forest fragments. The lichen had gone extinct from 7 of the 66 sites (13.0%) where it was found 10 years earlier, even though the sites remained unchanged. The risk of local population extinction increased with decreasing population size. In contrast to the decrease in the number of occupied trees and sites, the mean area of the lichen per tree increased by 43.0%. The number of trees with fertile ramets of L. pulmonaria increased from 7 (approximately 1%) to 61 (approximately 10%) trees, and the number of forest fragments with fertile ramets increased from 4 to 23 fragments. The mean annual rate of L. pulmonaria extinction at the tree level was estimated to be 2.52%, translating into an expected lifetime of 39.7 years. This disappearance rate is higher than estimated mortality rates for potential host trees. The risk of extinction at the tree level was significantly positively related to tree circumference and differed between tree species. The probability of presence of fertile ramets increased significantly with local population size. Our results show a long expected lifetime of Lobaria pulmonaria ramets on individual trees and a recent increase in vitality, probably due to decreasing air pollution. The population is, however, declining slowly even though remaining stands are left uncut, which we interpret as an extinction debt.
Souza, Danielle G; Santos, Jean C; Oliveira, Marcondes A; Tabarelli, Marcelo
2016-10-01
Impacts of habitat loss and fragmentation on specialist herbivores have been rarely addressed. Here we examine the structure of plant and galling insect assemblages in a fragmented landscape of the Atlantic forest to verify a potential impoverishment of these assemblages mediated by edge effects. Saplings and galling insects were recorded once within a 0.1-ha area at habitat level, covering forest interior stands, forest edges, and small fragments. A total of 1,769 saplings from 219 tree species were recorded across all three habitats, with differences in terms of sapling abundance and species richness. Additionally, edge-affected habitats exhibited reduced richness of both host-plant and galling insects at plot and habitat spatial scale. Attack levels also differed among forest types at habitat spatial scale (21.1% of attacked stems in forest interior, 12.4% in small fragments but only 8.5% in forest edges). Plot ordination resulted in three clearly segregated clusters: one formed by forest interior, one by small fragments, and another formed by edge plots. Finally, the indicator species analysis identified seven and one indicator plant species in forest interior and edge-affected habitats, respectively. Consequently, edge effects lead to formation of distinct taxonomic groups and also an impoverished assemblage of plants and galling insects at multiple spatial scales. The results of the present study indicate that fragmentation-related changes in plant assemblages can have a cascade effects on specialist herbivores. Accordingly, hyperfragmented landscapes may not be able to retain an expressive portion of tropical biodiversity. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of habitat fragmentation and disturbance on howler monkeys: a review.
Arroyo-Rodríguez, Víctor; Dias, Pedro Américo D
2010-01-01
We examined the literature on the effects of habitat fragmentation and disturbance on howler monkeys (genus Alouatta) to (1) identify different threats that may affect howlers in fragmented landscapes; (2) review specific predictions developed in fragmentation theory and (3) identify the empirical evidence supporting these predictions. Although howlers are known for their ability to persist in both conserved and disturbed conditions, we found evidence that they are negatively affected by high levels of habitat loss, fragmentation and degradation. Patch size appears to be the main factor constraining populations in fragmented habitats, probably because patch size is positively related to food availability, and negatively related to anthropogenic pressures, physiological stress and parasite loads. Patch isolation is not a strong predictor of either patch occupancy or population size in howlers, a result that may be related to the ability of howlers to move among forest patches. Thus, we propose that it is probable that habitat loss has larger consistent negative effects on howler populations than habitat fragmentation per se. In general, food availability decreases with patch size, not only due to habitat loss, but also because the density of big trees, plant species richness and howlers' home range size are lower in smaller patches, where howlers' population densities are commonly higher. However, it is unclear which vegetation attributes have the biggest influence on howler populations. Similarly, our knowledge is still limited concerning the effects of postfragmentation threats (e.g. hunting and logging) on howlers living in forest patches, and how several endogenous threats (e.g. genetic diversity, physiological stress, and parasitism) affect the distribution, population structure and persistence of howlers. More long-term studies with comparable methods are necessary to quantify some of the patterns discussed in this review, and determine through meta-analyses whether there are significant inter-specific differences in species' responses to habitat loss and fragmentation. (c) 2009 Wiley-Liss, Inc.
Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E
2016-01-01
Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.
Peres, Carlos A.; Benchimol, Maíra; Bunnefeld, Lynsey; Dent, Daisy H.
2017-01-01
Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development. PMID:29040272
Jones, Isabel L; Peres, Carlos A; Benchimol, Maíra; Bunnefeld, Lynsey; Dent, Daisy H
2017-01-01
Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development.
Ziter, Carly; Bennett, Elena M; Gonzalez, Andrew
2014-11-01
Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.
Silva, A C; Higuchi, P; van den Berg, E
2010-08-01
In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.
Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T
2012-03-01
While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than plantation edges in summer months (most likely due to greater water availability at pasture edges), resulting in significantly greater estimates of annual transpiration at pasture than plantation edges (430 vs. 343lm(-2)year(-1), respectively). Our study highlights the need for landscape-level water flux models to account for edge effects on stand transpiration, particularly in highly fragmented landscapes.
F. Thomas Ledig; Virginia Jacob-Cervantes; Paul D. Hodgskiss
1997-01-01
Fragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene. The isolated populations vary from 15 to 2441 trees, which provided an...
Pollen-limited reproduction in blue oak: Implications for wind pollination in fragmented populations
Knapp, E.E.; Goedde, M.A.; Rice, K.J.
2001-01-01
Human activities are fragmenting forests and woodlands worldwide, but the impact of reduced tree population densities on pollen transfer in wind-pollinated trees is poorly understood. In a 4-year study, we evaluated relationships among stand density, pollen availability, and seed production in a thinned and fragmented population of blue oak (Quercus douglasii). Geographic coordinates were established and flowering interval determined for 100 contiguous trees. The number of neighboring trees within 60 m that released pollen during each tree's flowering period was calculated and relationships with acorn production explored using multiple regression. We evaluated the effects of female flower production, average temperature, and relative humidity during the pollination period, and number of pollen-producing neighbors on individual trees' acorn production. All factors except temperature were significant in at least one of the years of our study, but the combination of factors influencing acorn production varied among years. In 1996, a year of large acorn crop size, acorn production was significantly positively associated with number of neighboring pollen producers and density of female flowers. In 1997, 1998, and 1999, many trees produced few or no acorns, and significant associations between number of pollen-producing neighbors and acorn production were only apparent among moderately to highly reproductive trees. Acorn production by these reproductive trees in 1997 was significantly positively associated with number of neighboring pollen producers and significantly negatively associated with average relative humidity during the pollination period. In 1998, no analysis was possible, because too few trees produced a moderate to large acorn crop. Only density of female flowers was significantly associated with acorn production of moderately to highly reproductive trees in 1999. The effect of spatial scale was also investigated by conducting analyses with pollen producers counted in radii ranging from 30 m to 80 m. The association between number of pollen-producing neighbors and acorn production was strongest when neighborhood sizes of 60 m or larger were considered. Our results suggest that fragmentation and thinning of blue oak woodlands may reduce pollen availability and limit reproduction in this wind-pollinated species.
Knörr, U C; Gottsberger, G
2012-09-01
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8-388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1-year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal-dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small-sized seeds (<0.3 cm) and less large-seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small-sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large-seeded tree species may facilitate the maintenance of species diversity. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Rymer, P D; Sandiford, M; Harris, S A; Billingham, M R; Boshier, D H
2015-08-01
Habitat fragmentation is extensive throughout the world, converting natural ecosystems into fragments of varying size, density and connectivity. The potential value of remnant trees in agricultural landscapes as seed sources and in connecting fragments has formed a fertile area of debate. This study contrasted the mating patterns of bat-pollinated Pachira quinata trees in a continuous forest to those in pasture through microsatellite-based paternity analysis of progeny. The breeding system was determined by analysis of pollen tube growth and seed production from controlled pollinations. Fitness of selfed and outcrossed seed was compared by germination and seedling growth. There was more inbreeding within pasture trees (outcrossing=0.828±0.015) compared with forest trees (0.926±0.005). Pasture trees had fewer sires contributing to mating events, but pollen dispersal distances were greater than those in the forest. Paternity analysis showed variation in outcrossing rates among pasture trees with high proportions of external and self pollen sources detected. A leaky self-incompatibility system was found, with self pollen having reduced germination on stigmas and slower growth rate through the style. Controlled pollinations also showed a varied ability to self among trees, which was reflected in the selfing rates among pasture trees shown by the paternity analysis (0-80% selfing). Self pollination resulted in lower seed set, germination and seedling growth compared with outcrossing. While remnant trees in agricultural landscapes are involved in broader mating patterns, they show increased but varied levels of inbreeding, which result in reduced fitness.
Rymer, P D; Sandiford, M; Harris, S A; Billingham, M R; Boshier, D H
2015-01-01
Habitat fragmentation is extensive throughout the world, converting natural ecosystems into fragments of varying size, density and connectivity. The potential value of remnant trees in agricultural landscapes as seed sources and in connecting fragments has formed a fertile area of debate. This study contrasted the mating patterns of bat-pollinated Pachira quinata trees in a continuous forest to those in pasture through microsatellite-based paternity analysis of progeny. The breeding system was determined by analysis of pollen tube growth and seed production from controlled pollinations. Fitness of selfed and outcrossed seed was compared by germination and seedling growth. There was more inbreeding within pasture trees (outcrossing=0.828±0.015) compared with forest trees (0.926±0.005). Pasture trees had fewer sires contributing to mating events, but pollen dispersal distances were greater than those in the forest. Paternity analysis showed variation in outcrossing rates among pasture trees with high proportions of external and self pollen sources detected. A leaky self-incompatibility system was found, with self pollen having reduced germination on stigmas and slower growth rate through the style. Controlled pollinations also showed a varied ability to self among trees, which was reflected in the selfing rates among pasture trees shown by the paternity analysis (0–80% selfing). Self pollination resulted in lower seed set, germination and seedling growth compared with outcrossing. While remnant trees in agricultural landscapes are involved in broader mating patterns, they show increased but varied levels of inbreeding, which result in reduced fitness. PMID:23963342
Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne
2013-10-31
Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.
We are attempting to identify specific root fragments from soil cores with individual trees. We successfully used Inter Simple Sequence Repeats (ISSR) to distinguish neighboring old-growth Douglas-fir trees from one another, while maintaining identity among each tree's parts. W...
Smith, Rebecca L; Hayes, Sarah E; Smith, Paul; Dickens, Jeremy K
2018-01-01
Wild primates can spend up to half of their lives sleeping, during which time they are subjected to many of the same selective pressures that they face when awake. Choosing an appropriate sleeping site can thus have important fitness consequences. We examined the sleeping site preferences of wild hooded capuchins (Sapajus cay) in a small degraded fragment of the Upper Paraná Atlantic Forest at Rancho Laguna Blanca (RLB) in eastern Paraguay. Sleeping trees and sites were identified during 5 months of field observations and their physical characteristics were compared to those of non-sleeping trees and sites. Capuchins preferred larger emergent trees with more main and forked branches, no lianas and denser undergrowth directly below. These were found in sites of more mature forest with fewer small trees, less liana coverage and denser undergrowth but more fruiting trees. The species composition of the sleeping sites differed from that of the non-sleeping sites and was dominated by Albizia niopoides (Mimosaceae) as well as Peltophorum dubium (Fabaceae) and Anadenanthera colubrina (Fabaceae). The capuchins were found to sleep most often in these three tree species: 69.23% in Albizia niopoides (Mimosaceae), 11.54% in Peltophorum dubium (Fabaceae) and 11.54% in Anadenanthera colubrina (Fabaceae). We found evidence for the predator avoidance, thermoregulatory, social contact and feeding site proximity hypotheses. We found no support for parasite avoidance, given the reuse of sites, although the small size of the forest fragment may have restricted this. Their preference for older-growth forest suggests that selective logging impacts hooded capuchins. However, their persistence in a disturbed fragment shows they are highly adaptable, providing support for the value of conservation and reforestation of even small fragments of the Paraguayan Upper Paraná Atlantic Forest.
Moura, Bárbara Baêsso; Alves, Edenise Segala; Marabesi, Mauro Alexandre; de Souza, Silvia Ribeiro; Schaub, Marcus; Vollenweider, Pierre
2018-01-01
In southern Brazil, the recent increase in tropospheric ozone (O 3 ) concentrations poses an additional threat to the biodiverse but endangered and fragmented remnants of the Atlantic Forest. Given the mostly unknown sensitivity of tropical species to oxidative stress, the principal objective of this study was to determine whether the current O 3 levels in the Metropolitan Region of Campinas (MRC), downwind of São Paulo, affect the native vegetation of forest remnants. Foliar responses to O 3 of three tree species typical of the MRC forests were investigated using indoor chamber exposure experiments under controlled conditions and a field survey. Exposure to 70ppb O 3 reduced assimilation and leaf conductance but increased respiration in Astronium graveolens while gas exchange in Croton floribundus was little affected. Both A. graveolens and Piptadenia gonoacantha developed characteristic O 3 -induced injury in the foliage, similar to visible symptoms observed in >30% of trees assessed in the MRC, while C. floribundus remained asymptomatic. The underlying structural symptoms in both O 3 -exposed and field samples were indicative of oxidative burst, hypersensitive responses, accelerated cell senescence and, primarily in field samples, interaction with photo-oxidative stress. The markers of O 3 stress were thus mostly similar to those observed in other regions of the world. Further research is needed, to estimate the proportion of sensitive forest species, the O 3 impact on tree growth and stand stability and to detect O 3 hot spots where woody species in the Atlantic Forest are mostly affected. Copyright © 2017 Elsevier B.V. All rights reserved.
Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric
2003-03-01
Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.
Constance A. Harrington; Scott M. Holub; Cici Bauer; E. Ashley Steel
2017-01-01
This study evaluated relationships between site or tree characteristics and below-ground materials in Douglas-fir forests of the Pacific Northwest. We core-sampled living roots, dead organic matter, and mineral fragments at three soil depths on a 300-sample grid at nine forested sites in western Washington and Oregon resulting in approximately 7200 samples. We explored...
Ramos, Flavio Nunes; de Lima, Paula Feliciano; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Solferini, Vera Nisaka
2010-04-01
Two species, Psychotria tenuinervis (shrub, Rubiaceae) and Guarea guidonia (tree, Meliaceae), were used as models to compare the genetic structure of tree and shrubby species among natural edges, anthropogenic edges, and a fragment interior. There were significant differences between two genetic markers. For isozymes, P. tenuinervis presented greater heterozygosity (expected and observed) and a higher percentage of polymorphic loci and median number of alleles than G. guidonia. For microsatellites, there was no difference in genetic variability between the species. Only P. tenuinervis, for isozymes, showed differences in genetic variability among the three habitats. There was no genetic structure (F (ST) < 0.05) among habitats in both plant species for both genetic markers. Isozymes showed great endogamy for both plant species, but not microsatellites. The forest fragmentation may have negative effects on both spatial (among edges and interior) and temporal genetic variability.
An Amazonian rainforest and its fragments as a laboratory of global change.
Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W
2018-02-01
We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km 2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales. © 2017 Cambridge Philosophical Society.
Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J; Pérez, Fernanda
2015-01-01
Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.
Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J.; Pérez, Fernanda
2015-01-01
Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species’ responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale. PMID:26257746
NASA Technical Reports Server (NTRS)
Springer, E.; Sachs, M. S.; Woese, C. R.; Boone, D. R.
1995-01-01
Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.
Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong
2012-09-01
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.
El Niño drought increased canopy turnover in Amazon forests.
Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos
2018-03-25
Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2 ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1 yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.
Use of DNA markers in forest tree improvement research
D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall
1992-01-01
DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...
Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea).
Andersen, Liselotte W.; Fog, Kåre; Damgaard, Christian
2004-01-01
A genetic study of the European tree frog, Hyla arborea, in Denmark was undertaken to examine the population structure on mainland Jutland and the island of Lolland after a period of reduction in suitable habitat and population sizes. The two regions have experienced the same rate of habitat loss but fragmentation has been more severe on Lolland. Genetic variation based on 12 polymorphic DNA microsatellites was analysed in 494 tree frogs sampled from two ponds in Jutland and 10 ponds on Lolland. A significant overall deviation from Hardy-Weinberg expectations could be attributed to three ponds, all on Lolland. This was most probably caused by an inbreeding effect reducing fitness, which was supported by the observed significant negative correlation between larva survival and mean F(IS) value and mean individual inbreeding coefficient. A significant reduction in genetic variation (bottleneck) was detected in most of the ponds on Lolland. Population-structure analysis suggested the existence of at least 11 genetically different populations, corresponding to most of the sampled population units. The results indicated that the populations were unique genetic units and could be used to illustrate the migration pattern between newly established ponds arisen either by natural colonization of tree frogs or by artificial introduction. A high degree of pond fidelity in the tree frogs was suggested. A severe fragmentation process reducing population size and fitness within some of the populations probably caused the significant reduction in genetic variation of tree frog populations on Lolland. PMID:15306354
Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H
2013-12-01
The conservation implications of large-scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow-growing mature-phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest-area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical. © 2013 Society for Conservation Biology.
Allana K. Welsh; Jeffrey O. Dawson; Gerald J. Gottfried; Dittmar Hahn
2009-01-01
The diversity of uncultured Frankia populations in root nodules of Alnus oblongifolia trees geographically isolated on mountaintops of central Arizona was analyzed by comparative sequence analyses of nifH gene fragments. Sequences were retrieved from Frankia populations in nodules of four trees from each of...
Anacker, Brian L; Rank, Nathan E; Hüberli, Daniel; Garbelotto, Matteo; Gordon, Sarah; Harnik, Tami; Whitkus, Richard; Meentemeyer, Ross
2008-01-01
Sudden oak death is an emerging forest disease caused by the invasive pathogen Phytophthora ramorum. Genetic and environmental factors affecting susceptibility to P. ramorum in the key inoculum-producing host tree Umbellularia californica (bay laurel) were examined across a heterogeneous landscape in California, USA. Laboratory susceptibility trials were conducted on detached leaves and assessed field disease levels for 97 host trees from 12 225-m(2) plots. Genotype and phenotype characteristics were assessed for each tree. Effects of plot-level environmental conditions (understory microclimate, amount of solar radiation and topographic moisture potential) on disease expression were also evaluated. Susceptibility varied significantly among U. californica trees, with a fivefold difference in leaf lesion size. Lesion size was positively related to leaf area, but not to other phenotypic traits or to field disease level. Genetic diversity was structured at three spatial scales, but primarily among individuals within plots. Lesion size was significantly related to amplified fragment length polymorphism (AFLP) markers, but local environment explained most variation in field disease level. Thus, substantial genetic variation in susceptibility to P. ramorum occurs in its principal foliar host U. californica, but local environment mediates expression of susceptibility in nature.
Defaunation affects carbon storage in tropical forests
Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro
2015-01-01
Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067
Rocha-Santos, Larissa; Benchimol, Maíra; Mayfield, Margaret M; Faria, Deborah; Pessoa, Michaele S; Talora, Daniela C; Mariano-Neto, Eduardo; Cazetta, Eliana
2017-01-01
As tropical rainforests are cleared, forest remnants are increasingly isolated within agricultural landscapes. Understanding how forest loss impacts on species diversity can, therefore, contribute to identifying the minimum amount of habitat required for biodiversity maintenance in human-modified landscapes. Here, we evaluate how the amount of forest cover, at the landscape scale, affects patterns of species richness, abundance, key functional traits and common taxonomic families of adult trees in twenty Brazilian Atlantic rainforest landscapes. We found that as forest cover decreases, both tree community richness and abundance decline, without exhibiting a threshold. At the family-level, species richness and abundance of the Myrtaceae and Sapotaceae were also negatively impacted by the percent forest remaining at the landscape scale. For functional traits, we found a reduction in shade-tolerant, animal-dispersed and small-seeded species following a decrease in the amount of forest retained in landscapes. These results suggest that the amount of forest in a landscape is driving non-random losses in phylogenetic and functional tree diversity in Brazil's remaining Atlantic rainforests. Our study highlights potential restraints on the conservation value of Atlantic rainforest remnants in deforested landscapes in the future.
Benchimol, Maíra; Mayfield, Margaret M.; Faria, Deborah; Pessoa, Michaele S.; Talora, Daniela C.; Mariano-Neto, Eduardo; Cazetta, Eliana
2017-01-01
As tropical rainforests are cleared, forest remnants are increasingly isolated within agricultural landscapes. Understanding how forest loss impacts on species diversity can, therefore, contribute to identifying the minimum amount of habitat required for biodiversity maintenance in human-modified landscapes. Here, we evaluate how the amount of forest cover, at the landscape scale, affects patterns of species richness, abundance, key functional traits and common taxonomic families of adult trees in twenty Brazilian Atlantic rainforest landscapes. We found that as forest cover decreases, both tree community richness and abundance decline, without exhibiting a threshold. At the family-level, species richness and abundance of the Myrtaceae and Sapotaceae were also negatively impacted by the percent forest remaining at the landscape scale. For functional traits, we found a reduction in shade-tolerant, animal-dispersed and small-seeded species following a decrease in the amount of forest retained in landscapes. These results suggest that the amount of forest in a landscape is driving non-random losses in phylogenetic and functional tree diversity in Brazil’s remaining Atlantic rainforests. Our study highlights potential restraints on the conservation value of Atlantic rainforest remnants in deforested landscapes in the future. PMID:28403166
Thorn, Christine Johanna; Bissinger, Kerstin; Thorn, Simon; Bogner, Franz Xaver
2016-01-01
Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner's characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on "soil and sunshine", representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile.
Thorn, Simon; Bogner, Franz Xaver
2016-01-01
Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner’s characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on “soil and sunshine”, representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile. PMID:26807974
Searching molecular structure databases with tandem mass spectra using CSI:FingerID
Dührkop, Kai; Shen, Huibin; Meusel, Marvin; Rousu, Juho; Böcker, Sebastian
2015-01-01
Metabolites provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually rely on tandem MS to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. We present a method for searching molecular structure databases using tandem MS data of small molecules. Our method computes a fragmentation tree that best explains the fragmentation spectrum of an unknown molecule. We use the fragmentation tree to predict the molecular structure fingerprint of the unknown compound using machine learning. This fingerprint is then used to search a molecular structure database such as PubChem. Our method is shown to improve on the competing methods for computational metabolite identification by a considerable margin. PMID:26392543
Martin J. Brown; Jane Kertis; Mark H. Huff
2013-01-01
We monitored coarse woody debris dynamics and natural tree regeneration over a 14-year period after the 1991 Warner Creek Fire, a 3631-ha (8,972-ac) mixed severity fire in the western Cascade Range of Oregon. Rates for tree mortality in the fire, postfire mortality, snag fall, and snag fragmentation all showed distinct patterns by tree diameter and species, with...
Kevin M. Potter; Robert M. Jetton; Andrew Bower; Douglass F. Jacobs; Gary Man; Valerie D. Hipkins; Murphy Westwood
2017-01-01
Genetic diversity provides the essential basis for the adaptation and resilience of tree species to environmental stress and change. The genetic conservation of tree species is an urgent global necessity as forest conversion and fragmentation continue apace, damaging insects and pathogens are transported between continents, and climate change alters local habitat...
Miller, Mark P.; Bellinger, R.M.; Forsman, E.D.; Haig, Susan M.
2006-01-01
Phylogeographical analyses conducted in the Pacific Northwestern United States have often revealed concordant patterns of genetic diversity among taxa. These studies demonstrate distinct North/South genetic discontinuities that have been attributed to Pleistocene glaciation. We examined phylogeographical patterns of red tree voles (Phenacomys longicaudus) in western Oregon by analysing mitochondrial control region sequences for 169 individuals from 18 areas across the species' range. Cytochrome b sequences were also analysed from a subset of our samples to confirm the presence of major haplotype groups. Phylogenetic network analyses suggested the presence of two haplotype groups corresponding to northern and southern regions of P. longicaudus' range. Spatial genetic analyses (samova and Genetic Landscape Shapes) of control region sequences demonstrated a primary genetic discontinuity separating northern and southern sampling areas, while a secondary discontinuity separated northern sampling areas into eastern and western groups divided by the Willamette Valley. The North/South discontinuity likely corresponds to a region of secondary contact between lineages rather than an overt barrier. Although the Cordilleran ice sheet (maximum a??12 000 years ago) did not move southward to directly affect the region occupied by P. longicaudus, climate change during glaciation fragmented the forest landscape that it inhabits. Signatures of historical fragmentation were reflected by positive associations between latitude and variables such as Tajima's D and patterns associated with location-specific alleles. Genetic distances between southern sampling areas were smaller, suggesting that forest fragmentation was reduced in southern vs. northern regions.
NASA Astrophysics Data System (ADS)
Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.
2017-12-01
Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?
Magnago, Luiz Fernando S; Magrach, Ainhoa; Laurance, William F; Martins, Sebastião V; Meira-Neto, João Augusto A; Simonelli, Marcelo; Edwards, David P
2015-09-01
Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer-grained assessments in fragmented landscapes rather than using averaged coarse-grained cells. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Omer, Galal; Mutanga, Onisimo; Abdel-Rahman, Elfatih M.; Peerbhay, Kabir; Adam, Elhadi
2017-09-01
Forest nitrogen (N) and carbon (C) are among the most important biochemical components of tree organic matter, and the estimation of their concentrations can help to monitor the nutrient uptake processes and health of forest trees. Traditionally, these tree biochemical components are estimated using costly, labour intensive, time-consuming and subjective analytical protocols. The use of very high spatial resolution multispectral data and advanced machine learning regression algorithms such as support vector machines (SVM) and artificial neural networks (ANN) provide an opportunity to accurately estimate foliar N and C concentrations over intact and fragmented forest ecosystems. In the present study, the utility of spectral vegetation indices calculated from WorldView-2 (WV-2) imagery for mapping leaf N and C concentrations of fragmented and intact indigenous forest ecosystems was explored. We collected leaf samples from six tree species in the fragmented as well as intact Dukuduku indigenous forest ecosystems. Leaf samples (n = 85 for each of the fragmented and intact forests) were subjected to chemical analysis for estimating the concentrations of N and C. We used 70% of samples for training our models and 30% for validating the accuracy of our predictive empirical models. The study showed that the N concentration was significantly higher (p = 0.03) in the intact forests than in the fragmented forest. There was no significant difference (p = 0.55) in the C concentration between the intact and fragmented forest strata. The results further showed that the foliar N and C concentrations could be more accurately estimated using the fragmented stratum data compared with the intact stratum data. Further, SVM achieved relatively more accurate N (maximum R2 Val = 0.78 and minimum RMSEVal = 1.07% of the mean) and C (maximum R2 Val = 0.67 and minimum RMSEVal = 1.64% of the mean) estimates compared with ANN (maximum R2Val = 0.70 for N and 0.51 for C and minimum RMSEVal = 5.40% of the mean for N and 2.21% of the mean for C). Overall, SVM regressions achieved more accurate models for estimating forest foliar N and C concentrations in the fragmented and intact indigenous forests compared to the ANN regression method. It is concluded that the successful application of the WV-2 data integrated with SVM can provide an accurate framework for mapping the concentrations of biochemical elements in two indigenous forest ecosystems.
Murray, Dennis L.; Peers, Michael J. L.; Majchrzak, Yasmine N.; Wehtje, Morgan; Ferreira, Catarina; Pickles, Rob S. A.; Row, Jeffrey R.; Thornton, Daniel H.
2017-01-01
Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species’ environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species. PMID:28505173
Murray, Dennis L; Peers, Michael J L; Majchrzak, Yasmine N; Wehtje, Morgan; Ferreira, Catarina; Pickles, Rob S A; Row, Jeffrey R; Thornton, Daniel H
2017-01-01
Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species' environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species.
Dauber, Jens; Bengtsson, Jan; Lenoir, Lisette
2006-08-01
Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.
Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S
2018-09-01
Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.
Golokhvast, Kirill S
2014-01-01
This paper presents an analysis of airborne biogenic particles (1 mkm-1 mm) found in the snow in several cities of the Russian Far East during 2010-2013. The most common was vegetational terraneous detritus (fragments of tree and grass leaves) followed by animal hair, small insects and their fragments, microorganisms of aeroplankton, and equivocal biological garbage. Specific components were found in samples from locations close to bodies of water such as fragments of algae and mollusc shells and, marine invertebrates (needles of sea urchins and shell debris of arthropods). In most locations across the Far East (Vladivostok, Khabarovsk, Blagoveshchensk, and Ussuriysk), the content of biogenic particles collected in the winter did not exceed 10% of the total particulate matter, with the exception of Birobidzhan and the nature reserve Bastak, where it made up to 20%. Most of all biogenic compounds should be allergic: hair, fragments of tree and grass leaves, insects, and microorganisms.
Golokhvast, Kirill S.
2014-01-01
This paper presents an analysis of airborne biogenic particles (1 mkm–1 mm) found in the snow in several cities of the Russian Far East during 2010–2013. The most common was vegetational terraneous detritus (fragments of tree and grass leaves) followed by animal hair, small insects and their fragments, microorganisms of aeroplankton, and equivocal biological garbage. Specific components were found in samples from locations close to bodies of water such as fragments of algae and mollusc shells and, marine invertebrates (needles of sea urchins and shell debris of arthropods). In most locations across the Far East (Vladivostok, Khabarovsk, Blagoveshchensk, and Ussuriysk), the content of biogenic particles collected in the winter did not exceed 10% of the total particulate matter, with the exception of Birobidzhan and the nature reserve Bastak, where it made up to 20%. Most of all biogenic compounds should be allergic: hair, fragments of tree and grass leaves, insects, and microorganisms. PMID:25140327
Żuraw, A; Dietert, K; Kühnel, S; Sander, J; Klopfleisch, R
2016-07-01
Evidence suggest there is a link between equine atypical myopathy (EAM) and ingestion of sycamore maple tree seeds. To further evaluate the hypothesis that the ingestion of hypoglycin A (HGA) containing sycamore maple tree seeds causes acquired multiple acyl-CoA dehydrogenase deficiency and might be associated with the clinical and pathological signs of EAM. Case report. Necropsy and histopathology, using hematoxylin and eosin and Sudan III stains, were performed on a 2.5-year-old mare that died following the development of clinical signs of progressive muscle stiffness and recumbency. Prior to death, the animal ingested sycamore maple tree seeds (Acer pseudoplatanus). Detection of metabolites in blood and urine obtained post mortem was performed by rapid ultra-performance liquid chromatography-tandem mass spectrometry. Data from this case were compared with 3 geldings with no clinical history of myopathy. Macroscopic examination revealed fragments of maple tree seeds in the stomach and severe myopathy of several muscle groups including Mm. intercostales, deltoidei and trapezii. Histologically, the affected muscles showed severe, acute rhabdomyolysis with extensive accumulation of finely dispersed fat droplets in the cytoplasm of degenerated skeletal muscle cells not present in controls. Urine and serum concentrations of several acyl carnitines and acyl glycines were increased, and both contained metabolites of HGA, a toxic amino acid present in sycamore maple tree seeds. The study supports the hypothesis that ingestion of HGA-containing maple tree seeds may cause EAM due to acquired multiple acyl-CoA dehydrogenase deficiency. © 2015 EVJ Ltd.
Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests
NASA Astrophysics Data System (ADS)
Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.
2018-01-01
Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.
Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R
2013-01-01
Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher. PMID:23486081
Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R
2013-06-01
Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher.
C. Dana Nelson; Jennifer L. Koch
2017-01-01
Our nationâs forests and forest trees are undergoing unprecedented stress from invasive pathogens and pests, climate change, land fragmentation, and urbanization. Some of these stresses are acute, either regionally or locally, and are having significant negative impacts on regional and local economies and ecosystems. Managing and improving the genetic resources of...
Wang, Xiupin; Peng, Qingzhi; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen; Zhang, Liangxiao
2016-10-12
High complexity of identification for non-target triacylglycerols (TAGs) is a major challenge in lipidomics analysis. To identify non-target TAGs, a powerful tool named accurate MS(n) spectrometry generating so-called ion trees is used. In this paper, we presented a technique for efficient structural elucidation of TAGs on MS(n) spectral trees produced by LTQ Orbitrap MS(n), which was implemented as an open source software package, or TIT. The TIT software was used to support automatic annotation of non-target TAGs on MS(n) ion trees from a self-built fragment ion database. This database includes 19108 simulate TAG molecules from a random combination of fatty acids and corresponding 500582 self-built multistage fragment ions (MS ≤ 3). Our software can identify TAGs using a "stage-by-stage elimination" strategy. By utilizing the MS(1) accurate mass and referenced RKMD, the TIT software can discriminate unique elemental composition candidates. The regiospecific isomers of fatty acyl chains will be distinguished using MS(2) and MS(3) fragment spectra. We applied the algorithm to the selection of 45 TAG standards and demonstrated that the molecular ions could be 100% correctly assigned. Therefore, the TIT software could be applied to TAG identification in complex biological samples such as mouse plasma extracts. Copyright © 2016 Elsevier B.V. All rights reserved.
Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt
Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Stead, M G; Harris, J B C; Lowe, A J
2015-01-01
Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow. PMID:23188172
A decade of mangrove recovery at affected area by the 2004 tsunami along coast of Banda Aceh city
NASA Astrophysics Data System (ADS)
Onrizal; Mansor, M.
2018-03-01
Banda Aceh (BA) is the capital of Aceh Province, Indonesia. It was the most affected areas by the 2004 tsunami. Before the natural catastrophe, most of the BA mangroves disturbed by human activities and remaining mangroves were fragmented and had a low density of trees. Therefore, the objectives of this study were to calculate the impact of the tsunami on mangrove and subsequently to evaluate the mangrove recovery based on spatial and temporal analysis and ground truthing method within the period 11 years in intertidal areas of BA. Three regions of BA coastal areas were selected, namely Kuala Cangkoy, Gampong Jawa and Lambada coasts. Before the tsunami, the mangrove forests in BA were only 13.6% of BA coastlands and fragmented. Approximately 48.9% of the mangroves have destroyed due to the tsunami. The BA mangroves at 5 and 11 years after tsunami were 66.5% and 81.3% relative to the data before tsunami, respectively. It means that the BA is very vulnerable due to the future tsunami occur. Therefore, the mangrove restoration in BA needs to be improved and maintain based on green belt concept for coastal protection as well as productivity of estuarine ecosystem.
The paradox of forest fragmentation genetics
Andrea T. Kramer; Jennifer L. Ison; Mary V. Ashley; Henry F. Howe
2008-01-01
Theory predicts widespread loss of genetic diversity from drift and inbreeding in trees subjected to habitat fragmentation, yet empirical support of this theory is scarce. We argue that population genetics theory may be misapplied in light of ecological realities that, when recognized, require scrutiny of underlying evolutionary assumptions. One ecological reality is...
Yang, X; Sha, L
2001-04-01
The species composition and diversity of soil mesofauna were examined in fragmented dry tropical seasonal rainforest of tow 'Holy Hills' of Dai nationality, compared with the continuous moist tropical seasonal rain forest of Nature Reserve in Xishuangbanna area. 5 sample quadrats were selected along the diagonal of 20 m x 20 m sampling plot, and the samples of litterfall and 0-3 cm soil were collected from each 50 cm x 10 cm sample quadrat. Animals in soil sample were collected by using dry-funnel(Tullgren's), were identified to their groups according to the order. The H' index, D.G index and the pattern of relative abundance of species were used to compare the diversity of soil mesofauna. The results showed that the disturbance of vegetation and soil resulted by tropical rainforest fragmentation was the major factor affecting the diversity of soil mesofauna. Because the fragmented forest was intruded by some pioneer tree species and the "dry and warm" effect operated, this forest had more litterfall on the floor and more humus in the soil than the continuous moist rain forest. The soil condition with more soil organic matter, total N and P, higher pH value and lower soil bulk density became more favorable to the soil mesofauna. Therefore, the species richness, abundance and diversity of soil mesofauna in fragmented forests were higher than those in continuous forest, but the similarity of species composition in fragmented forest to the continuous forest was minimal. Soil mesofauna diversity in fragmented forests did not change with decreasing fragmented area, indicating that there was no species-area effect operation in this forest. The pattern of relative abundance of species in these forest soils was logarithmic series distribution.
Development of partial rock veneers by root throw in a subalpine setting
Osterkamp, W.R.; Toy, T.J.; Lenart, M.T.
2006-01-01
Rock veneers stabilize hillslope surfaces, occur especially in areas of immature soil, and form through a variety of process sets that includes root throw. Near Westcliffe, Colorado, USA, data were collected from a 20 ?? 500 m transect on the east slope of the Sangre de Cristo Mountains. Ages of pit/mound complexes with rock fragments exposed at the surface by root throw ranged from recent (freshly toppled tree) to unknown (complete tree decay). Calculations based on dimensions of the pit/mound complexes, estimated time of free topppling, sizes of exposed rock fragments, and percentage rock covers at pit/mound complexes, as well as within the transect area, indicate that recent rates of root throw have resulted in only partial rock veneering since late Pleistocene deglaciation. Weathering of rock fragments prevent development of an extensive rock veneer and causes a balance, achieved within an estimated 700 years, between the rates of rock-fragment exposure by root throw and clast disintegration by chemical reduction. The estimated rate of rock-fragment reduction accounts for part of the fluvial sediment yields observed for forested subalpine areas of western North America. Copyright ?? 2005 John Wiley & Sons, Ltd.
Hou, Lin; Hou, Sijia
2017-01-01
Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.
Lessel, Uta; Wellenzohn, Bernd; Fischer, J Robert; Rarey, Matthias
2012-02-27
A case study is presented illustrating the design of a focused CDK2 library. The scaffold of the library was detected by a feature trees search in a fragment space based on reactions from combinatorial chemistry. For the design the software LoFT (Library optimizer using Feature Trees) was used. The special feature called FTMatch was applied to restrict the parts of the queries where the reagents are permitted to match. This way a 3D scoring function could be simulated. Results were compared with alternative designs by GOLD docking and ROCS 3D alignments.
Torres-Díaz, Cristian; Ruiz, Eduardo; González, Fidelina; Fuentes, Glenda; Cavieres, Lohengrin A.
2007-01-01
Background and Aims The endemic tree Nothofagus alessandrii (Fagaceae) has been historically restricted to the coastal range of Region VII of central Chile, and its forests have been increasingly destroyed and fragmented since the end of the 19th century. In this study, the patterns of within- and among-population genetic diversity in seven fragments of this endangered narrowly endemic tree were examined. Methods Allozyme electrophoresis of seven loci of N. alessandrii was used to estimate genetic diversity, genetic structure and gene flow. Key Results High levels of genetic diversity were found as shown by mean expected heterozygosity (He = 0·182 ± 0·034), percentage of polymorphic loci (Pp = 61·2 %), mean number of alleles per locus (A = 1·8) and mean number of alleles per polymorphic locus (Ap = 2·3). Genetic differentiation was also high (GST = 0·257 and Nm = 0·7). These values are high compared with more widespread congeneric species. Conclusions Despite its endemic status and restricted geographical range N. alessandrii showed high levels of genetic diversity. The observed patterns of diversity are explained in part by historical processes and more recent human fragmentation. PMID:17513870
Matsumura, Emi; Fukuda, Kenji
2013-03-01
To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
2011-01-01
Background "Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by "Ca. Phytoplasma aurantifolia". Results We carried out cDNA-AFLP analysis on grafted infected Mexican lime trees of the susceptible cultivar at the representative symptoms stage. Selective amplifications with 43 primer combinations allowed the visualisation of 55 transcript-derived fragments that were expressed differentially between infected and non-infected leaves. We sequenced 51 fragments, 36 of which were identified as lime tree transcripts after homology searching. Of the 36 genes, 70.5% were down-regulated during infection and could be classified into various functional groups. We showed that Mexican lime tree genes that were homologous to known resistance genes tended to be repressed in response to infection. These included the genes for modifier of snc1 and autophagy protein 5. Furthermore, down-regulation of genes involved in metabolism, transcription, transport and cytoskeleton was observed, which included the genes for formin, importin β 3, transducin, L-asparaginase, glycerophosphoryl diester phosphodiesterase, and RNA polymerase β. In contrast, genes that encoded a proline-rich protein, ubiquitin-protein ligase, phosphatidyl glycerol specific phospholipase C-like, and serine/threonine-protein kinase were up-regulated during the infection. Conclusion The present study identifies a number of candidate genes that might be involved in the interaction of Mexican lime trees with "Candidatus Phytoplasma aurantifolia". These results should help to elucidate the molecular basis of the infection process and to identify genes that could be targeted to increase plant resistance and inhibit the growth and reproduction of the pathogen. PMID:21194490
Hilário, R R; Toledo, J J
2016-01-01
Palms, bromeliads and bamboos are key elements of tropical forests and understanding the effects of climate, anthropogenic pressure and forest structure on these groups is crucial to forecast structural changes in tropical forests. Therefore, we investigated the effects of these factors on the abundance of these groups in 22 Atlantic forest fragments of Northeastern Brazil. Abundance of bromeliads and bamboos were assessed through indexes. Palms were counted within a radius of 20 m. We also obtained measures of vegetation structure, fragment size, annual precipitation, precipitation seasonality and human population density. We tested the effects of these predictors on plant groups using path analysis. Palm abundance was higher in taller forests with larger trees, closed canopy and sparse understory, which may be a result of the presence of seed dispersers and specific attributes of local palm species. Bromeliads were negatively affected by both annual precipitation and precipitation seasonality, what may reflect adaptations of these plants to use water efficiently, but also the need to capture water in a regular basis. Bamboos were not related to any predictor variable. As climate and forest structure affected the abundance of bromeliads and palms, human-induced climatic changes and disturbances in forest structure may modify the abundance of these groups. In addition, soil properties and direct measurements of human disturbance should be used in future studies in order to improve the predictability of models about plant groups in Northeastern Atlantic Forest.
Activity budget and ranging patterns of Colobus vellerosus in forest fragments in central Ghana.
Wong, Sarah N P; Sicotte, Pascale
2007-01-01
The forest fragments surrounding the 192-ha Boabeng-Fiema Monkey Sanctuary (BFMS) in central Ghana contain small populations of Colobus vellerosus. Data were collected on activity budget, ranging patterns and habitat use of 3 groups living in these small fragments in August-November 2003, and compared to 3 BFMS groups. Fragment groups spent less time moving and more time resting than BFMS groups. Home ranges of fragment groups tended to be smaller than those of BFMS groups. Fragment and BFMS groups used similarly sized trees. Comparisons of activity budget and ranging between fragments and the BFMS suggest that fragment habitat quality was sufficient to sustain current numbers. These behavioral trends are consistent with a concurrent study that we conducted investigating ecological quality in the same fragments. Copyright 2007 S. Karger AG, Basel.
Forest habitat loss, fragmentation, and red-cockaded woodpecker populations
Richard N. Conner; D. Craig Rudolph
1991-01-01
Loss of mature forest habitat was measured around Red-cockaded Woodpecker (Picoides borealis) cavity tree clusters (colonies) in three National Forests in eastern Texas. Forest removal results in a loss of foraging habitat and causes habitat fragmentation of the remaining mature forest. Habitat loss was negatively associated with woodpecker group size in small...
Genetic connectivity of the moth pollinated tree Glionnetia sericea in a highly fragmented habitat.
Finger, Aline; Kaiser-Bunbury, Christopher N; Kettle, Chris J; Valentin, Terence; Ghazoul, Jaboury
2014-01-01
Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow.
Genetic Connectivity of the Moth Pollinated Tree Glionnetia sericea in a Highly Fragmented Habitat
Finger, Aline; Valentin, Terence; Ghazoul, Jaboury
2014-01-01
Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow. PMID:25347541
Zahawi, Rakan A; Oviedo-Brenes, Federico; Peterson, Chris J
2017-01-01
Habitat loss and fragmentation are among the biggest threats to tropical biodiversity and associated ecosystem services. We examined forest dynamics in a mid-elevation 365-ha fragment in southern Costa Rica. The fragment was isolated in the mid-1970s and belongs to the Las Cruces Biological Station. A 2.25-ha permanent plot was established in the center of the old-growth forest (>400 m to nearest edge boundary) and all plants >5 cm DBH were censused, mapped, and identified to species in two surveys taken ~5-6 years apart (>3,000 stems/survey). Although the reserve maintains high species richness (>200 spp.), with many rare species represented by only one individual, we document a strong shift in composition with a two-fold increase in the number of soft-wooded pioneer individuals. The dominant late-successional understory tree species, Chrysochlamys glauca (Clusiaceae), and most species in the Lauraceae, declined dramatically. Turnover was high: 22.9% of stems in the first survey were lost, and 27.8% of stems in the second survey represented new recruits. Mean tree diameter decreased significantly and there was a 10% decrease in overall biomass. Such alteration has been documented previously but only in smaller fragments or within ~100 m of an edge boundary. Further penetration into this fragment was perhaps driven by a progressive invasion of disturbance-adapted species into the fragment's core over time; the loss of once-dominant late successional species could be a contributing factor. The pattern found is of particular concern given that such fragments represent a substantial portion of today's remaining tropical habitat; further studies in similar-sized fragments that have been isolated for similar prolonged periods are called for.
2014-01-01
Background Habitat loss and fragmentation may have detrimental impacts on genetic diversity, population structure and overall viability of tropical trees. The response of tropical trees to fragmentation processes may, however, be species, cohort or region-specific. Here we test the hypothesis that forest fragmentation is associated with lower genetic variability and higher genetic differentiation in adult and seedling populations of Prunus africana in North-western Ethiopia. This is a floristically impoverished region where all but a few remnant forest patches have been destroyed, mostly by anthropogenic means. Results Genetic diversity (based on allelic richness) was significantly greater in large and less-isolated forest patches as well as in adults than seedlings. Nearly all pairwise FST comparisons showed evidence for significant population genetic differentiation. Mean FST values were significantly greater in seedlings than adults, even after correction for within population diversity, but varied little with patch size or isolation. Conclusions Analysis of long-lived adult trees suggests the formerly contiguous forest in North-western Ethiopia probably exhibited strong spatial patterns of genetic structure. This means that protecting a range of patches including small and isolated ones is needed to conserve the extant genetic resources of the valuable forests in this region. However, given the high livelihood dependence of the local community and the high impact of foreign investors on forest resources of this region, in situ conservation efforts alone may not be helpful. Therefore, these efforts should be supported with ex situ gene conservation actions. PMID:24602239
Ismail, Sascha A.; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G.; Uma Shaanker, Ramanan; Kettle, Chris J.
2014-01-01
Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297 nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D. malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes. PMID:24558500
de Oliveira, Rodrigo Leonardo Costa; Farias, Hugo Leonardo Sousa; Perdiz, Ricardo de Oliveira; Scudeller, Veridiana Vizoni; Imbrozio Barbosa, Reinaldo
2017-01-01
Woody plant diversity from the Amazonian savannas has been poorly quantified. In order to improve the knowledge on wood plants of these regional ecosystems, a tree inventory was carried out in four different habitats used by indigenous people living in the savanna areas of the Northern Brazilian Amazon. The habitats were divided into two types (or groups) of vegetation formations: forest (riparian forest, forest island, and buritizal = Mauritia palm formation) and non-forest (typical savanna). The inventory was carried out in two hectares established in the Darora Indigenous Community region, north of the state of Roraima. The typical savanna is the most densely populated area (709 stems ha -1 ); however, it has the lowest tree species richness (nine species, seven families) in relation to typical forest habitats: riparian forest (22 species, 13 families and 202 stems ha -1 ), forest islands (13 species, 10 families and 264 stems ha -1 ), and buritizal (19 species, 15 families and 600 stems ha -1 ). The tree structure (density and dominance) of the forest habitats located in the savanna areas studied in this work is smaller in relation to forest habitats derived from continuous areas of other parts of the Amazon. These environments are derived from Paleoclimatic fragmentation, and are currently affected by the impact of intensive use of natural resources as timberselective logging and some land conversion for agriculture.
Use of fragmented landscapes by Marbled Murrelets for nesting in Southern Oregon
C.B. Meyer; S.L. Miller
2002-01-01
As oldgrowth forest becomes more fragmented in the Pacific Northwest (U.S.A.), species dependent on large patches of oldgrowth forest may be at greater risk of extinction. The Marbled Murrelet (Brachyramphus marmoratus), a seabird whose populations are declining in North America, nests in such old-growth forests or forests with large remnant trees....
Ecological consequences of fragmentation and deforestation in an urban landscape: a case study
W.C. Zipperer; T.W. Foresman; S.P. Walker; C.T. Daniel
2012-01-01
Landscape change is an ongoing process even within established urban landscapes. Yet, analyses of fragmentation and deforestation have focused primarily on the conversion of non-urban to urban landscapes in rural landscapes and ignored urban landscapes. To determine the ecological effects of continued urbanization in urban landscapes, tree-covered patches were mapped...
Fragmentation statistics for FIA: designing an approach
Rachel Riemann; Andrew Lister; Michael Hoppus; Tonya Lister
2002-01-01
The USDA Forest Inventory and Analysis (FIA) program collects data on the amount of forest, as well as on characteristics such as forest type, tree volume, species composition, and size and age classes. However, little data are obtained nationwide on forest fragmentation-how that forest is distributed and in what land use/land cover context-factors that can...
Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees. PMID:25084460
Epigenetic variability in the genetically uniform forest tree species Pinus pinea L.
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012
Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt
2016-01-01
Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...
Habitat management for red tree voles in Douglas-fir forests.
M.H. Huff; R.S. Holthausen; K.B. Aubry
1992-01-01
The relations between arboreal rodents and trees causes the animals to be particularly sensitive to the effects of timber harvesting.Among arboreal rodents,we consider the redtree vole to be the most vulnerable to local extinctions resulting from the loss or fragmentation of old-growth Douglas-fir forests. Redtree voles are nocturnal,canopy dwelling, and difficult to...
2017-01-01
Habitat loss and fragmentation are among the biggest threats to tropical biodiversity and associated ecosystem services. We examined forest dynamics in a mid-elevation 365-ha fragment in southern Costa Rica. The fragment was isolated in the mid-1970s and belongs to the Las Cruces Biological Station. A 2.25-ha permanent plot was established in the center of the old-growth forest (>400 m to nearest edge boundary) and all plants >5 cm DBH were censused, mapped, and identified to species in two surveys taken ~5–6 years apart (>3,000 stems/survey). Although the reserve maintains high species richness (>200 spp.), with many rare species represented by only one individual, we document a strong shift in composition with a two-fold increase in the number of soft-wooded pioneer individuals. The dominant late-successional understory tree species, Chrysochlamys glauca (Clusiaceae), and most species in the Lauraceae, declined dramatically. Turnover was high: 22.9% of stems in the first survey were lost, and 27.8% of stems in the second survey represented new recruits. Mean tree diameter decreased significantly and there was a 10% decrease in overall biomass. Such alteration has been documented previously but only in smaller fragments or within ~100 m of an edge boundary. Further penetration into this fragment was perhaps driven by a progressive invasion of disturbance-adapted species into the fragment’s core over time; the loss of once-dominant late successional species could be a contributing factor. The pattern found is of particular concern given that such fragments represent a substantial portion of today’s remaining tropical habitat; further studies in similar-sized fragments that have been isolated for similar prolonged periods are called for. PMID:28832611
If BZ medium did spanning trees these would be the same trees as Physarum built
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2009-03-01
A sub-excitable Belousov-Zhabotinsky (BZ) medium exhibits self-localized wave-fragments which may travel for relatively long time preserving their shape. Using Oregonator model of the BZ medium we imitate foraging behavior of a true slime mold, Physarum polycephalum, on a nutrient-poor substrate. We show that given erosion post-processing operations the BZ medium can approximate a spanning tree of a planar set and thus is computationally equivalent to Physarum in the domain of proximity graph construction.
Species-specific responses to landscape fragmentation: implications for management strategies
Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine
2010-01-01
Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem. PMID:25567925
NASA Astrophysics Data System (ADS)
Talon, Brigitte; Payette, Serge; Filion, Louise; Delwaide, Ann
2005-07-01
Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce ( Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple ( Acer saccharum) and birch ( Betula spp.), and rare fragments of pine ( Pinus cf. strobus) and white cedar ( Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.
Breed, Martin F; Gardner, Michael G; Ottewell, Kym M; Navarro, Carlos M; Lowe, Andrew J
2012-01-01
The influence of habitat fragmentation on mating patterns and progeny fitness in trees is critical for understanding the long-term impact of contemporary landscape change on the sustainability of biodiversity. We examined the relationship between mating patterns, using microsatellites, and fitness of progeny, in a common garden trial, for the insect-pollinated big-leaf mahogany, Swietenia macrophylla King, sourced from forests and isolated trees in 16 populations across Central America. As expected, isolated trees had disrupted mating patterns and reduced fitness. However, for dry provenances, fitness was negatively related to correlated paternity, while for mesic provenances, fitness was correlated positively with outcrossing rate and negatively with correlated paternity. Poorer performance of mesic provenances is likely because of reduced effective pollen donor density due to poorer environmental suitability and greater disturbance history. Our results demonstrate a differential shift in reproductive assurance and inbreeding costs in mahogany, driven by exploitation history and contemporary landscape context. PMID:22381041
Benefits and challenges for gene conservation: a view from the UK national tree seed project
Clare Trivedi; Simon. Kallow
2017-01-01
Trees and woodlands in the United Kingdom are currently subject to a range of threats including loss and fragmentation of native woodland and escalating pest and disease outbreaks. The largely unknown impacts of climate change pose a number of questions when considering afforestation and reforestation. There are frequent calls to develop resilient woodlands, robust...
Shiqin Xu; C.G. Tauer; C. Dana Nelson
2008-01-01
Shortleaf and loblolly pine trees (n=93 and 102, respectively) from 22 seed sources of the Southwide Southern Pine Seed Source Study plantings or equivalent origin were evaluated for amplified fragment length polymorphism (AFLP) variation. These sampled trees represent shortleaf pine and loblolly pine, as they existed across their native geographic ranges before...
Kevin M. Potter; John Frampton; Sedley A. Josserand; Dana C. Nelson
2008-01-01
The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...
Kevin M. Potter; John Framton; Sedley A. Josserand; C. Dana Nelson
2008-01-01
The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...
Forest-climate interactions in fragmented tropical landscapes.
Laurance, William F
2004-03-29
In the tropics, habitat fragmentation alters forest-climate interactions in diverse ways. On a local scale (less than 1 km), elevated desiccation and wind disturbance near fragment margins lead to sharply increased tree mortality, thus altering canopy-gap dynamics, plant community composition, biomass dynamics and carbon storage. Fragmented forests are also highly vulnerable to edge-related fires, especially in regions with periodic droughts or strong dry seasons. At landscape to regional scales (10-1000 km), habitat fragmentation may have complex effects on forest-climate interactions, with important consequences for atmospheric circulation, water cycling and precipitation. Positive feedbacks among deforestation, regional climate change and fire could pose a serious threat for some tropical forests, but the details of such interactions are poorly understood.
The global extent and determinants of savanna and forest as alternative biome states.
Staver, A Carla; Archibald, Sally; Levin, Simon A
2011-10-14
Theoretically, fire-tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.
Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information
McDonald, Daniel; Gonzalez, Antonio; Navas-Molina, Jose A.; Jiang, Lingjing; Xu, Zhenjiang Zech; Winker, Kevin; Kado, Deborah M.; Orwoll, Eric; Manary, Mark; Mirarab, Siavash
2018-01-01
ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies enable the inference of exact amplicon sequence fragments. These new methods enable the investigation of sub-operational taxonomic units (sOTU) by removing erroneous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments do not contain sufficient phylogenetic signal to reproduce a reasonable tree, introducing a barrier in the utilization of critical phylogenetically aware metrics such as Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods have not been tested for sOTUs from high-throughput amplicon studies in insertions against a broad reference phylogeny. We benchmarked the SATé-enabled phylogenetic placement (SEPP) technique explicitly against 16S V4 sequence fragments and showed that it outperforms the conceptually problematic but often-used practice of reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2 plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration into the microbial study management platform QIITA. IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing additional resolution, also introduces computational challenges. We demonstrate that one popular method of dealing with sOTUs (building a de novo tree from the short sequences) can provide incorrect results in human gut metagenomic studies and show that phylogenetic placement of the new sequences with SEPP resolves this problem while also yielding other benefits over existing methods. PMID:29719869
Shyamalamma, S; Chandra, S B C; Hegde, M; Naryanswamy, P
2008-07-22
Artocarpus heterophyllus Lam., commonly called jackfruit, is a medium-sized evergreen tree that bears high yields of the largest known edible fruit. Yet, it has been little explored commercially due to wide variation in fruit quality. The genetic diversity and genetic relatedness of 50 jackfruit accessions were studied using amplified fragment length polymorphism markers. Of 16 primer pairs evaluated, eight were selected for screening of genotypes based on the number and quality of polymorphic fragments produced. These primer combinations produced 5976 bands, 1267 (22%) of which were polymorphic. Among the jackfruit accessions, the similarity coefficient ranged from 0.137 to 0.978; the accessions also shared a large number of monomorphic fragments (78%). Cluster analysis and principal component analysis grouped all jackfruit genotypes into three major clusters. Cluster I included the genotypes grown in a jackfruit region of Karnataka, called Tamaka, with very dry conditions; cluster II contained the genotypes collected from locations having medium to heavy rainfall in Karnataka; cluster III grouped the genotypes in distant locations with different environmental conditions. Strong coincidence of these amplified fragment length polymorphism-based groupings with geographical localities as well as morphological characters was observed. We found moderate genetic diversity in these jackfruit accessions. This information should be useful for tree breeding programs, as part of our effort to popularize jackfruit as a commercial crop.
González-Astorga, Jorge; Cruz-Angón, Andrea; Flores-Palacios, Alejandro; Vovides, Andrew P
2004-10-01
The monoecious, bird-pollinated epiphytic Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys is an endemic bromeliad of the tropical dry forests of Mexico with clonal growth. In the Sierra de Huautla Natural Reserve this species shows a host preference for Bursera copallifera (Sessé & Moc ex. DC) Bullock. As a result of deforestation in the study area, B. copallifera has become a rare tree species in the remaining forest patches. This human-induced disturbance has directly affected the population densities of T. achyrostachys. In this study the genetic consequences of habitat fragmentation were assessed by comparing the genetic diversity, gene flow and genetic differentiation in six populations of T. achyrostachys in the Sierra de Huautla Natural Reserve, Mexico. Allozyme electrophoresis of sixteen loci (eleven polymorphic and five monomorphic) were used. The data were analysed with standard statistical approximations for obtaining diversity, genetic structure and gene flow. Genetic diversity and allelic richness were: HE = 0.21 +/- 0.02, A = 1.86 +/- 0.08, respectively. F-statistics revealed a deficiency of heterozygous plants in all populations (Fit = 0.65 +/- 0.02 and Fis = 0.43 +/- 0.06). Significant genetic differentiation between populations was detected (Fst = 0.39 +/- 0.07). Average gene flow between pairs of populations was relatively low and had high variation (Nm = 0.46 +/- 0.21), which denotes a pattern of isolation by distance. The genetic structure of populations of T. achyrostachys suggests that habitat fragmentation has reduced allelic richness and genetic diversity, and increased significant genetic differentiation (by approx. 40 %) between populations. The F-statistic values (>0) and the level of gene flow found suggest that habitat fragmentation has broken up the former population structure. In this context, it is proposed that the host trees of T. achyrostachys should be considered as a conservation priority, since they represent the limiting factor to bromeliad population growth and connectivity.
Prospere, Kurt; McLaren, Kurt P; Wilson, Byron
2016-10-01
The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.
NASA Astrophysics Data System (ADS)
Prospere, Kurt; McLaren, Kurt P.; Wilson, Byron
2016-10-01
The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.
Dutech, Cyril; Maggia, Laurent; Tardy, Christophe; Joly, Hélène I; Jarne, Philippe
2003-12-01
Drier periods from the late Pleistocene and early Holocene have been hypothesized to have caused the disappearance of various rainforest species over large geographical areas in South America and restricted the extant populations to mesic sites. Subsequent improvement in climatic conditions has been associated with recolonization. Changes in population size associated with these extinction-recolonization events should have affected genetic diversity within species. However, these historical hypotheses and their genetic consequences have rarely been tested in South America. Here, we examine the diversity of the chloroplast and nuclear genomes in a Neotropical rainforest tree species, Vouacapoua americana (Leguminosae, Caesalpinioideae) in French Guiana. The chloroplast diversity was analyzed using a polymerase chain reaction-restriction fragment length polymorphism method (six pairs of primers) in 29 populations distributed over most of French Guiana, and a subset of 17 populations was also analyzed at nine polymorphic microsatellite loci. To determine whether this species has experienced extinction-recolonization, we sampled populations in areas supposedly not or only slightly affected by climatic changes, where the populations would not have experienced frequent extinction, and in areas that appear to have been recently recolonized. In the putatively recolonized areas, we found patches of several thousands of hectares homogeneous for chloroplast variation that can be interpreted as the effect of recolonization processes from several geographical origins. In addition, we observed that, for both chloroplast and nuclear genomes, the populations in newly recolonized areas exhibited a significantly smaller allelic richness than others. Controlling for geographic distance, we also detected a significant correlation between chloroplast and nuclear population differentiation. This result indicates a cytonuclear disequilibrium that can be interpreted as a historical signal of a genetic divergence between fragmented populations. In conclusion, the spatial genetic structure of contemporary V. americana populations shows evidence that this species has experienced large extinction-recolonization events, which were possibly caused by past climatic change.
Krishnadas, Meghna; Comita, Liza S
2018-01-01
Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.
Destroyed virgin longleaf pine stand lives-on digitally
John C. Gilbert; S. Kush; Rebecca J. Barlow
2015-01-01
The Flomaton Natural Area (FNA) once stood as one of the few remnant fragments of virgin, old-growth longleaf pine stands (Pinus palustris Mill.) in the Southeast. This 80-acre stand contained trees over 200 years old. A restoration effort began in 1994 to remove off-site trees and to reintroduce fire to the site after over 40 years of fire suppression. A geographic...
Li, He; Zhou, Guo-Ying; Liu, Jun-Ang; Xu, Jianping
2016-01-01
The filamentous fungus Colletotrichum fructicola is found in all five continents and is capable of causing severe diseases in a number of economically important plants such as avocado, fig, cocoa, pear, and tea-oil trees. However, almost nothing is known about its patterns of genetic variation and epidemiology on any of its host plant species. Here we analyzed 167 isolates of C. fructicola obtained from the leaves of tea-oil tree Camellia oleifera at 15 plantations in seven Chinese provinces. Multilocus sequence typing was conducted for all isolates based on DNA sequences at fragments of four genes: the internal transcribed spacers of the nuclear ribosomal RNA gene cluster (539 bp), calmodulin (633 bp), glutamine synthetase (711 bp), and glyceraldehyde-3-phosphate dehydrogenase (190 bp), yielding 3.52%, 0.63%, 8.44%, and 7.89% of single nucleotide polymorphic sites and resulting in 15, 5, 12 and 11 alleles respectively at the four gene fragments in the total sample. The combined allelic information from all four loci identified 53 multilocus genotypes with the most frequent represented by 21 isolates distributed in eight tea-oil plantations in three provinces, consistent with long-distance clonal dispersal. However, despite evidence for clonal dispersal, statistically significant genetic differentiation among geographic populations was detected. In addition, while no evidence of recombination was found within any of the four gene fragments, signatures of recombination were found among the four gene fragments in most geographic populations, consistent with sexual mating of this species in nature. Our study provides the first insights into the population genetics and epidemiology of the important plant fungal pathogen C. fructicola. PMID:27299731
Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves.
Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José
2016-05-10
Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity.
Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves
Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A.; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José
2016-01-01
Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243–4,058 adult individuals per hectare in only 39 y (annual growth rate of ca. 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm’s demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet’s richest repositories of biodiversity. PMID:27071122
Amos, Nevil; Harrisson, Katherine A; Radford, James Q; White, Matt; Newell, Graeme; Mac Nally, Ralph; Sunnucks, Paul; Pavlova, Alexandra
2014-06-01
Loss of functional connectivity following habitat loss and fragmentation could drive species declines. A comprehensive understanding of fragmentation effects on functional connectivity of an ecological assemblage requires investigation of multiple species with different mobilities, at different spatial scales, for each sex, and in different landscapes. Based on published data on mobility and ecological responses to fragmentation of 10 woodland-dependent birds, and using simulation studies, we predicted that (1) fragmentation would impede dispersal and gene flow of eight "decliners" (species that disappear from suitable patches when landscape-level tree cover falls below species-specific thresholds), but not of two "tolerant" species (whose occurrence in suitable habitat patches is independent of landscape tree cover); and that fragmentation effects would be stronger (2) in the least mobile species, (3) in the more philopatric sex, and (4) in the more fragmented region. We tested these predictions by evaluating spatially explicit isolation-by-landscape-resistance models of gene flow in fragmented landscapes across a 50 x 170 km study area in central Victoria, Australia, using individual and population genetic distances. To account for sex-biased dispersal and potential scale- and configuration-specific effects, we fitted models specific to sex and geographic zones. As predicted, four of the least mobile decliners showed evidence of reduced genetic connectivity. The responses were strongly sex specific, but in opposite directions in the two most sedentary species. Both tolerant species and (unexpectedly) four of the more mobile decliners showed no reduction in gene flow. This is unlikely to be due to time lags because more mobile species develop genetic signatures of fragmentation faster than do less mobile ones. Weaker genetic effects were observed in the geographic zone with more aggregated vegetation, consistent with gene flow being unimpeded by landscape structure. Our results indicate that for all but the most sedentary species in our system, the movement of the more dispersive sex (females in most cases) maintains overall genetic connectivity across fragmented landscapes in the study area, despite some small-scale effects on the more philopatric sex for some species. Nevertheless, to improve population viability for the less mobile bird species, structural landscape connectivity must be increased.
F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.
Jain, Swati; Schlick, Tamar
2017-11-24
Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Body size variation of mammals in a fragmented, temperate rainforest.
Lomolino, Mark V; Perault, David R
2007-08-01
Body size is perhaps the most important trait of an organism, affecting all of its physiological and ecological processes and, therefore, fundamentally influencing its ability to survive and reproduce in different environments, including those that have been modified by human activities. We tested the hypothesis that anthropogenic transformation of old-growth forest landscapes can result in significant intraspecific changes in body size of resident biotas. We collected data on five species of nonvolant mammals (common deer mouse[Peromyscus maniculatus], northwestern deer mouse[P. keeni], southern red-backed vole[Clethrionomys gapperi], montane shrew[Sorex monticolus], and Trowbridge's shrew[S. trowbridgii]) to test whether body size (mass and length) of these species varied across types of land cover (macrohabitats) and along elevational gradients of the fragmented, temperate rainforest of Olympic National Forest (Washington, U.S.A.). We measured 2168 and 1134 individuals for body mass and body length, respectively. Three species (P. keeni, S. monticolus, and S. trowbridgii) exhibited significantly different body size among macrohabitats: individuals from fragments were smaller than those in old-growth corridors and those in more extensive stands of old-growth forest. Body size of P. keeni was significantly correlated with elevation along corridors, peaking near the medial reaches of the corridors. The effects of anthropogenic transformations of this landscape of old-growth, temperate rainforest, although not universal among the five species, were significant and rapid-developing in just a few decades following tree harvests. Thus, anthropogenic fragmentation may influence not only the diversity, species composition, and densities of local biotas, but also one of the most fundamental and defining characteristics of native species-their body size.
Borah, Mrigakhi; Devi, Ashalata; Kumar, Awadhesh
2018-01-01
Forest fragmentation alters plant species diversity and composition, and causes diverse affects on the feeding behavior of wild primates. We investigated the feeding behavior and diet of two groups of western hoolock gibbon (Hoolock hoolock) inhabiting a small isolated forest patch (21 km 2 ) in Hollongapar Gibbon Wildlife Sanctuary, Assam, Northeast India, over a year using focal animal sampling. H. hoolock adults spent, on average, 35.2% of their total annual activity budget on feeding, and fed on young leaves, mature leaves, flowers, fruits, petioles, buds and also on animal matter. There was marked seasonal variation in the proportions of the dietary items consumed. Fruits accounted for an average of 51% (range 34-71% per month) of feeding time over the year. This highly frugivorous diet may limit the ability of the species to survive in small and disturbed forest fragments. A total of 54 plant species (32 families) were consumed by the focal groups during the study period, but there were variations between months in the selection of these plant species. Non-tree species such as lianas were among the most highly selected species in the diet. Moraceae, comprising ten species, was the most dominant family among the food plants, accounting for 36% of annual feeding time. The present study presents quantitative and qualitative data on dietary composition, preference and selection of food plants of H. hoolock in a fragmented habitat, which can contribute to the restoration and manipulation of degraded habitats of H. hoolock.
Lai, Balder; Hasenhindl, Christoph; Obinger, Christian; Oostenbrink, Chris
2014-01-01
An interesting format in the development of therapeutic monoclonal antibodies uses the crystallizable fragment of IgG1 as starting scaffold. Engineering of its structural loops allows generation of an antigen binding site. However, this might impair the molecule’s conformational stability, which can be overcome by introducing stabilizing point mutations in the CH3 domains. These point mutations often affect the stability and unfolding behavior of both the CH2 and CH3 domains. In order to understand this cross-talk, molecular dynamics simulations of the domains of the Fc fragment of human IgG1 are reported. The structure of human IgG1-Fc obtained from X-ray crystallography is used as a starting point for simulations of the wild-type protein at two different pH values. The stabilizing effect of a single point mutation in the CH3 domain as well as the impact of the hinge region and the glycan tree structure connected to the CH2 domains is investigated. Regions of high local flexibility were identified as potential sites for engineering antigen binding sites. Obtained data are discussed with respect to the available X-ray structure of IgG1-Fc, directed evolution approaches that screen for stability and use of the scaffold IgG1-Fc in the design of antigen binding Fc proteins. PMID:24451126
Ozawa, Hajime; Watanabe, Atsushi; Uchiyama, Kentaro; Saito, Yoko; Ide, Yuji
2013-01-01
Long-distance dispersal (LDD) of seeds has a critical impact on species survival in patchy landscapes. However, relative to pollen dispersal, empirical data on how seed LDD affects genetic diversity in fragmented populations have been poorly reported. Thus, we attempted to indirectly evaluate the influence of seed LDD by estimating maternal and paternal inbreeding in the seed rain of fragmented 8 Pinus densiflora populations. In total, the sample size was 458 seeds and 306 adult trees. Inbreeding was estimated by common parentage analysis to evaluate gene flow within populations and by sibship reconstruction analysis to estimate gene flow within and among populations. In the parentage analysis, the observed probability that sampled seeds had the same parents within populations was significantly larger than the expected probability in many populations. This result suggested that gene dispersal was limited to within populations. In the sibship reconstruction, many donors both within and among populations appeared to contribute to sampled seeds. Significant differences in sibling ratios were not detected between paternity and maternity. These results suggested that seed-mediated gene flow and pollen-mediated gene flow from outside population contributed some extent to high genetic diversity of the seed rain (H E > 0.854). We emphasize that pine seeds may have excellent potential for gene exchange within and among populations.
1986-01-01
The reorganization of the microtubular meshwork was studied in intact Haemanthus endosperm cells and cell fragments (cytoplasts). This higher plant tissue is devoid of a known microtubule organizating organelle. Observations on living cells were correlated with microtubule arrangements visualized with the immunogold method. In small fragments, reorganization did not proceed. In medium and large sized fragments, microtubular converging centers formed first. Then these converging centers reorganized into either closed bushy microtubular spiral or chromosome-free cytoplasmic spindles/phragmoplasts. Therefore, the final shape of organized microtubular structures, including spindle shaped, was determined by the initial size of the cell fragments and could be achieved without chromosomes or centrioles. Converging centers elongate due to the formation of additional structures resembling microtubular fir trees. These structures were observed at the pole of the microtubular converging center in anucleate fragments, accessory phragmoplasts in nucleated cells, and in the polar region of the mitotic spindle during anaphase. Therefore, during anaphase pronounced assembly of new microtubules occurs at the polar region of acentriolar spindles. Moreover, statistical analysis demonstrated that during the first two-thirds of anaphase, when chromosomes move with an approximately constant speed, kinetochore fibers shorten, while the length of the kinetochore fiber complex remains constant due to the simultaneous elongation of their integral parts (microtubular fir trees). The half-spindle shortens only during the last one-third of anaphase. These data contradict the presently prevailing view that chromosome-to-pole movements in acentriolar spindles of higher plants are concurrent with the shortening of the half-spindle, the self- reorganizing property of higher plant microtubules (tubulin) in vivo. It may be specific for cells without centrosomes and may be superimposed also on other microtubule-related processes. PMID:3941154
Wood Consumption by Geoffroyi’s Spider Monkeys and Its Role in Mineral Supplementation
Chaves, Oscar M.; Stoner, Kathryn E.; Ángeles-Campos, Sergio; Arroyo-Rodríguez, Víctor
2011-01-01
Wood consumption is a rare behavior in frugivorous primates; however, it can be necessary for nutritional balancing as it may provide macro and/or micronutrients that are scarce in the most frequently eaten items (fruits). We tested this hypothesis in six spider monkey (Ateles geoffroyi) communities inhabiting continuous and fragmented rainforests in Lacandona, Mexico. We investigated the importance of both live and decayed wood in the diet of the monkeys, and assessed if wood consumption is related to the nutritional composition of these items. In general, wood consumption was focused on trees of Licania platypus (Chrysobalanaceae) and Ficus spp. (Moraceae), and was similar in continuous forest and in fragments (mean ± SD; 24±20% vs 18±16% of total feeding time, respectively), but marginally higher in females than in males (16±14% vs 5±4%, respectively). Live and decayed wood were both poorer in lipids, proteins, total nonstructural carbohydrates, and total digestible nutrients compared to mature and immature fruits. Moreover, decayed wood of L. platypus showed consistently higher levels of sodium and calcium compared to fruits. In conclusion, our findings suggest that wood from decaying trees of L. platypus and Ficus spp. and young branch piths of L. platypus represents an important source of sodium and/or calcium in the diet of spider monkeys, particularly in the case of females. The protection of decaying trees within forests and fragments is therefore necessary for the appropriate management and conservation of this endangered primate species. PMID:21969868
Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging
de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie
2015-01-01
Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production. PMID:25927209
Detection of laurel wilt disease in avocado using low altitude aerial imaging.
de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie
2015-01-01
Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production.
Causes and consequences of habitat fragmentation in river networks.
Fuller, Matthew R; Doyle, Martin W; Strayer, David L
2015-10-01
Increases in river fragmentation globally threaten freshwater biodiversity. Rivers are fragmented by many agents, both natural and anthropogenic. We review the distribution and frequency of these major agents, along with their effects on connectivity and habitat quality. Most fragmentation research has focused on terrestrial habitats, but theories and generalizations developed in terrestrial habitats do not always apply well to river networks. For example, terrestrial habitats are usually conceptualized as two-dimensional, whereas rivers often are conceptualized as one-dimensional or dendritic. In addition, river flow often leads to highly asymmetric effects of barriers on habitat and permeability. New approaches tailored to river networks can be applied to describe the network-wide effects of multiple barriers on both connectivity and habitat quality. The net effects of anthropogenic fragmentation on freshwater biodiversity are likely underestimated, because of time lags in effects and the difficulty of generating a single, simple signal of fragmentation that applies to all aquatic species. We conclude by presenting a decision tree for managing freshwater fragmentation, as well as some research horizons for evaluating fragmented riverscapes. © 2015 New York Academy of Sciences.
Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks
Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne
2016-01-01
One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089
Yao, Yao; Wang, Rui; Lu, Jun Kun; Wang, En Tao; Chen, Wen Xin
2014-01-01
The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia. PMID:25085491
Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.
Ellison, Kevin S; Ribic, Christine A; Sample, David W; Fawcett, Megan J; Dadisman, John D
2013-01-01
Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.
NASA Astrophysics Data System (ADS)
Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.
2012-12-01
Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.
How will oil palm expansion affect biodiversity?
Fitzherbert, Emily B; Struebig, Matthew J; Morel, Alexandra; Danielsen, Finn; Brühl, Carsten A; Donald, Paul F; Phalan, Ben
2008-10-01
Oil palm is one of the world's most rapidly increasing crops. We assess its contribution to tropical deforestation and review its biodiversity value. Oil palm has replaced large areas of forest in Southeast Asia, but land-cover change statistics alone do not allow an assessment of where it has driven forest clearance and where it has simply followed it. Oil palm plantations support much fewer species than do forests and often also fewer than other tree crops. Further negative impacts include habitat fragmentation and pollution, including greenhouse gas emissions. With rising demand for vegetable oils and biofuels, and strong overlap between areas suitable for oil palm and those of most importance for biodiversity, substantial biodiversity losses will only be averted if future oil palm expansion is managed to avoid deforestation.
NASA Astrophysics Data System (ADS)
Carozza, Jean-Michel; Carozza, Laurent; Valette, Philippe; Llubes, Muriel; Py, Vanessa; Galop, Didier; Danu, Mihaela; Ferdinand, Laurie; David, Mélodie; Sévègnes, Laurent; Bruxelles, Laurent; Jarry, Marc; Duranthon, Francis
2014-01-01
Subfossil tree trunks deposits are common in large rivers, but their status as a source for dating alluvial sequences and palaeoenvironmental studies is still discussed. Particularly their origin and the process(es) of deposition as well as a possible remobilization were pointed as a limit to their use to document river alluvial changes. In this work we report the discovery of the largest subfossil trunks deposits in the Garonne valley. These new data are compared to the previous ones. A set of 17 tree trunks and more than 300 smaller wood fragments were collected. The xylologic study shows the prevalence of Quercus and a single occurrence of Ulmus. These two hardwood species are commonly associated with riparian forest. The 14C dating carried out on seven trunks and a single branch of Quercus on the outermost identified growth rings, indicates age ranging from 8400-8000 cal. BP for the oldest fragment (bough) to 4300-4000 cal. BP for the most recent tree trunk. Radiocarbon ages of the trunks are aggregated into two main periods: 5300-5600 cal. BP (four trunks) and 4300-4000 cal. BP (three trunks). The radiocarbon (charcoal) dating of the top of the alluvial sequence overlaying the trunks gives an age between 1965-1820 and 1570-1810 cal. BP, i.e. between the 2nd and the 5th c. AD. In addition, the discovery of two unpublished subfossil tree trunks deposits in Finhan are reported (six trunks). At the light of these results, we discuss previously proposed models for the Garonne floodplain building.
Gomes, Clarissa P C; Nagata, Tatsuya; de Jesus, Waldir C; Neto, Carlos R Borges; Pappas, Georgios J; Martin, Darren P
2008-01-16
Citrus sudden death (CSD), a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV). CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms. A total of 286 RNA-dependent-RNA polymerase (RdRp) and 284 heat shock protein 70 homolog (HSP70h) gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h) was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD. We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence) of a single CTV variant within these populations that triggers the disease.
Foraging ecology of howler monkeys in a cacao (Theobroma cacao) plantation in Comalcalco, Mexico.
Muñoz, David; Estrada, Alejandro; Naranjo, Eduardo; Ochoa, Susana
2006-02-01
Recent evidence indicates that primate populations may persist in neotropical fragmented landscapes by using arboreal agroecosystems, which may provide temporary habitats, increased areas of vegetation, and connectivity, among other benefits. However, limited data are available on how primates are able to sustain themselves in such manmade habitats. We report the results of a 9-month-long investigation of the feeding ecology of a troop of howler monkeys (n = 24) that have lived for the past 25 years in a 12-ha cacao plantation in the lowlands of Tabasco, Mexico. A vegetation census indicated the presence of 630 trees (> or =20 cm diameter at breast height (DBH)) of 32 shade species in the plantation. The howlers used 16 plant species (13 of which were trees) as sources of leaves, fruits, and flowers. Five shade tree species (Ficus cotinifolia, Pithecellobium saman, Gliricidia sepium, F. obtusifolia, and Ficus sp.) accounted for slightly over 80% of the total feeding time and 78% of the total number trees (n = 139) used by the howlers, and were consistently used by the howlers from month to month. The howlers spent an average of 51% of their monthly feeding time exploiting young leaves, 29% exploiting mature fruit, and 20% exploiting flowers and other plant items. Monthly consumption of young leaves varied from 23% to 67%, and monthly consumption of ripe fruit varied from 12% to 64%. Differences in the protein-to-fiber ratio of young vs. mature leaves influenced diet selection by the monkeys. The howlers used 8.3 ha of the plantation area, and on average traveled 388 m per day in each month. The howlers preferred tree species whose contribution to the total tree biomass and density was above average for the shade-tree population in the plantation. Given the right conditions of management and protection, shaded arboreal plantations in fragmented landscapes can sustain segments of howler monkey populations for many decades. Copyright 2006 Wiley-Liss, Inc.
Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta; Kawube, Geofrey; Bertaccini, Assunta; Nicolaisen, Mogens
2012-01-01
Background Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported. Methodology/Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. Conclusions/Significance This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification. PMID:23272216
Brenière, Simone Frédérique; Condori, Edwin Wily; Buitrago, Rosio; Sosa, Luis Fernando; Macedo, Catarina Lopes; Barnabé, Christian
2017-07-01
The Amazon region has recently been considered as endemic in Latin America. In Bolivia, the vast Amazon region is undergoing considerable human migrations and substantial anthropization of the environment, potentially renewing the danger of establishing the transmission of Chagas disease. The cases of human oral contamination occurring in 2010 in the town of Guayaramerín provided reasons to intensify research. As a result, the goal of this study was to characterize the species of sylvatic triatomines circulating in the surroundings of Yucumo (Beni, Bolivia), a small Amazonian city at the foot of the Andes between the capital (La Paz) and Trinidad the largest city of Beni. The triatomine captures were performed with mice-baited adhesive traps mostly settled in palm trees in forest fragments and pastures. Species were identified by morphological observation, dissection of genitalia, and sequencing of three mitochondrial gene fragments and one nuclear fragment. Molecular analysis was based on (i) the identity score of the haplotypes with GenBank sequences through the BLAST algorithm and (ii) construction of phylogenetic trees. Thirty-four triatomines, all belonging to the Rhodnius genus, of which two were adult males, were captured in palm trees in forest fragments and pastures (overall infestation rate, 12.3%). The morphology of the phallic structures in the two males confirmed the R. stali species. For the other specimens, after molecular sequencing, only one specimen was identified with confidence as belonging to Rhodnius robustus, the others belonged to one of the species of the Rhodnius pictipes complex, probably Rhodnius stali. The two species, R. robustus and R. stali, had previously been reported in the Alto Beni region (edge of the Amazon region), but not yet in the Beni department situated in the Amazon region. Furthermore, the difficulties of molecular characterization of closely related species within the three complexes of the genus Rhodnius are highlighted and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Memory and obesity affect the population dynamics of asexual freshwater planarians
NASA Astrophysics Data System (ADS)
Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria
2011-04-01
Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.
McCarthy, Maureen S; Lester, Jack D; Stanford, Craig B
2017-01-01
As habitat loss and fragmentation place growing pressure on endangered nonhuman primate populations, researchers find increasing evidence for novel responses in behavior. In western Uganda between the Budongo and Bugoma Forests, chimpanzees ( Pan troglodytes schweinfurthii ) inhabit a mosaic landscape comprising forest fragments, human settlements, and agricultural land. We recorded nests and feeding evidence of unhabituated chimpanzees in this region over a 12-mo period. We found extensive evidence of nesting in introduced tree species, including eucalyptus ( Eucalyptus grandis ), guava ( Psidium guajava ), cocoa ( Theobroma cacao ), and Caribbean pine ( Pinus caribaea ). In addition, we found instances of ground nesting, nest reuse, and composite nests constructed from branches of multiple trees. This evidence may indicate a lack of suitable nesting trees or attempts by chimpanzees to nest in areas of riparian forest that allow them to avoid human detection. We also found new evidence for eucalyptus bark feeding by chimpanzees. Such evidence suggests chimpanzees respond flexibly to mitigate anthropogenic pressures in human-dominated landscapes. The limits of such flexibility remain unknown. Further research is needed to examine systematically the factors influencing the use of such resources and to understand better the extent to which chimpanzees can persist while relying on them.
USDA-ARS?s Scientific Manuscript database
Orange trees affected by huanglongbing (HLB) exhibit excessive fruit drop, and fruit loosely attached to the tree may have inferior flavor. Fruit were collected from healthy and HLB-infected (Candidatus liberibacter asiaticus) ‘Hamlin’ and ‘Valencia’ trees. Prior to harvest, the trees were shaken, f...
GONZÁLEZ-ASTORGA, JORGE; CRUZ-ANGÓN, ANDREA; FLORES-PALACIOS, ALEJANDRO; VOVIDES, ANDREW P.
2004-01-01
• Background and Aims The monoecious, bird-pollinated epiphytic Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys is an endemic bromeliad of the tropical dry forests of Mexico with clonal growth. In the Sierra de Huautla Natural Reserve this species shows a host preference for Bursera copallifera (Sessé & Moc ex. DC) Bullock. As a result of deforestation in the study area, B. copallifera has become a rare tree species in the remaining forest patches. This human-induced disturbance has directly affected the population densities of T. achyrostachys. In this study the genetic consequences of habitat fragmentation were assessed by comparing the genetic diversity, gene flow and genetic differentiation in six populations of T. achyrostachys in the Sierra de Huautla Natural Reserve, Mexico. • Methods Allozyme electrophoresis of sixteen loci (eleven polymorphic and five monomorphic) were used. The data were analysed with standard statistical approximations for obtaining diversity, genetic structure and gene flow. • Key Results Genetic diversity and allelic richness were: HE = 0·21 ± 0·02, A = 1·86 ± 0·08, respectively. F-statistics revealed a deficiency of heterozygous plants in all populations (Fit = 0·65 ± 0·02 and Fis = 0·43 ± 0·06). Significant genetic differentiation between populations was detected (Fst = 0·39 ± 0·07). Average gene flow between pairs of populations was relatively low and had high variation (Nm = 0·46 ± 0·21), which denotes a pattern of isolation by distance. The genetic structure of populations of T. achyrostachys suggests that habitat fragmentation has reduced allelic richness and genetic diversity, and increased significant genetic differentiation (by approx. 40 %) between populations. • Conclusions The F-statistic values (>0) and the level of gene flow found suggest that habitat fragmentation has broken up the former population structure. In this context, it is proposed that the host trees of T. achyrostachys should be considered as a conservation priority, since they represent the limiting factor to bromeliad population growth and connectivity. PMID:15319228
Proximal and Distal Predictors of the Spider Monkey’s Stress Levels in Fragmented Landscapes
Ordóñez-Gómez, José D.; Cristóbal-Azkarate, Jurgi; Arroyo-Rodríguez, Víctor; Santillán-Doherty, Ana M.; Valdez, Ricardo A.; Romano, Marta C.
2016-01-01
The rapid loss, fragmentation and degradation of tropical forests threaten the survival of many animal species. However, the way in which these phenomena affect animal health has been poorly explored, thus limiting the design of appropriate conservation strategies. To address this, here we identified using linear mixed models the effect of proximal (diet, activity pattern, hunting and logging) and distal (sum of the basal areas of fruiting-tree species [SBAFS], landscape forest cover and degree of forest fragmentation) variables over fecal glucocorticoid metabolite (fGCM) levels–hormones associated with animal health and fitness–of six groups of spider monkeys (Ateles geoffroyi) inhabiting six landscapes with different spatial structures in Mexico. Proximal variables showed a stronger predictive power over fGCMs than distal. In this sense, increases in travel time, the occurrence of hunting, and reductions in rest time and fruit consumption resulted in higher fGCM levels. Regarding distal variables, increases in SBAFS were negatively related to fGCM levels, thus suggesting that food scarcity increases stress hormone levels. Nevertheless, contrary to theoretical expectations, spider monkeys living in smaller tracts of forest spent less time travelling, but the same time feeding on fruit as those in more forested areas. The lower net energy return associated with this combination of factors would explain why, contrary to theoretical expectations, increased forest cover was associated with increased levels of fGCMs in these groups. Our study shows that, at least in the short term, spider monkeys in fragmented landscapes do not always present higher levels of stress hormones compared to those inhabiting continuous forest, and the importance of preserving fruit sources and controlling hunting for reducing the levels of stress hormones in free ranging spider monkeys. PMID:26901767
Ni, Qingyong; Xie, Meng; Grueter, Cyril C; Jiang, Xuelong; Xu, Huailiang; Yao, Yongfang; Zhang, Mingwang; Li, Yan; Yang, Jiandong
2015-10-01
The critically endangered western black-crested gibbon (Nomascus concolor) is distributed in isolated habitat fragments in northern Vietnam, northwestern Laos, and southwestern China. To assess the behavioral adaptation of this species to forest fragments and its response to seasonal variation in food availability and climate, we present activity patterns of a group inhabiting an isolated forest based on two year-long studies in southern Yunnan, China. Annually, the gibbons spent nearly half of their active time resting, followed by moving and feeding. In both study periods, the time allocated to activities varied significantly between months, and was affected by food availability and climate factors. The group delayed retirement when tree fruit was abundant, and they decreased time spent moving and playing during periods of low fruit availability. In the cold months, the gibbons decreased time spent moving, and they decreased active time and resting time when rainfall was high. The results suggest that the group may seek to maximize net energy intake like energy maximizers when high quality food is most available, and adopt an energy-conserving strategy during periods of lower food availability and temperature. The gibbons showed similar diurnal variation in activity patterns to a group inhabiting a continuous forest at Dazhaizi, Mt. Wuliang, central Yunnan. However, they had a longer active period, and devoted more time to resting but less time to feeding. The individuals also spent lower percentages of time engaged in social behavior than those at Dazhaizi. These differences may be due to their smaller home range and unusual group composition caused by habitat fragmentation.
Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo
2015-01-01
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.
Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis
NASA Astrophysics Data System (ADS)
Rasmussen, Kristine Kjørup; Kollmann, Johannes
2004-05-01
Plants growing in small fragmented populations under stressful environmental conditions may have reduced sexual reproduction. This can cause low gene flow between populations and eventually extinction. Here we report on a pollination experiment with Sorbus torminalis, a rare fleshy-fruited tree with a submediterranean distribution in Europe. At the northern limit of its range in SE-Denmark two relatively small and isolated populations were studied for effects of seven pollination treatments on fruit production and on the timing of fruit abortion. There was evidence that lack of pollination and spontaneous self-pollination caused particularly high fruit abortion, which indicates that apomixis is unlikely and spontaneous self-pollination not efficient. Fruit abortion was delayed after hand pollination, which suggests limitation by pollen quantity. Self-pollination caused earlier abortion than experimental cross-pollination within or between populations indicating inbreeding depression. There was no evidence for outbreeding depression as measured by fruit abortion. We conclude that generative reproduction of S. torminalis is reduced on its northern distribution limit and that it might be negatively affected by pollen limitation and inbreeding effects, which have not been compensated for by increased self-compatibility or apomixis.
Khayhan, Kantarawee; Hagen, Ferry; Norkaew, Treepradab; Puengchan, Tanpalang; Boekhout, Teun; Sriburee, Pojana
2017-04-01
The pathogenic yeast Cryptococcus gattii was isolated from a tree hollow of a Castanopsis argyrophylla King ex Hook.f. (Fagaceae) in Chiang Mai, Thailand. Molecular characterization with amplified fragment length polymorphism analysis and multi-locus sequence typing showed that this isolate belonged to genotype AFLP4/VGI representing C. gattii sensu stricto. Subsequent comparison of the environmental isolate with those from clinical samples from Thailand showed that they grouped closely together in a single cluster.
Threshold effect of habitat loss on bat richness in cerrado-forest landscapes.
Muylaert, Renata L; Stevens, Richard D; Ribeiro, Milton C
2016-09-01
Understanding how animal groups respond to contemporary habitat loss and fragmentation is essential for development of strategies for species conservation. Until now, there has been no consensus about how landscape degradation affects the diversity and distribution of Neotropical bats. Some studies demonstrate population declines and species loss in impacted areas, although the magnitude and generality of these effects on bat community structure are unclear. Empirical fragmentation thresholds predict an accentuated drop in biodiversity, and species richness in particular, when less than 30% of the original amount of habitat in the landscape remains. In this study, we tested whether bat species richness demonstrates this threshold response, based on 48 sites distributed across 12 landscapes with 9-88% remaining forest in Brazilian cerrado-forest formations. We also examined the degree to which abundance was similarly affected within four different feeding guilds. The threshold value for richness, below which bat diversity declines precipitously, was estimated at 47% of remaining forest. To verify if the response of bat abundance to habitat loss differed among feeding guilds, we used a model selection approach based on Akaike's information criterion. Models accounted for the amount of riparian forest, semideciduous forest, cerrado, tree plantations, secondary forest, and the total amount of forest in the landscape. We demonstrate a nonlinear effect of the contribution of tree plantations to frugivores, and a positive effect of the amount of cerrado to nectarivores and animalivores, the groups that responded most to decreases in amount of forest. We suggest that bat assemblages in interior Atlantic Forest and cerrado regions of southeastern Brazil are impoverished, since we found lower richness and abundance of different groups in landscapes with lower amounts of forest. The relatively higher threshold value of 47% suggests that bat communities have a relatively lower resistance to habitat degradation than other animal groups. Accordingly, conservation and restoration strategies should focus on increasing the amount of native vegetation of landscapes so as to enhance species richness of bats. © 2016 by the Ecological Society of America.
Dennis P. Bradley; Frank E. Biltonen
1973-01-01
Describes the productivity of selected aspen pulpwood loggers in northern Minnesota. The most important factors affecting productivity were the ratio of harvested trees per acre to total trees per acre, harvested volume per acre, and the spacing of nonharvested trees
Ávila-Flores, Israel Jaime; Hernández-Díaz, José Ciro; González-Elizondo, Maria Socorro; Prieto-Ruíz, José Ángel; Wehenkel, Christian
2016-01-01
Hybridization is an important evolutionary force, because interspecific gene transfer can introduce more new genetic material than is directly generated by mutations. Pinus engelmannii Carr. is one of the nine most common pine species in the pine-oak forest ecoregion in the state of Durango, Mexico. This species is widely harvested for lumber and is also used in reforestation programmes. Interspecific hybrids between P.engelmannii and Pinus arizonica Engelm. have been detected by morphological analysis. The presence of hybrids in P. engelmannii seed stands may affect seed quality and reforestation success. Therefore, the goals of this research were to identify introgressive hybridization between P. engelmannii and other pine species in eight seed stands of this species in Durango, Mexico, and to examine how hybrid proportion is related to mean genetic dissimilarity between trees in these stands, using Amplified Fragment Length Polymorphism (AFLP) markers and morphological traits. Differences in the average current annual increment of putative hybrids and pure trees were also tested for statistical significance. Morphological and genetic analyses of 280 adult trees were carried out. Putative hybrids were found in all the seed stands studied. The hybrids did not differ from the pure trees in vigour or robustness. All stands with putative P. engelmannii hybrids detected by both AFLPs and morphological traits showed the highest average values of the Tanimoto distance, which indicates: i) more heterogeneous genetic material, ii) higher genetic variation and therefore iii) the higher evolutionary potential of these stands, and iv) that the morphological differentiation (hybrid/not hybrid) is strongly associated with the Tanimoto distance per stand. We conclude that natural pairwise hybrids are very common in the studied stands. Both morphological and molecular approaches are necessary to confirm the genetic identity of forest reproductive material. PMID:27064490
Ávila-Flores, Israel Jaime; Hernández-Díaz, José Ciro; González-Elizondo, Maria Socorro; Prieto-Ruíz, José Ángel; Wehenkel, Christian
2016-01-01
Hybridization is an important evolutionary force, because interspecific gene transfer can introduce more new genetic material than is directly generated by mutations. Pinus engelmannii Carr. is one of the nine most common pine species in the pine-oak forest ecoregion in the state of Durango, Mexico. This species is widely harvested for lumber and is also used in reforestation programmes. Interspecific hybrids between P.engelmannii and Pinus arizonica Engelm. have been detected by morphological analysis. The presence of hybrids in P. engelmannii seed stands may affect seed quality and reforestation success. Therefore, the goals of this research were to identify introgressive hybridization between P. engelmannii and other pine species in eight seed stands of this species in Durango, Mexico, and to examine how hybrid proportion is related to mean genetic dissimilarity between trees in these stands, using Amplified Fragment Length Polymorphism (AFLP) markers and morphological traits. Differences in the average current annual increment of putative hybrids and pure trees were also tested for statistical significance. Morphological and genetic analyses of 280 adult trees were carried out. Putative hybrids were found in all the seed stands studied. The hybrids did not differ from the pure trees in vigour or robustness. All stands with putative P. engelmannii hybrids detected by both AFLPs and morphological traits showed the highest average values of the Tanimoto distance, which indicates: i) more heterogeneous genetic material, ii) higher genetic variation and therefore iii) the higher evolutionary potential of these stands, and iv) that the morphological differentiation (hybrid/not hybrid) is strongly associated with the Tanimoto distance per stand. We conclude that natural pairwise hybrids are very common in the studied stands. Both morphological and molecular approaches are necessary to confirm the genetic identity of forest reproductive material.
Are Scots pine forest edges particularly prone to drought-stress?
NASA Astrophysics Data System (ADS)
Buras, Allan; Schunk, Christian; Taeger, Steffen; Lemme, Hannes; Gößwein, Sebastian; Menzel, Annette
2017-04-01
In 2016, Scots pine (Pinus sylvestris L.) forests experienced a pronounced dieback in several regions across Germany. Being an economically important tree species, a thorough identification of the reasons for this dieback is of high interest. The dieback is likely to be associated with a record drought event which occurred in summer 2015. However, visual observations indicate that forest edges were particularly affected. This observation is supported by a study from Sweden which showed that Scots pine trees growing at a north-facing forest edge expressed a higher water use if compared to trees from the interior (Cienciala et al., 2002). We therefore hypothesize that Scots pine trees are more prone to drought-stress induced dieback when growing at the forest edge. To test this hypothesis, we investigated the growth performance of Scots pine across three affected stands in Franconia, southern Germany. The stands were selected to represent differing conditions along a gradient of forest fragmentation, ranging from the forest interior, over a forest edge situation, to a small forest island. By means of dendroclimatology and UAV-borne remote sensing, Scots pine growth performance and vitality was compared among the three stands. Our results revealed differing Scots pine growth reactions between the forest interior and forest edge as indicated by the identification of different responder groups (Buras et al., 2016). The forest edge and the forest island expressed significantly higher correlations with the drought-index SPEI (Vicente-Serrano et al., 2009) if compared to the forest interior. Moreover, NDVI of Scots Pine canopies significantly decreased towards the forest edge, this indicating lower vitality of corresponding trees. In conclusion, our results highlight Scots pine to be more prone to drought-stress when growing at the forest edge. This finding has important implications for forest management activities in the context of climate change adaptation, since foresters may need to revise concepts of Scots pine management at forest edges and in forest islands under an increasingly warmer and drier climate. 1. Cienciala, E. et al. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32, 693-702 (2002). 2. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). 3. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696-1718 (2009).
Rahman, Syed Ajijur; Sunderland, Terry; Roshetko, James M; Healey, John Robert
2017-08-01
Under changing land use in tropical Asia, there is evidence of forest product diversification through implementation of tree-based farming by smallholders. This paper assesses in two locations, West Java, Indonesia and eastern Bangladesh, current land use conditions from the perspective of smallholder farmers, the factors that facilitate their adoption of tree farming, and the potential of landscape-scale approaches to foster sustainable land management. Data were collected through rapid rural appraisals, focus group discussions, field observations, semi-structured interviews of farm households and key informant interviews of state agricultural officers. Land at both study sites is typically fragmented due to conversion of forest to agriculture and community settlement. Local land use challenges are associated with pressures of population increase, poverty, deforestation, shortage of forest products, lack of community-scale management, weak tenure, underdeveloped markets, government decision-making with insufficient involvement of local people, and poor extension services. Despite these challenges, smallholder tree farming is found to be successful from farmers' perspectives. However, constraints of local food crop cultivation traditions, insecure land tenure, lack of capital, lack of knowledge, lack of technical assistance, and perceived risk of investing in land due to local conflict (in Bangladesh) limit farmers' willingness to adopt this land use alternative. Overcoming these barriers to adoption will require management at a landscape scale, including elements of both segregation and integration of land uses, supported by competent government policies and local communities having sufficiently high social capital. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tian, Sheng; Li, Youyong; Wang, Junmei; Xu, Xiaojie; Xu, Lei; Wang, Xiaohong; Chen, Lei; Hou, Tingjun
2013-01-21
In order to better understand the structural features of natural compounds from traditional Chinese medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine Compound Database (TCMCD) were explored and compared. First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level 1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR, ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold space of the three datasets. The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity. According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may be potentially drug-like fragments for fragment-based and de novo drug design.
2013-01-01
Background In order to better understand the structural features of natural compounds from traditional Chinese medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine Compound Database (TCMCD) were explored and compared. Results First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level 1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR, ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold space of the three datasets. Conclusion The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity. According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may be potentially drug-like fragments for fragment-based and de novo drug design. PMID:23336706
Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia
2018-01-01
Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides. PMID:29304149
Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te
2018-01-01
Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides.
Impacts of tree rows on grassland birds & potential nest predators: A removal experiment
Ellison, Kevin S.; Ribic, Christine; Sample, David W.; Fawcett, Megan J.; Dadisman, John D.
2013-01-01
Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow’s sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2–4 times for bobolink and Henslow’s sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow’s sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow’s sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.
Resolving the tips of the tree of life: How much mitochondrialdata doe we need?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonett, Ronald M.; Macey, J. Robert; Boore, Jeffrey L.
2005-04-29
Mitochondrial (mt) DNA sequences are used extensively to reconstruct evolutionary relationships among recently diverged animals,and have constituted the most widely used markers for species- and generic-level relationships for the last decade or more. However, most studies to date have employed relatively small portions of the mt-genome. In contrast, complete mt-genomes primarily have been used to investigate deep divergences, including several studies of the amount of mt sequence necessary to recover ancient relationships. We sequenced and analyzed 24 complete mt-genomes from a group of salamander species exhibiting divergences typical of those in many species-level studies. We present the first comprehensive investigationmore » of the amount of mt sequence data necessary to consistently recover the mt-genome tree at this level, using parsimony and Bayesian methods. Both methods of phylogenetic analysis revealed extremely similar results. A surprising number of well supported, yet conflicting, relationships were found in trees based on fragments less than {approx}2000 nucleotides (nt), typical of the vast majority of the thousands of mt-based studies published to date. Large amounts of data (11,500+ nt) were necessary to consistently recover the whole mt-genome tree. Some relationships consistently were recovered with fragments of all sizes, but many nodes required the majority of the mt-genome to stabilize, particularly those associated with short internal branches. Although moderate amounts of data (2000-3000 nt) were adequate to recover mt-based relationships for which most nodes were congruent with the whole mt-genome tree, many thousands of nucleotides were necessary to resolve rapid bursts of evolution. Recent advances in genomics are making collection of large amounts of sequence data highly feasible, and our results provide the basis for comparative studies of other closely related groups to optimize mt sequence sampling and phylogenetic resolution at the ''tips'' of the Tree of Life.« less
Impacts of Tree Rows on Grassland Birds and Potential Nest Predators: A Removal Experiment
Ellison, Kevin S.; Ribic, Christine A.; Sample, David W.; Fawcett, Megan J.; Dadisman, John D.
2013-01-01
Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow’s sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2–4 times for bobolink and Henslow’s sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow’s sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow’s sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems. PMID:23565144
Dávila-Lara, A; Affenzeller, M; Tribsch, A; Díaz, V; Comes, H P
2017-10-01
The Central American seasonally dry tropical (SDT) forest biome is one of the worlds' most endangered ecosystems, yet little is known about the genetic consequences of its recent fragmentation. A prominent constituent of this biome is Calycophyllum candidissimum, an insect-pollinated and wind-dispersed canopy tree of high socio-economic importance, particularly in Nicaragua. Here, we surveyed amplified fragment length polymorphisms across 13 populations of this species in Nicaragua to elucidate the relative roles of contemporary vs historical factors in shaping its genetic variation. Genetic diversity was low in all investigated populations (mean H E =0.125), and negatively correlated with latitude. Overall population differentiation was moderate (Φ ST =0.109, P<0.001), and Bayesian analysis of population structure revealed two major latitudinal clusters (I: 'Pacific North'+'Central Highland'; II: 'Pacific South'), along with a genetic cline between I and II. Population-based cluster analyses indicated a strong pattern of 'isolation by distance' as confirmed by Mantel's test. Our results suggest that (1) the low genetic diversity of these populations reflects biogeographic/population history (colonisation from South America, Pleistocene range contractions) rather than recent human impact; whereas (2) the underlying process of their isolation by distance pattern, which is best explained by 'isolation by dispersal limitation', implies contemporary gene flow between neighbouring populations as likely facilitated by the species' efficient seed dispersal capacity. Overall, these results underscore that even tree species from highly decimated forest regions may be genetically resilient to habitat fragmentation due to species-typical dispersal characteristics, the necessity of broad-scale measures for their conservation notwithstanding.
Guidugli, M C; Nazareno, A G; Feres, J M; Contel, E P B; Mestriner, M A; Alzate-Marin, A L
2016-01-01
Here, we explore the mating pattern and genetic structure of a tropical tree species, Cariniana estrellensis, in a small population in which progeny arrays (n=399), all adults (n=28) and all seedlings (n=39) were genotyped at nine highly informative microsatellite loci. From progeny arrays we were able to identify the source tree for at least 78% of pollination events. The gene immigration rates, mainly attributable to pollen, were high, varying from 23.5 to 53%. Although gene dispersal over long distance was observed, the effective gene dispersal distances within the small population were relatively short, with mean pollination distances varying from 69.9 to 146.9 m, and seed dispersal distances occurring up to a mean of 119.6 m. Mating system analyses showed that C. estrellensis is an allogamous species (tm=0.999), with both biparental inbreeding (tm−ts=−0.016) and selfing rates (s=0.001) that are not significantly different from zero. Even though the population is small, the presence of private alleles in both seedlings and progeny arrays and the elevated rates of gene immigration indicate that the C. estrellensis population is not genetically isolated. However, genetic diversity expressed by allelic richness was significantly lower in postfragmentation life stages. Although there was a loss of genetic diversity, indicating susceptibility of C. estrellensis to habitat fragmentation, no evidence of inbreeding or spatial genetic structure was observed across generations. Overall, C. estrellensis showed some resilience to negative genetic effects of habitat fragmentation, but conservation strategies are needed to preserve the remaining genetic diversity of this population. PMID:26732014
Genetic characterization of Pompeii and Herculaneum Equidae buried by Vesuvius in 79 AD.
Di Bernardo, G; Galderisi, U; Del Gaudio, S; D'Aniello, A; Lanave, C; De Robertis, M T; Cascino, Antonino; Cipollaro, M
2004-05-01
DNA extracted from the skeletons of five equids discovered in a Pompeii stable and of a horse found in Herculaneum was investigated. Amino acid racemization level was consistent with the presence of DNA. Post-mortem base modifications were excluded by sequencing a 146 bp fragment of the 16S rRNA mitochondrial gene. Sequencing of a 370 bp fragment of mitochondrial (mt)DNA control region allowed the construction of a phylogenetic tree that, along with sequencing of nuclear genes (epsilon globin, gamma interferon, and p53) fragments, gave us the possibility to address some questions puzzling archaeologists. What animals-donkeys, horses, or crossbreeds-were they? And, given they had been evidently assigned to one specific job, were they all akin or were they animals with different mitochondrial haplotypes? The conclusions provided by molecular analysis show that the Pompeii remains are those of horses and mules. Furthermore one of the equids (CAV5) seems to belong to a haplotype, which is either not yet documented in the GenBank or has since disappeared. As its characteristics closely recall those of donkeys, which is the out group chosen to construct the tree, that appears to have evolved within the Equidae family much earlier than horses, this assumption seems to be nearer the truth.
O'Connell, Lisa M; Mosseler, Alex; Rajora, Om P
2007-01-01
Conifers are among the most genetically diverse plants but show the lowest levels of genetic differentiation, even among geographically distant populations. High gene flow among populations may be one of the most important factors in maintaining these genetic patterns. Here, we provide empirical evidence for extensive pollen-mediated gene dispersal between natural stands of a widespread northern temperate/boreal conifer, Picea glauca. We used 6 polymorphic allozyme loci to quantify the proportion of seeds sired by pollen originating from different sources in a landscape fragmented by agriculture in North Central Ontario, Canada. In 7 stands, a small proportion of seeds were sired by self-pollen or neighboring trees but 87.1% (+/-1.7% standard error [SE]) of seeds were sired by pollen from at least 250 to 3000 m away. In 4 single isolated trees, self-fertilization rates were low and more than 96% (+/-1.3% SE) of seeds were sired by immigrant pollen. The average minimum pollen dispersal distance in outcrossed matings was 619 m. These results provide strong evidence that extensive long-distance pollen dispersal plays a primary role in maintaining low genetic differentiation among natural populations of P. glauca and helps maintain genetic diversity and minimize inbreeding in small stands in a fragmented landscape.
Raspé, O; Saumitou-Laprade, P; Cuguen, J; Jacquemart, A L
2000-08-01
Intra-specific chloroplast DNA (cpDNA) variation was studied in Sorbus aucuparia L., an entomophilous, mid-or early successional tree producing fleshy fruits. Eight PCR-amplified fragments of the chloroplast genome were screened for restriction fragment length polymorphisms, using one or two 4 bp-cutter restriction endonucleases. cpDNA variation was investigated on two geographical scales: (1) among four regions in France and Belgium; and (2) within the Belgian region. A total of 150 individuals from six populations were analysed. Fourteen polymorphisms were detected in six of the cpDNA fragments. All polymorphisms probably resulted from insertions or deletions, and allowed the identification of 12 haplotypes. The level of genetic differentiation computed on the basis of haplotype frequencies was similar on the two geographical scales considered (G(STc) = 0.286 among regions, G(STc) = 0.259 among populations within the Belgian region). These values are much lower than those obtained in nine previously studied temperate tree species, which are all wind-pollinated, late-successional species producing dry fruits. These results might primarily be accounted for by the contrasting life history traits of S. aucuparia. In order to obtain insights into the relative contribution of pollen and seeds to gene flow, G(STc) was also compared with previously obtained G(ST) estimates based on allozyme data.
Genetic basis of aboveground productivity in two native Populus species and their hybrids.
Lojewski, Nathan R; Fischer, Dylan G; Bailey, Joseph K; Schweitzer, Jennifer A; Whitham, Thomas G; Hart, Stephen C
2009-09-01
Demonstration of genetic control over riparian tree productivity has major implications for responses of riparian systems to shifting environmental conditions and effects of genetics on ecosystems in general. We used field studies and common gardens, applying both molecular and quantitative techniques, to compare plot-level tree aboveground net primary productivity (ANPP(tree)) and individual tree growth rate constants in relation to plant genetic identity in two naturally occurring Populus tree species and their hybrids. In field comparisons of four cross types (Populus fremontii S. Wats., Populus angustifolia James, F(1) hybrids and backcross hybrids) across 11 natural stands, productivity was greatest for P. fremontii trees, followed by hybrids and lowest in P. angustifolia. A similar pattern was observed in four common gardens across a 290 m elevation and 100 km environmental gradient. Despite a doubling in productivity across the common gardens, the relative differences among the cross types remained constant. Using clonal replicates in a common garden, we found ANPP(tree) to be a heritable plant trait (i.e., broad-sense heritability), such that plant genetic factors explained between 38% and 82% of the variation in ANPP(tree). Furthermore, analysis of the genetic composition among individual tree genotypes using restriction fragment length polymorphism molecular markers showed that genetically similar trees also exhibited similar ANPP(tree). These findings indicate strong genetic contributions to natural variation in ANPP with important ecological implications.
Essentials of Conservation Biotechnology: A mini review
NASA Astrophysics Data System (ADS)
Merlyn Keziah, S.; Subathra Devi, C.
2017-11-01
Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.
Indiana's forests 1999-2003 (Part A)
Christopher Woodall; Dan Johnson; Joey Gallion; Charles Perry; Brett Butler; Ron Piva; Ed Jepsen; Dave Nowak; Phil Marshall
2005-01-01
The first completed annual inventory of Indiana's forests reports more than 4.5 million acres of forest land with a diverse array of forest types, substantial growth of economically valuable tree species, and future forest health concerns such as invasive species, forest fragmentation, and oak forest decline.
Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R
2018-05-01
Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.
Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael
2016-01-01
Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.
Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael
2016-01-01
Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271
Agricultural matrices affect ground ant assemblage composition inside forest fragments
Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.
Home range use and survival of southern flying squirrels in fragmented forest landscapes
Jacques, Christopher N.; Zweep, James S.; Jenkins, Sean E.; Klaver, Robert W.
2017-01-01
We studied home range use, spatial activity patterns, and annual survival of southern flying squirrels (SFS; Glaucomys volans) across fragmented landscapes of west-central Illinois. We calculated seasonal home range sizes and annual survival from 67 animals (36 males, 31 females) captured during 2014–2016. Home range and core area sizes were similar (P ≥ 0.46) among males and females across summer (April–September) and winter (October–March) seasons. Average distance between consecutive animal locations did not vary by sex, season, or year. Similarly, cumulative distance between consecutive locations did not vary by sex, season, or year and ranged from 1,189 to 1,661 m between summer and winter seasons. Mean annual composite home range and core area sizes were 10.39 and 1.25 ha, respectively; estimated home ranges (10.3 ha) of females are the largest documented for this species. We documented 8 deaths, all attributed to predation, the majority (63%) of which occurred during winter; annual survival was 71%. Our results underscore effects of habitat productivity on seasonal home range dynamics and space use patterns of SFS in fragmented landscapes. SFS may compensate for reduced availability of overstory mast-producing trees that characterize unproductive habitats and low-density populations by exhibiting similar movement patterns and use of available habitat by both sexes throughout the year. Winter communal nesting appears to be influenced by availability of cavity trees, thereby confirming the importance of standing snags in contributing essential habitat to flying squirrel populations in fragmented forests.
Theriault, Gabriel; Nkongolo, Kabwe K; Michael, Paul
2014-01-01
White birch (Betula papyrifera) is an open pollinate species that is, dominant in the Northern Ontario after land reclamation. In fact, this species represents 65% of all trees in the region. We hypothesized that the exchange of genetic information between fragmented populations by range-wide paternal introgression is possible in wind-pollinated species such as B. papyrifera. On the other hand, the effects of heavy metal contamination from the mining activities on plant growth and population dynamics are well documented. The main objectives of this study were (1) to assess the level of genetic variation, gene flow, and population sustainability of B. papyrifera after land reclamation; and (2) to determine the level of phytoavailable metals in soil and their accumulation in trees. We found that B. papyrifera is a Ni and Zn accumulator with a translocation factor of 6.4 and 81, respectively, and an indicator of Cu and Pb. The level of polymorphic loci, Shannon index, Nei's genetic diversity, observed number of alleles, and gene flow were determined for the fragmented populations within the targeted region. The percent of polymorphic loci ranged from 28% to 56%; the gene flow was also low with a value of 0.89, and the population differentiation was very high with a value of 0.36. Two population–diagnostic ISSR markers were identified. They were cloned, sequenced, and converted to SCAR markers. Overall, the fragmented populations of B. papyrifera in Northern Ontario are genetically sustainable based on the moderate level of intrapopulation variability. PMID:25535559
Biological, social, and urban design factors affecting young street tree mortality in New York City
Jacqueline W.T. Lu; Erika S. Svendsen; Lindsay K. Campbell; Jennifer Greenfeld; Jessie Braden; Kristen King; Nancy Falxa-Raymond
2010-01-01
In dense metropolitan areas, there are many factors including traffic congestion, building development and social organizations that may impact the health of street trees. The focus of this study is to better understand how social, biological and urban design factors affect the mortality rates of newly planted street trees. Prior analyses of street trees planted by the...
Epiphytes in wooded pastures: Isolation matters for lichen but not for bryophyte species richness
Keller, Christine; Scheidegger, Christoph; Bergamini, Ariel
2017-01-01
Sylvo-pastoral systems are species-rich man-made landscapes that are currently often severely threatened by abandonment or management intensification. At low tree densities, single trees in these systems represent habitat islands for epiphytic cryptogams. Here, we focused on sycamore maple (Acer pseudoplatanus) wooded pastures in the northern European Alps. We assessed per tree species richness of bryophytes and lichens on 90 sycamore maple trees distributed across six study sites. We analysed the effects of a range of explanatory variables (tree characteristics, environmental variables and isolation measures) on the richness of epiphytic bryophytes and lichens and various functional subgroups (based on diaspore size, habitat preference and red list status). Furthermore, we estimated the effect of these variables on the occurrence of two specific bryophyte species (Tayloria rudolphiana, Orthotrichum rogeri) and one lichen species (Lobaria pulmonaria) of major conservation concern. Bryophytes and lichens, as well as their subgroups, were differently and sometimes contrastingly affected by the variables considered: tree diameter at breast height had no significant effect on bryophytes but negatively affected many lichen groups; tree phenological age positively affected red-listed lichens but not red-listed bryophytes; increasing isolation from neighbouring trees negatively affected lichens but not bryophytes. However, the high-priority bryophyte species T. rudolphiana was also negatively affected by increased isolation at small spatial scales. Orthotrichum rogeri was more frequent on young trees and L. pulmonaria was more frequent on trees with thin stems and large crowns. The results indicate that local dispersal is important for lichens, whereas long distance dispersal seems to be more important for colonisation by bryophytes. Furthermore, our study highlights that different conservation measures need to be taken depending on the taxonomic and functional species group or the individual species that is addressed. In practice, for the conservation of a high overall richness in sylvo-pastoral systems, it is crucial to sustain not only old and large trees but rather a wide range of tree sizes and ages. PMID:28742881
NASA Astrophysics Data System (ADS)
Sexton, J.; Huang, C.; Channan, S.; Feng, M.; Song, X.; Kim, D.; Song, D.; Vermote, E.; Masek, J.; Townshend, J. R.
2013-12-01
Monitoring, analysis, and management of forests require measurements of forest cover that are both spatio-temporally consistent and resolved globally at sub-hectare resolution. The Global Forest Cover Change project, a cooperation between the University of Maryland Global Land Cover Facility and NASA Goddard Space Flight Center, is providing the first long-term, sub-hectare, globally consistent data records of forest cover, change, and fragmentation in circa-1975, -1990, -2000, and -2005 epochs. These data are derived from the Global Land Survey collection of Landsat images in the respective epochs, atmospherically corrected to surface reflectance in 1990, 2000, and 2005 using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) implementation of the 6S radiative transfer algorithm, with ancillary information from MODIS Land products, ASTER Global Digital Elevation Model (GDEM), and climatological data layers. Forest cover and change were estimated by a novel continuous-field approach, which produced for the 2000 and 2005 epochs the world's first global, 30-m resolution database of tree cover. Surface reflectance estimates were validated against coincident MODIS measurements, the results of which have been corroborated by subsequent, independent validations against measurements from AERONET sites. Uncertainties in tree- and forest-cover values were estimated in each pixel as a compounding of within-sample uncertainty and accuracy relative to a sample of independent measurements from small-footprint lidar. Accuracy of forest cover and change estimates was further validated relative to expert-interpreted high-resolution imagery, from which unbiased estimates of forest cover and change have been produced at national and eco-regional scales. These first-of-kind Earth Science Data Records--surface reflectance in 1990, 2000, and 2005 and forest cover, change, and fragmentation in and between 1975, 1990, 2000, and 2005--are hosted at native, Landsat resolution for free public access at the Global Land Cover Facility website (www.landcover.org). Global mosaic of circa-2000, Landsat-based estimates of tree cover. Gaps due to clouds and/or snow in each scene were filled first with Landsat-based data from overlapping paths, and the remaining gaps were filled with data from the MODIS VCF Tree Cover layer in 2000.
Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin
2013-09-01
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species' evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (F IS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.
Simmons, T; Goodburn, B; Singhrao, S K
2016-01-01
This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralized, transverse sections of cranial bone, from all variables and specimen states, were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions. © The Author(s) 2015.
Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin
2013-01-01
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies. PMID:24223264
Intraspecific genotypic variability determines concentrations of key truffle volatiles
Splivallo, Richard; Valdez, Nayuf; Kirchhoff, Nina; Ona, Marta Castiella; Schmidt, Jean-Pierre; Feussner, Ivo; Karlovsky, Petr
2012-01-01
Aroma variability in truffles has been attributed to maturation (Tuber borchii), linked to environmental factors (Tuber magnatum), but the involvement of genetic factors has been ignored. We investigated aroma variability in Tuber uncinatum, a species with wide distribution. Our aim was to assess aroma variability at different spatial scales (i.e. trees, countries) and to quantify how aroma was affected by genotype, fruiting body maturity, and geographical origin. A volatile fingerprinting method was used to analyze the aroma of 223 T. uncinatum fruiting bodies from seven European countries. Maturity was estimated from spore melanization. Genotypic fingerprinting was performed by amplified fragment length polymorphism (AFLP). Discriminant analysis revealed that, regardless of the geographical origin of the truffles, most of the aroma variability was caused by eight-carbon-containing volatiles (C8-VOCs). In an orchard of T. uncinatum, truffles producing different concentrations of C8-VOCs clustered around distinct host trees. This clustering was not associated with maturity, but was associated with fungal genotype. These results indicate that the variation in C8-VOCs in truffles is most likely under genetic control. They exemplify that understanding the factors behind aroma variability requires a holistic approach. Furthermore, they also raise new questions regarding the ecological role of 1-octen-3-ol in truffles. PMID:22394027
Mistletoe Infection in an Oak Forest Is Influenced by Competition and Host Size
Matula, Radim; Svátek, Martin; Pálková, Marcela; Volařík, Daniel; Vrška, Tomáš
2015-01-01
Host size and distance from an infected plant have been previously found to affect mistletoe occurrence in woody vegetation but the effect of host plant competition on mistletoe infection has not been empirically tested. For an individual tree, increasing competition from neighbouring trees decreases its resource availability, and resource availability is also known to affect the establishment of mistletoes on host trees. Therefore, competition is likely to affect mistletoe infection but evidence for such a mechanism is lacking. Based on this, we hypothesised that the probability of occurrence as well as the abundance of mistletoes on a tree would increase not only with increasing host size and decreasing distance from an infected tree but also with decreasing competition by neighbouring trees. Our hypothesis was tested using generalized linear models (GLMs) with data on Loranthus europaeus Jacq., one of the two most common mistletoes in Europe, on 1015 potential host stems collected in a large fully mapped plot in the Czech Republic. Because many trees were multi-stemmed, we ran the analyses for both individual stems and whole trees. We found that the probability of mistletoe occurrence on individual stems was affected mostly by stem size, whereas competition had the most important effects on the probability of mistletoe occurrence on whole trees as well as on mistletoe abundance. Therefore, we confirmed our hypothesis that competition among trees has a negative effect on mistletoe occurrence. PMID:25992920
Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim
2016-01-01
Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.
Andrew N. Gray; Thomas A. Spies; Robert J. Pabst
2012-01-01
Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Speciesâ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...
Links between plant and fungal diversity in habitat fragments of coastal shrubland
Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.
2017-09-19
Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of restoring diverse vegetation communities within larger coastal sage scrub fragments and suggest that this may be an effective way to improve the functional capacity of degraded sites.« less
Links between plant and fungal diversity in habitat fragments of coastal shrubland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.
Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of restoring diverse vegetation communities within larger coastal sage scrub fragments and suggest that this may be an effective way to improve the functional capacity of degraded sites.« less
R.A. Sniezko; L.A. Winn
2017-01-01
North American native tree species in forest ecosystems, as well as managed forests and urban plantings, are being severely impacted by pathogens and insects. The impacts of these pathogens and insects often increase over time, and they are particularly acute for those species affected by non-native pathogens and insects. For restoration of affected tree species or for...
Kurt H. Riitters
2007-01-01
What Is Forest Fragmentation,and Why Is It Important? Forest fragmentation refers to a loss of forest and the division of the remaining forest into smaller blocks. Fragmentation is of concern primarily because of its impact on the conservation of biological diversity. Forest fragmentation can affect the amount and quality of habitat for many wildlife species (Fahrig...
Armillaria mellea and mortality of beech affected by beech bark disease
Philip M. Wargo
1983-01-01
The role of Armillaria mellea in the mortality of beech trees affected by beech bark disease was determined by excavating root systems of beech trees infested by beech scale, Cryptococcus fagisuga, or also infected by the bark fungus, Nectria coccinea var. faginata. Only trees infected by
Federal conservation of western Cypress in the United States
J.A. Boom
2017-01-01
It is important to identify and protect at risk and sensitive tree species before irreparable damage occurs to their genetic base. Western cypress (Hesperocyparis spp.) is threatened by habitat loss and fragmentation, competition from nonnative species, and susceptibility to current fire intervals and intensities. In an effort to safeguard the...
Impacts of exotic forest pathogens on Mediterranean ecosystems: Four case studies
Matteo Garbelotto; Marco Pautasso
2011-01-01
Mediterranean ecosystems are hotspots of biodiversity. Because of a coincidence of high species richness and human presence, Mediterranean biodiversity is particularly threatened by processes such as habitat degradation, fragmentation and loss, pollution, climate change and introduction of invasive species. Invasive tree pathogens are among the problematic exotic...
Identification and phylogenetic analysis of novel cytochrome P450 1A genes from ungulate species.
Darwish, Wageh Sobhy; Kawai, Yusuke; Ikenaka, Yoshinori; Yamamoto, Hideaki; Muroya, Tarou; Ishizuka, Mayumi
2010-09-01
As part of an ongoing effort to understand the biological response of wild and domestic ungulates to different environmental pollutants such as dioxin-like compounds, cDNAs encoding for CYP1A1 and CYP1A2 were cloned and characterized. Four novel CYP1A cDNA fragments from the livers of four wild ungulates (elephant, hippopotamus, tapir and deer) were identified. Three fragments from hippopotamus, tapir and deer were classified as CYP1A2, and the other fragment from elephant was designated as CYP1A1/2. The deduced amino acid sequences of these fragment CYP1As showed identities ranging from 76 to 97% with other animal CYP1As. The phylogenetic analysis of these fragments showed that both elephant and hippopotamus CYP1As made separate branches, while tapir and deer CYP1As were located beside that of horse and cattle respectively in the phylogenetic tree. Analysis of dN/dS ratio among the identified CYP1As indicated that odd toed ungulate CYP1A2s were exposed to different selection pressure.
Puchałka, Radosław; Koprowski, Marcin; Przybylak, Julia; Przybylak, Rajmund; Dąbrowski, Henryk P
2016-08-01
Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.
Tartar, Aurélien; Boucias, Drion G; Becnel, James J; Adams, Byron J
2003-11-01
The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus Helicosporidium, the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA (rrn16) genes were amplified successfully from cellular DNA extracted from two different Helicosporidium isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60.7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an rrn16 sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga Prototheca zopfii. Moreover, the trees identified Helicosporidium spp. as members of a clade that included the heterotrophic species Prototheca spp. and the mesotrophic species Chlorella protothecoides. The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus Prototheca (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that Helicosporidium spp. are likely to possess Prototheca-like organelles and organelle genomes.
Response of the Agile Antechinus to Habitat Edge, Configuration and Condition in Fragmented Forest
Johnstone, Christopher P.; Lill, Alan; Reina, Richard D.
2011-01-01
Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR), did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals. PMID:22076129
Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.
Johnstone, Christopher P; Lill, Alan; Reina, Richard D
2011-01-01
Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR), did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.
Lara, Mark J; Genet, Hélène; McGuire, Anthony D; Euskirchen, Eugénie S; Zhang, Yujin; Brown, Dana R N; Jorgenson, Mark T; Romanovsky, Vladimir; Breen, Amy; Bolton, William R
2016-02-01
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type. © 2015 John Wiley & Sons Ltd.
Fan, Yan; Zhang, Chenglin; Wu, Wendan; He, Wei; Zhang, Li; Ma, Xiao
2017-10-16
Indigofera pseudotinctoria Mats is an agronomically and economically important perennial legume shrub with a high forage yield, protein content and strong adaptability, which is subject to natural habitat fragmentation and serious human disturbance. Until now, our knowledge of the genetic relationships and intraspecific genetic diversity for its wild collections is still poor, especially at small spatial scales. Here amplified fragment length polymorphism (AFLP) technology was employed for analysis of genetic diversity, differentiation, and structure of 364 genotypes of I. pseudotinctoria from 15 natural locations in Wushan Montain, a highly structured mountain with typical karst landforms in Southwest China. We also tested whether eco-climate factors has affected genetic structure by correlating genetic diversity with habitat features. A total of 515 distinctly scoreable bands were generated, and 324 of them were polymorphic. The polymorphic information content (PIC) ranged from 0.694 to 0.890 with an average of 0.789 per primer pair. On species level, Nei's gene diversity ( H j ), the Bayesian genetic diversity index ( H B ) and the Shannon information index ( I ) were 0.2465, 0.2363 and 0.3772, respectively. The high differentiation among all sampling sites was detected ( F ST = 0.2217, G ST = 0.1746, G' ST = 0.2060, θ B = 0.1844), and instead, gene flow among accessions ( N m = 1.1819) was restricted. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. This structure pattern may indicate joint effects by the neutral evolution and natural selection. Restricted N m was observed across all accessions, and genetic barriers were detected between adjacent accessions due to specifically geographical landform.
Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.
2016-01-01
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type.
Spatial Variation in Transpiration Within a Small Forest Patch in Hoa Binh, Northern Vietnam
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Ziegler, A. D.; Nullet, M. A.; Dao, T. M.
2001-12-01
We conducted measurements of small-scale variations in microclimate and sapflow within and near a small forest patch in Ban Tat Hamlet, Hoa Binh, northern Vietnam. Our observations provide evidence of the influences of surrounding clearings on forest patch microclimate and transpiration. The effects of proximity to the forest edge can be seen in the gradients in temperature, humidity, wind, and soil moisture content. Sapflow measurements in sample trees strongly indicate that transpiration rates are higher near the edge of the patch (edge effect). This effect is seen in the averages for the whole study period, despite infrequent wind flow into the instrumented edge of the patch. Edge effect is observed during both dry and wet periods, but is most apparent on days when solar and net radiation are high, relative humidity is low, or wind direction is from the clearing into the forest edge. These conditions are conducive to high positive heat advection from the clearing to the forest edge. Transpiration in both edge and interior trees is highly correlated with conditions in the clearing. Our results suggest that greater land-cover fragmentation tends to increase regional evaporative flux, i.e. fragmentation of remaining forested areas partly reverses the reduction in regional evaporation due to deforestation. We can infer from the distance-to-edge dependency of transpiration that the magnitude of this regional effect depends on the size, shape, and spatial distribution of landscape patches. It is also likely that the replacement land cover and moisture status of the clearings affect this process. Although we found slightly greater edge effect during the dry period of our observations, it is possible that under more prolonged or severe dry conditions, the soil moisture storage at the forest edge would become depleted leading to a reversal the transpiration pattern. >http://webdata.soc.hawaii.edu/climate/Frags/Frags.html
Chamagne, Juliette; Paine, C E Timothy; Schoolmaster, Donald R; Stejskal, Robert; Volarřík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim
2016-09-01
Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Šamonil, Pavel; Daněk, Pavel; Adam, Dušan; Phillips, Jonathan D.
2017-12-01
Tree breakage and uprooting are two possible scenarios of tree death that have differing effects on hillslope processes. In this study we aimed to (i) reveal the long-term structure of the biomechanical effects of trees (BETs) in relation to their radial growth and tree death types in four old-growth temperate forests in four different elevation settings with an altitudinal gradient of 152-1105 m a.s.l., (ii) quantify affected areas and soil volumes associated with the studied BETs in reserves, and (iii) derive a general model of the role of BETs in hillslope processes in central European temperate forests. We analyzed the individual dynamics of circa 55,000 trees in an area of 161 ha within four old-growth forests over 3-4 decades. Basal tree censuses established in all sites in the 1970s and repeated tree censuses in the 1990s and 2000s provided detailed information about the radial growth of each tree of DBH ≥ 10 cm as well as about types of tree death. We focused on the quantification of: (i) surviving still-living trees, (ii) new recruits, (iii) standing dead trees, (iv) uprooted trees, and (v) broken trees. Frequencies of phenomena were related to affected areas and volumes of soil using individual statistical models. The elevation contrasts were a significant factor in the structure of BETs. Differences between sites increased from frequencies of events through affected areas to volumes of soil associated with BETs. An average 2.7 m3 ha-1 year-1 was associated with all BETs of the living and dying trees in lowlands, while there was an average of 7.8 m3 ha-1 year-1 in the highest mountain site. Differences were caused mainly by the effects of dying trees. BETs associated with dead trees were 7-8 times larger in the mountains. Effects of dying trees and particularly treethrows represented about 70% of all BETs at both mountain sites, while it was 58% at the highland site and only 32% at the lowland site. Our results show a more significant role of BETs in hillslope processes including slope denudation in the mountains. We would expect a significant decrease of the biogeomorphic effect of trees in managed forests, but with a greater relative effect in mountains.
NASA Astrophysics Data System (ADS)
Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.
2016-01-01
Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.
W.G. Ross; D.L. Kulhavy; R.N. Conner
1997-01-01
We measured resin flow of longleaf (Pinus palustris Mill.) pines in red-cockaded woodpecker (Picoides borealis Vieillot) clusters in the Angelina National Forest in Texas, and the Apalachicola National Forest in Florida. Sample trees were categorized as active cavity trees, inactive cavity trees and control trees. Sample trees were further...
Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher
2017-01-01
Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.
Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha
2015-03-15
Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H
2018-08-01
Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.
Yessica Rico; Marie-Stephanie Samain
2017-01-01
Investigating how genetic variation is distributed across the landscape is fundamental to inform forest conservation and restoration. Detecting spatial genetic discontinuities has value for defining management units, germplasm collection, and target sites for reforestation; however, inappropriate sampling schemes can misidentify patterns of genetic structure....
Responses of Breeding Bird Communities to Forest Fragmentation
James F. Lynch
1987-01-01
Field studies in eastern North America indicate that local densities of most forest-dwelling bird species are directly or indirectly influenced by forest insularization. Relevant site variables among those measured include patch area and isolation, tree stature and density, and development of herbaceous and shrub understorey. In general, highly migratory species that...
Thrown object testing of forest machine operator protective structures
S.E. Taylor; M.W. Veal; R.B. Rummer
2003-01-01
High-speed chains or rotating disks are commonly used to cut and process trees during forest harvesting operations. Mechanical failure or fatigue of these tools can lead to a potentially hazardous situation where fragments of chain or sawteeth are thrown through the operator enclosures on forest machines. This poster presentation discusses the development and...
Tree recovery from ice storm injury
Kevin T. Smith
2015-01-01
Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...
DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees
Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.
2015-01-01
Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675
Urban warming reduces aboveground carbon storage.
Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert R; Frank, Steven D
2016-10-12
A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future. © 2016 The Author(s).
Effects of clonal fragmentation on intraspecific competition of a stoloniferous floating plant.
Wang, P; Xu, Y-S; Dong, B-C; Xue, W; Yu, F-H
2014-11-01
Disturbance is common and can fragment clones of plants. Clonal fragmentation may affect the density and growth of ramets so that it could alter intraspecific competition. To test this hypothesis, we grew one (low density), five (medium density) or nine (high density) parent ramets of the floating invasive plant Pistia stratiotes in buckets, and newly produced offspring ramets were either severed (with fragmentation) or remained connected to parent ramets (no fragmentation). Increasing density reduced biomass of the whole clone (i.e. parent ramet plus its offspring ramets), showing intense intraspecific competition. Fragmentation decreased biomass of offspring ramets, but increased biomass of parent ramets and the whole clone, suggesting significant resource translocation from parent to offspring ramets when clones were not fragmented. There was no interaction effect of density x fragmentation on biomass of the whole clone, and fragmentation did not affect competition intensity index. We conclude that clonal fragmentation does not alter intraspecific competition between clones of P. stratiotes, but increases biomass production of the whole clone. Thus, fragmentation may contribute to its interspecific competitive ability and invasiveness, and intentional fragmentation should not be recommended as a measure to stop the rapid growth of this invasive species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes
Macias-Fauria, Marc; Johnson, Edward A.
2013-01-01
Forests are expected to expand into alpine areas because of climate warming, causing land-cover change and fragmentation of alpine habitats. However, this expansion will only occur if the present upper treeline is limited by low-growing season temperatures that reduce plant growth. This temperature limitation has not been quantified at a landscape scale. Here, we show that temperature alone cannot realistically explain high-elevation tree cover over a >100-km2 area in the Canadian Rockies and that geologic/geomorphic processes are fundamental to understanding the heterogeneous landscape distribution of trees. Furthermore, upslope tree advance in a warmer scenario will be severely limited by availability of sites with adequate geomorphic/topographic characteristics. Our results imply that landscape-to-regional scale projections of warming-induced, high-elevation forest advance into alpine areas should not be based solely on temperature-sensitive, site-specific upper-treeline studies but also on geomorphic processes that control tree occurrence at long (centuries/millennia) timescales. PMID:23569221
A last stand in the Po valley: genetic structure and gene flow patterns in Ulmus minor and U. pumila
Bertolasi, B.; Leonarduzzi, C.; Piotti, A.; Leonardi, S.; Zago, L.; Gui, L.; Gorian, F.; Vanetti, I.; Binelli, G.
2015-01-01
Background and Aims Ulmus minor has been severely affected by Dutch elm disease (DED). The introduction into Europe of the exotic Ulmus pumila, highly tolerant to DED, has resulted in it widely replacing native U. minor populations. Morphological and genetic evidence of hybridization has been reported, and thus there is a need for assessment of interspecific gene flow patterns in natural populations. This work therefore aimed at studying pollen gene flow in a remnant U. minor stand surrounded by trees of both species scattered across an agricultural landscape. Methods All trees from a small natural stand (350 in number) and the surrounding agricultural area within a 5-km radius (89) were genotyped at six microsatellite loci. Trees were morphologically characterized as U. minor, U. pumila or intermediate phenotypes, and morphological identification was compared with Bayesian clustering of genotypes. For paternity analysis, seeds were collected in two consecutive years from 20 and 28 mother trees. Maximum likelihood paternity assignment was used to elucidate intra- and interspecific gene flow patterns. Key Results Genetic structure analyses indicated the presence of two genetic clusters only partially matching the morphological identification. The paternity analysis results were consistent between the two consecutive years of sampling and showed high pollen immigration rates (∼0·80) and mean pollination distances (∼3 km), and a skewed distribution of reproductive success. Few intercluster pollinations and putative hybrid individuals were found. Conclusions Pollen gene flow is not impeded in the fragmented agricultural landscape investigated. High pollen immigration and extensive pollen dispersal distances are probably counteracting the potential loss of genetic variation caused by isolation. Some evidence was also found that U. minor and U. pumila can hybridize when in sympatry. Although hybridization might have beneficial effects on both species, remnant U. minor populations represent a valuable source of genetic diversity that needs to be preserved. PMID:25725008
Donati, Giuseppe; Kesch, Kristina; Ndremifidy, Kelard; Schmidt, Stacey L.; Ramanamanjato, Jean-Baptiste; Borgognini-Tarli, Silvana M.; Ganzhorn, Joerg U.
2011-01-01
Background Frugivorous primates are known to encounter many problems to cope with habitat degradation, due to the fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their conspecifics in a more intact habitat, Sainte Luce. Methodology/Principal Findings Lemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000, respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to counteract a clear reduction in both food quality and size of feeding trees. Conclusions/Significance Our findings indicate that collared lemurs in littoral forest fragments modified their behavior to cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully considered when relocating lemurs or when selecting suitable areas for their conservation. PMID:21625557
Periglacial fires and trees in a continental setting of Central Canada, Upper Pleistocene.
Bélanger, N; Carcaillet, C; Padbury, G A; Harvey-Schafer, A N; Van Rees, K J C
2014-03-01
Fire is a key factor controlling global vegetation patterns and carbon cycling. It mostly occurs under warm periods during which fuel builds up with sufficient moisture, whereas such conditions stimulate fire ignition and spread. Biomass burning increased globally with warming periods since the last glacial era. Data confirming periglacial fires during glacial periods are very sparse because such climates are likely too cold to favour fires. Here, tree occurrence and fires during the Upper Pleistocene glacial periods in Central Canada are inferred from botanical identification and calibrated radiocarbon dates of charcoal fragments. Charcoal fragments were archived in sandy dunes of central Saskatchewan and were dated >50000-26600 cal BP. Fragments were mostly gymnosperms. Parallels between radiocarbon dates and GISP2-δ¹⁸O records deciphered relationships between fire and climate. Fires occurred either hundreds to thousands of years after Dansgaard-Oeschger (DO) interstadial warming events (i.e., the time needed to build enough fuel for fire ignition and spread) or at the onset of the DO event. The chronological uncertainties result from the dated material not precisely matching the fires and from the low residual ¹⁴C associated with old sample material. Dominance of high-pressure systems and low effective moisture during post-DO coolings likely triggered flammable periglacial ecosystems, while lower moisture and the relative abundance of fuel overshadowed lower temperatures for fire spread. Laurentide ice sheet (LIS) limits during DO events are difficult to assess in Central Canada due to sparse radiocarbon dates. Our radiocarbon data set constrains the extent of LIS. Central Saskatchewan was not covered by LIS throughout the Upper Pleistocene and was not a continental desert. Instead, our results suggest long-lasting periods where fluctuations of the northern tree limits and fires after interstadials occurred persistently. © 2014 John Wiley & Sons Ltd.
Yuan, Jun–hui; Cheng, Fang–Yun; Zhou, Shi–Liang
2012-01-01
Background Tree peonies are great ornamental plants associated with a rich ethnobotanical history in Chinese culture and have recently been used as an evolutionary model. The Qinling Mountains represent a significant geographic barrier in Asia, dividing mainland China into northern (temperate) and southern (semi–tropical) regions; however, their flora has not been well analyzed. In this study, the genetic differentiation and genetic structure of Paeonia rockii and the role of the Qinling Mountains as a barrier that has driven intraspecific fragmentation were evaluated using 14 microsatellite markers. Methodology/Principal Findings Twenty wild populations were sampled from the distributional range of P. rockii. Significant population differentiation was suggested (FST value of 0.302). Moderate genetic diversity at the population level (HS of 0.516) and high population diversity at the species level (HT of 0.749) were detected. Significant excess homozygosity (FIS of 0.076) and recent population bottlenecks were detected in three populations. Bayesian clusters, population genetic trees and principal coordinate analysis all classified the P. rockii populations into three genetic groups and one admixed Wenxian population. An isolation-by-distance model for P. rockii was suggested by Mantel tests (r = 0.6074, P<0.001) and supported by AMOVA (P<0.001), revealing a significant molecular variance among the groups (11.32%) and their populations (21.22%). These data support the five geographic boundaries surrounding the Qinling Mountains and adjacent areas that were detected with Monmonier's maximum-difference algorithm. Conclusions/Significance Our data suggest that the current genetic structure of P. rockii has resulted from the fragmentation of a formerly continuously distributed large population following the restriction of gene flow between populations of this species by the Qinling Mountains. This study provides a fundamental genetic profile for the conservation and responsible exploitation of the extant germplasm of this species and for improving the genetic basis for breeding its cultivars. PMID:22523566
NASA Astrophysics Data System (ADS)
Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.
2017-12-01
Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (< 0.5 meter) of two tree species with contrasting canopy and bark structure (Fagus grandifolia, vs. Liriodendron tulipifera), and evaluated for soil microbial structure via metagenomic analysis and soil C/N content. We hypothesize that soil moisture constraints coupled with increases in recalcitrant C will decrease gram negative bacteria (i.e., dependent on labile C) while increasing saprophytic fungal community abundance (i.e., specialist consuming recalcitrant C) within both surface and subsurface soils experiencing the greatest urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (< 20 cm) C concentrations due to decreased soil moisture constraining microbial activity (e.g., slower decay), and increased capture of recalcitrant C stocks from industrial/vehicle emission sources (e.g., black C). Our initial results support our hypotheses that urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.
Bleeker, Sacha E; Derksen-Lubsen, Gerarda; van Ginneken, Astrid M; van der Lei, Johan; Moll, Henriëtte A
2006-01-01
Background Whereas an electronic medical record (EMR) system can partly address the limitations, of paper-based documentation, such as fragmentation of patient data, physical paper records missing and poor legibility, structured data entry (SDE, i.e. data entry based on selection of predefined medical concepts) is essential for uniformity of data, easier reporting, decision support, quality assessment, and patient-oriented clinical research. The aim of this project was to explore whether a previously developed generic (i.e. content independent) SDE application to support the structured documentation of narrative data (called OpenSDE) can be used to model data obtained at history taking and physical examination of a broad specialty. Methods OpenSDE was customized for the broad domain of general pediatrics: medical concepts and its descriptors from history taking and physical examination were modeled into a tree structure. Results An EMR system allowing structured recording (OpenSDE) of pediatric narrative data was developed. Patient history is described by 20 main concepts and physical examination by 11. In total, the thesaurus consists of about 1800 items, used in 8648 nodes in the tree with a maximum depth of 9 levels. Patient history contained 6312 nodes, and physical examination 2336. User-defined entry forms can be composed according to individual needs, without affecting the underlying data representation. The content of the tree can be adjusted easily and sharing records among different disciplines is possible. Data that are relevant in more than one context can be accessed from multiple branches of the tree without duplication or ambiguity of data entry via "shortcuts". Conclusion An expandable EMR system with structured data entry (OpenSDE) for pediatrics was developed, allowing structured documentation of patient history and physical examination. For further evaluation in other environments, the tree structure for general pediatrics is available at the Erasmus MC Web site (in Dutch, translation into English in progress) [1]. The generic OpenSDE application is available at the OpenSDE Web site [2]. PMID:16839414
David J. Flaspohler; Christian P. Giardina; Gregory P. Asner; Patrick Hart; Jonathan Price; Cassie Ka’apu Lyons; Xeronimo Castaneda
2010-01-01
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments...
Spatial organization of northern flying squirrels, Glaucomys sabrinus: Territoriality in females?
Smith, J.R.; Vuren, D.H.V.; Kelt, D.A.; Johnson, M.L.
2011-01-01
We determined home-range overlap among northern flying squirrels (Glaucomys sabrinus) to assess their spatial organization. We found extensive home-range overlap among females, and though this overlap could reflect social behavior, we found no evidence of attraction among females, with only one instance of den sharing. Instead, our results suggest that females share foraging areas but may be territorial in portions of the home range, especially around den trees and during young-rearing. Home-range overlap could also result from, the extrinsic effect of forest fragmentation due to timber harvest, which might impede dispersal and force squirrels to cluster on remaining fragments of suitable habitat.
Tree survival and growth on fescue-covered spoil banks
William T. Plass
1968-01-01
In spoil-bank revegetation the emphasis today is on site protection. Quick cover crops overplanted to trees or shrubs are recommended on many sites. In this study we tried to determine how an established fescue cover affects tree survival and growth. We found the ground cover did not affect survival but did reduce the height growth of sycamore and sweetgum. It had...
Christa P.H. Mulder; Bitty A. Roy; Sabine Gusewell
2008-01-01
Parasite damage strongly affects dynamics of boreal forests. Damage levels may be affected by climate change, either directly or indirectly through changes in properties of host trees. We examined how herbivore and pathogen damage in Alnus viridis subsp. fruticosa (Rupr.) Nym. depend on leaf morphology and chemistry, tree size...
Zhu, Zhen; Puliga, Michelangelo; Cerina, Federica; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
The fragmentation of production across countries has become an important feature of the globalization in recent decades and is often conceptualized by the term “global value chains” (GVCs). When empirically investigating the GVCs, previous studies are mainly interested in knowing how global the GVCs are rather than how the GVCs look like. From a complex networks perspective, we use the World Input-Output Database (WIOD) to study the evolution of the global production system. We find that the industry-level GVCs are indeed not chain-like but are better characterized by the tree topology. Hence, we compute the global value trees (GVTs) for all the industries available in the WIOD. Moreover, we compute an industry importance measure based on the GVTs and compare it with other network centrality measures. Finally, we discuss some future applications of the GVTs. PMID:25978067
García-García, José Luis; Santos-Moreno, Antonio
2014-03-01
The tropical forest fragmentation is known to affect the spatial structure of the landscape and habitat. These alterations can modify the attributes of bat assemblages, however, this phenomenon has been little studied and understood. In this work we evaluated the structure of landscape (i.e. composition and configuration) and vegetation, and its relationship with assemblage- and population-level characteristics of phyllostomid bats in a tropical rainforest of Southeastern Mexico. For this, we previously selected 12 sites located in continuous and fragmented forests, where bats were captured using mist nets during a two years sampling effort (144 nights). Bats relative abundance, species richness (diversity of order 0, 0D), Shannon diversity index (1D) and Simpson index (2D) were evaluated in all sites, and their relationship with seven measures of landscape structure and seven measures of vegetation structure was described using a Hierarchical Partitioning Analysis. A total of 1 840 individuals of 29 species of phyllostomid bats were captured in this period. Differences in the assemblages were manifested only in the relative abundance and not in the richness of the species. The assemblages of fragmented forest exhibited greater variation in species composition and a greater abundance of frugivorous and nectarivorous bats in comparison with the assemblages of continuous forest. The landscape configuration was related to the assemblage- and population-level attributes, contrasting with previous studies where the composition was a key element. At habitat level, tree density and canopy cover determined the abundance of bats. Nectarivorous and frugivorous bats were mostly found in disturbed vegetation landscapes, primarily due to landscape configuration (e.g. edge density). This phenomenon could be a response to the availability of food in primary and intermediate successional stages, which are characterized by an abundance of food value.
Reinoso-Pérez, María Teresa; Canales-Delgadillo, Julio César; Chapa-Vargas, Leonardo; Riego-Ruiz, Lina
2016-05-27
Studies of avian haemosporidians allow understanding how these parasites affect wild bird populations, and if their presence is related to factors such as habitat loss, degradation and fragmentation, and climate change. Considering the importance of the highland Plateau of Mexico as part of the North American bird migratory route and as a region containing important habitat for numerous bird species, the purpose of this study was to document haemosporidian species richness and how habitat degradation, bird body condition, and distance from water sources correlate with bird parasitemia. We assessed the presence of avian haemosporidians in three resident bird species through microscopy and PCR amplification of a fragment of the haemosporidian cytochrome b gene. Average parasitemia was estimated in each species, and its relationship with habitat degradation through grazing, bird body condition and distance from water bodies was assessed. High levels of parasitemia were recorded in two of the three bird species included in this study. Four lineages of haemosporidians were identified in the study area with nearly 50 % prevalence. Areas with highly degraded shrublands and villages showed higher parasitemia relative to areas with moderately degraded shrublands. No strong relationship between parasitemia and distance from water bodies was observed. There were no significant differences in prevalence and parasitemia between the two bird species infected with the parasites. Two of the sequences obtained from the fragments of the parasite's cytochrome b gene represent a lineage that had not been previously reported. Haemosporidian diversity in arid zones of the Mexican highland plateau is high. Shrubland habitat degradation associated to the establishment of small villages, as well as tree extraction and overgrazing in the surroundings of these villages, significantly enhances parasitemia of birds by haemosporidians.
Tree structure and cavity microclimate: implications for bats and birds.
Clement, Matthew J; Castleberry, Steven B
2013-05-01
It is widely assumed that tree cavity structure and microclimate affect cavity selection and use in cavity-dwelling bats and birds. Despite the interest in tree structure and microclimate, the relationship between the two has rarely been quantified. Currently available data often comes from artificial structures that may not accurately represent conditions in natural cavities. We collected data on tree cavity structure and microclimate from 45 trees in five cypress-gum swamps in the Coastal Plain of Georgia in the United States in 2008. We used hierarchical linear models to predict cavity microclimate from tree structure and ambient temperature and humidity, and used Aikaike's information criterion to select the most parsimonious models. We found large differences in microclimate among trees, but tree structure variables explained <28% of the variation, while ambient conditions explained >80% of variation common to all trees. We argue that the determinants of microclimate are complex and multidimensional, and therefore cavity microclimate cannot be deduced easily from simple tree structures. Furthermore, we found that daily fluctuations in ambient conditions strongly affect microclimate, indicating that greater weather fluctuations will cause greater differences among tree cavities.
Searching Fragment Spaces with feature trees.
Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger
2009-02-01
Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.
James Lashomb; Alan Iskra; Ann Brooks Gould; George Hamilton
2003-01-01
Bacterial leaf scorch (BLS) of amenity trees is caused by the bacterium Xylella fastidiosa, a xylem-limited pathogen that causes water stress resulting in leaf scorch, decline, and eventual death of affected trees. Recent surveys indicate that BLS is widespread throughout the eastern half of the United States. In New Jersey, BLS primarily affects red and pin oaks...
HOW to Recognize and Reduce Tree Hazards in Recreation Sites
Kathyn Robbins
1986-01-01
An understanding of the many factors affecting tree hazards in recreation sites will help predict which trees are most likely to fail. Hazard tree management deals with probabilities of failure. This guide, written for anyone involved in management or maintenance of public use areas that contain trees, is intended to help minimize the risk associated with hazard trees...
Clifford S. Crawford; Lisa M. Ellis; Daniel Shaw; Nancy E. Umbreit
1999-01-01
Extensive regulation of the Middle Rio Grande's natural flow regime, together with the effects of introduced tree species, landscape fragmentation, and increasing wildfires, are obstacles for any level of restoration of its native riparian forest (bosque). However, carefully monitored partial restoration is possible and greatly needed to prevent the bosque's...
Mark J. Ambrose; Barbara L. Conkling; Kurt H. Riitters; John W. Coulston
2008-01-01
This brochure presents examples of analyses included in the first four Forest Health Monitoring (FHM) national technical reports. Its purpose is to introduce the reader to the kinds of information available in these and subsequent FHM national technical reports. Indicators presented here include drought, air pollution, forest fragmentation, and tree mortality. These...
Krishnan, Anusha; Pramanik, Gautam Kumar; Revadi, Santosh V; Venkateswaran, Vignesh; Borges, Renee M
2014-01-01
In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3-5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig-pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology via the feedback cycle in this system. Climatic factors affecting plant reproductive traits cause biotic relationships between plants, mutualists and parasites to vary seasonally and must be accorded greater attention, especially in the context of climate change.
Krishnan, Anusha; Pramanik, Gautam Kumar; Revadi, Santosh V.; Venkateswaran, Vignesh; Borges, Renee M.
2014-01-01
In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3–5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig–pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology via the feedback cycle in this system. Climatic factors affecting plant reproductive traits cause biotic relationships between plants, mutualists and parasites to vary seasonally and must be accorded greater attention, especially in the context of climate change. PMID:25521512
High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle
NASA Astrophysics Data System (ADS)
Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas
2017-03-01
Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.
Martinson, Holly M; Fagan, William F
2014-09-01
Habitat fragmentation is a complex process that affects ecological systems in diverse ways, altering everything from population persistence to ecosystem function. Despite widespread recognition that habitat fragmentation can influence food web interactions, consensus on the factors underlying variation in the impacts of fragmentation across systems remains elusive. In this study, we conduct a systematic review and meta-analysis to quantify the effects of habitat fragmentation and spatial habitat structure on resource consumption in terrestrial arthropod food webs. Across 419 studies, we found a negative overall effect of fragmentation on resource consumption. Variation in effect size was extensive but predictable. Specifically, resource consumption was reduced on small, isolated habitat fragments, higher at patch edges, and neutral with respect to landscape-scale spatial variables. In general, resource consumption increased in fragmented settings for habitat generalist consumers but decreased for specialist consumers. Our study demonstrates widespread disruption of trophic interactions in fragmented habitats and describes variation among studies that is largely predictable based on the ecological traits of the interacting species. We highlight future prospects for understanding how changes in spatial habitat structure may influence trophic modules and food webs. © 2014 John Wiley & Sons Ltd/CNRS.
The influence of habitat fragmentation on multiple plant-animal interactions and plant reproduction.
Brudvig, Lars A; Damschen, Ellen I; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J
2015-10-01
Despite broad recognition that habitat loss represents the greatest threat to the world's biodiyersity, a mechanistic understanding of how habitat loss and associated fragmentation affect ecological systems has proven remarkably challenging. The challenge stems from the multiple interdependent ways that landscapes change following fragmentation and the ensuing complex impacts on populations and communities of interacting species. We confronted these challenges by evaluating how fragmentation affects individual plants through interactions with animals, across five herbaceous species native to longleaf pine savannas. We created a replicated landscape experiment that provides controlled tests of three major fragmentation effects (patch isolation, patch shape [i.e., edge-to-area ratio], and distance to edge), established experimental founder populations of the five species to control for spatial distributions and densities of individual plants, and employed structural equation modeling to evaluate the effects of fragmentation on plant reproductive output and the degree to which these impacts are mediated through altered herbivory, pollination, or pre-dispersal seed predation. Across species, the most consistent response to fragmentation was a reduction in herbivory. Herbivory, however, had little impact.on plant reproductive output, and thus we found little evidence for any resulting benefit to plants in fragments. In contrast, fragmentation rarely impacted pollination or pre-dispersal seed predation, but both of these interactions had strong and consistent impacts on plant reproductive output. As a result, our models robustly predicted plant reproductive output (r2 = 0.52-0.70), yet due to the weak effects of fragmentation on pollination and pre-dispersal seed predation, coupled with the weak effect of herbivory on plant reproduction, the effects of fragmentation on reproductive output were generally small in magnitude and inconsistent. This work provides mechanistic insight into landscape-scale variation in plant reproductive success, the relative importance of plant-animal interactions for structuring these dynamics, and the nuanced nature of how habitat fragmentation can affect populations and communities of interacting species.
Oral lead bullet fragment exposure in northern bobwhite (Colinus virginianus).
Kerr, Richard; Holladay, Jeremy; Holladay, Steven; Tannenbaum, Lawrence; Selcer, Barbara; Meldrum, Blair; Williams, Susan; Jarrett, Timothy; Gogal, Robert
2011-11-01
Lead (Pb) is a worldwide environmental contaminant known to adversely affect multiple organ systems in both mammalian and avian species. In birds, a common route of exposure is via oral ingestion of lead particles. Data are currently lacking for the retention and clearance of Pb bullet fragments in gastrointestinal (GI) tract of birds while linking toxicity with blood Pb levels. In the present study, northern bobwhite quail fed a seed-based diet were orally gavaged with Pb bullet fragments (zero, one or five fragments/bird) and evaluated for rate of fragment clearance, and changes in peripheral blood, renal, immune, and gastrointestinal parameters. Based on radiographs, the majority of the birds cleared or absorbed the fragments by seven days, with the exception of one five-fragment bird which took between 7 and 14 days. Blood Pb levels were higher in males than females, which may be related to egg production in females. In males but not females, feed consumption, body weight gain, packed cell volume (PCV), plasma protein concentration, and δ-aminolevulinic acid dehydratase (δ-ALAD) activity were all adversely affected by five Pb fragments. Birds of both sexes that received a single Pb fragment displayed depressed δ-ALAD, suggesting altered hematologic function, while all birds dosed with five bullet fragments exhibited greater morbidity.
Sampling the quality of hardwood trees
Adrian M. Gilbert
1959-01-01
Anyone acquainted with the conversion of hardwood trees into wood products knows that timber has a wide range in quality. Some trees will yield better products than others. So, in addition to rate of growth and size, tree values are affected by the quality of products yielded.
Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman
2015-01-01
Urban tree survival is essential to sustain the ecosystem services of urban forests and monitoring is needed to accurately assess benefits. While some urban forestry studies have reported street tree survival, little is known about the factors influencing residential yard tree survival, especially over the long-term. We assessed residential shade tree survival in...
Virtual fragment preparation for computational fragment-based drug design.
Ludington, Jennifer L
2015-01-01
Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.
110 Years of change in urban tree stocks and associated carbon storage.
Díaz-Porras, Daniel F; Gaston, Kevin J; Evans, Karl L
2014-04-01
Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s-2010, and by 100% from the 1950s-2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such as revisions to tree preservation orders, to increase the retention of such trees as they mature.
Tullus, Arvo; Kupper, Priit; Kaasik, Ants; Tullus, Hardi; Lõhmus, Krista; Sõber, Anu; Sellin, Arne
2017-05-01
The interactive effects of climate variables and tree-tree competition are still insufficiently understood drivers of forest response to global climate change. Precipitation and air humidity are predicted to rise concurrently at high latitudes of the Northern Hemisphere. We investigated whether the growth response of deciduous trees to elevated air humidity varies with their competitive status. The study was conducted in seed-originated silver birch and monoclonal hybrid aspen stands grown at the free air humidity manipulation (FAHM) experimental site in Estonia, in which manipulated stands (n = 3 for both species) are exposed to artificially elevated relative air humidity (6-7% over the ambient level). The study period included three growing seasons during which the stands had reached the competitive stage (trees were 7 years old in the final year). A significant 'treatment×competitive status' interactive effect on growth was detected in all years in birch (P < 0.01) and in one year in aspen stands (P = 0.015). Competitively advantaged trees were always more strongly affected by elevated humidity. Initially the growth of advantaged and neutral trees of both species remained significantly suppressed in humidified stands. In the following years, dominance and elevated humidity had a synergistic positive effect on the growth of birches. Aspens with different competitive status recovered more uniformly, attaining similar relative growth rates in manipulated and control stands, but preserved a significantly lower total growth yield due to severe initial growth stress. Disadvantaged trees of both species were never significantly affected by elevated humidity. Our results suggest that air humidity affects trees indirectly depending on their social status. Therefore, the response of northern temperate and boreal forests to a more humid climate in future will likely be modified by competitive relationships among trees, which may potentially affect species composition and cause a need to change forestry practices. © 2016 John Wiley & Sons Ltd.
ChemTS: an efficient python library for de novo molecular generation.
Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji
2017-01-01
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.
ChemTS: an efficient python library for de novo molecular generation
NASA Astrophysics Data System (ADS)
Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji
2017-12-01
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.
Does predation contribute to tree diversity?
Brian Beckage; James S. Clark
2005-01-01
Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), ...
A multiscale assessment of tree avoidance by prairie birds
Thompson, Sarah J.; Arnold, Todd W.; Amundson, Courtney L.
2014-01-01
In North America, grassland bird abundances have declined, likely as a result of loss and degradation of prairie habitat. Given the expense and limited opportunity to procure new grasslands, managers are increasingly focusing on ways to improve existing habitat for grassland birds, using techniques such as tree removal. To examine the potential for tree removal to benefit grassland birds, we conducted 446 point counts on 35 grassland habitat patches in the highly fragmented landscape of west-central Minnesota during 2009–2011. We modeled density of four grassland bird species in relation to habitat composition at multiple scales, focusing on covariates that described grass, woody vegetation (trees and large shrubs), or combinations of grass and woody vegetation. The best-supported models for all four grassland bird species incorporated variables measured at multiple scales, including local features such as grass height, litter depth, and local tree abundance, as well as landscape-level measures of grass and tree cover. Savannah Sparrows (Passerculus sandwichensis), Sedge Wrens (Cistothorus platensis), and Bobolinks (Dolichonyx oryzivorus) responded consistently and negatively to woody vegetation, but response to litter depth, grass height, and grassland extent were mixed among species. Our results suggest that reducing shrub and tree cover is more likely to increase the density of grassland birds than are attempts to improve grass quality or quantity. In particular, tree removal is more likely to increase density of Savannah Sparrows and Sedge Wrens than any reasonable changes in grass quality or quantity. Yet tree removal may not result in increased abundance of grassland birds if habitat composition is not considered at multiple scales. Managers will need to either manage at large scales (80–300 ha) or focus their efforts on removing trees in landscapes that contain some grasslands but few nearby wooded areas.
Corey R. Halpin; Craig G. Lorimer; Jacob J. Hanson; Brian J. Palik
2017-01-01
The group selection method can potentially increase the proportion of shade-intolerant and midtolerant tree species in forests dominated by shade-tolerant species, but previous results have been variable, and concerns have been raised about possible effects on forest fragmentation and forest structure. Limited evidence is available on these issues for forests managed...
Erin R. Victory; Jeffrey C. Glaubitz; Jennifer A. Fike; Olin E. Rhodes; Keith E. Woeste
2008-01-01
Missouri and Indiana have markedly different histories of glaciation and recolonization by forest trees. These states also differ in land use patterns and degree of anthropogenic landscape change such as forest fragmentation. To determine the overall effects of these and other demographic differences on the levels of genetic diversity and structure in black walnut (...
Genetic-environment associations across the range of Pinus strobus
S. Nadeau; J. Housset; J. Godbout; P.G. Meirmans; M. Lamothe; M.-C. Gros-Louis; C. Simard; S.N. Aitken; K. Ritland; M. Girardin; N. Isabel
2017-01-01
Because of rapid global warming, it is critical for us to better understand the capacity of forest trees to adapt to a changing climate, especially species such as five-needle pines that are particularly at risk to threats because of fire suppression, population fragmentation, and pests. In this study, we used several methods to disentangle the effects of local...
Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng
2015-03-01
DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Houlahan, Padraig; Scalo, John
1992-01-01
A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.
Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten
2015-01-01
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417
Colangelo, Michele; Camarero, Jesús J; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco
2017-01-01
Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees.
Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects.
Qie, Lan; Lewis, Simon L; Sullivan, Martin J P; Lopez-Gonzalez, Gabriela; Pickavance, Georgia C; Sunderland, Terry; Ashton, Peter; Hubau, Wannes; Abu Salim, Kamariah; Aiba, Shin-Ichiro; Banin, Lindsay F; Berry, Nicholas; Brearley, Francis Q; Burslem, David F R P; Dančák, Martin; Davies, Stuart J; Fredriksson, Gabriella; Hamer, Keith C; Hédl, Radim; Kho, Lip Khoon; Kitayama, Kanehiro; Krisnawati, Haruni; Lhota, Stanislav; Malhi, Yadvinder; Maycock, Colin; Metali, Faizah; Mirmanto, Edi; Nagy, Laszlo; Nilus, Reuben; Ong, Robert; Pendry, Colin A; Poulsen, Axel Dalberg; Primack, Richard B; Rutishauser, Ervan; Samsoedin, Ismayadi; Saragih, Bernaulus; Sist, Plinio; Slik, J W Ferry; Sukri, Rahayu Sukmaria; Svátek, Martin; Tan, Sylvester; Tjoa, Aiyen; van Nieuwstadt, Mark; Vernimmen, Ronald R E; Yassir, Ishak; Kidd, Petra Susan; Fitriadi, Muhammad; Ideris, Nur Khalish Hafizhah; Serudin, Rafizah Mat; Abdullah Lim, Layla Syaznie; Saparudin, Muhammad Shahruney; Phillips, Oliver L
2017-12-19
Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha -1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.
Spatial distribution pattern of termite in Endau Rompin Plantation
NASA Astrophysics Data System (ADS)
Jalaludin, Nur-Atiqah; Rahim, Faszly
2015-09-01
We censused 18 field blocks approximately 190 ha with total of 28,604 palms in a grid of 2×4 palms from July 2011 to March 2013. The field blocks comprise of rows of palm trees, harvesting paths, field drains and stacking rows with maximum of 30 palms per row, planted about 9 m apart, alternately in maximum of 80 rows. SADIE analysis generating index of aggregation, Ia, local clustering value, Vi and local gap value, Vj is adopted to estimate spatial pattern. The patterns were then presented in contour map using Surfer 12 software. The patterns produced associated with factors i.e. habitat disturbance, habitat fragmentation and resources affecting nesting and foraging activities. Result shows that field blocks with great habitat disturbance recorded highest dead palms and termites hits. Blocks located far from the main access road recorded less than 2% palms with termite hits. This research may provide ecological data on termite spatial pattern in oil palm ecosystem.
Impacts of an invasive N2-fixing tree on Hawaiian stream water quality
Tracy N. Wiegner; Flint Hughes; Lisa M. Shizuma; David K. Bishaw; Mark E. Manuel
2013-01-01
N2-fixing trees can affect stream water quality. This has been documented in temperate streams, but not in tropical ones, even though N2-fixing trees are prevalent in the tropics. We investigated the effects of the introduced, invasive tree, Falcataria moluccanaalbiziaon water...
Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness.
Skrlep, Martin; Candek-Potokar, Marjeta; Mandelc, Stanislav; Javornik, Branka; Gou, Pere; Chambon, Christophe; Santé-Lhoutellier, Véronique
2011-08-01
Two-dimensional electrophoresis was used to compare dry-cured biceps femoris insoluble protein fraction according to genotype (PRKAG3Ile199Val and CASTLys249Arg/Ser638Arg) as well as salt and pastiness level. The PRKAG3 affected mainly muscle metabolic enzymes, indicating its possible influence on muscle metabolism with heterozygotes Ile/Val appearing different from both homozygous genotypes. The effect of CAST was smaller, affecting the quantity of one actin fragment. Dry-cured ham salt and pastiness level affected a wide variety of protein spots including metabolic enzymes, plasma proteins, chaperones and myofibrillar proteins, including protein fragments, indicating the connection with proteolysis. Pastiness was associated with salt content, reflected also by the fact that many spots were affected by both factors. Despite the absence of extreme pastiness (or low salt samples), some protein spots (actin, MHC fragment, desmin fragment) exhibited important differences in intensity according to pastiness (and salt level) suggesting they could be used as potential quality markers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.
Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M
2018-02-01
To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.
Impact of three global change drivers on a Mediterranean shrub.
Matesanz, Silvia; Escudero, Adrián; Valladares, Fernando
2009-09-01
Global change is not restricted to climate change, and plant species generally face multiple human-driven disturbances constraining their viability. Most importantly, interactions among these drivers frequently generate nonadditive effects that cannot be predicted based on single-factor studies. Our goal was to assess the joint effects of three global change drivers that are especially relevant in Mediterranean ecosystems, namely, fragmentation, reduced habitat quality, and climate change on Centaurea hyssopifolia, a gypsum specialist plant. We carried out a two-year study (2005-2006) in natural populations of this plant in large (>11 ha) and small (< 1.5 ha) fragments. Within each fragment, we identified areas of contrasting habitat quality as revealed by plant cover and nutrient content, and within each combination of habitat quality and fragment size we performed a rainfall manipulation experiment simulating the most likely future climate scenario for the region. Survival, growth, phenology, and reproductive success of selected plants were monitored. The three drivers profoundly affected responses of Centaurea hyssopifolia in both study years, phenology being mainly affected by changes in habitat quality and reductions in rainfall and reproductive traits being mainly affected by fragmentation. Plants in sites of poor habitat quality and plants in the dry treatment advanced most of their phenophases (flowering and dispersing earlier) and showed reduced growth rate and increased fraction of senescent leaves. Plants growing in small fragments had lower survival, lower number of viable seeds, and a reduced seed set compared to those from large fragments. We found significant synergistic interactions among drivers. For example, the interaction between fragmentation and habitat quality led to lower survival and lower relative growth in plants from small and poor-quality habitat sites. Our results highlight the importance of studies addressing simultaneously all relevant drivers of global change potentially affecting plant performance under natural conditions. In addition, the complex responses of phenology and reproductive traits of C. hyssopifolia emphasize the need for studies integrating traits from vegetative to reproductive and from the organ to the whole-plant level.
Onay, Aytun; Onay, Melih; Abul, Osman
2017-04-01
Early-phase virtual screening of candidate drug molecules plays a key role in pharmaceutical industry from data mining and machine learning to prevent adverse effects of the drugs. Computational classification methods can distinguish approved drugs from withdrawn ones. We focused on 6 data sets including maximum 110 approved and 110 withdrawn drugs for all and nervous system diseases to distinguish approved drugs from withdrawn ones. In this study, we used support vector machines (SVMs) and ensemble methods (EMs) such as boosted and bagged trees to classify drugs into approved and withdrawn categories. Also, we used CORINA Symphony program to identify Toxprint chemotypes including over 700 predefined chemotypes for determination of risk and safety assesment of candidate drug molecules. In addition, we studied nervous system withdrawn drugs to determine the key fragments with The ParMol package including gSpan algorithm. According to our results, the descriptors named as the number of total chemotypes and bond CN_amine_aliphatic_generic were more significant descriptors. The developed Medium Gaussian SVM model reached 78% prediction accuracy on test set for drug data set including all disease. Here, bagged tree and linear SVM models showed 89% of accuracies for phycholeptics and psychoanaleptics drugs. A set of discriminative fragments in nervous system withdrawn drug (NSWD) data sets was obtained. These fragments responsible for the drugs removed from market were benzene, toluene, N,N-dimethylethylamine, crotylamine, 5-methyl-2,4-heptadiene, octatriene and carbonyl group. This paper covers the development of computational classification methods to distinguish approved drugs from withdrawn ones. In addition, the results of this study indicated the identification of discriminative fragments is of significance to design a new nervous system approved drugs with interpretation of the structures of the NSWDs. Copyright © 2017 Elsevier B.V. All rights reserved.
Degree of Landscape Fragmentation Influences Genetic Isolation among Populations of a Gliding Mammal
Taylor, Andrea C.; Walker, Faith M.; Goldingay, Ross L.; Ball, Tina; van der Ree, Rodney
2011-01-01
Forests and woodlands are under continuing pressure from urban and agricultural development. Tree-dependent mammals that rarely venture to the ground are likely to be highly sensitive to forest fragmentation. The Australian squirrel glider (Petaurus norfolcensis) provides an excellent case study to examine genetic (functional) connectivity among populations. It has an extensive range that occurs in a wide band along the east coast. However, its forest and woodland habitat has become greatly reduced in area and is severely fragmented within the southern inland part of the species' range, where it is recognised as threatened. Within central and northern coastal regions, habitat is much more intact and we thus hypothesise that genetic connectivity will be greater in this region than in the south. To test this we employed microsatellite analysis in a molecular population biology approach. Most sampling locations in the highly modified south showed signatures of genetic isolation. In contrast, a high level of genetic connectivity was inferred among most sampled populations in the more intact habitat of the coastal region, with samples collected 1400 km apart having similar genetic cluster membership. Nonetheless, some coastal populations associated with urbanisation and agriculture are genetically isolated, suggesting the historic pattern observed in the south is emerging on the coast. Our study demonstrates that massive landscape changes following European settlement have had substantial impacts on levels of connectivity among squirrel glider populations, as predicted on the basis of the species' ecology. This suggests that landscape planning and management in the south should be focused on restoring habitat connectivity where feasible, while along the coast, existing habitat connectivity must be maintained and recent losses restored. Molecular population biology approaches provide a ready means for identifying fragmentation effects on a species at multiple scales. Such studies are required to examine the generality of our findings for other tree-dependent species. PMID:22053200
Duarte, Mércia E; Navia, Denise; dos Santos, Lucas R; Rideiqui, Pedro J S; Silva, Edmilson S
2015-08-01
In some Brazilian regions the Atlantic forest biome is currently restrict to fragments occurring amid monocultures, as sugarcane crops in the Northeast region. Important influence of forest remnants over mite fauna of permanent crops have been showed, however it has been poorly explored on annual crops. The first step for understanding ecological relationship in an agricultural systems is known its composition. The objective of this study was to investigate the plant-inhabiting mite fauna associated with sugarcane crop (Saccharum officinarum L.) (Poaceae) and caboatã (Cupania oblongifolia Mart.) (Sapindaceae) trees in the state of Alagoas, Brazil. Sugarcane stalks and sugarcane and caboatã apical, middle and basal leaves were sampled. A total of 2565 mites were collected from sugarcane and classified into seven families of Trombidiformes and Mesostigmata orders, with most individuals belonging to the Eriophyidae, Tetranychidae and Tarsonemidae families. Among predatory mites, the Phytoseiidae were the most common. A total of 1878 mites were found on C. oblongifolia and classified into 13 families of Trombidiformes and Mesostigmata orders. The most abundant phytophagous mite family on caboatã was also Eriophyidae. In contrast to sugarcane, Ascidae was the most common predatory mite family observed in caboatã. No phytophagous species were common to both sugarcane and C. oblongifolia. However two predatory mites were shared between host plants. Although mites associated with only one native species in the forest fragment were evaluated in this study, our preliminary results suggest Atlantic forest native vegetation can present an important role in the sugarcane agricultural system as a source of natural enemies.
History of Tree Growth Declines Recorded in Old Trees at Two Sacred Sites in Northern China
Li, Yan; Zhang, Qi-Bin
2017-01-01
Old forests are an important component in sacred sites, yet they are at risk of growth decline from ongoing global warming and increased human activities. Growth decline, characterized by chronic loss of tree vigor, is not a recent phenomenon. Knowledge of past occurrence of declines is useful for preparing conservation plans because it helps understand if present day forests are outside the natural range of variation in tree health. We report a dendroecological study of growth decline events in the past two centuries at two sacred sites, Hengshan and Wutaishan, in Shanxi province of northern China. Tree rings collected at both sites show distinct periods of declining growth evident as narrow rings. These occurred in the 1830s in both sites, in the 1920s in Wutaishan and in the 2000s in Hengshan. By comparing the pattern of grow declines at the two sites, we hypothesize that resistance of tree growth to external disturbances is forest size dependent, and increased human activity might be a factor additional to climatic droughts in causing the recent strong growth decline at Hengshan Park. Despite these past declines, the forests at both sites have high resilience to disturbances as evidenced by the ability of trees to recover their growth rates to levels comparable to the pre-decline period. Managers should consider reducing fragmentation and restoring natural habitat of old forests, especially in areas on dry sites. PMID:29163557
History of Tree Growth Declines Recorded in Old Trees at Two Sacred Sites in Northern China.
Li, Yan; Zhang, Qi-Bin
2017-01-01
Old forests are an important component in sacred sites, yet they are at risk of growth decline from ongoing global warming and increased human activities. Growth decline, characterized by chronic loss of tree vigor, is not a recent phenomenon. Knowledge of past occurrence of declines is useful for preparing conservation plans because it helps understand if present day forests are outside the natural range of variation in tree health. We report a dendroecological study of growth decline events in the past two centuries at two sacred sites, Hengshan and Wutaishan, in Shanxi province of northern China. Tree rings collected at both sites show distinct periods of declining growth evident as narrow rings. These occurred in the 1830s in both sites, in the 1920s in Wutaishan and in the 2000s in Hengshan. By comparing the pattern of grow declines at the two sites, we hypothesize that resistance of tree growth to external disturbances is forest size dependent, and increased human activity might be a factor additional to climatic droughts in causing the recent strong growth decline at Hengshan Park. Despite these past declines, the forests at both sites have high resilience to disturbances as evidenced by the ability of trees to recover their growth rates to levels comparable to the pre-decline period. Managers should consider reducing fragmentation and restoring natural habitat of old forests, especially in areas on dry sites.
Baldwin, Elizabeth; Plotto, Anne; Bai, Jinhe; Manthey, John; Zhao, Wei; Raithore, Smita; Irey, Mike
2018-03-21
Orange trees affected by huanglongbing (HLB) exhibit excessive fruit drop, and fruit loosely attached to the tree may have inferior flavor. Fruit were collected from healthy and HLB-infected ( Candidatus liberibacter asiaticus) 'Hamlin' and 'Valencia' trees. Prior to harvest, the trees were shaken, fruit that dropped collected, tree-retained fruit harvested, and all fruit juiced. For chemical analyses, sugars and acids were generally lowest in HLB dropped (HLB-D) fruit juice compared to nonshaken healthy (H), healthy retained (H-R), and healthy dropped fruit (H-D) in early season (December) but not for the late season (January) 'Hamlin' or 'Valencia' except for sugar/acid ratio. The bitter limonoids, many flavonoids, and terpenoid volatiles were generally higher in HLB juice, especially HLB-D juice, compared to the other samples. The lower sugars, higher bitter limonoids, flavonoids, and terpenoid volatiles in HLB-D fruit, loosely attached to the tree, contributed to off-flavor, as was confirmed by sensory analyses.
Use of FIA data and GIS to characterize the effects of fragmentation on the forests of New Hampshire
Randall S. Morin; Andrew Lister; James Doyle
2009-01-01
Urbanization, and the resulting fragmentation of forest land, are of great concern across the world and continues to affect many facets of natural ecosystems. Due to development pressure, this is especially true in the northeastern United States. Assessments of regional and national forest fragmentation highlight where forest fragmentation has occurred at one point in...
Mass movements and tree rings: A guide to dendrogeomorphic field sampling and dating
NASA Astrophysics Data System (ADS)
Stoffel, Markus; Butler, David R.; Corona, Christophe
2013-10-01
Trees affected by mass movements record the evidence of geomorphic disturbance in the growth-ring series, and thereby provide a precise geochronological tool for the reconstruction of past activity of mass movement. The identification of past activity of processes was typically based on the presence of growth anomalies in affected trees and focused on the presence of scars, tilted or buried trunks, as well as on apex decapitation. For the analyses and interpretation of disturbances in tree-ring records, in contrast, clear guidelines have not been established, with largely differing or no thresholds used to distinguish signal from noise. At the same time, processes with a large spatial footprint (e.g., snow avalanches, landslides, or floods) will likely leave growth anomalies in a large number of trees, whereas a falling rock would only cause scars in one or a few trees along its trajectory.
Effects of peach tree root system morphology and transpiration on leaf nitrogen and phosphorus
USDA-ARS?s Scientific Manuscript database
Adequate mineral nutrition is critical for high fruit quality and sustained yield of fruit trees. It is likely that nutritional competence of a fruit tree depends on several physiological and morphological traits that affect nutrient uptake. Fruit trees with improved root systems (own-rooted or as ...
Scott R. Abella
2009-01-01
Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...
American beech resistance to Cryptococcus fagisuga
David R. Houston
1983-01-01
American beech trees that were free of beech bark disease in forests long-affected by beech bark disease were challenged with C. fagisuga using the 'foam' technique. Trees were resistant: no insects reached maturity. In Nova Scotia, 12-15 disease-free trees per hectare occurred in the stands examined. Many of these trees occurred in groups...
Urban tree effects on fine particulate matter and human health
David J. Nowak
2014-01-01
Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...
Sampling procedures for inventory of commercial volume tree species in Amazon Forest.
Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R
2017-01-01
The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with different spatial patterns in the Amazon Forest. For this, the present study aims to evaluate the conventional sampling procedures and introduce the adaptive cluster sampling for volumetric inventories of Amazonian tree species, considering the hypotheses that the density, the spatial distribution and the zero-plots affect the consistency of the estimators, and that the adaptive cluster sampling allows to obtain more accurate volumetric estimation. We use data from a census carried out in Jamari National Forest, Brazil, where trees with diameters equal to or higher than 40 cm were measured in 1,355 plots. Species with different spatial patterns were selected and sampled with simple random sampling, systematic sampling, linear cluster sampling and adaptive cluster sampling, whereby the accuracy of the volumetric estimation and presence of zero-plots were evaluated. The sampling procedures applied to species were affected by the low density of trees and the large number of zero-plots, wherein the adaptive clusters allowed concentrating the sampling effort in plots with trees and, thus, agglutinating more representative samples to estimate the commercial volume.
Colangelo, Michele; Camarero, Jesús J.; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco
2017-01-01
Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees. PMID:28270816
NASA Astrophysics Data System (ADS)
Biel, C.; Molina, A.; Aranda, X.; Llorens, P.; Savé, R.
2012-04-01
Tree plantation for wood production has been proposed to mitigate CO2-related climate change. Although these agroforestry systems can contribute to maintain the agriculture in some areas placed between rainfed crops and secondary forests, water scarcity in Mediterranean climate could restrict its growth, and their presence will affect the water balance. Tree plantations management (species, plant density, irrigation, etc), hence, can be used to affect the water balance, resulting in water availability improvement and buffering of the water cycle. Soil water content and meteorological data are widely used in agroforestry systems as indicators of vegetation water use, and consequently to define water management. However, the available information of ecohydrological processes in this kind of ecosystem is scarce. The present work studies how the temporal and spatial variation of soil water content is affected by transpiration and interception loss fluxes in a Mediterranean rainfed plantation of cherry tree (Prunus avium) located in Caldes de Montbui (Northeast of Spain). From May till December 2011, rainfall partitioning, canopy transpiration, soil water content and meteorological parameters were continuously recorded. Rainfall partitioning was measured in 6 trees, with 6 automatic rain recorders for throughfall and 1 automatic rain recorder for stemflow per tree. Transpiration was monitored in 12 nearby trees by means of heat pulse sap flow sensors. Soil water content was also measured at three different depths under selected trees and at two depths between rows without tree cover influence. This work presents the relationships between rainfall partitioning, transpiration and soil water content evolution under the tree canopy. The effect of tree cover on the soil water content dynamics is also analyzed.
Wang, Bo; Ives, Anthony R
2017-03-01
Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.
A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999
Morton, Douglas M.; Hauser, Rachel M.
2001-01-01
This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.
Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C
2018-05-01
When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.
Van Looy, Kris; Piffady, Jérémy
2017-11-01
Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and ¼ for poplar after 25 years already. But proposed adaptation measures prove effective to even bring metapopulation strength and persistence up to a level above the current level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Habitat fragmentation and interspecific competition: Implications for lynx conservation [Chapter 4
Steven W. Buskirk
2000-01-01
Habitat fragmentation and interspecific competition are two important forces that potentially affect lynx populations. Fragmentation operates by various mechanisms, including direct habitat loss, vehicle collisions and behavioral disturbance from roads, and changes in landscape features such as edges. Competition takes two forms: Exploitation competition involves...
Factors affecting the concordance between orthologous gene trees and species tree in bacteria.
Castillo-Ramírez, Santiago; González, Víctor
2008-10-30
As originally defined, orthologous genes implied a reflection of the history of the species. In recent years, many studies have examined the concordance between orthologous gene trees and species trees in bacteria. These studies have produced contradictory results that may have been influenced by orthologous gene misidentification and artefactual phylogenetic reconstructions. Here, using a method that allows the detection and exclusion of false positives during identification of orthologous genes, we address the question of whether putative orthologous genes within bacteria really reflect the history of the species. We identified a set of 370 orthologous genes from the bacterial order Rhizobiales. Although manifesting strong vertical signal, almost every orthologous gene had a distinct phylogeny, and the most common topology among the orthologous gene trees did not correspond with the best estimate of the species tree. However, each orthologous gene tree shared an average of 70% of its bipartitions with the best estimate of the species tree. Stochastic error related to gene size affected the concordance between the best estimated of the species tree and the orthologous gene trees, although this effect was weak and distributed unevenly among the functional categories. The nodes showing the greatest discordance were those defined by the shortest internal branches in the best estimated of the species tree. Moreover, a clear bias was evident with respect to the function of the orthologous genes, and the degree of divergence among the orthologous genes appeared to be related to their functional classification. Orthologous genes do not reflect the history of the species when taken as individual markers, but they do when taken as a whole. Stochastic error affected the concordance of orthologous genes with the species tree, albeit weakly. We conclude that two important biological causes of discordance among orthologous genes are incomplete lineage sorting and functional restriction.
Adhesive foot pads: an adaptation to climbing? An ecological survey in hunting spiders.
Wolff, Jonas O; Gorb, Stanislav N
2015-02-01
Hairy pads relying on dry adhesion are fascinating structures that convergently evolved among spiders and lizards. Numerous studies underline the functional aspects leading to their strong adhesion to smooth surfaces, but rarely has their role been studied in the context of natural habitats and surfaces that animals are faced with. In hunting spiders, the hairy foot pads (claw tufts) underneath the paired claws are assumed to be an adaptation to a climbing lifestyle, particularly on smooth plant surfaces. However, surfaces that are too smooth for claws to generate a sufficient grip are rather rare in natural habitats and above-ground habitats are occupied by hunting spiders both with and without claw tufts. In this study we estimated the proportion of claw tuft-bearing hunting spiders (ct+ ratio) among microhabitat-specific assemblages by conducting both a field study and a meta-analysis approach. The effect of surface characteristics, structure fragmentation and altitude of the microhabitat niche on the ct+ ratio was analyzed. We hypothesized that the ct+ ratio will be higher in (i) hunting spider assemblages obtained from microhabitats above the ground than from those at the ground and (ii) in hunting spider assemblages obtained from microhabitats with smoother surfaces (tree foliage) than those with rougher surfaces (barks, stones), and lower in (iii) hunting spider assemblages obtained from microhabitats with more fragmented structures (small leaves) than in those with comparable but less fragmented structures (large leaves). We found the ct+ ratio to be significantly affected by the microhabitat's distance from the ground, whereas surface characteristics and fragmentation of the substrates were of minor importance. This suggests that claw tufts are highly beneficial when the microhabitat's height exceeds a value where the additional pad-related costs are exceeded by the costs of dropping. We assume the benefit to be mainly due to gaining a high safety factor at a lower energy demand if compared to alternative attachment devices (claws, silk). The previously presumed enhanced access to new microhabitat sites may play only a minor role as hunting spiders without claw tufts are present in most microhabitats. Copyright © 2014 Elsevier GmbH. All rights reserved.
F. Thomas Ledig; Miguel A. Capó-Arteaga; Paul D. Hodgskiss; Hassan Sbay; Celestino Flores-López; M. Thompson Conkle; Basilio Bermejo-Velázquez
2001-01-01
Weeping piñon (Pinus pinceana) has a restricted and fragmented range, trees are widely scattered within populations, and reproduction is limited. Nevertheless, genetic diversity was high; based on 27 isozyme loci in 18 enzyme systems, unbiased expected heterozygosity averaged 0.174. Differentiation also was high (FST = 0.152),...
Susan Cordell; D. R. Sandquist
2008-01-01
Tropical dry forests are among the Earth's most threatened ecosystems. On the Island of Hawaii the African bunchgrass Pennisetum setaceum (fountain grass) dominates the understorey of the few remaining fragments of native dry forests and is contributing to the degradation of this once diverse ecosystem. In this study, we...
An All-Fragments Grammar for Simple and Accurate Parsing
2012-03-21
Tsujii. Probabilistic CFG with latent annotations. In Proceedings of ACL, 2005. Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In...Proceedings of NAACL-HLT, 2007. Slav Petrov and Dan Klein. Sparse Multi-Scale Grammars for Discriminative Latent Variable Parsing. In Proceedings of...EMNLP, 2008. Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accurate, Compact, and Interpretable Tree Annotation. In Proceedings
Duminil, Jerome; Brown, Richard P; Ewédjè, Eben-Ezer B K; Mardulyn, Patrick; Doucet, Jean-Louis; Hardy, Olivier J
2013-09-12
The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes.
2013-01-01
Background The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Results Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Conclusions Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes. PMID:24028582
Lirman
2000-08-23
Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.
Host tree phenology affects vascular epiphytes at the physiological, demographic and community level
Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard
2015-01-01
The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188
Does the range of IMF affect rise and fall trend in fragmentation?
NASA Astrophysics Data System (ADS)
Sharma, Sakshi; Kumar, Rohit; Puri, Rajeev K.
2018-05-01
We study the rise and fall behavior in the multiplicity of intermediate mass fragments produced in the asymmetric reactions of 36S+ 198Pt using isospin-dependent quantum molecular dynamics model. We use different definitions of intermediate mass fragments according to various experimental studies. We find that the use of one or the other definition of intermediate mass fragments does not alter results significantly.
Prospects for quantifying structure, floristic composition and species richness of tropical forests
Gillespie, T.W.; Brock, J.; Wright, C.W.
2004-01-01
Airborne spectral and light detection and ranging (lidar) sensors have been used to quantify biophysical characteristics of tropical forests. Lidar sensors have provided high-resolution data on forest height, canopy topography, volume, and gap size; and provided estimates on number of strata in a forest, successional status of forests, and above-ground biomass. Spectral sensors have provided data on vegetation types, foliar biochemistry content of forest canopies, tree and canopy phenology, and spectral signatures for selected tree species. A number of advances are theoretically possible with individual and combined spectral and lidar sensors for the study of forest structure, floristic composition and species richness. Delineating individual canopies of over-storey trees with small footprint lidar and discrimination of tree architectural types with waveform distributions is possible and would provide scientists with a new method to study tropical forest structure. Combined spectral and lidar data can be used to identify selected tree species and identify the successional status of tropical forest fragments in order to rank forest patches by levels of species richness. It should be possible in the near future to quantify selected patterns of tropical forests at a higher resolution than can currently be undertaken in the field or from space. ?? 2004 Taylor and Francis Ltd.
Jones, F.A; Comita, L.S
2008-01-01
Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714
ChemTS: an efficient python library for de novo molecular generation
Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji
2017-01-01
Abstract Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS. PMID:29435094
Expertise and category-based induction.
Proffitt, J B; Coley, J D; Medin, D L
2000-07-01
The authors examined inductive reasoning among experts in a domain. Three types of tree experts (landscapers, taxonomists, and parks maintenance personnel) completed 3 reasoning tasks. In Experiment 1, participants inferred which of 2 novel diseases would affect "more other kinds of trees" and provided justifications for their choices. In Experiment 2, the authors used modified instructions and asked which disease would be more likely to affect "all trees." In Experiment 3, the conclusion category was eliminated altogether, and participants were asked to generate a list of other affected trees. Among these populations, typicality and diversity effects were weak to nonexistent. Instead, experts' reasoning was influenced by "local" coverage (extension of the property to members of the same folk family) and causal-ecological factors. The authors concluded that domain knowledge leads to the use of a variety of reasoning strategies not captured by current models of category-based induction.
The balance of planting and mortality in a street tree population
Lara A. Roman; John J. Battles; Joe R. McBride
2013-01-01
Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...
Competition alters tree growth responses to climate at individual and stand scales
Kevin R. Ford; Ian K. Breckheimer; Jerry F. Franklin; James A. Freund; Steve J. Kroiss; Andrew J. Larson; Elinore J. Theobald; Janneke HilleRisLambers
2017-01-01
Understanding how climate affects tree growth is essential for assessing climate change impacts on forests but can be confounded by effects of competition, which strongly influences tree responses to climate. We characterized the joint influences of tree size, competition, and climate on diameter growth using hierarchical Bayesian methods applied to permanent sample...
Measuring and analyzing urban tree cover
David J. Nowak; Rowan A. Rowntree; E. Gregory McPherson; Susan M. Sisinni; Esther R. Kirkmann; Jack C. Stevens
1996-01-01
Measurement of city tree cover can aid in urban vegetation planning, management, and research by revealing characteristics of vegetation across a city. Urban tree cover in the United States ranges from 0.4% in Lancaster, California, to 55% in Baton Rouge, Louisiana. Two important factors that affect the amount of urban tree cover are the natural environment and land...
Fragmenting networks by targeting collective influencers at a mesoscopic level.
Kobayashi, Teruyoshi; Masuda, Naoki
2016-11-25
A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure.
Fragmenting networks by targeting collective influencers at a mesoscopic level
NASA Astrophysics Data System (ADS)
Kobayashi, Teruyoshi; Masuda, Naoki
2016-11-01
A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure.
Fragmenting networks by targeting collective influencers at a mesoscopic level
Kobayashi, Teruyoshi; Masuda, Naoki
2016-01-01
A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure. PMID:27886251
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.
Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities.
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes
Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities. PMID:27187741
Méndez-Probst, Carlos E; Fernadez, Alfonso; Erdeljan, Petar; Vanjecek, Maaike; Cadieux, Peter A; Razvi, Hassan
2011-03-01
Studies have suggested that shockwave lithotripsy (SWL) stone fragmentation rates can be affected by characteristics of the fluid media surrounding the stone, although evidence to implicate the impact of urine specific gravity (SG) is limited and inconclusive. Our aim is to further explore the impact fluid media and SGs have on stone fragmentation using a variable focus lithotripter. Artificial stones were presoaked for 24 hours in urine and then shocked in various fluid media including artificial urine (SG 1.010 control, 1.020, and 1.07), human pooled urine (HPU), degassed HPU, Pentastarch, 100% and 30% contrast, degassed 30% contrast, 100% ethanol, deionized water (dH(2)O), degassed dH(2)O, 5% glucose, Ringer lactate, 0.9% saline, glycerol, whole blood, and lubricating gel. After soaking, SWL using the Modulith SLX-F2 electromagnetic lithotripter was performed. Fragments were dried and sieved using a 4-mm diameter opening grid. Fragments >4 mm were weighed and fragmentation coefficients (FCs) calculated (pre-SWL weight - post-SWL weight)/(pre-SWL weight) × 100. Fifteen stones were shocked for each fluid group. Fluid type, viscosity, and degassing all significantly impacted stone fragmentation. While the solutions' SG, per se, did not appear to affect stone fragmentation, the use of degassed 30% contrast significantly improved stone destruction over the SG 1.010 artificial urine control (95.3% vs 71.4, P < 0.01). Furthermore, degassing improved comminution rates by increasing the number of completely fragmented stones (FC = 100%). Using degassed 30% contrast, 12/15 stones were completely fragmented, compared with only 2/15 in the control group (P = 0.007). Among the whole blood, glycerol, and lubricating gel groups, only 1/15, 0/15, and 1/15 stones reached 100% FC respectively in the narrow focus, possibly because of the detrimental impact of increased viscosity. Different fluid media can significantly affect FC in vitro. Among the various fluids tested, degassed 30% contrast significantly increased the FC and total number of completely fragmented stones.
The role of disappeared disturbances in driving the North American prairie-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.; Staver, A. C.
2016-12-01
Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.
Hermansen, Tyge D; Minchinton, Todd E; Ayre, David J
2017-10-01
Mangrove forests worldwide undergo anthropogenic fragmentation that may threaten their existence, and yet there have been few tests of the effects of fragmentation on demographic processes critical for mangrove regeneration. Predicting the effects of habitat fragmentation on mangroves is problematic as pollinators may move more freely across water than terrestrial habitat, and propagules can be widely dispersed by water. Here, within each of two estuaries, we compared pollinator diversity and activity, reproductive effort and output, and rates of recruitment for sets of three large (>1500 trees), medium (300-500) and small (<50) stands. As predicted, most measures of reproductive activity and success were inversely related to stand size with large stands typically producing significantly more and larger fruit, and significantly more seedlings. Most strikingly, we found the effect of fragmentation on the abundance of pollinators (honeybees), the production and quality of fruit and the survival rate of seedlings to be similar, showing significant reduction of recruitment in small stands. This study provides the first rigorous evidence that recruitment of mangroves, like for many terrestrial plants, is negatively impacted by habitat fragmentation. From a management perspective, we argue that in the short term our data imply the importance of conserving the largest possible stands. However, additional work is needed to determine (1) the proportion of recruits within small stands that originate within large stands, (2) how seedling performance varies with fruit size and genotype, and (3) how seedling size and performance vary with the abundance and diversity of pollen.
Thematic and spatial resolutions affect model-based predictions of tree species distribution.
Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.
Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution
Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828
Ecosystem extent and fragmentation
Sayre, Roger; Hansen, Matt
2017-01-01
One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.
How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats
Damschen, Ellen I.; Baker, Dirk V.; Bohrer, Gil; Nathan, Ran; Orrock, John L.; Turner, Jay R.; Brudvig, Lars A.; Haddad, Nick M.; Levey, Douglas J.; Tewksbury, Joshua J.
2014-01-01
Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences. PMID:24567398
How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats.
Damschen, Ellen I; Baker, Dirk V; Bohrer, Gil; Nathan, Ran; Orrock, John L; Turner, Jay R; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J
2014-03-04
Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences.
Effects of Word and Fragment Writing during L2 Vocabulary Learning
ERIC Educational Resources Information Center
Barcroft, Joe
2007-01-01
This study examined how writing (copying) target words and word fragments affects intentional second language (L2) vocabulary learning. English-speaking first-semester learners of Spanish attempted to learn 24 Spanish nouns via word-picture repetition in three conditions: (1) word writing, (2) fragment writing, and (3) no writing. After the…
Ohtani, Masato; Tani, Naoki; Yoshimaru, Hiroshi
2008-11-01
Polymorphic microsatellite markers were developed for Hibiscus glaber, an endemic tree of the Bonin Islands. Eighty-seven of the 208 sequences from an enriched library were unique and containing microsatellites. Ten loci were proved to be highly polymorphic among 78 individuals from the Nishi-jima Island. Total exclusionary powers for the first and the second parents were 99.989% and 99.999%, respectively. Nine loci also amplified single fragment from genomic DNA of H. tiliaceus, a related and widespread congener. Our markers can be reliably used for the estimation of current gene flow within/among populations of the two woody Hibiscus species. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.
2017-12-01
Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.
The role of stand history in assessing forest impacts
Dale, V.H.; Doyle, T.W.
1987-01-01
Air pollution, harvesting practices, and natural disturbances can affect the growth of trees and forest development. To make predictions about anthropogenic impacts on forests, we need to understand how these factors affect tree growth. In this study the effect of disturbance history on tree growth and stand structure was examined by using a computer model of forest development. The model was run under the climatic conditions of east Tennessee, USA, and the results compared to stand structure and tree growth data from a yellow poplar-white oak forest. Basal area growth and forest biomass were more accurately projected when rough approximations of the thinning and fire history typical of the measured plots were included in the simulation model. Stand history can influence tree growth rates and forest structure and should be included in any attempt to assess forest impacts.
Fragment-based lead discovery: challenges and opportunities
NASA Astrophysics Data System (ADS)
Sun, Chaohong; Petros, Andrew M.; Hajduk, Philip J.
2011-07-01
Fragment-based lead discovery has undergone remarkable changes over the last 15 years. During this time, the pharmaceutical industry has changed dramatically as well, and continued evolution of the industry is assured. These changes present many challenges but also several opportunities for executing fragment-based drug design. This article will explore some of the more significant changes in the industry and how they may affect future discovery efforts related to fragment-based initiatives.
Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees
Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan
2016-01-01
Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146
Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.
Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan
2016-01-01
Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.
Modeling the effects of urban vegetation on air pollution
David J. Nowak; Patrick J. McHale; Myriam Ibarra; Daniel Crane; Jack C. Stevens; Chris J. Luley
1998-01-01
Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmospheric environment. Trees affect local air temperature by transpiring water through their leaves, by blocking solar radiation (tree shade), which reduces radiation absorption and heat storage by various anthropogenic surfaces (e.g., buildings, roads), and by...
Pole blight of western white pine
Charles D. Leaphart; Otis L. Copeland; Donald P. Graham
1957-01-01
Pole blight is one of the most serious diseases of western white pine (Pinus monticola Dougl.) and is restricted to that species. The disease is given this name because it affects pole-size trees primarily, usually those within the 40- to 100-year age class, although trees both younger and older are occasionally affected.
Forest ecosystem services: Carbon and air quality
David J. Nowak; Neelam C. Poudyal; Steve G. McNulty
2017-01-01
Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...
Kathleen S. Knight; John P. Brown; Robert P. Long
2013-01-01
Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...
Revegetating surface-mined lands with herbaceous and woody species together
Willis G. Vogel
1980-01-01
Herbaceous cover is required for erosion control on surface-mined lands even where forests are to be established. Where planted with trees, herbaceous species usually cause an increase in tree seedling mortality and retard tree growth, especially in the first few years after planting. Trees seem to be affected most by competition for moisture because their survival is...
A Three-Step Approach To Model Tree Mortality in the State of Georgia
Qingmin Meng; Chris J. Cieszewski; Roger C. Lowe; Michal Zasada
2005-01-01
Tree mortality is one of the most complex phenomena of forest growth and yield. Many types of factors affect tree mortality, which is considered difficult to predict. This study presents a new systematic approach to simulate tree mortality based on the integration of statistical models and geographical information systems. This method begins with variable preselection...
Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods
Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan
2017-01-01
Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species. PMID:28150710
Gossner, Martin M; Lade, Peggy; Rohland, Anja; Sichardt, Nora; Kahl, Tiemo; Bauhus, Jürgen; Weisser, Wolfgang W; Petermann, Jana S
2016-01-01
Arthropod communities in water-filled tree holes may be sensitive to impacts of forest management, for example via changes in environmental conditions such as resource input. We hypothesized that increasing forest management intensity (ForMI) negatively affects arthropod abundance and richness and shifts community composition and trophic structure of tree hole communities. We predicted that this shift is caused by reduced habitat and resource availability at the forest stand scale as well as reduced tree hole size, detritus amount and changed water chemistry at the tree holes scale. We mapped 910 water-filled tree holes in two regions in Germany and studied 199 tree hole inhabiting arthropod communities. We found that increasing ForMI indeed significantly reduced arthropod abundance and richness in water-filled tree holes. The most important indirect effects of management intensity on tree hole community structure were the reduced amounts of detritus for the tree hole inhabiting organisms and changed water chemistry at the tree hole scale, both of which seem to act as a habitat filter. Although habitat availability at the forest stand scale decreased with increasing management intensity, this unexpectedly increased local arthropod abundance in individual tree holes. However, regional species richness in tree holes significantly decreased with increasing management intensity, most likely due to decreased habitat diversity. We did not find that the management-driven increase in plant diversity at the forest stand scale affected communities of individual tree holes, for example via resource availability for adults. Our results suggest that management of temperate forests has to target a number of factors at different scales to conserve diverse arthropod communities in water-filled tree holes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Frankixalus, a New Rhacophorid Genus of Tree Hole Breeding Frogs with Oophagous Tadpoles
Biju, S. D.; Mahony, Stephen; Kamei, Rachunliu G.; Thomas, Ashish; Shouche, Yogesh; Raxworthy, Christopher J.; Meegaskumbura, Madhava; Bocxlaer, Ines Van
2016-01-01
Despite renewed interest in the biogeography and evolutionary history of Old World tree frogs (Rhacophoridae), this family still includes enigmatic frogs with ambiguous phylogenetic placement. During fieldwork in four northeastern states of India, we discovered several populations of tree hole breeding frogs with oophagous tadpoles. We used molecular data, consisting of two nuclear and three mitochondrial gene fragments for all known rhacophorid genera, to investigate the phylogenetic position of these new frogs. Our analyses identify a previously overlooked, yet distinct evolutionary lineage of frogs that warrants recognition as a new genus and is here described as Frankixalus gen. nov. This genus, which contains the enigmatic ‘Polypedates’ jerdonii described by Günther in 1876, forms the sister group of a clade containing Kurixalus, Pseudophilautus, Raorchestes, Mercurana and Beddomixalus. The distinctiveness of this evolutionary lineage is also corroborated by the external morphology of adults and tadpoles, adult osteology, breeding ecology, and life history features. PMID:26790105
LocTree2 predicts localization for all domains of life
Goldberg, Tatyana; Hamp, Tobias; Rost, Burkhard
2012-01-01
Motivation: Subcellular localization is one aspect of protein function. Despite advances in high-throughput imaging, localization maps remain incomplete. Several methods accurately predict localization, but many challenges remain to be tackled. Results: In this study, we introduced a framework to predict localization in life's three domains, including globular and membrane proteins (3 classes for archaea; 6 for bacteria and 18 for eukaryota). The resulting method, LocTree2, works well even for protein fragments. It uses a hierarchical system of support vector machines that imitates the cascading mechanism of cellular sorting. The method reaches high levels of sustained performance (eukaryota: Q18=65%, bacteria: Q6=84%). LocTree2 also accurately distinguishes membrane and non-membrane proteins. In our hands, it compared favorably with top methods when tested on new data. Availability: Online through PredictProtein (predictprotein.org); as standalone version at http://www.rostlab.org/services/loctree2. Contact: localization@rostlab.org Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22962467
Noninfectious diseases of oaks
David R. Houston
1971-01-01
Noninfectious diseases arise primarily from the harmful effects of wound agents, chemical, and adverse environmental factors. Wounds directly result in damage to trees, but they are important primarily as infection courts for pathogenic organisms. Adverse environmental factors affect trees both directly and indirectly. Trees weakened by environmental stresses become...
Integrated Pest Management of Poplar Species
T. H. Filer; J. D. Solomon; D. T. Cooper; M. Hubbes
1979-01-01
Proper site selection, good site preparation, correct planting practices, and 1st-year cultivation directly and indirectly affect survival rate of trees. Losses from canker fungi are minimized by cultural practices that increase tree vigor--poor tree vigor means more cankers per acre and greater mortality.
Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding
2010-05-01
Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.
Remnant trees affect species composition but not structure of tropical second-growth forest.
Sandor, Manette E; Chazdon, Robin L
2014-01-01
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.
Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest
Sandor, Manette E.; Chazdon, Robin L.
2014-01-01
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700
NASA Astrophysics Data System (ADS)
Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.
2017-12-01
As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.
Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles.
Evans, Luke J; Davies, Andrew B; Goossens, Benoit; Asner, Gregory P
2017-01-01
Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR) and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus) throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.
Sharma, Upasna; Conine, Colin C; Shea, Jeremy M; Boskovic, Ana; Derr, Alan G; Bing, Xin Y; Belleannee, Clemence; Kucukural, Alper; Serra, Ryan W; Sun, Fengyun; Song, Lina; Carone, Benjamin R; Ricci, Emiliano P; Li, Xin Z; Fauquier, Lucas; Moore, Melissa J; Sullivan, Robert; Mello, Craig C; Garber, Manuel; Rando, Oliver J
2016-01-22
Several recent studies link parental environments to phenotypes in subsequent generations. In this work, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in mature sperm, with decreased let-7 levels and increased amounts of 5' fragments of glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that fuse with sperm during epididymal transit) carry RNA payloads matching those of mature sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments repress genes associated with the endogenous retroelement MERVL, in both embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo. Copyright © 2016, American Association for the Advancement of Science.
Adaptation, migration or extirpation: climate change outcomes for tree populations
Aitken, Sally N; Yeaman, Sam; Holliday, Jason A; Wang, Tongli; Curtis-McLane, Sierra
2008-01-01
Abstract Species distribution models predict a wholesale redistribution of trees in the next century, yet migratory responses necessary to spatially track climates far exceed maximum post-glacial rates. The extent to which populations will adapt will depend upon phenotypic variation, strength of selection, fecundity, interspecific competition, and biotic interactions. Populations of temperate and boreal trees show moderate to strong clines in phenology and growth along temperature gradients, indicating substantial local adaptation. Traits involved in local adaptation appear to be the product of small effects of many genes, and the resulting genotypic redundancy combined with high fecundity may facilitate rapid local adaptation despite high gene flow. Gene flow with preadapted alleles from warmer climates may promote adaptation and migration at the leading edge, while populations at the rear will likely face extirpation. Widespread species with large populations and high fecundity are likely to persist and adapt, but will likely suffer adaptational lag for a few generations. As all tree species will be suffering lags, interspecific competition may weaken, facilitating persistence under suboptimal conditions. Species with small populations, fragmented ranges, low fecundity, or suffering declines due to introduced insects or diseases should be candidates for facilitated migration. PMID:25567494
Forest structure and downed woody debris in boreal temperate, and tropical forest fragments
William A. Gould; Grizelle Gonzalez; Andrew T. Hudak; Teresa Nettleton Hollingsworth; Jamie Hollingsworth
2008-01-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve...
Rachel Riemann; Kathy Tillman
1999-01-01
The increasing proximity of human development to forest lands and the extent of forest fragmentation caused by this development are major concerns for natural resource managers. Forest fragmentation affects the biodiversity of native flora and fauna, hydrologic processes, and management opportunities. Knowing the extent and location of forest fragmentation and...
Molecular identification and phylogenetic study of Demodex caprae.
Zhao, Ya-E; Cheng, Juan; Hu, Li; Ma, Jun-Xian
2014-10-01
The DNA barcode has been widely used in species identification and phylogenetic analysis since 2003, but there have been no reports in Demodex. In this study, to obtain an appropriate DNA barcode for Demodex, molecular identification of Demodex caprae based on mitochondrial cox1 was conducted. Firstly, individual adults and eggs of D. caprae were obtained for genomic DNA (gDNA) extraction; Secondly, mitochondrial cox1 fragment was amplified, cloned, and sequenced; Thirdly, cox1 fragments of D. caprae were aligned with those of other Demodex retrieved from GenBank; Finally, the intra- and inter-specific divergences were computed and the phylogenetic trees were reconstructed to analyze phylogenetic relationship in Demodex. Results obtained from seven 429-bp fragments of D. caprae showed that sequence identities were above 99.1% among three adults and four eggs. The intraspecific divergences in D. caprae, Demodex folliculorum, Demodex brevis, and Demodex canis were 0.0-0.9, 0.5-0.9, 0.0-0.2, and 0.0-0.5%, respectively, while the interspecific divergences between D. caprae and D. folliculorum, D. canis, and D. brevis were 20.3-20.9, 21.8-23.0, and 25.0-25.3, respectively. The interspecific divergences were 10 times higher than intraspecific ones, indicating considerable barcoding gap. Furthermore, the phylogenetic trees showed that four Demodex species gathered separately, representing independent species; and Demodex folliculorum gathered with canine Demodex, D. caprae, and D. brevis in sequence. In conclusion, the selected 429-bp mitochondrial cox1 gene is an appropriate DNA barcode for molecular classification, identification, and phylogenetic analysis of Demodex. D. caprae is an independent species and D. folliculorum is closer to D. canis than to D. caprae or D. brevis.
Pizano, Camila; Mangan, Scott A; Graham, James H; Kitajima, Kaoru
2017-09-01
Plant-soil interactions have been shown to determine plant community composition in a wide range of environments. However, how plants distinctly interact with beneficial and detrimental organisms across mosaic landscapes containing fragmented habitats is still poorly understood. We experimentally tested feedback responses between plants and soil microbial communities from adjacent habitats across a disturbance gradient within a human-modified tropical montane landscape. In a greenhouse experiment, two components of soil microbial communities were amplified; arbuscular mycorrhizal fungi (AMF) and a filtrate excluding AMF spores from the soils of pastures (high disturbance), coffee plantations (intermediate disturbance), and forest fragments (low disturbance), using potted seedlings of 11 plant species common in these habitats (pasture grass, coffee, and nine native species). We then examined their effects on growth of these same 11 host species with reciprocal habitat inoculation. Most plant species received a similar benefit from AMF, but differed in their response to the filtrates from the three habitats. Soil filtrate from pastures had a net negative effect on plant growth, while filtrates from coffee plantations and forests had a net positive effect on plant growth. Pasture grass, coffee, and five pioneer tree species performed better with the filtrate from "away" (where these species rarely occur) compared to "home" (where these species typically occur) habitat soils, while four shade-tolerant tree species grew similarly with filtrates from different habitats. These results suggest that pastures accumulate species-specific soil enemies, while coffee plantations and forests accumulate beneficial soil microbes that benefit pioneer native plants and coffee, respectively. Thus, compared to AMF, soil filtrates exerted stronger habitat and host-specific effects on plants, being more important mediators of plant-soil feedbacks across contrasting habitats. © 2017 by the Ecological Society of America.
Cattana, Maria Emilia; Sosa, María de Los Ángeles; Fernández, Mariana; Rojas, Florencia; Mangiaterra, Magdalena; Giusiano, Gustavo
2014-01-01
In Argentina, information about epidemiology and environmental distribution of Cryptococcus is scarce. The city of Resistencia borders with Brazil and Paraguay where this fungus is endemic. All these supported the need to investigate the ecology of the genus and the epidemiology of cryptococcosis in this area. The aim was to investigate the presence of species of Cryptococcus neoformans-Cryptococcus gattii complex and their genotypes in trees of the city of Resistencia. One hundred and five trees were sampled by swabbing technique. The isolates were identified using conventional and commercial methods and genotyped by PCR-RFLP (Restriction Fragment Length Polymorphism). Cryptococcus was found in 7 out of the total trees. 6 out of 7 Cryptococcus isolates were identified as C. neoformans and one as C. gattii. C. gattii was isolated from Grevillea robusta. C. neoformans strains were isolated from Tabebuia avellanedae and Peltophorum dubium. Genotyping showed that all C. neoformans belonged to the VNI type and C. gattii belonged to the VGI type. This represents the first study on the ecology of Cryptococcus spp. associated to trees from northeastern Argentina, and the first report describing Grevillea robusta as a host of members of this fungal genus. Another finding is the isolation of C. neoformans from Tabebuia avellanedae and Peltophorum dubium, both tree species native to northeastern Argentina. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Tree Crown Foliage Loss: A Mapping Survey on the Cumbrian Coast.
ERIC Educational Resources Information Center
Gilbertson, D. D.; Pyatt, F. B.
1980-01-01
An undergraduate student mapping survey of tree crown foliage loss is presented. Results suggest that the pattern and intensity of crown foliage loss of certain trees and shrubs in the Whitehaven area are affected by strong, salt-laden winds and air pollution. (CS)
A dynamical model for bark beetle outbreaks
Vlastimil Krivan; Mark Lewis; Barbara J. Bentz; Sharon Bewick; Suzanne M. Lenhart; Andrew Liebhold
2016-01-01
Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees...
Charles H. (Hobie) Perry; Kevin J. Horn; R. Quinn Thomas; Linda H. Pardo; Erica A.H. Smithwick; Doug Baldwin; Gregory B. Lawrence; Scott W. Bailey; Sabine Braun; Christopher M. Clark; Mark Fenn; Annika Nordin; Jennifer N. Phelan; Paul G. Schaberg; Sam St. Clair; Richard Warby; Shaun Watmough; Steven S. Perakis
2015-01-01
The abundance of temporally and spatially consistent Forest Inventory and Analysis data facilitates hierarchical/multilevel analysis to investigate factors affecting tree growth, scaling from plot-level to continental scales. Herein we use FIA tree and soil inventories in conjunction with various spatial climate and soils data to estimate species-specific responses of...
Aboveground and belowground effects of single-tree removals in New Zealand rain forest.
Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M
2008-05-01
There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches containing high densities of large trees. Finally, this study emphasizes that deliberate extraction of a particular tree species from a forest can exert influences both above and below ground if the removed species has a different functional role than that of the other plant species present.
Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes
Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn
2015-01-01
DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595
Hong, Y. P.; Hipkins, V. D.; Strauss, S. H.
1993-01-01
The amount, distribution and mutational nature of chloroplast DNA polymorphisms were studied via analysis of restriction fragment length polymorphisms in three closely related species of conifers, the California closed-cone pines-knobcone pine: Pinus attenuata Lemm.; bishop pine: Pinus muricata D. Don; and Monterey pine: Pinus radiata D. Don. Genomic DNA from 384 trees representing 19 populations were digested with 9-20 restriction enzymes and probed with cloned cpDNA fragments from Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] that comprise 82% of the chloroplast genome. Up to 313 restriction sites were surveyed, and 25 of these were observed to be polymorphic among or within species. Differences among species accounted for the majority of genetic (haplotypic) diversity observed [G(st) = 84(+/-13)%]; nucleotide diversity among species was estimated to be 0.3(+/-0.1)%. Knobcone pine and Monterey pine displayed almost no genetic variation within or among populations. Bishop pine also showed little variability within populations, but did display strong population differences [G(st) = 87(+/-8)%] that were a result of three distinct geographic groups. Mean nucleotide diversity within populations was 0.003(+/-0.002)%; intrapopulation polymorphisms were found in only five populations. This pattern of genetic variation contrasts strongly with findings from study of nuclear genes (allozymes) in the group, where most genetic diversity resides within populations rather than among populations or species. Regions of the genome subject to frequent length mutations were identified; estimates of subdivision based on length variant frequencies in one region differed strikingly from those based on site mutations or allozymes. Two trees were identified with a major chloroplast DNA inversion that closely resembled one documented between Pinus and Pseudotsuga. PMID:7905846
Banks, S C; Ward, S J; Lindenmayer, D B; Finlayson, G R; Lawson, S J; Taylor, A C
2005-05-01
Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that in addition to the obvious impacts of reduced recruitment, patch recolonization and increased genetic drift, the isolation of populations in habitat patches may cause changes in breeding behaviour that contribute to the negative impacts of habitat fragmentation.
Potential effects of sudden oak death on birds in coastal oak woodlands
Donald E. Winslow; William D. Tietje
2007-01-01
Tree pathogens can affect community composition and structure over wide areas. Phytophthora ramorum, cause of sudden oak death (SOD), occurs in the wild in California from Humboldt County to southernmost Monterey County. P. ramorum has killed many trees at some sites and may spread to affect near and distant forests. The pathogen...
Molly J. Robin-Abbott; Linda H. Pardo
2017-01-01
Forest health is affected by multiple factors, including topography, climate, and soil characteristics, as well as pests, pathogens, competitive interactions, and anthropogenic deposition. Species within a stand may respond differently to site factors depending on their physiological requirements for growth, survival, and regeneration. We determined optimal ranges of...
Catry, Filipe X.; Moreira, Francisco; Pausas, Juli G.; Fernandes, Paulo M.; Rego, Francisco; Cardillo, Enrique; Curt, Thomas
2012-01-01
Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees) that occurred in three southern European countries (Portugal, Spain and France), covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting) were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3–4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle) would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystems. PMID:22787521
77 FR 2930 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... certain power turbine (PT) blade fir-tree roots. This proposed AD would require removing the affected PT... detected geometric non-conformities on blade fir-tree roots. The technical investigations carried out by... was prompted by the detection of geometric non- conformities on PT blade fir-tree roots. We are...
7 CFR 1416.703 - Application process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PROGRAMS 2005 Hurricane Tree Assistance Program § 1416.703 Application process. (a) A complete application... geographic location and number of acres in the disaster-affected stand of claimed trees, bushes, and vines according to part 718 of this title; (3) A written estimate of the number of acres of trees, bushes or vines...
The environmental psychology of shopping: assessing the value of trees
Kathleen L. Wolf
2007-01-01
A multi-study research program has investigated how consumers respond to trees in various business settings in cities and towns. Some studies focused on central business districts, others tested perceptions along freeways and arterials. Results are remarkably consistent. Trees not only positively affect judgments of visual quality but,...
Effects of prescribed burning on leaves and flowering Quercus garryana
David H. Peter; James K. Agee; Douglas G. Sprugel
2011-01-01
Many woodland understories are managed with prescribed fire. While prescribed burns intended to manipulate understory vegetation and fuels usually do not cause excessive tree mortality, sublethal canopy damage may occur and can affect tree vigor and reproductive output. We monitored Quercus garryana trees in western Washington, USA with multiple...
Soil disturbance-tree growth relations in central Idaho clearcuts
James L. Clayton; Gary Kellogg; Neal Forrester
1987-01-01
Two central Idaho clearcuts regenerated naturally to lodgepole pine (Pinus contorta) and one regenerated with planted ponderosa pine (Pinus ponderosa) were evaluated to see if soil compaction and displacement affected growth as measured by tree height, diameter at breast height, and radial growth increment. Pole-sized trees ranging...
Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups
Braschler, Brigitte; Baur, Bruno
2016-01-01
Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species’ preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to habitat preferences or morphology may allow insights into likely long-term changes. PMID:26891049
The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness.
Gébelin, Virginie; Leclercq, Julie; Kuswanhadi; Argout, Xavier; Chaidamsari, Tetty; Hu, Songnian; Tang, Chaorong; Sarah, Gautier; Yang, Meng; Montoro, Pascal
2013-10-01
Natural rubber is harvested by tapping Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. Harvesting stress can lead to tapping panel dryness (TPD). MicroRNAs (miRNAs) are induced by abiotic stress and regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs. This study set out to sequence miRNAs expressed in latex cells and to identify TPD-related putative targets. Deep sequencing of small RNAs was carried out on latex from trees affected by TPD using Solexa technology. The most abundant small RNA class size was 21 nucleotides for TPD trees compared with 24 nucleotides in healthy trees. By combining the LeARN pipeline, data from the Plant MicroRNA database and Hevea EST sequences, we identified 19 additional conserved and four putative species-specific miRNA families not found in previous studies on rubber. The relative transcript abundance of the Hbpre-MIR159b gene increased with TPD. This study revealed a small RNA-specific signature of TPD-affected trees. Both RNA degradation and a shift in miRNA biogenesis are suggested to explain the general decline in small RNAs and, particularly, in miRNAs.
Building patterns and landscape fragmentation in northern Wisconsin, USA
Charlotte E. Gonzalez-Abraham; Volker C. Radeloff; Roger B. Hammer; Todd J. Hawbaker; Susan I. Stewart; Murray K. Clayton
2007-01-01
Housing growth is prevalent in rural areas in the United States and landscape fragmentation is one of its many effects. Since the 1930s, rural sprawl has been increasing in areas rich in recreational amenities. The question is how housing growth has affected landscape fragmentation. We thus tested three hypotheses relating land cover and land ownership to density and...
Bianchini, Edmilson; Garcia, Cristina C; Pimenta, José A; Torezan, José M D
2010-09-01
Size structure and spatial arrangement of 13 abundant tree species were determined in a riparian forest fragment in Paraná State, South Brazil (23°16'S and 51°01'W). The studied species were Aspidosperma polyneuron Müll. Arg., Astronium graveolens Jacq. and Gallesia integrifolia (Spreng) Harms (emergent species); Alseis floribunda Schott, Ruprechtia laxiflora Meisn. and Bougainvillea spectabilis Willd. (shade-intolerant canopy species); Machaerium paraguariense Hassl, Myroxylum peruiferum L. and Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl. (shade-tolerant canopy species); Sorocea bonplandii (Baill.) Bürger, Trichilia casaretti C. Dc, Trichilia catigua A. Juss. and Actinostemon concolor (Spreng.) Müll. Arg. (understory small trees species). Height and diameter structures and basal area of species were analyzed. Spatial patterns and slope correlation were analyzed by Moran's / spatial autocorrelation coefficient and partial Mantel test, respectively. The emergent and small understory species showed the highest and the lowest variations in height, diameter and basal area. Size distribution differed among emergent species and also among canopy shade-intolerant species. The spatial pattern ranged among species in all groups, except in understory small tree species. The slope was correlated with spatial pattern for A. polyneuron, A. graveolens, A. floribunda, R. laxiflora, M. peruiferum and T. casaretti. The results indicated that most species occurred in specific places, suggesting that niche differentiation can be an important factor in structuring the tree community.
Conspecific Plant-Soil Feedbacks of Temperate Tree Species in the Southern Appalachians, USA
Reinhart, Kurt O.; Johnson, Daniel; Clay, Keith
2012-01-01
Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable. PMID:22808231
Conspecific plant-soil feedbacks of temperate tree species in the southern Appalachians, USA.
Reinhart, Kurt O; Johnson, Daniel; Clay, Keith
2012-01-01
Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable.
Serrote, C M L; Reiniger, L R S; Stefenon, V M; Curti, A R; Costa, L S; Paim, A F
2016-08-29
Computer simulations are an important tool for developing conservation strategies for forest species. This study used simulations to investigate the genetic, ecological, and reproductive patterns that contribute to the genetic structure of the tree Luehea divaricata Mart. & Zucc. in five forest fragments in the Brazilian Pampa biome. Using the EASYPOP model, we determined the selfing and migration rates that would match the corresponding genetic structure of microsatellite marker data (based on observed and expected heterozygosity parameters). The simulated reproductive mode was mixed, with a high rate of outcrossing (rate = 0.7). This was consistent with a selfing-incompatible system in this species, which reduced, but did not prevent, selfing. The simulated migration rate was 0.02, which implied that the forest fragments were isolated by distance, and that the inbreeding coefficients were high. Based on Nei's gene diversity analysis, 94% of the genetic variability was distributed within the forest fragments, and only 6% of the genetic diversity was caused by differences between them. Furthermore, the minimum viable population and minimum viable area genetic conservation parameters (which determine conservation potential in the short and long term) suggested that only the Inhatinhum forest fragment had the short-term potential to maintain its genetic diversity. However, in the long term, none of the forest fragments proved to be sustainable, indicating that the populations will require intervention to prevent a decline in genetic variability. The creation of ecological corridors could be a useful solution to connect forest fragments and enhance gene flow between them.
G.R. Johnson; Barbara L. Gartner; Doug Maguire; Alan Kanaskie
2003-01-01
Wood density, moisture content, tracheld width and cell wall size were examined in trees from plots that were sprayed for 5 years with chlorothalonil (Bravo ®) fungicide to reduce the impact of Swiss needle-cast (SNC) and from trees in adjacent unsprayed plots. The unsprayed (more heavily diseased) trees had significantly narrower sapwood, narrower growth tings, lower...
NASA Astrophysics Data System (ADS)
Grams, Thorsten
2017-04-01
Understanding biotic interactions among tree species with their microbial associates under drought will be crucial for silviculture in meeting ecological challenges of the future. This contribution gives an overview on a project integrating a throughfall-exclusion experiment (TEE) on adult trees with a natural precipitation gradient (PGR) in central European forests. Focus is on drought affecting species interaction above and belowground, including associated ectomycorrhizal (ECM) communities. Study objects are pure and mixed forests dominated by adult European beech and Norway spruce trees (c. 70-years old). At the throughfall-exclusion experiment (TEE), trees are readily accessible via scaffolding and canopy crane (Kranzberg Forest, southern Germany). Effects of experimentally induced, repeated summer drought are assessed with roughly 100 trees assigned to a total of 12 plots (Kranzberg forest ROOF experiment, kroof.wzw.tum.de). The summer drought treatment started in 2014 and was repeated in 2015 and 2106. The focus on species interaction is intensified by a parallel study along a natural precipitation gradient with plot triplets of monocultures and mixed cultures of European beech and Norway spruce at each of the five study sites. Complementary resource use, effects of competitive vs. facilitation and related changes in ECM communities are exemplified for the two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. an-isohydric vs. isohydric behavior). At the TEE site, precipitation throughfall was completely excluded from early spring to late fall (i.e. March to November), resulting in pre-dawn leaf water potentials of both beech and spruce as low as -2.5 MPa. Despite significant reductions in growth and rate of photosynthesis by up to 80% under drought, NSC budget of trees was hardly affected. Moreover, phloem functionality, tested as phloem transport velocity through 13C-labeling of recent photoassimilates, remained unaffected. The link between photosynthesis and stem cellulose (DBH) was assessed based on natural abundance of delta13C and delta18O. Under drought, mixing of recent photoassimilates with older carbohydrates during phloem transport significantly affected isotopic signatures of transported sucrose, diminishing the impact of drought. A quantitative relationship of this mixing effect (i.e. uncoupling of photosynthetic fractionation at the leaf level and isotopic signatures in stem cellulose) was established. Belowground, a distinct decline in fine root biomass, in particular in spruce, was observed. Along that line, repeated summer drought affected species composition of associated ECM fungi in both species. In particular, changes of ECM exploration types (i.e. contact/short-distance vs. long distance) may be related to C shortage of trees. Along the natural precipitation gradient (PGR), basal area increment of tree stems (DBH) was related to 13C discrimination in tree rings. Carbon isotope signatures proved to be a more sensible indicator of tree responses to drought that BAI. Sensitivity of trees was significantly affected by growth conditions, i.e. growth in mono- vs. mixed culture. Higher drought resistance was displayed by spruce on drier sites (i.e. habituation effect) and, conversely, by beech on moist sites, in particular when grown in mixture with spruce.
Brzezinski, Jennifer L
2006-01-01
The detection of potentially allergenic foods, such as tree nuts, in food products is a major concern for the food processing industry. A real-time polymerase chain reaction (PCR) method was designed to determine the presence of cashew DNA in food products. The PCR amplifies a 67 bp fragment of the cashew 2S albumin gene, which is detected with a cashew-specific, dual-labeled TaqMan probe. This reaction will not amplify DNA derived from other tree nut species, such as almond, Brazil nut, hazelnut, and walnut, as well as 4 varieties of peanut. This assay was sensitive enough to detect 5 pg purified cashew DNA as well as cashew DNA in a spiked chocolate cookie sample containing 0.01% (100 mg/kg) cashew.
... al. Prepubertal gynecomastia linked to lavender and tea tree oils . New England Journal of Medicine. 2007;356( ... et al. Possible efficacy of lavender and tea tree oils in the treatment of young women affected ...
Leaf drop affects herbivory in oaks.
Pearse, Ian S; Karban, Richard
2013-11-01
Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.
NASA Astrophysics Data System (ADS)
Breshears, D. D.; Allen, C. D.; McDowell, N. G.; Adams, H. D.; Barnes, M.; Barron-Gafford, G.; Bradford, J. B.; Cobb, N.; Field, J. P.; Froend, R.; Fontaine, J. B.; Garcia, E.; Hardy, G. E. S. J.; Huxman, T. E.; Kala, J.; Lague, M. M.; Martinez-Yrizar, A.; Matusick, G.; Minor, D. M.; Moore, D. J.; Ng, M.; Ruthrof, K. X.; Saleska, S. R.; Stark, S. C.; Swann, A. L. S.; Villegas, J. C.; Williams, A. P.; Zou, C.
2017-12-01
Evidence that tree mortality is increasingly likely occur in extensive die-off events across the terrestrial biosphere continues to mount. The consequences of such extensive mortality events are potentially profound, not only for the locations where die-off events occur, but also for other locations that could be impacted via ecoclimate teleconnections, whereby the land surface changes associated with die-off in one location could alter atmospheric circulation patterns and affect vegetation elsewhere. Here, we (1) recap the background of tree mortality as an emerging environmental issue, (2) highlight recent advances that could help us improve predictions of the vulnerability to tree mortality, including the underlying importance of hydraulic failure, the potential to develop climatic envelopes specific to tree mortality events, and consideration of the role of heat waves; and (3) initial bounding simulations that indicate the potential for tree die-off events in different locations to alter ecoclimate teleconnections. As we move toward globally coordinated carbon accounting and management, the high vulnerability to tree die-off events and the potential for such events to affect vegetation elsewhere will both need to be accounted for.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
Landscape fragmentation affects responses of avian communities to climate change.
Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O
2015-08-01
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats. © 2015 John Wiley & Sons Ltd.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695
Bobby D. Keeland; Brian Roy Lockhart; John W. McCoy; Thomas J. Dean
2002-01-01
Greater than 80 percent of the bottomland hardwood forests of the Lower Mississippi Alluvial Valley (LMAV) have been lost to conversion over the past 100 years. Of the forests that remain, most are highly fragmented and degraded. Attempts to reforest some of this area over the past 15-20 years have highlighted the need for more information on the relative success of...
1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the...
USDA-ARS?s Scientific Manuscript database
The draft genome sequence of “Candidatus Liberibacter asiaticus” strain FL17, isolated from an HLB-affected citrus tree in central Florida, was determined. The FL17 genome comprised 1,227,253 bp with a G+C content of 36.5%, 1,175 predicted open reading frames, and 53 RNA genes....
Oxidative stress negatively affects human sperm mitochondrial respiration.
Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo
2013-07-01
To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.
The scale of landscape fragmentation affects herbivore response to vegetation heterogeneity.
Banks, John E
1998-11-01
Using alternating bands of weeds and broccoli I experimentally manipulated vegetation composition and the spatial scale at which the landscape was fragmented in a factorial design. This experimental approach allowed me to distinguish the effect of spatial scale from that of simple crop heterogeneity on crop herbivores. The importance of scale depended on which insect species were examined. Cabbage aphids (Brevicoryne brassicae) were influenced by vegetation composition at all tested scales of fragmentation; cabbage butterflies (Pieris rapae) were not affected by scale or by composition and flea beetles (Phyllotreta cruciferae) revealed a striking dependence on scale of fragmentation as well as an interaction between scale and composition. This approach shows the importance of dissecting out the effects of scale from other aspects of landscape manipulation, and emphasizes the challenge of developing a theory that will enable prediction of species-specific responses to scale.
Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.
2012-01-01
Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.
Settele, Josef; Dormann, Carsten F.
2018-01-01
Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size. PMID:29444076
Everaars, Jeroen; Settele, Josef; Dormann, Carsten F
2018-01-01
Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size.
Schnell, Sebastian; Altrell, Dan; Ståhl, Göran; Kleinn, Christoph
2015-01-01
In contrast to forest trees, trees outside forests (TOF) often are not included in the national monitoring of tree resources. Consequently, data about this particular resource is rare, and available information is typically fragmented across the different institutions and stakeholders that deal with one or more of the various TOF types. Thus, even if information is available, it is difficult to aggregate data into overall national statistics. However, the National Forest Monitoring and Assessment (NFMA) programme of FAO offers a unique possibility to study TOF resources because TOF are integrated by default into the NFMA inventory design. We have analysed NFMA data from 11 countries across three continents. For six countries, we found that more than 10% of the national above-ground tree biomass was actually accumulated outside forests. The highest value (73%) was observed for Bangladesh (total forest cover 8.1%, average biomass per hectare in forest 33.4 t ha(-1)) and the lowest (3%) was observed for Zambia (total forest cover 63.9%, average biomass per hectare in forest 32 t ha(-1)). Average TOF biomass stocks were estimated to be smaller than 10 t ha(-1). However, given the large extent of non-forest areas, these stocks sum up to considerable quantities in many countries. There are good reasons to overcome sectoral boundaries and to extend national forest monitoring programmes on a more systematic basis that includes TOF. Such an approach, for example, would generate a more complete picture of the national tree biomass. In the context of climate change mitigation and adaptation, international climate mitigation programmes (e.g. Clean Development Mechanism and Reduced Emission from Deforestation and Degradation) focus on forest trees without considering the impact of TOF, a consideration this study finds crucial if accurate measurements of national tree biomass and carbon pools are required.
dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees.
Wise, Michael J
2016-01-01
Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa.
dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees
2016-01-01
Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa. PMID:27898695
Castilla, Antonio R.; Pope, Nathaniel; Jha, Shalene
2016-01-01
Background and Aims Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. Methods We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Key Results Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. Conclusions This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. PMID:26602288
Castilla, Antonio R; Pope, Nathaniel; Jha, Shalene
2016-02-01
Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Post-fire regeneration in seasonally dry tropical forest fragments in southeastern Brazil.
Costa, Mayke B; Menezes, Luis Fernando T DE; Nascimento, Marcelo T
2017-01-01
Seasonally dry tropical forest is one of the highly threatened biome. However, studies on the effect of fire on these tree communities are still scarce. In this context, a floristic and structural survey in three forest areas in the southeast of Brazil that were affected by fire between 14 and 25 years ago was performed with the objective of evaluating post-fire regeneration. In each site, five systematically placed plots (25 m x 25 m each) were established. The more recently burnt site had significantly lower values of richness and diversity than the other two sites. However, the sites did not differ in density and basal area. Annona dolabripetala, Astronium concinnum, Joannesia princeps and Polyandrococos caudescens were within the 10 most important species for the three sites. Comparing these data with adjacent mature forests, the results indicated differences both in structural and floristic aspects, suggesting that the time after fire was not sufficient for recuperation of these areas. The recovery process indicate at least 190 years for areas return to basal area values close to those observed in mature forests nearby.
Guffa, Basem; Nedić, Nebojša M; Dabić Zagorac, Dragana Č; Tosti, Tomislav B; Gašić, Uroš M; Natić, Maja M; Fotirić Akšić, Milica M
2017-09-01
'Oblačinska' sour cherry, an autochthonous cultivar, is the most planted cultivar in Serbian orchards. Since fruit trees in temperate zone reward insects by producing nectar which 'quality' affects the efficiency of insect pollination, the aim of this study was analyzing of sugars and polyphenolics in floral nectar of 16 'Oblačinska' sour cherry clones with different yielding potential. The contents of sugars and sugar alcohols were analyzed by ion chromatography, while polyphenolic profile was established using liquid chromatography/mass spectrometry technique. Fourteen sugars and six sugar alcohols were detected in nectar samples and the most abundant were fructose, glucose, and sucrose. Eleven polyphenols were quantified using available standards, while another 17 were identified according to their exact masses and characteristic fragmentations. Among quantified polyphenols, rutin, naringenin, and chrysin were the most abundant in nectar. Principal component analysis showed that some polyphenol components (naringin, naringenin, and rutin) together with sugars had high impact of spatial distribution of nectar samples on score plot. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Terrestrial salamander abundance on reclaimed mountaintop removal mines
Wood, Petra Bohall; Williams, Jennifer M.
2013-01-01
Mountaintop removal mining, a large-scale disturbance affecting vegetation, soil structure, and topography, converts landscapes from mature forests to extensive grassland and shrubland habitats. We sampled salamanders using drift-fence arrays and coverboard transects on and near mountaintop removal mines in southern West Virginia, USA, during 2000–2002. We compared terrestrial salamander relative abundance and species richness of un-mined, intact forest with habitats on reclaimed mountaintop removal mines (reclaimed grassland, reclaimed shrubland, and fragmented forest). Salamanders within forests increased in relative abundance with increasing distance from reclaimed mine edge. Reclaimed grassland and shrubland habitats had lower relative abundance and species richness than forests. Characteristics of reclaimed habitats that likely contributed to lower salamander abundance included poor soils (dry, compacted, little organic matter, high rock content), reduced vertical structure of vegetation and little tree cover, and low litter and woody debris cover. Past research has shown that salamander populations reduced by clearcutting may rebound in 15–24 years. Time since disturbance was 7–28 years in reclaimed habitats on our study areas and salamander populations had not reached levels found in adjacent mature forests.
76 FR 1339 - Pine Shoot Beetle; Additions to Quarantined Areas
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
..., a pest of pine trees, into noninfested areas of the United States. DATES: Effective on January 10... managed and natural stands of pine and especially affects weak and dying trees. The beetle has been found... distorted growth in host trees. Large infestations of PSB typically kill most of the lateral shoots near the...
The Engagement Tree: Arts-Based Pedagogies for Environmental Learning
ERIC Educational Resources Information Center
Davis, Susan
2018-01-01
This case study reports on an arts-based project called "Tree-Mappa," one that sought to engage primary-school children in learning about their local environment through significant trees. Pedagogical approaches featured the use of arts-based strategies as the means for activating cognitive and affective responses and learning. The frame…
Planting and care of fine hardwood seedlings: diseases in hardwood tree plantings
Paula M. Pijut
2006-01-01
Hardwood trees planted for timber production, wildlife habitat, riparian buffers, native woodland restoration, windbreaks, watershed protection, erosion control, and conservation are susceptible to damage or even death by various native and exotic fungal or bacterial diseases. Establishment, growth, and the quality of the trees produced can be affected by these disease...
Stand conditions associated with tree regeneration in sierran mixed-conifer forests.
Andrew N. Gray; Harold S.J. Zald; Ruth A. Kern; Malcolm North
2005-01-01
Fire suppression has significantly increased canopy cover, litter depth, and stem density in many western forests, altering microsite conditions that affect tree seedling establishment. We conducted studies in a mixed-conifer forest in the Sierra Nevada, California, to determine relationships between established understory trees and microsite quality, and to examine...
Pedological memory in forest soil development
Jonathan D. Phillips; Daniel A. Marion
2004-01-01
Individual trees may have significant impacts on soil morphology. If these impacts are non-random such that some microsites are repeatedly preferentially affected by trees, complex local spatial variability of soils would result. A model of self-reinforcing pedologic influences of trees (SRPIT) is proposed to explain patterns of soil variability in the Ouachita...
J.N. Gibbs; D.W. French
1980-01-01
Provides an up-to-date review of factors affecting the transmission of oak wilt, Ceratocystis fagacearum. Discusses the history and severity of the disease, the saprophytic existence of the fungus in the dying tree, seasonal susceptibility of trees to infection, overland and underground spread, the role of animals and insects as vectors or tree wounders, and the...
Relative size and stand age determine Pinus banksiana mortality
Han Y. H. Chen; Songling Fu; Robert A. Monserud; Ian C. Gillies
2008-01-01
Tree mortality is a poorly understood process in the boreal forest. Whereas large disturbances reset succession by killing all or most trees, background tree mortality was hypothesized to be affected by competition, ageing, and stand composition. We tested these hypotheses on jack pine (Pinus banksiana Lamb.) mortality using data from long-term...
A.P. Schmitz; J.D. Carstens
2017-01-01
Kentucky coffeetree, Gymnocladus dioicus, is a picturesque shade tree adaptable to urban conditions and drought, with no serious insect or disease problems. These traits make G. dioicus a promising candidate among diverse tree genera to replace ash (Fraxinus) trees affected by the emerald ash borer (Agrilus...
Visual exploration of parameter influence on phylogenetic trees.
Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana
2014-01-01
Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.
Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu
2012-02-01
In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.
Ecophysiological variables influencing Aleppo pine seed and cone production: a review.
Ayari, Abdelaziz; Khouja, Mohamed Larbi
2014-04-01
The most interesting factors associated with seed and cone production of Aleppo pine were largely reviewed to identify broad patterns and potential effectiveness of reforestation efforts and planning. Aleppo pine cone production and seed yields are relatively variable, with differences between spatial and temporal influences. These differences are considered, mainly between (i) year, (ii) stand characteristics and (iii) individual tree measurements. Annual variability among populations was recorded for cone production per tree, based on influencing factors such as genetic characteristics, wetness, nutrient availability, insect pests and disease. In addition, some factors may affect Aleppo pine tree growth directly but may be affecting seed and cone production indirectly. Therefore, reduced stand density results in less competition among Aleppo pine trees and accompanying understory flora, which subsequently increases the stem diameter and other tree dimensions, including seed production. This review suggests that reforestation planning, particularly thinning, will result in improved tree morphology that will increase Aleppo pine seed and cone crops. Wildfire intensity and stand conditions such as light and soil nutrient status are also examined.
On disciplinary fragmentation and scientific progress.
Balietti, Stefano; Mäs, Michael; Helbing, Dirk
2015-01-01
Why are some scientific disciplines, such as sociology and psychology, more fragmented into conflicting schools of thought than other fields, such as physics and biology? Furthermore, why does high fragmentation tend to coincide with limited scientific progress? We analyzed a formal model where scientists seek to identify the correct answer to a research question. Each scientist is influenced by three forces: (i) signals received from the correct answer to the question; (ii) peer influence; and (iii) noise. We observed the emergence of different macroscopic patterns of collective exploration, and studied how the three forces affect the degree to which disciplines fall apart into divergent fragments, or so-called "schools of thought". We conducted two simulation experiments where we tested (A) whether the three forces foster or hamper progress, and (B) whether disciplinary fragmentation causally affects scientific progress and vice versa. We found that fragmentation critically limits scientific progress. Strikingly, there is no effect in the opposite causal direction. What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement. In fact, fragmentation is increased and progress limited if the simulated scientists are open to influence only by peers with very similar views, or when within-school diversity is lost. Finally, disciplines where the scientists received strong signals from the correct answer were less fragmented and experienced faster progress. We discuss model's implications for the design of social institutions fostering interdisciplinarity and participation in science.
On Disciplinary Fragmentation and Scientific Progress
Balietti, Stefano; Mäs, Michael; Helbing, Dirk
2015-01-01
Why are some scientific disciplines, such as sociology and psychology, more fragmented into conflicting schools of thought than other fields, such as physics and biology? Furthermore, why does high fragmentation tend to coincide with limited scientific progress? We analyzed a formal model where scientists seek to identify the correct answer to a research question. Each scientist is influenced by three forces: (i) signals received from the correct answer to the question; (ii) peer influence; and (iii) noise. We observed the emergence of different macroscopic patterns of collective exploration, and studied how the three forces affect the degree to which disciplines fall apart into divergent fragments, or so-called “schools of thought”. We conducted two simulation experiments where we tested (A) whether the three forces foster or hamper progress, and (B) whether disciplinary fragmentation causally affects scientific progress and vice versa. We found that fragmentation critically limits scientific progress. Strikingly, there is no effect in the opposite causal direction. What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement. In fact, fragmentation is increased and progress limited if the simulated scientists are open to influence only by peers with very similar views, or when within-school diversity is lost. Finally, disciplines where the scientists received strong signals from the correct answer were less fragmented and experienced faster progress. We discuss model’s implications for the design of social institutions fostering interdisciplinarity and participation in science. PMID:25790025
Modelling rock fragmentation of Extremely Energetic Rockfalls
NASA Astrophysics Data System (ADS)
De Blasio, Fabio; Dattola, Giuseppe; Battista Crosta, Giovanni
2017-04-01
Extremely energetic rockfalls (EER) are phenomena for which the combination of a large volume (at least some thousands of m ) and a free fall height of hundreds of metres, results in a large released energy. We fix a threshold value of around 1/50 of kilotons to define such a type of events. Documented examples include several events with dif-ferent size in the Alps (Dru, 2005, 2011, 265,000, 59,200 m3; val Fiscalina - Cima Una, 2007, 40,000 m3; Thurwieser 2004, ca 2 Mm3; Cengalo, 2011, 1.5*105 m3 in 2016, in Switzerland; Civetta, 2013, ca 50,000 m3;), in the Apennines (Gran Sasso, 2006, 30,000 m3), Rocky Mountains (Yosemite, Happy Isles, 38,000 m3), and Himalaya. EERs may become more frequent on steep and sharp mountain peaks as a consequence of permafrost thawing at higher altitudes. In contrast to low energy rockfalls where block disintegration is limited, in EERs the impact after free fall causes an immediate and efficient release of energy much like an explosion. The severe disintegration of the rock and the corresponding air blast are capable of snapping trees many hundreds of metres ahead of the fall area. Pulverized rock at high speed can abrade tree logs, and the resulting suspension flow may travel much further the impact zone, blanketing vast surrounding areas. Using both published accounts of some of these events and collecting direct data for some of them, we present some basic models to describe the involved processes based on analogies with explosions and explosive fragmentation. Of the initial energy, one part is used up in the rock disintegration, and the rest is shared between the shock wave and air blast. The fragmentation energy is calculated based on the fitting of the dust size spectrum by using different proba-bilistic distribution laws and the definition of a surface energy and by considering the involved strain rate. We find the fragmentation is around one third of the initial boulder energy. Finally, we evaluate the velocity of the corresponding cloud generated by the powder suspension and compare with the information available in literature. keywords: EER, Rockfalls, Disintegration number, Omographic distribution
Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki
2005-12-01
Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.
NASA Astrophysics Data System (ADS)
Pinto, N.; Dubayah, R.; Simard, M.; Fatoyinbo, T. E.
2011-12-01
Habitat loss is the main predictor of species extinctions and must be characterized in high-biodiversity ecosystems where land cover change is pervasive. Forests' ability to support viable animal populations is typically modeled as a function of the presence of linkages or corridors, and quantified with fragmentation metrics. In this scenario, small forest patches and linear (e.g. riparian) zones can act as keystone structures. Fine-resolution, all-weather Synthetic Aperture Radar (SAR) data from ALOS/PALSAR is well-suited to resolve forest fragments in tropical sites. This study summarizes a technique for integrating fragmentation metrics from ALOS/PALSAR with vertical structure data from ICESat/GLAS to produce fine-resolution (30 m) forest habitat metrics that capture both local quality (canopy height) as well as spatial context and multi-scale connectivity. We illustrate our approach with backscatter images acquired over the Brazilian Atlantic Forest, a biodiversity hotspot. ALOS/PALSAR 1.1 images acquired over the dry season were calibrated to calculate gamma naught and map forest cover via tresholding. We employ network algorithms to locate dispersal bottlenecks between conservation units. The location of keystone structures is compared against a model that uses coarse (500m) percent tree cover as an input.
Wolfe, C J; Haygood, M G
1991-08-01
Restriction fragment length polymorphisms within the lux and 16S ribosomal RNA gene regions were used to compare unculturable bacterial light organ symbionts of several anomalopid fish species. The method of Nei and Li (1979) was used to calculate phylogenetic distance from the patterns of restriction fragment lengths of the luxA and 16S rRNA regions. Phylogenetic trees constructed from each distance matrix (luxA and 16S rDNA data) have similar branching orders. The levels of divergence among the symbionts, relative to other culturable luminous bacteria, suggests that the symbionts differ at the level of species among host fish genera. Symbiont relatedness and host geographic location do not seem to be correlated, and the symbionts do not appear to be strains of common, free-living, luminous bacteria. In addition, the small number of hybridizing fragments within the 16S rRNA region of the symbionts, compared with that of the free-living species, suggests a decrease in copy number of rRNA operons relative to free-living species. At this level of investigation, the symbiont phylogeny is consistent with the proposed phylogeny of the host fish family and suggests that each symbiont strain coevolved with its host fish species.
NASA Astrophysics Data System (ADS)
Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.
2014-12-01
Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.
Suárez-Montes, Pilar; Chávez-Pesqueira, Mariana
2016-01-01
Introduction Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate), indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios. Methods Twelve populations of A. aurantiaca were sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28–30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. Results Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation (He = 0.61), weak genetic structure (Rst = 0.037), and slight inbreeding in small fragments. Effective population sizes (Ne) were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events were detected. Aphelandra aurantiaca shows a mixed mating system (tm = 0.81) and the outcrossing rate have not been affected by habitat fragmentation. A strong pollen pool structure was detected due to few effective pollen donors (Nep) and low distance pollen movement, pointing that most plants received pollen from close neighbors. Past demographic fluctuations may have affected the present population genetic structure as Bayesian coalescent analysis revealed the signature of past population expansion, possibly during warmer conditions after the last glacial maximum. Discussion Habitat fragmentation has not increased genetic differentiation or reduced genetic diversity of A. aurantiaca despite dozens of generations since the onset of fragmentation in the region of Los Tuxtlas. Instead, past population expansion is compatible with the lack of observed genetic structure. The predicted negative effects of rainforest fragmentation on genetic diversity and population structure of A. aurantiaca seem to have been buffered owing to its large effective populations and long-distance dispersal events. In particular, its mixed-mating system, mostly of outcrossing, suggests high efficiency of pollinators promoting connectivity and reducing inbreeding. However, some results point that the effects of fragmentation are underway, as two small fragments showed higher membership probabilities to their population of origin, suggesting genetic isolation. Our findings underscore the importance of fragment size to maintain genetic connectivity across the landscape. PMID:28028460
Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor
2010-09-01
The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.
Teixeira, Diva C; Saillard, Colette; Couture, Carole; Martins, Elaine C; Wulff, Nelson A; Eveillard-Jagoueix, Sandrine; Yamamoto, Pedro T; Ayres, Antonio J; Bové, Joseph M
2008-06-01
Huanglongbing (HLB), an insect-transmitted disease of citrus, known for many years in Asia and Africa, has appeared in the state of São Paulo State (SSP), Brazil, in 2004, and the state of Florida, USA, in 2005. HLB endangers the very existence of citrus, as trees infected with the bacterial pathogen, irrevocably decline. In the absence of curative procedures, control of HLB is difficult and only based on prevention. Even though not available in culture, the HLB bacterium could be shown to be Gram-negative and to represent a new candidate genus, Candidatus Liberibacter, in the alpha subdivision of the Proteobacteria. Three Candidatus (Ca.) L. species occur: Ca. L. africanus in Africa, Ca. L. asiaticus in Asia, SSP, and Florida, and Ca. L. americanus in SSP. The liberibacters occur exclusively in the phloem sieve tubes. On affected trees, HLB symptoms are often seen on certain branches only, suggesting an uneven distribution of the Liberibacter. Occurrence of Ca. L. americanus, the major HLB agent in SSP, has been examined in 822 leaf samples from an affected sweet orange tree by two conventional PCR techniques and a newly developed real time (RTi) PCR, also used for quantification of the Liberibacter in the leaves. Even though RTi-PCR was able to detect as few as 10 liberibacters per gram of leaf tissue (l/g), no liberibacters could be detected in any of the many leaf samples from a symptomless branch, while in blotchy mottle leaves from symptomatic branches of the same tree, the Liberibacter titer reached values as high as 10(7)l/g. These results demonstrate the uneven distribution of the Liberibacter in HLB-affected trees.
P. Maloney; T. Smith; C. Jensen; J. Innes; D. Rizzo; M. North
2008-01-01
Fire and thinning restoration treatments in fire-suppressed forests often damage or stress leave trees, altering pathogen and insect affects. We compared types of insect- and pathogen-mediated mortality on mixed-conifer trees 3years after treatment. The number of bark beetle attacked trees was greater in burn treatments compared with no-burn treatments, and in some...
William W. Oliver
1979-01-01
Mortality and diameter growth loss were severe on study plots in a thinned plantation of 9-year-old trees. California five-spined engravers killed 15 percent of the trees and a hard freeze killed 20 percent of the survivors. Mortality was higher and subsequent diameter growth was lower in trees with most of their needles freeze-killed than in trees less severely...
Multispectral sensing of citrus young tree decline
NASA Technical Reports Server (NTRS)
Edwards, G. J.; Ducharme, E. P.; Schehl, T.
1975-01-01
Computer processing of MSS data to identify and map citrus trees affected by young tree decline is analyzed. The data were obtained at 1500-feet altitude in six discrete spectral bands covering regions from 0.53 to 1.3 millimicrons as well as from instrumental ground truths of tree crowns. Measurable spectral reflectance intensity differences are observed in the leaves of healthy and diseased trees, especially at wavelengths of 500 to 600 nm and 700 to 800 nm. The overall accuracy of the method is found to be 89%.
Bulafu, C; Baranga, D; Mucunguzi, P; Telford, R J; Vandvik, V
2013-01-01
Private forests harbor considerable biodiversity, however, they are under greater threat than reserved areas, particularly from urbanization, agriculture, and intense exploitation for timber and fuel wood. The extent to which they may act as habitats for biodiversity and how level of protection impacts trends in biodiversity and forest structure over time remain underresearched. We contribute to filling this research gap by resampling a unique data set, a detailed survey from 1990 of 22 forests fragments of different ownership status and level of protection near Kampala, Uganda. Eleven of the 22 fragments were lost over 20 years, and six of the remnants reduced in size. Forest structure and composition also showed dramatic changes, with six of the remnant fragments showing high temporal species turnover. Species richness increased in four of the remaining forests over the resample period. Forest ownership affected the fate of the forests, with higher loss in privately owned forests. Our study demonstrates that ownership affects the fate of forest fragments, with private forests having both higher rates of area loss, and of structural and compositional change within the remaining fragments. Still, the private forests contribute to the total forest area, and they harbor biodiversity including IUCN “vulnerable” and “endangered” species. This indicates the conservation value of the fragments and suggests that they should be taken into account in forest conservation and restoration. PMID:24198941
Tarcz, Sebastian; Rautian, Maria; Potekhin, Alexey; Sawka, Natalia; Beliavskaya, Alexandra; Kiselev, Andrey; Nekrasova, Irina; Przyboś, Ewa
2014-04-01
Paramecium putrinum (Claparede & Lachmann 1858) is one of the smallest (80-140 μm long) species of the genus Paramecium. Although it commonly occurs in freshwater reservoirs, no molecular studies of P. putrinum have been conducted to date. Herein we present an assessment of molecular variation in 27 strains collected from widely separated populations by using two selected DNA fragments (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA). Both the trees and haplotype networks reconstructed for both genome fragments show that the studied strains of P. putrinum form five main haplogroups. The mean distance between the studied strains is p-distance=0.007/0.068 (rDNA/COI) and exhibits similar variability as that between P. bursaria syngens. Based on these data, one could hypothesize that the clusters revealed in the present study may correspond to previously reported syngens and that there are at least five cryptic species within P. putrinum. Copyright © 2014 Elsevier Inc. All rights reserved.
Saldamando, Clara Inés; Marquez, Edna Judith
2012-09-01
The genus Spodoptera includes 30 species of moths considered important pests worldwide, with a great representation in the Western Hemisphere. In general, Noctuidae species have morphological similarities that have caused some difficulties for assertive species identification by conventional methods. The purpose of this work was to generate an approach to the genus phylogeny from several species of the genus Spodoptera and the species Bombyx mori as an out group, with the use of molecular tools. For this, a total of 102 S. frugiperda larvae were obtained at random in corn, cotton, rice, grass and sorghum, during late 2006 and early 2009, from Colombia. We took ADN samples from the larval posterior part and we analyzed a fragment of 451 base pairs of the mitochondrial gene cytochrome oxydase I (COI), to produce a maximum likelihood (ML) tree by using 62 sequences (29 Colombian haplotypes were used). Our results showed a great genetic differentiation (K2 distances) amongst S. frugiperda haplotypes from Colombia and the United States, condition supported by the estimators obtained for haplotype diversity and polymorphism. The obtained ML tree clustered most of the species with bootstrapping values from 73-99% in the interior branches; with low values also observed in some of the branches. In addition, this tree clustered two species of the Eastern hemisphere (S littoralis and S. litura) and eight species of the Western hemisphere (S. androgea, S. dolichos, S. eridania, S. exigua, S. frugiperda, S. latifascia, S. ornithogalli and S. pulchella). In Colombia, S. frugiperda, S. ornithogalli and S. albula represent a group of species referred as "the Spodoptera complex" of cotton crops, and our work demonstrated that sequencing a fragment of the COI gene, allows researchers to differentiate the first two species, and thus it can be used as an alternative method to taxonomic keys based on morphology. Finally, the ML tree did not cluster S. frugiperda with S. ornithogalli, suggesting that both species do not share the same recent ancestral even though they coexist in cotton. We suggest sequencing other genes (mitochondrial and nuclear) to increase our understanding of this genus evolution.
Predicting live and dead basal area in bark beetle-affected forests from discrete-return LiDAR
Andrew T. Hudak; Ben Bright; Jose Negron; Robert McGaughey; Hans-Erik Andersen; Jeffrey A. Hicke
2012-01-01
Recent bark beetle outbreaks in western North America have been widespread and severe. High tree mortality due to bark beetles affects the fundamental ecosystem processes of primary production and decomposition that largely determine carbon balance (Kurz et al. 2008, Pfeifer et al. 2011, Hicke et al. 2012). Forest managers need accurate data on beetle-induced tree...
Predicting live and dead tree basal area of bark beetle affected forests from discrete-return lidar
Benjamin C. Bright; Andrew T. Hudak; Robert McGaughey; Hans-Erik Andersen; Jose Negron
2013-01-01
Bark beetle outbreaks have killed large numbers of trees across North America in recent years. Lidar remote sensing can be used to effectively estimate forest biomass, but prediction of both live and dead standing biomass in beetle-affected forests using lidar alone has not been demonstrated. We developed Random Forest (RF) models predicting total, live, dead, and...
Review of Invasive Riparian Trees that Impact USACE Ecosystem Restoration Projects
2016-08-01
Center (ERDC), Environmental Laboratory (EL) developed this technical note to describe invasive woody trees and shrubs that negatively affect USACE...riparian habitats. BACKGROUND: Non-native species introduced intentionally, or otherwise, have affected native flora and fauna communities throughout...North America. Whether these species are plants, animals, or pathogens (e.g., fungi , bacteria), costs from damages and losses, and costs of efforts
Geng, Li-xia; Zheng, Rui; Ren, Jie; Niu, Zhi-tao; Sun, Yu-long; Xue, Qing-yun; Liu, Wei; Ding, Xiao-yu
2015-08-01
In this study, 17 kinds of Dendrobium species of Fengdous including 39 individuals were collected from 4 provinces. Mitochondrial gene sequences co I, nad 5, nad 1-intron 2 and chloroplast gene sequences rbcL, matK amd psbA-trnH were amplified from these materials, as well as nrDNA ITS. Furthermore, suitable sequences for identification of Dendrobium species of Fengdous were screened by K-2-P and P-distance. The results showed that during the mentioned 7 sequences, nrDNA ITS, nad 1-intron 2 and psbA-trnH which had a high degree of variability could be used to identify Dendrobium species of Fengdous. However, single fragment could not be used to distinguish D. moniliforme and D. huoshanense. Moreover, compared to other combined fragments, new type combined fragments nrDNA ITS+nad 1-intron 2 was more effective in identifying the original plants of Dendrobium species and could be used to identify D. huoshanense and D. moniliforme. Besides, according to the UPGMA tree constructed with nrDNA ITS+nad 1-intron 2, 3 inspected Dendrobium plants were identified as D. huoshanense, D. moniliforme and D. officinale, respectively. This study identified Dendrobium species of Fengdous by combined fragments nrDNA ITS+nad 1-intron 2 for the first time, which provided a more effective basis for identification of Dendrobium species. And this study will be helpful for regulating the market of Fengdous.
Cottrell, J E; Vaughan, S P; Connolly, T; Sing, L; Moodley, D J; Russell, K
2009-08-01
Conversion of lowland woodland to agricultural land and resulting fragmentation in Britain has been ongoing since Neolithic times. To counteract this decline, plantations of native species, often based on non-British planting stock, have been established. This may ultimately be detrimental to the integrity of the native gene pool. We explore the genetic and ecological factors influencing the success of components of the local pollen pool, including the effect of a non-native planting on an ancient woodland population of wild cherry. Wild cherry exhibits gametophytic self-incompatibility (GSI) and vegetative reproduction, both of which may be determinants of paternal success. The majority (61%) of the successful pollen originated from within the study site with a maximum pollen transfer distance of 694 m. There was a distinct departure from random mating, with over half the successful pollen originating from trees which occur within 100 m of the mother tree. Self-incompatibility, clonality, tree size and proximity to the mother tree were all found to influence paternal success. Kinship of pollen gametes within a maternal progeny was highest when a mother tree was surrounded by a large number of ramets of a single, compatible clone consisting of large, adult trees. Although the contribution from the non-native plantation is currently low, it is likely that this will increasingly contribute to the progeny of the adjacent ancient population as it matures. The results clearly show that in self-incompatible species, such as P. avium, close neighbours may be pollinated by very different components of the local pollen pool.
Effects of land use on bird populations and pest control services on coffee farms
Railsback, Steven F.; Johnson, Matthew D.
2014-01-01
Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of “land sharing” (i.e., mixed cropland and habitat) vs. “land sparing” (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system. PMID:24711377
Carbon payments and low-cost conservation.
Crossman, Neville D; Bryan, Brett A; Summers, David M
2011-08-01
A price on carbon is expected to generate demand for carbon offset schemes. This demand could drive investment in tree-based monocultures that provide higher carbon yields than diverse plantings of native tree and shrub species, which sequester less carbon but provide greater variation in vegetation structure and composition. Economic instruments such as species conservation banking, the creation and trading of credits that represent biological-diversity values on private land, could close the financial gap between monocultures and more diverse plantings by providing payments to individuals who plant diverse species in locations that contribute to conservation and restoration goals. We studied a highly modified agricultural system in southern Australia that is typical of many temperate agriculture zones globally (i.e., has a high proportion of endangered species, high levels of habitat fragmentation, and presence of non-native species). We quantified the economic returns from agriculture and from carbon plantings (monoculture and mixed tree and shrubs) under six carbon-price scenarios. We also identified high-priority locations for restoration of cleared landscapes with mixed tree and shrub carbon plantings. Depending on the price of carbon, direct annual payments to landowners of AU$7/ha/year to $125/ha/year (US$6-120/ha/year) may be sufficient to augment economic returns from a carbon market and encourage tree plantings that contribute more to the restoration of natural systems and endangered species habitats than monocultures. Thus, areas of high priority for conservation and restoration may be restored relatively cheaply in the presence of a carbon market. Overall, however, less carbon is sequestered by mixed native tree and shrub plantings. © 2011 Society for Conservation Biology.
Effects of land use on bird populations and pest control services on coffee farms.
Railsback, Steven F; Johnson, Matthew D
2014-04-22
Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of "land sharing" (i.e., mixed cropland and habitat) vs. "land sparing" (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system.
Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven
2017-01-01
Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357
Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven
2017-01-01
Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.
Wittlingerova, Z; Machackova, J; Petruzelkova, A; Trapp, S; Vlk, K; Zima, J
2013-02-01
Chlorinated ethenes (CE) are among the most frequent contaminants of soil and groundwater in the Czech Republic. Because conventional methods of subsurface contamination investigation are costly and technically complicated, attention is directed on alternative and innovative field sampling methods. One promising method is sampling of tree cores (plugs of woody tissue extracted from a host tree). Volatile organic compounds can enter into the trunks and other tissues of trees through their root systems. An analysis of the tree core can thus serve as an indicator of the subsurface contamination. Four areas of interest were chosen at the experimental site with CE groundwater contamination and observed fluctuations in groundwater concentrations. CE concentrations in groundwater and tree cores were observed for a 1-year period. The aim was to determine how the CE concentrations in obtained tree core samples correlate with the level of contamination of groundwater. Other factors which can affect the transfer of contaminants from groundwater to wood were also monitored and evaluated (e.g., tree species and age, level of groundwater table, river flow in the nearby Ploučnice River, seasonal effects, and the effect of the remediation technology operation). Factors that may affect the concentration of CE in wood were identified. The groundwater table level, tree species, and the intensity of transpiration appeared to be the main factors within the framework of the experiment. Obtained values documented that the results of tree core analyses can be used to indicate the presence of CE in the subsurface. The results may also be helpful to identify the best sampling period for tree coring and to learn about the time it takes until tree core concentrations react to changes in groundwater conditions. Interval sampling of tree cores revealed possible preservation of the contaminant in the wood of trees.
NASA Astrophysics Data System (ADS)
König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin
2017-04-01
In general ecology, there is an ongoing debate about the influence of fragmentation on extinction thresholds. Whether this influence is positive or negative depends on the considered type of fragmentation: whereas habitat fragmentation often has a negative influence on population extinction thresholds, spatially fragmented disturbances are observed to have mostly positive effects on the extinction probability. Besides preventing population extinction, in soil systems ecology we are interested in analyzing how ecosystem functions are maintained despite disturbance events. Here, we analyzed the influence of disturbance size and fragmentation on the functional resilience of a microbial soil ecosystem. As soil is a highly heterogeneous environment exposed to disturbances of different spatial configurations, the identification of critical disturbance characteristics for maintaining its functions is crucial. We used the numerical simulation model eColony considering bacterial growth, degradation and dispersal for analyzing the dynamic response of biodegradation examplary for an important microbial ecosystem service to disturbance events of different spatial configurations. We systematically varied the size and the degree of fragmentation of the affected area (disturbance pattern). We found that the influence of the disturbance size on functional recovery and biodegradation performance highly depends on the spatial fragmentation of the disturbance. Generally, biodegradation performance decreases with increasing clumpedness and increasing size of the affected area. After spatially correlated disturbance events, biodegradation performance decreases linear with increasing disturbance size. After spatially fragmented disturbance events, on the other hand, an increase in disturbance size has no influence on the biodegradation performance until a critical disturbance size is reached. Is the affected area bigger than this critical size, the functional performance decreases dramatically. Under recurrent disturbance events, this threshold is shifted to lower disturbance sizes. The more frequent disturbances are recurring, the lower is the critical disturbance size. Our simulation results indicate the importance of spatial characteristics of disturbance events for the functional resilience of microbial ecosystems. Critical values for disturbance size and fragmentation emerge from an interplay between both characteristics. In consequence, a precise definition of the specific disturbance regime is necessary for analysing functional resilience. With this study, we show that we need to consider the influence of fragmentation in terrestrial environments not only on population extincions but also on the resilience of ecosystem functions. Moreover, spatial disturbance characteristics - which are widely discussed on landscape scale - are an important factor on smaller scales, too.
Assessing crown dynamics and inter-tree competition in southern pines
Timothy A. Martin; Angelica Garcia; Tania Quesada; Eric J. Jokela; Salvador Gezan
2015-01-01
Genetic improvement of southern pines has been underway for 50 years and during this time, deployment of germplasm has generally evolved from more genetically diverse to less genetically diverse. Information is needed on how deployment of individual genotypes in pure blocks will affect traits such as within-stand variation in individual tree traits, as well as tree-...
Age-related changes in tree growth and physiology
Andrew Groover
2017-01-01
Trees pass through specific developmental phases as they age, including juvenile to adult, and vegetative to reproductive phases. The timing of these transitions is regulated genetically but is also highly influenced by the environment. Tree species have evolved different strategies and life histories that affect how they age â for example some pioneer species are fast...
Ecological Technologies for Small-Diameter Tree Harvesting
Bryce J. Stokes; John F. Klepac
1997-01-01
Production, costs, and merchantable chip recovery values were developed for a tree-length, flail/chip, and cut-to-length system. The systems were evaluated for three representative stands: early thinning, late thinning, and a clearcut. A sensitivity analysis was completed for the three systems over a range of tree diameters. Recovery was affected by stand type and...
Competition and climate affects US hardwood-forest tree mortality
Daniel A. Yaussy; Louis R. Iverson; Stephen N. Matthews
2013-01-01
Individual-tree measurements have been collected periodically on sites established in Kentucky, New York, Ohio, and Pennsylvania to investigate the effects of thinning on the growth and yield of valuable hardwood species. These plots were installed between 1959 and 1985. The long-term characteristics of this data set of 47,853 trees allowed us to investigate potential...
Forest tree growth response to hydroclimate variability in the southern Appalachians
Katherine J. Elliott; Chelcy Ford Miniat; Neil Pederson; Stephanie H. Laseter
2015-01-01
Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate-driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal...
Effects of climate on competitive dynamics in mixed conifer forests of the Sierra Nevada
Christal Johnson; Sophan Chhin; Jianwei Zhang
2017-01-01
Trees in more competitive environments appear to respond to climate differently than trees in less competitive environments. In turn, climate patterns may affect inter- or intra-specific competition, favoring certain individuals over others. Using dendrochronological methods, we sampled cores from dominant pine trees and their nearby competitors in 40 stands in the...
Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch
2013-01-01
Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...
An Improved Decision Tree for Predicting a Major Product in Competing Reactions
ERIC Educational Resources Information Center
Graham, Kate J.
2014-01-01
When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…
Benjamin Bright; J. A. Hicke; A. T. Hudak
2012-01-01
Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...
A. D. Giunta; Justin Runyon; M. J. Jenkins; M. Teich
2016-01-01
Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with...
The importance of tree size and fecundity for wind dispersal of big-leaf mahogany
Julian M. Norghauer; Charles A. Nock; James Grogan
2011-01-01
Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae)...
2016-01-01
The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca, and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees. PMID:28028480
Itô, Hiroki
2016-01-01
The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica , Quercus glauca , and Cleyera japonica , also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera . In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees.
Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review
González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio
2017-01-01
The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola, and V. carpophila, the second F. oleagineum and F. eriobotryae, with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information reviewed, this paper shows that the use of Mills tables to predict infection periods should be avoided for Venturia spp. other than V. inaequalis. PMID:28974954
Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review.
González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio
2017-01-01
The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola , and V. carpophila , the second F. oleagineum and F. eriobotryae , with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina ; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information reviewed, this paper shows that the use of Mills tables to predict infection periods should be avoided for Venturia spp. other than V. inaequalis .
Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria
2015-06-01
Understanding how indigenous peoples' management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples' way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane', and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane' values, our proxy for cultural change. We estimated tree diversity (Fisher's Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane' communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way.
Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria
2015-01-01
Understanding how indigenous peoples’ management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples’ way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane’, and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane’ values, our proxy for cultural change. We estimated tree diversity (Fisher’s Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane’ communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way. PMID:26097240
Effective one-dimensional images of arterial trees in the cardiovascular system
NASA Astrophysics Data System (ADS)
Kozlov, V. A.; Nazarov, S. A.
2017-03-01
An exponential smallness of the errors in the one-dimensional model of the Stokes flow in a branching thin vessel with rigid walls is achieved by introducing effective lengths of the one-dimensional image of internodal fragments of vessels. Such lengths are eluated through the pressure-drop matrix at each node describing the boundary-layer phenomenon. The medical interpretation and the accessible generalizations of the result, in particular, for the Navier-Stokes equations are presented.
Explaining biomass growth of tropical canopy trees: the importance of sapwood.
van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank
2015-04-01
Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.
Schlumbaum, Angela; van Glabeke, Sabine; Roldan-Ruiz, Isabel
2012-01-20
Wild apples (Malus sp.) have been a major food source in the northern Alpine region since prehistory and their use is well understood. The onset of deliberate fruit tree growing in the area is, however, less clear. It is generally assumed that horticulture was practised in Roman times, but it might be even earlier. In the archaeological record seed testa and pericarp remains are particularly frequent at sites with waterlogged preservation such as lakeshore settlements or wells, pits and ditches, but the distinction between wild and domestic plants is not morphologically possible. With waterlogged remains being one main source of information about past fruit cultivation, we have tested the feasibility of analysing ancient DNA from waterlogged preserved bulk samples of testa fragments. We studied apple seeds from three Neolithic and three Roman sites with waterlogged preservation in the Alpine foreland. Chloroplast markers failed in all samples, but nuclear ITS1 (internal transcribed spacer region 1) of the ribosomal DNA was successfully typed in two Roman samples from the site Oedenburg/Biesheim-Kunheim (Haut-Rhin, F). The retrieved ITS1 sequences are identical to each other and are shared with wild Malus sylvestris and Malus sieversii, and with domestic apple cultivars, supporting the potential of using waterlogged remains for identifying the genetic status of apple diachronically. Copyright © 2011 Elsevier GmbH. All rights reserved.
Takeuchi, Yayoi; Soda, Ryoji; Diway, Bibian; Kuda, Tinjan Ak; Nakagawa, Michiko; Nagamasu, Hidetoshi; Nakashizuka, Tohru
2017-01-01
This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.
Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles
Davies, Andrew B.; Goossens, Benoit; Asner, Gregory P.
2017-01-01
Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile’s actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR) and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus) throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict. PMID:29020111
NASA Astrophysics Data System (ADS)
Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.
2018-01-01
We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.
Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu
2012-12-01
With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.
Slope Stability Analysis of Mountain Pine Beetle Impacted Areas
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2015-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.