Sample records for fragmentation mass spectra

  1. Extending a Tandem Mass Spectral Library to Include MS2 Spectra of Fragment Ions Produced In-Source and MSn Spectra.

    PubMed

    Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E

    2017-11-01

    Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.

  2. Analytical Utility of Mass Spectral Binning in Proteomic Experiments by SPectral Immonium Ion Detection (SPIID)*

    PubMed Central

    Kelstrup, Christian D.; Frese, Christian; Heck, Albert J. R.; Olsen, Jesper V.; Nielsen, Michael L.

    2014-01-01

    Unambiguous identification of tandem mass spectra is a cornerstone in mass-spectrometry-based proteomics. As the study of post-translational modifications (PTMs) by means of shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential, increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry, the so-called diagnostic ions, which unequivocally identify a given mass spectrum as related to a specific PTM. Although such ions offer tremendous analytical advantages, algorithms to decipher MS/MS spectra for the presence of diagnostic ions in an unbiased manner are currently lacking. Here, we present a systematic spectral-pattern-based approach for the discovery of diagnostic ions and new fragmentation mechanisms in shotgun proteomics datasets. The developed software tool is designed to analyze large sets of high-resolution peptide fragmentation spectra independent of the fragmentation method, instrument type, or protease employed. To benchmark the software tool, we analyzed large higher-energy collisional activation dissociation datasets of samples containing phosphorylation, ubiquitylation, SUMOylation, formylation, and lysine acetylation. Using the developed software tool, we were able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical composition for the majority of detected fragment ions was feasible. Collectively we present a freely available software tool that allows for comprehensive and automatic analysis of analogous product ions in tandem mass spectra and systematic mapping of fragmentation mechanisms related to common amino acids. PMID:24895383

  3. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

    PubMed

    Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle

    2014-10-07

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

  4. MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics.

    PubMed

    The, Matthew; Käll, Lukas

    2016-03-04

    Shotgun proteomics experiments generate large amounts of fragment spectra as primary data, normally with high redundancy between and within experiments. Here, we have devised a clustering technique to identify fragment spectra stemming from the same species of peptide. This is a powerful alternative method to traditional search engines for analyzing spectra, specifically useful for larger scale mass spectrometry studies. As an aid in this process, we propose a distance calculation relying on the rarity of experimental fragment peaks, following the intuition that peaks shared by only a few spectra offer more evidence than peaks shared by a large number of spectra. We used this distance calculation and a complete-linkage scheme to cluster data from a recent large-scale mass spectrometry-based study. The clusterings produced by our method have up to 40% more identified peptides for their consensus spectra compared to those produced by the previous state-of-the-art method. We see that our method would advance the construction of spectral libraries as well as serve as a tool for mining large sets of fragment spectra. The source code and Ubuntu binary packages are available at https://github.com/statisticalbiotechnology/maracluster (under an Apache 2.0 license).

  5. Libraries of Peptide Fragmentation Mass Spectra Database

    National Institute of Standards and Technology Data Gateway

    SRD 1C NIST Libraries of Peptide Fragmentation Mass Spectra Database (Web, free access)   The purpose of the library is to provide peptide reference data for laboratories employing mass spectrometry-based proteomics methods for protein analysis. Mass spectral libraries identify these compounds in a more sensitive and robust manner than alternative methods. These databases are freely available for testing and development of new applications.

  6. Microsynthesis and electron ionization mass spectral studies of O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates for Chemical Weapons Convention verification.

    PubMed

    Saeidian, Hamdollah; Babri, Mehran; Abdoli, Morteza; Sarabadani, Mansour; Ashrafi, Davood; Naseri, Mohammad Taghi

    2012-12-15

    The availability of mass spectra and interpretation skills are essential for unambiguous identification of the Chemical Weapons Convention (CWC)-related chemicals. The O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates are included in the list of scheduled CWC-related compounds, but there are very few spectra from these compounds in the literature. This paper examines these spectra and their mass spectral fragmentation routes. The title chemicals were prepared through microsynthetic protocols and were analyzed using electron ionization mass spectrometry with gas chromatography as a MS-inlet system. Structures of fragments were confirmed using analysis of fragment ions of deuterated analogs, tandem mass spectrometry and density functional theory (DFT) calculations. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as alkene and amine elimination and McLafferty-type rearrangements. The most important fragmentation route of the chemicals is the thiono-thiolo rearrangement. DFT calculations are used to support MS results and to reveal relative preference formation of fragment ions. The retention indices (RIs) of all the studied compounds are also reported. Mass spectra of the synthesized compounds were investigated with the aim to enrich the Organization for the Prohibition of Chemical Weapons (OPCW) Central Analytical Database (OCAD) which may be used for detection and identification of CWC-related chemicals during on-site inspection and/or off-site analysis such as OPCW proficiency tests. Copyright © 2012 John Wiley & Sons, Ltd.

  7. How enhanced molecular ions in Cold EI improve compound identification by the NIST library.

    PubMed

    Alon, Tal; Amirav, Aviv

    2015-12-15

    Library-based compound identification with electron ionization (EI) mass spectrometry (MS) is a well-established identification method which provides the names and structures of sample compounds up to the isomer level. The library (such as NIST) search algorithm compares different EI mass spectra in the library's database with the measured EI mass spectrum, assigning each of them a similarity score called 'Match' and an overall identification probability. Cold EI, electron ionization of vibrationally cold molecules in supersonic molecular beams, provides mass spectra with all the standard EI fragment ions combined with enhanced Molecular Ions and high-mass fragments. As a result, Cold EI mass spectra differ from those provided by standard EI and tend to yield lower matching scores. However, in most cases, library identification actually improves with Cold EI, as library identification probabilities for the correct library mass spectra increase, despite the lower matching factors. This research examined the way that enhanced molecular ion abundances affect library identification probability and the way that Cold EI mass spectra, which include enhanced molecular ions and high-mass fragment ions, typically improve library identification results. It involved several computer simulations, which incrementally modified the relative abundances of the various ions and analyzed the resulting mass spectra. The simulation results support previous measurements, showing that while enhanced molecular ion and high-mass fragment ions lower the matching factor of the correct library compound, the matching factors of the incorrect library candidates are lowered even more, resulting in a rise in the identification probability for the correct compound. This behavior which was previously observed by analyzing Cold EI mass spectra can be explained by the fact that high-mass ions, and especially the molecular ion, characterize a compound more than low-mass ions and therefore carries more weight in library search identification algorithms. These ions are uniquely abundant in Cold EI, which therefore enables enhanced compound characterization along with improved NIST library based identification. Copyright © 2015 John Wiley & Sons, Ltd.

  8. NIST Libraries of Peptide Fragmentation Mass Spectra Databass

    National Institute of Standards and Technology Data Gateway

    SRD 4 NIST Libraries of Peptide Fragmentation Mass Spectra Databass (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  9. Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition.

    PubMed

    Bruderer, Tobias; Varesio, Emmanuel; Hidasi, Anita O; Duchoslav, Eva; Burton, Lyle; Bonner, Ron; Hopfgartner, Gérard

    2018-03-01

    High-quality mass spectral libraries have become crucial in mass spectrometry-based metabolomics. Here, we investigate a workflow to generate accurate mass discrete and composite spectral libraries for metabolite identification and for SWATH mass spectrometry data processing. Discrete collision energy (5-100 eV) accurate mass spectra were collected for 532 metabolites from the human metabolome database (HMDB) by flow injection analysis and compiled into composite spectra over a large collision energy range (e.g., 10-70 eV). Full scan response factors were also calculated. Software tools based on accurate mass and predictive fragmentation were specially developed and found to be essential for construction and quality control of the spectral library. First, elemental compositions constrained by the elemental composition of the precursor ion were calculated for all fragments. Secondly, all possible fragments were generated from the compound structure and were filtered based on their elemental compositions. From the discrete spectra, it was possible to analyze the specific fragment form at each collision energy and it was found that a relatively large collision energy range (10-70 eV) gives informative MS/MS spectra for library searches. From the composite spectra, it was possible to characterize specific neutral losses as radical losses using in silico fragmentation. Radical losses (generating radical cations) were found to be more prominent than expected. From 532 metabolites, 489 provided a signal in positive mode [M+H] + and 483 in negative mode [M-H] - . MS/MS spectra were obtained for 399 compounds in positive mode and for 462 in negative mode; 329 metabolites generated suitable spectra in both modes. Using the spectral library, LC retention time, response factors to analyze data-independent LC-SWATH-MS data allowed the identification of 39 (positive mode) and 72 (negative mode) metabolites in a plasma pool sample (total 92 metabolites) where 81 previously were reported in HMDB to be found in plasma. Graphical abstract Library generation workflow for LC-SWATH MS, using collision energy spread, accurate mass, and fragment annotation.

  10. Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry

    PubMed Central

    Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna

    2015-01-01

    Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717

  11. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao

    2017-06-01

    Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.

  12. An Approach for Peptide Identification by De Novo Sequencing of Mixture Spectra.

    PubMed

    Liu, Yi; Ma, Bin; Zhang, Kaizhong; Lajoie, Gilles

    2017-01-01

    Mixture spectra occur quite frequently in a typical wet-lab mass spectrometry experiment, which result from the concurrent fragmentation of multiple precursors. The ability to efficiently and confidently identify mixture spectra is essential to alleviate the existent bottleneck of low mass spectra identification rate. However, most of the traditional computational methods are not suitable for interpreting mixture spectra, because they still take the assumption that the acquired spectra come from the fragmentation of a single precursor. In this manuscript, we formulate the mixture spectra de novo sequencing problem mathematically, and propose a dynamic programming algorithm for the problem. Additionally, we use both simulated and real mixture spectra data sets to verify the merits of the proposed algorithm.

  13. Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim

    2016-01-01

    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389

  14. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products

    NASA Astrophysics Data System (ADS)

    Schollée, Jennifer E.; Schymanski, Emma L.; Stravs, Michael A.; Gulde, Rebekka; Thomaidis, Nikolaos S.; Hollender, Juliane

    2017-12-01

    High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.

  15. DtaRefinery: a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.

    2009-12-16

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that canmore » estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.« less

  16. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry.

    PubMed

    Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran

    2016-12-30

    For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Hydrogen rearrangements in the fragmentation of anthracene by low-energy electron impact

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Dunne, Melissa; Gradziel, Marcin L.

    2018-02-01

    We have measured mass spectra for positive ions produced by low-energy electron impact on anthracene using a reflectron time-of-flight mass spectrometer. The electron impact energy has been varied from 0 to 100 eV in steps of 0.5 eV. Ion yield curves of most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. Appearance energies for all these ions have been determined, and we report the first direct measurement of the triple ionization energy of anthracene at 45.5±0.5 eV. The groups of fragments containing 8-13 carbon atoms provide evidence for hydrogen rearrangements during the fragmentation, involving retention or loss of one or two additional hydrogen atoms. Groups of fragments with 6 and 7 carbon atoms clearly show the presence of doubly-charged fragments. The smaller fragments with 1-4 carbon atoms all show broadened peaks, and these fragments may be partly or mostly due to energetic charge-separation fragmentations of doubly-charged anthracene.

  18. Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Bierl, Reinhard; Borrmann, Stephan

    2017-10-01

    The aerosol mass spectrometer (AMS) is well established in investigating highly time-resolved dynamics of submicron aerosol chemical composition including organic aerosol (OA). However, interpretation of mass spectra on molecular level is limited due to strong fragmentation of organic substances and potential reactions inside the AMS ion chamber. Results from complementary filter-based FT-IR absorption measurements were used to explain features in high-resolution AMS mass spectra of different types of OA (e.g. cooking OA, cigarette smoking OA, wood burning OA). Using this approach some AMS fragment ions were validated in this study as appropriate and rather specific markers for a certain class of organic compounds for all particle types under investigation. These markers can therefore be used to get deeper insights in the chemical composition of OA based on AMS mass spectra in upcoming studies. However, the specificity of other fragment ions such as C2H4O2+ (m/z 60.02114) remains ambiguous. In such cases, complementary FT-IR measurements allow the interpretation of highly time-resolved AMS mass spectra at the level of molecular functional groups. Furthermore, this study discusses the challenges in reducing inorganic interferences (e.g. from water and ammonium salts) in FT-IR spectra of atmospheric aerosols to decrease spectral uncertainties for better comparisons and, thus, to get more robust results.

  19. Identification of Organics in Ice Grains from Enceladus

    NASA Astrophysics Data System (ADS)

    Khawaja, N.; Postberg, F.; Reviol, R.; Nölle, L.; Klenner, F.; Srama, R.

    2015-12-01

    The Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft performs in-situ measurements of the chemical composition of icy dust grains impinging onto the target surface. The instrument recorded cationic Time-of-Flight (ToF) mass spectra of organic-bearing ice grains emitted from Enceladus at different impact velocities causing different molecular fragmentation patterns [1,2]. Here we present a detailed analysis of these spectra (Type-2) to identify the composition of organic material embedded in Enceladus ice grains. The organic compounds display a great compositional diversity, which indicates varying contributions of several organic species. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. To mimic the identified pattern of cationic fragments in organic enriched spectra we use a laboratory setup: Infrared Free Liquid MALDI ToF Mass Spectrometer (IR-FL-MALDI-ToF-MS). An infrared laser is used to disperse a liquid micro-beam of a water-solution to get cationic fragments. The laser energy is adjusted to simulate different impact velocities of ice particles on CDA [3]. So far we have identified characteristic fragment patterns of at least three classes of organic molecules: (i) aromatic species, (ii) amines, and (iii) carbonyl group species. (i) ice grains containing aromatic species are identified by a series of characteristic aromatic fragment cations (ii) ice grains containing amines are identified by a pronounced ammonium cation and (iii) ice grains containing carbonyl compounds are specified by a characteristic acylium cation in conjunction with certain others mass lines. Besides aromatic, amine and carbonyl species, Type-2 spectra also show contributions from other, yet un-specified, organic species. Typically, fragment cations of aromatic compounds are stable at impact velocities up-to 15km/s whereas cations of amines and carbonyl species are stable at velocities below 8km/s. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Ref: [1]Postberg et al., Icarus-193,2008. [2]Postberg et al., Nature-459,2009. [3]Beinsen, A., University of Göttingen, Dissertation (2011).

  20. Metabolite identification through multiple kernel learning on fragmentation trees.

    PubMed

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  1. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry.

    PubMed

    Yao, Jingwen; Utsunomiya, Shin-Ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/).

  2. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry

    PubMed Central

    Yao, Jingwen; Utsunomiya, Shin-ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/). PMID:26819872

  3. Evaluation of the performance of a tandem mass spectral library with mass spectral data extracted from literature.

    PubMed

    Würtinger, Philipp; Oberacher, Herbert

    2012-01-01

    MSforID represents a database of tandem mass spectral data obtained from (quasi-)molecular ions produced by atmospheric pressure ionization methods. At the current stage of development the library contains 12 122 spectra of 1208 small (bio-)organic molecules. The present work was aimed to evaluate the performance of the MSforID library in terms of accuracy and transferability with a collection of fragment ion mass spectra from various compounds acquired on multiple instruments. A literature survey was conducted to collect the set of sample spectra. A total number of 554 spectra covering 291 compounds were extracted from 109 publications. The majority of spectra originated from publications on applications of LC/MS/MS in drug monitoring, pharmacokinetics, environmental analysis, forensic analysis as well as food analysis. Almost all types of tandem mass spectrometric instruments distributed by the five most important instrument vendors were included in the study. The overall sensitivity of library search was found to be 96.4%, which clearly proves that the MSforID library can successfully handle data from a huge variety of mass spectrometric instruments to allow accurate compound identification. Only for spectra containing three or more fragment ions, however, the rate of classified matches (= matches with a relative average match probability (ramp) score > 40.0) was 95%. Ambiguous or unclassified results were mainly obtained for searches with single precursor-to-fragment ion transitions due to the insufficient specificity of such a low amount of structural information to unequivocally define a single compound. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    PubMed

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  5. Electron impact fragmentation of thymine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Mahon, Francis; Barrett, Gerard; Gradziel, Marcin L.

    2014-06-01

    We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.

  6. Identification of ubiquitin/ubiquitin-like protein modification from tandem mass spectra with various PTMs

    PubMed Central

    2011-01-01

    Background Various solutions have been introduced for the identification of post-translational modification (PTM) from tandem mass spectrometry (MS/MS) in proteomics field but the identification of peptide modifiers, such as Ubiquitin (Ub) and ubiquitin-like proteins (Ubls), is still a challenge. The fragmentation of peptide modifier produce complex shifted ion mass patterns in combination with other PTMs, which makes it difficult to identify and locate the PTMs on a protein sequence. Currently, most PTM identification methods do not consider the complex fragmentation of peptide modifier or deals it separately from the other PTMs. Results We developed an advanced PTM identification method that inspects possible ion patterns of the most known peptide modifiers as well as other known biological and chemical PTMs to make more comprehensive and accurate conclusion. The proposed method searches all detectable mass differences of measured peaks from their theoretical values and the mass differences within mass tolerance range are grouped as mass shift classes. The most possible locations of multiple PTMs including peptide modifiers can be determined by evaluating all possible scenarios generated by the combination of the qualified mass shift classes.The proposed method showed excellent performance in the test with simulated spectra having various PTMs including peptide modifiers and in the comparison with recently developed methods such as QuickMod and SUMmOn. In the analysis of HUPO Brain Proteome Project (BPP) datasets, the proposed method could find the ubiquitin modification sites that were not identified by other conventional methods. Conclusions This work presents a novel method for identifying bothpeptide modifiers that generate complex fragmentation patternsand PTMs that are not fragmented during fragmentation processfrom tandem mass spectra. PMID:22373085

  7. Peptide de novo sequencing of mixture tandem mass spectra

    PubMed Central

    Hotta, Stéphanie Yuki Kolbeck; Verano‐Braga, Thiago; Kjeldsen, Frank

    2016-01-01

    The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co‐isolation and thus prone to false identifications. The deconvolution approach matched complementary b‐, y‐ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co‐isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications. PMID:27329701

  8. Expert system for computer-assisted annotation of MS/MS spectra.

    PubMed

    Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias

    2012-11-01

    An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.

  9. Expert System for Computer-assisted Annotation of MS/MS Spectra*

    PubMed Central

    Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias

    2012-01-01

    An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions. PMID:22888147

  10. Combined use of ESI-QqTOF-MS and ESI-QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs.

    PubMed

    Pavlic, Marion; Libiseller, Kathrin; Oberacher, Herbert

    2006-09-01

    The potential of the combined use of ESI-QqTOF-MS and ESI-QqTOF-MS/MS with mass-spectral library search for the identification of therapeutic and illicit drugs has been evaluated. Reserpine was used for standardizing experimental conditions and for characterization of the performance of the applied mass spectrometric system. Experiments revealed that because of the mass accuracy, the stability of calibration, and the reproducibility of fragmentation, the QqTOF mass spectrometer is an appropriate platform for establishment of a tandem-mass-spectral library. Three-hundred and nineteen substances were used as reference samples to build the spectral library. For each reference compound, product-ion spectra were acquired at ten different collision-energy values between 5 eV and 50 eV. For identification of unknown compounds, a library search algorithm was developed. The closeness of matching between a measured product-ion spectrum and a spectrum stored in the library was characterized by a value called "match probability", which took into account the number of matched fragment ions, the number of fragment ions observed in the two spectra, and the sum of the intensity differences calculated for matching fragments. A large value for the match probability indicated a close match between the measured and the reference spectrum. A unique feature of the library search algorithm-an implemented spectral purification option-enables characterization of multi-contributor fragment-ion spectra. With the aid of this software feature, substances comprising only 1.0% of the total amount of binary mixtures were unequivocally assigned, in addition to the isobaric main contributors. The spectral library was successfully applied to the characterization of 39 forensic casework samples.

  11. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    PubMed

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.

  12. The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John

    1994-03-01

    The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.

  13. Liquid chromatography, in combination with a quadrupole time-of-flight instrument (LC QTOF), with sequential window acquisition of all theoretical fragment-ion spectra (SWATH) acquisition: systematic studies on its use for screenings in clinical and forensic toxicology and comparison with information-dependent acquisition (IDA).

    PubMed

    Roemmelt, Andreas T; Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas

    2014-12-02

    Forensic and clinical toxicological screening procedures are employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques with information-dependent acquisition (IDA) approaches more and more often. It is known that the complexity of a sample and the IDA settings might prevent important compounds from being triggered. Therefore, data-independent acquisition (DIA) methods should be more suitable for systematic toxicological analysis (STA). The DIA method sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which uses Q1 windows of 20-35 Da for data-independent fragmentation, was systematically investigated for its suitability for STA. Quality of SWATH-generated mass spectra were evaluated with regard to mass error, relative abundance of the fragments, and library hits. With the Q1 window set to 20-25 Da, several precursors pass Q1 at the same time and are fragmented, thus impairing the library search algorithms to a different extent: forward fit was less affected than reverse fit and purity fit. Mass error was not affected. The relative abundance of the fragments was concentration dependent for some analytes and was influenced by cofragmentation, especially of deuterated analogues. Also, the detection rate of IDA compared to SWATH was investigated in a forced coelution experiment (up to 20 analytes coeluting). Even using several different IDA settings, it was observed that IDA failed to trigger relevant compounds. Screening results of 382 authentic forensic cases revealed that SWATH's detection rate was superior to IDA, which failed to trigger ∼10% of the analytes.

  14. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Ackerman, Luke K.; Johnson, Kevin J.

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  15. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  16. Peptide de novo sequencing of mixture tandem mass spectra.

    PubMed

    Gorshkov, Vladimir; Hotta, Stéphanie Yuki Kolbeck; Verano-Braga, Thiago; Kjeldsen, Frank

    2016-09-01

    The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co-isolation and thus prone to false identifications. The deconvolution approach matched complementary b-, y-ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co-isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20-35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fragmentation of a valine molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Vukstich, V. S.; Romanova, L. G.; Megela, I. G.; Papp, A. V.; Snegurskii, A. V.

    2017-05-01

    The formation of ion products of single and dissociative ionization of a valine molecule (C5H11NO2) by high-energy (11.5 MeV) and low-energy (below 150 eV) electrons has been investigated by mass spectrometry. Mass spectra of this molecule and near-threshold functions of yield of its ion fragments, for which the magnitudes of occurrence energies are determined, have been obtained. The analysis of the changes in mass spectra of valine molecules irradiated with doses of 5 and 20 kGy in comparison with those for unirradiated molecules shows that high-energy irradiation changes irreversibly the structure of some of the initial molecules.

  18. Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ford, T.; Sacco, E.; Black, J.; Kelley, T.; Goodacre, R.; Berkeley, R. C.; Mitchell, R.

    1991-01-01

    Exopolymers from a diverse collection of marine and freshwater bacteria were characterized by pyrolysis-mass spectrometry (Py-MS). Py-MS provides spectra of pyrolysis fragments that are characteristic of the original material. Analysis of the spectra by multivariate statistical techniques (principal component and canonical variate analysis) separated these exopolymers into distinct groups. Py-MS clearly distinguished characteristic fragments, which may be derived from components responsible for functional differences between polymers. The importance of these distinctions and the relevance of pyrolysis information to exopolysaccharide function in aquatic bacteria is discussed.

  19. Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie

    2013-03-01

    This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.

  20. MS/MS studies on the selective on-line detection of sesquiterpenes using a Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS)

    NASA Astrophysics Data System (ADS)

    Rimetz-Planchon, J.; Dhooghe, F.; Schoon, N.; Vanhaecke, F.; Amelynck, C.

    2011-04-01

    A Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of a series of seven sesquiterpenes (SQTs). These SQTs were chemically ionized by either H3O+ or NO+ reagent ions in the FA, resulting among others in protonated SQT and SQT molecular ions, respectively. These and other Chemical Ionization (CI) product ions were subsequently subjected to dissociation by collisions with Ar atoms in the collision cell of the tandem mass spectrometer. The fragmentation spectra show similarities with mass spectra obtained for these compounds with other instruments such as a Proton Transfer Reaction-Linear Ion Trap (PTR-LIT), a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), a Triple Quadrupole-Mass Spectrometer (QqQ-MS) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS). Fragmentation of protonated SQT is characterized by fragment ions at the same masses but with different intensities for the individual SQT. Distinction of SQTs is based on well-chosen intensity ratios and collision energies. The fragmentation patterns of SQT molecular ions show specific fragment ion tracers at m/z 119, m/z162, m/z 137 and m/z 131 for α-cedrene, δ-neoclovene, isolongifolene and α-humulene, respectively. Consequently, chemical ionization of SQT by NO+, followed by MS/MS of SQT+ seems to open a way for selective quantification of SQTs in mixtures.

  1. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.

    PubMed

    Vaniya, Arpana; Fiehn, Oliver

    2015-06-01

    Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.

  2. GC-MS and GC-IRD studies on the ring isomers of N-methyl-2-methoxyphenyl-3-butanamines (MPBA) related to 3,4-MDMA.

    PubMed

    Awad, Tamer; Maher, Hadir M; DeRuiter, Jack; Clark, C Randall

    2011-05-01

    The mass spectra of the controlled substance 3,4-MDMA and its regioisomer 2,3-MDMA are characterized by an imine fragment base peak at m/z 58 and additional fragments at m/z 135/136 for the methylenedioxybenzyl cation and radical cation, respectively. Three positional ring methoxy isomers of N-methyl-2-(methoxyphenyl)-3-butanamine (MPBA) have an isobaric relationship to 2,3- and 3,4-MDMA. All five compounds have the same molecular weight and produce similar EI mass spectra. This lack of mass spectral specificity for the isomers in addition to the possibility of chromatographic co-elution could result in misidentification. The lack of reference materials for the potential imposter molecules constitutes a significant analytical challenge. Perfluoroacylation of the amine group reduced the nitrogen basicity and provided individual fragmentation pathways for discrimination among these compounds based on unique fragment ions and the relative abundance of common ions. Studies using gas chromatography with infrared detection provided additional structure-IR spectra relationships. The underivatized amines and the perfluoroacylated derivatives (PFPA and HFBA) were resolved by capillary gas chromatography on a 100% dimethylpolysiloxane stationary phase. The perfluoroacylated derivatives showed better resolution on a cyclodextrin modified stationary phase.

  3. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra

    NASA Astrophysics Data System (ADS)

    Rosenberg, Jake; Parker, W. Ryan; Cammarata, Michael B.; Brodbelt, Jennifer S.

    2018-04-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu. UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT. [Figure not available: see fulltext.

  4. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra.

    PubMed

    Rosenberg, Jake; Parker, W Ryan; Cammarata, Michael B; Brodbelt, Jennifer S

    2018-06-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.

  5. Mass Ordering of Spectra from Fragmentation of Saturated Gluon States in High-Multiplicity Proton-Proton Collisions

    DOE PAGES

    Schenke, Björn; Schlichting, Sören; Tribedy, Prithwish; ...

    2016-10-14

    The mass ordering of mean transverse momentummore » $$\\langle$$p T$$\\rangle$$ and of the Fourier harmonic coefficient v 2 (p T) of azimuthally anisotropic particle distributions in high energy hadron collisions is often interpreted as evidence for the hydrodynamic flow of the matter produced. We investigate an alternative initial state interpretation of this pattern in high-multiplicity proton-proton collisions at the LHC. The QCD Yang-Mills equations describing the dynamics of saturated gluons are solved numerically with initial conditions obtained from the color-glass-condensate-based impact-parameter-dependent glasma model. The gluons are subsequently fragmented into various hadron species employing the well established Lund string fragmentation algorithm of the pythia event generator. Lastly, we find that this initial state approach reproduces characteristic features of bulk spectra, in particular, the particle mass dependence of $$\\langle$$p T$$\\rangle$$ and v 2 (p T).« less

  6. Computational Prediction of Electron Ionization Mass Spectra to Assist in GC/MS Compound Identification.

    PubMed

    Allen, Felicity; Pon, Allison; Greiner, Russ; Wishart, David

    2016-08-02

    We describe a tool, competitive fragmentation modeling for electron ionization (CFM-EI) that, given a chemical structure (e.g., in SMILES or InChI format), computationally predicts an electron ionization mass spectrum (EI-MS) (i.e., the type of mass spectrum commonly generated by gas chromatography mass spectrometry). The predicted spectra produced by this tool can be used for putative compound identification, complementing measured spectra in reference databases by expanding the range of compounds able to be considered when availability of measured spectra is limited. The tool extends CFM-ESI, a recently developed method for computational prediction of electrospray tandem mass spectra (ESI-MS/MS), but unlike CFM-ESI, CFM-EI can handle odd-electron ions and isotopes and incorporates an artificial neural network. Tests on EI-MS data from the NIST database demonstrate that CFM-EI is able to model fragmentation likelihoods in low-resolution EI-MS data, producing predicted spectra whose dot product scores are significantly better than full enumeration "bar-code" spectra. CFM-EI also outperformed previously reported results for MetFrag, MOLGEN-MS, and Mass Frontier on one compound identification task. It also outperformed MetFrag in a range of other compound identification tasks involving a much larger data set, containing both derivatized and nonderivatized compounds. While replicate EI-MS measurements of chemical standards are still a more accurate point of comparison, CFM-EI's predictions provide a much-needed alternative when no reference standard is available for measurement. CFM-EI is available at https://sourceforge.net/projects/cfm-id/ for download and http://cfmid.wishartlab.com as a web service.

  7. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry.

    PubMed

    Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri

    2007-01-01

    Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. FlavonoidSearch: A system for comprehensive flavonoid annotation by mass spectrometry.

    PubMed

    Akimoto, Nayumi; Ara, Takeshi; Nakajima, Daisuke; Suda, Kunihiro; Ikeda, Chiaki; Takahashi, Shingo; Muneto, Reiko; Yamada, Manabu; Suzuki, Hideyuki; Shibata, Daisuke; Sakurai, Nozomu

    2017-04-28

    Currently, in mass spectrometry-based metabolomics, limited reference mass spectra are available for flavonoid identification. In the present study, a database of probable mass fragments for 6,867 known flavonoids (FsDatabase) was manually constructed based on new structure- and fragmentation-related rules using new heuristics to overcome flavonoid complexity. We developed the FlavonoidSearch system for flavonoid annotation, which consists of the FsDatabase and a computational tool (FsTool) to automatically search the FsDatabase using the mass spectra of metabolite peaks as queries. This system showed the highest identification accuracy for the flavonoid aglycone when compared to existing tools and revealed accurate discrimination between the flavonoid aglycone and other compounds. Sixteen new flavonoids were found from parsley, and the diversity of the flavonoid aglycone among different fruits and vegetables was investigated.

  9. In Silico Identification Software (ISIS): A Machine Learning Approach to Tandem Mass Spectral Identification of Lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangas, Lars J.; Metz, Thomas O.; Isaac, Georgis

    2012-05-15

    Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissocia-tion tandem mass spectrometry. A preliminary test of the algorithm with 45 lipidsmore » from a subset of lipid classes shows both high sensitivity and specificity.« less

  10. Vacuum ultraviolet photofragmentation of octadecane: photoionization mass spectrometric and theoretical investigation.

    PubMed

    Xu, Jing; Sang, Pengpeng; Zhao, Lianming; Guo, Wenyue; Qi, Fei; Xing, Wei; Yan, Zifeng

    The photoionization and fragmentation of octadecane were investigated with infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IRLD/VUV PIMS) and theoretical calculations. Mass spectra of octadecane were measured at various photon energies. The fragment ions were gradually detected with the increase of photon energy. The main fragment ions were assigned to radical ions (C n H 2 n +1 + , n  = 4-11) and alkene ions (C n H 2 n + , n  = 5-10). The ionization energy of the precursor and appearance energy of ionic fragments were obtained by measuring the photoionization efficiency spectrum. Possible formation pathways of the fragment ions were discussed with the help of density functional theory calculations.

  11. GC-MS and GC-IR Analyses of the Methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles: Regioisomeric Designer Cannabinoids.

    PubMed

    Thaxton-Weissenfluh, Amber; Belal, Tarek S; DeRuiter, Jack; Smith, Forrest; Abiedalla, Younis; Neel, Logan; Abdel-Hay, Karim M; Clark, C Randall

    2018-06-16

    The indole ring regioisomeric methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles represent indole ring-substituted analogs of the synthetic cannabinoid JWH-018. The electron ionization mass spectra show equivalent regioisomeric major fragments resulting from cleavage of the groups attached to the central indole nucleus. The characteristic (M-17)+ fragment ion at m/z 354 resulting from the loss of OH group is significant in the mass spectra of all four compounds. Fragmentation of the naphthoyl and/or pentyl groups yields the cations at m/z 314, 300, 244 and 216. The vapor-phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers. Gas chromatographic separations on a capillary column containing a film of trifluoropropylmethyl polysiloxane (Rtx-200) provided excellent resolution of these compounds, their precursor indoles and intermediate pentylindoles. The elution order appears related to the degree of crowding of indole ring substituents.

  12. Characterization of Long-Chain Fatty Acid as N-(4-Aminomethylphenyl) Pyridinium Derivative by MALDI LIFT-TOF/TOF Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Frankfater, Cheryl; Jiang, Xuntian; Hsu, Fong-Fu

    2018-05-01

    Charge remote fragmentation (CRF) elimination of CnH2n+2 residues along the aliphatic tail of long chain fatty acid is hall mark of keV high-energy CID fragmentation process. It is an important fragmentation pathway leading to structural characterization of biomolecules by CID tandem mass spectrometry. In this report, we describe MALDI LIFT TOF-TOF mass spectrometric approach to study a wide variety of fatty acids (FAs), which were derivatized to N-(4-aminomethylphenyl) pyridinium (AMPP) derivative, and desorbed as M+ ions by laser with or without matrix. The high-energy MALDI LIFT TOF-TOF mass spectra of FA-AMPP contain fragment ions mainly deriving from CRF cleavages of CnH2n+2 residues, as expected. These ions together with ions from specific cleavages of the bond(s) involving the functional group within the molecule provide more complete structural identification than those produced by low-energy CID/HCD using a linear ion-trap instrument. However, this LIFT TOF-TOF mass spectrometric approach inherits low sensitivity, a typical feature of high-energy CID tandem mass spectrometry. Because of the lack of unit mass precursor ion selection with sufficient sensitivity of the current LIFT TOF-TOF technology, product ion spectra from same chain length fatty acids with difference in one or two double bonds in a mixture are not distinguishable.

  13. Towards de novo identification of metabolites by analyzing tandem mass spectra.

    PubMed

    Böcker, Sebastian; Rasche, Florian

    2008-08-15

    Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem suitably fast and provide excellent results: for all 32 test compounds the correct solution was among the top five suggestions, for 26 compounds the first suggestion of the exact algorithm was correct. http://www.bio.inf.uni-jena.de/tandemms

  14. Fragmentation studies of fulvic acids using collision induced dissociation fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Witt, Matthias; Fuchser, Jens; Koch, Boris P

    2009-04-01

    The complex natural organic matter standard Suwannee river fulvic acid (SRFA) was analyzed by negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS) using on-resonance collision induced dissociation (CID) of single ultrahigh resolved mass peaks in the ICR cell. Molecular formula assignment of precursor masses resulted in exactly one molecular formula for each of the peaks. Analyses of the corresponding fragment spectra and comparison to different standard substances revealed specific neutral losses and fragmentation patterns which result in structures consisting of a high degree of carboxyl- and fewer hydroxyl groups. The comparison of fragmented mass peaks within different pseudohomologous series (CH(2)-series, and CH(4) vs O exchange) suggested structurally based differences between these series. CID FTICR MS allowed isolating single mass peaks in a very complex natural organic matter spectrum. Subsequently, fragmentation gave structural insights into this material. Our results suggest that the structural diversity in complex humic substances is not as high as expected.

  15. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B

    2009-09-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

  16. Dynamic of negative ions in potassium-D-ribose collisions.

    PubMed

    Almeida, D; Ferreira da Silva, F; García, G; Limão-Vieira, P

    2013-09-21

    We present negative ion formation from collisions of neutral potassium atoms with D-ribose (C5H10O5), the sugar unit in the DNA/RNA molecule. From the negative ion time-of-flight (TOF) mass spectra, OH(-) is the main fragment detected in the collision range 50-100 eV accounting on average for 50% of the total anion yield. Prominence is also given to the rich fragmentation pattern observed with special attention to O(-) (16 m/z) formation. These results are in sharp contrast to dissociative electron attachment experiments. The TOF mass spectra assignments show that these channels are also observed, albeit with a much lower relative intensity. Branching ratios of the most abundant fragment anions as a function of the collision energy are obtained, allowing to establish a rationale on the collision dynamics.

  17. Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry.

    PubMed

    Morrison, Kelsey A; Bendiak, Brad K; Clowers, Brian H

    2018-05-25

    Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts. Graphical Abstract ᅟ.

  18. Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Morrison, Kelsey A.; Bendiak, Brad K.; Clowers, Brian H.

    2018-05-01

    Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts.

  19. Discrimination Between Peptide O-Sulfo- and O-Phosphotyrosine Residues by Negative Ion Mode Electrospray Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Edelson-Averbukh, Marina; Shevchenko, Andrej; Pipkorn, Rüdiger; Lehmann, Wolf D.

    2011-12-01

    Unambiguous differentiation between isobaric sulfated and phosphorylated tyrosine residues (sTyr and pTyr) of proteins by mass spectrometry is challenging, even using high resolution mass spectrometers. Here we show that upon negative ion mode collision-induced dissociation (CID), pTyr- and sTyr-containing peptides exhibit entirely different modification-specific fragmentation patterns leading to a rapid discrimination between the isobaric covalent modifications using the tandem mass spectral data. This study reveals that the ratio between the relative abundances of [M-H-80]- and [M-H-98]- fragment ions in ion-trap CID and higher energy collision dissociation (HCD) spectra of singly deprotonated +80 Da Tyr-peptides can be used as a reliable indication of the Tyr modification group nature. For multiply deprotonated +80 Da Tyr-peptides, CID spectra of sTyr- and pTyr-containing sequences can be readily distinguished based on the presence/absence of the [M-nH-79](n-1)- and [M-nH-79-NL]( n-1)- ( n = 2, 3) fragment ions (NL = neutral loss).

  20. Curatr: a web application for creating, curating and sharing a mass spectral library.

    PubMed

    Palmer, Andrew; Phapale, Prasad; Fay, Dominik; Alexandrov, Theodore

    2018-04-15

    We have developed a web application curatr for the rapid generation of high quality mass spectral fragmentation libraries from liquid-chromatography mass spectrometry datasets. Curatr handles datasets from single or multiplexed standards and extracts chromatographic profiles and potential fragmentation spectra for multiple adducts. An intuitive interface helps users to select high quality spectra that are stored along with searchable molecular information, the providence of each standard and experimental metadata. Curatr supports exports to several standard formats for use with third party software or submission to repositories. We demonstrate the use of curatr to generate the EMBL Metabolomics Core Facility spectral library http://curatr.mcf.embl.de. Source code and example data are at http://github.com/alexandrovteam/curatr/. palmer@embl.de. Supplementary data are available at Bioinformatics online.

  1. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  2. Electron ionization and dissociation of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  3. Peptide Identification by Database Search of Mixture Tandem Mass Spectra*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2011-01-01

    In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision. PMID:21862760

  4. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  5. Fragmentation of negative ions from N-linked carbohydrates, part 4. Fragmentation of complex glycans lacking substitution on the 6-antenna.

    PubMed

    Harvey, David J; Jaeken, Jaak; Butler, Mike; Armitage, Alison J; Rudd, Pauline M; Dwek, Raymond A

    2010-05-01

    Negative ion CID spectra of N-linked glycans released from glycoproteins contain many ions that are diagnostic for specific structural features such as the detailed arrangement of antennae and the location of fucose residues. Identification of such ions requires reference glycans that are often difficult to acquire in a pure state. The recent acquisition of a sample of N-glycans from a patient lacking the enzyme N-acetylglucosaminyltransferase-2 provided an opportunity to investigate fragmentation of glycans lacking a 6-antenna. These glycans contained one or two galactose-N-acetylglucosamine-chains attached to the 3-linked mannose residue of the trimannosyl-chitobiose core with and without fucose substitution. The spectra from the patient sample clearly defined the antenna distribution and showed striking differences from the spectra of isomeric compounds obtained from normal subjects. Furthermore, they provided additional information on previously identified antenna-specific fragment ions and indicated the presence of additional ions that were diagnostic of fucose substitution. Glycans obtained from such enzyme-deficient patients can, thus, be a valuable way of obtaining spectra of specific isomers in a relatively pure state for interpretation of mass spectra. 2010 John Wiley & Sons, Ltd.

  6. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    PubMed

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  7. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  8. Analysis of sesterterpenoids from Aspergillus terreus using ESI-QTOF and ESI-IT.

    PubMed

    Wu, Zhi-Jun; Fang, Dong-Mei; Han, Dan; Li, Guo-You; Chen, Xiao-Zhen; Qi, Hua-Yi; Zhang, Guo-Lin

    2010-01-01

    Biosynthesis of terretonin was studied due to the interesting skeleton of this series of sesterterpenoids. Very recently, López-Gresa reported two new sesterterpenoids (terretonins E and F) which are inhibitors of the mammalian mitochondrial respiratory chain. Mass spectrometry (MS), especially tandem mass spectrometry, has been one of the most important physicochemical methods for the identification of trace natural products due to it rapidity, sensitivity and low levels of sample consumption. The potential application prospect and unique skeleton prompted us to study structural characterisation using MS. To obtain sufficient information for rapid structural elucidation of this class of compounds using MS. The elemental composition of the product ions was confirmed by low-energy ESI-CID-QTOF-MS/MS analyses. The fragmentation pathways were postulated on the basis of ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) spectra. Common features and major differences between ESI-QTOF-MS/MS and IT-MS(n) spectra were compared. For ESI-QTOF-MS/MS/MS experiments, capillary exit voltage was raised to induce in-source dissociation. Ammonium acetate or acetic acid were added into solutions to improve the intensity of [M + H]+. The collision energy was optimised to achieve sufficient fragmentation. Some fragmentation pathways were unambiguously proposed by the variety of abundance of fragment ions at different collision energies even without MS(n) spectra. Fragmentation pathways of five representative sesterterpenoids were elucidated using ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) in both positive- and negative-ion mode. The key group of characterising fragmentation profiles was ring B, and these fragmentation patterns are helpful to identify different types of sestertepenoids. Complementary information obtained from fragmentation experiments of [M + H]+ (or [M + NH4]+ and [M-H](-) precursor ions is especially valuable for rapid identification of this kind of sesterterpenoid.

  9. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    PubMed

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  10. Collisions of slow ions C3Hn+ and C3Dn+ (n = 2-8) with room temperature carbon surfaces: mass spectra of product ions and the ion survival probability.

    PubMed

    Pysanenko, Andriy; Zabka, Jan; Feketeová, Linda; Märk, Tilmann D; Herman, Zdenek

    2008-01-01

    Collisions of C3Hn+ (n = 2-8) ions and some of their per- deuterated analogs with room temperature carbon (HOPG) surfaces (hydrocarbon-covered) were investigated over the incident energy range 13-45 eV in beam scattering experiments. The mass spectra of product ions were measured and main fragmentation paths of the incident projectile ions, energized in the surface collision, were determined. The extent of fragmentation increased with increasing incident energy. Mass spectra of even-electron ions C3H7+ and C3H5+ showed only fragmentations, mass spectra of radical cations C3H8*+ and C3H6*+ showed both simple fragmentations of the projectile ion and formation of products of its surface chemical reaction (H-atom transfer between the projectile ion and hydrocarbons on the surface). No carbon-chain build-up reaction (formation of C4 hydrocarbons) was detected. The survival probability of the incident ions, S(a), was usually found to be about 1-2% for the radical cation projectile ions C3H8*+, C3H6*+, C3H4*+ and C3H2*+ and several percent up to about 20% for the even-electron projectile ions C3H7+, C3H5+, C3H3+. A plot of S(a) values of C1, C2, C3, some C7 hydrocarbon ions, Ar+ and CO2+ on hydrocarbon-covered carbon surfaces as a function of the ionization energies (IE) of the projectile species showed a drop from about 10% to about 1% and less at IE 8.5-9.5 eV and further decrease with increasing IE. A strong correlation was found between log S(a) and IE, a linear decrease over the entire range of IE investigated (7-16 eV), described by log S(a) = (3.9 +/- 0.5)-(0.39 +/- 0.04) IE.

  11. Structure investigation of codeine drug using mass spectrometry, thermal analyses and semi-emperical molecular orbital (MO) calculations

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; Hawash, M. F.; Fahmey, M. A.

    2006-05-01

    Codeine is an analgesic with uses similar to morphine, but it has a mild sedative effect. It is preferable used as phosphate form and it is often administrated by mouth with aspirin or paracetamol. Therefore, it is important to investigate its structure to know the active groups and weak bonds responsible for its medical activity. Consequently in the present work, codeine was investigated by mass spectrometry and thermal analyses (TG, DTG and DTA) and confirming by semi-empirical MO-calculation (PM3 method) in the neutral and positively charged forms of the drug. Some results of studying the d-block element complexes of codeine were used to declare the relationship between drug structure and its chemical reactivity in vitro system. The mass spectra and thermal analyses fragmentation pathways were proposed and compared to each other to select the most suitable scheme representing the correct fragmentation of this drug. From EI mass spectra, the main primary cleavage site of the charged drug molecule is that due to β-cleavage to nitrogen atom in its skeleton. It occurs in two parallel mechanisms with the same possibility, i.e. no difference in appearance activation energy between them. In the neutral drug form the primary site cleavage is that occurs in the ether ring. Thermal analyses of the neutral form of the drug revealed the high response of the drug to the temperature variation with very fast rate. It decomposed in several sequential steps in the temperature range 200-600 °C. The initial thermal fragments are very similar to that obtained by mass spectrometric fragmentation. Therefore, comparison between mass and thermal helps in selection of the proper pathway representing the fragmentation of this drug. This comparison successfully confirmed by MOC. These calculations give the bond order, charge distribution, heat of formation and possible hybridization of some atoms in different position of the drug skeleton. This helps the successful choice of the weakest bond at which both mass and thermal fragmentation occurs. Therefore, the best fragmentation pathway of this drug is correctly selected. The effect of such fragmentation on the drug behavior in the human body can be expected as a result of comparing these data with that obtained on studying codeine metal complexes using mass and thermal fragmentation techniques.

  12. The DFMS sensor of ROSINA onboard Rosetta: A computer-assisted approach to resolve mass calibration, flux calibration, and fragmentation issues

    NASA Astrophysics Data System (ADS)

    Dhooghe, Frederik; De Keyser, Johan; Altwegg, Kathrin; Calmonte, Ursina; Fuselier, Stephen; Hässig, Myrtha; Berthelier, Jean-Jacques; Mall, Urs; Gombosi, Tamas; Fiethe, Björn

    2014-05-01

    Rosetta will rendezvous with comet 67P/Churyumov-Gerasimenko in May 2014. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument comprises three sensors: the pressure sensor (COPS) and two mass spectrometers (RTOF and DFMS). The double focusing mass spectrometer DFMS is optimized for mass resolution and consists of an ion source, a mass analyser and a detector package operated in analogue mode. The magnetic sector of the analyser provides the mass dispersion needed for use with the position-sensitive microchannel plate (MCP) detector. Ions that hit the MCP release electrons that are recorded digitally using a linear electron detector array with 512 pixels. Raw data for a given commanded mass are obtained as ADC counts as a function of pixel number. We have developed a computer-assisted approach to address the problem of calibrating such raw data. Mass calibration: Ion identification is based on their mass-over-charge (m/Z) ratio and requires an accurate correlation of pixel number and m/Z. The m/Z scale depends on the commanded mass and the magnetic field and can be described by an offset of the pixel associated with the commanded mass from the centre of the detector array and a scaling factor. Mass calibration is aided by the built-in gas calibration unit (GCU), which allows one to inject a known gas mixture into the instrument. In a first, fully automatic step of the mass calibration procedure, the calibration uses all GCU spectra and extracts information about the mass peak closest to the centre pixel, since those peaks can be identified unambiguously. This preliminary mass-calibration relation can then be applied to all spectra. Human-assisted identification of additional mass peaks further improves the mass calibration. Ion flux calibration: ADC counts per pixel are converted to ion counts per second using the overall gain, the individual pixel gain, and the total data accumulation time. DFMS can perform an internal scan to determine the pixel gain and related detector aging. The software automatically corrects for these effects to calibrate the fluxes. The COPS sensor can be used for an a posteriori calibration of the fluxes. Neutral gas number densities: Neutrals are ionized in the ion source before they are transferred to the mass analyser, but during this process fragmentation may occur. Our software allows one to identify which neutrals entered the instrument, given the ion fragments that are detected. First, multiple spectra with a limited mass range are combined to provide an overview of as many ion fragments as possible. We then exploit a fragmentation database to assist in figuring out the relation between entering species and recorded fragments. Finally, using experimentally determined sensitivities, gas number densities are obtained. The instrument characterisation (experimental determination of sensitivities, fragmentation patterns for the most common neutral species, etc.) has been conducted by the consortium using an instrument copy in the University of Bern test facilities during the cruise phase of the mission.

  13. [Mass spectrum and uniformity of decomposition of certain 2-substituted 9-(o-chlorbenzyl)-8-azahypoxanthines].

    PubMed

    Kuleshov, K V; Adamov, A V; Belokon', A I; Rodin, O G; Perevalov, V P; El'man, A R

    2004-01-01

    The regularities of mass spectrometric fragmentation under electron impact of new 9-(o-chlorobenzyl)-8-azahypoxantines with (N-aryl)amidocarbonylmethylthiomethyl substituents in position 2 were studied. The main fragmentation pathways are the elimination of Ar-NH+ and o-chlorobenzyl ions and cleavage of C-S bonds, characteristic of organic sulfides. During the fragmentations, some rearrangements occur, consisting in the transfer of labile hydrogen atoms from the alpha-positions to ions being eliminated. Fragmentation of 8-azapurine parts of the molecules does not prevail. Peaks of molecular ions are clearly visible in the mass spectra of all the substances studied. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.

  14. Gas chromatography-mass spectrometric studies of O-alkyl O-2-(N,N-dialkylamino) ethyl alkylphosphonites(phosphonates) for chemical weapons convention verification.

    PubMed

    Saeidian, Hamid; Babri, Mehran; Ramezani, Atefeh; Ashrafi, Davood; Sarabadani, Mansour; Naseri, Mohammad Taghi

    2013-01-01

    The electron ionization (EI) mass spectra of a series of O-alkyl O-2-(N,N-dialkylaminolethyl alkylphosphonites(phosphonates), which are precursors of nerve agents, were studied for Chemical Weapons Convention (CWC) verification. General El fragmentation pathways were constructed and discussed. Proposed fragment structures were confirmed through analyzing fragment ions of deuterated analogs and density functional theory (DFT) calculations. The observed fragment ions are due to different fragmentation pathways such as hydrogen and McLafferty+1 rearrangements, alkene, amine and alkoxy elimination by alpha- or beta-cleavage process. Fragment ions distinctly allow unequivocal identification of the interested compounds including those of isomeric compounds. The presence and abundance of fragment ions were found to depend on the size and structure of the alkyl group attached to nitrogen, phosphorus and oxygen atoms.

  15. Structural characterization of arginine-vasopressin and lysine-vasopressin by Fourier- transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation.

    PubMed

    Bianco, Giuliana; Battista, Fabio; Buchicchio, Alessandro; Amarena, Concetta G; Schmitt-Kopplin, Philippe; Guerrieri, Antonio

    2015-01-01

    Arginine-vasopressin (AVP) and lysine-vasopressin (LVP) were analyzed by reversed-phase liquid chromatography/mass spectrometry (LC-MS) using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) electrospray ionization (ESI) in the positive ion mode. LVP and AVP exhibited the protonated adduct [M+H](+) as the predominant ion at m/z 1056.43965 and at m/z 1084.44561, respectively. Infrared multiphoton dissociation (IRMPD), using a CO(2) laser source at a wavelength of 10.6 μm, was applied to protonated vasopressin molecules. The IRMPD mass spectra presented abundant mass fragments essential for a complete structural information. Several fragment ions, shared between two target molecules, are discussed in detail. Some previously unpublished fragments were identified unambiguously utilizing the high resolution and accurate mass information provided by the FT-ICR mass spectrometer. The opening of the disulfide loop and the cleavage of the peptide bonds within the ring were observed even under low-energy fragmentation conditions. Coupling the high-performance FT-ICR mass spectrometer with IRMPD as a contemporary fragmentation technique proved to be very promising for the structural characterization of vasopressin.

  16. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.

    PubMed

    Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2014-07-03

    There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.

  17. Qualitative analysis of seized synthetic cannabinoids and synthetic cathinones by gas chromatography triple quadrupole tandem mass spectrometry.

    PubMed

    Gwak, Seongshin; Arroyo-Mora, Luis E; Almirall, José R

    2015-02-01

    Designer drugs are analogues or derivatives of illicit drugs with a modification of their chemical structure in order to circumvent current legislation for controlled substances. Designer drugs of abuse have increased dramatically in popularity all over the world for the past couple of years. Currently, the qualitative seized-drug analysis is mainly performed by gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) in which most of these emerging designer drug derivatives are extensively fragmented not presenting a molecular ion in their mass spectra. The absence of molecular ion and/or similar fragmentation pattern among these derivatives may cause the equivocal identification of unknown seized-substances. In this study, the qualitative identification of 34 designer drugs, mainly synthetic cannabinoids and synthetic cathinones, were performed by gas chromatography-triple quadrupole-tandem mass spectrometry with two different ionization techniques, including electron ionization (EI) and chemical ionization (CI) only focusing on qualitative seized-drug analysis, not from the toxicological point of view. The implementation of CI source facilitates the determination of molecular mass and the identification of seized designer drugs. Developed multiple reaction monitoring (MRM) mode may increase sensitivity and selectivity in the analysis of seized designer drugs. In addition, CI mass spectra and MRM mass spectra of these designer drug derivatives can be used as a potential supplemental database along with EI mass spectral database. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Fragmentations of [M-H]- anions of peptides containing tyrosine sulfate. Does the sulfate group rearrange? A joint experimental and theoretical study.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2013-05-30

    To investigate the fragmentations in the negative-ion electrospray mass spectra of peptides containing tyrosine sulfate. Possible fragmentation mechanisms were explored using a Waters QTOF2 tandem mass spectrometer in concert with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. The major negative ion formed in the ESI-MS of peptides containing tyrosine sulfate is [(M-H)-SO3](-) and this process normally yields the base peak of the spectrum. The basic backbone cleavages of [(M-H)-SO3](-) allowed the sequence of the peptide to be determined. Rearrangement reactions involving the formation of HOSO3(-) and [(M-H)-H2SO4](-) yielded minor peaks with relative abundances ≤ 10% and ≤ 2%, respectively. The mass spectra of the [M-H](-) and [(M-H)-SO3](-) anions of peptides containing tyrosine sulfate allowed the position of the tyrosine sulfate group to be determined, together with the amino acid sequence of the peptide. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Automated LC-HRMS(/MS) Approach for the Annotation of Fragment Ions Derived from Stable Isotope Labeling-Assisted Untargeted Metabolomics

    PubMed Central

    2014-01-01

    Structure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool FragExtract was developed and evaluated with LC-HRMS/MS spectra of both native 12C- and uniformly 13C (U-13C)-labeled analytical standards of 10 fungal substances in pure solvent and spiked into fungal culture filtrate of Fusarium graminearum respectively. Furthermore, the developed approach is exemplified with nine unknown biochemical compounds contained in F. graminearum samples derived from an untargeted metabolomics experiment. The mass difference between the corresponding fragment ions present in the MS/MS spectra of the native and U-13C-labeled compound enabled the assignment of the number of carbon atoms to each fragment signal and allowed the generation of meaningful putative molecular formulas for each fragment ion, which in turn also helped determine the elemental composition of the precursor ion. Compared to laborious manual analysis of the MS/MS spectra, the presented algorithm marks an important step toward efficient fragment signal elucidation and structure annotation of metabolites in future untargeted metabolomics studies. Moreover, as demonstrated for a fungal culture sample, FragExtract also assists the characterization of unknown metabolites, which are not contained in databases, and thus exhibits a significant contribution to untargeted metabolomics research. PMID:24965664

  20. Typical ultraviolet spectra in combination with diagnostic mass fragmentation analysis for the rapid and comprehensive profiling of chlorogenic acids in the buds of Lonicera macranthoides.

    PubMed

    Zhang, Shui-Han; Hu, Xin; Shi, Shu-Yun; Huang, Lu-Qi; Chen, Wei; Chen, Lin; Cai, Ping

    2016-05-01

    A major challenge of profiling chlorogenic acids (CGA) in natural products is to effectively detect unknown or minor isomeric compounds. Here, we developed an effective strategy, typical ultraviolet (UV) spectra in combination with diagnostic mass fragmentation analysis based on HPLC-DAD-QTOF-MS/MS, to comprehensively profile CGA in the buds of Lonicera macranthoides. First, three CGA UV patterns were obtained by UV spectra screening. Second, 13 types of CGA classified by molecular weights were found by thorough analysis of CGA peaks using high-resolution MS. Third, selected ion monitoring (SIM) was carried out for each type of CGA to avoid overlooking of minor ones. Fourth, MS/MS spectra of each CGA were investigated. Then 70 CGA were identified by matching their UV spectra, accurate mass signals and fragmentation patterns with standards or previously reported compounds, including six caffeoylquinic acids (CQA), six diCQA, one triCQA, three caffeoylshikimic acids (CSA), six diCSA, one triCSA, three p-coumaroylquinic acids (pCoQA), four p-coumaroylcaffeoylquinic acids (pCoCQA), four feruloylquinic acids (FQA), five methyl caffeoylquinates (MCQ), three ethyl caffeoylquinates (ECQ), three dimethoxycinnamoylquinic acids (DQA), six caffeoylferuloylquinic acids (CFQA), six methyl dicaffeoylquinates (MdiCQ), four FQA glycosides (FQAG), six MCQ glycosides (MCQG), and three ethyl dicaffeoylquinates (EdiCQ). Forty-five of them were discovered from Lonicera species for the first time, and it is noted that CGA profiles were investigated for the first time in L. macranthoides. Results indicated that the developed method was a useful approach to explore unknown and minor isomeric compounds from complex natural products.

  1. Tandem mass spectrometric analysis of cyclophosphamide, ifosfamide and their metabolites.

    PubMed

    Liu, Zhongfa; Chan, Kenneth K; Wang, Jeffrey J

    2005-01-01

    A detailed multi-stage (MSn) fragmentation study of cyclophosphamide (CP), ifosfamide (IF) and their major metabolites, using an ion-trap mass spectrometer and a Q-TOF mass spectrometer, was performed with the aid of specifically deuterium-labeled analogs. The analytes showed good responses in positive-ion electrospray mass spectrometry as [MH]+ ions. Tandem mass spectra revealed a wealth of structurally specific ions, allowing characterization of the fragmentation pathways of these analytes. The major fragmentation pathways of the protonated CP and IF are elimination of ethylene from C5 and C6 of 1,3,2-oxazaphosphorine-2-oxide via a McLafferty rearrangement, and cleavage of the P-N bond. However, their activated 4-OOH and 4-OH metabolites primarily underwent hydrogen peroxide elimination and dehydration, respectively, followed by fragmentation pathways similar to those of CP and IF. These results should prove useful in structural elucidation of future analogs of CP and IF, and/or of their metabolites. Copyright (c) 2005 John Wiley & Sons, Ltd.

  2. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym-1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.

  3. IDENTIFICATION OF POLLUTANTS IN A MUNICIPAL WELL USING MASS PEAK PROFILING OF THE MOLECULAR ION AND FRAGMENT IONS

    EPA Science Inventory


    An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra wer...

  4. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  5. Multiplexed Post-Experimental Monoisotopic Mass Refinement ( m PE-MMR) to Increase Sensitivity and Accuracy in Peptide Identifications from Tandem Mass Spectra of Cofragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madar, Inamul Hasan; Ko, Seung-Ik; Kim, Hokeun

    Mass spectrometry (MS)-based proteomics, which uses high-resolution hybrid mass spectrometers such as the quadrupole-orbitrap mass spectrometer, can yield tens of thousands of tandem mass (MS/MS) spectra of high resolution during a routine bottom-up experiment. Despite being a fundamental and key step in MS-based proteomics, the accurate determination and assignment of precursor monoisotopic masses to the MS/MS spectra remains difficult. The difficulties stem from imperfect isotopic envelopes of precursor ions, inaccurate charge states for precursor ions, and cofragmentation. We describe a composite method of utilizing MS data to assign accurate monoisotopic masses to MS/MS spectra, including those subject to cofragmentation. Themore » method, “multiplexed post-experiment monoisotopic mass refinement” (mPE-MMR), consists of the following: multiplexing of precursor masses to assign multiple monoisotopic masses of cofragmented peptides to the corresponding multiplexed MS/MS spectra, multiplexing of charge states to assign correct charges to the precursor ions of MS/ MS spectra with no charge information, and mass correction for inaccurate monoisotopic peak picking. When combined with MS-GF+, a database search algorithm based on fragment mass difference, mPE-MMR effectively increases both sensitivity and accuracy in peptide identification from complex high-throughput proteomics data compared to conventional methods.« less

  6. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.

    2006-01-01

    A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.

  7. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language

    PubMed Central

    2011-01-01

    Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform. PMID:21247462

  8. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    PubMed

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  9. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments

    PubMed Central

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.

    2013-01-01

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments. PMID:24031159

  10. Development and practical application of a library of CID accurate mass spectra of more than 2,500 toxic compounds for systematic toxicological analysis by LC-QTOF-MS with data-dependent acquisition.

    PubMed

    Broecker, Sebastian; Herre, Sieglinde; Wüst, Bernhard; Zweigenbaum, Jerry; Pragst, Fritz

    2011-04-01

    A library of collision-induced dissociation (CID) accurate mass spectra has been developed for efficient use of liquid chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) as a tool in systematic toxicological analysis. The mass spectra (Δm < 3 ppm) of more than 2,500 illegal and therapeutic drugs, pesticides, alkaloids, other toxic chemicals and metabolites were measured, by use of an Agilent 6530 instrument, by flow-injection of 1 ng of the pure substances in aqueous ammonium formate-formic acid-methanol, with positive and negative electrospray-ionization (ESI), selection of the protonated or deprotonated molecules [M+H](+) or [M-H](-) by the quadrupole, and collision induced dissociation (CID) with nitrogen as collision gas at CID energies of 10, 20, and 40 eV. The fragment mass spectra were controlled for structural plausibility, corrected by recalculation to the theoretical fragment masses and added to a database of accurate mass data and molecular formulas of more than 7,500 toxicologically relevant substances to form the "database and library of toxic compounds". For practical evaluation, blood and urine samples were spiked with a mixture of 33 drugs at seven concentrations between 0.5 and 500 ng mL(-1), prepared by dichloromethane extraction or protein precipitation, and analyzed by LC-QTOF-MS in data-dependent acquisition mode. Unambiguous identification by library search was possible for typical basic drugs down to 0.5-2 ng mL(-1) and for benzodiazepines down to 2-20 ng mL(-1). The efficiency of the method was also demonstrated by re-analysis of venous blood samples from 50 death cases and comparison with previous results. In conclusion, LC-QTOF-MS in data-dependent acquisition mode combined with an accurate mass database and CID spectra library seemed to be one of the most efficient tools for systematic toxicological analysis.

  11. Recent (2000-2015) developments in the analysis of minor unknown natural products based on characteristic fragment information using LC-MS.

    PubMed

    Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun

    2018-03-01

    Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.

  12. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization.

    PubMed

    Neustetter, M; Jabbour Al Maalouf, E; Limão-Vieira, P; Denifl, S

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  13. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  14. Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode

    NASA Astrophysics Data System (ADS)

    Pak, Huisong; Nikitin, Frederic; Gluck, Florent; Lisacek, Frederique; Scherl, Alexander; Muller, Markus

    2013-12-01

    Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window ( m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400-1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.

  15. Proposal for a common nomenclature for fragment ions in mass spectra of lipids

    PubMed Central

    Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304

  16. Proposal for a common nomenclature for fragment ions in mass spectra of lipids.

    PubMed

    Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.

  17. Loss of H2 and CO from protonated aldehydes in electrospray ionization mass spectrometry.

    PubMed

    Neta, Pedatsur; Simón-Manso, Yamil; Liang, Yuxue; Stein, Stephen E

    2014-09-15

    Electrospray ionization mass spectrometry (ESI-MS) of many protonated aldehydes shows loss of CO as a major fragmentation pathway. However, we find that certain aldehydes undergo loss of H2 followed by reaction with water in the collision cell. This complicates interpretation of tandem mass (MS/MS) spectra and affects multiple reaction monitoring (MRM) results. 3-Formylchromone and other aldehydes were dissolved in acetonitrile/water/formic acid and studied by ESI-MS to record their MS(2) and MS(n) spectra in several mass spectrometers (QqQ, QTOF, ion trap (IT), and Orbitrap HCD). Certain product ions were found to react with water and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. Theoretical calculations were performed to help with the interpretation of the fragmentation mechanism. Protonated 3-formylchromones and 3-formylcoumarins undergo loss of H2 as a major fragmentation route to yield a ketene cation, which reacts with water to form a protonated carboxylic acid. In general, protonated aldehydes which contain a vicinal group that forms a hydrogen bridge with the formyl group undergo significant loss of H2. Subsequent losses of CO and C3O are also observed. Theoretical calculations suggest mechanistic details for these losses. Loss of H2 is a major fragmentation channel for protonated 3-formychromones and certain other aldehydes and it is followed by reaction with water to produce a protonated carboxylic acid, which undergoes subsequent fragmentation. This presents a problem for reference libraries and raises concerns about MRM results. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. Chromatographic and mass spectral methods of identification for the side-chain and ring regioisomers of methylenedioxymethamphetamine.

    PubMed

    Aalberg, L; DeRuiter, J; Noggle, F T; Sippola, E; Clark, C R

    2000-08-01

    The popular drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) is one of a total of 10 regioisomeric 2,3- and 3,4-methylenedioxyphenethylamines of MW 193 that yields regioisomeric fragment ions with equivalent mass (m/z 58 and 135/136) in the electron-impact (EI) mass spectrum. Thus, these 10 methylenedioxyphenethylamines are uniquely isomeric; they have the same molecular weight and equivalent major fragments in their mass spectra. The specific identification of one of these compounds (i.e., Ecstasy or 3,4-MDMA) in a forensic drug sample depends upon the analyst's ability to eliminate the other regioisomers as possible interfering or coeluting substances. This study reports the synthesis, chemical properties, spectral characterization, and chromatographic analysis of these 10 unique regioisomers. The ten 2,3- and 3,4-regioisomers of MDMA are synthesized from commercially available precursor chemicals. In the EI mass spectra, the side-chain regioisomers show some variation in the relative intensity of the major ions, with the exception of only one or two minor ions that might be considered side-chain specific fragments. The position of substitution for the methylenedioxy ring is not easily determined by mass spectral techniques, and the ultimate identification of any one of these amines with the elimination of the other nine must depend heavily upon chromatographic methods. The chromatographic separation of these 10 uniquely regioisomeric amines are studied using reversed-phase liquid chromatographic methods with gradient elution and gas chromatographic techniques with temperature program optimization.

  19. Electron impact ionization of the gas-phase sorbitol

    NASA Astrophysics Data System (ADS)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  20. Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides. 2: The Proline Effect in Collision-Induced Dissociation of Protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp)

    NASA Astrophysics Data System (ADS)

    Bleiholder, Christian; Suhai, Sándor; Harrison, Alex G.; Paizs, Béla

    2011-06-01

    The product ion spectra of proline-containing peptides are commonly dominated by y n ions generated by cleavage at the N-terminal side of proline residues. This proline effect is investigated in the current work by collision-induced dissociation (CID) of protonated Ala-Ala-Xxx-Pro-Ala (Xxx includes Ala, Ser, Leu, Val, Phe, and Trp) in an electrospray/quadrupole/time-of-flight (QqTOF) mass spectrometer and by quantum chemical calculations on protonated Ala-Ala-Ala-Pro-Ala. The CID spectra of all investigated peptides show a dominant y 2 ion (Pro-Ala sequence). Our computational results show that the proline effect mainly arises from the particularly low threshold energy for the amide bond cleavage N-terminal to the proline residue, and from the high proton affinity of the proline-containing C-terminal fragment produced by this cleavage. These theoretical results are qualitatively supported by the experimentally observed y 2 / b 3 abundance ratios for protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). In the post-cleavage phase of fragmentation the N-terminal oxazolone fragment with the Ala-Ala-Xxx sequence and Pro-Ala compete for the ionizing proton for these peptides. As the proton affinity of the oxazolone fragment increases, the y 2 / b 3 abundance ratio decreases.

  1. Towards understanding the tandem mass spectra of protonated oligopeptides. 2: The proline effect in collision-induced dissociation of protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp).

    PubMed

    Bleiholder, Christian; Suhai, Sándor; Harrison, Alex G; Paizs, Béla

    2011-06-01

    The product ion spectra of proline-containing peptides are commonly dominated by y(n) ions generated by cleavage at the N-terminal side of proline residues. This proline effect is investigated in the current work by collision-induced dissociation (CID) of protonated Ala-Ala-Xxx-Pro-Ala (Xxx includes Ala, Ser, Leu, Val, Phe, and Trp) in an electrospray/quadrupole/time-of-flight (QqTOF) mass spectrometer and by quantum chemical calculations on protonated Ala-Ala-Ala-Pro-Ala. The CID spectra of all investigated peptides show a dominant y(2) ion (Pro-Ala sequence). Our computational results show that the proline effect mainly arises from the particularly low threshold energy for the amide bond cleavage N-terminal to the proline residue, and from the high proton affinity of the proline-containing C-terminal fragment produced by this cleavage. These theoretical results are qualitatively supported by the experimentally observed y(2)/b(3) abundance ratios for protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). In the post-cleavage phase of fragmentation the N-terminal oxazolone fragment with the Ala-Ala-Xxx sequence and Pro-Ala compete for the ionizing proton for these peptides. As the proton affinity of the oxazolone fragment increases, the y(2)/b(3) abundance ratio decreases.

  2. Direct glycan structure determination of intact N-linked glycopeptides by low-energy collision-induced dissociation tandem mass spectrometry and predicted spectral library searching.

    PubMed

    Pai, Pei-Jing; Hu, Yingwei; Lam, Henry

    2016-08-31

    Intact glycopeptide MS analysis to reveal site-specific protein glycosylation is an important frontier of proteomics. However, computational tools for analyzing MS/MS spectra of intact glycopeptides are still limited and not well-integrated into existing workflows. In this work, a new computational tool which combines the spectral library building/searching tool, SpectraST (Lam et al. Nat. Methods2008, 5, 873-875), and the glycopeptide fragmentation prediction tool, MassAnalyzer (Zhang et al. Anal. Chem.2010, 82, 10194-10202) for intact glycopeptide analysis has been developed. Specifically, this tool enables the determination of the glycan structure directly from low-energy collision-induced dissociation (CID) spectra of intact glycopeptides. Given a list of possible glycopeptide sequences as input, a sample-specific spectral library of MassAnalyzer-predicted spectra is built using SpectraST. Glycan identification from CID spectra is achieved by spectral library searching against this library, in which both m/z and intensity information of the possible fragmentation ions are taken into consideration for improved accuracy. We validated our method using a standard glycoprotein, human transferrin, and evaluated its potential to be used in site-specific glycosylation profiling of glycoprotein datasets from LC-MS/MS. In addition, we further applied our method to reveal, for the first time, the site-specific N-glycosylation profile of recombinant human acetylcholinesterase expressed in HEK293 cells. For maximum usability, SpectraST is developed as part of the Trans-Proteomic Pipeline (TPP), a freely available and open-source software suite for MS data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Top-down analysis of protein samples by de novo sequencing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J. M.

    MOTIVATION: Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. RESULTS: We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. Themore » former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns.« less

  4. Communication: Protonation process of formic acid from the ionization and fragmentation of dimers induced by synchrotron radiation in the valence region

    NASA Astrophysics Data System (ADS)

    Arruda, Manuela S.; Medina, Aline; Sousa, Josenilton N.; Mendes, Luiz A. V.; Marinho, Ricardo R. T.; Prudente, Frederico V.

    2016-04-01

    The ionization and fragmentation of monomers of organic molecules have been extensively studied in the gas phase using mass spectroscopy. In the spectra of these molecules it is possible to identify the presence of protonated cations, which have a mass-to-charge ratio one unit larger than the parent ion. In this work, we investigate this protonation process as a result of dimers photofragmentation. Experimental photoionization and photofragmentation results of doubly deuterated formic acid (DCOOD) in the gas phase by photons in the vacuum ultraviolet region are presented. The experiment was performed by using a time-of-flight mass spectrometer installed at the Brazilian Synchrotron Light Laboratory and spectra for different pressure values in the experimental chamber were obtained. The coupled cluster approach with single and double substitutions was employed to assist the experimental analysis. Results indicate that protonated formic acid ions are originated from dimer dissociation, and the threshold photoionization of (DCOOD)ṡD+ is also determined.

  5. Unusual Fragmentation of Pro-Ser/Thr-Containing Peptides Detected in Collision-Induced Dissociation Spectra

    NASA Astrophysics Data System (ADS)

    Medzihradszky, Katalin F.; Trinidad, Jonathan C.

    2012-04-01

    During collision-induced dissociation (CID)-, phosphoserine- and phosphothreonine-containing peptides frequently undergo neutral loss of phosphoric acid. Subsequent amide bond cleavage N-terminal to the site of phosphorylation results in a y ion with a mass 18 Da lower than the corresponding unmodified y fragment. We report here that when the phosphoserine or phosphothreonine is directly preceded by a proline, an unusual fragment with a mass 10 Da higher than the corresponding unmodified y ion is frequently observed. Accurate mass measurements are consistent with elimination of the phosphoric acid followed by fragmentation between the α carbon and the carbonyl group of the proline residue. We propose a cyclic oxazoline structure for this fragment. Our observation may be explained by the charge-directed SN2 neighboring group participation reaction proposed for the phosphoric acid elimination by Palumbo et al. [Palumbo, A. M., Tepe, J. J., Reid, G. E. Mechanistic Insights into the Multistage Gas-Phase Fragmentation Behavior of Phosphoserine- and Phosphothreonine-Containing Peptides. J. Protein Res. 7(2), 771-779 (2008)]. Considering such specific fragment ions for confirmation purposes after regular database searches may boost the confidence of peptide identifications as well as phosphorylation site assignments.

  6. Electron ionisation induced fragmentation of ethyl 5(1H)-oxo- and 7(1H)-oxo-1-aryl-2,3-dihydroimidazo[1,2-a]-pyrimidine-6-carboxylates: evidence for an unusually regioselective rearrangement of M(+*) ions.

    PubMed

    Ovcharenko, V V; Pihlaja, K; Matosiuk, D

    2001-01-01

    The 70-eV electron ionisation (EI) mass spectra of the title compounds show clear differences between the 5-oxo and 7-oxo isomers due to regioselective fragmentations involving the ester function. Exceptionally abundant metastable peaks due to molecular ions fragmenting to [M -CO2](+.) were observed exclusively for the 7-oxo isomers, suggesting that the sufficiently long-lived molecular ions undergo a slow rearrangement preceding this fragmentation reaction. The results are contrasted to the available literature data on the ester group fragmentations involving the loss of CO2 and the EI mass spectrometry of pyrimidone beta-oxo esters. A reaction mechanism is proposed for the elimination of CO2 following ethyl group migration to the pyrimidone carbonyl oxygen. Copyright 2001 John Wiley & Sons, Ltd.

  7. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Pagel, Kevin; Thalassinos, Konstantinos; Struwe, Weston B.; Crispin, Max; Scrivens, Jim

    2016-01-01

    Nitrogen cross sections of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein, thyroglobulin and fucosylated glycoproteins from the human parotid gland were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3GlcNAc3 from chicken ovalbumin and Man3GlcNAc3Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra. Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an overall asymmetric ATD profile usually suggested that separations were due to conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in cross sections were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between cross sections and structural types were also investigated and it was found that complex glycans tended to have slightly smaller cross sections than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger cross sections. PMID:27477117

  8. Unassigned MS/MS Spectra: Who Am I?

    PubMed

    Pathan, Mohashin; Samuel, Monisha; Keerthikumar, Shivakumar; Mathivanan, Suresh

    2017-01-01

    Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.

  9. Induced in-source fragmentation pattern of certain novel (1Z,2E)-N-(aryl)propanehydrazonoyl chlorides by electrospray mass spectrometry (ESI-MS/MS)

    PubMed Central

    2013-01-01

    Background Collision induced dissociation (CID) in the triple quadrupole mass spectrometer system (QQQ) typically yields more abundant fragment ions than those produced with resonance excitation in the presence of helium gas in the ion trap mass spectrometer system (IT). Detailed product ion spectra can be obtained from one stage MS2 scan using the QQQ. In contrast, generating the same number of fragment ions in the ion trap requires multiple stages of fragmentation (MSn) using CID via in-trap resonance excitation with the associated time penalties and drop in sensitivity. Results The use of in-source fragmentation with electrospray ionization (ESI) followed by product ion scan (MS2) in a triple quadrupole mass spectrometer system, was demonstrated. This process enhances the qualitative power of tandem mass spectrometry to simulate the MS3 of ion trap for a comprehensive study of fragmentation mechanisms. A five pharmacologically significant (1Z, 2E)-N-arylpropanehydrazonoyl chlorides (3a-e) were chosen as model compounds for this study. In this work, detailed fragmentation pathways were elucidated by further dissociation of each fragment ion in the ion spectrum, essentially, by incorporating fragmentor voltage induced dissociation (in-source fragmentation) and isolation of fragments in a quadrupole cell Q1. Subsequently, CID occurs in cell, Q2, and fragment ions are analyzed in Q3 operated in product ion mode this process can be referred to as pseudo-MS3 scan mode. Conclusions This approach allowed unambiguous assignment of all fragment ions using tandem mass spectrometer and provided adequate sensitivity and selectivity. It is beneficial for structure determination of unknown trace components. The data presented in this paper provide useful information on the effect of different substituents on the ionization/fragmentation processes and can be used in the characterization of this important class of compounds. PMID:23351484

  10. [Progress in the spectral library based protein identification strategy].

    PubMed

    Yu, Derui; Ma, Jie; Xie, Zengyan; Bai, Mingze; Zhu, Yunping; Shu, Kunxian

    2018-04-25

    Exponential growth of the mass spectrometry (MS) data is exhibited when the mass spectrometry-based proteomics has been developing rapidly. It is a great challenge to develop some quick, accurate and repeatable methods to identify peptides and proteins. Nowadays, the spectral library searching has become a mature strategy for tandem mass spectra based proteins identification in proteomics, which searches the experiment spectra against a collection of confidently identified MS/MS spectra that have been observed previously, and fully utilizes the abundance in the spectrum, peaks from non-canonical fragment ions, and other features. This review provides an overview of the implement of spectral library search strategy, and two key steps, spectral library construction and spectral library searching comprehensively, and discusses the progress and challenge of the library search strategy.

  11. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    NASA Astrophysics Data System (ADS)

    Jaffke, Patrick; Möller, Peter; Talou, Patrick; Sierk, Arnold J.

    2018-03-01

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U(nth,f ) and 239Pu(nth,f ) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ -ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicity ν ¯ and the average heavy-fragment mass 〈Ah〉 of the input mass yields ∂ ν ¯/∂ 〈Ah〉 =±0.1 (n /f ) /u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, ν¯T(TKE ) . Typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ ν ¯=4 % for the average prompt neutron multiplicity, δ M ¯γ=1 % for the average prompt γ -ray multiplicity, δ ɛ¯nLAB=1 % for the average outgoing neutron energy, δ ɛ¯γ=1 % for the average γ -ray energy, and δ 〈TKE 〉=0.4 % for the average total kinetic energy of the fission fragments.

  12. Determination of sulfates and glucuronides of endogenic steroids in biofluids by high-performance liquid chromatography/orbitrap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Semenistaya, E. N.; Virus, E. D.; Rodchenkov, G. M.

    2009-04-01

    the possibility of selective determination of testosterone and epitestosterone glucuronides in urine by high-performance liquid chromatography/high-resolution mass spectrometry using solid phase microextraction on a meps cartridge was studied. the effect of the biological matrix on the spectra of conjugated steroids can be taken into account by using the spectra of conjugates recorded for urine samples after hydrolysis as reference spectra. the conditions of fragmentation in the ion source were optimized for separate analytes. this method was used for analyzing real samples with different testosterone/epitestosterone ratios. variations in conjugate contents and qualitative changes in the steroid profile of endogenic compounds were observed.

  13. Elimination of Butylcycloheptylprodigiosin as a Known Natural Product Inspired by an Evolutionary Hypothesis for Cyclic Prodigiosin Biosynthesis

    PubMed Central

    Jones, Brian T.; Hu, Dennis X.; Savoie, Brett M.; Thomson, Regan J.

    2013-01-01

    The cyclic prodigiosins are an important family of bioactive natural products that continue to be the subject of numerous structural, synthetic and biosynthetic studies. In particular, the structural assignments of the isomeric cyclic prodigiosins butylcycloheptylprodigiosin (BCHP) and streptorubin B have been cause for significant confusion. Herein, we report detailed studies regarding the Electron Impact (EI) mass spectra of synthetic BCHP and streptorubin B that have allowed us to distinguish the two compounds in the absence of quality historical isolation NMR data. Based upon these fragmentation differences, the status of BCHP as a natural product is challenged. The proposed mechanism of fragmentation is supported by the EI mass spectra of synthetic pentyl-chain analogues of BCHP and streptorubin B, X-ray crystallography, and DFT calculations. Elimination of BCHP from the prodigiosin family supports a proposed evolutionary hypothesis for the surprising biosynthesis of cyclic prodigiosins. PMID:24053736

  14. Simultaneous separation and identification of limonoids from citrus using liquid chromatography-collision-induced dissociation mass spectra.

    PubMed

    Jayaprakasha, Guddadarangavvanahally K; Dandekar, Deepak V; Tichy, Shane E; Patil, Bhimanagouda S

    2011-01-01

    Limonoids are considered as potential cancer chemopreventive agents and are widely distributed in the Citrus genus as aglycones and glucosides. In the present study, reversed-phase HPLC coupled with CID mass spectra was developed for the simultaneous separation and identification of aglycones and glucosides of limonoids from citrus. Five aglycones such as limonin, deacetyl nomilin, ichangin, isolimonoic acid and nomilin were identified by positive ion CID MS/MS, whereas five glucosides, viz. limonin glucoside, isoobacunoic acid glucoside, obacunone glucoside, deacetyl nomilinic acid glucoside and nomilinic acid glucoside were analyzed by negative ion CID mass spectra. The developed method was successfully applied to complex citrus samples for the separation and identification of aglycones and glucosides. Citrus seeds were extracted with methanol and partially purified and analyzed by LC-CID mass spectra. The separation was achieved by C-18 column; eight limonoids were identified by comparing the retention times and mass spectral fragmentation. To the best of our knowledge, this is the first report on the identification of citrus limonoids using CID technique. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Decomposition of cyclohexane ion induced by intense femtosecond laser fields by ion-trap time-of-flight mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Takao; Watanabe, Yusuke; Kanya, Reika

    2016-01-14

    Decomposition of cyclohexane cations induced by intense femtosecond laser fields at the wavelength of 800 nm is investigated by ion-trap time-of-flight mass spectrometry in which cyclohexane cations C{sub 6}H{sub 12}{sup +} stored in an ion trap are irradiated with intense femtosecond laser pulses and the generated fragment ions are recorded by time-of-flight mass spectrometry. The various fragment ion species, C{sub 5}H{sub n}{sup +} (n = 7, 9), C{sub 4}H{sub n}{sup +} (n = 5–8), C{sub 3}H{sub n}{sup +} (n = 3–7), C{sub 2}H{sub n}{sup +} (n = 2–6), and CH{sub 3}{sup +}, identified in the mass spectra show that decompositionmore » of C{sub 6}H{sub 12}{sup +} proceeds efficiently by the photo-irradiation. From the laser intensity dependences of the yields of the fragment ion species, the numbers of photons required for producing the respective fragment ions are estimated.« less

  16. Characterization of Disulfide-Linked Peptides Using Tandem Mass Spectrometry Coupled with Automated Data Analysis Software

    NASA Astrophysics Data System (ADS)

    Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy

    2018-05-01

    Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.

  17. Characterization of Disulfide-Linked Peptides Using Tandem Mass Spectrometry Coupled with Automated Data Analysis Software

    NASA Astrophysics Data System (ADS)

    Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy

    2018-01-01

    Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.

  18. Statistical analysis of fragmentation patterns of electron ionization mass spectra of enolized-trimethylsilylated anabolic androgenic steroids

    NASA Astrophysics Data System (ADS)

    Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.

    2009-08-01

    Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.

  19. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤more » n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.« less

  20. Dissociation reactions of protonated anthracycline antibiotics following electrospray ionization-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sleno, Lekha; Campagna-Slater, Valerie; Volmer, Dietrich A.

    2006-09-01

    Fragmentation pathways of doxorubicin, a common cancer therapy agent, and three closely related analogs (epirubicin, daunorubicin, idarubicin) were compared using electrospray ionization with tandem mass spectrometry. This class of antibiotics with anti-tumour activity has important structural features, with a tetracyclic aromatic, polyketide portion, which is glycosylated with an amino sugar in order to exhibit its biological activity. Collision-induced dissociation spectra revealed very similar product ions for each analog, however, important differences were seen in the relative abundances and the ease at which certain fragments were formed. Fragment ions observed included those from cleavage of the glycosidic bond, loss of the side chain from the aglycone moiety, water losses and loss of a methyl radical. Following cleavage of the glycosidic bond, the charge can either reside on the aglycone portion or the sugar moiety, and each of these primary fragments undergoes several secondary dissociation pathways, depending on the collision energy. By ramping the collision voltage, we were able to correlate the changes in fragmentation behavior with small alterations in the structure of the precursor ion. The detailed study of the fragmentation behavior of doxorubicin was supported by accurate mass measurements, using an electrospray-time of flight instrument, as well as MS3 data from a quadrupole-linear ion trap mass spectrometer. Computational studies were also performed to help explain the role of certain functional groups in the fragmentation reactions.

  1. [Identification of related substances in nicergoline by HPLC-MS].

    PubMed

    Zeng, Xue-fang; Liu, Jie; Song, Min; Hang, Tai-jun

    2015-08-01

    To study the related substances in nicergoline, electrospray positive ionization high resolution TOF/MS was used for the determination of the accurate mass and elemental composition of the related substances. Triple quadrupoles tandem MS/MS was employed for the determination of the fragmentations of the parent ions. 16 related substances were detected and identified to be eight synthetic by-products and eight degradation products, by using impurity references matching, product mass spectra fragmentations elucidation, and verified further according to synthetic processes and stress testing results. The results obtained are valuable for nicergoline manufacturing process control and quality assurance.

  2. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  3. Mass spectrometry of analytical derivatives. 2. “Ortho” and “Para” effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids1

    PubMed Central

    Todua, Nino G.; Mikaia, Anzor I.

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xueguang, E-mail: xue.g.ren@ptb.de; Pflüger, Thomas; Weyland, Marvin

    We study the low-energy (E{sub 0} = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved usingmore » the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C{sub 4}H{sub 8}O{sup +}, C{sub 4}H{sub 7}O{sup +}, C{sub 2}H{sub 3}O{sup +}, C{sub 3}H{sub 6}{sup +}, C{sub 3}H{sub 5}{sup +}, C{sub 3}H{sub 3}{sup +}, CH{sub 3}O{sup +}, CHO{sup +}, and C{sub 2}H{sub 3}{sup +}.« less

  5. Fragment emission from the mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni at Ebeam=30 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, E.; Johnston, H.; Gimeno-Nogues, F.; Rowland, D. J.; Laforest, R.; Lui, Y.-W.; Ferro, S.; Vasal, S.; Yennello, S. J.

    1998-04-01

    The mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni were studied at a beam energy of Ebeam=30 MeV/nucleon in order to investigate the isospin dependence of fragment emission. Ratios of inclusive yields of isotopic fragments from hydrogen through nitrogen were extracted as a function of laboratory angle. A moving source analysis of the data indicates that at laboratory angles around 40° the yield of intermediate mass fragments (IMF's) beyond Z=3 is predominantly from a midrapidity source. The angular dependence of the relative yields of isotopes beyond Z=3 indicates that the IMF's at more central angles originate from a source which is more neutron deficient than the source responsible for fragments emitted at forward angles. The charge distributions and kinetic energy spectra of the IMF's at various laboratory angles were well reproduced by calculations employing a quantum molecular-dynamics code followed by a statistical multifragmentation model for generating fragments. The calculations indicate that the measured IMF's originate mainly from a single source. The isotopic composition of the emitted fragments is, however, not reproduced by the same calculation. The measured isotopic and isobaric ratios indicate an emitting source that is more neutron rich in comparison to the source predicted by model calculations.

  6. ALLocator: an interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis.

    PubMed

    Kessler, Nikolas; Walter, Frederik; Persicke, Marcus; Albaum, Stefan P; Kalinowski, Jörn; Goesmann, Alexander; Niehaus, Karsten; Nattkemper, Tim W

    2014-01-01

    Adduct formation, fragmentation events and matrix effects impose special challenges to the identification and quantitation of metabolites in LC-ESI-MS datasets. An important step in compound identification is the deconvolution of mass signals. During this processing step, peaks representing adducts, fragments, and isotopologues of the same analyte are allocated to a distinct group, in order to separate peaks from coeluting compounds. From these peak groups, neutral masses and pseudo spectra are derived and used for metabolite identification via mass decomposition and database matching. Quantitation of metabolites is hampered by matrix effects and nonlinear responses in LC-ESI-MS measurements. A common approach to correct for these effects is the addition of a U-13C-labeled internal standard and the calculation of mass isotopomer ratios for each metabolite. Here we present a new web-platform for the analysis of LC-ESI-MS experiments. ALLocator covers the workflow from raw data processing to metabolite identification and mass isotopomer ratio analysis. The integrated processing pipeline for spectra deconvolution "ALLocatorSD" generates pseudo spectra and automatically identifies peaks emerging from the U-13C-labeled internal standard. Information from the latter improves mass decomposition and annotation of neutral losses. ALLocator provides an interactive and dynamic interface to explore and enhance the results in depth. Pseudo spectra of identified metabolites can be stored in user- and method-specific reference lists that can be applied on succeeding datasets. The potential of the software is exemplified in an experiment, in which abundance fold-changes of metabolites of the l-arginine biosynthesis in C. glutamicum type strain ATCC 13032 and l-arginine producing strain ATCC 21831 are compared. Furthermore, the capability for detection and annotation of uncommon large neutral losses is shown by the identification of (γ-)glutamyl dipeptides in the same strains. ALLocator is available online at: https://allocator.cebitec.uni-bielefeld.de. A login is required, but freely available.

  7. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra.

    PubMed

    Jaeger, Carsten; Méret, Michaël; Schmitt, Clemens A; Lisec, Jan

    2017-08-15

    A bottleneck in metabolic profiling of complex biological extracts is confident, non-supervised annotation of ideally all contained, chemically highly diverse small molecules. Recent computational strategies combining sum formula prediction with in silico fragmentation achieve confident de novo annotation, once the correct neutral mass of a compound is known. Current software solutions for automated adduct ion assignment, however, are either publicly unavailable or have been validated against only few experimental electrospray ionization (ESI) mass spectra. We here present findMAIN (find Main Adduct IoN), a new heuristic approach for interpreting ESI mass spectra. findMAIN scores MS 1 spectra based on explained intensity, mass accuracy and isotope charge agreement of adducts and related ionization products and annotates peaks of the (de)protonated molecule and adduct ions. The approach was validated against 1141 ESI positive mode spectra of chemically diverse standard compounds acquired on different high-resolution mass spectrometric instruments (Orbitrap and time-of-flight). Robustness against impure spectra was evaluated. Correct adduct ion assignment was achieved for up to 83% of the spectra. Performance was independent of compound class and mass spectrometric platform. The algorithm proved highly tolerant against spectral contamination as demonstrated exemplarily for co-eluting compounds as well as systematically by pairwise mixing of spectra. When used in conjunction with MS-FINDER, a state-of-the-art sum formula tool, correct sum formulas were obtained for 77% of spectra. It outperformed both 'brute force' approaches and current state-of-the-art annotation packages tested as potential alternatives. Limitations of the heuristic pertained to poorly ionizing compounds and cationic compounds forming [M] + ions. A new, validated approach for interpreting ESI mass spectra is presented, filling a gap in the nontargeted metabolomics workflow. It is freely available in the latest version of R package InterpretMSSpectrum. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Interaction of slow highly charged ions with hard dental tissue: studies of fluoride uptake and reminalization efficacy

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Kasperski, G.; Rousseau, P.; Domaracka, A.; Lawicki, A.

    2014-05-01

    TOF-SIMS mass spectroscopy data are presented on ion irradiation of hard dental tissue using a beam of 129Xe20+ (15 kV) ions delivered in the ARIBE facility by an ECR source. The investigation was focused on the mass distribution of the fragment ions. A comparison is made between the mass spectra from hard dental tissue treated by olaflur-(C27H60F2N2O3) and untreated hard dental tissue obtained under irradiation by low-energy highly-charged ions (HCIs). We found significant differences between the mass spectra of enamel after introducing amine fluoride (olaflur) and the mass spectra of pure untreated enamel. Further, we separated out the effects caused by radiation induced in the tooth enamel from those induced in dentin, which has not been performed before. In order to conduct a further detailed analysis, it is necessary to extend the research scope to include the influence of fluorine compounds on enamel and dentin.

  9. Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Freutel, F.; Zorn, S. R.; Chen, Q.; Farmer, D. K.; Jimenez, J. L.; Martin, S. T.; Artaxo, P.; Wiedensohler, A.; Borrmann, S.

    2011-11-01

    The detection of primary biological material in submicron aerosol by means of thermal desorption/electron impact ionization aerosol mass spectrometry was investigated. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker fragments were identified. The intensity of the marker signals relative to the total organic mass spectrum allows for an estimation of the content of primary biological material in ambient organic aerosol. The developed method was applied to mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker fragments places upper limits of 7.5% for amino acids and 5.6% for carbohydrates on the contribution of primary biological aerosol particles (PBAP) to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 μg m-3. Carbohydrates and proteins (composed of amino acids) make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAP mass fraction of about 20% to the submicron organic aerosol measured in Amazonia during AMAZE-08.

  10. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.

  11. Automated Validation of Results and Removal of Fragment Ion Interferences in Targeted Analysis of Data-independent Acquisition Mass Spectrometry (MS) using SWATHProphet*

    PubMed Central

    Keller, Andrew; Bader, Samuel L.; Shteynberg, David; Hood, Leroy; Moritz, Robert L.

    2015-01-01

    Proteomics by mass spectrometry technology is widely used for identifying and quantifying peptides and proteins. The breadth and sensitivity of peptide detection have been advanced by the advent of data-independent acquisition mass spectrometry. Analysis of such data, however, is challenging due to the complexity of fragment ion spectra that have contributions from multiple co-eluting precursor ions. We present SWATHProphet software that identifies and quantifies peptide fragment ion traces in data-independent acquisition data, provides accurate probabilities to ensure results are correct, and automatically detects and removes contributions to quantitation originating from interfering precursor ions. Integration in the widely used open source Trans-Proteomic Pipeline facilitates subsequent analyses such as combining results of multiple data sets together for improved discrimination using iProphet and inferring sample proteins using ProteinProphet. This novel development should greatly help make data-independent acquisition mass spectrometry accessible to large numbers of users. PMID:25713123

  12. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  13. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE PAGES

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John; ...

    2018-03-15

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  14. TANDEM: matching proteins with tandem mass spectra.

    PubMed

    Craig, Robertson; Beavis, Ronald C

    2004-06-12

    Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.

  15. Customized Consensus Spectral Library Building for Untargeted Quantitative Metabolomics Analysis with Data Independent Acquisition Mass Spectrometry and MetaboDIA Workflow.

    PubMed

    Chen, Gengbo; Walmsley, Scott; Cheung, Gemmy C M; Chen, Liyan; Cheng, Ching-Yu; Beuerman, Roger W; Wong, Tien Yin; Zhou, Lei; Choi, Hyungwon

    2017-05-02

    Data independent acquisition-mass spectrometry (DIA-MS) coupled with liquid chromatography is a promising approach for rapid, automatic sampling of MS/MS data in untargeted metabolomics. However, wide isolation windows in DIA-MS generate MS/MS spectra containing a mixed population of fragment ions together with their precursor ions. This precursor-fragment ion map in a comprehensive MS/MS spectral library is crucial for relative quantification of fragment ions uniquely representative of each precursor ion. However, existing reference libraries are not sufficient for this purpose since the fragmentation patterns of small molecules can vary in different instrument setups. Here we developed a bioinformatics workflow called MetaboDIA to build customized MS/MS spectral libraries using a user's own data dependent acquisition (DDA) data and to perform MS/MS-based quantification with DIA data, thus complementing conventional MS1-based quantification. MetaboDIA also allows users to build a spectral library directly from DIA data in studies of a large sample size. Using a marine algae data set, we show that quantification of fragment ions extracted with a customized MS/MS library can provide as reliable quantitative data as the direct quantification of precursor ions based on MS1 data. To test its applicability in complex samples, we applied MetaboDIA to a clinical serum metabolomics data set, where we built a DDA-based spectral library containing consensus spectra for 1829 compounds. We performed fragment ion quantification using DIA data using this library, yielding sensitive differential expression analysis.

  16. STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Topping, David O.; Allan, James; Rami Alfarra, M.; Aumont, Bernard

    2017-06-01

    Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS) is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore, any internal mechanisms or instrument features impacting on fragmentation are implicitly accounted for in the fitted model. Whilst one might expect a collection of keys specifically designed according to EI fragmentation principles to offer a robust basis, the suitability of a range of commonly available fingerprints is evaluated. Using available fingerprints in isolation, initial results suggest the generic public MACCS fingerprints provide the most accurate trained model when combined with both decision trees and random forests, with median cosine angles of 0.94-0.97 between modelled and measured spectra. There is some sensitivity to choice of fingerprint, but most sensitivity is in choice of regression technique. Support vector machines perform the worst, with median values of 0.78-0.85 and lower ranges approaching 0.4, depending on the fingerprint used. More detailed analysis of modelled versus mass spectra demonstrates important composition-dependent sensitivities on a compound-by-compound basis. This is further demonstrated when we apply the trained methods to a model α-pinene SOA system, using output from the GECKO-A model. This shows that use of a generic fingerprint referred to as FP4 and one designed for vapour pressure predictions (Nanoolal) gives plausible mass spectra, whilst the use of the MACCS keys in isolation performs poorly in this application, demonstrating the need for evaluating model performance against other SOA systems rather than existing laboratory databases on single compounds. Given the limited number of compounds used within the AMS training dataset, it is difficult to prescribe which combination of approach would lead to a robust generic model across all expected compositions. Nonetheless, the study demonstrates the use of a methodology that would be improved with more training data, fingerprints designed explicitly for fragmentation mechanisms occurring within the AMS, and data from additional mixed systems for further validation. To facilitate further development of the method, including application to other instruments, the model code for re-training is provided via a public Github and Zenodo software repository.

  17. De novo peptide sequencing using CID and HCD spectra pairs.

    PubMed

    Yan, Yan; Kusalik, Anthony J; Wu, Fang-Xiang

    2016-10-01

    In tandem mass spectrometry (MS/MS), there are several different fragmentation techniques possible, including, collision-induced dissociation (CID) higher energy collisional dissociation (HCD), electron-capture dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs. In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method includes a CID and HCD spectra merging criterion and a parent mass correction step, along with improvements to our previously proposed algorithm for sequencing merged spectra. Three pairs of spectral datasets were used to investigate and compare the performance of the proposed method with other existing methods designed for single spectrum (HCD or CID) sequencing. Experimental results showed that full-length peptide sequencing accuracy was increased significantly by using spectra pairs in the proposed method, with the highest accuracy reaching 81.31%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Identification and classification of cathinone unknowns by statistical analysis processing of direct analysis in real time-high resolution mass spectrometry-derived "neutral loss" spectra.

    PubMed

    Fowble, Kristen L; Shepard, Jason R E; Musah, Rabi A

    2018-03-01

    An approach to the rapid determination of the structures of novel synthetic cathinone designer drugs, also known as bath salts, is reported. While cathinones fragment so extensively by electron impact mass spectrometry that their mass spectra often cannot be used to identify the structure, collision-induced dissociation (CID) direct analysis in real time-high resolution mass spectrometry (DART-HRMS) experiments furnished spectra that provided diagnostic fragmentation patterns for the analyzed cathinones. From this data, neutral loss spectra, which reflect the presence of specific chemical moieties, could be acquired. These spectra showed striking similarities between cathinones sharing structural features such as pyrrolidine rings and methylenedioxy moieties. Principle component analysis (PCA) of the neutral loss spectra of nine synthetic cathinones of various types including ethcathinones, those containing a methylenedioxy moiety appended to the benzene ring, and pyrrolidine-containing structures, illustrated that cathinones falling within the same class clustered together and could be distinguished from those of other classes. Furthermore, hierarchical clustering analysis of the neutral loss data of a model set derived from 44 synthetic cathinones, furnished a dendrogram in which structurally similar cathinones clustered together. The ability of this model system to facilitate structure determination was tested using 4-fluoroethcathinone, 3,4-methylenedioxy-α-pyrrolidinohexanophenone (MDPHP), and ethylone, which fall into the ethcathinone, pyrrolidine-containing, and methylenedioxy-containing subclasses respectively. The results showed that their neutral loss spectra correctly fell within the ethcathinone, pyrrolidine-containing and methylenedioxy-containing cathinone clades of the dendrogram, and that the neutral loss information could be used to infer the structures of these compounds. The analysis and data processing steps are rapid and samples can be analyzed in their native form without any sample processing steps. The robustness of the dendrogram dataset can be readily increased by continued addition of newly discovered structures. The approach can be broadly applied to structure determination of unknowns, and would be particularly useful for analyses where sample amounts are limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation.

    PubMed

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  20. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jiachao; Zhou, Yufan; Hua, Xin

    We demonstrate in situ chemical imaging of protein biomolecules in the aqueous solution using System for Analysis at the Liquid Vacuum Interface (SALVI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The fibronectin protein film was immobilized on the silicon nitride (SiN) membrane forming the SALVI detection area. During ToF-SIMS analysis, three modes of analysis were conducted including high spatial resolution mass spectra, two-dimensional (2D) imaging, and depth profiling. Mass spectra were acquired in both positive and negative modes. Deionized water was also analyzed as a reference sample. Our results show that fibronectin film in water has more distinct and strongermore » water cluster peaks compared to water alone. Characteristic peaks of amino acid fragments are also observable in the hydrated protein ToF-SIMS spectra. These results illustrate that protein molecule adsorption on a surface can be studied dynamically using SALVI and ToF-SIMS in the liquid environment.« less

  2. Ranking and validation of the spallation models for description of intermediate mass fragment emission from p + Ag collisions at 480 MeV incident proton beam energy

    NASA Astrophysics Data System (ADS)

    Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef

    2016-06-01

    Double-differential cross-sections d2σ/dΩ dE for isotopically identified intermediate mass fragments ( 6Li up to 27Mg from nuclear reactions induced by 480 MeV protons impinging on a silver target were analyzed in the frame of a two-step model. The first step of the reaction was described by the intranuclear cascade model INCL4.6 and the second one by four different models (ABLA07,GEM2, GEMINI++, and SMM). The experimental spectra reveal the presence of low-energy, isotropic as well as high-energy, forward-peaked contributions. The INCL4.6 model offers a possibility to describe the latter contribution for light intermediate mass fragments by coalescence of the emitted nucleons. The qualitative agreement of the model predictions with the data was observed but the high-energy tails of the spectra were significantly overestimated. The shape of the isotropic part of the spectra was reproduced by all four models. The GEM2 model strongly underestimated the value of the cross-sections for heavier IMF whereas the SMM and ABLA07 models generally overestimated the data. The best quantitative description of the data was offered by GEMINI++, however, a discrepancy between the data and the model cross-sections still remained for almost all reaction products, especially at forward angles. It indicates that non-equilibrium processes are present which cannot be reproduced by the applied models. The goodness of the data description was judged quantitatively using two statistical deviation factors, the H-factor and the M-factor, as a tool for ranking and validation of the theoretical models.

  3. Improving CID, HCD, and ETD FT MS/MS degradome-peptidome identifications using high accuracy mass information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yufeng; Tolic, Nikola; Purvine, Samuel O.

    2011-11-07

    The peptidome (i.e. processed and degraded forms of proteins) of e.g. blood can potentially provide insights into disease processes, as well as a source of candidate biomarkers that are unobtainable using conventional bottom-up proteomics approaches. MS dissociation methods, including CID, HCD, and ETD, can each contribute distinct identifications using conventional peptide identification methods (Shen et al. J. Proteome Res. 2011), but such samples still pose significant analysis and informatics challenges. In this work, we explored a simple approach for better utilization of high accuracy fragment ion mass measurements provided e.g. by FT MS/MS and demonstrate significant improvements relative to conventionalmore » descriptive and probabilistic scores methods. For example, at the same FDR level we identified 20-40% more peptides than SEQUEST and Mascot scoring methods using high accuracy fragment ion information (e.g., <10 mass errors) from CID, HCD, and ETD spectra. Species identified covered >90% of all those identified from SEQUEST, Mascot, and MS-GF scoring methods. Additionally, we found that the merging the different fragment spectra provided >60% more species using the UStags method than achieved previously, and enabled >1000 peptidome components to be identified from a single human blood plasma sample with a 0.6% peptide-level FDR, and providing an improved basis for investigation of potentially disease-related peptidome components.« less

  4. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.

    PubMed

    Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi

    2017-01-01

    Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.

  5. Extension of the BRYNTRN code to monoenergetic light ion beams

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.

    1994-01-01

    A monoenergetic version of the BRYNTRN transport code is extended to beam transport of light ions (H-2, H-3, He-3, and He-4) in shielding materials (thick targets). The redistribution of energy in nuclear reactions is included in transport solutions that use nuclear fragmentation models. We also consider an equilibrium target-fragment spectrum for nuclei with mass number greater than four to include target fragmentation effects in the linear energy transfer (LET) spectrum. Illustrative results for water and aluminum shielding, including energy and LET spectra, are discussed for high-energy beams of H-2 and He-4.

  6. Laser-induced hydrogen radical removal in UV MALDI-MS allows for the differentiation of flavonoid monoglycoside isomers.

    PubMed

    Yamagaki, Tohru; Watanabe, Takehiro; Tanaka, Masaki; Sugahara, Kohtaro

    2014-01-01

    Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M - H](-)) and the sugar-unit lost fragment ions ([M - Sugar - H](-)). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral hydrogen radical (H*), and/or with the homolytic cleavage of the glycosidic bond, such as [M - H* - H](-), [M - Sugar - H* - H](-), and [M - Sugar - 2H* - H](-). It was revealed that the hydrogen radical removes from the phenolic hydroxy groups on the flavonoids, not from the sugar moiety, because the flavonoid backbones themselves absorb the laser. The glycosyl positions depend on the extent of the hydrogen radical removals and that of the homolytic cleavage of the glycosidic bonds. Flavonoid mono-glycoside isomers were distinguished according to their TOF MS and tandem mass spectra.

  7. Characterizing Vaccinium berry Standard Reference Materials by GC-MS using NIST spectral libraries.

    PubMed

    Lowenthal, Mark S; Andriamaharavo, Nirina R; Stein, Stephen E; Phinney, Karen W

    2013-05-01

    A gas chromatography-mass spectrometry (GC-MS)-based method was developed for qualitative characterization of metabolites found in Vaccinium fruit (berry) dietary supplement Standard Reference Materials (SRMs). Definitive identifications are provided for 98 unique metabolites determined among six Vaccinium-related SRMs. Metabolites were enriched using an organic liquid/liquid extraction, and derivatized prior to GC-MS analysis. Electron ionization (EI) fragmentation spectra were searched against EI spectra of authentic standards compiled in the National Institute of Standards and Technology's mass spectral libraries, as well as spectra selected from the literature. Metabolite identifications were further validated using a retention index match along with prior probabilities and were compared with results obtained in a previous effort using collision-induced dissociation (CID) MS/MS datasets from liquid chromatography coupled to mass spectrometry experiments. This manuscript describes a nontargeted metabolite profile of Vaccinium materials, compares results among related materials and from orthogonal experimental platforms, and discusses the feasibility and development of using mass spectral library matching for nontargeted metabolite identification.

  8. Determination of N-linked glycosylation in viral glycoproteins by negative ion mass spectrometry and ion mobility

    PubMed Central

    Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max

    2016-01-01

    Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737

  9. Structure Annotation and Quantification of Wheat Seed Oxidized Lipids by High-Resolution LC-MS/MS.

    PubMed

    Riewe, David; Wiebach, Janine; Altmann, Thomas

    2017-10-01

    Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat ( Triticum aestivum ) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions. © 2017 The author(s). All Rights Reserved.

  10. Broad screening and identification of β-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search.

    PubMed

    Li, Tingting; Cao, Jingjing; Li, Zhen; Wang, Xian; He, Pingli

    2016-02-01

    Broad screening and identification of β-agonists in feed, serum, urine, muscle and liver samples was achieved in a quick and highly sensitive manner using ultra high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with a spectra library search. Solid-phase extraction technology was employed for sample purification and enrichment. After extraction and purification, the samples were analyzed using a Q-Orbitrap high-resolution mass spectrometer under full-scan and data-dependent MS/MS mode. The acquired mass spectra were compared with an in-house library (compound library and MS/MS mass spectral library) built with TraceFinder Software which contained the M/Z of the precursor ion, chemical formula, retention time, character fragment ions and the entire MS/MS spectra of 32 β-agonist standards. Screening was achieved by comparing 5 key mass spectral results and positive matches were marked. Using the developed method, the identification results from 10 spiked samples and 238 actual samples indicated that only 2% of acquired mass spectra produced false identities. The method validation results showed that the limit of detection ranged from 0.021-3.854 μg kg(-1)and 0.015-1.198 ng mL(-1) for solid and liquid samples, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comprehensive and accurate tracking of carbon origin of LC-tandem mass spectrometry collisional fragments for 13C-MFA.

    PubMed

    Kappelmann, Jannick; Klein, Bianca; Geilenkirchen, Petra; Noack, Stephan

    2017-03-01

    In recent years the benefit of measuring positionally resolved 13 C-labeling enrichment from tandem mass spectrometry (MS/MS) collisional fragments for improved precision of 13 C-Metabolic Flux Analysis ( 13 C-MFA) has become evident. However, the usage of positional labeling information for 13 C-MFA faces two challenges: (1) The mass spectrometric acquisition of a large number of potentially interfering mass transitions may hamper accuracy and sensitivity. (2) The positional identity of carbon atoms of product ions needs to be known. The present contribution addresses the latter challenge by deducing the maximal positional labeling information contained in LC-ESI-MS/MS spectra of product anions of central metabolism as well as product cations of amino acids. For this purpose, we draw on accurate mass spectrometry, selectively labeled standards, and published fragmentation pathways to structurally annotate all dominant mass peaks of a large collection of metabolites, some of which with a complete fragmentation pathway. Compiling all available information, we arrive at the most detailed map of carbon atom fate of LC-ESI-MS/MS collisional fragments yet, comprising 170 intense and structurally annotated product ions with unique carbon origin from 76 precursor ions of 72 metabolites. Our 13 C-data proof that heuristic fragmentation rules often fail to yield correct fragment structures and we expose common pitfalls in the structural annotation of product ions. We show that the positionally resolved 13 C-label information contained in the product ions that we structurally annotated allows to infer the entire isotopomer distribution of several central metabolism intermediates, which is experimentally demonstrated for malate using quadrupole-time-of-flight MS technology. Finally, the inclusion of the label information from a subset of these fragments improves flux precision in a Corynebacterium glutamicum model of the central carbon metabolism.

  12. Structure characterization of lipocyclopeptide antibiotics, aspartocins A, B & C, by ESI-MSMS and ESI-nozzle-skimmer-MSMS.

    PubMed

    Siegel, Marshall M; Kong, Fangming; Feng, Xidong; Carter, Guy T

    2009-12-01

    Three lipocyclopeptide antibiotics, aspartocins A (1), B (2), and C (3), were obtained from the aspartocin complex by HPLC separation methodology. Their structures were elucidated using previously published chemical degradation results coupled with spectroscopic studies including ESI-MS, ESI-Nozzle Skimmer-MSMS and NMR. All three aspartocin compounds share the same cyclic decapeptide core of cyclo [Dab2 (Asp1-FA)-Pip3-MeAsp4-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11]. They differ only in the fatty acid side chain moiety (FA) corresponding to (Z)-13-methyltetradec-3-ene-carbonyl, (+,Z)-12-methyltetradec-3-ene-carbonyl and (Z)-12-methyltridec-3-ene-carbonyl for aspartocins A (1), B (2), and C (3), respectively. All of the sequence ions were observed by ESI-MSMS of the doubly charged parent ions. However, a number of the sequence ions observed were of low abundance. To fully sequence the lipocyclopeptide antibiotic structures, these low abundance sequence ions together with complementary sequence ions were confirmed by ESI-Nozzle-Skimmer-MSMS of the singly charged linear peptide parent fragment ions H-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11-Dab2(1+)-Asp1-FA. Cyclization of the aspartocins was demonstrated to occur via the beta-amino group of Dab2 from ions of moderate intensity in the ESI-MSMS spectra. As the fatty acid moieties do not undergo internal fragmentations under the experimental ESI mass spectral conditions used, the 14 Da mass difference between the fatty acid moieties of aspartocins A (1) and B (2) versus aspartocin C (3) was used as an internal mass tag to differentiate fragment ions containing fatty acid moieties and those not containing the fatty acid moieties. The most numerous and abundant fragment ions observed in the tandem mass spectra are due to the cleavage of the tertiary nitrogen amide of the pipecolic acid residue-3 (16 fragment ions) and the proline residue-11 (7 fragment ions). In addition, the neutral loss of ethanimine from alpha,beta-diaminobutyric acid residue 9 was observed for the parent molecular ion and for 7 fragment ions. Copyright 2009 John Wiley & Sons, Ltd.

  13. Use of CID/ETD Mass Spectrometry to Analyze Glycopeptides

    PubMed Central

    Mechref, Yehia

    2013-01-01

    Collision-induced dissociation (CID) tandem mass spectrometry (MS) does not allow the characterization of glycopeptides because of the fragmentation of their glycan structures and limited fragmentation of peptide backbones. Electron-transfer dissociation (ETD) tandem MS, on the other hand, offers an alternative approach allowing the fragmentation of only peptide backbones of glycopeptides. Characterization of glycopeptides using both CID and ETD is summarized in this unit. While CID provide information related to the composition of glycan moiety attached to a peptide backbone, ETD permits de novo sequencing of peptides, since it prompts only peptide backbone fragmentation while keeping posttranslational modifications intact. Radical anions transfer of electrons to peptide backbone which induces cleavage of the N-Cα bond is observed in ETD. The glycan moiety is retained on the peptide backbone, largely unaffected by the ETD process. Accordingly, ETD allows not only the identification of the amino acid sequence of a glycopeptide, but also the unambiguous assignment of its glycosylation site. When data acquired from both fragmentation techniques are combined, it is possible to characterize comprehensively the entire glycopeptide. This is achieved using an instrument capable of alternating between CID and ETD experiments during an LC-MS/MS analysis. This unit discusses the different fragmentation of glycopeptides observed in CID and ETD. Tables of residue masses associated with oxonium ions observed in CID are provided to help in the interpretation of CID mass spectra. The utility of both CID and ETD for better characterization of glycopeptides are demonstrated for a model glycoprotein. PMID:22470127

  14. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*( 180Hg) = 33-66 MeV and E*( 190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β +/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  15. Structural characterization of trace stilbene glycosides in Lysidice brevicalyx Wei using liquid chromatography/diode-array detection/electrospray ionization tandem mass spectrometry.

    PubMed

    Hu, Youcai; Qu, Jing; Liu, Yuanyan; Yu, Shishan; Li, Jianbei; Zhang, Jinlan; Du, Dan

    2010-01-01

    The mass fragmentation patterns of stilbene glycosides isolated from the genus Lysidice were investigated by negative ion electrospray ionization tandem mass spectrometry, and the influence of collision energy on their fragmentation behavior is discussed. It is found that the presence of the Y(0)(-) and B(0)(-) ions in the MS(2) spectra is characteristic for 1-->6 linked diglycosyl stilbenes, while the Y(0)(-), Y(1)(-), and Z(1)(-) ions are representative ions of 1-->2 linked diglycosyl stilbenes. These results indicate that ESI-MS(n) in the negative ion mode can be used to differentiate 1-->6 and 1-->2 linked diglycosyl stilbenes. Based on the fragmentation rules, 9 new trace constituents were identified or tentatively characterized in a fraction of Lysidice brevicalyx by using HPLC/HRMS and HPLC-DAD/ESI-MS(n). The results of the present study can assist in on-line structural identification of analogous constituents and targeted isolation of novel compounds from crude plant extracts.

  16. Fragmentation pathways of 2-substituted pyrrole derivatives using electrospray ionization ion trap and electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    Liang, Xianrui; Guo, Zili; Yu, Chuanming

    2013-10-30

    Pyrrole derivatives are of considerable importance and are present in a wide range of natural products and used extensively in drug discovery. Fragmentation pathway studies play an important role in the structural identification of pyrrole derivatives. As a part of our ongoing work on heterocycles, fragmentation pathways of 2-substituted pyrrole derivatives were investigated by mass spectrometry (MS). Twelve pyrrole derivatives were synthesized and analyzed. Low-resolution fragmentation ions of all the compounds were generated by ion trap mass spectrometry (ITMS(n) ) with an electrospray ionization (ESI) source in positive mode. Hybrid quadrupole time-of-flight mass spectrometry (QTOFMS) was used to determine the elemental compositions of the resultant product ions. The side-chain substituents at the 2-position influence the fragmentation pathways. Typical losses of H2 O, aldehydes and pyrrole moieties from the [M + H](+) ion are observed for the compounds with side chains bearing aromatic groups at the 2-position of the pyrrole. However, losses of H2 O, alcohols and C3 H6 are the main cleavage pathways for compounds 6 and 12 with nonphenyl-substituted side chains at the 2-position. Typical fragmentation mechanisms of 2-substituted pyrrole derivatives are proposed and elucidated based on the observations of ITMS(n) and QTOFMS spectra. The results showed that the fragmentation pathways were remarkably influenced by the side-chain substituents at the 2-position of pyrrole. This investigation should have value in the structural identification of this series of molecules or compounds with similar structures. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Top-down analysis of protein samples by de novo sequencing techniques.

    PubMed

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J M; VanDuijn, Martijn M; Liu, Xiaowen; Tolić, Nikola; Luider, Theo M; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2016-09-15

    Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. The former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns. Freely available on the web at http://bioinf.spbau.ru/en/twister vyatkina@spbau.ru or ppevzner@ucsd.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Nontargeted Screening Method for Illegal Additives Based on Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometry.

    PubMed

    Fu, Yanqing; Zhou, Zhihui; Kong, Hongwei; Lu, Xin; Zhao, Xinjie; Chen, Yihui; Chen, Jia; Wu, Zeming; Xu, Zhiliang; Zhao, Chunxia; Xu, Guowang

    2016-09-06

    Identification of illegal additives in complex matrixes is important in the food safety field. In this study a nontargeted screening strategy was developed to find illegal additives based on ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). First, an analytical method for possible illegal additives in complex matrixes was established including fast sample pretreatment, accurate UHPLC separation, and HRMS detection. Second, efficient data processing and differential analysis workflow were suggested and applied to find potential risk compounds. Third, structure elucidation of risk compounds was performed by (1) searching online databases [Metlin and the Human Metabolome Database (HMDB)] and an in-house database which was established at the above-defined conditions of UHPLC-HRMS analysis and contains information on retention time, mass spectra (MS), and tandem mass spectra (MS/MS) of 475 illegal additives, (2) analyzing fragment ions, and (3) referring to fragmentation rules. Fish was taken as an example to show the usefulness of the nontargeted screening strategy, and six additives were found in suspected fish samples. Quantitative analysis was further carried out to determine the contents of these compounds. The satisfactory application of this strategy in fish samples means that it can also be used in the screening of illegal additives in other kinds of food samples.

  19. Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Weickhardt, C.; Grun, C.; Grotemeyer, J.

    1998-12-01

    Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent.

  20. Fundamental study of hydrogen-attachment-induced peptide fragmentation occurring in the gas phase and during the matrix-assisted laser desorption/ionization process.

    PubMed

    Asakawa, Daiki; Takahashi, Hidenori; Iwamoto, Shinichi; Tanaka, Koichi

    2018-05-09

    Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.

  1. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    PubMed Central

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2016-01-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contributes to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), that enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the following iterations. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. PMID:26419769

  2. reSpect: software for identification of high and low abundance ion species in chimeric tandem mass spectra.

    PubMed

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W; Moritz, Robert L

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. Graphical Abstract ᅟ.

  3. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    NASA Astrophysics Data System (ADS)

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website.

  4. Structural characterisation by both positive- and negative-ion electrospray mass spectrometry of partially methyl-esterified oligogalacturonides purified by semi-preparative high-performance anion-exchange chromatography.

    PubMed

    Quéméner, Bernard; Désiré, Cédric; Lahaye, Marc; Debrauwer, Laurent; Negroni, Luc

    2003-01-01

    The off-line coupling of high-performance anion-exchange chromatography (HPAEC) to electrospray ionisation/ion trap mass spectrometry (ESI-ITMS) is described. The Dionex carbohydrate membrane desalter (CMD) has been assessed as an on-line chromatographic desalting system to remove the high sodium concentration necessary for the HPAEC separation of partially methyl-esterified oligogalacturonides. The developed HPAEC configuration proved to be suitable for indirect coupling with ESI-ITMS. This paper provides some interesting features of positive- and negative-ion multistage tandem mass spectrometry (MS(n)) analysis of these acidic oligosaccharides. The spectra acquired in both negative- and positive-ion modes show characteristic fragment ions resulting from glycosidic bond and cross-ring cleavages. Some new mass spectrometric fragmentation routes are also described. The positive-ion mode gave more complex spectra but was as informative as the negative-ion mode. ESI-ITMS was revealed to be, as previously reported from direct use on an unseparated enzymatic digest, a powerful sequencing technique for the determination of linkage type and the methyl ester distribution of partially methyl-esterified oligogalacturonides. Moreover, unlike matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS), it gives valuable information on the elution behaviour of these oligomers in relation to their structure, namely the HPAEC co-elution of isomeric structures.

  5. Fragmentation pathways of O-alkyl methylphosphonothionocyanidates in the gas phase: toward unambiguous structural characterization of chemicals in the Chemical Weapons Convention framework.

    PubMed

    Saeidian, Hamid; Babri, Mehran; Ashrafi, Davood; Sarabadani, Mansour; Naseri, Mohammad Taghi

    2013-08-01

    The electron-impact (EI) mass spectra of a series of O-alkyl methylphosphonothionocyanidates were studied for Chemical Weapons Convention (CWC) purposes. General EI fragmentation pathways were constructed and discussed, and collision-induced dissociation studies of the major EI ions were performed to confirm proposed fragment structures by analyzing fragment ions of deuterated analogs and by use of density functional theory (DFT) calculations. Thiono-thiolo rearrangement, McLafferty-type rearrangement, and a previously unknown intramolecular electrophilic aromatic substitution reaction were observed and confirmed. The study also focused on differentiation of isomeric compounds. Retention indices for all compounds, and an electrophilicity index for several compounds, are reported and interpreted.

  6. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chechenin, N. G., E-mail: chechenin@sinp.msu.ru; Chuvilskaya, T. V.; Shirokova, A. A.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failuresmore » of space-vehicle electronics.« less

  7. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte.

    PubMed

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.

  8. Atmospheric-pressure ionization and fragmentation of peptides by solution-cathode glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Andrew J.; Shelley, Jacob T.; Walton, Courtney L.

    Modern “-omics” (e.g., proteomics, glycomics, metabolomics, etc.) analyses rely heavily on electrospray ionization and tandem mass spectrometry to determine the structural identity of target species. Unfortunately, these methods are limited to specialized mass spectrometry instrumentation. Here in this paper, a novel approach is described that enables ionization and controlled, tunable fragmentation of peptides at atmospheric pressure. In the new source, a direct-current plasma is sustained between a tapered metal rod and a flowing sample-containing solution. As the liquid stream contacts the electrical discharge, peptides from the solution are volatilized, ionized, and fragmented. At high discharge currents (e.g., 70 mA), electrospray-likemore » spectra are observed, dominated by singly and doubly protonated molecular ions. At lower currents (35 mA), many peptides exhibit extensive fragmentation, with a-, b-, c-, x-, and y-type ion series present as well as complex fragments, such as d-type ions, not previously observed with atmospheric-pressure dissociation. Though the mechanism of fragmentation is currently unclear, observations indicate it could result from the interaction of peptides with gas-phase radicals or ultraviolet radiation generated within the plasma.« less

  9. Atmospheric-pressure ionization and fragmentation of peptides by solution-cathode glow discharge

    DOE PAGES

    Schwartz, Andrew J.; Shelley, Jacob T.; Walton, Courtney L.; ...

    2016-06-27

    Modern “-omics” (e.g., proteomics, glycomics, metabolomics, etc.) analyses rely heavily on electrospray ionization and tandem mass spectrometry to determine the structural identity of target species. Unfortunately, these methods are limited to specialized mass spectrometry instrumentation. Here in this paper, a novel approach is described that enables ionization and controlled, tunable fragmentation of peptides at atmospheric pressure. In the new source, a direct-current plasma is sustained between a tapered metal rod and a flowing sample-containing solution. As the liquid stream contacts the electrical discharge, peptides from the solution are volatilized, ionized, and fragmented. At high discharge currents (e.g., 70 mA), electrospray-likemore » spectra are observed, dominated by singly and doubly protonated molecular ions. At lower currents (35 mA), many peptides exhibit extensive fragmentation, with a-, b-, c-, x-, and y-type ion series present as well as complex fragments, such as d-type ions, not previously observed with atmospheric-pressure dissociation. Though the mechanism of fragmentation is currently unclear, observations indicate it could result from the interaction of peptides with gas-phase radicals or ultraviolet radiation generated within the plasma.« less

  10. A fragmentation study of dihydroquercetin using triple quadrupole mass spectrometry and its application for identification of dihydroflavonols in Citrus juices.

    PubMed

    Abad-García, Beatriz; Garmón-Lobato, Sergio; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca

    2009-09-01

    A mass spectrometric method using electrospray ionization with triple quadrupole and quadrupole time-of-flight hybrid (Q-Tof) mass spectrometry has been applied to the structural characterization of dihydroflavonols. This family of compounds has been studied by liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the first time in this work. A comprehensive study of the product ion MS spectra of the [M+H](+) ion of a commercially available standard has been performed. The most useful fragmentations in terms of structural identification are those that involve cleavage of the C-ring, resulting in diagnostic ions of dihydroflavonol family: (1,3)A(0) (+), (1,2)B(0) (+), (1,2)B(0) (+)-CO, (0,2)A(0) (+), (0,2)A(0) (+)-H(2)O, (0,2)A(0) (+)-CO, and (0,2)A(0) (+)-H(2)O-CO, that allow the characterization of the substituents in the A- and B-rings. In addition to those ions, other product ions due to losses of H(2)O and CO molecules from the Y(0) (+) ion were observed. Their fragmentation mechanisms and ion structures have been proposed. The established fragmentation patterns have been used to successfully identity three dihydroflavonols found in tangerine juices for the first time. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: Spontaneous vs. neutron-induced fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Jaffke, P.; Wu, C. Y.

    Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less

  12. Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: Spontaneous vs. neutron-induced fission

    DOE PAGES

    Chyzh, A.; Jaffke, P.; Wu, C. Y.; ...

    2018-06-07

    Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less

  13. Pharmaceutical identifier confirmation via DART-TOF.

    PubMed

    Easter, Jacob L; Steiner, Robert R

    2014-07-01

    Pharmaceutical analysis comprises a large amount of the casework in forensic controlled substances laboratories. In order to reduce the time of analysis for pharmaceuticals, a Direct Analysis in Real Time ion source coupled with an accurate mass time-of-flight (DART-TOF) mass spectrometer was used to confirm identity. DART-TOF spectral data for pharmaceutical samples were analyzed and evaluated by comparison to standard spectra. Identical mass pharmaceuticals were differentiated using collision induced dissociation fragmentation, present/absent ions, and abundance comparison box plots; principal component analysis (PCA) and linear discriminant analysis (LDA) were used for differentiation of identical mass mixed drug spectra. Mass assignment reproducibility and robustness tests were performed on the DART-TOF spectra. Impacts on the forensic science community include a decrease in analysis time over the traditional gas chromatograph/mass spectrometry (GC/MS) confirmations, better laboratory efficiency, and simpler sample preparation. Using physical identifiers and the DART-TOF to confirm pharmaceutical identity will eliminate the use of GC/MS and effectively reduce analysis time while still complying with accepted analysis protocols. This will prove helpful in laboratories with large backlogs and will simplify the confirmation process. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes

    PubMed Central

    Herbinet, Olivier; Bax, Sarah; Glaude, Pierre-Alexandre; Carré, Vincent; Battin-Leclerc, Frédérique

    2013-01-01

    Cyclic ethers are important intermediate species formed during the low-temperature oxidation of hydrocarbons. Along with ketones and aldehydes, they could consequently represent a significant part of the heavy oxygenated pollutants observed in the exhaust gas of engines. Apart a few of them such as ethylene oxide and tetrahydrofuran, cyclic ethers have not been much studied and very few of them are available for calibration and identification. Electron impact mass spectra are available for very few of them, making their detection in the exhaust emissions of combustion processes very difficult. The main goal of this study was to complete the existing set of mass spectra for this class of molecules. Thus cyclic ethers have been analyzed in the exhaust gases of a jet-stirred reactor in which the low-temperature oxidation of a series of n-alkanes was taking place. Analyzes were performed by gas chromatography coupled to mass spectrometry and to MS/MS. The second goal of this study was to derive some rules for the fragmentation of cyclic ethers in electron impact mass spectrometry and allow the identification of these species when no mass spectrum is available. PMID:24092947

  15. On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. Optimization and characterization of the search algorithm.

    PubMed

    Oberacher, Herbert; Pavlic, Marion; Libiseller, Kathrin; Schubert, Birthe; Sulyok, Michael; Schuhmacher, Rainer; Csaszar, Edina; Köfeler, Harald C

    2009-04-01

    A sophisticated matching algorithm developed for highly efficient identity search within tandem mass spectral libraries is presented. For the optimization of the search procedure a collection of 410 tandem mass spectra corresponding to 22 compounds was used. The spectra were acquired in three different laboratories on four different instruments. The following types of tandem mass spectrometric instruments were used: quadrupole-quadrupole-time-of-flight (QqTOF), quadrupole-quadrupole-linear ion trap (QqLIT), quadrupole-quadrupole-quadrupole (QqQ), and linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer (LIT-FTICR). The obtained spectra were matched to an established MS/MS-spectral library that contained 3759 MS/MS-spectra corresponding to 402 different reference compounds. All 22 test compounds were part of the library. A dynamic intensity cut-off, the search for neutral losses, and optimization of the formula used to calculate the match probability were shown to significantly enhance the performance of the presented library search approach. With the aid of these features the average number of correct assignments was increased to 98%. For statistical evaluation of the match reliability the set of fragment ion spectra was extended with 300 spectra corresponding to 100 compounds not included in the reference library. Performance was checked with the aid of receiver operating characteristic (ROC) curves. Using the magnitude of the match probability as well as the precursor ion mass as benchmarks to rate the obtained top hit, overall correct classification of a compound being included or not included in the mass spectrometric library, was obtained in more than 95% of cases clearly indicating a high predictive accuracy of the established matching procedure. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Electrospray ionization tandem mass spectrometry differentiation of N-phosphoryl-[alpha]-, [beta]- and [gamma]-amino acids

    NASA Astrophysics Data System (ADS)

    Qiang, Liming; Cao, Shuxia; Zhao, Xiaoyang; Mao, Xiangju; Guo, Yanchun; Liao, Xincheng; Zhao, Yufen

    2007-10-01

    The fragmentation patterns of N-diisopropyloxyphosphoryl-l-[alpha]-Ala (DIPP-l-[alpha]-Ala), N-diisopropyloxyphosphoryl-d-[alpha]-Ala (DIPP-d-[alpha]-Ala), N-diisopropyloxyphosphoryl-[beta]-Ala (DIPP-[beta]-Ala) and N-diisopropyloxyphosphoryl-[gamma]-amino butyric acid (DIPP-[gamma]-Aba) were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). DIPP-d-[alpha]-Ala showed the same fragmentation pathways as DIPP-l-[alpha]-Ala. In the fragmentation of protonated DIPP-[beta]-Ala, the characteristic fragment ion [M + H - 2C3H6 - H2O - CH2CO]+ appeared and could be used to distinguish [beta]-Ala from l-[alpha]-Ala and d-[alpha]-Ala through tandem mass spectra, even though they possess the same molecular weight. In the fragmentation of protonated DIPP-[gamma]-Aba, the break of PN bond occurred and an interesting protonated lactam ion with five-membered ring was generated. Furthermore, in the MS3 spectrum of [M + Na - 2C3H6]+ ion of DIPP-[gamma]-Aba, a strong intensity of unique fragment ion, namely lactam-sodium adduct with five-membered ring, was observed, which could be considered as a mark for [gamma]-amino acids. The stepwise fragmentations of their [M + Na]+ ions and [M - H]- ions showed that they all underwent a PN to PO bond migration through a five-membered or six-membered or even seven-membered ring transition state, respectively, which supported the great affinity of hydroxyl for phosphoryl group.

  17. Resonant electron capture by aspartame and aspartic acid molecules.

    PubMed

    Muftakhov, M V; Shchukin, P V

    2016-12-30

    The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry in the rapid characterization of quinocetone metabolites formed in vitro.

    PubMed

    Liu, Zhao-Ying; Huang, Ling-Li; Chen, Dong-Mei; Dai, Meng-Hong; Tao, Yan-Fei; Wang, Yu-Lian; Yuan, Zong-Hui

    2010-02-01

    The application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry coupled with high-performance liquid chromatography (LC/MS-IT-TOF) in the rapid characterization of in vitro metabolites of quinocetone was developed. Metabolites formed in rat liver microsomes were separated using a VP-ODS column with gradient elution. Multiple scans of metabolites in MS and MS(2) modes and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. Most measured mass errors were less than 10 ppm for both protonated molecules and fragment ions using external mass calibration. The elemental compositions of all fragment ions of quinocetone and its metabolites could be rapidly assigned based upon the known compositional elements of protonated molecules. The structure of metabolites were elucidated based on the combination of three techniques: agreement between their proposed structure, the accurate masses, and the elemental composition of ions in their mass spectra; comparison of their changes in accurate molecular masses and fragment ions with those of parent drug or metabolite; and the elemental compositions of lost mass numbers in proposed fragmentation pathways. Twenty-seven phase I metabolites were identified as 11 reduction metabolites, three direct hydroxylation metabolites, and 13 metabolites with a combination of reduction and hydroxylation. All metabolites except the N-oxide reduction metabolite M6 are new metabolites of quinocetone, which were not previously reported. The ability to conduct expected biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurement, all in a single experimental run, is one of the most attractive features of this methodology. The results demonstrate the use of LC/MS-IT-TOF approach appears to be rapid, efficient, and reliable in structural characterization of drug metabolites.

  19. Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.

    PubMed

    Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W

    2018-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Detection of co-eluted peptides using database search methods

    PubMed Central

    Alves, Gelio; Ogurtsov, Aleksey Y; Kwok, Siwei; Wu, Wells W; Wang, Guanghui; Shen, Rong-Fong; Yu, Yi-Kuo

    2008-01-01

    Background Current experimental techniques, especially those applying liquid chromatography mass spectrometry, have made high-throughput proteomic studies possible. The increase in throughput however also raises concerns on the accuracy of identification or quantification. Most experimental procedures select in a given MS scan only a few relatively most intense parent ions, each to be fragmented (MS2) separately, and most other minor co-eluted peptides that have similar chromatographic retention times are ignored and their information lost. Results We have computationally investigated the possibility of enhancing the information retrieval during a given LC/MS experiment by selecting the two or three most intense parent ions for simultaneous fragmentation. A set of spectra is created via superimposing a number of MS2 spectra, each can be identified by all search methods tested with high confidence, to mimick the spectra of co-eluted peptides. The generated convoluted spectra were used to evaluate the capability of several database search methods – SEQUEST, Mascot, X!Tandem, OMSSA, and RAId_DbS – in identifying true peptides from superimposed spectra of co-eluted peptides. We show that using these simulated spectra, all the database search methods will gain eventually in the number of true peptides identified by using the compound spectra of co-eluted peptides. Open peer review Reviewed by Vlad Petyuk (nominated by Arcady Mushegian), King Jordan and Shamil Sunyaev. For the full reviews, please go to the Reviewers' comments section. PMID:18597684

  1. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  2. Andromeda: a peptide search engine integrated into the MaxQuant environment.

    PubMed

    Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias

    2011-04-01

    A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.

  3. Fission of Polyanionic Metal Clusters

    NASA Astrophysics Data System (ADS)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  4. Application of a multivariate normal distribution methodology to the dissociation of doubly ionized molecules: The DMDS (CH3 -SS-CH3 ) case.

    PubMed

    Varas, Lautaro R; Pontes, F C; Santos, A C F; Coutinho, L H; de Souza, G G B

    2015-09-15

    The ion-ion-coincidence mass spectroscopy technique brings useful information about the fragmentation dynamics of doubly and multiply charged ionic species. We advocate the use of a matrix-parameter methodology in order to represent and interpret the entire ion-ion spectra associated with the ionic dissociation of doubly charged molecules. This method makes it possible, among other things, to infer fragmentation processes and to extract information about overlapped ion-ion coincidences. This important piece of information is difficult to obtain from other previously described methodologies. A Wiley-McLaren time-of-flight mass spectrometer was used to discriminate the positively charged fragment ions resulting from the sample ionization by a pulsed 800 eV electron beam. We exemplify the application of this methodology by analyzing the fragmentation and ionic dissociation of the dimethyl disulfide (DMDS) molecule as induced by fast electrons. The doubly charged dissociation was analyzed using the Multivariate Normal Distribution. The ion-ion spectrum of the DMDS molecule was obtained at an incident electron energy of 800 eV and was matrix represented using the Multivariate Distribution theory. The proposed methodology allows us to distinguish information among [CH n SH n ] + /[CH 3 ] + (n = 1-3) fragment ions in the ion-ion coincidence spectra using ion-ion coincidence data. Using the momenta balance methodology for the inferred parameters, a secondary decay mechanism is proposed for the [CHS] + ion formation. As an additional check on the methodology, previously published data on the SiF 4 molecule was re-analyzed with the present methodology and the results were shown to be statistically equivalent. The use of a Multivariate Normal Distribution allows for the representation of the whole ion-ion mass spectrum of doubly or multiply ionized molecules as a combination of parameters and the extraction of information among overlapped data. We have successfully applied this methodology to the analysis of the fragmentation of the DMDS molecule. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Characterization of Novel Fusaricidins Produced by Paenibacillus polymyxa-M1 Using MALDI-TOF Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vater, Joachim; Niu, Ben; Dietel, Kristin; Borriss, Rainer

    2015-09-01

    Paenibacillus polymyxa-M1 is a potent producer of bioactive compounds, such as lipopeptides, polyketides, and lantibiotics of biotechnological and medical interest. Genome sequencing revealed nine gene clusters for nonribosomal biosynthesis of such agents. Here we report on the investigation of the fusaricidins, a complex of cyclic lipopeptides containing 15-guanidino-3-hydroxypentadecanoic acid (GHPD) as fatty acid component by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). More than 20 variants of these compounds were detected and characterized in detail. Mass spectrometric sequence analysis was performed by MALDI-LIFT-TOF/TOF fragment analysis. The obtained product ion spectra show a specific processing in the fatty acid part. GHPD is cleaved between the α- and ß-position yielding two fragments a and b, one bearing the end-standing guanidine group and another one comprising the residual two C-atoms of GHPD with the attached peptide moiety. The complete sequence of all fusaricidins was derived from sets of bn- and yn-ions. The fusaricidin complex can be divided into four lipopeptide families, three of them showing variations of the amino acid in position 3, Val or Ile for the first and Tyr or Phe for families 2 and 3, respectively. A collection of novel fusaricidins was detected differing from those of families 1-3 by an additional residue of 71 Da (family 4). LIFT-TOF/TOF fragment spectra of these species imply that in their peptide moiety, an Ala-residue is attached by an ester bond to the free hydroxyl group of Thr4. More than 10 novel fusaricidins were characterized mass spectrometrically.

  6. Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides

    NASA Astrophysics Data System (ADS)

    Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.

    2017-06-01

    Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.

  7. Characterization of the organic matter in submicron urban aerosols using a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Salvador, Christian Mark; Ho, T.-T.; Chou, Charles C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.

    2016-09-01

    Organic matter is the most complicated and unresolved major component of atmospheric aerosol particles. Its sources and global budget are still highly uncertain and thereby necessitate further research efforts with state-of-the-art instrument. This study employed a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS) for characterization of ambient organic aerosols. First, five authentic standard substances, which include phthalic acid, levoglucosan, arabitol, cis-pinonic acid and glutaric acid, were utilized to examine the response of the instrument. The results demonstrated the linearity of the TD-PTR-TOF-MS signals against a range of mass loading of specific species on filters. However, it was found that significant fragmentation happened to those challenging compounds, although the proton-transfer-reaction (PTR) was recognized as a soft ionization technique. Consequently, quantitative characterization of aerosols with the TD-PTR-TOF-MS depended on the availability of the fragmentation pattern in mass spectra and the recovery rate with the quantification ion peak(s). The instrument was further deployed to analyze a subset of submicron aerosol samples collected at the TARO (Taipei Aerosol and Radiation Observatory) in Taipei, Taiwan during August 2013. The results were compared with the measurements from a conventional DRI thermo-optical carbon analyzer. The inter-comparison indicated that the TD-PTR-TOF-MS underestimated the mass of total organic matter (TOM) in aerosol samples by 27%. The underestimation was most likely due to the thermo-decomposition during desorption processes and fragmentation in PTR drift tube, where undetectable fragments were formed. Besides, condensation loss of low vapor pressure species in the transfer components was also responsible for the underestimation to a certain degree. Nevertheless, it was showed that the sum of the mass concentrations of the major detected ion peaks correlated strongly with the TOM determined by DRI analyzer (R2 = 0.8578), suggesting that the TD-PTR-TOF-MS measurements explained more than 85% of the variance in the time series of TOM. In addition to identification by comparing with the fragmentation pattern obtained from the mass spectra of the authentic substances, most of the major ions were attributed to protonated or acylium ions of specific parent compounds. Amongst the quantified species with full calibration with authentic standard, phthalic acid was found accounting for 7.0% of the mass loading of TOM. In addition, a high-end estimation of 9.4% was suggested for the mass contribution from glutaric acid, which was made by assuming that the ion with m/z of 73.027 was totally produced from fragmentation of glutaric acid as characterization of authentic standard despite of the formation of protonated methyl-glyoxal ion. Moreover, a substantial contribution from ions corresponding to protonated acetic acid and acetone was measured, which could be produced from fragmentation of larger oxygenated molecules. The TD-PTR-TOF-MS measurements suggested that low molecular weight carboxylic acid (LMWCA), products of photochemical oxidation of gaseous hydrocarbons and fatty acids, constituted a major fraction of secondary organic aerosols in Taipei, Taiwan, a typical subtropical urban area.

  8. Identification of substances migrating from plastic baby bottles using a combination of low-resolution and high-resolution mass spectrometric analysers coupled to gas and liquid chromatography.

    PubMed

    Onghena, Matthias; Van Hoeck, Els; Van Loco, Joris; Ibáñez, María; Cherta, Laura; Portolés, Tania; Pitarch, Elena; Hernandéz, Félix; Lemière, Filip; Covaci, Adrian

    2015-11-01

    This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC-(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole-TOF-MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MS(E) approach). In the low-energy function, limited fragmentation took place, whereas for the high-energy function, fragmentation was enhanced. For less volatile unknowns, ultra-high pressure liquid chromatography-quadrupole-TOF-MS was additionally applied. Using a home-made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  10. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...

    2015-01-05

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore » groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O 3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 10 11 to 9.7 × 10 11 molec s cm −3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. Furthermore, while acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  11. Conformational Specific Infrared and Ultraviolet Spectroscopy of Cold YA(D-Pro)AA\\cdotH+ Ions: a Sterochemical "twist" on the Proline Effect

    NASA Astrophysics Data System (ADS)

    Harrilal, Christopher P.; DeBlase, Andrew F.; Burke, Nicole L.; McLuckey, Scott A.; Zwier, Timothy S.

    2016-06-01

    The "proline effect" is a well-known fragmentation phenomenon in mass spectrometry, in which y-fragments are produced preferentially over b-fragments during the collision induced dissociation of protonated L-proline containing peptide ions. This specific fragmentation channel is favored because of the high basicity of the secondary amine intermediate and the ring instability in alternative bn+ products [ASMS 2014, 25, 1705]. In contrast, peptides containing the D-Pro stereoisomer have been shown to largely favor the production of b4+ ions over y3+ ions. This strongly suggests that differences in the conformational preferences between the D-Pro and L-Pro diastereomers are likely to be responsible but structural evidence has been lacking to date. Using tandem mass spectrometry and IR-UV double resonant action spectroscopy we are able to compare the 3D structures of cold [YA(D-Pro)AA+H]+ to [YA(L-Pro)AA+H]+ ions. The UV action spectra reveals two major conformers in [YA(D-Pro)AA+H]+ and one major conformer in [YA(L-Pro)AA+H]+. Clear differences in the hydrogen bonding patterns are apparent between the two conformers observed in the D-Pro specie which are both distinct from the L-Pro diastereomer. Furthermore, conformer and diastereomer specific photofragmentation patterns are observed. It is also noted that a ten-fold photofragment enhancement unique to one of the D-Pro conformers is observed upon absorption of a resonant IR photon after UV excitation. Differences in the excited state photophysics between the two D-Pro conformers suggest that vibrational excitation of S1 turns on coupling to the dissociative -Tyr channel in one conformer, while this coupling is already present in the vibronic ground state of the other. Calculated harmonic spectra (M052X/6-31+G*) of conformers obtained from Monte Carlo searches to the experimental spectra.

  12. Characterization of polymer decomposition products by laser desorption mass spectrometry

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.

    1993-01-01

    Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.

  13. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    PubMed

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  14. Mass spectrometry of rhenium complexes: a comparative study by using LDI-MS, MALDI-MS, PESI-MS and ESI-MS.

    PubMed

    Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2012-03-01

    A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Use of ESI-MS to determine reaction pathway for hydrogen sulphide scavenging with 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine.

    PubMed

    Madsen, Henrik T; Søgaard, Erik G

    2012-01-01

    To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry was used to investigate the nature of unknown peaks in the mass spectra. The reaction was found to proceed as expected from theory with the triazine reacting with hydrogen sulphide to form the corresponding thiadiazine. This species subsequently reacted with a second hydrogen sulphide molecule to form the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution, and possible pathways and structures were suggested to describe the observed fragments. In these, thiadiazine fragmented to 2-(methylidene amino)-ethanol and 2-(1,3-thiazetidin-3-yl)-ethanol and N-(2-hydroxyethyl)-N-(sulfanylmethyl)-ethaniminium, which underwent a further fragmentation to N-methyl-N-(2-oxoethyl)-methaniminium. Dithiazine fragmented to N-methyl-N-(2-oxoethyl)-methaniminium as well. The by-product from this reaction is methanedithiol, which was not detected due to its low polarity.

  16. Characterization of Compounds in Psoralea corylifolia Using High-Performance Liquid Chromatography Diode Array Detection, Time-of-Flight Mass Spectrometry and Quadrupole Ion Trap Mass Spectrometry.

    PubMed

    Tan, Guangguo; Yang, Tiehong; Miao, Huayan; Chen, Hao; Chai, Yifeng; Wu, Hong

    2015-10-01

    High-performance liquid chromatography with diode array detection (HPLC-DAD), time-of-flight mass spectrometry (HPLC-TOFMS) and quadrupole ion trap mass spectrometry (HPLC-QITMS) were used for separation and identification of multi-components in Psoralea corylifolia. Benefiting from combining the accurate mass measurement of HPLC-TOFMS to generate elemental compositions, the complementary multilevel structural information provided by HPLC-QITMS and the characteristic UV spectra obtained from HPLC-DAD, 24 components in P. corylifolia were identified. The five groups of isomers were differentiated based on the fragmentation behaviors in QITMS and UV spectra. It can be concluded that an effective method based on the combination of HPLC-DAD, HPLC-TOFMS and HPLC-QITMS for identification of chemical components in P. corylifolia was established. The results provide essential data for further pharmacological and clinical studies of P. corylifolia and facilitate the rapid quality control of the crude drug. © Crown copyright 2015.

  17. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  18. Mechanistic Study of the Gas-Phase In-Source Hofmann Elimination of Doubly Quaternized Cinchona-Alkaloid Based Phase-Transfer Catalysts by (+)-Electrospray Ionization/Tandem Mass Spectrometry.

    PubMed

    Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W; Sherer, Edward C; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing

    2017-03-01

    An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M 2+ - R 1 + or R 2 + ] + in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H] + was also observed. Only a small amount of the doubly charged M 2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H] + was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular E i elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations. Graphical Abstract ᅟ.

  19. Mechanistic Study of the Gas-Phase In-Source Hofmann Elimination of Doubly Quaternized Cinchona-Alkaloid Based Phase-Transfer Catalysts by (+)-Electrospray Ionization/Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W.; Sherer, Edward C.; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing

    2017-03-01

    An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M2+ - R1 + or R2 +]+ in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H]+ was also observed. Only a small amount of the doubly charged M2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H]+ was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular Ei elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xueguang, E-mail: xue.g.ren@ptb.de; Pflüger, Thomas; Weyland, Marvin

    The ionization and fragmentation of methane induced by low-energy (E{sub 0} = 66 eV) electron-impact is investigated using a reaction microscope. The momentum vectors of all three charged final state particles, two outgoing electrons, and one fragment ion, are detected in coincidence. Compared to the earlier study [Xu et al., J. Chem. Phys. 138, 134307 (2013)], considerable improvements to the instrumental mass and energy resolutions have been achieved. The fragment products CH{sub 4}{sup +}, CH{sub 3}{sup +}, CH{sub 2}{sup +}, CH{sup +}, and C{sup +} are clearly resolved. The binding energy resolution of ΔE = 2.0 eV is a factormore » of three better than in the earlier measurements. The fragmentation channels are investigated by measuring the ion kinetic energy distributions and the binding energy spectra. While being mostly in consistence with existing photoionization studies the results show differences including missing fragmentation channels and previously unseen channels.« less

  1. Cluster correlation and fragment emission in 12C+12C at 95 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Tian, G.; Chen, Z.; Han, R.; Shi, F.; Luo, F.; Sun, Q.; Song, L.; Zhang, X.; Xiao, G. Q.; Wada, R.; Ono, A.

    2018-03-01

    The impact of cluster correlations has been studied in the intermediate mass fragment (IMF) emission in 12C+12C at 95 MeV/nucleon, using antisymmetrized molecular dynamics (AMD) model simulations. In AMD, the cluster correlation is introduced as a process to form light clusters with A ≤4 in the final states of a collision induced by the nucleon-nucleon residual interaction. Correlations between light clusters are also considered to form light nuclei with A ≤9 . This version of AMD, combined with GEMINI to calculate the decay of primary fragments, reproduces the experimental energy spectra of IMFs well overall with reasonable reproduction of light charged particles when we carefully analyze the excitation energies of primary fragments produced by AMD and their secondary decays. The results indicate that the cluster correlation plays a crucial role for producing fragments at relatively low excitation energies in the intermediate-energy heavy-ion collisions.

  2. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  3. Atmospheric-pressure ionization and fragmentation of peptides by solution-cathode glow discharge† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02032a Click here for additional data file.

    PubMed Central

    Schwartz, Andrew J.; Walton, Courtney L.; Williams, Kelsey L.; Hieftje, Gary M.

    2016-01-01

    Modern “-omics” (e.g., proteomics, glycomics, metabolomics, etc.) analyses rely heavily on electrospray ionization and tandem mass spectrometry to determine the structural identity of target species. Unfortunately, these methods are limited to specialized mass spectrometry instrumentation. Here, a novel approach is described that enables ionization and controlled, tunable fragmentation of peptides at atmospheric pressure. In the new source, a direct-current plasma is sustained between a tapered metal rod and a flowing sample-containing solution. As the liquid stream contacts the electrical discharge, peptides from the solution are volatilized, ionized, and fragmented. At high discharge currents (e.g., 70 mA), electrospray-like spectra are observed, dominated by singly and doubly protonated molecular ions. At lower currents (35 mA), many peptides exhibit extensive fragmentation, with a-, b-, c-, x-, and y-type ion series present as well as complex fragments, such as d-type ions, not previously observed with atmospheric-pressure dissociation. Though the mechanism of fragmentation is currently unclear, observations indicate it could result from the interaction of peptides with gas-phase radicals or ultraviolet radiation generated within the plasma. PMID:28451101

  4. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  5. Laser-induced desorption of atomic and molecular fragments from a tin dioxide surface modified by a thin organic covering of copper phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komolov, A. S., E-mail: akomolov07@ya.ru; Komolov, S. A.; Lazneva, E. F.

    2012-01-15

    The systematic features of laser-induced desorption from an SnO{sub 2} surface exposed to 10-ns pulsed neodymium laser radiation are studied at the photon energy 2.34 eV, in the range of pulse energy densities 1 to 50 mJ/cm{sup 2}. As the threshold pulse energy 28 mJ/cm{sup 2} is achieved, molecular oxygen O{sub 2} is detected in the desorption mass spectra from the SnO{sub 2} surface; as the threshold pulse energy 42 mJ/cm{sup 2} is reached, tin Sn, and SnO and (SnO){sub 2} particle desorption is observed. The laser desorption mass spectra from the SnO{sub 2} surface coated with an organic coppermore » phthalocyanine (CuPc) film 50 nm thick are measured. It is shown that laser irradiation causes the fragmentation of CuPc molecules and the desorption of molecular fragments in the laser pulse energy density range 6 to 10 mJ/cm{sup 2}. Along with the desorption of molecular fragments, a weak desorption signal of the substrate components O{sub 2}, Sn, SnO, and (SnO){sub 2} is observed in the same energy range. Desorption energy thresholds of substrate atomic components from the organic film surface are approximately five times lower than thresholds of their desorption from the atomically clean SnO{sub 2} surface, which indicates the diffusion of atomic components of the SnO{sub 2} substrate to the bulk of the deposited organic film.« less

  6. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  7. Tempest: GPU-CPU computing for high-throughput database spectral matching.

    PubMed

    Milloy, Jeffrey A; Faherty, Brendan K; Gerber, Scott A

    2012-07-06

    Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer.

  8. High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew

    Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z valuesmore » at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.« less

  9. Structural characterization by both positive and negative electrospray ion trap mass spectrometry of oligogalacturonates purified by high-performance anion-exchange chromatography.

    PubMed

    Quéméner, Bernard; Désiré, Cédric; Debrauwer, Laurent; Rathahao, Estelle

    2003-01-17

    The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.

  10. Structural elucidation and identification of a new derivative of phenethylamine using quadrupole time-of-flight mass spectrometry.

    PubMed

    Sekuła, Karolina; Zuba, Dariusz

    2013-09-30

    In recent years, the phenomenon of uncontrolled distribution of new psychoactive substances that were marketed without prior toxicological studies has been observed. Because many designer drugs are related in chemical structure, the potential for misidentifying them is an important problem. It is therefore essential to develop an analytical procedure for unequivocal elucidation of the structures of these compounds. The issue has been discussed in the context of 25I-NBMD [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2,3-methylenedioxyphenyl)methyl]ethanamine], a psychoactive substance first discovered on the drug market in 2012. The substance was extracted from blotter papers with methanol. Separation was achieved via liquid chromatography. Analysis was conducted by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). Identification of the psychoactive component was supported by electron impact gas chromatography/mass spectrometry (GC/EI-MS). The high accuracy of the LC/ESI-QTOFMS method allowed the molecular mass of the investigated substance (M(exp) = 441.0438 Da; mass error, ∆m = 0.2 ppm) and the formulae of ions formed during fragmentation to be determined. The main ions were recorded at m/z = 135.0440, 290.9876 and 305.9981. Structures of the obtained ions were elucidated in the tandem mass spectrometry (MS/MS) experiments by comparing them to mass spectra of previously detected derivatives of phenethylamine. The performed study indicated the potential for using LC/QTOFMS method to identify new designer drugs. This technique can be used supplementary to standard GC/MS. Prior knowledge of the fragmentation mechanisms of phenethylamines allowed to predict the mass spectra of the novel substance--25I-NBMD. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Neutron-encoded Signatures Enable Product Ion Annotation From Tandem Mass Spectra*

    PubMed Central

    Richards, Alicia L.; Vincent, Catherine E.; Guthals, Adrian; Rose, Christopher M.; Westphall, Michael S.; Bandeira, Nuno; Coon, Joshua J.

    2013-01-01

    We report the use of neutron-encoded (NeuCode) stable isotope labeling of amino acids in cell culture for the purpose of C-terminal product ion annotation. Two NeuCode labeling isotopologues of lysine, 13C615N2 and 2H8, which differ by 36 mDa, were metabolically embedded in a sample proteome, and the resultant labeled proteins were combined, digested, and analyzed via liquid chromatography and mass spectrometry. With MS/MS scan resolving powers of ∼50,000 or higher, product ions containing the C terminus (i.e. lysine) appear as a doublet spaced by exactly 36 mDa, whereas N-terminal fragments exist as a single m/z peak. Through theory and experiment, we demonstrate that over 90% of all y-type product ions have detectable doublets. We report on an algorithm that can extract these neutron signatures with high sensitivity and specificity. In other words, of 15,503 y-type product ion peaks, the y-type ion identification algorithm correctly identified 14,552 (93.2%) based on detection of the NeuCode doublet; 6.8% were misclassified (i.e. other ion types that were assigned as y-type products). Searching NeuCode labeled yeast with PepNovo+ resulted in a 34% increase in correct de novo identifications relative to searching through MS/MS only. We use this tool to simplify spectra prior to database searching, to sort unmatched tandem mass spectra for spectral richness, for correlation of co-fragmented ions to their parent precursor, and for de novo sequence identification. PMID:24043425

  12. Collision-induced fragmentation of negative ions from N-linked glycans derivatized with 2-aminobenzoic acid.

    PubMed

    Harvey, David J

    2005-05-01

    N-Linked glycans from bovine ribonuclease B, chicken ovalbumin, bovine fetuin, porcine thyroglobulin and human alpha(1)-acid glycoprotein were derivatized with 2-aminobenzoic acid by reductive amination and their tandem mass spectra were recorded by negative ion electrospray ionization with a quadrupole time-of-flight mass spectrometer. Derivatives were also prepared from 2-amino-5-methyl- and 2-amino-4,5-dimethoxybenzoic acid in order to confirm the identity of fragment ions containing the reducing terminus. Major fragments from the [M - H](-) ions from the neutral glycans retained the derivative (Y-type cleavages) and provided information on sequence and branching. Other major fragments were products of A-type cross-ring cleavages giving information on antenna structure. Singly doubly and triply charged ions were formed from sialylated glycans. They produced major fragments by loss of sialic acid and a series of singly charged ions that were similar to those from the neutral analogues. Doubly charge ions were also produced by the neutral glycans and were fragmented to form product ions with one and two charges. Again, the fragment ions with a single charge were similar to those from the singly charged parents, but branching information was less obvious because of the occurrence of more abundant ions produced by multiple cleavages. Detection limits were around 200 fmol (3 : 1 signal-to-noise ratio). Copyright 2005 John Wiley & Sons, Ltd.

  13. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

    PubMed Central

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research. PMID:22611397

  14. SpecOMS: A Full Open Modification Search Method Performing All-to-All Spectra Comparisons within Minutes.

    PubMed

    David, Matthieu; Fertin, Guillaume; Rogniaux, Hélène; Tessier, Dominique

    2017-08-04

    The analysis of discovery proteomics experiments relies on algorithms that identify peptides from their tandem mass spectra. The almost exhaustive interpretation of these spectra remains an unresolved issue. At present, an important number of missing interpretations is probably due to peptides displaying post-translational modifications and variants that yield spectra that are particularly difficult to interpret. However, the emergence of a new generation of mass spectrometers that provide high fragment ion accuracy has paved the way for more efficient algorithms. We present a new software, SpecOMS, that can handle the computational complexity of pairwise comparisons of spectra in the context of large volumes. SpecOMS can compare a whole set of experimental spectra generated by a discovery proteomics experiment to a whole set of theoretical spectra deduced from a protein database in a few minutes on a standard workstation. SpecOMS can ingeniously exploit those capabilities to improve the peptide identification process, allowing strong competition between all possible peptides for spectrum interpretation. Remarkably, this software resolves the drawbacks (i.e., efficiency problems and decreased sensitivity) that usually accompany open modification searches. We highlight this promising approach using results obtained from the analysis of a public human data set downloaded from the PRIDE (PRoteomics IDEntification) database.

  15. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry.

    PubMed

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.

  16. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. [Figure not available: see fulltext.

  17. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.

    PubMed

    Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B

    2018-06-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.

  18. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.

    2018-04-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.

  19. Robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming.

    PubMed

    Baran, Richard; Northen, Trent R

    2013-10-15

    Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.

  20. Gas chromatographic-mass spectrometric characterization of thebaol, an opium constituent, and its structural analogs.

    PubMed

    Megutnishvili, Levan; Todua, Nino; Stein, Stephen; Mikaia, Anzor

    2018-05-18

    A GC-MS method is described for the characterization of thebaol, a component of opium poppy. The method includes preliminary sample derivatization to TMS, TBDMS, TFA, PFP and HFB substituted products. Fragmentation of resulting derivatives is unique under electron ionization, and proceeds via consecutive loss of two radicals that violate the "even-electron rule". Peaks of [M-2CH 3 ] +. and [M-C 4 H 9 -CH 3 ] +. ions show maximum intensities in the spectra of trimethyl- and tert-butyldimethylsilyl-thebaols. Elimination of perfluoroalkyl and methyl radicals from M +. is characteristic for TFA, PFP and HFB thebaols. The same fragmentation peculiarity is characteristic for derivatives prepared from related natural compounds containing vicinal 2-methoxyphenol moieties. The unique fragmentation of trialkylsilyl and perfluoroacyl derivatives of thebaol can be successfully used for thebaol determination within complex mixtures. This is part 4 from the series "Analytical derivatives in mass spectrometry", parts 1, 2 and 3 see [1-3]. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Searching molecular structure databases with tandem mass spectra using CSI:FingerID

    PubMed Central

    Dührkop, Kai; Shen, Huibin; Meusel, Marvin; Rousu, Juho; Böcker, Sebastian

    2015-01-01

    Metabolites provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually rely on tandem MS to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. We present a method for searching molecular structure databases using tandem MS data of small molecules. Our method computes a fragmentation tree that best explains the fragmentation spectrum of an unknown molecule. We use the fragmentation tree to predict the molecular structure fingerprint of the unknown compound using machine learning. This fingerprint is then used to search a molecular structure database such as PubChem. Our method is shown to improve on the competing methods for computational metabolite identification by a considerable margin. PMID:26392543

  2. Strange and heavy hadrons production from coalescence plus fragmentation in AA collisions at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Plumari, Salvatore; Minissale, Vincenzo; Das, Santosh K.; Scardina, Francesco; Greco, Vincenzo

    2018-02-01

    In a coalescence plus fragmentation approach we study the pT spectra of charmed hadrons D0, Ds up to about 10 GeV and the Λ+c /D0 ratio from RHIC to LHC energies. In this study we have included the contribution from decays of heavy hadron resonances and also that due to fragmentation of heavy quarks that are left in the system after coalescence. The pT dependence of the heavy baryon/meson ratios is found to be sensitive to the heavy quark mass. In particular we found that the Λc/D0 is much flatter than the one for light baryon/meson ratio like p/π and Λ/K.

  3. Software for peak finding and elemental composition assignment for glycosaminoglycan tandem mass spectra.

    PubMed

    Hogan, John D; Klein, Joshua A; Wu, Jiandong; Chopra, Pradeep; Boons, Geert-Jan; Carvalho, Luis; Lin, Cheng; Zaia, Joseph

    2018-04-03

    Glycosaminoglycans (GAGs) covalently linked to proteoglycans (PGs) are characterized by repeating disaccharide units and variable sulfation patterns along the chain. GAG length and sulfation patterns impact disease etiology, cellular signaling, and structural support for cells. We and others have demonstrated the usefulness of tandem mass spectrometry (MS2) for assigning the structures of GAG saccharides; however, manual interpretation of tandem mass spectra is time-consuming, so computational methods must be employed. In the proteomics domain, the identification of monoisotopic peaks and charge states relies on algorithms that use averagine, or the average building block of the compound class being analyzed. While these methods perform well for protein and peptide spectra, they perform poorly on GAG tandem mass spectra, due to the fact that a single average building block does not characterize the variable sulfation of GAG disaccharide units. In addition, it is necessary to assign product ion isotope patterns in order to interpret the tandem mass spectra of GAG saccharides. To address these problems, we developed GAGfinder, the first tandem mass spectrum peak finding algorithm developed specifically for GAGs. We define peak finding as assigning experimental isotopic peaks directly to a given product ion composition, as opposed to deconvolution or peak picking, which are terms more accurately describing the existing methods previously mentioned. GAGfinder is a targeted, brute force approach to spectrum analysis that utilizes precursor composition information to generate all theoretical fragments. GAGfinder also performs peak isotope composition annotation, which is typically a subsequent step for averagine-based methods. Data are available via ProteomeXchange with identifier PXD009101. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed mainly to kinetic & potential ion scattering.[Funded by NSERC and the Canadian Space Agency].

  5. Negative electrospray ionization mass spectrometry: a method for sequencing and determining linkage position in oligosaccharides from branched hemicelluloses.

    PubMed

    Quéméner, Bernard; Vigouroux, Jacqueline; Rathahao, Estelle; Tabet, Jean Claude; Dimitrijevic, Aleksandra; Lahaye, Marc

    2015-01-01

    Xyloglucans of apple, tomato, bilberry and tamarind were hydrolyzed by commercial endo β-1-4-D-endoglucanase. The xylo-gluco-oligosaccharides (XylGos) released were separated on CarboPac PA 200 column in less than 15 min, and, after purification, they were structurally characterized by negative electrospray ionization mass spectrometry using a quadrupole time-of-flight (ESI-Q-TOF), a hybrid linear ion trap (LTQ)/Orbitrap and a hybrid quadrupole Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. In order to corroborate the fragmentation routes observed on XylGos, some commercial galacto-manno-oligosaccharides (GalMOs) and glucurono-xylo-oligosaccharides were also studied. The fragmentation pathways of the ionized GalMos were similar to those of XylGos ones. The product ion spectra were mainly characterized by prominent double cleavage (D) ions corresponding to the entire inner side chains. The directed fragmentation from the reducing end to the other end was observed for the main glycosylated backbone but also for the side-chains, allowing their complete sequencing. Relevant cross-ring cleavage ions from (0,2)X(j)-type revealed to be diagnostic of the 1-2-linked- glycosyl units from XylGos together with the 1-2-linked glucuronic acid unit from glucuronoxylans. Resonant activation in the LTQ Orbitrap allowed not only determining the type of all linkages but also the O-acetyl group location on fucosylated side-chains. Moreover, the fragmentation of the different side chains using the MS(n) capabilities of the LTQ/Orbitrap analyzer also allowed differentiating terminal arabinosyl and xylosyl substituents inside S and U side-chains of XylGos, respectively. The CID spectra obtained were very informative for distinction of isomeric structures differing only in their substitution pattern. These features together makes the fragmentation in negative ionization mode a relevant and powerful technique useful to highlight the subtle structural changes generally observed during the development of plant organs such as during fruit ripening and for the screening of cell wall mutants with altered hemicellulose structure. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The curved-field reflectron: PSD and CID without scanning, stepping or lifting

    NASA Astrophysics Data System (ADS)

    Cotter, Robert J.; Iltchenko, Serguei; Wang, Dongxia

    2005-02-01

    The curved-field reflectron (CFR), developed initially to improve focusing of product ions in a dual reflectron tandem time-of-flight (RTOF/RTOF) mass spectrometer, has been used for several years in single analyzer instruments for the focusing of ions produced by post-source decay (PSD) without stepping the reflectron voltage. More recently, the addition of a collision chamber to a commercial instrument that incorporates the CFR enables both PSD and collision-induced dissociation (CID) mass spectra to be obtained in a tandem instrument without decelerating the primary ions or reaccelerating product ions to accommodate the limited energy bandwidth of the reflectron. In the PSD or laser-induced dissociation (LID) mode, i.e., without a collision gas, nearly complete b- and y-series ions are observed, which is illustrated here in the MS/MS spectra of peptides obtained in the determination of the lysine acetylation sites in a histone acetyl transferase (HAT) protein. Addition of the collision gas produces similar mass spectra, though higher collision gas pressure increases the intensities of lower mass and internal fragments, both of which appear to result from multiple collisions. In addition N-terminal sulfonation of the peptides obtained from tryptic digests produces exclusive y-series ions in the product ion mass.

  7. Advantages of isotopic depletion of proteins for hydrogen/deuterium exchange experiments monitored by mass spectrometry.

    PubMed

    Bou-Assaf, George M; Chamoun, Jean E; Emmett, Mark R; Fajer, Piotr G; Marshall, Alan G

    2010-04-15

    Solution-phase hydrogen/deuterium exchange (HDX) monitored by mass spectrometry is an excellent tool to study protein-protein interactions and conformational changes in biological systems, especially when traditional methods such as X-ray crystallography or nuclear magnetic resonance are not feasible. Peak overlap among the dozens of proteolytic fragments (including those from autolysis of the protease) can be severe, due to high protein molecular weight(s) and the broad isotopic distributions due to multiple deuterations of many peptides. In addition, different subunits of a protein complex can yield isomeric proteolytic fragments. Here, we show that depletion of (13)C and/or (15)N for one or more protein subunits of a complex can greatly simplify the mass spectra, increase the signal-to-noise ratio of the depleted fragment ions, and remove ambiguity in assignment of the m/z values to the correct isomeric peptides. Specifically, it becomes possible to monitor the exchange progress for two isobaric fragments originating from two or more different subunits within the complex, without having to resort to tandem mass spectrometry techniques that can lead to deuterium scrambling in the gas phase. Finally, because the isotopic distribution for a small to medium-size peptide is essentially just the monoisotopic species ((12)C(c)(1)H(h)(14)N(n)(16)O(o)(32)S(s)), it is not necessary to deconvolve the natural abundance distribution for each partially deuterated peptide during HDX data reduction.

  8. An investigation of electronic states of some molecules and molecular cations using mass analyzed threshold ionization and photoinduced Rydberg ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Hofstein, Jason David

    1999-11-01

    Mass analyzed threshold ionization (MATI) experiments have enabled mapping of the n-dependent Rydberg state survival probability for a series of molecules. Utilizing vacuum and extreme ultraviolet (VUV/XUV) photons, one photon Rydberg manifold spectra of argon, hydrogen chloride, nitrogen, benzene, and oxygen were produced, and the prospects of photoinduced Rydberg ionization (PIRI) experiments examined. It was found that the widths of Rydberg manifolds for the molecules studied are quite different. Hydrogen chloride and nitrogen have the narrowest manifold width, followed by benzene, and then oxygen. These varying widths are most strongly correlated with the angular momentum (i.e., quantum defect) of the initially prepared Rydberg orbital. PIRI experiments required the use of a static cell, rather than a molecular jet assembly, for the more efficient production of higher amounts of VUV/XUV radiation, and hence more Rydberg signal needed to observe PIRI. Armed with the ability to produce tunable VUV/XUV radiation, and to determine the feasibility of a PIRI experiment, the MATI and fragment PIRI spectra of trans-1,3-butadiene (BD) were recorded. The MATI spectrum is vibrationally resolved and was analyzed with the help of ab initio calculations and other published results. The fragment PIRI spectrum of the A<==X transition of BD+ is not vibrationally resolved, but information regarding the wavelength dependence of fragmentation pathways has been gathered and interpreted. It was found that at low photodissociation photon energies, production of C3H3+ dominates, but at higher photon energies, C2H4 + is also produced. The production of each fragment showed a definite PIRI wavelength dependence.

  9. Sodiation as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS spectra of complex astaxanthin ester mixtures from Haematococcus pluvialis.

    PubMed

    Weesepoel, Yannick; Vincken, Jean-Paul; Pop, Raluca Maria; Liu, Kun; Gruppen, Harry

    2013-07-01

    The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono- and diester palmitate standards in MALDI-TOF/TOF-MS showed that sodium adduct parent masses [M + Na](+) gave much simpler MS(2) spectra than radical / protonated [M](+●) / [M + H](+) parents. [M + Na](+) fragments yielded diagnostic polyene-specific eliminations and fatty acid neutral losses, whereas [M](+●) / [M + H](+) fragmentation resulted in a multitude of non-diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na](+) ionization by addition of sodium acetate, and best signal-to-noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI-TOF/TOF-MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono- and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all-trans esterified esters found in LC were identified with MALDI-TOF/TOF-MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.

  10. A novel spectral library workflow to enhance protein identifications.

    PubMed

    Li, Haomin; Zong, Nobel C; Liang, Xiangbo; Kim, Allen K; Choi, Jeong Ho; Deng, Ning; Zelaya, Ivette; Lam, Maggie; Duan, Huilong; Ping, Peipei

    2013-04-09

    The innovations in mass spectrometry-based investigations in proteome biology enable systematic characterization of molecular details in pathophysiological phenotypes. However, the process of delineating large-scale raw proteomic datasets into a biological context requires high-throughput data acquisition and processing. A spectral library search engine makes use of previously annotated experimental spectra as references for subsequent spectral analyses. This workflow delivers many advantages, including elevated analytical efficiency and specificity as well as reduced demands in computational capacity. In this study, we created a spectral matching engine to address challenges commonly associated with a library search workflow. Particularly, an improved sliding dot product algorithm, that is robust to systematic drifts of mass measurement in spectra, is introduced. Furthermore, a noise management protocol distinguishes spectra correlation attributed from noise and peptide fragments. It enables elevated separation between target spectral matches and false matches, thereby suppressing the possibility of propagating inaccurate peptide annotations from library spectra to query spectra. Moreover, preservation of original spectra also accommodates user contributions to further enhance the quality of the library. Collectively, this search engine supports reproducible data analyses using curated references, thereby broadening the accessibility of proteomics resources to biomedical investigators. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Joong-Won, E-mail: jshin@govst.edu; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872; Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate,more » rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.« less

  12. Ion mobility mass spectrometry for ion recovery and clean-up of MS and MS/MS spectra obtained from low abundance viral samples

    PubMed Central

    Harvey, David J.; Crispin, Max; Bonomelli, Camille; Scrivens, Jim H.

    2016-01-01

    Graphical abstract Many samples of complex mixtures of N-glycans released from small amounts of material, such as glycoproteins from viruses, present problems for mass spectrometric analysis because of the presence of contaminating material that is difficult to remove by conventional methods without involving sample loss. This paper describes the use of ion mobility for extraction of glycan profiles from such samples and for obtaining clean CID spectra when targeted m/z values capture additional ions from those of the target compound. N-Glycans were released enzymatically from within SDS-PAGE gels, from the representative glycoprotein, gp120 of the human immunodeficiency virus, and examined by direct infusion electrospray in negative mode followed by ion mobility with a Waters Synapt G2 mass spectrometer. Clean profiles of singly, doubly and triply charged N-glycans were obtained from samples in cases where the raw electrospray spectra displayed only a few glycan ions as the result of low sample concentration or the presence of contamination. Ion mobility also enabled uncontaminated CID spectra to be obtained from glycans when their molecular ions displayed coincidence with ions from fragments or multiply charged ions with similar m/z values. This technique proved to be invaluable for removing extraneous ions from many CID spectra. The presence of such ions often produces spectra that are difficult to interpret. Most CID spectra, even those from abundant glycan constituents, benefited from such clean-up showing that the extra dimension provided by ion mobility was invaluable for studies of this type. PMID:26204966

  13. Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling.

    PubMed

    Ahmed, Zeeshan; Zeeshan, Saman; Huber, Claudia; Hensel, Michael; Schomburg, Dietmar; Münch, Richard; Eisenreich, Wolfgang; Dandekar, Thomas

    2013-07-09

    The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. The open-source software "Least Square Mass Isotopomer Analyzer" (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.

  14. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  15. [Mass-spectrometric analysis of an anti-microbial preparation decamethoxine].

    PubMed

    Sukhodub, L F; Kosevich, M V; Shelkovskiĭ, V S; Volianskiĭ, Iu L

    1989-11-01

    I. I. Mechnikov Kharkov Research Institute of Microbiology, Vaccines and Sera, Ministry of Public Health of the Ukrainian SSR. The results of mass spectrometric investigation of decamethoxine++, an antimicrobial chemotherapeutic drug, are presented. It was shown that desorption-field mass spectrometry provided recording decamethoxine++ intensive quasimolecular ions [M.Cl]+ and [M]++ forming under conditions of high electric intensity only from the intact parent molecule. Hence, the presence of the peaks in the desorption field mass spectra made it possible to definitively determine decamethoxine++ in the samples. Therefore, the procedure of desorption-field mass spectrometry proved reliable in identification of bisquaternary ammonium compounds. Ways for thermal decomposition and mass spectrometric fragmentation of the decamethoxine++ molecule under various ionization conditions are also discussed.

  16. Centrality Evolution of pt and yt Spectra from Au-Au Collisions at √ {sNN} = 200 GeV

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    A two-component analysis of spectra to pt = 12 GeV/c for identified pions and protons from 200 GeV Au-Au collisions is presented. The method is similar to an analysis of the nch dependence of pt spectra from p-p collisions at 200 GeV, but applied to Au-Au centrality dependence. The soft-component reference is a Lévy distribution on transverse mass mt. The hard-component reference is a Gaussian on transverse rapidity yt with exponential (pt power-law) tail. Deviations of data from the reference are described by hard-component ratio rAA, which generalizes nuclear modification factor RAA. The analysis suggests that centrality evolution of pion and proton spectra is dominated by changes in parton fragmentation. The structure of rAA suggests that parton energy loss produces a negative boost Δyt of a large fraction (but not all) of the minimum-bias fragment distribution, and that lower-energy partons suffer relatively less energy loss, possibly due to color screening. The analysis also suggests that the anomalous p/π ratio may be due to differences in the parton energy-loss process experienced by the two hadron species. This analysis provides no evidence for radial flow.

  17. High-energy Collision-induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    PubMed Central

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-01-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote-fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers. PMID:24781458

  18. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates.

    PubMed

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B; Holy, Timothy E; Gross, Michael L

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  19. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    PubMed

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  20. Spectra library assisted de novo peptide sequencing for HCD and ETD spectra pairs.

    PubMed

    Yan, Yan; Zhang, Kaizhong

    2016-12-23

    De novo peptide sequencing via tandem mass spectrometry (MS/MS) has been developed rapidly in recent years. With the use of spectra pairs from the same peptide under different fragmentation modes, performance of de novo sequencing is greatly improved. Currently, with large amount of spectra sequenced everyday, spectra libraries containing tens of thousands of annotated experimental MS/MS spectra become available. These libraries provide information of the spectra properties, thus have the potential to be used with de novo sequencing to improve its performance. In this study, an improved de novo sequencing method assisted with spectra library is proposed. It uses spectra libraries as training datasets and introduces significant scores of the features used in our previous de novo sequencing method for HCD and ETD spectra pairs. Two pairs of HCD and ETD spectral datasets were used to test the performance of the proposed method and our previous method. The results show that this proposed method achieves better sequencing accuracy with higher ranked correct sequences and less computational time. This paper proposed an advanced de novo sequencing method for HCD and ETD spectra pair and used information from spectra libraries and significant improved previous similar methods.

  1. GlyQ-IQ: Glycomics Quintavariate-Informed Quantification with High-Performance Computing and GlycoGrid 4D Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronewitter, Scott R.; Slysz, Gordon W.; Marginean, Ioan

    2014-05-31

    Dense LC-MS datasets have convoluted extracted ion chromatograms with multiple chromatographic peaks that cloud the differentiation between intact compounds with their overlapping isotopic distributions, peaks due to insource ion fragmentation, and noise. Making this differentiation is critical in glycomics datasets because chromatographic peaks correspond to different intact glycan structural isomers. The GlyQ-IQ software is targeted chromatography centric software designed for chromatogram and mass spectra data processing and subsequent glycan composition annotation. The targeted analysis approach offers several key advantages to LC-MS data processing and annotation over traditional algorithms. A priori information about the individual target’s elemental composition allows for exactmore » isotope profile modeling for improved feature detection and increased sensitivity by focusing chromatogram generation and peak fitting on the isotopic species in the distribution having the highest intensity and data quality. Glycan target annotation is corroborated by glycan family relationships and in source fragmentation detection. The GlyQ-IQ software is developed in this work (Part 1) and was used to profile N-glycan compositions from human serum LC-MS Datasets. The companion manuscript GlyQ-IQ Part 2 discusses developments in human serum N-glycan sample preparation, glycan isomer separation, and glycan electrospray ionization. A case study is presented to demonstrate how GlyQ-IQ identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In addition, GlyQ-IQ was used to generate a broad N-glycan profile from a high resolution (100K/60K) nESI-LS-MS/MS dataset including CID and HCD fragmentation acquired on a Velos Pro Mass spectrometer. 101 glycan compositions and 353 isomer peaks were detected from a single sample. 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and are backed with high resolution mass spectra and mass accuracies less than 7 ppm.« less

  2. Effects of target fragmentation on evaluation of LET spectra from space radiations: implications for space radiation protection studies

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Badhwar, G. D.

    1996-01-01

    We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.

  3. Structural Characterization of Laboratory Made Tholins by IRMPD Action Spectroscopy and Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Thissen, R.; Somogyi, A.; Vuitton, V.; Bégué, D.; Lemaire, J.; Steinmetz, V.

    2011-10-01

    The complex organic material that is found on the surface and within the haze layer of Titan is attributed to chemistry occurring in its thick N2/CH4 atmosphere. Although several groups are producing in various laboratory setting the socalled tholins which have been investigated by using analytical methods including UV/Vis, fluorescence, IR, and MS1-5, these very complex organic mixtures still hold many unanswered questions, especially related to the potentiality for their prebiotic chemistry. In addition to tholins characterization and analysis, we recently investigated quantitatively the hydrolysis kinetics of tholins in pure and NH3 containing water at different temperatures.7-8 Our groups at UJF (Grenoble) and at U of Arizona (Tucson) have been collaborating on mass spectral analyses of tholins samples for several years.9 Here, we report our most recent results on the structural characterization of tholins by infrared multiphoton dissociation (IRMPD) action spectroscopy10 and ultrahigh resolution MS. IRMPD action spectroscopy is a recently developed technique that uses IR photons of variable wavelengths to activate ions trapped inside an ion trap. When photons are absorbed at a given wavelength, the selected ion fragments and this fragmentation is monitored as a function of wavelength, analog to an absorption spectrum (impossible to record otherwise because of the much reduced density). This technique can, therefore, be used to determine IR spectra of ions in the gas phase, and provides with very acute structural information. IRMPD action spectroscopy is often used to distinguish between structural isomers of isobaric ions. The drawback is that it requests for high power lasers. Only two Free Electron Lasers (FEL) are available in the world and allow to record spectra with reasonable resolution (20-25 cm-1). IRMPD action spectra of selected ions from tholins will be presented and discussed together with observed fragmentation processes that reveal structural features of the ions. We have studied ions in the mass range from 60 to 160 u, corresponding to particularly interesting species already characterized by other (e.g. tandem MS/MS) methods.

  4. Functional Groups and Structural Insights of Water-Soluble Organic Carbon using Ultrahigh Resolution FT-ICR Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mazzoleni, L. R.; Habib, D.; Zhao, Y.; Dalbec, M.; Samburova, V.; Hallar, G.; Zielinska, B.; Lowenthal, D.

    2013-12-01

    Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas phase, aqueous phase and particle phase reactions contribute to pre-existing aerosol organic mass or nucleate new aerosol particles. Thus, ambient aerosols carry a complex array of WSOC components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. The observed trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components closely associated with terpene ozonolysis secondary organic aerosol (SOA). The aerosol WSOC was further characterized using ultrahigh resolution tandem MS analysis with infrared multiphoton dissociation to determine the functional groups and structural properties of 1700 WSOC species up to m/z 600. Due to the complex nature of the WSOC, multiple precursor ions were simultaneously fragmented. The exact mass measurements of the precursor and product ions facilitated molecular formula assignments and matching of neutral losses. The most important neutral losses are CO2, H2O, CH3OH, HNO3, CH3NO3, SO3 and SO4. The presence and frequency of these losses indicate the type of functional groups contained in the precursor structures. Consistent with the acidic nature of WSOC compounds, the most frequently observed losses were CO2 (~65%), H2O (~60%) and CH3OH (~40%). Several of the studied precursors had two or more losses associated with them and combinations of neutral losses such as, H4O2, CH2O3, C2H4O3 and C2O4. These neutral losses clearly indicate a multifunctional nature of the studied aerosol WSOC. Analysis of the fragment ions which were not associated with typical neutral losses indicates an overall aliphatic SOA-like structure with regular differences of 14 Da and 18 Da between low molecular weight fragment ions. Many of the fragment ions were observed in 85% or more of the MS2 spectra. The patterns observed in the low molecular weight fragment ions were very consistent over all of the mass spectra providing evidence for the significance of the non-oxidative accretion formation pathways.

  5. IR, FT-ICR-MS studies on (1'S, 6'S)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid hydrochloride salt.

    PubMed

    Lin, Zhiwei

    2014-01-01

    The infrared spectra of (1'S, 6'S)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid hydrochloride salt (CLF-HCl) were studied and compared with free base. Their fragmentation pathways were investigated using tandem mass spectrometric (MS/MS) techniques on Fourier-transform ion cyclotron resonance spectrum, and many characteristic fragment ions were found. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Evolution of ep fragmentation and multiplicity distributions in the Breit frame

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Walter, T.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Nunnemann, T.; Nyberg-Werther, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Reimer, P.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wollatz, H.; Wünsch, E.; ŽáČek, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1997-02-01

    Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken- x and Q2, and KNO scaling is discussed.

  7. The fate of b-ions in the two worlds of collision-induced dissociation.

    PubMed

    Waldera-Lupa, Daniel M; Stefanski, Anja; Meyer, Helmut E; Stühler, Kai

    2013-12-01

    Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss. © 2013.

  8. Low-energy collision induced dissociation (low-energy CID), collision induced dissociation (CID) and higher-energy collision dissociation (HCD) mass spectrometry for structural elucidation of saccharides and clarification of their dissolution mechanism in DMAc/LiCl.

    PubMed

    Bayat, Parisa; Lesage, Denis; Cole, Richard B

    2018-05-29

    The dissolution mechanism of oligosaccharides in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl), a solvent used for cellulose dissolution, and the capabilities of low-energy collision induced dissociation (low-energy CID), collision induced dissociation (CID) and higher-energy collision dissociation (HCD) for structural analysis of carbohydrates were investigated. Comparing the spectra obtained using three techniques shows that, generally, when working with mono-lithiated sugars, CID spectra provide more structurally informative fragments, and glycosidic bond cleavage is the main pathway. However, when working with di-lithiated sugars, HCD spectra can be more informative providing predominately cross-ring cleavage fragments. This is because HCD is a non-resonant activation technique and it allows a higher amount of energy to be deposited in a short time, giving access to more endothermic decomposition pathways as well as consecutive fragmentations. The difference in preferred dissociation pathways of mono-lithiated and di-lithiated sugars indicates that the presence of the second lithium strongly influences the relative rate constants for cross-ring cleavages (rearrangement) vs. direct glycosidic bond cleavages, and disfavors the latter. Regarding the dissolution mechanism of sugars in DMAc/LiCl, CID and HCD experiments on di-lithiated and tri-lithiated sugars reveal that intensities of product ions containing two Li + or three Li + , respectively, are higher than those bearing only one Li + . In addition, comparing the fragmentation spectra (both HCD and CID) of LiCl adducted lithiated sugar and NaCl adducted sodiated sugar shows that while, in the latter case, loss of NaCl is dominant, in the former case, loss of HCl occurs preferentially. The compiled evidence implies that there is a strong and direct interaction between lithium and the saccharide during the dissolution process in the DMAc/LiCl solvent system. This article is protected by copyright. All rights reserved.

  9. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E.

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. [Figure not available: see fulltext.

  10. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  11. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    PubMed

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  12. Surface immobilized antibody orientation determined using ToF-SIMS and multivariate analysis.

    PubMed

    Welch, Nicholas G; Madiona, Robert M T; Payten, Thomas B; Easton, Christopher D; Pontes-Braz, Luisa; Brack, Narelle; Scoble, Judith A; Muir, Benjamin W; Pigram, Paul J

    2017-06-01

    Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab') 2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab') 2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab') 2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates. Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct characterization of surface immobilized and oriented antibodies, are under-utilized in current practice. Selection of a small number of mass fragments for analysis, typically pertaining to amino acids, is commonplace in literature, leaving the majority of the information-rich spectra unanalyzed. The novelty of this work is the utilization of a comprehensive, unbiased mass fragment list and the employment of principal component analysis (PCA) and artificial neural network (ANN) models in a unique methodology to prove antibody orientation. This methodology is of significant and broad interest to the scientific community as it is applicable to a range of substrates and allows for direct, label-free characterization of surface bound proteins. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  13. Fast characterization of cheeses by dynamic headspace-mass spectrometry.

    PubMed

    Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis

    2002-03-15

    This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.

  14. Synthesis, Characterization, and Processing of Copper, Indium, and Gallium Dithiocarbamates for Energy Conversion Applications

    NASA Technical Reports Server (NTRS)

    Duraj, S. A.; Duffy, N. V.; Hepp, A. F.; Cowen, J. E.; Hoops, M. D.; Brothrs, S. M.; Baird, M. J.; Fanwick, P. E.; Harris, J. D.; Jin, M. H.-C.

    2009-01-01

    Ten dithiocarbamate complexes of indium(III) and gallium(III) have been prepared and characterized by elemental analysis, infrared spectra and melting point. Each complex was decomposed thermally and its decomposition products separated and identified with the combination of gas chromatography/mass spectrometry. Their potential utility as photovoltaic materials precursors was assessed. Bis(dibenzyldithiocarbamato)- and bis(diethyldithiocarbamato)copper(II), Cu(S2CN(CH2C6H5)2)2 and Cu(S2CN(C2H5)2)2 respectively, have also been examined for their suitability as precursors for copper sulfides for the fabrication of photovoltaic materials. Each complex was decomposed thermally and the products analyzed by GC/MS, TGA and FTIR. The dibenzyl derivative complex decomposed at a lower temperature (225-320 C) to yield CuS as the product. The diethyl derivative complex decomposed at a higher temperature (260-325 C) to yield Cu2S. No Cu containing fragments were noted in the mass spectra. Unusual recombination fragments were observed in the mass spectra of the diethyl derivative. Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1(bar) with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.

  15. Infrared Spectroscopy of the Mass 31 Cation: Protonated Formaldehyde VS. The Triplet Methoxy Cation

    NASA Astrophysics Data System (ADS)

    Mosley, J. D.; Cheng, T. C.; Duncan, M. A.

    2012-06-01

    The m/z=31 cation is produced by ionization and fragmentation of methanol, ethanol, dimethyl ether, etc. Two structures have been proposed, protonated formaldehyde (^1CH_2OH^+) and the triplet methoxy cation (^3CH_3O^+). The infrared spectrum of the mass 31 cation is obtained using infrared photodissociation spectroscopy with Ar tagging. The spectrum reveals the presence of two stable isomers, protonated formaldehyde (^1CH_2OH^+) and the triplet methoxy cation (^3CH_3O^+). The triplet methoxy cation has been studied extensively and is predicted to interconvert to protonated formaldehyde through an essentially barrierless process on a timescale much faster than our experiment (>100 μs). The presence of two structural isomers is verified by comparison of spectra from different precursors and spectra of different temperature ions from the same precursor.

  16. Missing-mass spectroscopy of the 12C(p ,d ) reaction near the η'-meson production threshold

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. K.; Itahashi, K.; Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knöbel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.; η-PRiME/Super-FRS Collaboration

    2018-01-01

    Excitation-energy spectra of 11C nuclei near the η'-meson production threshold have been measured by missing-mass spectroscopy using the 12C(p ,d ) reaction. A carbon target has been irradiated with a 2.5 GeV proton beam supplied by the synchrotron SIS-18 at GSI to produce η'-meson bound states in 11C nuclei. Deuterons emitted at 0∘ in the reaction have been momentum analyzed by the fragment separator (FRS), used as a high-resolution spectrometer. No distinct structure due to the formation of η'-mesic states is observed although a high statistical sensitivity is achieved in the experimental spectra. Upper limits on the formation cross sections of η'-mesic states are determined, and thereby a constraint imposed on the η'-nucleus interaction is discussed.

  17. Fragment profiling of low molecular weight heparins using reversed phase ion pair liquid chromatography-electrospray mass spectrometry.

    PubMed

    Xu, Xiaohui; Li, Daoyuan; Chi, Lequan; Du, Xuzhao; Bai, Xue; Chi, Lianli

    2015-04-30

    Low molecular weight heparins (LMWHs) are linear and highly charged carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. Compared to unfractionated heparin (UFH), LMWHs are prevalently used as clinical anticoagulant drugs due to their lower side effects and better bioavailability. The work presented herein provides a rapid and powerful fragment mapping method for structural characterization of LMWHs. The chain fragments of two types of LMWHs, enoxaparin and nadroparin, were generated by controlled enzymatic digestion with each of heparinase I (Hep I, Enzyme Commission (EC) # 4.2.2.7), heparinase II (Hep II, no EC # assigned) and heparinase III (Hep III, EC # 4.2.2.8). Reversed phase ion pair high performance liquid chromatography (RPIP-HPLC) coupled with electrospray ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) was used to profile the oligosaccharide chains ranging from disaccharides to decasaccharides. A database containing all theoretical structural compositions was established to assist the mass spectra interpretation. The six digests derived by three enzymes from two types of LMWHs exhibited distinguishable fingerprinting patterns. And a total of 94 enoxaparin fragments and 109 nadroparin fragments were detected and identified. Besides the common LMWH oligosaccharides, many components containing characteristic LMWH structures such as saturated L-idopyranosuronic acid, 2,5-anhydro-D-mannitol, 1,6-anhydro-D-aminopyranose, as well as odd number oligosaccharides were also revealed. Quantitative comparison of major components derived from innovator and generic nadroparin products was presented. This approach to profile LMWHs' fragments offers a highly reproducible, high resolution and information-rich tool for evaluating the quality of this category of anticoagulant drugs or comparing structural similarities among samples from various sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characterisation of homoflavonoids from three Ophioglossum species using liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry.

    PubMed

    Wan, Chuan-Xing; Luo, Jian-Guang; Gu, Yu-Cheng; Xu, De-Ran; Kong, Ling-Yi

    2013-01-01

    Homoflavonoids, characterised by one more carbon atom directly added to C6 -C3 -C6 backbone of flavonoids, are rich in the species of genus Ophioglossum. Up to now we have little knowledge about their MS fragmentation patterns. It is therefore necessary to investigate their MS fragmentation pathways so as to distinguish them from other types of flavonoids. To develop a rapid method for identifying homoflavonoids from Ophioglossum based on their characteristic MS fragmentation. Mass spectrometry fragmentation pathways and qualitative analysis of homoflavonoids in three ferns of Ophioglosssum were investigated by using high-performance liquid chromatography coupled with diode-array detection and electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI/MS(n) ). The analyses of the MS(n) spectra of the homoflavonoids allowed us to classify them into two types according to their fragmentation characteristics. The type I homoflavonoids, with an attached additional carbon atom to the C-3 position of the C-ring, presented the initial competing loss of H2 O and CH2 O from their aglycone ions, compared to the initial removal of H2 O or CO in the case of the type II homoflavonoids, which bear the additional carbon atom at the C-2' site of the B-ring and forming ring D. The above characteristic fragmentations of homoflavonoids were quite different from those of other flavonoids, and were successfully applied to identify homoflavonoids in the crude extracts of three Ophioglossum species. The HPLC-DAD-ESI/MS(n) method obtained in the present study provided a powerful tool for identifying homoflavonoids from ferns in the genus Ophioglossum. Copyright © 2013 John Wiley & Sons, Ltd.

  19. The allure of mass spectrometry: From an earlyday chemist's perspective.

    PubMed

    Tőkés, László

    2017-07-01

    This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state-of-the-art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide-ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol-A leaching from sterilized polycarbonate containers, high sensitivity TCDD analyses and other projects. Reflecting on my services for the mass spectrometry society, involvements with the co-founding and 12 year chairing of the Asilomar Conference on Mass Spectrometry and founding of the Bay Area Mass Spectrometry regional MS discussion group, as part of my services for the mass spectrometry community, are presented in some detail. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:520-542, 2017. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  20. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Speeding up the screening of steroids in urine: development of a user-friendly library.

    PubMed

    Galesio, M; López-Fdez, H; Reboiro-Jato, M; Gómez-Meire, Silvana; Glez-Peña, D; Fdez-Riverola, F; Lodeiro, Carlos; Diniz, M E; Capelo, J L

    2013-12-11

    This work presents a novel database search engine - MLibrary - designed to assist the user in the detection and identification of androgenic anabolic steroids (AAS) and its metabolites by matrix assisted laser desorption/ionization (MALDI) and mass spectrometry-based strategies. The detection of the AAS in the samples was accomplished by searching (i) the mass spectrometric (MS) spectra against the library developed to identify possible positives and (ii) by comparison of the tandem mass spectrometric (MS/MS) spectra produced after fragmentation of the possible positives with a complete set of spectra that have previously been assigned to the software. The urinary screening for anabolic agents plays a major role in anti-doping laboratories as they represent the most abused drug class in sports. With the help of the MLibrary software application, the use of MALDI techniques for doping control is simplified and the time for evaluation and interpretation of the results is reduced. To do so, the search engine takes as input several MALDI-TOF-MS and MALDI-TOF-MS/MS spectra. It aids the researcher in an automatic mode by identifying possible positives in a single MS analysis and then confirming their presence in tandem MS analysis by comparing the experimental tandem mass spectrometric data with the database. Furthermore, the search engine can, potentially, be further expanded to other compounds in addition to AASs. The applicability of the MLibrary tool is shown through the analysis of spiked urine samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. PhosSA: Fast and accurate phosphorylation site assignment algorithm for mass spectrometry data.

    PubMed

    Saeed, Fahad; Pisitkun, Trairak; Hoffert, Jason D; Rashidian, Sara; Wang, Guanghui; Gucek, Marjan; Knepper, Mark A

    2013-11-07

    Phosphorylation site assignment of high throughput tandem mass spectrometry (LC-MS/MS) data is one of the most common and critical aspects of phosphoproteomics. Correctly assigning phosphorylated residues helps us understand their biological significance. The design of common search algorithms (such as Sequest, Mascot etc.) do not incorporate site assignment; therefore additional algorithms are essential to assign phosphorylation sites for mass spectrometry data. The main contribution of this study is the design and implementation of a linear time and space dynamic programming strategy for phosphorylation site assignment referred to as PhosSA. The proposed algorithm uses summation of peak intensities associated with theoretical spectra as an objective function. Quality control of the assigned sites is achieved using a post-processing redundancy criteria that indicates the signal-to-noise ratio properties of the fragmented spectra. The quality assessment of the algorithm was determined using experimentally generated data sets using synthetic peptides for which phosphorylation sites were known. We report that PhosSA was able to achieve a high degree of accuracy and sensitivity with all the experimentally generated mass spectrometry data sets. The implemented algorithm is shown to be extremely fast and scalable with increasing number of spectra (we report up to 0.5 million spectra/hour on a moderate workstation). The algorithm is designed to accept results from both Sequest and Mascot search engines. An executable is freely available at http://helixweb.nih.gov/ESBL/PhosSA/ for academic research purposes.

  3. Identification, characterization and distribution of monoterpene indole alkaloids in Rauwolfia species by Orbitrap Velos Pro mass spectrometer.

    PubMed

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Kumar, Brijesh

    2016-01-25

    Monoterpene indole alkaloids (MIAs) are medicinally important class of compounds abundant in the roots of Rauwolfia species (Apocynaceae). MIAs such as yohimbine (aphrodisiac agent) and reserpine (antihypertensive, tranquilizer) are the official drugs included in Model List of Essential Drugs of World Health Organization (WHO). Therefore, we have attempt to identify and characterize the MIAs in the crude extracts of six Rauwolfia species using ultrahigh-performance liquid chromatography coupled with Orbitrap Velos Pro hybrid mass spectrometer. The identity of the MIAs were construed using the high resolution tandem mass spectrometry (HRMS/MS) spectra of standard compounds 'yohimbine' and 'reserpine' in higher energy collisional dissociation (HCD) and collision-induced dissociation (CID) modes. The diagnostic fragment ions found in HCD mode was highly affected by variation of normalized collision energy (NCE) and gave few product ions ('C-F') while CID produced intense and more diagnostic product ions ('A-F'). Consequently, CID-MS/MS mode provided significantly more structural information about basic skeleton and therefore the recommended mode for analysis of MIAs. Furthermore, six diagnostic fragmentation pathways were established by multi-stage mass analysis (MS(n) (n=5)) analysis which gave information regarding the substitution. Fragment ions 'A-F' revealed the number and position of substituents on indole and terpene moieties. The proposed diagnostic fragmentation pathways have been successfully applied for identification and characterization of MIAs in crude root extracts of six Rauwolfia species. Ten bioactive reserpine class of MIAs were tentatively identified and characterized on the basis of chromatographic and mass spectrometric features as well as HRMS/MS an MS(n) (n=4) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa

    2017-12-01

    The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D- myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.

  5. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).

  6. Linkage and Branch Analysis of High-Mannose Oligosaccharides Using Closed-Ring Labeling of 8-Aminopyrene-1,3,6-Trisulfonate and P-Aminobenzoic Ethyl Ester and Negative Ion Trap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Ting; Her, Guor-Rong

    2012-08-01

    A strategy based on negative ion electrospray ionization tandem mass spectrometry and closed-ring labeling with both 8-aminopyrene-1,3,6-trisulfonate (APTS) and p-aminobenzoic acid ethyl ester (ABEE) was developed for linkage and branch determination of high-mannose oligosaccharides. X-type cross-ring fragment ions obtained from APTS-labeled oligosaccharides by charge remote fragmentation provided information on linkages near the non-reducing terminus. In contrast, A-type cross-ring fragment ions observed from ABEE-labeled oligosaccharides yielded information on linkages near the reducing terminus. This complementary information provided by APTS- and ABEE-labeled oligosaccharides was utilized to delineate the structures of the high-mannose oligosaccharides. As a demonstration of this approach, the linkages and branches of high-mannose oligosaccharides Man5GlcNAc2, Man6GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 cleaved from the ribonuclease B were assigned from MS2 spectra of ABEE- and APTS-labeled derivatives.

  7. Characterization and profiling of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry.

    PubMed

    Zhang, Jingxian; Guan, Shuhong; Sun, Jianghao; Liu, Tian; Chen, Pei; Feng, Ruihong; Chen, Xin; Wu, Wanying; Yang, Min; Guo, De-An

    2015-01-01

    Cortex Lycii, the root bark of Lycium chinense Mill. or Lycium barbarum L., is a frequently used traditional Chinese medicine. Phytochemical studies have shown that phenolic amides are not only characteristic compounds but also abundant ones in this plant. In the present study, an effective method was developed for structural characterization of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap tandem mass spectrometry. The fragmentation of 14 compounds including six cinnamic acid amides, six neolignanamides, and two lignanamides were studied systematically for the first time. It was found that, in the positive ion mode, neutral loss of the tyramide moiety (137 Da) or N-(4-aminobutyl)acetamide moiety (130 Da) were characteristic for these compounds. At least 54 phenolic amides were detected in the extract and 48 of them were characterized, among which 14 known compounds were identified unambiguously by comparing the retention time and mass spectra with those of reference compounds, and 34 components were tentatively identified based on the fragmentation patterns, exact mass, UV spectra, as well as retention time. Fifteen compounds were characterized as potential new ones. Additionally, the developed method was applied to analyze eight batches of samples collected from the northwest of China, and it was found that cinnamic acid amides were the main type of phenolic amides in Cortex Lycii. In conclusion, the identification of these chemicals provided essential data for further phytochemical studies, metabolites identification, and the quality control of Cortex Lycii.

  8. UVnovo: A De Novo Sequencing Algorithm Using Single Series of Fragment Ions via Chromophore Tagging and 351 nm Ultraviolet Photodissociation Mass Spectrometry

    PubMed Central

    Robotham, Scott A.; Horton, Andrew P.; Cannon, Joe R.; Cotham, Victoria C.; Marcotte, Edward M.; Brodbelt, Jennifer S.

    2016-01-01

    De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide’s amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS3) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the ‘antisymmetric path problem’ and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yields peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an E. coli lysate at high confidence. PMID:26938041

  9. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Parry, R.

    2002-01-01

    Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750??0.0049 amu and 270.0786??0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098??0.0061 amu and 314.1153??0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.

  10. Structural analysis of commercial ceramides by gas chromatography-mass spectrometry.

    PubMed

    Bleton, J; Gaudin, K; Chaminade, P; Goursaud, S; Baillet, A; Tchapla, A

    2001-05-11

    A simple method using gas chromatography-mass spectrometry was applied to analyse structures of ceramides. Identification of trimethylsilylated ceramides were obtained in short analysis times (derivatization of ceramides in 30 min at room temperature and 20 min gas chromatography mass spectrometry run) even for complex mixtures. For example in ceramide Type III, 18 peaks were observed which represent 27 various structures. The coeluted compounds were ceramides containing the same functional groups and the same carbon number but with a different distribution on the two alkyl chains of the molecule. They were accurately differentiated by mass spectrometry. Therefore, 83 structures of trimethylsilylated ceramides were identified in 11 different commercial mixtures. For 52 structures of these, mass spectral data were not described in the literature, neither full mass spectra nor characteristic fragments.

  11. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, Imma; Parry, R.

    2002-01-01

    Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750+/-0.0049 amu and 270.0786+/-0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098+/-0.0061 amu and 314.1153+/-0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.

  12. The allure of mass spectrometry: From an earlyday chemist's perspective

    PubMed Central

    2016-01-01

    1 This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state‐of‐the‐art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide‐ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol‐A leaching from sterilized polycarbonate containers, high sensitivity TCDD analyses and other projects. Reflecting on my services for the mass spectrometry society, involvements with the co‐founding and 12 year chairing of the Asilomar Conference on Mass Spectrometry and founding of the Bay Area Mass Spectrometry regional MS discussion group, as part of my services for the mass spectrometry community, are presented in some detail. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:520–542, 2017 PMID:26999732

  13. In Situ Characterization of Hydrated Proteins in Water by SALVI and ToF-SIMS

    PubMed Central

    Yu, Jiachao; Zhu, Zihua; Yu, Xiao-Ying

    2016-01-01

    This work demonstrates in situ characterization of protein biomolecules in the aqueous solution using the System for Analysis at the Liquid Vacuum Interface (SALVI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The fibronectin protein film was immobilized on the silicon nitride (SiN) membrane that forms the SALVI detection area. During ToF-SIMS analysis, three modes of analysis were conducted including high spatial resolution mass spectrometry, two-dimensional (2D) imaging, and depth profiling. Mass spectra were acquired in both positive and negative modes. Deionized water was also analyzed as a reference sample. Our results show that the fibronectin film in water has more distinct and stronger water cluster peaks compared to water alone. Characteristic peaks of amino acid fragments are also observable in the hydrated protein ToF-SIMS spectra. These results illustrate that protein molecule adsorption on a surface can be studied dynamically using SALVI and ToF-SIMS in the liquid environment for the first time. PMID:26966995

  14. Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry.

    PubMed

    Kind, Tobias; Fiehn, Oliver

    2017-09-01

    Complete structural elucidation of natural products is commonly performed by nuclear magnetic resonance spectroscopy (NMR), but annotating compounds to most likely structures using high-resolution tandem mass spectrometry is a faster and feasible first step. The CASMI contest 2016 (Critical Assessment of Small Molecule Identification) provided spectra of eighteen compounds for the best manual structure identification in the natural products category. High resolution precursor and tandem mass spectra (MS/MS) were available to characterize the compounds. We used the Seven Golden Rules, Sirius2 and MS-FINDER software for determination of molecular formulas, and then we queried the formulas in different natural product databases including DNP, UNPD, ChemSpider and REAXYS to obtain molecular structures. We used different in-silico fragmentation tools including CFM-ID, CSI:FingerID and MS-FINDER to rank these compounds. Additional neutral losses and product ion peaks were manually investigated. This manual and time consuming approach allowed for the correct dereplication of thirteen of the eighteen natural products.

  15. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry.

    PubMed

    Mahmoodani, Fatemeh; Perera, Conrad O; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-19

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MS n ) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. Graphical Abstract ᅟ.

  16. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-01

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.

  17. Synthesis and Mass Spectra of Butenyltin Compounds

    DTIC Science & Technology

    1989-03-01

    activities or operations. One instance of this concern has focused on the Navy’s use of tributyltin compounds as antifoulants on ships’ hulls. Such...butene, and 1-chloro- 2-butene were obtained from Pfaltz & Bauer (Waterbury, CT). Resublimed magne- sium chips, tetrabutyltin and tributyltin bromide...preferential elimination of R minus R to form RSn ’from R3Sn + The fragmentation patterns of tributyltin bromide and tributenyltin bromides are dominated

  18. Amino and Acetamide Functional Group Effects on the Ionization and Fragmentation of Sugar Chains in Positive-Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yamagaki, Tohru; Sugahara, Kohtaro; Watanabe, Takehiro

    2014-01-01

    To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo- N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.

  19. LESSONS IN DE NOVO PEPTIDE SEQUENCING BY TANDEM MASS SPECTROMETRY

    PubMed Central

    Medzihradszky, Katalin F.; Chalkley, Robert J.

    2015-01-01

    Mass spectrometry has become the method of choice for the qualitative and quantitative characterization of protein mixtures isolated from all kinds of living organisms. The raw data in these studies are MS/MS spectra, usually of peptides produced by proteolytic digestion of a protein. These spectra are “translated” into peptide sequences, normally with the help of various search engines. Data acquisition and interpretation have both been automated, and most researchers look only at the summary of the identifications without ever viewing the underlying raw data used for assignments. Automated analysis of data is essential due to the volume produced. However, being familiar with the finer intricacies of peptide fragmentation processes, and experiencing the difficulties of manual data interpretation allow a researcher to be able to more critically evaluate key results, particularly because there are many known rules of peptide fragmentation that are not incorporated into search engine scoring. Since the most commonly used MS/MS activation method is collision-induced dissociation (CID), in this article we present a brief review of the history of peptide CID analysis. Next, we provide a detailed tutorial on how to determine peptide sequences from CID data. Although the focus of the tutorial is de novo sequencing, the lessons learned and resources supplied are useful for data interpretation in general. PMID:25667941

  20. Effect of gamma-irradiation on thermal decomposition kinetics, X-ray diffraction pattern and spectral properties of tris(1,2-diaminoethane)nickel(II)sulphate

    NASA Astrophysics Data System (ADS)

    Jayashri, T. A.; Krishnan, G.; Rema Rani, N.

    2014-12-01

    Tris(1,2-diaminoethane)nickel(II)sulphate was prepared, and characterised by various chemical and spectral techniques. The sample was irradiated with 60Co gamma rays for varying doses. Sulphite ion and ammonia were detected and estimated in the irradiated samples. Non-isothermal decomposition kinetics, X-ray diffraction pattern, Fourier transform infrared spectroscopy, electronic, fast atom bombardment mass spectra, and surface morphology of the complex were studied before and after irradiation. Kinetic parameters were evaluated by integral, differential, and approximation methods. Irradiation enhanced thermal decomposition, lowering thermal and kinetic parameters. The mechanism of decomposition is controlled by R3 function. From X-ray diffraction studies, change in lattice parameters and subsequent changes in unit cell volume and average crystallite size were observed. Both unirradiated and irradiated samples of the complex belong to trigonal crystal system. Decrease in the intensity of the peaks was observed in the infrared spectra of irradiated samples. Electronic spectral studies revealed that the M-L interaction is unaffected by irradiation. Mass spectral studies showed that the fragmentation patterns of the unirradiated and irradiated samples are similar. The additional fragment with m/z 256 found in the irradiated sample is attributed to S8+. Surface morphology of the complex changed upon irradiation.

  1. xiSPEC: web-based visualization, analysis and sharing of proteomics data.

    PubMed

    Kolbowski, Lars; Combe, Colin; Rappsilber, Juri

    2018-05-08

    We present xiSPEC, a standard compliant, next-generation web-based spectrum viewer for visualizing, analyzing and sharing mass spectrometry data. Peptide-spectrum matches from standard proteomics and cross-linking experiments are supported. xiSPEC is to date the only browser-based tool supporting the standardized file formats mzML and mzIdentML defined by the proteomics standards initiative. Users can either upload data directly or select files from the PRIDE data repository as input. xiSPEC allows users to save and share their datasets publicly or password protected for providing access to collaborators or readers and reviewers of manuscripts. The identification table features advanced interaction controls and spectra are presented in three interconnected views: (i) annotated mass spectrum, (ii) peptide sequence fragmentation key and (iii) quality control error plots of matched fragments. Highlighting or selecting data points in any view is represented in all other views. Views are interactive scalable vector graphic elements, which can be exported, e.g. for use in publication. xiSPEC allows for re-annotation of spectra for easy hypothesis testing by modifying input data. xiSPEC is freely accessible at http://spectrumviewer.org and the source code is openly available on https://github.com/Rappsilber-Laboratory/xiSPEC.

  2. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

    PubMed Central

    Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.

    2009-01-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654

  3. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    PubMed

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in error by 5-6.7 mDa.

  4. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  5. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides.

    PubMed

    McMillen, Chelsea L; Wright, Patience M; Cassady, Carolyn J

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  6. Acetonitrile covalent adduct chemical ionization mass spectrometry for double bond localization in non-methylene-interrupted polyene fatty acid methyl esters.

    PubMed

    Lawrence, Peter; Brenna, J Thomas

    2006-02-15

    Covalent adduct chemical ionization (CACI) using a product of acetonitrile self-reaction, (1-methyleneimino)-1-ethenylium (MIE; CH2=C=N+=CH2), has been investigated as a method for localizing double bonds in a series of 16 non-methylene-interrupted fatty acid methyl esters (NMI-FAME) of polyenes with three and more double bonds. As with polyunsaturated homoallylic (methylene-interrupted) FAME and conjugated dienes, MIE (m/z 54) reacts across double bonds to yield molecular ions 54 mass units above the parent analyte. [M + 54]+ ions of several 20- and 22-carbon FAME that include one double bond in the C2-C3 position separated by two to five methylene units from a three, four, or five C homoallylic system dissociated according to rules for the homoallylic system, with an additional fragment corresponding to cleavage between the lone double bond and the carboxyl group and defining the position of the lone double bond. Triene FAME with both methylene and ethylene interruption yielded characteristic fragments distinguishable from homoallylic trienes. Fragmentation of fully conjugated trienes in the MS-1 spectra yields ratios of [M + 54]+/[M + 54 - 32]+ (loss of methanol) near unity, which distinguishes them from homoallylic FAME having a ratio of 8 or more; collisionally activated dissociation of [M + 54]+ yields a series of ions, including some rearrangement products, indicative of double bond position. Unlike conjugated dienes, fully conjugated triene diagnostic ion signal ratios did not follow any pattern based on double bond geometry. Partially conjugated trienes behave similarly to monoenes and conjugated dienes, yielding [M + 54]+/[M + 54 - 32]+ of 2-3 and, permitting them to be assigned as partially conjugated FAME using the MS-1 spectrum. They yield unique MS/MS spectra with weaker but assignable fragment ions, along with a diagnostic fragment that locates the lone double bond and permits 6,10,12-octatrienoate to be distinguished from 6,8,12-octatrienoate. The presence of a triple bond did not affect fragment formation in a methylene-interrupted yne-ene but did change fragments in a conjugated yne-ene. These data extend the principle of double bond localization by acetonitrile CACI-MS/MS to double bond structure in complex FAME found in nature.

  7. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer.

    PubMed

    Gallart-Ayala, H; Courant, F; Severe, S; Antignac, J-P; Morio, F; Abadie, J; Le Bizec, B

    2013-09-24

    Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC-HRMS or LC-MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and "all ion fragmentation" (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Integrated quantification and identification of aldehydes and ketones in biological samples.

    PubMed

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-05-20

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde.

  9. Detection, characterization and identification of crucifer phytoalexins using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry.

    PubMed

    Pedras, M Soledade C; Adio, Adewale M; Suchy, Mojmir; Okinyo, Denis P O; Zheng, Qing-An; Jha, Mukund; Sarwar, Mohammed G

    2006-11-10

    We have analyzed 23 crucifer phytoalexins (e.g. brassinin, dioxibrassinin, cyclobrassinin, brassicanals A and C) by HPLC with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) using both negative and positive ion modes. Positive ion mode ESI-MS appeared more sensitive than negative ion mode ESI-MS in detecting this group of compounds. A new HPLC separation method, new LC-MS and LC-MS(2) data and proposed fragmentation pathways, LC retention times, and UV spectra for selected compounds are reported.

  10. Interaction of excited He and Ne rare gas metastable atoms with the CHF2Cl molecule

    NASA Astrophysics Data System (ADS)

    Chérid, M.; Ben Arfa, M.; Driss Khodja, M.

    2005-06-01

    We studied the Penning ionization of the CHF2Cl molecule with He and Ne metastable atoms (He* and Ne*). We measured the electron kinetic energy and the time-of-flight mass spectra; we also determined the branching ratio for the parent ion and charged CHF+2, CHFCl+, HCF+/CF+ and Cl+ fragments. These data led us to discuss the dissociation channels for all the energetically-accessible electronic states of the ionized molecule. We evidenced a marked contrast in the fragment ion proportions for Ne*-CHF2Cl and He*-CHF2Cl systems, and related it to the difference in polarizability and internal energy of the He* and Ne* atoms.

  11. Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics.

    PubMed

    Peckner, Ryan; Myers, Samuel A; Jacome, Alvaro Sebastian Vaca; Egertson, Jarrett D; Abelin, Jennifer G; MacCoss, Michael J; Carr, Steven A; Jaffe, Jacob D

    2018-05-01

    Mass spectrometry with data-independent acquisition (DIA) is a promising method to improve the comprehensiveness and reproducibility of targeted and discovery proteomics, in theory by systematically measuring all peptide precursors in a biological sample. However, the analytical challenges involved in discriminating between peptides with similar sequences in convoluted spectra have limited its applicability in important cases, such as the detection of single-nucleotide polymorphisms (SNPs) and alternative site localizations in phosphoproteomics data. We report Specter (https://github.com/rpeckner-broad/Specter), an open-source software tool that uses linear algebra to deconvolute DIA mixture spectra directly through comparison to a spectral library, thus circumventing the problems associated with typical fragment-correlation-based approaches. We validate the sensitivity of Specter and its performance relative to that of other methods, and show that Specter is able to successfully analyze cases involving highly similar peptides that are typically challenging for DIA analysis methods.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, Stefan; Zander, Fabian; Hermann, Tobias

    Three different types of rocks were tested in a high enthalpy air plasma flow. Two terrestrial rocks, basalt and argillite, and an ordinary chondrite, with a 10 mm diameter cylindrical shape were tested in order to observe decomposition, potential fragmentation, and spectral signature. The goal was to simulate meteoroid ablation to interpret meteor observation and compare these observations with ground based measurements. The test flow with a local mass-specific enthalpy of 70 MJ kg{sup −1} results in a surface heat flux at the meteorite fragment surface of approximately 16 MW m{sup −2}. The stagnation pressure is 24 hPa, which correspondsmore » to a flight condition in the upper atmosphere around 80 km assuming an entry velocity of 10 km s{sup −1}. Five different diagnostic methods were applied simultaneously to characterize the meteorite fragmentation and destruction in the ground test: short exposure photography, regular video, high-speed imaging with 10 kHz frame rate, thermography, and Echelle emission spectroscopy. This is the first time that comprehensive testing of various meteorite fragments under the same flow condition was conducted. The data sets indeed show typical meteorite ablation behavior. The cylindrically shaped fragments melt and evaporate within about 4 s. The spectral data allow the identification of the material from the spectra which is of particular importance for future spectroscopic meteor observations. For the tested ordinary chondrite sample a comparison to an observed meteor spectra shows good agreement. The present data show that this testing methodology reproduces the ablation phenomena of meteoritic material alongside the corresponding spectral signatures.« less

  13. Kinetic Energy Release of the Singly and Doubly Charged Methylene Chloride Molecule: The Role of Fast Dissociation.

    PubMed

    Alcantara, K F; Rocha, A B; Gomes, A H A; Wolff, W; Sigaud, L; Santos, A C F

    2016-09-01

    The center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of-flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H(+) fragments are observed with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p → 10a1*) and Cl (2p → 4b1*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin-orbit coupling matrix elements, which after diagonalization result in a spin-orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup.

  14. Experimental Simulation of Meteorite Ablation during Earth Entry using a Plasma Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Loehle, Stefan; Zander, Fabian; Hermann, Tobias; Eberhart, Martin; Meindl, Arne; Oefele, Rainer; Vaubaillon, Jeremie; Colas, Francois; Vernazza, Pierre; Drouard, Alexis; Gattacceca, Jerome

    2017-03-01

    Three different types of rocks were tested in a high enthalpy air plasma flow. Two terrestrial rocks, basalt and argillite, and an ordinary chondrite, with a 10 mm diameter cylindrical shape were tested in order to observe decomposition, potential fragmentation, and spectral signature. The goal was to simulate meteoroid ablation to interpret meteor observation and compare these observations with ground based measurements. The test flow with a local mass-specific enthalpy of 70 MJ kg-1 results in a surface heat flux at the meteorite fragment surface of approximately 16 MW m-2. The stagnation pressure is 24 hPa, which corresponds to a flight condition in the upper atmosphere around 80 km assuming an entry velocity of 10 km s-1. Five different diagnostic methods were applied simultaneously to characterize the meteorite fragmentation and destruction in the ground test: short exposure photography, regular video, high-speed imaging with 10 kHz frame rate, thermography, and Echelle emission spectroscopy. This is the first time that comprehensive testing of various meteorite fragments under the same flow condition was conducted. The data sets indeed show typical meteorite ablation behavior. The cylindrically shaped fragments melt and evaporate within about 4 s. The spectral data allow the identification of the material from the spectra which is of particular importance for future spectroscopic meteor observations. For the tested ordinary chondrite sample a comparison to an observed meteor spectra shows good agreement. The present data show that this testing methodology reproduces the ablation phenomena of meteoritic material alongside the corresponding spectral signatures.

  15. Axial spatial distribution focusing: improving MALDI-TOF/RTOF mass spectrometric performance for high-energy collision-induced dissociation of biomolecules.

    PubMed

    Belgacem, O; Pittenauer, E; Openshaw, M E; Hart, P J; Bowdler, A; Allmaier, G

    2016-02-15

    For the last two decades, curved field reflectron technology has been used in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers, assisting in the generation of post-source-decay (PSD) or collision-induced dissociation (CID) without decelerating precursor ions, producing true high-energy CID spectra. The result was the generation of product ion mass spectra with product ions typical of high-energy (10 keV and beyond) collision processes. The disadvantage of this approach was the lack of resolution in CID spectra resulting from the excess laser energy deposition used to generate those MS/MS spectra. The work presented in this study overcomes this limitation and includes comprehensive examples of high-energy and high-resolution CID MALDI-MS/MS spectra of biomolecules. The devices used in this study are TOF/RTOF instruments equipped with a high-vacuum MALDI ion source. High-resolution and high-energy CID spectra result from the use of axial spatial distribution focusing (ASDF) in combination with curved field reflectron technology. A CID spectrum of the P14 R1 peptide exhibits product ion resolution in excess of 10,000 (FWHM) but at the same time yields typical high-energy product ions such as w- and [y-2]-type ion series. High-energy CID spectra of lipids, exemplified by a glycerophospholipid and triglyceride, demonstrate C-C backbone fragmentation elucidating the presence of a hydroxyl group in addition to double-bond positioning. A complex high mannose carbohydrate (Man)8 (GlcNAc)2 was also studied at 20 keV collision energy and revealed further high-energy product ions with very high resolution, allowing unambiguous detection and characterization of cross-ring cleavage-related ions. This is the first comprehensive study using a MALDI-TOF/RTOF instrument equipped with a curved field reflectron and an ASDF device prior to the reflectron. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.

  16. Analysis of TOF-SIMS spectra from fullerene compounds

    NASA Astrophysics Data System (ADS)

    Kato, N.; Yamashita, Y.; Iida, S.; Sanada, N.; Kudo, M.

    2008-12-01

    We analyzed TOF-SIMS spectra obtained from three different size of fullerenes (C 60, C 70 and C 84) by using Ga +, Au + and Au 3+ primary ion beams and investigated the fragmentation patterns, the enhancement of secondary ion yields and the restraint of fragmentation by using cluster primary ion beams compared with monoatomic primary ion beams. In the TOS-SIMS spectra from C 70 and C 84, it was found that a fragment ion, identified as C 60+ ( m/ z = 720), showed a relatively high intensity compared with that of other fragment ions related to C 2 depletion. It was also found that the Au 3+ bombardment caused intensity enhancement of intact molecules (C 60+, C 70+ and C 84+) and restrained the fragmentation due to C 2 depletion.

  17. Characterization of the chemical composition of white chrysanthemum flowers of Hangzhou by using high-performance ion trap mass spectrometry.

    PubMed

    Zhou, Xiahui; Chen, Xiaocheng; Wu, Xin; Cao, Gang; Zhang, Junjie

    2016-04-01

    In this study, high-performance liquid chromatography coupled with amaZon SL high-performance ion trap mass spectrometry was used to analyze the target components in white chrysanthemum flowers of Hangzhou. Twenty-one components were detected and identified in both white chrysanthemum flowers of Hangzhou samples by using target compound analysis. Furthermore, seven new compounds in white chrysanthemum flowers of Hangzhou were found and identified by analyzing the fragment ion behavior in the mass spectra. The established method can be expedient for the global quality investigation of complex components in herbal medicines and food. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.D.; Udseth, H.R.

    1982-07-01

    The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed.more » 4 figures.« less

  19. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cody, Robert B.; Dane, A. John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  20. Soft ionization of saturated hydrocarbons, alcohols and nonpolar compounds by negative-ion direct analysis in real-time mass spectrometry.

    PubMed

    Cody, Robert B; Dane, A John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  1. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigaud, L., E-mail: lsigaud@if.uff.br; Jesus, V. L. B. de; Ferreira, Natalia

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  2. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    NASA Astrophysics Data System (ADS)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  3. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  4. Characterization of paliperidone photodegradation products by LC-Q-TOF multistage mass spectrometry.

    PubMed

    Skibiński, Robert; Komsta, Łukasz; Inglot, Tadeusz

    2016-06-01

    The photodegradation of paliperidone in aqueous and methanol media under UVA and UVC irradiation was investigated. The identification and structural elucidation of its photodegradation products were performed by the use of the reversed-phase liquid chromatography coupled with accurate mass hybrid Q-TOF mass spectrometry and an atmospheric pressure chemical ionization source. Five degradation products were found and their masses were obtained with high accuracy (1.10-5.26 ppm) based on the TOF (MS) spectra. For the structural elucidation of unknown degradation products MS/MS spectra were also registered. However, for the identification of the main photodegradation product (3-{2-[4-(6-fluoro-1,3-benzoxazol-2-yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one) in-source fragmentation connected with collision-induced dissociation was used and MS(3) spectra were finally performed. The photodegradation of paliperidone yields the first-order kinetics in all tested conditions. The aqueous medium was in this case much less stable than the methanol solvent regardless of the irradiation source. Additionally, the toxicity of the analyzed photodegradation products was predicted by the use of ECOSAR software and comparable values of LC50 for the main degradants and the parent compound were obtained. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Dynamics and Fragmentation of Hydrogen Bonded and van der Waal Clusters upon 26.5 eV Soft X-ray Laser Ionization

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Heinbuch, Scott; Bernstein, Elliot; Rocca, Jorge

    2006-05-01

    A desk-top soft x-ray laser is applied to the study of water, methanol, ammonia, sulfur dioxide, carbon dioxide, mixed sulfur dioxide-water, and mixed carbon dioxide-water clusters through single photon ionization time of flight mass spectroscopy. Almost all of the energy above the vertical ionization energy is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the mass spectra for the first three systems. The temperatures of the neutral water and methanol clusters can be estimated. In the case of pure SO2 and CO2, the mass spectra are dominated by (SO2)n^+ and (CO2)n^+ cluster series. When a high or low concentration of SO2/CO2 is mixed with water, we observe (SO2/CO2)nH2O^+ or SO2/CO2(H2O)nH^+ in the mass spectra, respectively. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated for the protonated water, methanol, and ammonia clusters as well as for SO2 and CO2 clusters. We find that the 26.5 eV soft x-ray laser is a nearly ideal tool for the study of hydrogen bonded and van der Waals cluster systems and we are currently exploring its usefulness for other more strongly bound systems.

  6. Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultrahigh pressure liquid chromatography-quadrupole-time-of-flight-mass spectrometry.

    PubMed

    Hernández, Félix; Bijlsma, Lubertus; Sancho, Juan V; Díaz, Ramon; Ibáñez, María

    2011-01-17

    This work illustrates the potential of hybrid quadrupole-time-of-flight mass spectrometry (QTOF MS) coupled to ultrahigh pressure liquid chromatography (UHPLC) to investigate the presence of drugs of abuse in wastewater. After solid-phase extraction with Oasis MCX cartridges, seventy-six illicit drugs, prescription drugs with potential for abuse, and metabolites were investigated in the samples by TOF MS using electrospray interface under positive ionization mode, with MS data acquired over an m/z range of 50-1000Da. For 11 compounds, reference standards were available, and experimental data (e.g., retention time and fragmentation data) could be obtained, facilitating a more confident identification. The use of a QTOF instrument enabled the simultaneous application of two acquisition functions with different collision energies: a low energy (LE) function, where none or poor fragmentation took place, and a high energy (HE) function, where fragmentation in the collision cell was promoted. This approach, known as MS(E), enabled the simultaneous acquisition of full-spectrum accurate mass data of both protonated molecules and fragment ions in a single injection, providing relevant information that facilitates the rapid detection and reliable identification of these emerging contaminants in the sample matrices analyzed. In addition, isomeric compounds, like the opiates, morphine and norcodeine, could be discriminated by their specific fragments observed in HE TOF MS spectra, without the need of reference standards. UHPLC-QTOF MS was proven to be a powerful and efficient technique for rapid wide-scope screening and identification of many relevant drugs in complex matrices, such as influent and effluent urban wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Raman spectroscopy for the analytical quality control of low-dose break-scored tablets.

    PubMed

    Gómez, Diego A; Coello, Jordi; Maspoch, Santiago

    2016-05-30

    Quality control of solid dosage forms involves the analysis of end products according to well-defined criteria, including the assessment of the uniformity of dosage units (UDU). However, in the case of break-scored tablets, given that tablet splitting is widespread as a means to adjust doses, the uniform distribution of the active pharmaceutical ingredient (API) in all the possible fractions of the tablet must be assessed. A general procedure to accomplish with both issues, using Raman spectroscopy, is presented. It is based on the acquisition of a collection of spectra in different regions of the tablet, that later can be selected to determine the amount of API in the potential fractions that can result after splitting. The procedure has been applied to two commercial products, Sintrom 1 and Sintrom 4, with API (acenocoumarol) mass proportion of 2% and 0.7% respectively. Partial Least Squares (PLS) calibration models were constructed for the quantification of acenocoumarol in whole tablets using HPLC as a reference analytical method. Once validated, the calibration models were used to determine the API content in the different potential fragments of the scored Sintrom 4 tablets. Fragment mass measurements were also performed to estimate the range of masses of the halves and quarters that could result after tablet splitting. The results show that Raman spectroscopy can be an alternative analytical procedure to assess the uniformity of content, both in whole tablets as in its potential fragments, and that Sintrom 4 tablets can be perfectly split in halves, but some cautions have to be taken when considering the fragmentation in quarters. A practical alternative to the use of UDU test for the assessment of tablet fragments is proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Specificity enhancement by electrospray ionization multistage mass spectrometry--a valuable tool for differentiation and identification of 'V'-type chemical warfare agents.

    PubMed

    Weissberg, Avi; Tzanani, Nitzan; Dagan, Shai

    2013-12-01

    The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic 'V'-type chemical weapons [O-alkyl S-(2-dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine-containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization-MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five 'V'-type agents, including O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothiolate (VX), O-isobutyl S-(2-diethylamino)ethyl methylphosphonothiolate (RVX) and O-ethyl S-(2-diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS(3) experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of 'V'-type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information-rich spectra, although many of the product ions obtained were at low abundance. Employing MS(3) experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group-specific ions elucidated in this work are also useful for screening unknown 'V'-type agents and related compounds, utilizing precursor ion scan experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Selective collision-induced fragmentation of ortho-hydroxybenzyl-aminated lysyl-containing tryptic peptides.

    PubMed

    Simon, E S; Papoulias, P G; Andrews, P C

    2013-07-30

    In protein studies that employ tandem mass spectrometry the manipulation of protonated peptide fragmentation through exclusive dissociation pathways may be preferred in some applications over the comprehensive amide backbone fragmentation that is typically observed. In this study, we characterized the selective cleavage of the side-chain Cζ-Nε bond of peptides with ortho-hydroxybenzyl-aminated lysine residues. Internal lysyl residues of representative peptides were derivatized via reductive amination with ortho-hydroxybenzaldehyde. The modified peptides were analyzed using collision-induced dissociation (CID) on an Orbitrap tandem mass spectrometer. Theoretical calculations using computational methods (density functional theory) were performed to investigate the potential dissociation mechanisms for the Cζ-Nε bond of the derivatized lysyl residue resulting in the formation of the observed product ions. Tandem mass spectra of the derivatized peptide ions exhibit product peaks corresponding to selective cleavage of the side-chain Cζ-Nε bond that links the derivative to lysine. The ortho-hydroxybenzyl derivative is released either as a neutral moiety [C7H6O1] or as a carbocation [C7H7O1](+) through competing pathways (retro-Michael versus Carbocation Elimination (CCE), respectively). The calculated transition state activation barriers indicate that the retro-Michael pathway is kinetically favored over CCE and both are favored over amide cleavage. The application of ortho-hydroxybenzyl amination is a promising peptide derivatization scheme for promoting selective dissociation pathways in the tandem mass spectrometry of protonated peptides. This can be implemented in the rational development of peptide reactive reagents for applications that may benefit from selective fragmentation paths (including crosslinking or MRM reagents). Copyright © 2013 John Wiley & Sons, Ltd.

  10. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS)

    NASA Astrophysics Data System (ADS)

    Jora, Manasses; Burns, Andrew P.; Ross, Robert L.; Lobue, Peter A.; Zhao, Ruoxia; Palumbo, Cody M.; Beal, Peter A.; Addepalli, Balasubrahmanyam; Limbach, Patrick A.

    2018-06-01

    The analytical identification of positional isomers (e.g., 3-, N 4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2 +) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. [Figure not available: see fulltext.

  11. Fast atom bombardment tandem mass spectrometry of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Breeman, R.B.; Schmitz, H.H.; Schwartz, S.J.

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenesmore » formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.« less

  12. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MSmore » displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.« less

  13. Gas-phase structural characterization of neuropeptides Y Y1 receptor antagonists using mass spectrometry: Orbitrap vs triple quadrupole.

    PubMed

    Silva, Eduarda M P; Varandas, Pedro A M M; Melo, Tânia; Barros, Cristina; Alencastre, Inês S; Barreiros, Luísa; Domingues, Pedro; Lamghari, Meriem; Domingues, M Rosário M; Segundo, Marcela A

    2018-03-20

    Collision induced dissociation of triple quadrupole mass spectrometer (CID-QqQ) and high-energy collision dissociation (HCD) of Orbitrap were compared for four neuropeptides Y Y1 (NPY Y1) receptor antagonists and showed similar qualitative fragmentation and structural information. Orbitrap high resolution and high mass accuracy HCD fragmentation spectra allowed unambiguous identification of product ions in the range 0.04-4.25 ppm. Orbitrap mass spectrometry showed abundant analyte-specific product ions also observed on CID-QqQ. These results show the suitability of these product ions for use in quantitative analysis by MRM mode. In addition, it was found that all compounds could be determined at levels >1 μg L -1 using the QqQ instrument and that the detection limits for this analyzer ranged from 0.02 to 0.6 μg L -1 . Overall, the results obtained from experiments acquired in QqQ show a good agreement with those acquired from the Orbitrap instrument allowing the use of this relatively inexpensive technique (QqQ) for accurate quantification of these compounds in clinical and academic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranković, M. Lj.; Canon, F.; Nahon, L.

    2015-12-28

    We have studied the Vacuum Ultraviolet (VUV) photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4, and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insight into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. The photodissociation yields appear tomore » be very different for the various observed fragmentation channels, depending on both the types of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.« less

  15. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    DOE PAGES

    Ranković, M. Lj.; Canon, F.; Nahon, L.; ...

    2015-12-29

    We have studied the VUV photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4 and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insights into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. Furthermore, the photodissociation yields appear to bemore » very different for the various observed fragmentation channels, depending both on the type of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.« less

  16. Mass spectral analysis of N-oxides of Chemical Weapons Convention related aminoethanols under electrospray ionization conditions.

    PubMed

    Sridhar, L; Karthikraj, R; Murty, M R V S; Raju, N Prasada; Vairamani, M; Prabhakar, S

    2011-02-28

    N,N'-Dialkylaminoethanols are the hydrolyzed products or precursors of chemical warfare agents such as V-agents and nitrogen mustards, and they are prone to undergo oxidation in environmental matrices or during decontamination processes. Consequently, screening of the oxidized products of aminoethanols in aqueous samples is an important task in the verification of chemical weapons convention-related chemicals. Here we report the successful characterization of the N-oxides of N,N'-dialkylaminoethanols, alkyl diethanolamines, and triethanolamine using positive ion electrospray ionization mass spectrometry. The collision-induced dissociation (CID) spectra of the [M+H](+) and [M+Na](+) ions show diagnostic product ions that enable the unambiguous identification of the studied N-oxides, including those of isomeric compounds. The proposed fragmentation pathways are supported by high-resolution mass spectrometry data and product/precursor ion spectra. The CID spectra of [M+H](+) ions included [MH-CH(4)O(2)](+) as the key product ion, in addition to a distinctive alkene loss that allowed us to recognize the alkyl group attached to the nitrogen. The [M+Na](+) ions show characteristic product ions due to the loss of groups (R) attached to nitrogen either as a radical (R) or as a molecule [R+H or (R-H)] after hydrogen migration. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Using In Silico Fragmentation to Improve Routine Residue Screening in Complex Matrices.

    PubMed

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathryn; Walker, Stephan; Widmer, Mirjam

    2017-12-01

    Targeted residue screening requires the use of reference substances in order to identify potential residues. This becomes a difficult issue when using multi-residue methods capable of analyzing several hundreds of analytes. Therefore, the capability of in silico fragmentation based on a structure database ("suspect screening") instead of physical reference substances for routine targeted residue screening was investigated. The detection of fragment ions that can be predicted or explained by in silico software was utilized to reduce the number of false positives. These "proof of principle" experiments were done with a tool that is integrated into a commercial MS vendor instrument operating software (UNIFI) as well as with a platform-independent MS tool (Mass Frontier). A total of 97 analytes belonging to different chemical families were separated by reversed phase liquid chromatography and detected in a data-independent acquisition (DIA) mode using ion mobility hyphenated with quadrupole time of flight mass spectrometry. The instrument was operated in the MS E mode with alternating low and high energy traces. The fragments observed from product ion spectra were investigated using a "chopping" bond disconnection algorithm and a rule-based algorithm. The bond disconnection algorithm clearly explained more analyte product ions and a greater percentage of the spectral abundance than the rule-based software (92 out of the 97 compounds produced ≥1 explainable fragment ions). On the other hand, tests with a complex blank matrix (bovine liver extract) indicated that the chopping algorithm reports significantly more false positive fragments than the rule based software. Graphical Abstract.

  18. Using In Silico Fragmentation to Improve Routine Residue Screening in Complex Matrices

    NASA Astrophysics Data System (ADS)

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathryn; Walker, Stephan; Widmer, Mirjam

    2017-12-01

    Targeted residue screening requires the use of reference substances in order to identify potential residues. This becomes a difficult issue when using multi-residue methods capable of analyzing several hundreds of analytes. Therefore, the capability of in silico fragmentation based on a structure database ("suspect screening") instead of physical reference substances for routine targeted residue screening was investigated. The detection of fragment ions that can be predicted or explained by in silico software was utilized to reduce the number of false positives. These "proof of principle" experiments were done with a tool that is integrated into a commercial MS vendor instrument operating software (UNIFI) as well as with a platform-independent MS tool (Mass Frontier). A total of 97 analytes belonging to different chemical families were separated by reversed phase liquid chromatography and detected in a data-independent acquisition (DIA) mode using ion mobility hyphenated with quadrupole time of flight mass spectrometry. The instrument was operated in the MSE mode with alternating low and high energy traces. The fragments observed from product ion spectra were investigated using a "chopping" bond disconnection algorithm and a rule-based algorithm. The bond disconnection algorithm clearly explained more analyte product ions and a greater percentage of the spectral abundance than the rule-based software (92 out of the 97 compounds produced ≥1 explainable fragment ions). On the other hand, tests with a complex blank matrix (bovine liver extract) indicated that the chopping algorithm reports significantly more false positive fragments than the rule based software. [Figure not available: see fulltext.

  19. Practical application of in silico fragmentation based residue screening with ion mobility high-resolution mass spectrometry.

    PubMed

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathry; Walker, Stephan; Widmer, Mirjam

    2017-07-15

    A screening concept for residues in complex matrices based on liquid chromatography coupled to ion mobility high-resolution mass spectrometry LC/IMS-HRMS is presented. The comprehensive four-dimensional data (chromatographic retention time, drift time, mass-to-charge and ion abundance) obtained in data-independent acquisition (DIA) mode was used for data mining. An in silico fragmenter utilizing a molecular structure database was used for suspect screening, instead of targeted screening with reference substances. The utilized data-independent acquisition mode relies on the MS E concept; where two constantly alternating HRMS scans (low and high fragmentation energy) are acquired. Peak deconvolution and drift time alignment of ions from the low (precursor ion) and high (product ion) energy scan result in relatively clean product ion spectra. A bond dissociation in silico fragmenter (MassFragment) supplied with mol files of compounds of interest was used to explain the observed product ions of each extracted candidate component (chromatographic peak). Two complex matrices (fish and bovine liver extract) were fortified with 98 veterinary drugs. Out of 98 screened compounds 94 could be detected with the in silico based screening approach. The high correlation among drift time and m/z value of equally charged ions was utilized for an orthogonal filtration (ranking). Such an orthogonal ion mobility based filter removes multiply charged ions (e.g. peptides and proteins from the matrix) as well as noise and artefacts. Most significantly, this filtration dramatically reduces false positive findings but hardly increases false negative findings. The proposed screening approach may offer new possibilities for applications where reference compounds are hardly or not at all commercially available. Such areas may be the analysis of metabolites of drugs, pyrrolizidine alkaloids, marine toxins, derivatives of sildenafil or novel designer drugs (new psychoactive substances). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    NASA Astrophysics Data System (ADS)

    Xiao, Weizhan; Hu, Yongjun; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2015-01-01

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH) ṡ H+ (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH2O ṡ (C2H5OH)H+ (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH) ṡ (CH3)+ (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C2H5OH) ṡ H+ and CH2O ṡ (C2H5OH)H+ have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  1. Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS.

    PubMed

    Hu, Meng; Müller, Erik; Schymanski, Emma L; Ruttkies, Christoph; Schulze, Tobias; Brack, Werner; Krauss, Martin

    2018-03-01

    In nontarget screening, structure elucidation of small molecules from high resolution mass spectrometry (HRMS) data is challenging, particularly the selection of the most likely candidate structure among the many retrieved from compound databases. Several fragmentation and retention prediction methods have been developed to improve this candidate selection. In order to evaluate their performance, we compared two in silico fragmenters (MetFrag and CFM-ID) and two retention time prediction models (based on the chromatographic hydrophobicity index (CHI) and on log D). A set of 78 known organic micropollutants was analyzed by liquid chromatography coupled to a LTQ Orbitrap HRMS with electrospray ionization (ESI) in positive and negative mode using two fragmentation techniques with different collision energies. Both fragmenters (MetFrag and CFM-ID) performed well for most compounds, with average ranking the correct candidate structure within the top 25% and 22 to 37% for ESI+ and ESI- mode, respectively. The rank of the correct candidate structure slightly improved when MetFrag and CFM-ID were combined. For unknown compounds detected in both ESI+ and ESI-, generally positive mode mass spectra were better for further structure elucidation. Both retention prediction models performed reasonably well for more hydrophobic compounds but not for early eluting hydrophilic substances. The log D prediction showed a better accuracy than the CHI model. Although the two fragmentation prediction methods are more diagnostic and sensitive for candidate selection, the inclusion of retention prediction by calculating a consensus score with optimized weighting can improve the ranking of correct candidates as compared to the individual methods. Graphical abstract Consensus workflow for combining fragmentation and retention prediction in LC-HRMS-based micropollutant identification.

  2. Examination of segmental average mass spectra from liquid chromatography-tandem mass spectrometric (LC-MS/MS) data enables screening of multiple types of protein modifications.

    PubMed

    Liu, Nai-Yu; Lee, Hsiao-Hui; Chang, Zee-Fen; Tsay, Yeou-Guang

    2015-09-10

    It has been observed that a modified peptide and its non-modified counterpart, when analyzed with reverse phase liquid chromatography, usually share a very similar elution property [1-3]. Inasmuch as this property is common to many different types of protein modifications, we propose an informatics-based approach, featuring the generation of segmental average mass spectra ((sa)MS), that is capable of locating different types of modified peptides in two-dimensional liquid chromatography-mass spectrometric (LC-MS) data collected for regular protease digests from proteins in gels or solutions. To enable the localization of these peptides in the LC-MS map, we have implemented a set of computer programs, or the (sa)MS package, that perform the needed functions, including generating a complete set of segmental average mass spectra, compiling the peptide inventory from the Sequest/TurboSequest results, searching modified peptide candidates and annotating a tandem mass spectrum for final verification. Using ROCK2 as an example, our programs were applied to identify multiple types of modified peptides, such as phosphorylated and hexosylated ones, which particularly include those peptides that could have been ignored due to their peculiar fragmentation patterns and consequent low search scores. Hence, we demonstrate that, when complemented with peptide search algorithms, our approach and the entailed computer programs can add the sequence information needed for bolstering the confidence of data interpretation by the present analytical platforms and facilitate the mining of protein modification information out of complicated LC-MS/MS data. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations.

    PubMed

    Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH(3)COOH)H(+)·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH(3)COOH)(+) becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH(3)COOH)·CH(3)CO(+). Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  4. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation.

    PubMed

    Geng, Sheng; Verkhoturov, Stanislav V; Eller, Michael J; Della-Negra, Serge; Schweikert, Emile A

    2017-02-07

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au 400 4+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C 1-10 ± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au 1-3 ± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ∼15% of its initial kinetic energy (∼0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ∼450-500 eV (∼4400-4900 K) after the impact and then undergoes a ∼90-100 step fragmentation with the ejection of Au 1 atoms in the experimental time range of ∼0.1 μs.

  5. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation

    NASA Astrophysics Data System (ADS)

    Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.

    2017-02-01

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.

  6. Identification of hydrogen peroxide oxidation sites of alpha A- and alpha B-crystallins.

    PubMed

    Smith, J B; Jiang, X; Abraham, E C

    1997-02-01

    The alpha-crystallins are the most abundant structural proteins of the lens and, because of their chaperone activity, contribute to the solubility of the other crystallins. With aging, the lens crystallins undergo a variety of modifications which correlate with a loss of solubility and the development of cataract. A recent study demonstrating that alpha-crystallins exposed in vitro to FeCl3 and H2O2 exhibit decreased chaperone activity, implicates metal catalyzed oxidations of alpha-crystallins in this loss of solubility. The present study has determined that alpha-crystallins incubated with FeCl3 and H2O2 are modified by the nearly complete oxidation of all methionine residues to methionine sulfoxide, with no other detectable reaction products. The modifications were identified from the molecular weights of peptides formed by enzymatic digestion of the alpha-crystallins and located by tandem mass spectrometric analysis of the fragmentation pattern of the mass spectra of the fragments from peptides with oxidized methionine is loss of 64 Da, which corresponds to loss of CH3SOH from the methionine sulfoxide. These fragments are useful in identifying peptides that include oxidized methionine residues.

  7. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry.

    PubMed

    Zhang, Lei; Xu, Liang; Xiao, Shan-Shan; Liao, Qiong-Feng; Li, Qing; Liang, Jian; Chen, Xiao-Hui; Bi, Kai-Shun

    2007-09-03

    A method coupling high-performance liquid chromatography (HPLC) with diode-array detector (DAD) and electrospray ionization mass spectrometry (ESI) was established for the separation and characterization of flavonoids in Sophora flavescens Ait. Based on the chromatographic separation of most flavonoids present in S. flavescens Ait., a total of 24 flavonoids were identified. Fourteen compounds were unambiguously identified comparing experimental data for retention time (t(R)), UV and MS spectra with those of the authentic compounds: 3',7-dihydroxy-4'-methoxy-isoflavone (13), trifolirhizin (14), kurarinol (18), formononetin (19), 7,4'-dihydroxy-5-methoxy-8-(gamma,gamma-dimethylallyl)-flavanone (22), maackiain (21), isoxanthohumol (23), kuraridine (26), kuraridinol (27), sophoraflavanone G (30), xanthohumol (31), isokurarinone (33), kurarinone (35) and kushenol D (38), and additional 10 compounds were tentatively identified as kushenol O (10), trifolirhizin-6''-malonate (15), sophoraisoflavanone A (20), norkurarinol/kosamol Q (24), kushenol I/N (25), kushenol C (28), 2'-methoxykurarinone (29), kosamol R (32), kushecarpin A (34) and kushenol A (37) by comparing experimental data for UV and MS spectra with those of literature. Furthermore, fragmentation pathways in positive ions mode of 24 flavonoid compounds of types of flavanone, flavanonol, flavonol, chalcone, isoflavone, isoflavanone and ptercocarpane were summarized. Some common features, such as CH(3)., H(2)O, CO, CO(2), C(3)O(2) and C(2)H(2)O losses, together with Retro-Diels-Alder fragmentations were observed in the prenylated flavonoids in S. flavescens Ait. The loss of the lanandulyl chain was their characteristic fragmentation, which might help deducing the structure of unknown flavonoid compounds. The present study provided an approach to rapidly characterize bioactive constituents in S. flavescens Ait.

  8. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan, E-mail: Stephan.Denifl@uibk.ac.at, E-mail: Sylwia.Ptasinska.1@nd.edu

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomermore » in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.« less

  9. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  10. Antibacterial colorants: characterization of prodiginines and their applications on textile materials.

    PubMed

    Alihosseini, Farzaneh; Ju, Kou-San; Lango, Jozsef; Hammock, Bruce D; Sun, Gang

    2008-01-01

    A strain of Vibrio sp. isolated from marine sediments produced large quantities of bright red pigments that could be used to dye many fibers including wool, nylon, acrylics, and silk. Characterization of the pigments by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) revealed three prodiginine-like structures with nonpolar characteristics and low molecular mass. UV-visible spectra of the major constituent in methanol solution showed absorbance at lambda max 530 nm wavelength. The accurate mass result showed that the main isolated product has a molecular mass of m/z 323.1997. Further analysis using mass fragmentation (MS/MS), 1H NMR, COSY, HMQC NMR and DEPT confirmed the detailed structure of the pigment with an elementary composition of C20H25N3O. Fabrics dyed with the microbial prodiginines demonstrated antibacterial activity.

  11. Combinatorial Approach for Large-scale Identification of Linked Peptides from Tandem Mass Spectrometry Spectra*

    PubMed Central

    Wang, Jian; Anania, Veronica G.; Knott, Jeff; Rush, John; Lill, Jennie R.; Bourne, Philip E.; Bandeira, Nuno

    2014-01-01

    The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012

  12. Molecules-in-molecules fragment-based method for the calculation of chiroptical spectra of large molecules: Vibrational circular dichroism and Raman optical activity spectra of alanine polypeptides.

    PubMed

    Jose, K V Jovan; Raghavachari, Krishnan

    2016-12-01

    The molecules-in-molecules (MIM) fragment-based method has recently been adapted to evaluate the chiroptical (vibrational circular dichroism [VCD] and Raman optical activity [ROA]) spectra of large molecules such as peptides. In the MIM-VCD and MIM-ROA methods, the relevant higher energy derivatives of the parent molecule are assembled from the corresponding derivatives of smaller fragment subsystems. In addition, the missing long-range interfragment interactions are accounted at a computationally less expensive level of theory (MIM2). In this work we employed the MIM-VCD and MIM-ROA fragment-based methods to explore the evolution of the chiroptical spectroscopic characteristics of 3 10 -helix, α-helix, β-hairpin, γ-turn, and β-extended conformers of gas phase polyalanine (chain length n = 6-14). The different conformers of polyalanine show distinctive features in the MIM chiroptical spectra and the associated spectral intensities increase with evolution of system size. For a better understanding the site-specific effects on the vibrational spectra, isotopic substitutions were also performed employing the MIM method. An increasing redshift with the number of isotopically labeled 13 C=O functional groups in the peptide molecule was seen. For larger polypeptides, we implemented the two-step-MIM model to circumvent the high computational expense associated with the evaluation of chiroptical spectra at a high level of theory using large basis sets. The chiroptical spectra of α-(alanine) 20 polypeptide obtained using the two-step-MIM model, including continuum solvation effects, show good agreement with the full calculations and experiment. This benchmark study suggests that the MIM-fragment approach can assist in predicting and interpreting chiroptical spectra of large polypeptides. © 2016 Wiley Periodicals, Inc.

  13. A new method for differentiating adducts of common drinking water DBPs from higher molecular weight DBPs in electrospray ionization-mass spectrometry analysis.

    PubMed

    Zhai, Hongyan; Zhang, Xiangru

    2009-05-01

    With the presence of bromide in source waters, numerous brominated disinfection byproducts (DBPs) are formed during chlorination. Many of them are polar/highly polar DBPs and thus hard to be detected by gas chromatography mass spectrometry. Electrospray ionization triple quadrupole mass spectrometry (ESI-MS/MS) is reported to be an effective method in finding polar brominated DBPs by setting precursor ion scans of m/z 79 and 81. But as a soft ionization technique, ESI could form adducts of common DBPs, which may complicate ESI-MS/MS spectra and hinder the efforts in finding new brominated DBPs. In this paper, a new method was developed for differentiating adducts of common DBPs from higher molecular weight DBPs. This method was based on the ESI-MS/MS precursor ion scans of the fragments that correspond to the molecular ions of common DBPs. Adducts of common DBPs were selectively detected in the ESI-MS/MS spectra of a simulated drinking water sample. Moreover, the structures of several new brominated DBPs in the sample were tentatively proposed.

  14. Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe

    NASA Astrophysics Data System (ADS)

    Bozzetti, Carlo; Sosedova, Yuliya; Xiao, Mao; Daellenbach, Kaspar R.; Ulevicius, Vidmantas; Dudoitis, Vadimas; Mordas, Genrik; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Vlachou, Athanasia; Golly, Benjamin; Chazeau, Benjamin; Besombes, Jean-Luc; Baltensperger, Urs; Jaffrezo, Jean-Luc; Slowik, Jay G.; El Haddad, Imad; Prévôt, André S. H.

    2017-01-01

    The widespread use of Aerodyne aerosol mass spectrometers (AMS) has greatly improved real-time organic aerosol (OA) monitoring, providing mass spectra that contain sufficient information for source apportionment. However, AMS field deployments remain expensive and demanding, limiting the acquisition of long-term datasets at many sampling sites. The offline application of aerosol mass spectrometry entailing the analysis of nebulized water extracted filter samples (offline-AMS) increases the spatial coverage accessible to AMS measurements, being filters routinely collected at many stations worldwide. PM1 (particulate matter with an aerodynamic diameter < 1 µm) filter samples were collected during an entire year in Lithuania at three different locations representative of three typical environments of the southeast Baltic region: Vilnius (urban background), Rūgšteli\\vskis (rural terrestrial), and Preila (rural coastal). Aqueous filter extracts were nebulized in Ar, yielding the first AMS measurements of water-soluble atmospheric organic aerosol (WSOA) without interference from air fragments. This enables direct measurement of the CO+ fragment contribution, whose intensity is typically assumed to be equal to that of CO2+. Offline-AMS spectra reveal that the water-soluble CO2+ : CO+ ratio not only shows values systematically > 1 but is also dependent on season, with lower values in winter than in summer. AMS WSOA spectra were analyzed using positive matrix factorization (PMF), which yielded four factors. These factors included biomass burning OA (BBOA), local OA (LOA) contributing significantly only in Vilnius, and two oxygenated OA (OOA) factors, summer OOA (S-OOA) and background OOA (B-OOA), distinguished by their seasonal variability. The contribution of traffic exhaust OA (TEOA) was not resolved by PMF due to both low concentrations and low water solubility. Therefore, the TEOA concentration was estimated using a chemical mass balance approach, based on the concentrations of hopanes, specific markers of traffic emissions. AMS-PMF source apportionment results were consistent with those obtained from PMF applied to marker concentrations (i.e., major inorganic ions, OC / EC, and organic markers including polycyclic aromatic hydrocarbons and their derivatives, hopanes, long-chain alkanes, monosaccharides, anhydrous sugars, and lignin fragmentation products). OA was the largest fraction of PM1 and was dominated by BBOA during winter with an average concentration of 2 µg m-3 (53 % of OM), while S-OOA, probably related to biogenic emissions, was the prevalent OA component during summer with an average concentration of 1.2 µg m-3 (45 % of OM). PMF ascribed a large part of the CO+ explained variability (97 %) to the OOA and BBOA factors. Accordingly, we discuss a new CO+ parameterization as a function of CO2+ and C2H4O2+ fragments, which were selected to describe the variability of the OOA and BBOA factors.

  15. [Comparative metabolism of three amide alkaloids from Piper longum in five different species of liver microsomes].

    PubMed

    He, Huan; Guo, Wei-Wei; Chen, Xiao-Qing; Zhao, Hai-Yu; Wu, Xia

    2016-08-01

    Piperine, piperlonguminine and pellitorine are three major amide alkaloids from Piper longum, showing a variety of pharmacological activities. In order to investigate the different metabolism pathways of these compounds in five species of liver microsomes in vitro, the data of full mass spectrum, and MS2, MS3 spectra of these three alkaloids were collected and analyzed by using ultra-high-performance liquid chromatography coupled with a LTQ-orbitrap mass spectrometer (UHPLC-LTQ-Orbitrap MS); gragment ion information was collected and combined with fragmentation regularities of mass spectra and accurate mass spectrometry data of metabolites, to compare the metabolism difference of three amide alkaloids in liver microsomes of human, rhesus monkey, Beagle dogs, rats and mice. 3 metabolites of piperine, 2 metabolites of piperlonguminine and 1 metabolite of pellitorine were identified quickly. The results showed that the major metabolic pathways of these amide alkaloids in liver microsomes were methylenedioxy group demethylation and oxidation reaction, and metabolic rates were different between species. This study provides basis for further research on in vivo metabolism of piperine analogues from Piper longum. Copyright© by the Chinese Pharmaceutical Association.

  16. Evaluation of oriented lysozyme immobilized with monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya

    2008-12-01

    The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.

  17. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.

    PubMed

    Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei

    2017-12-05

    In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.

  18. An open-source computational and data resource to analyze digital maps of immunopeptidomes

    DOE PAGES

    Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J.; ...

    2015-07-08

    We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies.

  19. Discovery of Neuropeptides in the Nematode Ascaris suum by Database Mining and Tandem Mass Spectrometry

    PubMed Central

    Jarecki, Jessica L.; Frey, Brian L.; Smith, Lloyd M.; Stretton, Antony O.

    2011-01-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover peptides in extracts of the large parasitic nematode Ascaris suum. This required the assembly of a new database of known and predicted peptides. In addition to those already sequenced, peptides were either previously predicted to be processed from precursor proteins identified in an A. suum library of expressed sequence tags (ESTs), or newly predicted from a library of A. suum genome survey sequences (GSSs). The predicted MS/MS fragmentation patterns of this collection of real and putative peptides were compared with the actual fragmentation patterns found in the MS/MS spectra of peptides fractionated by MS; this enabled individual peptides to be sequenced. Many previously identified peptides were found, and 21 novel peptides were discovered. Thus, this approach is very useful, despite the fact that the available GSS database is still preliminary, having only 1X coverage. PMID:21524146

  20. Matrix-Assisted Laser Desorption/Ionisation - High-Energy Collision-Induced Dissociation of Steroids: Analysis of Oxysterols in Rat Brain

    PubMed Central

    Wang, Yuqin; Hornshaw, Martin; Alvelius, Gunvor; Bodin, Karl; Liu, Suya; Sjövall, Jan; Griffiths, William J.

    2008-01-01

    Neutral steroids have traditionally been analysed by gas chromatography – mass spectrometry (GC-MS) after necessary derivatisation reactions. However, GC-MS is unsuitable for the analysis of many conjugated steroids and those with unsuspected functional groups. Here we describe an alternative analytical method specifically designed for the analysis of oxosteroids and those with a 3β-hydroxy-Δ5 or 5α-hydrogen-3β-hydroxy structure. Steroids were derivatised with Girard P (GP) hydrazine to give GP hydrazones which are charged species and readily analysed by matrix-assisted laser desorption/ionization mass spectrometry. The resulting [M]+ ions were then subjected to high-energy collision-induced dissociation on a tandem time-of-flight instrument. The product-ion spectra give structurally informative fragment-ion patterns. The sensitivity of the analytical method is such that steroids structures can be determined from low pg (low fmole) amounts of sample. The utility of the method has been demonstrated by the analysis of oxysterols extracted from rat brain. PMID:16383324

  1. A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics.

    PubMed

    Marx, Harald; Lemeer, Simone; Schliep, Jan Erik; Matheron, Lucrece; Mohammed, Shabaz; Cox, Jürgen; Mann, Matthias; Heck, Albert J R; Kuster, Bernhard

    2013-06-01

    We present a peptide library and data resource of >100,000 synthetic, unmodified peptides and their phosphorylated counterparts with known sequences and phosphorylation sites. Analysis of the library by mass spectrometry yielded a data set that we used to evaluate the merits of different search engines (Mascot and Andromeda) and fragmentation methods (beam-type collision-induced dissociation (HCD) and electron transfer dissociation (ETD)) for peptide identification. We also compared the sensitivities and accuracies of phosphorylation-site localization tools (Mascot Delta Score, PTM score and phosphoRS), and we characterized the chromatographic behavior of peptides in the library. We found that HCD identified more peptides and phosphopeptides than did ETD, that phosphopeptides generally eluted later from reversed-phase columns and were easier to identify than unmodified peptides and that current computational tools for proteomics can still be substantially improved. These peptides and spectra will facilitate the development, evaluation and improvement of experimental and computational proteomic strategies, such as separation techniques and the prediction of retention times and fragmentation patterns.

  2. Complete structural characterization of ceramides as [M – H]− ions by multiple-stage linear ion trap mass spectrometry

    PubMed Central

    Hsu, Fong-Fu

    2016-01-01

    Ceramide is a huge lipid family consisting of diversified structures including various modifications in the fatty acyl chain and the long chain base (LCB). In this contribution, negative-ion ESI linear ion-trap multiple-stage mass spectrometric method (LIT MSn) towards complete structural determination of ceramides in ten major families characterized as the [M – H]− ions is described. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the CID MS2 spectrum, while the sequential MS3 and MS4 spectra contain structural information for locating the double bond and the functional groups, permitting realization of the fragmentation processes. Thereby, differentiation of ceramide molecules varied by chain length, the LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine), and by the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) can be achieved; and many isomeric structures in the biological specimen can be revealed in detail. PMID:27523779

  3. Dissociative electron attachment to the radiosensitizing chemotherapeutic agent hydroxyurea

    NASA Astrophysics Data System (ADS)

    Huber, S. E.; Śmiałek, M. A.; Tanzer, K.; Denifl, S.

    2016-06-01

    Dissociative electron attachment to hydroxyurea was studied in the gas phase for electron energies ranging from zero to 9 eV in order to probe its radiosensitizing capabilities. The experiments were carried out using a hemispherical electron monochromator coupled with a quadrupole mass spectrometer. Diversified fragmentation of hydroxyurea was observed upon low energy electron attachment and here we highlight the major dissociation channels. Moreover, thermodynamic thresholds for various fragmentation reactions are reported to support the discussion of the experimental findings. The dominant dissociation channel, which was observed over a broad range of energies, is associated with formation of NCO-, water, and the amidogen (NH2) radical. The second and third most dominant dissociation channels are associated with formation of NCNH- and NHCONH2-, respectively, which are both directly related to formation of the highly reactive hydroxyl radical. Other ions observed with significant abundance in the mass spectra were NH2-/O-, OH-, CN-, HNOH-, NCONH2-, and ONHCONH2-.

  4. Stellar mass spectrum within massive collapsing clumps. I. Influence of the initial conditions

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2018-04-01

    Context. Stars constitute the building blocks of our Universe, and their formation is an astrophysical problem of great importance. Aim. We aim to understand the fragmentation of massive molecular star-forming clumps and the effect of initial conditions, namely the density and the level of turbulence, on the resulting distribution of stars. For this purpose, we conduct numerical experiments in which we systematically vary the initial density over four orders of magnitude and the turbulent velocity over a factor ten. In a companion paper, we investigate the dependence of this distribution on the gas thermodynamics. Methods: We performed a series of hydrodynamical numerical simulations using adaptive mesh refinement, with special attention to numerical convergence. We also adapted an existing analytical model to the case of collapsing clouds by employing a density probability distribution function (PDF) ∝ρ-1.5 instead of a lognormal distribution. Results: Simulations and analytical model both show two support regimes, a thermally dominated regime and a turbulence-dominated regime. For the first regime, we infer that dN/d logM ∝ M0, while for the second regime, we obtain dN/d logM ∝ M-3/4. This is valid up to about ten times the mass of the first Larson core, as explained in the companion paper, leading to a peak of the mass spectrum at 0.2 M⊙. From this point, the mass spectrum decreases with decreasing mass except for the most diffuse clouds, where disk fragmentation leads to the formation of objects down to the mass of the first Larson core, that is, to a few 10-2 M⊙. Conclusions: Although the mass spectra we obtain for the most compact clouds qualitatively resemble the observed initial mass function, the distribution exponent is shallower than the expected Salpeter exponent of - 1.35. Nonetheless, we observe a possible transition toward a slightly steeper value that is broadly compatible with the Salpeter exponent for masses above a few solar masses. This change in behavior is associated with the change in density PDF, which switches from a power-law to a lognormal distribution. Our results suggest that while gravitationally induced fragmentation could play an important role for low masses, it is likely the turbulently induced fragmentation that leads to the Salpeter exponent.

  5. Discovery of C5-C17 poly- and perfluoroalkyl substances in water by in-line SPE-HPLC-Orbitrap with in-source fragmentation flagging.

    PubMed

    Liu, Yanna; Pereira, Alberto Dos Santos; Martin, Jonathan W

    2015-04-21

    The presence of unknown organofluorine compounds in environmental samples has prompted the development of nontargeted analytical methods capable of detecting new perfluoroalkyl and polyfluoroalkyl substances (PFASs). By combining high volume injection with high performance liquid chromatography (HPLC) and ultrahigh resolution Orbitrap mass spectrometry, a sensitive (0.003-0.2 ng F/mL for model mass-labeled PFASs) untargeted workflow was developed for discovery and characterization of novel PFASs in water. In the first step, up to 5 mL of water is injected to in-line solid phase extraction, chromatographed by HPLC, and detected by electrospray ionization with mass spectral acquisition in parallel modes cycling back and forth: (i) full scan with ultrahigh resolving power (RP = 120,000, mass accuracy ≤3 ppm), and (ii) in-source fragmentation flagging scans designed to yield marker fragment ions including [C2F5](-) (m/z 118.992), [C3F7](-) (m/z 168.988), [SO4H](-) (m/z 96.959), and [Cl](-) (m/z 34.9). For flagged PFASs, plausible empirical formulas were generated from accurate masses, isotopic patterns, and fragment ions. In the second step, another injection is made to collect high resolution MS/MS spectra of suspect PFAS ions, allowing further confirmation of empirical formulas while also enabling preliminary structural characterization. The method was validated by applying it to an industrial wastewater, and 36 new PFASs were discovered. Of these, 26 were confidently assigned to 3 new PFAS classes that have not previously been reported in the environment: polyfluorinated sulfates (CnFn+3Hn-2SO4(-); n = 5, 7, 9, 11, 13, and 15), chlorine substituted perfluorocarboxylates (ClCnF2nCO2(-); n = 4-11), and hydro substituted perfluorocarboxylates (HCnF2nCO2(-); n = 5-16). Application of the technique to environmental water samples is now warranted.

  6. MALDI Orbitrap Mass Spectrometry Profiling of Dysregulated Sulfoglycosphingolipids in Renal Cell Carcinoma Tissues

    NASA Astrophysics Data System (ADS)

    Jirásko, Robert; Holčapek, Michal; Khalikova, Maria; Vrána, David; Študent, Vladimír; Prouzová, Zuzana; Melichar, Bohuslav

    2017-08-01

    Matrix-assisted laser desorption/ionization coupled with Orbitrap mass spectrometry (MALDI-Orbitrap-MS) is used for the clinical study of patients with renal cell carcinoma (RCC), as the most common type of kidney cancer. Significant changes in sulfoglycosphingolipid abundances between tumor and autologous normal kidney tissues are observed. First, sulfoglycosphingolipid species in studied RCC samples are identified using high mass accuracy full scan and tandem mass spectra. Subsequently, optimization, method validation, and statistical evaluation of MALDI-MS data for 158 tissues of 80 patients are discussed. More than 120 sulfoglycosphingolipids containing one to five hexosyl units are identified in human RCC samples based on the systematic study of their fragmentation behavior. Many of them are recorded here for the first time. Multivariate data analysis (MDA) methods, i.e., unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples to reveal the most up- and downregulated lipids in tumor tissues. Obtained results are closely correlated with MALDI mass spectrometry imaging (MSI) and histologic staining. Important steps of the present MALDI-Orbitrap-MS approach are also discussed, such as the selection of best matrix, correct normalization, validation for semiquantitative study, and problems with possible isobaric interferences on closed masses in full scan mass spectra.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yingying; Triscari, Joseph M.; Tseng, George C.

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides,more » a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s). Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and should be useful in algorithm development that employs improved models to predict fragment ion intensities.« less

  8. Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data.

    PubMed

    Nakayama, Hiroshi; Akiyama, Misaki; Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-04-01

    We present here a method to correlate tandem mass spectra of sample RNA nucleolytic fragments with an RNA nucleotide sequence in a DNA/RNA sequence database, thereby allowing tandem mass spectrometry (MS/MS)-based identification of RNA in biological samples. Ariadne, a unique web-based database search engine, identifies RNA by two probability-based evaluation steps of MS/MS data. In the first step, the software evaluates the matches between the masses of product ions generated by MS/MS of an RNase digest of sample RNA and those calculated from a candidate nucleotide sequence in a DNA/RNA sequence database, which then predicts the nucleotide sequences of these RNase fragments. In the second step, the candidate sequences are mapped for all RNA entries in the database, and each entry is scored for a function of occurrences of the candidate sequences to identify a particular RNA. Ariadne can also predict post-transcriptional modifications of RNA, such as methylation of nucleotide bases and/or ribose, by estimating mass shifts from the theoretical mass values. The method was validated with MS/MS data of RNase T1 digests of in vitro transcripts. It was applied successfully to identify an unknown RNA component in a tRNA mixture and to analyze post-transcriptional modification in yeast tRNA(Phe-1).

  9. Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.

    PubMed

    Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C

    2014-04-01

    Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Interaction between two discontiguous chain segments from the beta-sheet of Escherichia coli thioredoxin suggests an initiation site for folding.

    PubMed

    Tasayco, M L; Fuchs, J; Yang, X M; Dyalram, D; Georgescu, R E

    2000-09-05

    The approach of comparing folding and folding/binding processes is exquisitely poised to narrow down the regions of the sequence that drive protein folding. We have dissected the small single alpha/beta domain of oxidized Escherichia coli thioredoxin (Trx) into three complementary fragments (N, residues 1-37; M, residues 38-73; and C, residues 74-108) to study them in isolation and upon recombination by far-UV CD and NMR spectroscopy. The isolated fragments show a minimum of ellipticity of ca. 197 nm in their far-UV CD spectra without concentration dependence, chemical shifts of H(alpha) that are close to the random coil values, and no medium- and long-range NOE connectivities in their three-dimensional NMR spectra. These fragments behave as disordered monomers. Only the far-UV CD spectra of binary or ternary mixtures that contain N- and C-fragments are different from the sum of their individual spectra, which is indicative of folding and/or binding of these fragments. Indeed, the cross-peaks corresponding to the rather hydrophobic beta(2) and beta(4) regions of the beta-sheet of Trx disappear from the (1)H-(15)N HSQC spectra of isolated labeled N- and C-fragments, respectively, upon addition of the unlabeled complementary fragments. The disappearing cross-peaks indicate interactions between the beta(2) and beta(4) regions, and their reappearance at lower temperatures indicates unfolding and/or dissociation of heteromers that are predominantly held by hydrophobic forces. Our results argue that the folding of Trx begins by zippering two discontiguous and rather hydrophobic chain segments (beta(2) and beta(4)) corresponding to neighboring strands of the native beta-sheet.

  11. Exploring Site-Specific N-Glycosylation Microheterogeneity of Haptoglobin using Glycopeptide CID Tandem Mass Spectra and Glycan Database Search

    PubMed Central

    Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav

    2013-01-01

    Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http://edwardslab.bmcb.georgetown.edu/GPS. PMID:23829323

  12. Uptake of Semivolatile Secondary Organic Aerosol Formed from α-Pinene into Nonvolatile Polyethylene Glycol Probe Particles.

    PubMed

    Ye, Penglin; Ding, Xiang; Ye, Qing; Robinson, Ellis S; Donahue, Neil M

    2016-03-10

    Semivolatile organic compounds (SVOCs) play an essential role in secondary organic aerosol (SOA) formation, chemical aging, and mixing of organic aerosol (OA) from different sources. Polyethylene glycol (PEG400) particles are liquid, polar, and nearly nonvolatile; they provide a new vehicle to study the interaction between SVOCs with OA. With a unique fragment ion C4H9O2(+) (m/z 89), PEG400 can be easily separated from α-pinene SOA in aerosol mass spectra. By injecting separately prepared PEG probe particles into a chamber containing SOA coated on ammonium sulfate seeds, we show that a substantial pool of SVOCs exists in equilibrium with the original SOA particles. Quantitative findings are based on bulk mass spectra, size-dependent composition, and the evolution of individual particle mass spectra, which we use to separate the two particle populations. We observed a larger fraction of SVOC vapors with increased amounts of reacted α-pinene. For the same amount of reacted α-pinene, the SOA formed from α-pinene oxidized by OH radicals had a higher fraction of SOA vapors than SOA formed by α-pinene ozonolysis. Compared to the PEG400 probe particles, we observed a lower mass fraction of SVOCs in poly(ethylene glycol) dimethyl ether (MePEG500) probe particles under otherwise identical conditions; this may be due to the lower polarity of the MePEG500 or caused by esterification reactions between the PEG400 and organic acids in the SOA.

  13. Equilibrium and kinetic folding of rabbit muscle triosephosphate isomerase by hydrogen exchange mass spectrometry.

    PubMed

    Pan, Hai; Raza, Ashraf S; Smith, David L

    2004-03-05

    Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J. M.

    De novo sequencing of proteins and peptides is one of the most important problems in mass spectrometry-driven proteomics. A variety of methods have been developed to accomplish this task from a set of bottom-up tandem (MS/MS) mass spectra. However, a more recently emerged top-down technology, now gaining more and more popularity, opens new perspectives for protein analysis and characterization, implying a need in efficient algorithms for processing this kind of MS/MS data. Here we describe a method that allows to retrieve from a set of top-down MS/MS spectra long and accurate sequence fragments of the proteins contained in a sample.more » To this end, we outline a strategy for generating high-quality sequence tags from top-down spectra, and introduce the concept of a T-Bruijn graph by adapting to the case of tags the notion of an A-Bruijn graph widely used in genomics. The output of the proposed approach represents the set of amino acid strings spelled out by optimal paths in the connected components of a T-Bruijn graph. We illustrate its performance on top-down datasets acquired from carbonic anhydrase 2 (CAH2) and the Fab region of alemtuzumab.« less

  15. Hydrogen bonding interaction of small acetaldehyde clusters studied with core-electron excitation spectroscopy in the oxygen K-edge region

    NASA Astrophysics Data System (ADS)

    Tabayashi, K.; Chohda, M.; Yamanaka, T.; Tsutsumi, Y.; Takahashi, O.; Yoshida, H.; Taniguchi, M.

    2010-06-01

    In order to examine inner-shell electron excitation spectra of molecular clusters with strong multipole interactions, excitation spectra and time-of-flight (TOF) fragment-mass spectra of small acetaldehyde (AA) clusters have been studied under the beam conditions. The TOF spectra at the oxygen K-edge region showed an intense growth of the protonated clusters, MnH+ (M=CH3CHO) in the cluster beams. "cluster-specific" excitation spectra could be generated by monitoring partial-ion-yields of the protonated clusters. The most intense band of O1s→π*CO was found to shift to a higher energy by 0.15 eV relative to the monomer band upon clusterization. X-ray absorption spectra (XAS) were also calculated for the representative dimer configurations using a computer modelling program based on the density functional theory. The XAS prediction for the most stable (non-planar) configuration was found to give a close comparison with the cluster-band shift observed. The band shift was interpreted as being due to the HOMO-LUMO interaction within the complex where a contribution of vibrationally blue-shifting hydrogen bonding could be identified.

  16. High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites

    PubMed Central

    Kolářová, L.; Nobilis, M.

    2008-01-01

    Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well. PMID:18345532

  17. Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.

    PubMed

    Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B

    2013-09-01

    High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.

  18. Direct chemical-analysis of uv laser-ablation products of organic polymers by using selective ion monitoring mode in gas-chromatography mass-spectrometry

    USGS Publications Warehouse

    Cho, Yirang; Lee, H.W.; Fountain, S.T.; Lubman, D.M.

    1994-01-01

    Trace quantities of laser ablated organic polymers were analyzed by using commercial capillary column gas chromatography/mass spectrometry; the instrument was modified so that the laser ablation products could be introduced into the capillary column directly and the constituents of each peak in the chromatogram were identified by using a mass spectrometer. The present study takes advantage of the selective ion monitoring mode for significantly improving the sensitivity of the mass spectrometer as a detector, which is critical in analyzing the trace quantities and confirming the presence or absence of the species of interest in laser ablated polymers. The initial composition of the laser ablated polymers was obtained by using an electron impact reflectron time-of-flight mass spectrometer and the possible structure of the fragments observed in the spectra was proposed based on the structure of the polymers.

  19. Combined analysis of 1,3-benzodioxoles by crystalline sponge X-ray crystallography and laser desorption ionization mass spectrometry.

    PubMed

    Hayashi, Yukako; Ohara, Kazuaki; Taki, Rika; Saeki, Tomomi; Yamaguchi, Kentaro

    2018-03-12

    The crystalline sponge (CS) method, which employs single-crystal X-ray diffraction to determine the structure of an analyte present as a liquid or an oil and having a low melting point, was used in combination with laser desorption ionization mass spectrometry (LDI-MS). 1,3-Benzodioxole derivatives were encapsulated in CS and their structures were determined by combining X-ray crystallography and MS. After the X-ray analysis, the CS was subjected to imaging mass spectrometry (IMS) with an LDI spiral-time-of-flight mass spectrometer (TOF-MS). The ion detection area matched the microscopic image of the encapsulated CS. In addition, the accumulated 1D mass spectra showed that fragmentation of the guest molecule (hereafter, guest) can be easily visualized without any interference from the fragment ions of CS except for two strong ion peaks derived from the tridentate ligand TPT (2,4,6-tris(4-pyridyl)-1,3,5-triazine) of the CS and its fragment. X-ray analysis clearly showed the presence of the guest as well as the π-π, CH-halogen, and CH-O interactions between the guest and the CS framework. However, some guests remained randomly diffused in the nanopores of CS. In addition, the detection limit was less than sub-pmol order based on the weight and density of CS determined by X-ray analysis. Spectroscopic data, such as UV-vis and NMR, also supported the encapsulation of the guest through the interaction between the guest and CS components. The results denote that the CS-LDI-MS method, which combines CS, X-ray analysis and LDI-MS, is effective for structure determination.

  20. Analysis of antioxidants in insulation cladding of copper wire: a comparison of different mass spectrometric techniques (ESI-IT, MALDI-RTOF and RTOF-SIMS).

    PubMed

    Schnöller, Johannes; Pittenauer, Ernst; Hutter, Herbert; Allmaier, Günter

    2009-12-01

    Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS), matrix-assisted laser desorption/ionization reflectron time-of-flight (TOF) mass spectrometry (MALDI-RTOF-MS) and reflectron TOF secondary ion mass spectrometry (RTOF-SIMS). The samples were analyzed either directly without any treatment (RTOF-SIMS) or after a simple liquid/liquid extraction step (ESI-IT-MS, MALDI-RTOF-MS and RTOF-SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF-SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI-IT- and MALDI-RTOF-MS-generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI-IT-MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so-called 'soft' desorption/ionization techniques exhibited intense fragmentation only by applying low-energy collision-induced dissociation (CID) tandem MS on a multistage ion trap-instrument and high-energy CID on a tandem TOF-instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT-instrument (collision energy in the very low eV range) or the TOF/RTOF-instrument (collision energy 20 keV), but both delivered important structural information. Copyright 2009 John Wiley & Sons, Ltd.

  1. Successful adaption of a forensic toxicological screening workflow employing nontargeted liquid chromatography-tandem mass spectrometry to water analysis.

    PubMed

    Steger, Julia; Arnhard, Kathrin; Haslacher, Sandra; Geiger, Klemens; Singer, Klaus; Schlapp, Michael; Pitterl, Florian; Oberacher, Herbert

    2016-04-01

    Forensic toxicology and environmental water analysis share the common interest and responsibility in ensuring comprehensive and reliable confirmation of drugs and pharmaceutical compounds in samples analyzed. Dealing with similar analytes, detection and identification techniques should be exchangeable between scientific disciplines. Herein, we demonstrate the successful adaption of a forensic toxicological screening workflow employing nontargeted LC/MS/MS under data-dependent acquisition control and subsequent database search to water analysis. The main modification involved processing of an increased sample volume with SPE (500 mL vs. 1-10 mL) to reach LODs in the low ng/L range. Tandem mass spectra acquired with a qTOF instrument were submitted to database search. The targeted data mining strategy was found to be sensitive and specific; automated search produced hardly any false results. To demonstrate the applicability of the adapted workflow to complex samples, 14 wastewater effluent samples collected on seven consecutive days at the local wastewater-treatment plant were analyzed. Of the 88,970 fragment ion mass spectra produced, 8.8% of spectra were successfully assigned to one of the 1040 reference compounds included in the database, and this enabled the identification of 51 compounds representing important illegal drugs, members of various pharmaceutical compound classes, and metabolites thereof. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification of cardiac glycosides in fractions from Periploca forrestii by high-performance liquid chromatography/diode-array detection/electrospray ionization multi-stage tandem mass spectrometry and liquid chromatography/nuclear magnetic resonance.

    PubMed

    Li, Yong; Wu, Xianfu; Li, Jianbei; Wang, Yinghong; Yu, Shishan; Lv, Haining; Qu, Jing; Abliz, Zeper; Liu, Jing; Liu, Yuanyan; Du, Dan

    2010-02-01

    Cardiac glycosides are a class of naturally occurring compounds that are characterized by some interesting biological activities and are widely distributed in the plant kingdom and can also be found in some animals. There is an interest in the chemical characterization of these molecules due to their toxicity and their use in medicines. In the study reported here, a combination of electrospray ionization tandem mass spectrometry with high-performance liquid chromatography equipped with diode-array detector (HPLC-DAD/ESI-MS(n)), and hyphenation to both liquid chromatography and nuclear magnetic resonance spectroscopy (HPLC/NMR) were utilized for the on-line analyses of cardiac glycosides from Periploca forrestii. The fragmentation patterns and (1)H NMR spectra of nine isolated cardiac glycosides were investigated; their fragmentation rules and (1)H NMR spectral characteristics were summarized and applied to the structural identification of similar constituents in fractions from P. forrestii. As a result, a total of nine trace cardiac glycosides were tentatively determined by analyses of accurate molecular masses, representative fragment ions and characteristic (1)H NMR signals provided by HPLC/high-resolution mass spectrometry (HRMS), HPLC-DAD/ESI-MS(n) and HPLC/(1)H NMR experiments, respectively. Of these, eight (2-9) are new compounds and one (1) is reported from P. forrestii for the first time. Results of the present study can benefit the rapid identification and targeted isolation of new cardiac glycosides from crude plant extracts. 2009 Elsevier B.V. All rights reserved.

  3. Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Srivastava, Mukesh; Singh, Bhim Pratap; Kumar, Brijesh

    2016-12-01

    Rauwolfia species (Apocynaceae) are medicinal plants well known worldwide due to its potent bioactive monoterpene indole alkaloids (MIAs) such as reserpine, ajmalicine, ajmaline, serpentine and yohimbine. Reserpine, ajmalicine and ajmaline are powerful antihypertensive, tranquilizing agents used in hypertension. Yohimbine is an aphrodisiac used in dietary supplements. As there is no report on the comparative and comprehensive phytochemical investigation of the roots of Rauwolfia species, we have developed an efficient and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for ethanolic root extract of Rauwolfia species to elucidate the fragmentation pathways for dereplication of bioactive MIAs using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS) in positive ion mode. We identified and established diagnostic fragment ions and fragmentation pathways using reserpine, ajmalicine, ajmaline, serpentine and yohimbine. The MS/MS spectra of reserpine, ajmalicine, and ajmaline showed C -ring-cleavage whereas E -ring cleavage was observed in serpentine via Retro Diels Alder (RDA). A total of 47 bioactive MIAs were identified and characterized on the basis of their molecular formula, exact mass measurements and MS/MS analysis. Reserpine, ajmalicine, ajmaline, serpentine and yohimbine were unambiguously identified by comparison with their authentic standards and other 42 MIAs were tentatively identified and characterized from the roots of Rauwolfia hookeri, Rauwolfia micrantha, Rauwolfia serpentina, Rauwolfia verticillata, Rauwolfia tetraphylla and Rauwolfia vomitoria . Application of LC-MS followed by principal component analysis (PCA) has been successfully used to discriminate among six Rauwolfia species.

  4. Could the differences in the biochemistry of prostate carcinoma compared to benign prostate tissue biopsy fragments be evaluated through Raman spectroscopy?

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo; Leite, Kátia Ramos M.; Srougi, Miguel; Silveira, Fabrício L.; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.; Pasqualucci, Carlos A.

    2013-03-01

    It has been proposed a spectral model to evaluate the biochemical differences between prostate carcinoma and benign fragments using dispersive Raman spectroscopy. We have examined 51 prostate fragments from surgically removed PrCa; each fragment was snap-frozen and stored (-80°C) prior spectral analysis. Raman spectrum was measured using a Raman spectrometer (830 nm excitation) coupled to a fiber-optic probe. Integration time and laser power were set to 50 s and 300 mW, respectively. It has been collected triplicate spectra from each fragment (total 153 spectra). Some samples exhibited a strong fluorescence, which was removed by a 7th order polynomial fitting. It has been developed a spectral model based on the least-squares fitting of the spectra of pure biochemicals (actin, collagen, elastin, carotene, glycogen, phosphatidylcholine, hemoglobin, and water) with the spectra of tissues, where the fitting parameters are the relative contribution of the compounds to the tissue spectrum. The spectra (600-1800 cm-1 range) are dominated by bands of proteins; it has been found a small difference in the mean spectra of PrCa compared to the benign tissue, mainly in the 1000-1400 cm-1 region, indicating similar biochemical constitution. The spectral fitting model revealed that elastin and phosphatidylcholine were increased in PrCa, whereas blood and water were reduced in malignant lesions (p < 0.05). A discrimination of PrCa from benign tissue using Mahalanobis distance applied to the contribution of elastin, hemoglobin and phosphatidylcholine resulted in sensitivity of 72% and specificity of 70%.

  5. On Organic Material in E Ring Ice Grains

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Reviol, R.; Nölle, L.; Klenner, F.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    Pure water ice dominates the composition of the micron and sub-micron sized dust particles in Saturn's E-ring, a ring constantly replenished by active ice jets of the moon Enceladus [1]. Details about the composition of this tenuous, optically thin ring can only be constrained by in situ measurements. The Cosmic Dust Analyzer (CDA) onboard Cassini investigates the composition of these grains by cationic time-of-flight mass spectra of individual ice grains hitting the instruments target surface. From these spectra three compositional types of E ring ice grains have been identified previously [2,3]: Type-1: Almost pure water, Type-2: Enriched in organics, and Type-3: Enriched in salt. Unlike Type-1 and 3, organic-enriched Type-2 spectra have not yet been investigated in depth. Here we report the first detailed compositional analysis of this type. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. In contrast to Type 1 and 3, Type-2 spectra display a great compositional diversity, which indicates varying contributions of several organic species. So far we have identified characteristic fragment patterns of at least three classes of organic compounds: aromatic species, amines, and carbonyl group species. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Due to the dynamical evolution of the orbital elements of E ring grains a large fraction collides with the icy moons embedded in the E ring. Therefore, the organic components identified by CDA can accumulate on the surfaces of these bodies over time. Ref: :[1]Kempf et al., Icarus-206, 2010. [2]Postberg et al., Nature-459, 2009. [3]Postberg et al., Icarus-193, 2008.

  6. Characterization of signatures from organic compounds in CDA mass spectra of ice particles in Saturn's E-ring

    NASA Astrophysics Data System (ADS)

    Khawaja, Nozair; Postberg, Frank; Reviol, Rene; Srama, Ralf

    2015-04-01

    The major source of ice particles in Saturn's E-ring is Enceladus - a geological active moon of Saturn. Enceladus is emanating ice particles from its fractured south polar terrain (SPT), the so-called "Tiger Stripes". The source of Enceladus activity and many of the ice particles is a subsurface ocean. The Cosmic Dust Analyzer (CDA) onboard the Cassini spacecraft is sampling these icy particles and producing TOF mass spectra of cations of impinging particles [1]. Three compositional types of ice particles have been identified from CDA-mass spectra: (i) pure water ice (Type-1) (ii) organic rich (Type-2) (iii) salt rich (Type-3) [2][3]. These organic rich (Type-2) spectra are particularly abundant in the icy jets of Enceladus as we found out during the Cassini's Enceladus flybys (E17 and E18) in 2012 [4]. We present a compositional analysis of the CDA spectra of these organic rich icy grains sampled in the E ring. We have characterized hundreds of Type-2 spectra of impinging ice particles. These were recorded at different impact velocities causing different molecular fragmentation patterns observed in the mass spectra. We defined 3 typical impact speed intervals: (i) 4-7 km/s (ii) 8-11 km/s and (iii) 12-16km/s. Organic features best observed at slow (4-7 km/s) or at intermediate (8-11 km/s) impact velocity ranges. Several classes of organic rich spectra are identified. Classifying Type-2 spectra are according to their characteristic mass lines of possible organic species. We try to infer the composition of each class of organic rich spectra is inferred by using an experimental setup (IR-FL-MALDI) to simulate the CDA spectra of different compositional types. In the laboratory we have used infrared laser to disperse a micro-beam of a water solution [5]. The laser energy is adjusted to simulate different impact velocities of ice particles on the CDA. Four families of organic compounds including alcohols, fatty acids, amines and aromatic, with varying number of carbon atoms, have been measured and compared with the CDA Type-2 spectra. References [1] Srama, R. et.al.: The Cassini Cosmic Dust Analyzer, SSR, Vol. 114, 465 -- 518, 2004. [2] Postberg, F. et.al.: The E-ring in the vicinity of Enceladus II. Probing the moon's interior -- The composition of E-ring particles, Icarus, Vol. 193, 438 -- 454, 2008. [3] Postberg, F. et.al.: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, Vol. 459, 1098 - 1101, 2009. [4] Khawaja, N. et.al.: Compositional differentiation of Enceladus' plume, EPSC, Vol. 9, 2014. [5] Reviol, R. et.al.: Simulation of TOF spectra from cosmic ice particles in the Laboratory by IR-FL-MALDI, EPSC, Vol. 7, 2012.

  7. Isospin dependence of fragment spectra in heavy/super-heavy colliding nuclei at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugh, Rajiv, E-mail: rajivchug@gmail.com; Kumar, Rohit, E-mail: rohitksharma.pu@gmail.com; Vinayak, Karan Singh, E-mail: drksvinayak@gmail.com

    2016-05-06

    Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetrymore » energy.« less

  8. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.

    PubMed

    Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C

    2017-02-01

    Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.

  9. Separation and identification of twelve catechins in tea using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Zeeb, D J; Nelson, B C; Albert, K; Dalluge, J J

    2000-10-15

    A method has been developed for the direct microscale determination of 12 catechins in green and black tea infusions. The method is based on liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS). Standard catechin mixtures and tea infusions were analyzed by LC/APCI-MS with detection of protonated molecular ions and characteristic fragment ions for each compound. The identities of eight major catechins and caffeine in tea were established based on LC retention times and simultaneously recorded mass spectra. In addition, monitoring of the catechin-specific retro Diels-Alder fragment ion at m/z 139 throughout the chromatogram provided a unique fingerprint for catechin content in the samples that led to the identification of four minor chemically modified catechin derivatives in the infusions. This report is the first to describe the comprehensive determination of all 12 reported catechins in a single analysis. The utility of LC/APCI-MS for providing routine separation and identification of catechins at femtomole to low-picomole levels without extraction or sample pretreatment, and its potential as a standard analytical tool for the determination of polyphenols in natural products and biological fluids, are discussed.

  10. [Gas chromatographic/mass spectrometric analysis of boldenone urinary metabolites in man].

    PubMed

    Zhang, J; Liu, C S; Zhou, T H

    1991-01-01

    The metabolism of boldenone (17 beta-hydroxy-1,4-androstem-3-one) in man has been investigated by gas chromatography/mass spectrometry. After oral administration of a 20 mg dose to man, six metabolites were detected in the conjugated fraction of the urinary samples. Boldenone, the major compound excreted in urine, was detected within 34 h after administration. In addition, several metabolites, resulting from the hydroxylation of boldenone and the reduction of the unsaturated carbon bonds of boldenone, were detected in the urine samples varying from 9 to 83 h. Extraction and fractionation of these metabolites were achieved by using XAD-2 column and gas chromatography. The recovery of the whole procedure was studied. Furthermore, the mass spectra of the metabolites are presented and major fragment pathways are discussed.

  11. Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions*

    PubMed Central

    Lamoliatte, Frederic; Bonneil, Eric; Durette, Chantal; Caron-Lizotte, Olivier; Wildemann, Dirk; Zerweck, Johannes; Wenshuk, Holger; Thibault, Pierre

    2013-01-01

    Protein modification by small ubiquitin-like modifier (SUMO) modulates the activities of numerous proteins involved in different cellular functions such as gene transcription, cell cycle, and DNA repair. Comprehensive identification of SUMOylated sites is a prerequisite to determine how SUMOylation regulates protein function. However, mapping SUMOylated Lys residues by mass spectrometry (MS) is challenging because of the dynamic nature of this modification, the existence of three functionally distinct human SUMO paralogs, and the large SUMO chain remnant that remains attached to tryptic peptides. To overcome these problems, we created HEK293 cell lines that stably express functional SUMO paralogs with an N-terminal His6-tag and an Arg residue near the C terminus that leave a short five amino acid SUMO remnant upon tryptic digestion. We determined the fragmentation patterns of our short SUMO remnant peptides by collisional activation and electron transfer dissociation using synthetic peptide libraries. Activation using higher energy collisional dissociation on the LTQ-Orbitrap Elite identified SUMO paralog-specific fragment ions and neutral losses of the SUMO remnant with high mass accuracy (< 5 ppm). We exploited these features to detect SUMO modified tryptic peptides in complex cell extracts by correlating mass measurements of precursor and fragment ions using a data independent acquisition method. We also generated bioinformatics tools to retrieve MS/MS spectra containing characteristic fragment ions to the identification of SUMOylated peptide by conventional Mascot database searches. In HEK293 cell extracts, this MS approach uncovered low abundance SUMOylated peptides and 37 SUMO3-modified Lys residues in target proteins, most of which were previously unknown. Interestingly, we identified mixed SUMO-ubiquitin chains with ubiquitylated SUMO proteins (K20 and K32) and SUMOylated ubiquitin (K63), suggesting a complex crosstalk between these two modifications. PMID:23750026

  12. Accurate recognition and feature qualify for flavonoid extracts from Liang-wai Gan Cao by liquid chromatography-high resolution-mass spectrometry and computational MS/MS fragmentation.

    PubMed

    He, Min; Wu, Hai; Nie, Juan; Yan, Pan; Yang, Tian-Biao; Yang, Zhi-Yu; Pei, Rui

    2017-11-30

    In this study, Liquid Chromatography (LC) separation combined with quadrupole-Time-Of-Flight Mass Spectrometry (qTOF-MS) detection was used to analyze the characteristic ions of the flavonoids from Liang-wai Gan Cao (Radix Glycyrrhizae uralensis). First, accurate mass measurement and isotope curve optimization could provide reliable molecular prediction after noise deduction, baseline calibration and "ghost peak recognition". Thus, some spectral features in the LC-MS data could be clearly explained. Secondly, the chemical structure of flavonoids was deduced by MS/MS fragment ions, and the in-silico spectra by MS-FINDER program provided strong support for overcoming the bottleneck of phytochemical identification. For a predicted formula and experimental MS/MS spectrum, the MS-FINDER program could sort the candidate compounds in the public database based on a comprehensive weighted score, and we took the first 20 reliable compounds to seek the target compound in an in-house database. Certainly, those fragmentation pathways could also be deduced and described as Retro-Diels-Alder (RDA) fragmentation reaction, losses of C 4 H 8 , C 5 H 8 , CH 3 , CO, CO 2 and others. Accordingly, 63 flavonoids were identified, and their in-silico bioactivity were clearly disclosed by some bioinformatics tools. In this experiment, the flavonoids obtained by the four extraction processes were tested by LC-qTOF-MS. We looked for possible Q-markers from these data matrices and then quantified them; their similarities/differences were also described. The results also indicated that the Macroporous Adsorption Resins (MARs) purification is a low cost, environmentally friendly and effective approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. ToF-SIMS and principal component analysis of lipids and amino acids from inflamed and dysplastic human colonic mucosa.

    PubMed

    Urbini, Marco; Petito, Valentina; de Notaristefani, Francesco; Scaldaferri, Franco; Gasbarrini, Antonio; Tortora, Luca

    2017-10-01

    Here, time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis were combined to study the role of ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), in the colon cancer progression. ToF-SIMS was used to obtain mass spectra and chemical maps from the mucosal surface of human normal (NC), inflamed (IC), and dysplastic (DC) colon tissues. Chemical mapping with a lateral resolution of ≈ 1 μm allowed to evaluate zonation of fatty acids and amino acids as well as the morphological condition of the intestinal glands. High mass resolution ToF-SIMS spectra showed chemical differences in lipid and amino acid composition as a function of pathological state. In positive ion mode, mono- (MAG), di- (DAG), and triacylglycerol (TAG) signals were detected in NC tissues, while in IC and DC tissues, the only cholesterol was present as lipid class representative. Signals from fatty acids, collected in negative ion mode, were subjected to principal component analysis (PCA). PCA showed a strict correlation between IC and DC samples, due to an increase of stearic, arachidonic, and linoleic acid. In the same way, differences in the amino acid composition were highlighted through multivariate analysis. PCA revealed that glutamic acid, leucine/isoleucine, and valine fragments are related to IC tissues. On the other hand, tyrosine, methionine, and tryptophan peaks contributed highly to the separation of DC tissues. Finally, a classification of NC, IC, and DC patients was also achieved through hierarchical cluster analysis of amino acid fragments. In this case, human colonic inflammation showed a stronger relationship with normal than dysplastic condition. Graphical Abstract ᅟ.

  14. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (<30 kDa). Recent studies have focused on improving the analysis of larger intact proteins (up to 75 kDa), but they have also highlighted several challenges to be addressed. One major hurdle is the efficient dissociation of larger protein ions, which often to do not yield extensive fragmentation via conventional tandem MS methods. Here we describe the first application of activated ion electron transfer dissociation (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  15. Gas-phase synthesis of singly and multiply charged polyoxovanadate anions employing electrospray ionization and collision induced dissociation.

    PubMed

    Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  16. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  17. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE PAGES

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; ...

    2016-11-21

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  18. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  19. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.

  20. Structural Characterization of Neutral Saccharides by Negative Ion MALDI Mass Spectrometry Using a Superbasic Proton Sponge as Deprotonating Matrix

    NASA Astrophysics Data System (ADS)

    Calvano, Cosima Damiana; Cataldi, Tommaso R. I.; Kögel, Julius F.; Monopoli, Antonio; Palmisano, Francesco; Sundermeyer, Jorge

    2017-08-01

    The superbasic proton sponge 1,8-bis(tripyrrolidinylphosphazenyl)naphthalene (TPPN) has been successfully employed for the structural characterization of neutral saccharides, cyclodextrins, and saccharide alditols by matrix assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Owing to its inherently high basicity, TPPN is capable of deprotonating neutral carbohydrates (M) providing an efficient and simple way to produce gas-phase [M - H]- ions. Highly informative negative ions MS/MS spectra showing several diagnostic fragment ions were obtained, mainly A-type cross-ring and C-type glycosidic cleavages. Indeed, cross-ring cleavages of monosaccharides with formation of 0,2A, 0,3A, 2,4A, 2,5A, 3,5A, and 0,3X product ions dominate the MS/MS spectra. A significant difference between reducing (e.g., lactose, maltose) and non-reducing disaccharides (e.g., sucrose, trehalose) was observed. Though disaccharides with the anomeric positions blocked give rise to deprotonated molecules, [M - H]-, at m/ z 341.1, reducing ones exhibited a peak at m/ z 340.1, most likely as radical anion, [M - H•- H]-•. The superiority of TPPN was clearly demonstrated by comparison with well recognized matrices, such as 2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone (positive ion mode) and nor-harman (negative ion mode). MALDI MS/MS experiments on isotopically labeled sugars have greatly supported the interpretation of plausible fragmentation pathways.

  1. Linkage Determination of Linear Oligosaccharides by MSn (n > 2) Collision-Induced Dissociation of Z1 Ions in the Negative Ion Mode

    NASA Astrophysics Data System (ADS)

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2014-02-01

    Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 - 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.

  2. Penning ionization and ion fragmentation of formamide HCONH2 by He∗, Ne∗, and Ar∗ in molecular beams

    NASA Astrophysics Data System (ADS)

    Madison, Tamika A.; Siska, P. E.

    2009-10-01

    Mass spectra from Penning ionization by metastable atom bombardment (MAB) in the title system at kinetic energies near 1 kcal/mol are reported. The experiments employ a supersonic excited noble gas beam crossing an effusive beam of formamide vapor. Product ions are extracted perpendicular to the plane of the beams, analyzed by a quadrupole mass filter, and counted by a scintillation-type ion counter. Relative to 70 eV electron impact, the He∗ and Ne∗ spectra show more extensive breakage of C-N and C-H bonds despite the smaller available energy, while the Ar∗ spectrum shows only the molecular ion (m /z 45), H atom elimination (44), and the decarbonylation products CO+NH3+ (17). Fragmentation in the latter system has been analyzed using a combination of ab initio calculations and Rice-Ramsperger-Kassel-Marcus theory with tunneling correction; good agreement with the experimental 45/44/17 intensity ratio 100/6.8±0.7/6.2±1.7 is obtained. 15% of m/z 17 and 50% of m /z 44 is attributed to tunneling. The ab initio decarbonylation reaction path yields a hydrogen bonded H2N-HCO+ transition state, which transfers a proton while proceeding downhill to the observed products, while both the path and the energetics support the earlier conclusion that the lowest lying electronically excited state of the ion (2π or 2a″) crosses the ground state early along the reaction path, thereby dominating the dynamics of decarbonylation.

  3. A Glycomics Platform for the Analysis of Permethylated Oligosaccharide Alditols

    PubMed Central

    Costello, Catherine E.; Contado-Miller, Joy May; Cipollo, John F.

    2007-01-01

    This communication reports the development of an LC/MS platform for the analysis of permethylated oligosaccharide alditols that, for the first time, demonstrates routine online oligosaccharide isomer separation of these compounds prior to introduction into the mass spectrometer. The method leverages a high resolution liquid chromatography system with the superior fragmentation pattern characteristics of permethylated oligosaccharide alditols that are dissociated under low-energy collision conditions using quadrupole orthogonal time-of-flight (QoTOF) instrumentation and up to pseudo MS3 mass spectrometry. Glycoforms, including isomers, are readily identified and their structures assigned. The isomer-specific spectra include highly informative cross-ring and elimination fragments, branch position specific signatures and glycosidic bond fragments, thus facilitating linkage, branch and sequence assignment. The method is sensitive and can be applied using as little as 40 fmol of derivatized oligosaccharide. Because permethylation renders oligosaccharides nearly chemically equivalent in the mass spectrometer, the method is semi-quantitative and, in this regard, is comparable to methods reported using high field NMR and capillary electrophoresis. In this post - genomic age, the importance of glycosylation in biological processes has become clear. The nature of many of the important questions in glycomics is such that sample material is often extremely limited, thus necessitating the development of highly sensitive methods for rigorous structural assignment of the oligosaccharides in complex mixtures. The glycomics platform presented here fulfills these criteria and should lead to more facile glycomics analyses. PMID:17719235

  4. Kohonen and counterpropagation neural networks applied for mapping and interpretation of IR spectra.

    PubMed

    Novic, Marjana

    2008-01-01

    The principles of learning strategy of Kohonen and counterpropagation neural networks are introduced. The advantages of unsupervised learning are discussed. The self-organizing maps produced in both methods are suitable for a wide range of applications. Here, we present an example of Kohonen and counterpropagation neural networks used for mapping, interpretation, and simulation of infrared (IR) spectra. The artificial neural network models were trained for prediction of structural fragments of an unknown compound from its infrared spectrum. The training set contained over 3,200 IR spectra of diverse compounds of known chemical structure. The structure-spectra relationship was encompassed by the counterpropagation neural network, which assigned structural fragments to individual compounds within certain probability limits, assessed from the predictions of test compounds. The counterpropagation neural network model for prediction of fragments of chemical structure is reversible, which means that, for a given structural domain, limited to the training data set in the study, it can be used to simulate the IR spectrum of a chemical defined with a set of structural fragments.

  5. Energy distributions of H{sup +} fragments ejected by fast proton and electron projectiles in collision with H{sub 2}O molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barros, A. L. F. de; Lecointre, J.; Luna, H.

    Experimental measurements of the kinetic energy distribution spectra of H{sup +} fragment ions released during radiolysis of water molecules in collision with 20, 50, and 100 keV proton projectiles and 35, 200, 400, and 1000 eV electron projectiles are reported using a pulsed beam and drift tube time-of-flight based velocity measuring technique. The spectra show that H{sup +} fragments carrying a substantial amount of energy are released, some having energies well in excess of 20 eV. The majority of the ions lie within the 0-5 eV energy range with the proton spectra showing an almost constant profile between 1.5 andmore » 5 eV and, below this, increasing gradually with decreasing ejection energy up to the near zero energy value while the electron spectra, in contrast, show a broad maximum between 1 and 3 eV and a pronounced dip around 0.25 eV. Beyond 5 eV, both projectile spectra show a decreasing profile with the electron spectra decreasing far more rapidly than the proton spectra. Our measured spectra thus indicate that major differences are present in the collision dynamics between the proton and the electron projectiles interacting with gas phase water molecules.« less

  6. Approach to the study of flavone di-C-glycosides by high performance liquid chromatography-tandem ion trap mass spectrometry and its application to characterization of flavonoid composition in Viola yedoensis.

    PubMed

    Cao, Jie; Yin, Chengle; Qin, Yan; Cheng, Zhihong; Chen, Daofeng

    2014-10-01

    The mass spectrometric (MS) analysis of flavone di-C-glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di-C-glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography-electrospray ionization-tandem ion trap mass spectrometry (HPLC-ESI-IT-MS(n)) in the negative ion mode to analyze their fragmentation patterns. A new MS(2) and MS(3) hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C-6 and C-8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS(2) and MS(3) structure-diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C-6 and C-8. The base peak ((0,2) X1 (0,2) X(2)(-) ion) in MS(3) spectra of di-C-glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di-C-glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono-C-hexoside, 2 flavone 6,8-di-C-hexosides, 11 flavone 6,8-di-C-pentosides, 13 flavone 6,8-C-hexosyl-C-pentosides, 5 acetylated flavone C-glycosides and 3 flavonol O-glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MS(n) (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C-glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Structure and further fragmentation of significant [a3 + Na - H]+ ions from sodium-cationized peptides.

    PubMed

    Wang, Huixin; Wang, Bing; Wei, Zhonglin; Zhang, Hao; Guo, Xinhua

    2015-01-01

    A good understanding of gas-phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium-cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na - H](+) ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na - H](+) ion needs to overcome several relatively high energetic barriers to form [b2 + Na - H](+) ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na - H](+) ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na - H](+) from the [a3 + Na - H](+) ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    DOE PAGES

    Zawadowicz, Maria A.; Froyd, Karl D.; Murphy, Daniel M.; ...

    2017-06-16

    Measurements of primary biological aerosol particles (PBAP), especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS) has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture) using SPMS. Here, we show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodologymore » to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.« less

  9. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawadowicz, Maria A.; Froyd, Karl D.; Murphy, Daniel M.

    Measurements of primary biological aerosol particles (PBAP), especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS) has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture) using SPMS. Here, we show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodologymore » to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.« less

  10. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zawadowicz, Maria A.; Froyd, Karl D.; Murphy, Daniel M.; Cziczo, Daniel J.

    2017-06-01

    Measurements of primary biological aerosol particles (PBAP), especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS) has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture) using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04-2 % of particles in the 200-3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36-56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust-biological mixtures.

  11. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.

  12. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-05

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases.

  13. Gas chromatographic-mass spectrometric investigation of n-alkanes and carboxylic acids in bottom sediments of the northern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Kenzhegaliev, Akimgali; Zhumagaliev, Sagat; Kenzhegalieva, Dina; Orazbayev, Batyr

    2018-03-01

    Prior to the start of experimental oil production in the Kashagan field (northern part of the Caspian Sea), n-alkanes and carboxylic acids contained in samples obtained from bottom sediments in the area of artificial island "D" were investigated by gas chromatography-mass spectrometry. Concentrations of 10 n-alkanes (composed of C10-C13, C15-C20) and 11 carboxylic acids (composed of C6-C12, C14-C16) were identified and measured. Concentrations of individual alkanes and carboxylic acids in bottom sediments of the various samples varied between 0.001 ÷ 0.88 μg/g and 0.001 ÷ 1.94 μg/g, respectively. Mass spectra, in particular the M+ molecular ion peak and the most intense peaks of fragment ions, are given. The present study illustrates the stability of molecular ions to electronic ionisation and the main fragment ions to the total ion current and shows that the initial fragmentation of alkanes implies radical cleavage of C2H5 rather than CH3. All aliphatic monocarboxylic acids studied were characterised by McLafferty rearrangement leading to the formation of F4 cation-radical with m/z 60 and F3 cation-radical with m/z 88 in the case of ethylhexanoic acid. The formation of oxonium ions presents another important aspect of acid fragmentation. Using mass numbers of oxonium ions and rearrangement ions allows determination of the substitution character in α- and β- C atoms. The essence of our approach is to estimate the infiltration of hydrocarbon fluids from the enclosing formation into sea water, comprising an analysis of derivatives of organic compounds in bottom sediments. Thus, concentrations of derived organic molecules can serve as a basis for estimates of the depth at which hydrocarbon fluids leak, i.e., to serve as an auxiliary technique in the search for hydrocarbon deposits and to repair well leaks.

  14. Laser Spectroscopy and Density Functional Study on Niobium Dimer Cation

    NASA Astrophysics Data System (ADS)

    Aydin, Metin; Lombardi, John R.

    2009-06-01

    Resonant multiphoton fragmentation spectra of niobium dimer cation (Nb2+) have been obtained by utilizing laser vaporization of a Nb metal target. Ions are mass-selected with a time-of-flight mass spectrometer followed by a mass gate, then fragmented with a pulsed dye laser, and the resulting fragment ions are detected with a second time-of-flight reflectron mass spectrometer and multichannel plate. Photon resonances are detected by monitoring ion current as a function of fragmentation laser wavelength. A rich, but complex spectrum of the cation is obtained. The bands display a characteristic multiplet structure that may be interpreted as due to transitions from the ground state X^{4}{Σ}^{-}({Ω}g) to several excited states, X^{4}{Π}({Ω}u) and X^{4}{Σ}(^{-}{Ω}u). The ground state X^{4}{Σ}^{-}({Ω}g) is derived from the electron configuration ({π}{_u})^{4} (1{σ}{_g})^{2}(2{σ}{_g})^{1} ({δ}{_g})^{2}. The two spin-orbit components are split by 145 cm^{-1} due to a strong second-order isoconfigurational spin-orbit interaction with the low-lying ^{2}{Σ}^{+}({Ω}g) state. The vibrational frequencies of the ground sate and the excited state of Nb2+ are identified as well as molecular spin-orbit constants (A{_S}{_O}) in the excited state. The electronic structure of niobium dimer cation was investigated using density functional theory. For the electronic ground state, the predicted spectroscopic properties were in good agreement with experiment. Calculations on excited states reveal congested manifolds of quartet and doublet electronic states in the range 0-30,000 cm^{-1}, reflecting the multitude of possible electronic promotions among the 4d- and 5s-based molecular orbitals. Comparisons are drawn between Nb^{+}{_2} and the prevalent isoelectronic molecules V^{+}{_2}/NbV^{+}/Nb{_2}/V{_2}/NbV. M. Aydin and John R. Lombardi J. Phys. Chem. A. xx XXXX 2009.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie Marie

    Emission of light fragments (LF) from nuclear reactions is an open question. Different reaction mechanisms contribute to their production; the relative roles of each, and how they change with incident energy, mass number of the target, and the type and emission energy of the fragments is not completely understood. None of the available models are able to accurately predict emission of LF from arbitrary reactions. However, the ability to describe production of LF (especially at energies ≳ 30 MeV) from many reactions is important for different applications, such as cosmic-ray-induced Single Event Upsets (SEUs), radiation protection, and cancer therapy withmore » proton and heavy-ion beams, to name just a few. The Cascade-Exciton Model (CEM) version 03.03 and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) version 03.03 event generators in Monte Carlo N-Particle Transport Code version 6 (MCNP6) describe quite well the spectra of fragments with sizes up to ⁴He across a broad range of target masses and incident energies (up to ~ 5 GeV for CEM and up to ~ 1 TeV/A for LAQGSM). However, they do not predict the high energy tails of LF spectra heavier than ⁴He well. Most LF with energies above several tens of MeV are emitted during the precompound stage of a reaction. The current versions of the CEM and LAQGSM event generators do not account for precompound emission of LF larger than ⁴He. The aim of our work is to extend the precompound model in them to include such processes, leading to an increase of predictive power of LF-production in MCNP6. This entails upgrading the Modified Exciton Model currently used at the preequilibrium stage in CEM and LAQGSM. It also includes expansion and examination of the coalescence and Fermi break-up models used in the precompound stages of spallation reactions within CEM and LAQGSM. Extending our models to include emission of fragments heavier than ⁴He at the precompound stage has indeed provided results that have much better agreement with experimental data.« less

  16. High-throughput Database Search and Large-scale Negative Polarity Liquid Chromatography–Tandem Mass Spectrometry with Ultraviolet Photodissociation for Complex Proteomic Samples*

    PubMed Central

    Madsen, James A.; Xu, Hua; Robinson, Michelle R.; Horton, Andrew P.; Shaw, Jared B.; Giles, David K.; Kaoud, Tamer S.; Dalby, Kevin N.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2013-01-01

    The use of ultraviolet photodissociation (UVPD) for the activation and dissociation of peptide anions is evaluated for broader coverage of the proteome. To facilitate interpretation and assignment of the resulting UVPD mass spectra of peptide anions, the MassMatrix database search algorithm was modified to allow automated analysis of negative polarity MS/MS spectra. The new UVPD algorithms were developed based on the MassMatrix database search engine by adding specific fragmentation pathways for UVPD. The new UVPD fragmentation pathways in MassMatrix were rigorously and statistically optimized using two large data sets with high mass accuracy and high mass resolution for both MS1 and MS2 data acquired on an Orbitrap mass spectrometer for complex Halobacterium and HeLa proteome samples. Negative mode UVPD led to the identification of 3663 and 2350 peptides for the Halo and HeLa tryptic digests, respectively, corresponding to 655 and 645 peptides that were unique when compared with electron transfer dissociation (ETD), higher energy collision-induced dissociation, and collision-induced dissociation results for the same digests analyzed in the positive mode. In sum, 805 and 619 proteins were identified via UVPD for the Halobacterium and HeLa samples, respectively, with 49 and 50 unique proteins identified in contrast to the more conventional MS/MS methods. The algorithm also features automated charge determination for low mass accuracy data, precursor filtering (including intact charge-reduced peaks), and the ability to combine both positive and negative MS/MS spectra into a single search, and it is freely open to the public. The accuracy and specificity of the MassMatrix UVPD search algorithm was also assessed for low resolution, low mass accuracy data on a linear ion trap. Analysis of a known mixture of three mitogen-activated kinases yielded similar sequence coverage percentages for UVPD of peptide anions versus conventional collision-induced dissociation of peptide cations, and when these methods were combined into a single search, an increase of up to 13% sequence coverage was observed for the kinases. The ability to sequence peptide anions and cations in alternating scans in the same chromatographic run was also demonstrated. Because ETD has a significant bias toward identifying highly basic peptides, negative UVPD was used to improve the identification of the more acidic peptides in conjunction with positive ETD for the more basic species. In this case, tryptic peptides from the cytosolic section of HeLa cells were analyzed by polarity switching nanoLC-MS/MS utilizing ETD for cation sequencing and UVPD for anion sequencing. Relative to searching using ETD alone, positive/negative polarity switching significantly improved sequence coverages across identified proteins, resulting in a 33% increase in unique peptide identifications and more than twice the number of peptide spectral matches. PMID:23695934

  17. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations.

    PubMed

    Karthikeyan, N; Prince, J Joseph; Ramalingam, S; Periandy, S

    2015-03-15

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The (13)C and (1)H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. Broad screening of illicit ingredients in cosmetics using ultra-high-performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry with customized accurate-mass database and mass spectral library.

    PubMed

    Meng, Xianshuang; Bai, Hua; Guo, Teng; Niu, Zengyuan; Ma, Qiang

    2017-12-15

    Comprehensive identification and quantitation of 100 multi-class regulated ingredients in cosmetics was achieved using ultra-high-performance liquid chromatography (UHPLC) coupled with hybrid quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS). A simple, efficient, and inexpensive sample pretreatment protocol was developed using ultrasound-assisted extraction (UAE), followed by dispersive solid-phase extraction (dSPE). The cosmetic samples were analyzed by UHPLC-Q-Orbitrap HRMS under synchronous full-scan MS and data-dependent MS/MS (full-scan MS 1 /dd-MS 2 ) acquisition mode. The mass resolution was set to 70,000 FWHM (full width at half maximum) for full-scan MS 1 and 17,500 FWHM for dd-MS 2 stage with the experimentally measured mass deviations of less than 2ppm (parts per million) for quasi-molecular ions and 5ppm for characteristic fragment ions for each individual analyte. An accurate-mass database and a mass spectral library were built in house for searching the 100 target compounds. Broad screening was conducted by comparing the experimentally measured exact mass of precursor and fragment ions, retention time, isotopic pattern, and ionic ratio with the accurate-mass database and by matching the acquired MS/MS spectra against the mass spectral library. The developed methodology was evaluated and validated in terms of limits of detection (LODs), limits of quantitation (LOQs), linearity, stability, accuracy, and matrix effect. The UHPLC-Q-Orbitrap HRMS approach was applied for the analysis of 100 target illicit ingredients in 123 genuine cosmetic samples, and exhibited great potential for high-throughput, sensitive, and reliable screening of multi-class illicit compounds in cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE PAGES

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas; ...

    2016-07-11

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  20. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  1. Gas chromatography coupled to tunable pulsed glow discharge time-of-flight mass spectrometry for environmental analysis.

    PubMed

    Solà-Vázquez, Auristela; Lara-Gonzalo, Azucena; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2010-05-01

    A tuneable microsecond pulsed direct current glow discharge (GD)-time-of-flight mass spectrometer MS(TOF) developed in our laboratory was coupled to a gas chromatograph (GC) to obtain sequential collection of the mass spectra, at different temporal regimes occurring in the GD pulses, during elution of the analytes. The capabilities of this set-up were explored using a mixture of volatile organic compounds of environmental concern: BrClCH, Cl(3)CH, Cl(4)C, BrCl(2)CH, Br(2)ClCH, Br(3)CH. The experimental parameters of the GC-pulsed GD-MS(TOF) prototype were optimized in order to separate appropriately and analyze the six selected organic compounds, and two GC carrier gases, helium and nitrogen, were evaluated. Mass spectra for all analytes were obtained in the prepeak, plateau and afterpeak temporal regimes of the pulsed GD. Results showed that helium offered the best elemental sensitivity, while nitrogen provided higher signal intensities for fragments and molecular peaks. The analytical performance characteristics were also worked out for each analyte. Absolute detection limits obtained were in the order of ng. In a second step, headspace solid phase microextraction (HS SPME), as sample preparation and preconcentration technique, was evaluated for the quantification of the compounds under study, in order to achieve the required analytical sensitivity for trihalomethanes European Union (EU) environmental legislation. The analytical figures of merit obtained using the proposed methodology showed rather good detection limits (between 2 and 13 microg L(-1) depending on the analyte). In fact, the developed methodology met the EU legislation requirements (the maximum level permitted in tap water for the "total trihalomethanes" is set at 100 microg L(-1)). Real analysis of drinking water and river water were successfully carried out. To our knowledge this is the first application of GC-pulsed GD-MS(TOF) for the analysis of real samples. Its ability to provide elemental, fragments and molecular information of the organic compounds is demonstrated.

  2. Tandem mass spectrometry approach for the investigation of the steroidal metabolism: structure-fragmentation relationship (SFR) in anabolic steroids and their metabolites by ESI-MS/MS analysis.

    PubMed

    Musharraf, Syed Ghulam; Ali, Arslan; Khan, Naik Tameem; Yousuf, Maria; Choudhary, Muhammad Iqbal; Atta-ur-Rahman

    2013-02-01

    Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to investigate the effect of different substitutions introduced during metabolism on fragmentation patterns of four anabolic steroids including methyltestosterone, methandrostenolone, cis-androsterone and adrenosterone, along with their metabolites. Collision-induced dissociation (CID) analysis was performed to correlate the major product ions of 19 steroids with structural features. The analysis is done to portray metabolic alteration, such as incorporation or reduction of double bonds, hydroxylations, and/or oxidation of hydroxyl moieties to keto functional group on steroidal skeleton which leads to drastically changed product ion spectra from the respective classes of steroids, therefore, making them difficult to identify. The comparative ESI-MS/MS study also revealed some characteristic peaks to differentiate different steroidal metabolites and can be useful for the unambiguous identification of anabolic steroids in biological fluid. Moreover, LC-ESI-MS/MS analysis of fermented extract of methyltestosterone, obtained by Macrophomina phaseolina was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Characterization of carotenoids and carotenoid esters in red pepper pods (Capsicum annuum L.) by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Schweiggert, Ute; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas

    2005-01-01

    Carotenoids and carotenoid esters were extracted from red pepper pods (Capsicum annuum L.) without saponification. Among the 42 compounds detected, 4 non-esterified, 11 mono- and 17 diesters were characterized based on their retention times, UV/Vis spectra and their fragmentation patterns in collision-induced dissociation experiments in atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Positive and negative ion mode measurements were used for the characterization of major and minor carotenoids and their esters. Capsanthin esterified with lauric, palmitic and myristic acids represented the predominant compounds in the red pepper extracts. Additionally, three beta-cryptoxanthin and one zeaxanthin monoester were tentatively identified in red pepper pods for the first time. Furthermore, the specific fragmentation patterns of capsanthin-laurate-myristate and capsanthin-myristate-palmitate were used for the distinction of both regioisomers. The results obtained from LC-DAD-APCI-MSn experiments demonstrated that the carotenoid profile of red pepper pods is considerably more complex than considered hitherto. Copyright (c) 2005 John Wiley & Sons, Ltd.

  4. Dissociative electron attachment to the radiosensitizing chemotherapeutic agent hydroxyurea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, S. E.; Tanzer, K.; Denifl, S.

    Dissociative electron attachment to hydroxyurea was studied in the gas phase for electron energies ranging from zero to 9 eV in order to probe its radiosensitizing capabilities. The experiments were carried out using a hemispherical electron monochromator coupled with a quadrupole mass spectrometer. Diversified fragmentation of hydroxyurea was observed upon low energy electron attachment and here we highlight the major dissociation channels. Moreover, thermodynamic thresholds for various fragmentation reactions are reported to support the discussion of the experimental findings. The dominant dissociation channel, which was observed over a broad range of energies, is associated with formation of NCO{sup −}, water,more » and the amidogen (NH{sub 2}) radical. The second and third most dominant dissociation channels are associated with formation of NCNH{sup −} and NHCONH{sub 2}{sup −}, respectively, which are both directly related to formation of the highly reactive hydroxyl radical. Other ions observed with significant abundance in the mass spectra were NH{sub 2}{sup −}/O{sup −}, OH{sup −}, CN{sup −}, HNOH{sup −}, NCONH{sub 2}{sup −}, and ONHCONH{sub 2}{sup −}.« less

  5. Structural Studies of Fucosylated N-Glycans by Ion Mobility Mass Spectrometry and Collision-Induced Fragmentation of Negative Ions

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Struwe, Weston B.

    2018-05-01

    There is considerable potential for the use of ion mobility mass spectrometry in structural glycobiology due in large part to the gas-phase separation attributes not typically observed by orthogonal methods. Here, we evaluate the capability of traveling wave ion mobility combined with negative ion collision-induced dissociation to provide structural information on N-linked glycans containing multiple fucose residues forming the Lewisx and Lewisy epitopes. These epitopes are involved in processes such as cell-cell recognition and are important as cancer biomarkers. Specific information that could be obtained from the intact N-glycans by negative ion CID included the general topology of the glycan such as the presence or absence of a bisecting GlcNAc residue and the branching pattern of the triantennary glycans. Information on the location of the fucose residues was also readily obtainable from ions specific to each antenna. Some isobaric fragment ions produced prior to ion mobility could subsequently be separated and, in some cases, provided additional valuable structural information that was missing from the CID spectra alone.

  6. Dissociative and double photoionization of CO from threshold to 90 A

    NASA Technical Reports Server (NTRS)

    Masuoka, T.; Samson, J. A. R.

    1981-01-01

    Partial cross sections for molecular photoionization (CO(+)), dissociative photoionization (C(+) and O(+)), and dissociative double photoionization (C(2+)) in CO have been measured from their thresholds to 90 A using techniques of mass spectrometry. The results are compared with data reported previously. Several peaks observed in the cross section curves for dissociated fragments are tentatively assigned by comparing with those in the photoelectron spectra reported for CO. It is concluded that the shoulder in the total absorption cross section curve between 400 and 90 A results solely from the dissociative ionization processes.

  7. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    PubMed Central

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  8. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan Jiwen; Hu Yongjun; Zou Hao

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH{sub 3}COOH){sub n}{center_dot}H{sup +}, the feature related to the fragment ions (CH{sub 3}COOH)H{sup +}{center_dot}COO (105 amu) via {beta}-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH{sub 3}COOH){center_dot}H{sup +} and (CH{sub 3}COOH)H{sup +}{center_dot}COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved.more » While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH{sub 3}COOH)H{sup +}{center_dot}COO. After surmounting the methyl hydrogen-transfer barrier 10.84 {+-} 0.05 eV, the opening of dissociative channel to produce ions (CH{sub 3}COOH){sup +} becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH{sub 3}COOH){center_dot}CH{sub 3}CO{sup +}. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.« less

  9. Comprehensive proteomic analysis of Penicillium verrucosum.

    PubMed

    Nöbauer, Katharina; Hummel, Karin; Mayrhofer, Corina; Ahrens, Maike; Setyabudi, Francis M C; Schmidt-Heydt, Markus; Eisenacher, Martin; Razzazi-Fazeli, Ebrahim

    2017-05-01

    Mass spectrometric identification of proteins in species lacking validated sequence information is a major problem in veterinary science. In the present study, we used ochratoxin A producing Penicillium verrucosum to identify and quantitatively analyze proteins of an organism with yet no protein information available. The work presented here aimed to provide a comprehensive protein identification of P. verrucosum using shotgun proteomics. We were able to identify 3631 proteins in an "ab initio" translated database from DNA sequences of P. verrucosum. Additionally, a sequential window acquisition of all theoretical fragment-ion spectra analysis was done to find differentially regulated proteins at two different time points of the growth curve. We compared the proteins at the beginning (day 3) and at the end of the log phase (day 12). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling.

    PubMed

    De Haan, David O; Tapavicza, Enrico; Riva, Matthieu; Cui, Tianqu; Surratt, Jason D; Smith, Adam C; Jordan, Mary-Caitlin; Nilakantan, Shiva; Almodovar, Marisol; Stewart, Tiffany N; de Loera, Alexia; De Haan, Audrey C; Cazaunau, Mathieu; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François

    2018-04-03

    Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS 2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH 3 CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.

  11. Comparison of Se and Te clusters produced by ion bombardment

    NASA Astrophysics Data System (ADS)

    Trzyna, Małgorzata

    2017-01-01

    Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS). It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to 1300 m/z. Local maxima or minima (magic numbers) are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  12. Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Jennifer E.; Aly, Noor; Zheng, Xueyun

    Lipid mediators (LMs) are broadly defined as a class of bioactive lipophilic molecules that regulate cell-to-cell communication events with many having a strong correlation with various human diseases and conditions. LMs are usually analyzed with liquid chromatography and mass spectrometry (LC-MS), but their numerous isomers greatly complicate the measurements with essentially identical fragmentation spectra and LC separations not always sufficient for distinguishing the features. In this work, we characterized LMs having specific categories using ion mobility spectrometry coupled with mass spectrometry (IMS-MS). The IMS collision cross sections and MS m/z values displayed distinct trends for each LM category studied. LC-IMS-MSmore » analyses on flu infected mouse tissue samples also illustrated the presence of additional LM species not in our databases.« less

  13. A detailed mechanistic fragmentation analysis of methamphetamine and select regioisomers by GC/MS.

    PubMed

    Sachs, Sandra B; Woo, Francis

    2007-03-01

    A novel ring-substituted methamphetamine regioisomer, N,alpha,4-trimethyl phenmethylamine, was synthesized in order to study the validity of proposed structures for various mass spectrometry (MS)-derived peaks in a methamphetamine fragmentation pattern. While other research efforts have studied aspects of methamphetamine in detail, a full fragmentation study has not been reported previously. In addition to showing molecular structures represented by fragment peaks, mechanisms for selected processes are detailed. An empirically derived procedure to easily determine by simple spectral peak pattern recognition the geometry of dimethyl- or ethyl-substituted immonium ions (RRC = N+ RR) where m/z = 58 is outlined. These results are platform independent for electron ionization (EI) instruments, but have also proven to be helpful in explaining spectral peaks observed in spectra from ion trap systems. The spectrum for the synthesized methamphetamine regioisomer was accurately predicted using this methodology. While this approach is useful in some casework, the converse may be more useful: when an unexpected or unusual peak pattern arises in a spectrum, being able to analyze it to determine the structure of the molecule. This paper gives an analyst the means to begin such retro-synthetic analyses.

  14. Fragmentation dynamics of meso-tetraphenyl iron (III) porphyrin chloride dication under energy control

    NASA Astrophysics Data System (ADS)

    Li, B.; Allouche, A. R.; Bernard, J.; Brédy, R.; Qian, D. B.; Ma, X.; Martin, S.; Chen, L.

    2017-03-01

    Meso-tetraphenyl iron (III) porphyrin chloride dications (FeTPPCl2+)* were prepared in collisions with F+ and H+ at 3 keV. The dominant fragmentation channels were observed to involve the loss of the Cl atom and the successive loss of neutral phenyl groups for both collisional systems. The mass spectra in correlation with the deposited excitation energy distributions of the parent ions for the main fragmentation channels were measured by using the collision induced dissociation under energy control method. The global excitation energy distribution was found to be shifted to lower energies in collisions with H+ compared to collisions with F+ showing a noteworthy change of the excitation energy window using different projectile ions. Partial excitation energy distributions of the parent ions FeTPPCl2+ were obtained for each fragmentation group. In a theoretical work, we have calculated the dissociation energies for the loss of one and two phenyl groups, including phenyl and (phenyl ± H). The energy barrier for the hydrogen atom transfer during the loss of (phenyl-H) has been also calculated. The measured energy difference for the successive loss of two phenyl groups was compared with the theoretical values.

  15. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  16. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis*

    PubMed Central

    Gillet, Ludovic C.; Navarro, Pedro; Tate, Stephen; Röst, Hannes; Selevsek, Nathalie; Reiter, Lukas; Bonner, Ron; Aebersold, Ruedi

    2012-01-01

    Most proteomic studies use liquid chromatography coupled to tandem mass spectrometry to identify and quantify the peptides generated by the proteolysis of a biological sample. However, with the current methods it remains challenging to rapidly, consistently, reproducibly, accurately, and sensitively detect and quantify large fractions of proteomes across multiple samples. Here we present a new strategy that systematically queries sample sets for the presence and quantity of essentially any protein of interest. It consists of using the information available in fragment ion spectral libraries to mine the complete fragment ion maps generated using a data-independent acquisition method. For this study, the data were acquired on a fast, high resolution quadrupole-quadrupole time-of-flight (TOF) instrument by repeatedly cycling through 32 consecutive 25-Da precursor isolation windows (swaths). This SWATH MS acquisition setup generates, in a single sample injection, time-resolved fragment ion spectra for all the analytes detectable within the 400–1200 m/z precursor range and the user-defined retention time window. We show that suitable combinations of fragment ions extracted from these data sets are sufficiently specific to confidently identify query peptides over a dynamic range of 4 orders of magnitude, even if the precursors of the queried peptides are not detectable in the survey scans. We also show that queried peptides are quantified with a consistency and accuracy comparable with that of selected reaction monitoring, the gold standard proteomic quantification method. Moreover, targeted data extraction enables ad libitum quantification refinement and dynamic extension of protein probing by iterative re-mining of the once-and-forever acquired data sets. This combination of unbiased, broad range precursor ion fragmentation and targeted data extraction alleviates most constraints of present proteomic methods and should be equally applicable to the comprehensive analysis of other classes of analytes, beyond proteomics. PMID:22261725

  17. LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome

    PubMed Central

    Neumann, Steffen; Schmitt-Kopplin, Philippe

    2017-01-01

    Lipid identification is a major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison against spectra in reference libraries is one of the preferred methods, these libraries are far from being complete. In order to improve identification rates, the in silico fragmentation tool MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and evaluated on different commercially available lipid standard materials, measured with data dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared against manual MS/MS spectra interpretation. With the lipid class specific models, identification of the true positives was improved especially for cases where candidate lipids from different lipid classes had similar MetFrag scores by removing up to 56% of false positive results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known fragmentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain fragments. Based on prediction models trained on standard lipid materials, high probabilities for correct annotations were achieved, which makes LipidFrag a good choice for automated lipid data analysis and reliability testing of lipid identifications. PMID:28278196

  18. Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques.

    PubMed

    Teunissen, S F; Rosing, H; Seoane, M Dominguez; Brunsveld, L; Schellens, J H M; Schinkel, A H; Beijnen, J H

    2011-06-01

    A comprehensive overview is presented of currently known phase I metabolites of tamoxifen consisting of their systematic name and molecular structure. Reference standards are utilized to elucidate the MS(n) fragmentation patterns of these metabolites using a linear ion trap mass spectrometer. UV-absorption spectra are recorded and absorption maxima are defined. Serum extracts from ten breast cancer patients receiving 40mg tamoxifen once daily were qualitatively analyzed for tamoxifen phase I metabolites using a liquid chromatography-tandem mass spectrometry set-up. In total, 19 metabolites have been identified in these serum samples. Additionally a synthetic method for the preparation of the putative metabolite 3',4'-dihydroxytamoxifen is described. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. An open-source computational and data resource to analyze digital maps of immunopeptidomes

    PubMed Central

    Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J; Schuster, Heiko; Ternette, Nicola; Alpízar, Adán; Schittenhelm, Ralf B; Ramarathinam, Sri H; Lindestam Arlehamn, Cecilia S; Chiek Koh, Ching; Gillet, Ludovic C; Rabsteyn, Armin; Navarro, Pedro; Kim, Sangtae; Lam, Henry; Sturm, Theo; Marcilla, Miguel; Sette, Alessandro; Campbell, David S; Deutsch, Eric W; Moritz, Robert L; Purcell, Anthony W; Rammensee, Hans-Georg; Stevanovic, Stefan; Aebersold, Ruedi

    2015-01-01

    We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies. DOI: http://dx.doi.org/10.7554/eLife.07661.001 PMID:26154972

  20. Visualisation of abscisic acid and 12-oxo-phytodienoic acid in immature Phaseolus vulgaris L. seeds using desorption electrospray ionisation-imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Enomoto, Hirofumi; Sensu, Takuya; Sato, Kei; Sato, Futoshi; Paxton, Thanai; Yumoto, Emi; Miyamoto, Koji; Asahina, Masashi; Yokota, Takao; Yamane, Hisakazu

    2017-02-01

    The plant hormone abscisic acid (ABA) and the jasmonic acid related-compound 12-oxo-phytodienoic acid (OPDA) play crucial roles in seed development, dormancy, and germination. However, a lack of suitable techniques for visualising plant hormones has restricted the investigation of their biological mechanisms. In the present study, desorption electrospray ionisation-imaging mass spectrometry (DESI-IMS), a powerful tool for visualising metabolites in biological tissues, was used to visualise ABA and OPDA in immature Phaseolus vulgaris L. seed sections. The mass spectra, peak values and chemical formulae obtained from the analysis of seed sections were consistent with those determined for ABA and OPDA standards, as were the precursor and major fragment ions observed in tandem mass spectrometry (MS/MS) imaging. Furthermore, the precursor and fragment ion images showed similar distribution patterns. In addition, the localisation of ABA and OPDA using DESI-IMS was confirmed using liquid chromatography-MS/MS (LC-MS/MS). The results indicated that ABA was mainly distributed in the radical and cotyledon of the embryo, whereas OPDA was distributed exclusively in external structures, such as the hilum and seed coat. The present study is the first to report the visualisation of plant hormones using IMS, and demonstrates that DESI-IMS is a promising technique for future plant hormone research.

  1. Simultaneous qualitative and quantitative analysis of flavonoids and alkaloids from the leaves of Nelumbo nucifera Gaertn. using high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Guo, Yujie; Chen, Xi; Qi, Jin; Yu, Boyang

    2016-07-01

    A reliable method, combining qualitative analysis by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and quantitative assessment by high-performance liquid chromatography with photodiode array detection, has been developed to simultaneously analyze flavonoids and alkaloids in lotus leaf extracts. In the qualitative analysis, a total of 30 compounds, including 12 flavonoids, 16 alkaloids, and two proanthocyanidins, were identified. The fragmentation behaviors of four types of flavone glycoside and three types of alkaloid are summarized. The mass spectra of four representative components, quercetin 3-O-glucuronide, norcoclaurine, nuciferine, and neferine, are shown to illustrate their fragmentation pathways. Five pairs of isomers were detected and three of them were distinguished by comparing the elution order with reference substances and the mass spectrometry data with reported data. In the quantitative analysis, 30 lotus leaf samples from different regions were analyzed to investigate the proportion of eight representative compounds. Quercetin 3-O-glucuronide was found to be the predominant constituent of lotus leaf extracts. For further discrimination among the samples, hierarchical cluster analysis, and principal component analysis, based on the areas of the eight quantitative peaks, were carried out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    PubMed

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  3. Visualisation of abscisic acid and 12-oxo-phytodienoic acid in immature Phaseolus vulgaris L. seeds using desorption electrospray ionisation-imaging mass spectrometry

    PubMed Central

    Enomoto, Hirofumi; Sensu, Takuya; Sato, Kei; Sato, Futoshi; Paxton, Thanai; Yumoto, Emi; Miyamoto, Koji; Asahina, Masashi; Yokota, Takao; Yamane, Hisakazu

    2017-01-01

    The plant hormone abscisic acid (ABA) and the jasmonic acid related-compound 12-oxo-phytodienoic acid (OPDA) play crucial roles in seed development, dormancy, and germination. However, a lack of suitable techniques for visualising plant hormones has restricted the investigation of their biological mechanisms. In the present study, desorption electrospray ionisation-imaging mass spectrometry (DESI-IMS), a powerful tool for visualising metabolites in biological tissues, was used to visualise ABA and OPDA in immature Phaseolus vulgaris L. seed sections. The mass spectra, peak values and chemical formulae obtained from the analysis of seed sections were consistent with those determined for ABA and OPDA standards, as were the precursor and major fragment ions observed in tandem mass spectrometry (MS/MS) imaging. Furthermore, the precursor and fragment ion images showed similar distribution patterns. In addition, the localisation of ABA and OPDA using DESI-IMS was confirmed using liquid chromatography-MS/MS (LC-MS/MS). The results indicated that ABA was mainly distributed in the radical and cotyledon of the embryo, whereas OPDA was distributed exclusively in external structures, such as the hilum and seed coat. The present study is the first to report the visualisation of plant hormones using IMS, and demonstrates that DESI-IMS is a promising technique for future plant hormone research. PMID:28211480

  4. Characterization of a mixture of lobster digestive cysteine proteinases by ionspray mass spectrometry and tryptic mapping with LC--MS and LC--MS--MS

    NASA Astrophysics Data System (ADS)

    Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.

    1991-12-01

    An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).

  5. Multi-stage Mass Spectrometry of Poly(vinyl pyrrolidone) and Its Vinyl Succinimide Copolymer Formed upon Exposure to Sodium Hypochlorite

    PubMed Central

    Fouquet, Thierry; Torimura, Masaki; Sato, Hiroaki

    2016-01-01

    The degradation routes of poly(vinyl pyrrolidone) (PVP) exposed to sodium hypochlorite (bleach) have been previously investigated using chemical analyses such as infrared spectroscopy. So far, no reports have proposed mass spectrometry (MS) as an alternative tool despite its capability to provide molecular and structural information using its single stage electrospray (ESI) or matrix assisted laser desorption ionization (MALDI) and multi stage (MSn) configurations, respectively. The present study thus reports on the characterization of PVP after its exposure to bleach by high resolution MALDI spiralTOF-MS and Kendrick mass defect analysis providing clues as to the formation of a vinyl pyrrolidone/vinyl succinimide copolymeric degradation product. A thorough investigation of the fragmentation pathways of PVP adducted with sodium and proton allows one main route to be described—namely the release of the pyrrolidone pendant group in a charge remote and charge driven mechanism, respectively. Extrapolating this fragmentation pathway, the oxidation of vinyl pyrrolidone into vinyl succinimide hypothesized from the single stage MS is validated by the detection of an alternative succinimide neutral loss in lieu of the pyrrolidone release in the ESI-MSn spectra of the aged PVP sample. It constitutes an example of application of multi-stage mass spectrometry for the characterization of the degradation of polymeric samples at a molecular level. PMID:27800293

  6. MS2PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation.

    PubMed

    Degroeve, Sven; Maddelein, Davy; Martens, Lennart

    2015-07-01

    We present an MS(2) peak intensity prediction server that computes MS(2) charge 2+ and 3+ spectra from peptide sequences for the most common fragment ions. The server integrates the Unimod public domain post-translational modification database for modified peptides. The prediction model is an improvement of the previously published MS(2)PIP model for Orbitrap-LTQ CID spectra. Predicted MS(2) spectra can be downloaded as a spectrum file and can be visualized in the browser for comparisons with observations. In addition, we added prediction models for HCD fragmentation (Q-Exactive Orbitrap) and show that these models compute accurate intensity predictions on par with CID performance. We also show that training prediction models for CID and HCD separately improves the accuracy for each fragmentation method. The MS(2)PIP prediction server is accessible from http://iomics.ugent.be/ms2pip. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment

    PubMed Central

    Dasari, Surendra; Chambers, Matthew C.; Martinez, Misti A.; Carpenter, Kristin L.; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo J.; Tabb, David L.

    2012-01-01

    Spectral libraries have emerged as a viable alternative to protein sequence databases for peptide identification. These libraries contain previously detected peptide sequences and their corresponding tandem mass spectra (MS/MS). Search engines can then identify peptides by comparing experimental MS/MS scans to those in the library. Many of these algorithms employ the dot product score for measuring the quality of a spectrum-spectrum match (SSM). This scoring system does not offer a clear statistical interpretation and ignores fragment ion m/z discrepancies in the scoring. We developed a new spectral library search engine, Pepitome, which employs statistical systems for scoring SSMs. Pepitome outperformed the leading library search tool, SpectraST, when analyzing data sets acquired on three different mass spectrometry platforms. We characterized the reliability of spectral library searches by confirming shotgun proteomics identifications through RNA-Seq data. Applying spectral library and database searches on the same sample revealed their complementary nature. Pepitome identifications enabled the automation of quality analysis and quality control (QA/QC) for shotgun proteomics data acquisition pipelines. PMID:22217208

  8. Small-angle fragmentation of carbon ions at 0.6 GeV/n: A comparison with models of ion-ion interactions

    DOE PAGES

    Krutenkova, A. P.; Abramov, B. M.; Alekseev, P. N.; ...

    2015-05-29

    Momentum distributions of hydrogen and helium isotopes from ¹²C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. The differential cross sections cover six orders of magnitude. The distributions measured are compared tomore » the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters.« less

  9. Small-angle fragmentation of carbon ions at 0.6 GeV/n. A comparison with models of ion-ion interactions

    DOE PAGES

    Krutenkova, Anna P.; Abramov, B. M.; Alekseev, P. N.; ...

    2015-05-29

    The momentum distributions of hydrogen and helium isotopes from 12C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. Moreover, the differential cross sections cover six orders of magnitude. The distributions measured aremore » compared to the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters.« less

  10. Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry.

    PubMed

    Bade, Richard; White, Jason M; Gerber, Cobus

    2018-01-01

    The combination of qualitative and quantitative bimonthly analysis of pharmaceuticals and illicit drugs using liquid chromatography coupled to mass spectrometry is presented. A liquid chromatography-quadrupole time of flight instrument equipped with Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) was used to qualitatively screen 346 compounds in influent wastewater from two wastewater treatment plants in South Australia over a 14-month period. A total of 100 compounds were confirmed and/or detected using this strategy, with 61 confirmed in all samples including antidepressants (amitriptyline, dothiepin, doxepin), antipsychotics (amisulpride, clozapine), illicit drugs (cocaine, methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA)), and known drug adulterants (lidocaine and tetramisole). A subset of these compounds was also included in a quantitative method, analyzed on a liquid chromatography-triple quadrupole mass spectrometer. The use of illicit stimulants (methamphetamine) showed a clear decrease, levels of opioid analgesics (morphine and methadone) remained relatively stable, while the use of new psychoactive substances (methylenedioxypyrovalerone (MDPV) and Alpha PVP) varied with no visible trend. This work demonstrates the value that high-frequency sampling combined with quantitative and qualitative analysis can deliver. Graphical abstract Temporal analysis of licit and illicit drugs in South Australia.

  11. Identification of di(ethylhexyl) phthalate as impurity in the analysis by using chromatography gas tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pusfitasari, Eka Dian; Hendarsyah, Hendris; Salahuddin, Ariani, Novita

    2017-01-01

    Di(ethylhexyl) phthalate (DEHP) is a plasticizer commonly used in plastics. Physically DEHP has a low vapor pressure. DEHP can seep into the liquid in direct contact with the plastic wrapping materials, and typically can occur rapidly if extractable into food or non-polar solvents, such as oil, once the food is packaged in PVC packaging materials. DEHP has been analyzed by using gas chromatography which has a high sensitivity level. If the equipment used for the analysis is made from plastic containing DEHP, then it may be possible that DEHP can be extracted and appear on the outcome of the injection. It can interfere with the process of analysis, especially for the analysis of food samples. This study has identified the present of DEHP in the blank injection performed by Gas Chromatography tandem Mass Spectrometry with Selected Ion Monitoring mode (SIM). Researchers are required to verify whether the gas chromatographic system used is ready for the analysis process. In addition, the comparison and calculation of the intensity of the ion fragmentation spectra generated by mass spectrometry detector can be used for the qualitative determination to ensure the presence of the target compound. In this study is also discussed the differences between the high-intensity fragmentation of DEHP and dioctyl phthalate (DOP).

  12. Propagating annotations of molecular networks using in silico fragmentation

    PubMed Central

    da Silva, Ricardo R.; Wang, Mingxun; Fox, Evan; Balunas, Marcy J.; Klassen, Jonathan L.; Dorrestein, Pieter C.

    2018-01-01

    The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp. PMID:29668671

  13. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans.

    PubMed

    Ceroni, Alessio; Maass, Kai; Geyer, Hildegard; Geyer, Rudolf; Dell, Anne; Haslam, Stuart M

    2008-04-01

    Mass spectrometry is the main analytical technique currently used to address the challenges of glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures of different glycan variations. Determination of glycan structures from analysis of MS data is a major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are of critical importance. However, all the approaches currently available have inherent restrictions to the type of glycans they can identify, and none of them have proved to be a definitive tool for glycomics. GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by matching the corresponding theoretical list of fragment masses against the list of peaks derived from the spectrum. The tool provides an easy to use graphical interface, a comprehensive and increasing set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to offer complete support for the routine interpretation of MS data. The software is available for download from: http://www.eurocarbdb.org/applications/ms-tools.

  14. MetMSLine: an automated and fully integrated pipeline for rapid processing of high-resolution LC-MS metabolomic datasets.

    PubMed

    Edmands, William M B; Barupal, Dinesh K; Scalbert, Augustin

    2015-03-01

    MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker-MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC-MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. © The Author 2014. Published by Oxford University Press.

  15. MetMSLine: an automated and fully integrated pipeline for rapid processing of high-resolution LC–MS metabolomic datasets

    PubMed Central

    Edmands, William M. B.; Barupal, Dinesh K.; Scalbert, Augustin

    2015-01-01

    Summary: MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker—MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). Availability and implementation: All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC–MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. Contact: ScalbertA@iarc.fr PMID:25348215

  16. Propagating annotations of molecular networks using in silico fragmentation.

    PubMed

    da Silva, Ricardo R; Wang, Mingxun; Nothias, Louis-Félix; van der Hooft, Justin J J; Caraballo-Rodríguez, Andrés Mauricio; Fox, Evan; Balunas, Marcy J; Klassen, Jonathan L; Lopes, Norberto Peporine; Dorrestein, Pieter C

    2018-04-01

    The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.

  17. Current algorithmic solutions for peptide-based proteomics data generation and identification.

    PubMed

    Hoopmann, Michael R; Moritz, Robert L

    2013-02-01

    Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Characterization of fumonisin A-series by high-resolution liquid chromatography-orbitrap mass spectrometry.

    PubMed

    Tamura, Masayoshi; Mochizuki, Naoki; Nagatomi, Yasushi; Toriba, Akira; Hayakawa, Kazuichi

    2014-08-21

    Fumonisin A-series (FAs) in a reference material of corn sample that was naturally contaminated with fumonisins was characterized using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitap MS). Peaks for fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3), in addition to three peaks corresponding to unknown compounds I, II, and III, were detected in the chromatogram for the corn sample. Fragment ion analysis for FB1, FB2, and FB3 showed that while the ions formed at m/z values of 200-800 were similar to those formed by the cleavage of the tricarballylic acids and the hydroxyl groups, the fragmentation patterns at m/z values of 50-200 varied depending on the hydroxyl group locations in the compounds. Fragment ion analysis of compounds I-III revealed structural similarities to FBs, only differing by an additional C2H2O in the unknown compounds. Using these results and by comparing the product ion mass spectra of compound I with fumonisin A1 (FA1) synthesized from FB1 standards, compounds I-III were hypothesized to be N-acetyl analogs of FBs: fumonisins A1 (FA1), A2 (FA2), and A3 (FA3). The method for determining concentrations was validated with FA1, FB1, FB2, and FB3 standards and applied to analyze the reference material. The FB1, FB2, and FB3 analytical levels were within acceptance limits and the amount of FA1 in the material was ~15% of FB1 amount at 4.2 mg/kg.

  19. Context-Sensitive Markov Models for Peptide Scoring and Identification from Tandem Mass Spectrometry

    PubMed Central

    Grover, Himanshu; Wallstrom, Garrick; Wu, Christine C.

    2013-01-01

    Abstract Peptide and protein identification via tandem mass spectrometry (MS/MS) lies at the heart of proteomic characterization of biological samples. Several algorithms are able to search, score, and assign peptides to large MS/MS datasets. Most popular methods, however, underutilize the intensity information available in the tandem mass spectrum due to the complex nature of the peptide fragmentation process, thus contributing to loss of potential identifications. We present a novel probabilistic scoring algorithm called Context-Sensitive Peptide Identification (CSPI) based on highly flexible Input-Output Hidden Markov Models (IO-HMM) that capture the influence of peptide physicochemical properties on their observed MS/MS spectra. We use several local and global properties of peptides and their fragment ions from literature. Comparison with two popular algorithms, Crux (re-implementation of SEQUEST) and X!Tandem, on multiple datasets of varying complexity, shows that peptide identification scores from our models are able to achieve greater discrimination between true and false peptides, identifying up to ∼25% more peptides at a False Discovery Rate (FDR) of 1%. We evaluated two alternative normalization schemes for fragment ion-intensities, a global rank-based and a local window-based. Our results indicate the importance of appropriate normalization methods for learning superior models. Further, combining our scores with Crux using a state-of-the-art procedure, Percolator, we demonstrate the utility of using scoring features from intensity-based models, identifying ∼4-8 % additional identifications over Percolator at 1% FDR. IO-HMMs offer a scalable and flexible framework with several modeling choices to learn complex patterns embedded in MS/MS data. PMID:23289783

  20. Zwitterionic-hydrophilic interaction capillary liquid chromatography coupled to tandem mass spectrometry for the characterization of human alpha-acid-glycoprotein N-glycan isomers.

    PubMed

    Mancera-Arteu, Montserrat; Giménez, Estela; Barbosa, José; Peracaula, Rosa; Sanz-Nebot, Victòria

    2017-10-23

    In this work, a μZIC-HILIC-MS/MS methodology was established in negative ion mode for the characterization of glycan isomers. The possibility to separate the glycan isomers by the μZIC-HILIC strategy coupled to a high resolution tandem mass spectrometry detection permitted us to obtain valuable information about each glycan structure. The most important diagnostic ion fragments previously described to characterize structural features of glycans, were evaluated in this study using hAGP as model glycoprotein. The assignation of hAGP glycan isomers performed in our previous work using the GRIL strategy in combination with exoglycosidase digestion [1] was used in this paper to confirm or discard some ion fragments reported in the literature and delve into the structural characterization of glycan isomers. Sialic acid as well as fucose linkage-type glycan isomers were assigned using this approach and daughter ions with higher diagnostic value were determined. The location of α2-3/α2-6 sialic acids on antennas and a deeper characterization of several highly sialylated tri- and tetraantennary glycans was also possible using the established MS/MS method. Moreover, relying on the characterization performed in Ref. [1], core and antenna fucosylation were differentiated in this work using specific ion fragments obtained in the tandem mass spectra. This methodology was also applied to hAGP purified from control and pathological serum samples, which corroborated its robustness and its potential for finding novel glycan-based biomarkers in patho-glycomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of the location of positive charges in gas-phase polypeptide polycations by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Frank; Savitski, Mikhail M.; Adams, Christopher M.; Zubarev, Roman A.

    2006-06-01

    Location of protonated sites in electrospray-ionized gas-phase peptides and proteins was performed with tandem mass spectrometry using ion activation by both electron capture dissociation (ECD) and collisional activation dissociation (CAD). Charge-carrying sites were assigned based on the increment in the charge state of fragment ions compared to that of the previous fragment in the same series. The property of ECD to neutralize preferentially the least basic site was confirmed by the analysis of three thousand ECD mass spectra of doubly charged tryptic peptides. Multiply charged cations of bradykinin, neurotensin and melittin were studied in detail. For n+ precursors, ECD revealed the positions of (n - 1) most basic sites, while CAD could in principle locate alln charges. However, ECD introduced minimal proton mobilization and produced more conclusive data than CAD, for which N- and C-terminal data often disagreed. Consistent with the dominance of one charge conformer and its preservation in ECD, the average charge states of complementary fragments of n+ ions almost always added up to (n - 1)+, while the similar figure in CAD often deviated from n+, indicating extensive charge isomerization under collisional excitation. For bradykinin and neurotensin, the charge assignments were largely in agreement with the intrinsic gas-phase basicity of the respective amino acid residues. For melittin ions in higher charge states, ECD revealed the charging at both intrinsically basic as well as at less basic residues, which was attributed to charge sharing with other groups due to the presence of secondary and higher order structures in this larger polypeptide.

  2. Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides.

    PubMed

    de Haan, Noortje; Reiding, Karli R; Haberger, Markus; Reusch, Dietmar; Falck, David; Wuhrer, Manfred

    2015-08-18

    Glycosylation is a common co- and post-translational protein modification, having a large influence on protein properties like conformation and solubility. Furthermore, glycosylation is an important determinant of efficacy and clearance of biopharmaceuticals such as immunoglobulin G (IgG). Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) shows potential for the site-specific glycosylation analysis of IgG at the glycopeptide level. With this approach, however, important information about glycopeptide sialylation is not duly covered because of in-source and metastable decay of the sialylated species. Here, we present a highly repeatable sialic acid derivatization method to allow subclass-specific MALDI-TOF-MS analysis of tryptic IgG glycopeptides. The method, employing dimethylamidation with the carboxylic acid activator 1-ethyl-3-(3-dimethylamino)propyl)carbodiimide (EDC) and the catalyst 1-hydroxybenzotriazole (HOBt), results in different masses for the functionally divergent α2,3- and α2,6-linked sialic acids. Respective lactonization and dimethylamidation leads to their direct discrimination in MS and importantly, both glycan and peptide moieties reacted in a controlled manner. In addition, stabilization allowed the acquisition of fragmentation spectra informative with respect to glycosylation and peptide sequence. This was in contrast to fragmentation spectra of underivatized samples, which were dominated by sialic acid loss. The method allowed the facile discrimination and relative quantitation of IgG Fc sialylation in therapeutic IgG samples. The method has considerable potential for future site- and sialic acid linkage-specific glycosylation profiling of therapeutic antibodies, as well as for subclass-specific biomarker discovery in clinical IgG samples derived from plasma.

  3. Identification of triacylglycerol using automated annotation of high resolution multistage mass spectral trees.

    PubMed

    Wang, Xiupin; Peng, Qingzhi; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen; Zhang, Liangxiao

    2016-10-12

    High complexity of identification for non-target triacylglycerols (TAGs) is a major challenge in lipidomics analysis. To identify non-target TAGs, a powerful tool named accurate MS(n) spectrometry generating so-called ion trees is used. In this paper, we presented a technique for efficient structural elucidation of TAGs on MS(n) spectral trees produced by LTQ Orbitrap MS(n), which was implemented as an open source software package, or TIT. The TIT software was used to support automatic annotation of non-target TAGs on MS(n) ion trees from a self-built fragment ion database. This database includes 19108 simulate TAG molecules from a random combination of fatty acids and corresponding 500582 self-built multistage fragment ions (MS ≤ 3). Our software can identify TAGs using a "stage-by-stage elimination" strategy. By utilizing the MS(1) accurate mass and referenced RKMD, the TIT software can discriminate unique elemental composition candidates. The regiospecific isomers of fatty acyl chains will be distinguished using MS(2) and MS(3) fragment spectra. We applied the algorithm to the selection of 45 TAG standards and demonstrated that the molecular ions could be 100% correctly assigned. Therefore, the TIT software could be applied to TAG identification in complex biological samples such as mouse plasma extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data.

    PubMed

    Strohalm, Martin; Kavan, Daniel; Novák, Petr; Volný, Michael; Havlícek, Vladimír

    2010-06-01

    While tools for the automated analysis of MS and LC-MS/MS data are continuously improving, it is still often the case that at the end of an experiment, the mass spectrometrist will spend time carefully examining individual spectra. Current software support is mostly provided only by the instrument vendors, and the available software tools are often instrument-dependent. Here we present a new generation of mMass, a cross-platform environment for the precise analysis of individual mass spectra. The software covers a wide range of processing tasks such as import from various data formats, smoothing, baseline correction, peak picking, deisotoping, charge determination, and recalibration. Functions presented in the earlier versions such as in silico digestion and fragmentation were redesigned and improved. In addition to Mascot, an interface for ProFound has been implemented. A specific tool is available for isotopic pattern modeling to enable precise data validation. The largest available lipid database (from the LIPID MAPS Consortium) has been incorporated and together with the new compound search tool lipids can be rapidly identified. In addition, the user can define custom libraries of compounds and use them analogously. The new version of mMass is based on a stand-alone Python library, which provides the basic functionality for data processing and interpretation. This library can serve as a good starting point for other developers in their projects. Binary distributions of mMass, its source code, a detailed user's guide, and video tutorials are freely available from www.mmass.org .

  5. Iron meteorite fragment studied by atomic and nuclear analytical methods

    NASA Astrophysics Data System (ADS)

    Cesnek, Martin; Štefánik, Milan; Kmječ, Tomáš; Miglierini, Marcel

    2016-10-01

    Chemical and structural compositions of a fragment of Sikhote-Alin iron meteorite were investigated by X-ray fluorescence analysis (XRF), neutron activation analysis (NAA) and Mössbauer spectroscopy (MS). XRF and NAA revealed the presence of chemical elements which are characteristic for iron meteorites. XRF also showed a significant amount of Si and Al on the surface of the fragment. MS spectra revealed possible presence of α-Fe(Ni, Co) phase with different local Ni concentration. Furthermore, paramagnetic singlet was detected in Mössbauer spectra recorded at room temperature and at 4.2 K.

  6. Defining and Detecting Complex Peak Relationships in Mass Spectral Data: The Mz.unity Algorithm.

    PubMed

    Mahieu, Nathaniel G; Spalding, Jonathan L; Gelman, Susan J; Patti, Gary J

    2016-09-20

    Analysis of a single analyte by mass spectrometry can result in the detection of more than 100 degenerate peaks. These degenerate peaks complicate spectral interpretation and are challenging to annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated false discovery rates, data sets containing an order of magnitude more features than analytes, and an inefficient use of resources during data analysis. Although software has been introduced to annotate spectral degeneracy, current approaches are unable to represent several important classes of peak relationships. These include heterodimers and higher complex adducts, distal fragments, relationships between peaks in different polarities, and complex adducts between features and background peaks. Here we outline sources of peak degeneracy in mass spectra that are not annotated by current approaches and introduce a software package called mz.unity to detect these relationships in accurate mass data. Using mz.unity, we find that data sets contain many more complex relationships than we anticipated. Examples include the adduct of glutamate and nicotinamide adenine dinucleotide (NAD), fragments of NAD detected in the same or opposite polarities, and the adduct of glutamate and a background peak. Further, the complex relationships we identify show that several assumptions commonly made when interpreting mass spectral degeneracy do not hold in general. These contributions provide new tools and insight to aid in the annotation of complex spectral relationships and provide a foundation for improved data set identification. Mz.unity is an R package and is freely available at https://github.com/nathaniel-mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/ .

  7. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-07-02

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less

  8. Mass Spectra of Some Perfluoroalkyl and Perfluoroalkylether Substituted 1,2,4-Oxadiazoles

    NASA Technical Reports Server (NTRS)

    Paciorek, Kazimiera J. L.; Nakahara, James H.; Kratzer, Reinhold H.; Rosser, Robert W.

    1977-01-01

    Electron impact fragmentation patterns were obtained for 1,4-bis[(5-perfluoro-n-heptyl)-1,2,4-oxadiazolyl- benzene, its perfluoroalkylether substituted analogue, 3,5-bis(perfluoroalkyl)-, 3,5-bis(perfluoroalkylether)- and 3-perfluoroalkylether-5-perfluoroalkyl-1,2,4-oxadiazoles. In the compounds containing the phenylene group the molecular ion constituted the base peak; the main process was the breakdown of the oxadiazole ring with concurrent liberation of the perfluoroalkyl or perfluoroalkylether nitrile molecule; cleavage of the fluorinated chain ot to the oxadiazole ring was found to take place to a considerable degree. In the perfluorinated 1,2,4-oxadiazoles cleavage beta to the oxadiazole ring occurred preferentially; fragmentation of the ring itself took place to a limited degree only. The 3-perfluoroalkylether-5-perfluoroalkyl-1,2,4-oxadiazole appeared to undergo the primary beta-cleavage exclusively at the perfluoroalkylether sidechain.

  9. Effects of subtle differences in ligand constitution and conformation in metallo-supramolecular self-assembled polygons.

    PubMed

    Brusilowskij, Boris; Dzyuba, Egor V; Troff, Ralf W; Schalley, Christoph A

    2011-12-07

    3,3'-Bis(pyridin-[n]-ylethynyl)biphenyl (n = 3, 4) and the corresponding 2,2'-bipyridines assemble with (dppp)Pt(II) triflate into metallo-supramolecular polygons. Depending on the position of the terminal pyridine N atoms, the assembly reaction leads to different equilibrium products. With the slow ligand exchange on Pt(II) complexes, the equilibrium is reached on a many-hour time-scale. During the assembly process, larger polygons form under kinetic control. This was confirmed by time-dependent (1)H and (31)P NMR spectroscopy in line with complementary ESI mass spectrometric experiments. The constitutional difference in the pyridine N-atom position is reflected in the tandem mass spectra of the complex ions. In addition, a highly specific fragmentation process of mass-selected M(3)L(3) ions was observed, which proceeds through a ring contraction yielding smaller M(2)L(2) ions.

  10. Metabolism studies of benzbromarone in rats by high performance liquid chromatography-quadrupole time of flight mass spectrometry.

    PubMed

    Wu, Haiqing; Peng, Ying; Wang, Shaojie; Wang, Kai; Zhao, Xunchen; Jiang, Fan

    2012-12-12

    A high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-QTOF-MS) method was employed in investigation of benzbromarone metabolites in rat plasma, urine, feces and bile samples. Meanwhile, the metabolic pathways of benzbromarone in rats were discussed. The identification was achieved on a reversed-phase C(18) column with mobile phase gradient method. The QTOF-MS was operated under full scan of MS or MS/MS in negative mode. The fragments were acquired by raising collision induced dissociation (CID) energy for speculating the structures of parent ions. According to the information from the chromatograms and mass spectra, 17 metabolites were obtained. Among them, the deoxidized phase I metabolites and an array of phase II metabolites-sulfate conjugates detected in the biological samples made the work more significant. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes

    PubMed Central

    Tsednee, Munkhtsetseg; Huang, Yu-Chen; Chen, Yet-Ran; Yeh, Kuo-Chen

    2016-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is used to analyze metal species in a variety of samples. Here, we describe an application for identifying metal species by tandem mass spectrometry (ESI-MS/MS) with the release of free metals from the corresponding metal–ligand complexes. The MS/MS data were used to elucidate the possible fragmentation pathways of different metal–deoxymugineic acid (–DMA) and metal–nicotianamine (–NA) complexes and select the product ions with highest abundance that may be useful for quantitative multiple reaction monitoring. This method can be used for identifying different metal–ligand complexes, especially for metal species whose mass spectra peaks are clustered close together. Different metal–DMA/NA complexes were simultaneously identified under different physiological pH conditions with this method. We further demonstrated the application of the technique for different plant samples and with different MS instruments. PMID:27240899

  12. Structural model of the amyloid fibril formed by beta(2)-microglobulin #21-31 fragment based on vibrational spectroscopy.

    PubMed

    Hiramatsu, Hirotsugu; Goto, Yuji; Naiki, Hironobu; Kitagawa, Teizo

    2005-06-08

    A structural model of amyloid fibril formed by the #21-31 fragment of beta2-microglobulin is proposed from microscope IR measurements on specifically 13C-labeled peptide fibrils and Raman spectra of the dispersed fibril solution. The 13C-shifted amide frequency indicated the secondary structure of the labeled residues. The IR spectra have demonstrated that the region between F22 and V27 forms the core part with the extended beta-sheet structure. Raman spectra indicated the formation of a dimer with a disulfide bridge between C25 residues.

  13. Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks.

    PubMed

    Kalegowda, Yogesh; Harmer, Sarah L

    2013-01-08

    Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  15. Mercury-induced fragmentation of n-decane and n-undecane in positive mode ion mobility spectrometry.

    PubMed

    Gunzer, F

    2015-09-21

    Ion mobility spectrometry is a well-known technique for trace gas analysis. Using soft ionization techniques, fragmentation of analytes is normally not observed, with the consequence that analyte spectra of single substances are quite simple, i.e. showing in general only one peak. If the concentration is high enough, an extra cluster peak involving two analyte molecules can often be observed. When investigating n-alkanes, different results regarding the number of peaks in the spectra have been obtained in the past using this spectrometric technique. Here we present results obtained when analyzing n-alkanes (n-hexane to n-undecane) with a pulsed electron source, which show no fragmentation or clustering at all. However, when investigating a mixture of mercury and an n-alkane, a situation quite typical in the oil and gas industry, a strong fragmentation and cluster formation involving these fragments has been observed exclusively for n-decane and n-undecane.

  16. Fragmentation of alpha-Radical Cations of Arginine-Containing Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Yang, Zhibo; Ng, Dominic C.

    2010-04-01

    Fragmentation pathways of peptide radical cations, M+, with well-defined initial location of the radical site were explored using collision-induced dissociation (CID) experiments. Peptide radical cations were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes [salen = N,N´-ethylenebis (salicylideneaminato)]. Subsequent hydrogen abstraction from the -carbon of the side chain followed by Ca-C bond cleavage results in the loss of a neutral side chain and formation of an a-radical cation with the radical site localized on the a-carbon of the backbone. Similar CID spectra dominated by radical-driven dissociation products were obtained for a number of a-radicals when the basic arginine side chain wasmore » present in the sequence. In contrast, proton-driven fragmentation dominates CID spectra of a-radicals produced via the loss of the arginine side chain. Our results suggest that in most cases radical migration precedes fragmentation of large peptide radical cations.« less

  17. Light irradiation induces fragmentation of the plasmodium, a novel photomorphogenesis in the true slime mold Physarum polycephalum: action spectra and evidence for involvement of the phytochrome.

    PubMed

    Kakiuchi, Y; Takahashi, T; Murakami, A; Ueda, T

    2001-03-01

    A new photomorphogenesis was found in the plasmodium of the true slime mold Physarum polycephalum: the plasmodium broke temporarily into equal-sized spherical pieces, each containing about eight nuclei, about 5 h after irradiation with light. Action spectroscopic study showed that UVA, blue and far-red lights were effective, while red light inhibited the far-red-induced fragmentation. Difference absorption spectra of both the living plasmodium and the plasmodial homogenate after alternate irradiation with far-red and red light gave two extremes at 750 and 680 nm, which agreed with those for the induction and inhibition of the fragmentation, respectively. A kinetic model similar to that of phytochrome action explained quantitatively the fluence rate-response curves of the fragmentation. Our results indicate that one of the photoreceptors for the plasmodial fragmentation is a phytochrome.

  18. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. Cl mass spectra of organic compounds produced by F− reactions

    PubMed Central

    Tiernan, T. O.; Chang, C.; Cheng, C. C.

    1980-01-01

    A systematic study of the negative-ion chemical ionization mass spectra produced by the reaction of F− with a wide variety of organic compounds has been accomplished. A time-of-flight mass spectrometer fitted with a modified high pressure ion source was employed for these experiments. The F− reagent ion was generated from CF3H or NF3, typically at an ion source pressure of 100 μm. In pure NF3, F− is the major ion formed and constitutes more than 90% of the total ion intensity. While F− is also the major primary ion formed in pure CF3H, it undergoes rapid ion-molecule reactions at elevated source pressures, yielding (HF)nF− (n = 1−3) ions, which makes CF3H less suitable as a chemical ionization reagent gas. Among the organic compounds investigated were carboxylic acids, ketones, aldehydes, esters, alcohols, phenols, halides, nitriles, nitrobenzene, ethers, amines and hydrocarbons. An intense (M − 1)− ion was observed in the F− chemical ionization mass spectra of carboxylic acids, ketones, aldehydes and phenols. Alcohols yield only (M + F)− ions upon reaction with F−. A weaker (M + F)− ion was also detected in the F− chemical ionization spectra of carboxylic acids, aldehydes, ketones and nitriles. The F− chemical ionization mass spectra of esters, halides, nitriles, nitrobenzene and ethers are characterized primarily by the ions, RCOO−, X−, CN−, NO2−, and OR−, respectively. In addition, esters show a very weak (M − 1)− ion (except formates). In the F− chemical ionization spectra of some aliphatic alkanes and o-xylene, a very weak (M + F)− ion was observed. Amines and aliphatic alkenes exhibit only insignificant fragment ions under similar conditions, while aromatic hydrocarbons, such as benzene and toluene are not reactive at all with the F− ion. The mechanisms of the various reactions mentioned are discussed, and several experimental complications are noted. In still other studies, the effects of varying several experimental parameters, including source pressure, relative proportions of the reagent and analyte, and other ion source parameters, on the observed chemical ionization mass spectra were also investigated. In a mixture of NF3 and n-butanol, for example, the ratio of the intensities of the ions characteristic of the alcohol to that of the (HF)nF− ion was found to decrease with increasing sample pressure, with increasing NF3 pressure, and with increasing electron energy. No significant effects on the spectra were observed to result from variation of the source repeller field or the source temperature. The addition of argon to the source as a potential moderator did not alter the F− chemical ionization spectrum significantly, but the use of oxygen appears to inhibit formation of the (HF)nF− cluster ion. The advantages of using F− as a chemical ionization reagent are discussed, and comparisons are made with other reagent ions. PMID:7428746

  19. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior.

    PubMed

    Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen

    2016-02-28

    The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley & Sons, Ltd.

  20. In situ oil shale retort with a generally T-shaped vertical cross section

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  1. Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Paticulate Organic Nitrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruns, Emily; Perraud, Veronique; Zelenyuk, Alla

    2010-02-01

    While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was applied to NH4NO3, NaNO3 and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO3 radical reactions at 22 C and 1 atm in air with and pinene, 3-carene, limonene and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30,more » and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [CxHyNzOa]+ were identified using HR-ToF-AMS. The NO+/NO2+ ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the and pinene, 3-carene and limonene reactions, ~5 for the isoprene reaction, 2.4 for NH4NO3 and 80 for NaNO3. The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO2/C-H ratios measured using FTIR on particles impacted on ZnSe windows. While the NO+/NO2+ ratio may provide a generic indication of organic nitrates under some conditions, specific identification of particulate organic nitrates awaits further development of particle mass spectrometry techniques.« less

  2. New Clues to the Mysterious Origin of Wide-Separation Planetary-Mass Companions

    NASA Astrophysics Data System (ADS)

    Bryan, Marta

    2018-01-01

    Over the past decade, direct imaging searches for young gas giant planets have revealed a new population of young planetary-mass companions with extremely wide orbital separations (>50 AU) and masses near or at the deuterium-burning limit. These companions pose significant challenges to standard formation models, including core accretion, disk instability, and turbulent fragmentation. In my talk I will discuss new results from high-contrast imaging and high-resolution infrared spectroscopy of a sample of directly imaged wide-separation companions that can be used to directly test these three competing formation mechanisms. First, I use high-contrast imaging to strongly discount scattering as a hypothesis for the origin of wide-separation companions. Second, I measure rotation rates of a subset of these companions using their near-IR spectra, and place the first constraints on the angular momentum evolution of young planetary-mass objects. Finally, I explore the ability of high-resolution spectroscopy to constrain the atmospheric C/O ratios of these companions, providing a complementary test of competing formation scenarios.

  3. Analysis of Biomolecules by Atmospheric Pressure Visible-Wavelength MALDI-Ion Trap-MS in Transmission Geometry

    NASA Astrophysics Data System (ADS)

    West, Raymond E.; Findsen, Eric W.; Isailovic, Dragan

    2013-10-01

    We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system ( Int. J. Mass Spectrom. 315, 66-73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.

  4. Quality control and identification of steroid saponins in crude extracts from Dioscorea zingiberensis C. H. Wright by fingerprint with HPLC-ELSD and HPLC-ESI-Quadrupole/Time-of-fight tandem mass spectrometry

    PubMed Central

    Zhang, Xinxin; Liang, Jinru; Liu, Jianli; Zhao, Ye; Gao, Juan; Sun, Wenji; Ito, Yoichiro

    2014-01-01

    In this study, a fingerprint of steroid saponins, the major bioactive constituents in the crude extracts from Dioscorea zingiberensis C. H. Wright (DZW), has been established for the first time by high-performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD) and the simultaneous characterization of the steroid saponins by high-performance liquid chromatography coupled with electrospray ionization-mass spectrometry and quadrupole tandem time-of-fight mass analyzers detection (HPLC-ESI-Q/TOF). These HPLC analyses were both carried out on a Welchrom C18 column (250 mm × 4.6 mm I.D., 5 μm) with a mobile phase composed of water and acetonitrile under gradient elution. There were 68 common characteristic peaks in the fingerprints, in which 12 of them were confirmed by comparing their mass spectra and retention times with those of the reference compounds. In order to identify the other unknown peaks, their fragmentation behaviors characteristic for the major groups of steroid saponins from DZW with six types of aglycone skeletons were discussed in detail, and possible MS/MS fragmentation pathways were proposed for aiding the structural identification of these components. According to the summarized fragmentation patterns, these peaks were tentatively assigned by matching their empirical molecular formula with those of the published compounds, or by elucidating their quasi-molecular ions and fragment ions referring to available literature information when the reference standards were unavailable. As a result, 22 steroid saponins were found in DZW for the first time. In addition, the quantitative analysis of the 12 known peaks was accomplished at the same time which indicated that there was a great variability in the amount of these active compounds in different batches in the crude extracts. This approach could demonstrate that the fingerprint could be considered to be a suitable tool to comprehensively improve the quality control of DZW, and the identification and structural elucidation of the peaks in the fingerprint may provide important experimental data for further pharmacological and clinical researches. PMID:24418811

  5. The fragmentation of 510 MeV/nucleon iron-56 in polyethylene. II. Comparisons between data and a model

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Schimmerling, W.; Townsend, L. W.; Tripathi, R. K.; Wilson, J. W.

    1996-01-01

    The results of a Monte Carlo model for calculating fragment fluences and LET spectra are compared to data taken with 600 MeV/nucleon iron ions incident on an accelerator beamline configured for irradiation of biological samples, with no target and with 2, 5 and 8 cm of polyethylene. The model uses a multi-generation nuclear fragmentation code, coupled with a formulation of ionization energy loss based on the Bethe-Bloch equation. In the region where the data are reliable and the experimental acceptance is well understood, many of the features of the experimental spectra are well replicated by the model. To obtain good agreement with the experimental data, the model must allow for at least two generations of fragment production in the target.

  6. Protons from carbon ion fragmentation at 0.3–2.0 GeV/nucleon: Comparison with models of ion-ion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramov, B. M.; Alekseev, P. N.; Borodin, Yu. A.

    2015-05-15

    Yields of protons at 3.5° from carbon ion fragmentation at energies of T{sub 0} = 0.3, 0.6, 0.95, and 2.0 GeV/nucleon on a Be target were measured in the FRAGM experiment at TWA-ITEP heavy-ion facility. Proton momentum spectra cover both the region of the fragmentation maximum and the cumulative region. The differential cross sections span six orders of its magnitude. The spectra are compared with the predictions of four models of ion-ion interactions: LAQGSM03.03, SHIELD-HIT, QMD, and BC.

  7. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry

    DOE PAGES

    Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...

    2017-05-22

    A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less

  8. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel

    A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less

  9. Determination of endocrine-disrupting compounds in drinking waters by fast liquid chromatography-tandem mass spectrometry.

    PubMed

    Magi, Emanuele; Scapolla, Carlo; Di Carro, Marina; Liscio, Camilla

    2010-09-01

    Growing attention has been recently paid to safety of food and drinking water, making necessary the adoption of policies for water sources protection and the development of sensitive and rapid analytical methods to identify micropollutants. Endocrine-disrupting compounds (EDCs) have emerged as a major issue as they alter the functioning of the endocrine system. Since ingestion of EDCs via food is considered the major exposure route, there is a growing interest in understanding EDC fate during drinking water treatment and in monitoring potential contamination of surface waters and groundwaters. In this work, a fast liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the determination of 4-n-nonylphenol (NP), bisphenol A (BPA), estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in drinking waters. In the literature analytical articles seldom provide details regarding fragmentation pathways. In this paper spectra of the five EDCs in negative ESI were interpreted with the support of accurate mass spectra acquired by a quadrupole time-of-flight instrument; fragmentation pathways were also proposed. The chromatographic separation of EDCs was optimized on a Pinnacle DB Biphenylic column with a water-acetonitrile gradient. Quantitative analysis was performed in multiple reaction monitoring (MRM) mode using bisphenol A-d(16) (BPA-d(16)) as internal standard; calibration curves showed good correlation coefficients (0.9989-0.9997). All figures of merit of the method were satisfactory; limits of detection were in the range 0.2-0.4 ng/ml. The method was applied to the determination of the analytes in waters sampled by polar organic chemical integrative samplers in a drinking water treatment plant. Rather low concentration of BPA, NP and E1 were measured in the inlet, while none of the considered EDCs was detected in the outlet. 2010 John Wiley & Sons, Ltd.

  10. Stability of buckminsterfullerene and related carbon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, M.D.; Stanton, R.E.

    1986-04-30

    Under appropriate collisional conditions the mass spectrum of carbon fragments produced by laser vaporization of graphite is dominated by C/sub 60/ and (to a lesser extent) C/sub 70/ clusters. The discoverers of this phenomenon have noted that the carbon valence requirements can be satisfied in closed, hollow structures. For C/sub 60/ they suggest an icosahedral soccer ball network, which they call buckminsterfullerene and we abbreviate as BF. Experimental support has come from studies with lanthanum-impregnated graphite. The resulting mass spectra show intense C/sub 60/La peaks, but no C/sub n/La/sub 2/ or C/sub n/La/sub 3/ peaks. Subsequent experiments have demonstrated themore » inertness of C/sub 60/ and, indeed, other large C/sub 2n/ clusters under NO attack. We report here the results of quantum calculations which were prompted by the experiments cited above and other earlier work. Our purpose has been to test the intrinsic stability of BF and related polyhedral species and to compare their stability with that of planar graphite fragments. The latter have the advantage of being strain free, but suffer from dangling valences on their perimeters. We also make comparisons with linear carbon chains.« less

  11. Characterization of alkaloids in Sophora flavescens Ait. by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Liu, Guoqiang; Dong, Jing; Wang, Hong; Hashi, Yuki; Chen, Shizhong

    2011-04-05

    Sophora flavescens Ait., a well-known Chinese herbal medicine, is widely used in clinical practice for the treatment of viral hepatitis, cancer, gastrointestinal hemorrhage, and skin diseases. This paper is the first report on a method based on the combined use of high-performance liquid chromatography, photodiode array detection, and electrospray ionization tandem mass spectrometry for the comprehensive and systematic separation and characterization of bioactive alkaloids in Sophora flavescens Ait. A total of 22 constituents were identified on the basis of the extracted ion chromatograms for different [M+H](+) ions of the alkaloids present in S. flavescens Ait. Among these, 5 constituents were unambiguously identified by comparing the experimental data on their retention times and MS(n) spectra with those of the authentic compounds, and 17 other constituents were tentatively identified on the basis of their MS(n) fragmentation behaviors and/or molecular weight information from literatures. Furthermore, some characteristic fragmentation pathways of the alkaloids in S. flavescens Ait. were detected and examined. This information may be useful for characterizing the bioactive alkaloids present in S. flavescens Ait. and for possible applications in formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Characterization of Anthocyanins in Perilla frutescens var. acuta Extract by Advanced UPLC-ESI-IT-TOF-MSn Method and Their Anticancer Bioactivity.

    PubMed

    He, Yan-Kang; Yao, You-Yuan; Chang, Ya-Ning

    2015-05-19

    The anthocyanin extract from a domestic Perilla cultivar (Perilla frutescens var. acuta) were isolated and characterized with high mass accuracy and multi-dimensional fragmentation by means of ultra-performance liquid chromatography (UPLC) and electrospray ionization-ion trap-time of flight mass spectrometry analysis (ESI-IT-TOF-MSn). The new developed and applied LC-MS method focused on in-depth screening of anthocyanin compounds with similar structures which also provided a new approach of anthocyanin characterization without the use of external standards. Selective detection of interested anthocyanins was achieved utilizing extracted ion chromatogram (EIC) analysis, while MSn spectra were recorded to allow identification of the anthocyanin based on characteristic fragmentation patterns. Seven anthocyanins including one feruloyl (Cyanidin 3-O-feruloylglucoside-5-O-glucoside), two caffeoyl (Cyanidin 3-O-caffeoylglucoside-5-O-glucoside, Cyanidin 3-O-caffeoylglucoside-5-O-malonylglucoside) and four coumaroyl substituted anthocyanins (Cis-shisonin, Malonyl-cis-shisonin, Shisonin, and Malonyl-shisonin) were identified. Annexin-V FITC/PI flow cytometric assay was performed to analyze the influence of anthocyanin extract of P. frutescens var. acuta on cell apoptosis. The results suggested that Perilla anthocyanins can induce Hela cell apoptosis by a dose dependent manner.

  13. Withdrawal of gases and liquids from an in situ oil shale retort

    DOEpatents

    Siegel, Martin M.

    1982-01-01

    An in situ oil shale retort is formed within a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale. A production level drift extends below the fragmented mass, leaving a lower sill pillar of unfragmented formation between the production level drift and the fragmented mass. During retorting operations, liquid and gaseous products are recovered from a lower portion of the fragmented mass. A liquid outlet line extends from a lower portion of the fragmented mass through the lower sill pillar for conducting liquid products to a sump in the production level drift. Gaseous products are withdrawn from the fragmented mass through a plurality of gas outlet lines distributed across a horizontal cross-section of a lower portion of the fragmented mass. The gas outlet lines extend from the fragmented mass through the lower sill pillar and into the production level drift. The gas outlet lines are connected to a gas withdrawal manifold in the production level drift, and gaseous products are withdrawn from the manifold separately from withdrawal of liquid products from the sump in the production level drift.

  14. Apparatus and method for igniting an in situ oil shale retort

    DOEpatents

    Chambers, Carlon C.

    1981-01-01

    A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.

  15. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    DOEpatents

    Cha, Chang Y.

    1980-01-01

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  16. Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations

    NASA Astrophysics Data System (ADS)

    Grossert, J. Stuart; Herrera, Lisandra Cubero; Ramaley, Louis; Melanson, Jeremy E.

    2014-08-01

    Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na+). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na+, Li+, K+, Ag+, NH4 +). While most cations bind to oxygen, Ag+ binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M]+ was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS3). These lactones can account for all the major product ions in the MS3 spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

  17. Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals.

    PubMed

    Shaffer, Christopher J; Pepin, Robert; Tureček, František

    2015-12-01

    We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.

  18. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences.

    PubMed

    Ferro, Myriam; Tardif, Marianne; Reguer, Erwan; Cahuzac, Romain; Bruley, Christophe; Vermat, Thierry; Nugues, Estelle; Vigouroux, Marielle; Vandenbrouck, Yves; Garin, Jérôme; Viari, Alain

    2008-05-01

    PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.

  19. Characterization of Fumonisin A-Series by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry

    PubMed Central

    Tamura, Masayoshi; Mochizuki, Naoki; Nagatomi, Yasushi; Toriba, Akira; Hayakawa, Kazuichi

    2014-01-01

    Fumonisin A-series (FAs) in a reference material of corn sample that was naturally contaminated with fumonisins was characterized using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitap MS). Peaks for fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3), in addition to three peaks corresponding to unknown compounds I, II, and III, were detected in the chromatogram for the corn sample. Fragment ion analysis for FB1, FB2, and FB3 showed that while the ions formed at m/z values of 200–800 were similar to those formed by the cleavage of the tricarballylic acids and the hydroxyl groups, the fragmentation patterns at m/z values of 50–200 varied depending on the hydroxyl group locations in the compounds. Fragment ion analysis of compounds I–III revealed structural similarities to FBs, only differing by an additional C2H2O in the unknown compounds. Using these results and by comparing the product ion mass spectra of compound I with fumonisin A1 (FA1) synthesized from FB1 standards, compounds I–III were hypothesized to be N-acetyl analogs of FBs: fumonisins A1 (FA1), A2 (FA2), and A3 (FA3). The method for determining concentrations was validated with FA1, FB1, FB2, and FB3 standards and applied to analyze the reference material. The FB1, FB2, and FB3 analytical levels were within acceptance limits and the amount of FA1 in the material was ~15% of FB1 amount at 4.2 mg/kg. PMID:25153258

  20. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O 3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 10 11 to 9.7 × 10 11 molec cm −3 s, corresponding to approximatelymore » 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  1. Negative ion MALDI-TOF MS, ISD and PSD of neutral underivatized oligosaccharides without anionic dopant strategies, using 2,5-DHAP as a matrix.

    PubMed

    Jovanović, Marko; Peter-Katalinić, Jasna

    2016-02-01

    Oligosaccharides represent complex class of analytes for mass spectrometric analysis due to the high variety of structural isomers concerning glycosidic linkages and possible branching. A systematic study of the negative ion mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of various neutral oligosaccharides under selection of an appropriate matrix, like 2,5-dihydroxyacetophenone (2,5-DHAP) is reported here, without commonly used anion dopant strategies. Nevertheless, we were able to generate relevant in-source decay (ISD) cross-ring fragment ions, typically obtained in the negative ion mode. Data observed indicate that the intrinsic property of the terminal non-reduced aldose is crucial for this behavior. A systematic study of the post source decay (PSD) of molecular, pseudomolecular and ISD cross-ring cleavage precursor ions is reported here. A direct comparison of the positive and negative ion mode MALDI MS1 and PSD behavior of neutral oligosaccharides could also be performed under the use of the same matrix preparation, because 2,5-DHAP is fully compatible with positive ion mode acquisition. We found that PSD spectra of deprotonated neutral oligosaccharides obtained in the negative ion mode are richer, because they contained both glycosidic and cross-ring fragment ions. However, we also found that cross-ring fragment ions are readily produced in the positive ion mode when potassiated precursor ions were selected. In addition, we show evidence that non-anionic dopants and specific instrumental parameters can also significantly influence the ISD fragmentation. Taken together, our results should increase our understanding of oligosaccharide behavior in the negative ion mode as well as increase our knowledge regarding many aspects of in-source MALDI chemistry. Copyright © 2016 John Wiley & Sons, Ltd.

  2. High-performance hardware implementation of a parallel database search engine for real-time peptide mass fingerprinting

    PubMed Central

    Bogdán, István A.; Rivers, Jenny; Beynon, Robert J.; Coca, Daniel

    2008-01-01

    Motivation: Peptide mass fingerprinting (PMF) is a method for protein identification in which a protein is fragmented by a defined cleavage protocol (usually proteolysis with trypsin), and the masses of these products constitute a ‘fingerprint’ that can be searched against theoretical fingerprints of all known proteins. In the first stage of PMF, the raw mass spectrometric data are processed to generate a peptide mass list. In the second stage this protein fingerprint is used to search a database of known proteins for the best protein match. Although current software solutions can typically deliver a match in a relatively short time, a system that can find a match in real time could change the way in which PMF is deployed and presented. In a paper published earlier we presented a hardware design of a raw mass spectra processor that, when implemented in Field Programmable Gate Array (FPGA) hardware, achieves almost 170-fold speed gain relative to a conventional software implementation running on a dual processor server. In this article we present a complementary hardware realization of a parallel database search engine that, when running on a Xilinx Virtex 2 FPGA at 100 MHz, delivers 1800-fold speed-up compared with an equivalent C software routine, running on a 3.06 GHz Xeon workstation. The inherent scalability of the design means that processing speed can be multiplied by deploying the design on multiple FPGAs. The database search processor and the mass spectra processor, running on a reconfigurable computing platform, provide a complete real-time PMF protein identification solution. Contact: d.coca@sheffield.ac.uk PMID:18453553

  3. Direct and comprehensive analysis of dyes based on integrated molecular and structural information via laser desorption laser postionization mass spectrometry.

    PubMed

    Liu, Rong; Yin, Zhibin; Leng, Yixin; Hang, Wei; Huang, Benli

    2018-01-01

    Laser desorption laser postionization time-of-flight mass spectrometry (LDPI-TOFMS) was employed for direct analysis and determination of typical basic dyes. It was also used for the analysis and comprehensive understanding of complex materials such as blue ballpoint pen inks. Simultaneous emergences of fragmental and molecular information largely simplify and facilitate unambiguous identification of dyes via variable energy of 266nm postionization laser. More specifically, by optimizing postionization laser energy with the same energy of desorption laser, the structurally significant results show definite differences in the fragmentation patterns, which offer opportunities for discrimination of isomeric species with identical molecular weight. Moreover, relatively high spectra resolution can be acquired without the expense of sensitivity. In contrast to laser desorption/ionization mass spectrometry (LDI-MS), LDPI-MS simultaneously offers valuable molecular information about dyes in traces, solvents and additives about inks, thereby offering direct determination and comprehensive understanding of blue ballpoint inks and giving a high level of confidence to discriminate the complicated evidentiary samples. In addition, direct analysis of the inks not only allows the avoidance of the tedious sample preparation processes, significantly shortening the overall analysis time and improving throughput, but allows minimized sample consumption which is important for rare and precious samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sequence analysis of the pyruvylated galactan sulfate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry.

    PubMed

    Li, Na; Mao, Wenjun; Liu, Xue; Wang, Shuyao; Xia, Zheng; Cao, Sujian; Li, Lin; Zhang, Qi; Liu, Shan

    2016-10-04

    Five sulfated oligosaccharide fragments, F1-F5, were prepared from a pyruvylated galactan sulfate from the green alga Codium divaricatum, by partial depolymerization using mild acid hydrolysis and purification with gel-permeation chromatography. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation (ES-CID-MS/MS) is attempted for sequence determination of the sulfated oligosaccharides. The sequence of F1 with homogeneous disaccharide composition was first characterized to be Galp-(4SO4)-(1 → 3)-Galp by detailed nuclear magnetic resonance spectroscopic analyses. The fragmentation pattern of F1 in the product ion spectra was established on the basis of negative-ion ES-CID MS/MS, which was then applied to sequence analysis of other sulfated oligosaccharides. The sequences of F2 and F3 were deduced to be Galp-(4SO4)-(1 → 3)-Galp-(1 → 3)-Galp-(1 → 3)-Galp and 3,4-O-(1-carboxyethylidene)-Galp-(6SO4)-(1 → 3)-Galp, respectively. The sequences of major fragments in F4 and F5 were also deduced. The investigation demonstrated that negative-ion ES-CID-MS/MS was an efficient method for the sequence analysis of the pyruvylated galactan sulfate-derived oligosaccharides which revealed the patterns of substitution and glycosidic linkages. The pyruvylated galactan sulfate-derived oligosaccharides were novel sulfated oligosaccharides different from other algal polysaccharide-derived oligosaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Light fragments from (C + Be) interactions at 0.6 GeV/nucleon

    DOE PAGES

    Abramov, B. M.; Alekseev, P. N.; Borodin, Yu. A.; ...

    2016-05-01

    We measured nuclear fragments emitted at 3.5° in 12C fragmentation at 0.6 GeV/nucleon. We also used the spectra obtained to test the predictions of four ion-ion interaction models: INCL++, BC, LAQGSM03.03 and QMD as well as for the comparison with the analytical parametrization in the framework of thermodynamical picture of fragmentation.

  6. Characterization of physalins and fingerprint analysis for the quality evaluation of Physalis alkekengi L. var. franchetii by ultra-performance liquid chromatography combined with diode array detection and electrospray ionization tandem mass spectrometry.

    PubMed

    Zheng, Yunliang; Luan, Lianjun; Chen, Yong; Ren, Yiping; Wu, Yongjiang

    2012-12-01

    Physalins are important bioactive compounds from genus Physalis. They often occur as isomers, which makes the structural elucidation difficult. In the present study, the fragmentation behavior and UV characteristics of seven physalins from genus Physalis were firstly investigated using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and diode array detection (DAD). Combined with ultra-performance liquid chromatography (UPLC) and DAD, the established approach to the structural identification of physalins by ESI-MS/MS was then applied to the analysis of Physalis alkekengi L. According to the UPLC retention behavior, the diagnostic UV spectra and the molecular structural information provided by MS/MS spectra, about 19 fingerprint peaks were identified, including 14 physalins and 5 other compounds. Finally, the established fingerprint method was applied to the analysis of 31 P. alkekengi L. samples collected from different locations, which reflected their similar chemical constituent properties. The proposed method provides a scientific and technical platform to the herbal industry for quality control and safety assurance of herbal preparations that contain this class of physalins. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Development of a dedicated peptide tandem mass spectral library for conservation science.

    PubMed

    Fremout, Wim; Dhaenens, Maarten; Saverwyns, Steven; Sanyova, Jana; Vandenabeele, Peter; Deforce, Dieter; Moens, Luc

    2012-05-30

    In recent years, the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) on tryptic digests of cultural heritage objects has attracted much attention. It allows for unambiguous identification of peptides and proteins, and even in complex mixtures species-specific identification becomes feasible with minimal sample consumption. Determination of the peptides is commonly based on theoretical cleavage of known protein sequences and on comparison of the expected peptide fragments with those found in the MS/MS spectra. In this approach, complex computer programs, such as Mascot, perform well identifying known proteins, but fail when protein sequences are unknown or incomplete. Often, when trying to distinguish evolutionarily well preserved collagens of different species, Mascot lacks the required specificity. Complementary and often more accurate information on the proteins can be obtained using a reference library of MS/MS spectra of species-specific peptides. Therefore, a library dedicated to various sources of proteins in works of art was set up, with an initial focus on collagen rich materials. This paper discusses the construction and the advantages of this spectral library for conservation science, and its application on a number of samples from historical works of art. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge.

    PubMed

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H] + caused by proton transfer from hydronium ion H 3 O + , except for benzene, toluene and n -hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A ·+ and/or dehydride analyte [A-H] + , according to the nature of analytes used. The formation of A ·+ without fragment ions could be explained by the electron tunneling via high electric fields 10 8  V/m at the tip of the corona needle. The dehydride analytes [A-H] + observed in the mass spectra of n -hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e. , the proton donor to form [A+H] + and the hydride acceptor to form [A-H] + .

  9. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge

    PubMed Central

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H]+ caused by proton transfer from hydronium ion H3O+, except for benzene, toluene and n-hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A·+ and/or dehydride analyte [A−H]+, according to the nature of analytes used. The formation of A·+ without fragment ions could be explained by the electron tunneling via high electric fields 108 V/m at the tip of the corona needle. The dehydride analytes [A−H]+ observed in the mass spectra of n-hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e., the proton donor to form [A+H]+ and the hydride acceptor to form [A−H]+. PMID:28616372

  10. [Rapid determination of illicit beta2-agonist additives in health foods and traditional Chinese patent medicines with DCBI-MS/MS method].

    PubMed

    Hou, Yu-Lan; Wu, Shuang; Wang, Hua; Zhao, Yong; Liao, Peng; Tian, Qing-Qing; Sun, Wen-Jian; Chen, Bo

    2013-01-01

    A novel rapid method for detection of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines was developed with the desorption corona beam ionization mass spectrometry (DCBI-MS) technique. The DCBI conditions including temperature and sample volume were optimized according to the resulting mass spectra intensity. Matrix effect on 9 beta2-agonists additives was not significant in the proposed rapid determination procedure. All of the 9 target molecules were detected within 1 min. Quantification was achieved based on the typical fragment ion in MS2 spectra of each analyte. The method showed good linear coefficients in the range of 1-100 mg x L(-1) for all analytes. The relative deviation values were between 14.29% and 25.13%. Ten claimed antitussive and antiasthmatic health foods and traditional Chinese patent medicines from local pharmacies were analyzed. All of them were negative with the proposed DCBI-MS method. Without tedious sample pretreatments, the developed DCBI-MS is simple, rapid and sensitive for rapid qualification and semi-quantification of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines.

  11. Molecular beam scattering from C-13 enriched Kapton and correlation with the EOIM-3 carousel experiment

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Moore, Teresa A.

    1995-01-01

    Mass spectra of products emerging from identical samples of a C-13-enriched polyimide polymer (chemically equivalent to Kapton) under atomic oxygen bombardment in space and in the laboratory were collected. Reaction products unambiguously detected in space were CO-13, NO, (12)CO2, and (13)CO2. These reaction products and two others, H2O and CO-12, were detected in the laboratory, along with inelastically scattered atomic and molecular oxygen. Qualitative agreement was seen in the mass spectra taken in space and in the laboratory; the agreement may be improved by reducing the fraction of O2 in the laboratory molecular beam. Both laboratory and space data indicated that CO and CO2 products come preferentially from reaction with the imide component of the polymer chain, raising the possibility that the either component may degrade in part by the 'evaporation' of higher molecular weight fragments. Laboratory time-of-flight distributions showed: (1) incomplete energy accommodation of impinging O and O2 species that do not react with the surface; and (2) both hyperthermal and thermal CO and CO2 products, suggesting two distinct reaction mechanisms with the surface.

  12. Formation of oligomeric alkenylperoxides during the oxidation of unsaturated fatty acids: an electrospray ionization tandem mass spectrometry study.

    PubMed

    Villaverde, Juan José; Santos, Sónia A O; Maciel, Elisabete; Simões, Mário M Q; Pascoal Neto, Carlos; Domingues, M Rosário M; Silvestre, Armando J D

    2012-02-01

    This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS(2)), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe(2+)/H(2)O(2)) and Fe(2+)/O(2) systems. The reactions were followed by ferrous oxidation-xylenol orange method together with GC-MS and GC-FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH(·) radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI-MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Mass spectra of neutral particles released during electrical breakdown of thin polymer films

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1985-01-01

    A special type of time-of-flight mass spectrometer triggered from the breakdown event was developed to study the composition of the neutral particle flux released during the electrical breakdown of polymer films problem. Charge is fed onto a metal-backed polymer surface by a movable smooth platinum contact. A slowly increasing potential from a high-impedance source is applied to the contact until breakdown occurs. The breakdown characteristics is made similar to those produced by an electron beam charging system operating at similar potentials. The apparatus showed that intense instantaneous fluxes of neutral particles are released from the sites of breakdown events. For Teflon FEP films of 50 and 75 microns thickness the material released consists almost entirely of fluorocarbon fragments, some of them having masses greater than 350 atomic mass units amu, while the material released from a 50 micron Kapton film consists mainly of light hydrocarbons with masses at or below 44 amu, with additional carbon monoxide and carbon dioxide. The apparatus is modified to allow electron beam charging of the samples.

  14. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  15. Accuracy of embedded fragment calculation for evaluating electron interactions in mixed valence magnetic systems: study of 2e-reduced lindqvist polyoxometalates.

    PubMed

    Suaud, Nicolas; López, Xavier; Ben Amor, Nadia; Bandeira, Nuno A G; de Graaf, Coen; Poblet, Josep M

    2015-02-10

    Accurate quantum chemical calculations on real-world magnetic systems are challenging, the inclusion of electron correlation being the bottleneck of such task. One method proposed to overcome this difficulty is the embedded fragment approach. It tackles a chemical problem by dividing it into small fragments, which are treated in a highly accurate way, surrounded by an embedding included at an approximate level. For the vast family of medium-to-large sized polyoxometalates, two-electron-reduced systems are habitual and their magnetic properties are interesting. In this paper, we aim at assessing the quality of embedded fragment calculations by checking their ability to reproduce the electronic spectra of a complete system, here the mixed-metal series [MoxW6-xO19](4-) (x = 0-6). The microscopic parameters extracted from fragment calculations (electron hopping, intersite electrostatic repulsion, local orbital energy, etc.) have been used to reproduce the spectra through model Hamiltonian calculations. These energies are compared to the results of the highly accurate ab initio difference dedicated configuration interaction (DDCI) method on the complete system. In general, the model Hamiltonian calculations using parameters extracted from embedded fragments nearly exactly reproduce the DDCI spectra. This is quite an important result since it can be generalized to any inorganic magnetic system. Finally, the occurrence of singlet or triplet ground states in the series of molecules studied is rationalized upon the interplay of the parameters extracted.

  16. Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies.

    PubMed

    Pieber, Simone M; El Haddad, Imad; Slowik, Jay G; Canagaratna, Manjula R; Jayne, John T; Platt, Stephen M; Bozzetti, Carlo; Daellenbach, Kaspar R; Fröhlich, Roman; Vlachou, Athanasia; Klein, Felix; Dommen, Josef; Miljevic, Branka; Jiménez, José L; Worsnop, Douglas R; Baltensperger, Urs; Prévôt, André S H

    2016-10-04

    Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO 2 + fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO 2 + signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH 4 NO 3 ) causes a median CO 2 + interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P 10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH 4 NO 3 , while the ammonium sulfate ((NH 4 ) 2 SO 4 ) induced interference was 3-10 times lower. Propagation of the CO 2 + interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f 44 . The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.

  17. Metabolism, mass spectral analysis and mode of action of trichothecene mycotoxins. Final report, 15 July 1985-14 July 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, C.J.; Pawlosky, R.J.; Gunther, R.

    1989-12-22

    Methods of analysis for T-2 toxin, HT-2 and T-2-tetraol in blood and urine were developed using hybrid tandem mass spectrometry, more specifically, Multiple Reaction Monitoring (MRM). Essentially, the mass spectra of the above toxins were obtained in electron impact, the fragments studied for selection of appropriate parent and daughters were generated with the objective of using them analytically. As an example, m/z 478 of the trifluoroacetate derivative of T-2 toxin was reacted in the collision chamber (field free region three) with argon and 23 eV to produce daughters 12, 138 and 180. These were used in method development so thatmore » T-2 was detected in a biological matrix with a sensitivity of 1 part per billion. A field method of urine collection was developed for the analysis of T-2 toxin. An attempt was made to find toxic isolates of Fusarium in soils of the Arctic of Norway that would explain some of the hemorrhagic activity noted with this genus. More specifically, descriptions of toxicity of biological warfare agents originating in Southeast Asia included extreme hemorrhaging. To this end, toxic isolates were found that caused extreme hemorrhaging in rats. The natural product responsible for the toxicity was isolated, purified and characterized as wortmannin. Wortmannin was shown to cause hemorrhaging in the heart, bladder, stomach and thymus. The chemistry, NMR and mass spectra of wortmannin are presented.« less

  18. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    PubMed

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-06

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mass Spectrometry Based Identification of Geometric Isomers during Metabolic Stability Study of a New Cytotoxic Sulfonamide Derivatives Supported by Quantitative Structure-Retention Relationships

    PubMed Central

    Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz

    2014-01-01

    A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers’ geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the identification of cis-trans isomers based on retention data. This methodology can be helpful during the structural identification of biotransformation and degradation products of new chemical entities - potential new drugs. PMID:24893169

  20. Observation of shape isomers states in fission fragments

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Yu V.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Malaza, V.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.

    2017-06-01

    We discuss the manifestations of a new original effect appeared at crossing of the metal foils by fission fragments. We have observed significant mass deficit in the total mass Ms of the fission fragments detected in coincidence with ions knocked out from the foil. It was shown that at the large angles of scattering of the knocked-out ions from the foil predominantly conventional elastic Rutherford scattering takes place. As the result Ms corresponds to the mean mass of the mother system after emission of fission neutrons (no missing mass). In contrast, in near frontal impacts fission fragment misses essential part of its mass. Residual nuclei at least for the fragments from the heavy mass peak show magic nucleon composition.

Top