Sample records for frame independent quantum

  1. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

    NASA Astrophysics Data System (ADS)

    Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing

    2018-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

  2. Quantum image coding with a reference-frame-independent scheme

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François; Belin, Etienne

    2016-07-01

    For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.

  3. Phase-encoded measurement device independent quantum key distribution without a shared reference frame

    NASA Astrophysics Data System (ADS)

    Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun

    2018-07-01

    In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.

  4. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  5. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    PubMed Central

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550

  6. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client.

    PubMed

    Zhang, P; Aungskunsiri, K; Martín-López, E; Wabnig, J; Lobino, M; Nock, R W; Munns, J; Bonneau, D; Jiang, P; Li, H W; Laing, A; Rarity, J G; Niskanen, A O; Thompson, M G; O'Brien, J L

    2014-04-04

    We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering.

  7. Simple scheme to implement decoy-state reference-frame-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Zhu, Jianrong; Wang, Qin

    2018-06-01

    We propose a simple scheme to implement decoy-state reference-frame-independent quantum key distribution (RFI-QKD), where signal states are prepared in Z, X, and Y bases, decoy states are prepared in X and Y bases, and vacuum states are set to no bases. Different from the original decoy-state RFI-QKD scheme whose decoy states are prepared in Z, X and Y bases, in our scheme decoy states are only prepared in X and Y bases, which avoids the redundancy of decoy states in Z basis, saves the random number consumption, simplifies the encoding device of practical RFI-QKD systems, and makes the most of the finite pulses in a short time. Numerical simulations show that, considering the finite size effect with reasonable number of pulses in practical scenarios, our simple decoy-state RFI-QKD scheme exhibits at least comparable or even better performance than that of the original decoy-state RFI-QKD scheme. Especially, in terms of the resistance to the relative rotation of reference frames, our proposed scheme behaves much better than the original scheme, which has great potential to be adopted in current QKD systems.

  8. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond singlemore » mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.« less

  9. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    NASA Astrophysics Data System (ADS)

    Harsij, Zeynab; Mirza, Behrouz

    2014-12-01

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert-Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation.

  10. Students' Epistemological Framing in Quantum Mechanics Problem Solving

    ERIC Educational Resources Information Center

    Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.

    2017-01-01

    Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…

  11. Quantum reference frames and their applications to thermodynamics.

    PubMed

    Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas

    2018-07-13

    We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  12. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-01

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.

  13. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  14. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  15. The Role of Frame Force in Quantum Detection

    DTIC Science & Technology

    2007-01-01

    42040) 10. C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68 (1992), no. 21, 3121–3124. MR 1 163 546 11. S ...SUBTITLE The Role of Frame Force in Quantum Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...equivalent to a quantum detection problem from quantum mechanics. To this end we first reformulate Problem 1.2 in terms of orthonormal bases instead of 1

  16. Relativistic quantum games in noninertial frames

    NASA Astrophysics Data System (ADS)

    Khan, Salman; Khalid Khan, M.

    2011-09-01

    We study the influence of the Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners’ Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for the maximally entangled initial state, the classical strategy \\hat{C} (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett.83 3077) is no more a superior move. We show that the dilemma-like situation is resolved in favor of one player or the other.

  17. Time reversibility in the quantum frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masot-Conde, Fátima

    2014-12-04

    Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.

  18. Device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hänggi, Esther

    2010-12-01

    In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.

  19. Classical and quantum communication without a shared reference frame.

    PubMed

    Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W

    2003-07-11

    We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.

  20. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  1. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    PubMed

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-09

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  2. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  3. Fully device-independent quantum key distribution.

    PubMed

    Vazirani, Umesh; Vidick, Thomas

    2014-10-03

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  4. Fully Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  5. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H.; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2014-01-15

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration canmore » equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected.« less

  6. Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames

    NASA Astrophysics Data System (ADS)

    Marvian, Iman; Spekkens, Robert W.

    2014-12-01

    Finding the consequences of symmetry for open-system quantum dynamics is a problem with broad applications, including describing thermal relaxation, deriving quantum limits on the performance of amplifiers, and exploring quantum metrology in the presence of noise. The symmetry of the dynamics may reflect a symmetry of the fundamental laws of nature or a symmetry of a low-energy effective theory, or it may describe a practical restriction such as the lack of a reference frame. In this paper, we apply some tools of harmonic analysis together with ideas from quantum information theory to this problem. The central idea is to study the decomposition of quantum operations—in particular, states, measurements, and channels—into different modes, which we call modes of asymmetry. Under symmetric processing, a given mode of the input is mapped to the corresponding mode of the output, implying that one can only generate a given output if the input contains all of the necessary modes. By defining monotones that quantify the asymmetry in a particular mode, we also derive quantitative constraints on the resources of asymmetry that are required to simulate a given asymmetric operation. We present applications of our results for deriving bounds on the probability of success in nondeterministic state transitions, such as quantum amplification, and a simplified formalism for studying the degradation of quantum reference frames.

  7. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2016-06-15

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated inmore » quantum theory.« less

  8. High performance frame synchronization for continuous variable quantum key distribution systems.

    PubMed

    Lin, Dakai; Huang, Peng; Huang, Duan; Wang, Chao; Peng, Jinye; Zeng, Guihua

    2015-08-24

    Considering a practical continuous variable quantum key distribution(CVQKD) system, synchronization is of significant importance as it is hardly possible to extract secret keys from unsynchronized strings. In this paper, we proposed a high performance frame synchronization method for CVQKD systems which is capable to operate under low signal-to-noise(SNR) ratios and is compatible with random phase shift induced by quantum channel. A practical implementation of this method with low complexity is presented and its performance is analysed. By adjusting the length of synchronization frame, this method can work well with large range of SNR values which paves the way for longer distance CVQKD.

  9. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    NASA Astrophysics Data System (ADS)

    Klink, W. H.; Wickramasekara, S.

    2016-06-01

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  10. Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2013-09-15

    This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle asmore » well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and

  11. Quantum Discord Preservation for Two Quantum-Correlated Qubits in Two Independent Reserviors

    NASA Astrophysics Data System (ADS)

    Xu, Lan

    2018-03-01

    We investigate the dynamics of quantum discord using an exactly solvable model where two qubits coupled to independent thermal environments. The quantum discord is employed as a non-classical correlation quantifier. By studying the quantum discord of a class of initial states, we find discord remains preserve for a finite time. The effects of the temperature, initial-state parameter, system-reservoir coupling constant and temperature difference parameter of the two independent reserviors are also investigated. We discover that the quantum nature loses faster in high temperature, however, one can extend the time of quantum nature by choosing smaller system-reservoir coupling constant, larger certain initial-state parameter and larger temperature difference parameter.

  12. Practical device-independent quantum cryptography via entropy accumulation.

    PubMed

    Arnon-Friedman, Rotem; Dupuis, Frédéric; Fawzi, Omar; Renner, Renato; Vidick, Thomas

    2018-01-31

    Device-independent cryptography goes beyond conventional quantum cryptography by providing security that holds independently of the quality of the underlying physical devices. Device-independent protocols are based on the quantum phenomena of non-locality and the violation of Bell inequalities. This high level of security could so far only be established under conditions which are not achievable experimentally. Here we present a property of entropy, termed "entropy accumulation", which asserts that the total amount of entropy of a large system is the sum of its parts. We use this property to prove the security of cryptographic protocols, including device-independent quantum key distribution, while achieving essentially optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests, suggests that the achieved parameters are technologically accessible. Our work hence provides the theoretical groundwork for experimental demonstrations of device-independent cryptography.

  13. Measurement-device-independent quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  14. Case study of a successful learner's epistemological framings of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dini, Vesal; Hammer, David

    2017-06-01

    Research on student epistemologies in introductory courses has highlighted the importance of understanding physics as "a refinement of everyday thinking" [A. Einstein, J. Franklin Inst. 221, 349 (1936), 10.1016/S0016-0032(36)91047-5]. That view is difficult to sustain in quantum mechanics, for students as for physicists. How might students manage the transition? In this article, we present a case study of a graduate student's approaches and reflections on learning over two semesters of quantum mechanics, based on a series of nine interviews. We recount his explicit grappling with the shift in epistemology from classical to quantum, and we argue that his success in learning largely involved his framing mathematics as expressing physical meaning. At the same time, we show he was not entirely stable in these framings, shifting away from them in particular during his study of scattering. The case speaks to literature on students' epistemologies, with respect to the roles of everyday thinking and mathematics. We discuss what this case suggests for further research, with possible implications for instruction.

  15. Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2017-05-01

    The uncertainty principle offers a bound to show accuracy of the simultaneous measurement outcome for two incompatible observables. In this letter, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) when the particle to be measured stays at an open system, and another particle is treated as quantum memory under a noninertial frame. In such a scenario, the collective influence of the unital and nonunital noise environment, and of the relativistic motion of the system, on the QMA-EUR is examined. By numerical analysis, we conclude that, firstly, the noises and the Unruh effect can both increase the uncertainty, due to the decoherence of the bipartite system induced by the noise or Unruh effect; secondly, the uncertainty is more affected by the noises than by the Unruh effect from the acceleration; thirdly, unital noises can reduce the uncertainty in long-time regime. We give a possible physical interpretation for those results: that the information of interest is redistributed among the bipartite, the noisy environment and the physically inaccessible region in the noninertial frame. Therefore, we claim that our observations provide an insight into dynamics of the entropic uncertainty in a noninertial frame, and might be important to quantum precision measurement under relativistic motion.

  16. Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanzi, Andrea

    2010-08-15

    The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnaturalmore » fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.« less

  17. Quantum communication complexity of establishing a shared reference frame.

    PubMed

    Rudolph, Terry; Grover, Lov

    2003-11-21

    We discuss the aligning of spatial reference frames from a quantum communication complexity perspective. This enables us to analyze multiple rounds of communication and give several simple examples demonstrating tradeoffs between the number of rounds and the type of communication. Using a distributed variant of a quantum computational algorithm, we give an explicit protocol for aligning spatial axes via the exchange of spin-1/2 particles which makes no use of either exchanged entangled states, or of joint measurements. This protocol achieves a worst-case fidelity for the problem of "direction finding" that is asymptotically equivalent to the optimal average case fidelity achievable via a single forward communication of entangled states.

  18. Device-independent quantum private query

    NASA Astrophysics Data System (ADS)

    Maitra, Arpita; Paul, Goutam; Roy, Sarbani

    2017-04-01

    In quantum private query (QPQ), a client obtains values corresponding to his or her query only, and nothing else from the server, and the server does not get any information about the queries. V. Giovannetti et al. [Phys. Rev. Lett. 100, 230502 (2008)], 10.1103/PhysRevLett.100.230502 gave the first QPQ protocol and since then quite a few variants and extensions have been proposed. However, none of the existing protocols are device independent; i.e., all of them assume implicitly that the entangled states supplied to the client and the server are of a certain form. In this work, we exploit the idea of a local CHSH game and connect it with the scheme of Y. G. Yang et al. [Quantum Info. Process. 13, 805 (2014)], 10.1007/s11128-013-0692-8 to present the concept of a device-independent QPQ protocol.

  19. Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng-Jiao; Zhuo, Ning; Liu, Shu-Man, E-mail: liusm@semi.ac.cn

    2016-06-20

    We demonstrate a quantum dot quantum cascade photodetector with a hybrid active region of InAs quantum dots and an InGaAs quantum well, which exhibited a temperature independent response at 4.5 μm. The normal incident responsivity reached 10.3 mA/W at 120 K and maintained a value of 9 mA/W up to 260 K. It exhibited a specific detectivity above 10{sup 11} cm Hz{sup 1/2} W{sup −1} at 77 K, which remained at 10{sup 8} cm Hz{sup 1/2} W{sup −1} at 260 K. We ascribe the device's good thermal stability of infrared response to the three-dimensional quantum confinement of the InAs quantum dots incorporated in the active region.

  20. Quantum cryptography: The power of independence

    NASA Astrophysics Data System (ADS)

    Ekert, Artur

    2018-02-01

    Device-independent quantum cryptography promises unprecedented security, but it is regarded as a theorist's dream and an experimentalist's nightmare. A new mathematical tool has now pushed its experimental demonstration much closer to reality.

  1. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  2. Measurement device-independent quantum dialogue

    NASA Astrophysics Data System (ADS)

    Maitra, Arpita

    2017-12-01

    Very recently, the experimental demonstration of quantum secure direct communication (QSDC) with state-of-the-art atomic quantum memory has been reported (Zhang et al. in Phys Rev Lett 118:220501, 2017). Quantum dialogue (QD) falls under QSDC where the secrete messages are communicated simultaneously between two legitimate parties. The successful experimental demonstration of QSDC opens up the possibilities for practical implementation of QD protocols. Thus, it is necessary to analyze the practical security issues of QD protocols for future implementation. Since the very first proposal for QD by Nguyen (Phys Lett A 328:6-10, 2004), a large number of variants and extensions have been presented till date. However, all of those leak half of the secret bits to the adversary through classical communications of the measurement results. In this direction, motivated by the idea of Lo et al. (Phys Rev Lett 108:130503, 2012), we propose a measurement device-independent quantum dialogue scheme which is resistant to such information leakage as well as side-channel attacks. In the proposed protocol, Alice and Bob, two legitimate parties, are allowed to prepare the states only. The states are measured by an untrusted third party who may himself behave as an adversary. We show that our protocol is secure under this adversarial model. The current protocol does not require any quantum memory, and thus, it is inherently robust against memory attacks. Such robustness might not be guaranteed in the QSDC protocol with quantum memory (Zhang et al. 2017).

  3. Memory attacks on device-independent quantum cryptography.

    PubMed

    Barrett, Jonathan; Colbeck, Roger; Kent, Adrian

    2013-01-04

    Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party).

  4. Bell nonlocality: a resource for device-independent quantum information protocols

    NASA Astrophysics Data System (ADS)

    Acin, Antonio

    2015-05-01

    Bell nonlocality is not only one of the most fundamental properties of quantum physics, but has also recently acquired the status of an information resource for device-independent quantum information protocols. In the device-independent approach, protocols are designed so that their performance is independent of the internal working of the devices used in the implementation. We discuss all these ideas and argue that device-independent protocols are especially relevant or cryptographic applications, as they are insensitive to hacking attacks exploiting imperfections on the modelling of the devices.

  5. Effective time-independent analysis for quantum kicked systems.

    PubMed

    Bandyopadhyay, Jayendra N; Guha Sarkar, Tapomoy

    2015-03-01

    We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.

  6. Effective time-independent analysis for quantum kicked systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy

    2015-03-01

    We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.

  7. Investigating learners' epistemological framings of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dini, Vesal

    Classical mechanics challenges students to use their intuitions and experiences as a basis for understanding, in effect to approach learning as "a refinement of everyday thinking'' (Einstein, 1936). Moving on to quantum mechanics (QM), students, like physicists, need to adjust this approach, in particular with respect to the roles that intuitive knowledge and mathematics play in the pursuit of coherent understanding (these are adjustments to aspects of their epistemologies). In this dissertation, I explore how some students manage the epistemological transition. I began this work by recruiting both graduate and undergraduate students, interviewing each subject several times as they moved through coursework in QM. The interviews featured, among other things, how students tried to fit ideas together in mutually consistent ways, including with respect to intuitive knowledge, mathematics and experiment, if at all. I modeled these dynamic cognitive processes as different epistemological framings (i.e., tacit, in-the-moment responses to the question "How should I approach knowledge?''). Through detailed qualitative analyses of students' reasoning and a systematic coding of their interviews, I explored how these coherence seeking related framings impacted their learning. The dissertation supports three main findings: (1) students' patterns of epistemological framing are mostly stable within a given course; (2) students who profess epistemologies aligned with the coordination of coherence seeking framings tend to be more stable in demonstrating them; and (3) students aware that their understanding of QM ultimately anchors in its mathematics tend to produce more coherent explanations and perform better in their courses. These findings are consistent with existing research on student epistemologies in QM and imply that epistemologies, in particular whether and how students seek coherence, require greater attention and emphasis in instruction.

  8. Viable inflationary evolution from Einstein frame loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Odintsov, S. D.; Oikonomou, V. K.

    2018-04-01

    In this work we construct a bottom-up reconstruction technique for loop quantum cosmology scalar-tensor theories, from the observational indices. Particularly, the reconstruction technique is based on fixing the functional form of the scalar-to-tensor ratio as a function of the e -foldings number. The aim of the technique is to realize viable inflationary scenarios, and the only assumption that must hold true in order for the reconstruction technique to work is that the dynamical evolution of the scalar field obeys the slow-roll conditions. We use two functional forms for the scalar-to-tensor ratio, one of which corresponds to a popular inflationary class of models, the α attractors. For the latter, we calculate the leading order behavior of the spectral index and we demonstrate that the resulting inflationary theory is viable and compatible with the latest Planck and BICEP2/Keck-Array data. In addition, we find the classical limit of the theory, and as we demonstrate, the loop quantum cosmology corrected theory and the classical theory are identical at leading order in the perturbative expansion quantified by the parameter ρc, which is the critical density of the quantum theory. Finally, by using the formalism of slow-roll scalar-tensor loop quantum cosmology, we investigate how several inflationary potentials can be realized by the quantum theory, and we calculate directly the slow-roll indices and the corresponding observational indices. In addition, the f (R ) gravity frame picture is presented.

  9. Noisy relativistic quantum games in noninertial frames

    NASA Astrophysics Data System (ADS)

    Khan, Salman; Khan, M. Khalid

    2013-02-01

    The influence of noise and of Unruh effect on quantum Prisoners' dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.

  10. Measurement-device-independent quantum cryptography

    DOE PAGES

    Xu, Feihu; Curty, Marcos; Qi, Bing; ...

    2014-12-18

    In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD,more » together with its assumptions, strengths, and weaknesses.« less

  11. Sustained State-Independent Quantum Contextual Correlations from a Single Ion

    NASA Astrophysics Data System (ADS)

    Leupold, F. M.; Malinowski, M.; Zhang, C.; Negnevitsky, V.; Alonso, J.; Home, J. P.; Cabello, A.

    2018-05-01

    We use a single trapped-ion qutrit to demonstrate the quantum-state-independent violation of noncontextuality inequalities using a sequence of randomly chosen quantum nondemolition projective measurements. We concatenate 53 ×106 sequential measurements of 13 observables, and unambiguously violate an optimal noncontextual bound. We use the same data set to characterize imperfections including signaling and repeatability of the measurements. The experimental sequence was generated in real time with a quantum random number generator integrated into our control system to select the subsequent observable with a latency below 50 μ s , which can be used to constrain contextual hidden-variable models that might describe our results. The state-recycling experimental procedure is resilient to noise and independent of the qutrit state, substantiating the fact that the contextual nature of quantum physics is connected to measurements and not necessarily to designated states. The use of extended sequences of quantum nondemolition measurements finds applications in the fields of sensing and quantum information.

  12. Device-independent secret-key-rate analysis for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Holz, Timo; Kampermann, Hermann; Bruß, Dagmar

    2018-01-01

    The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.

  13. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-06

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  14. Continuous quantum measurement with independent detector cross correlations.

    PubMed

    Jordan, Andrew N; Büttiker, Markus

    2005-11-25

    We investigate the advantages of using two independent, linear detectors for continuous quantum measurement. For single-shot measurement, the detection process may be quantum limited if the detectors are twins. For weak continuous measurement, cross correlations allow a violation of the Korotkov-Averin bound for the detector's signal-to-noise ratio. The joint weak measurement of noncommuting observables is also investigated, and we find the cross correlation changes sign as a function of frequency, reflecting a crossover from incoherent relaxation to coherent, out of phase oscillations. Our results are applied to a double quantum-dot charge qubit, simultaneously measured by two quantum point contacts.

  15. Device-independent tests of quantum channels

    NASA Astrophysics Data System (ADS)

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  16. Device-independent tests of quantum channels.

    PubMed

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  17. Quantum interference of independently generated telecom-band single photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping

    We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.

  18. Device-independent security of quantum cryptography against collective attacks.

    PubMed

    Acín, Antonio; Brunner, Nicolas; Gisin, Nicolas; Massar, Serge; Pironio, Stefano; Scarani, Valerio

    2007-06-08

    We present the optimal collective attack on a quantum key distribution protocol in the "device-independent" security scenario, where no assumptions are made about the way the quantum key distribution devices work or on what quantum system they operate. Our main result is a tight bound on the Holevo information between one of the authorized parties and the eavesdropper, as a function of the amount of violation of a Bell-type inequality.

  19. Quantum coherence behaviors of fermionic system in non-inertial frame

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Situ, Haozhen

    2018-04-01

    In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.

  20. Measurement-device-independent quantum coin tossing

    NASA Astrophysics Data System (ADS)

    Zhao, Liangyuan; Yin, Zhenqiang; Wang, Shuang; Chen, Wei; Chen, Hua; Guo, Guangcan; Han, Zhengfu

    2015-12-01

    Quantum coin tossing (QCT) is an important primitive of quantum cryptography and has received continuous interest. However, in practical QCT, Bob's detectors can be subjected to detector-side channel attacks launched by dishonest Alice, which will possibly make the protocol completely insecure. Here, we report a simple strategy of a detector-blinding attack based on a recent experiment. To remove all the detector side channels, we present a solution of measurement-device-independent QCT (MDI-QCT). This method is similar to the idea of MDI quantum key distribution (QKD). MDI-QCT is loss tolerant with single-photon sources and has the same bias as the original loss-tolerant QCT under a coherent attack. Moreover, it provides the potential advantage of doubling the secure distance for some special cases. Finally, MDI-QCT can also be modified to fit the weak coherent-state sources. Thus, based on the rapid development of practical MDI-QKD, our proposal can be implemented easily.

  1. High-rate measurement-device-independent quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.

    2015-06-01

    Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.

  2. Experimental measurement-device-independent quantum digital signatures.

    PubMed

    Roberts, G L; Lucamarini, M; Yuan, Z L; Dynes, J F; Comandar, L C; Sharpe, A W; Shields, A J; Curty, M; Puthoor, I V; Andersson, E

    2017-10-23

    The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.

  3. Rigidity of quantum steering and one-sided device-independent verifiable quantum computation

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Alexandru; Wallden, Petros; Kashefi, Elham

    2017-02-01

    The relationship between correlations and entanglement has played a major role in understanding quantum theory since the work of Einstein et al (1935 Phys. Rev. 47 777-80). Tsirelson proved that Bell states, shared among two parties, when measured suitably, achieve the maximum non-local correlations allowed by quantum mechanics (Cirel’son 1980 Lett. Math. Phys. 4 93-100). Conversely, Reichardt et al showed that observing the maximal correlation value over a sequence of repeated measurements, implies that the underlying quantum state is close to a tensor product of maximally entangled states and, moreover, that it is measured according to an ideal strategy (Reichardt et al 2013 Nature 496 456-60). However, this strong rigidity result comes at a high price, requiring a large number of entangled pairs to be tested. In this paper, we present a significant improvement in terms of the overhead by instead considering quantum steering where the device of the one side is trusted. We first demonstrate a robust one-sided device-independent version of self-testing, which characterises the shared state and measurement operators of two parties up to a certain bound. We show that this bound is optimal up to constant factors and we generalise the results for the most general attacks. This leads us to a rigidity theorem for maximal steering correlations. As a key application we give a one-sided device-independent protocol for verifiable delegated quantum computation, and compare it to other existing protocols, to highlight the cost of trust assumptions. Finally, we show that under reasonable assumptions, the states shared in order to run a certain type of verification protocol must be unitarily equivalent to perfect Bell states.

  4. Source-Independent Quantum Random Number Generation

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  5. Device-independent characterizations of a shared quantum state independent of any Bell inequalities

    NASA Astrophysics Data System (ADS)

    Wei, Zhaohui; Sikora, Jamie

    2017-03-01

    In a Bell experiment two parties share a quantum state and perform local measurements on their subsystems separately, and the statistics of the measurement outcomes are recorded as a Bell correlation. For any Bell correlation, it turns out that a quantum state with minimal size that is able to produce this correlation can always be pure. In this work, we first exhibit two device-independent characterizations for the pure state that Alice and Bob share using only the correlation data. Specifically, we give two conditions that the Schmidt coefficients must satisfy, which can be tight, and have various applications in quantum tasks. First, one of the characterizations allows us to bound the entanglement between Alice and Bob using Renyi entropies and also to bound the underlying Hilbert space dimension. Second, when the Hilbert space dimension bound is tight, the shared pure quantum state has to be maximally entangled. Third, the second characterization gives a sufficient condition that a Bell correlation cannot be generated by particular quantum states. We also show that our results can be generalized to the case of shared mixed states.

  6. Graviton propagator from background-independent quantum gravity.

    PubMed

    Rovelli, Carlo

    2006-10-13

    We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.

  7. Analysis of Optimal Sequential State Discrimination for Linearly Independent Pure Quantum States.

    PubMed

    Namkung, Min; Kwon, Younghun

    2018-04-25

    Recently, J. A. Bergou et al. proposed sequential state discrimination as a new quantum state discrimination scheme. In the scheme, by the successful sequential discrimination of a qubit state, receivers Bob and Charlie can share the information of the qubit prepared by a sender Alice. A merit of the scheme is that a quantum channel is established between Bob and Charlie, but a classical communication is not allowed. In this report, we present a method for extending the original sequential state discrimination of two qubit states to a scheme of N linearly independent pure quantum states. Specifically, we obtain the conditions for the sequential state discrimination of N = 3 pure quantum states. We can analytically provide conditions when there is a special symmetry among N = 3 linearly independent pure quantum states. Additionally, we show that the scenario proposed in this study can be applied to quantum key distribution. Furthermore, we show that the sequential state discrimination of three qutrit states performs better than the strategy of probabilistic quantum cloning.

  8. Measurement-Device-Independent Quantum Key Distribution over 200 km

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

    2014-11-01

    Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

  9. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Xiao; Li, Ming-Han; Zhang, Weijun; Zhao, Qi; Zhong, Jiaqiang; Cao, Yuan; Li, Yu-Huai; Chen, Luo-Kan; Li, Hao; Peng, Tianyi; Chen, Yu-Ao; Peng, Cheng-Zhi; Shi, Sheng-Cai; Wang, Zhen; You, Lixing; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2018-01-01

    Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits /s , with a failure probability less than 10-5. This marks a critical step towards realistic applications in cryptography and fundamental physics tests.

  10. Nuclear deformation in the laboratory frame

    NASA Astrophysics Data System (ADS)

    Gilbreth, C. N.; Alhassid, Y.; Bertsch, G. F.

    2018-01-01

    We develop a formalism for calculating the distribution of the axial quadrupole operator in the laboratory frame within the rotationally invariant framework of the configuration-interaction shell model. The calculation is carried out using a finite-temperature auxiliary-field quantum Monte Carlo method. We apply this formalism to isotope chains of even-mass samarium and neodymium nuclei and show that the quadrupole distribution provides a model-independent signature of nuclear deformation. Two technical advances are described that greatly facilitate the calculations. The first is to exploit the rotational invariance of the underlying Hamiltonian to reduce the statistical fluctuations in the Monte Carlo calculations. The second is to determine quadruple invariants from the distribution of the axial quadrupole operator in the laboratory frame. This allows us to extract effective values of the intrinsic quadrupole shape parameters without invoking an intrinsic frame or a mean-field approximation.

  11. Experimental measurement-device-independent verification of quantum steering

    NASA Astrophysics Data System (ADS)

    Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.

    2015-01-01

    Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  12. Experimental measurement-device-independent verification of quantum steering.

    PubMed

    Kocsis, Sacha; Hall, Michael J W; Bennet, Adam J; Saunders, Dylan J; Pryde, Geoff J

    2015-01-07

    Bell non-locality between distant quantum systems--that is, joint correlations which violate a Bell inequality--can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  13. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole.

    PubMed

    Liu, Yang; Yuan, Xiao; Li, Ming-Han; Zhang, Weijun; Zhao, Qi; Zhong, Jiaqiang; Cao, Yuan; Li, Yu-Huai; Chen, Luo-Kan; Li, Hao; Peng, Tianyi; Chen, Yu-Ao; Peng, Cheng-Zhi; Shi, Sheng-Cai; Wang, Zhen; You, Lixing; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2018-01-05

    Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary. After considering statistical fluctuations and applying an 80  Gb×45.6  Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114  bits/s, with a failure probability less than 10^{-5}. This marks a critical step towards realistic applications in cryptography and fundamental physics tests.

  14. Loss-tolerant measurement-device-independent quantum private queries

    NASA Astrophysics Data System (ADS)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  15. Loss-tolerant measurement-device-independent quantum private queries.

    PubMed

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-04

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user's and database's privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user's imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  16. Loss-tolerant measurement-device-independent quantum private queries

    PubMed Central

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors. PMID:28051101

  17. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  18. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  19. Plug-and-play measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Choi, Yujun; Kwon, Osung; Woo, Minki; Oh, Kyunghwan; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung

    2016-03-01

    Quantum key distribution (QKD) guarantees unconditional communication security based on the laws of quantum physics. However, practical QKD suffers from a number of quantum hackings due to the device imperfections. From the security standpoint, measurement-device-independent quantum key distribution (MDI-QKD) is in the limelight since it eliminates all the possible loopholes in detection. Due to active control units for mode matching between the photons from remote parties, however, the implementation of MDI-QKD is highly impractical. In this paper, we propose a method to resolve the mode matching problem while minimizing the use of active control units. By introducing the plug-and-play (P&P) concept into MDI-QKD, the indistinguishability in spectral and polarization modes between photons can naturally be guaranteed. We show the feasibility of P&P MDI-QKD with a proof-of-principle experiment.

  20. Quantum back-action-evading measurement of motion in a negative mass reference frame

    NASA Astrophysics Data System (ADS)

    Møller, Christoffer B.; Thomas, Rodrigo A.; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S.

    2017-07-01

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation—the so-called standard quantum limit—on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational ‘drum’ mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  1. Quantum back-action-evading measurement of motion in a negative mass reference frame.

    PubMed

    Møller, Christoffer B; Thomas, Rodrigo A; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S

    2017-07-12

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation-the so-called standard quantum limit-on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational 'drum' mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  2. Detector-device-independent quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony

    2014-12-01

    Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify themore » implementation and improve the efficiency of mdiQKD in several aspects.« less

  3. A cost-effective measurement-device-independent quantum key distribution system for quantum networks

    NASA Astrophysics Data System (ADS)

    Valivarthi, Raju; Zhou, Qiang; John, Caleb; Marsili, Francesco; Verma, Varun B.; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2017-12-01

    We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system. It is based on cost-effective and commercially available hardware such as distributed feedback lasers and field-programmable gate arrays that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fiber. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.

  4. Non-minimal Higgs inflation and frame dependence in cosmology

    NASA Astrophysics Data System (ADS)

    Steinwachs, Christian F.; Kamenshchik, Alexander Yu.

    2013-02-01

    We investigate a very general class of cosmological models with scalar fields non-minimally coupled to gravity. A particular representative in this class is given by the non-minimal Higgs inflation model in which the Standard Model Higgs boson and the inflaton are described by one and the same scalar particle. While the predictions of the non-minimal Higgs inflation scenario come numerically remarkably close to the recently discovered mass of the Higgs boson, there remains a conceptual problem in this model that is associated with the choice of the cosmological frame. While the classical theory is independent of this choice, we find by an explicit calculation that already the first quantum corrections induce a frame dependence. We give a geometrical explanation of this frame dependence by embedding it into a more general field theoretical context. From this analysis, some conceptional points in the long lasting cosmological debate: "Jordan frame vs. Einstein frame" become more transparent and in principle can be resolved in a natural way.

  5. Experimental measurement-device-independent quantum digital signatures over a metropolitan network

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Wang, Wei-Long; Tang, Yan-Lin; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Zhang, Wei-Jun; Li, Hao; Puthoor, Ittoop Vergheese; You, Li-Xing; Andersson, Erika; Wang, Zhen; Liu, Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Curty, Marcos; Chen, Teng-Yun; Pan, Jian-Wei

    2017-04-01

    Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10-7. Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.

  6. Measurement-device-independent quantum communication with an untrusted source

    NASA Astrophysics Data System (ADS)

    Xu, Feihu

    2015-07-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.

  7. Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ohta, Nobuyoshi

    2018-03-01

    The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.

  8. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei

    2014-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.

  9. Insecurity of Detector-Device-Independent Quantum Key Distribution.

    PubMed

    Sajeed, Shihan; Huang, Anqi; Sun, Shihai; Xu, Feihu; Makarov, Vadim; Curty, Marcos

    2016-12-16

    Detector-device-independent quantum key distribution (DDI-QKD) held the promise of being robust to detector side channels, a major security loophole in quantum key distribution (QKD) implementations. In contrast to what has been claimed, however, we demonstrate that the security of DDI-QKD is not based on postselected entanglement, and we introduce various eavesdropping strategies that show that DDI-QKD is in fact insecure against detector side-channel attacks as well as against other attacks that exploit devices' imperfections of the receiver. Our attacks are valid even when the QKD apparatuses are built by the legitimate users of the system themselves, and thus, free of malicious modifications, which is a key assumption in DDI-QKD.

  10. Completely device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Aguilar, Edgar A.; Ramanathan, Ravishankar; Kofler, Johannes; Pawłowski, Marcin

    2016-08-01

    Quantum key distribution (QKD) is a provably secure way for two distant parties to establish a common secret key, which then can be used in a classical cryptographic scheme. Using quantum entanglement, one can reduce the necessary assumptions that the parties have to make about their devices, giving rise to device-independent QKD (DIQKD). However, in all existing protocols to date the parties need to have an initial (at least partially) random seed as a resource. In this work, we show that this requirement can be dropped. Using recent advances in the fields of randomness amplification and randomness expansion, we demonstrate that it is sufficient for the message the parties want to communicate to be (partially) unknown to the adversaries—an assumption without which any type of cryptography would be pointless to begin with. One party can use her secret message to locally generate a secret sequence of bits, which can then be openly used by herself and the other party in a DIQKD protocol. Hence our work reduces the requirements needed to perform secure DIQKD and establish safe communication.

  11. A Possible Approach to Inclusion of Space and Time in Frame Fields of Quantum Representations of Real and Complex Numbers

    DOE PAGES

    Benioff, Paul

    2009-01-01

    Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices. he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames. he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less

  12. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao

    2018-03-01

    Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

  13. Pseudo-entanglement evaluated in noninertial frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehri-Dehnavi, Hossein, E-mail: mehri@alice.math.kindai.ac.jp; Research Center for Quantum Computing, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2011-05-15

    Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases,more » entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.« less

  14. Construction of state-independent proofs for quantum contextuality

    NASA Astrophysics Data System (ADS)

    Tang, Weidong; Yu, Sixia

    2017-12-01

    Since the enlightening proofs of quantum contextuality first established by Kochen and Specker, and also by Bell, various simplified proofs have been constructed to exclude the noncontextual hidden variable theory of our nature at the microscopic scale. The conflict between the noncontextual hidden variable theory and quantum mechanics is commonly revealed by Kochen-Specker sets of yes-no tests, represented by projectors (or rays), via either logical contradictions or noncontextuality inequalities in a state-(in)dependent manner. Here we propose a systematic and programmable construction of a state-independent proof from a given set of nonspecific rays in C3 according to their Gram matrix. This approach brings us a greater convenience in the experimental arrangements. Besides, our proofs in C3 can also be generalized to any higher-dimensional systems by a recursive method.

  15. Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software.

    PubMed

    Negoita, Madalina; Zolgharni, Massoud; Dadkho, Elham; Pernigo, Matteo; Mielewczik, Michael; Cole, Graham D; Dhutia, Niti M; Francis, Darrel P

    2016-09-01

    To determine the optimal frame rate at which reliable heart walls velocities can be assessed by speckle tracking. Assessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained. 27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold. Tissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity. The higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei

    2016-01-01

    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.

  17. Measurement-Device-Independent Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan

    Quantum key distribution (QKD) enables two legitimate parties to share a secret key even in the presence of an eavesdropper. The unconditional security of QKD is based on the fundamental laws of quantum physics. Original security proofs of QKD are based on a few assumptions, e.g., perfect single photon sources and perfect single-photon detectors. However, practical implementations of QKD systems do not fully comply with such assumptions due to technical limitations. The gap between theory and implementations leads to security loopholes in most QKD systems, and several attacks have been launched on sophisticated QKD systems. Particularly, the detectors have been found to be the most vulnerable part of QKD. Much effort has been put to build side-channel-free QKD systems. Solutions such as security patches and device-independent QKD have been proposed. However, the former are normally ad-hoc, and cannot close unidentified loopholes. The latter, while having the advantages of removing all assumptions on devices, is impractical to implement today. Measurement-device-independent QKD (MDI-QKD) turns out to be a promising solution to the security problem of QKD. In MDI-QKD, all security loopholes, including those yet-to-be discovered, have been removed from the detectors, the most critical part in QKD. In this thesis, we investigate issues related to the practical implementation and security of MDI-QKD. We first present a demonstration of polarization-encoding MDI-QKD. Taking finite key effect into account, we achieve a secret key rate of 0.005 bit per second (bps) over 10 km spooled telecom fiber, and a 1600-bit key is distributed. This work, together with other demonstrations, shows the practicality of MDI-QKD. Next we investigate a critical assumption of MDI-QKD: perfect state preparation. We apply the loss-tolerant QKD protocol and adapt it to MDI-QKD to quantify information leakage due to imperfect state preparation. We then present an experimental demonstration of

  18. Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination

    NASA Astrophysics Data System (ADS)

    Brask, Jonatan Bohr; Martin, Anthony; Esposito, William; Houlmann, Raphael; Bowles, Joseph; Zbinden, Hugo; Brunner, Nicolas

    2017-05-01

    An approach to quantum random number generation based on unambiguous quantum state discrimination is developed. We consider a prepare-and-measure protocol, where two nonorthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them. Because the states are nonorthogonal, this necessarily leads to a minimal rate of inconclusive events whose occurrence must be genuinely random and which provide the randomness source that we exploit. Our protocol is semi-device-independent in the sense that the output entropy can be lower bounded based on experimental data and a few general assumptions about the setup alone. It is also practically relevant, which we demonstrate by realizing a simple optical implementation, achieving rates of 16.5 Mbits /s . Combining ease of implementation, a high rate, and a real-time entropy estimation, our protocol represents a promising approach intermediate between fully device-independent protocols and commercial quantum random number generators.

  19. Experimental study of a quantum random-number generator based on two independent lasers

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  20. Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources.

    PubMed

    Chen, RuiKe; Bao, WanSu; Zhou, Chun; Li, Hongwei; Wang, Yang; Bao, HaiZe

    2016-03-21

    In recent years, a large quantity of work have been done to narrow the gap between theory and practice in quantum key distribution (QKD). However, most of them are focus on two-party protocols. Very recently, Yao Fu et al proposed a measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol and proved its security in the limit of infinitely long keys. As a step towards practical application for MDI-QCC, we design a biased decoy-state measurement-device-independent quantum cryptographic conferencing protocol and analyze the performance of the protocol in both the finite-key and infinite-key regime. From numerical simulations, we show that our decoy-state analysis is tighter than Yao Fu et al. That is, we can achieve the nonzero asymptotic secret key rate in long distance with approximate to 200km and we also demonstrate that with a finite size of data (say 1011 to 1013 signals) it is possible to perform secure MDI-QCC over reasonable distances.

  1. W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution

    PubMed Central

    Zhu, Changhua; Xu, Feihu; Pei, Changxing

    2015-01-01

    W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289

  2. Temperature independent quantum well FET with delta channel doping

    NASA Technical Reports Server (NTRS)

    Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.

    1992-01-01

    A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.

  3. Improving Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication with Optical Amplifiers*

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang

    2017-08-01

    The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.

  4. Continuous-variable Measurement-device-independent Quantum Relay Network with Phase-sensitive Amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhao, Wei; Guo, Ying

    2018-01-01

    Continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is now heading towards solving the practical problem of implementing scalable quantum networks. In this paper, we show that a solution can come from deploying an optical amplifier in the CV-MDI system, aiming to establish a high-rate quantum network. We suggest an improved CV-MDI protocol using the EPR states coupled with optical amplifiers. It can implement a practical quantum network scheme, where the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Despite the possibility that the relay could be completely tampered with and imperfect links are subject to the powerful attacks, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Furthermore, we show that the use of optical amplifiers can compensate the inherent imperfections and improve the secret key rate of the CV-MDI system.

  5. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    PubMed Central

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-01-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085

  6. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  7. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  8. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.

    PubMed

    Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn

    2014-04-02

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.

  9. Effector-Independent Motor Sequence Representations Exist in Extrinsic and Intrinsic Reference Frames

    PubMed Central

    Wiestler, Tobias; Waters-Metenier, Sheena

    2014-01-01

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere. PMID:24695723

  10. Measurement-device-independent quantum key distribution with correlated source-light-intensity errors

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2018-04-01

    We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.

  11. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    PubMed

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  12. Anisotropic Invariance and the Distribution of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Cheng, Shuming; Hall, Michael J. W.

    2017-01-01

    We report the discovery of two new invariants for three-qubit states which, similarly to the three-tangle, are invariant under local unitary transformations and permutations of the parties. These quantities have a direct interpretation in terms of the anisotropy of pairwise spin correlations. Applications include a universal ordering of pairwise quantum correlation measures for pure three-qubit states; trade-off relations for anisotropy, three-tangle and Bell nonlocality; strong monogamy relations for Bell inequalities, Einstein-Podolsky-Rosen steering inequalities, geometric discord and fidelity of remote state preparation (including results for arbitrary three-party states); and a statistical and reference-frame-independent form of quantum secret sharing.

  13. Anisotropic Invariance and the Distribution of Quantum Correlations.

    PubMed

    Cheng, Shuming; Hall, Michael J W

    2017-01-06

    We report the discovery of two new invariants for three-qubit states which, similarly to the three-tangle, are invariant under local unitary transformations and permutations of the parties. These quantities have a direct interpretation in terms of the anisotropy of pairwise spin correlations. Applications include a universal ordering of pairwise quantum correlation measures for pure three-qubit states; trade-off relations for anisotropy, three-tangle and Bell nonlocality; strong monogamy relations for Bell inequalities, Einstein-Podolsky-Rosen steering inequalities, geometric discord and fidelity of remote state preparation (including results for arbitrary three-party states); and a statistical and reference-frame-independent form of quantum secret sharing.

  14. A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory

    NASA Astrophysics Data System (ADS)

    Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu

    2014-07-01

    Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.

  15. One-sided measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai

    2018-01-01

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.

  16. Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong

    2018-04-01

    The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.

  17. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    PubMed

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  18. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not

  19. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Höfer, B.; Zhang, J.; Wildmann, J.; Zallo, E.; Trotta, R.; Ding, F.; Rastelli, A.; Schmidt, O. G.

    2017-04-01

    Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources.

  20. Multi-party Measurement-Device-Independent Quantum Key Distribution Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Liu, Chuanqi; Zhu, Changhua; Ma, Shuquan; Pei, Changxing

    2018-03-01

    We propose a novel multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on cluster states. A four-photon analyzer which can distinguish all the 16 cluster states serves as the measurement device for four-party MDI-QKD. Any two out of four participants can build secure keys after the analyzers obtains successful outputs and the two participants perform post-processing. We derive a security analysis for the protocol, and analyze the key rates under different values of polarization misalignment. The results show that four-party MDI-QKD is feasible over 280 km in the optical fiber channel when the key rate is about 10- 6 with the polarization misalignment parameter 0.015. Moreover, our work takes an important step toward a quantum communication network.

  1. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources

    PubMed Central

    Wang, Qin; Wang, Xiang-Bin

    2014-01-01

    We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000

  2. A monogamy-of-entanglement game with applications to device-independent quantum cryptography

    NASA Astrophysics Data System (ADS)

    Tomamichel, Marco; Fehr, Serge; Kaniewski, Jędrzej; Wehner, Stephanie

    2013-10-01

    We consider a game in which two separate laboratories collaborate to prepare a quantum system and are then asked to guess the outcome of a measurement performed by a third party in a random basis on that system. Intuitively, by the uncertainty principle and the monogamy of entanglement, the probability that both players simultaneously succeed in guessing the outcome correctly is bounded. We are interested in the question of how the success probability scales when many such games are performed in parallel. We show that any strategy that maximizes the probability to win every game individually is also optimal for the parallel repetition of the game. Our result implies that the optimal guessing probability can be achieved without the use of entanglement. We explore several applications of this result. Firstly, we show that it implies security for standard BB84 quantum key distribution when the receiving party uses fully untrusted measurement devices, i.e. we show that BB84 is one-sided device independent. Secondly, we show how our result can be used to prove security of a one-round position-verification scheme. Finally, we generalize a well-known uncertainty relation for the guessing probability to quantum side information.

  3. Dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  4. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2017-03-01

    We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.

  5. Detector-device-independent quantum secret sharing with source flaws.

    PubMed

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Liu, Hongwei; Yin, Zhenqiang; Cao, Zhu; Wu, Lingan

    2018-04-10

    Measurement-device-independent entanglement witness (MDI-EW) plays an important role for detecting entanglement with untrusted measurement device. We present a double blinding-attack on a quantum secret sharing (QSS) protocol based on GHZ state. Using the MDI-EW method, we propose a QSS protocol against all detector side-channels. We allow source flaws in practical QSS system, so that Charlie can securely distribute a key between the two agents Alice and Bob over long distances. Our protocol provides condition on the extracted key rate for the secret against both external eavesdropper and arbitrary dishonest participants. A tight bound for collective attacks can provide good bounds on the practical QSS with source flaws. Then we show through numerical simulations that using single-photon source a secure QSS over 136 km can be achieved.

  6. Device-Independent Tests of Classical and Quantum Dimensions

    NASA Astrophysics Data System (ADS)

    Gallego, Rodrigo; Brunner, Nicolas; Hadley, Christopher; Acín, Antonio

    2010-12-01

    We address the problem of testing the dimensionality of classical and quantum systems in a “black-box” scenario. We develop a general formalism for tackling this problem. This allows us to derive lower bounds on the classical dimension necessary to reproduce given measurement data. Furthermore, we generalize the concept of quantum dimension witnesses to arbitrary quantum systems, allowing one to place a lower bound on the Hilbert space dimension necessary to reproduce certain data. Illustrating these ideas, we provide simple examples of classical and quantum dimension witnesses.

  7. Experimental test of state-independent quantum contextuality of an indivisible quantum system

    NASA Astrophysics Data System (ADS)

    Li, Meng; Huang, Yun-Feng; Cao, Dong-Yang; Zhang, Chao; Zhang, Yong-Sheng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2014-05-01

    Since the quantum mechanics was born, quantum mechanics was argued among scientists because the differences between quantum mechanics and the classical physics. Because of this, some people give hidden variable theory. One of the hidden variable theory is non-contextual hidden variable theory, and KS inequalities are famous in non-contextual hidden variable theory. But the original KS inequalities have 117 directions to measure, so it is almost impossible to test the KS inequalities in experiment. However bout two years ago, Sixia Yu and C.H. Oh point out that for a single qutrit, we only need to measure 13 directions, then we can test the KS inequalities. This makes it possible to test the KS inequalities in experiment. We use the polarization and the path of single photon to construct a qutrit, and we use the half-wave plates, the beam displacers and polar beam splitters to prepare the quantum state and finish the measurement. And the result prove that quantum mechanics is right and non-contextual hidden variable theory is wrong.

  8. Making the decoy-state measurement-device-independent quantum key distribution practically useful

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Heng; Yu, Zong-Wen; Wang, Xiang-Bin

    2016-04-01

    The relatively low key rate seems to be the major barrier to its practical use for the decoy-state measurement-device-independent quantum key distribution (MDI-QKD). We present a four-intensity protocol for the decoy-state MDI-QKD that hugely raises the key rate, especially in the case in which the total data size is not large. Also, calculations show that our method makes it possible for secure private communication with fresh keys generated from MDI-QKD with a delay time of only a few seconds.

  9. Quantum CSMA/CD Synchronous Communication Protocol with Entanglement

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Zeng, Binyang; Gong, Lihua

    By utilizing the characteristics of quantum entanglement, a quantum synchronous communication protocol for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is presented. The proposed protocol divides the link into the busy time and leisure one, where the data frames are sent via classical channels and the distribution of quantum entanglement is supposed to be completed at leisure time and the quantum acknowledge frames are sent via quantum entanglement channels. The time span between two successfully delivered messages can be significantly reduced in this proposed protocol. It is shown that the performance of the CSMA/CD protocol can be improved significantly since the collision can be reduced to a certain extent. The proposed protocol has great significance in quantum communication.

  10. Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano

    2018-05-01

    We present a rigorous security analysis of continuous-variable measurement-device-independent quantum key distribution (CV MDI QKD) in a finite-size scenario. The security proof is obtained in two steps: by first assessing the security against collective Gaussian attacks, and then extending to the most general class of coherent attacks via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security proofs for CV QKD with findings about min-entropy calculus and parameter estimation. In doing so, we improve the finite-size estimate of the secret key rate. Our conclusions confirm that CV MDI protocols allow for high rates on the metropolitan scale, and may achieve a nonzero secret key rate against the most general class of coherent attacks after 107-109 quantum signal transmissions, depending on loss and noise, and on the required level of security.

  11. Physics of Non-Inertial Reference Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamalov, Timur F.

    2010-12-22

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate ofmore » its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.« less

  12. Self-aligning biaxial load frame

    DOEpatents

    Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph

    1994-01-01

    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.

  13. Free-space quantum key distribution by rotation-invariant twisted photons.

    PubMed

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-08

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  14. Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-01

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  15. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber.

    PubMed

    Yin, Hua-Lei; Chen, Teng-Yun; Yu, Zong-Wen; Liu, Hui; You, Li-Xing; Zhou, Yi-Heng; Chen, Si-Jing; Mao, Yingqiu; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Hao; Li, Ming Jun; Nolan, Daniel; Zhou, Fei; Jiang, Xiao; Wang, Zhen; Zhang, Qiang; Wang, Xiang-Bin; Pan, Jian-Wei

    2016-11-04

    Measurement-device-independent quantum key distribution (MDIQKD) with the decoy-state method negates security threats of both the imperfect single-photon source and detection losses. Lengthening the distance and improving the key rate of quantum key distribution (QKD) are vital issues in practical applications of QKD. Herein, we report the results of MDIQKD over 404 km of ultralow-loss optical fiber and 311 km of a standard optical fiber while employing an optimized four-intensity decoy-state method. This record-breaking implementation of the MDIQKD method not only provides a new distance record for both MDIQKD and all types of QKD systems but also, more significantly, achieves a distance that the traditional Bennett-Brassard 1984 QKD would not be able to achieve with the same detection devices even with ideal single-photon sources. This work represents a significant step toward proving and developing feasible long-distance QKD.

  16. Self-aligning biaxial load frame

    DOEpatents

    Ward, M.B.; Epstein, J.S.; Lloyd, W.R.

    1994-01-18

    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

  17. Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters

    NASA Astrophysics Data System (ADS)

    Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter

    2018-05-01

    As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.

  18. Is Current CMBR Temperature: The Scale Independent Quantum Gravitational Result of Black Hole Cosmology?

    NASA Astrophysics Data System (ADS)

    Seshavatharam, U. V. S.; Lakshminarayana, S.

    If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential

  19. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  20. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boaron, Alberto; Korzh, Boris; Boso, Gianluca

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  1. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE PAGES

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; ...

    2016-08-09

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  2. Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis.

    PubMed

    Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M

    2016-07-14

    Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.

  3. Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication Using Coherent States

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Guo, Ying

    2017-02-01

    A continuous-variable measurement-device-independent (CV-MDI) multipartite quantum communication protocol is designed to realize multipartite communication based on the GHZ state analysis using Gaussian coherent states. It can remove detector side attack as the multi-mode measurement is blindly done in a suitable Black Box. The entanglement-based CV-MDI multipartite communication scheme and the equivalent prepare-and-measurement scheme are proposed to analyze the security and guide experiment, respectively. The general eavesdropping and coherent attack are considered for the security analysis. Subsequently, all the attacks are ascribed to coherent attack against imperfect links. The asymptotic key rate of the asymmetric configuration is also derived with the numeric simulations illustrating the performance of the proposed protocol.

  4. Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis

    NASA Astrophysics Data System (ADS)

    Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.

    2016-07-01

    Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.

  5. Towards a Quantum Theory of Humour

    NASA Astrophysics Data System (ADS)

    Gabora, Liane; Kitto, Kirsty

    2016-12-01

    This paper proposes that cognitive humour can be modelled using the mathematical framework of quantum theory, suggesting that a Quantum Theory of Humour (QTH) is a viable approach. We begin with brief overviews of both research on humour, and the generalized quantum framework. We show how the bisociation of incongruous frames or word meanings in jokes can be modelled as a linear superposition of a set of basis states, or possible interpretations, in a complex Hilbert space. The choice of possible interpretations depends on the context provided by the set-up versus the punchline of a joke. We apply QTH first to a verbal pun, and then consider how this might be extended to frame blending in cartoons. An initial study of 85 participant responses to 35 jokes (and a number of variants) suggests that there is reason to believe that a quantum approach to the modelling of cognitive humour is a viable new avenue of research for the field of quantum cognition.

  6. Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; MengYi, Deng

    2018-03-01

    The multiple crystal heralded source with post-selection (MHPS), originally introduced to improve the single-photon character of the heralded source, has specific applications for quantum information protocols. In this paper, by combining decoy-state measurement-device-independent quantum key distribution (MDI-QKD) with spontaneous parametric downconversion process, we present a modified MDI-QKD scheme with MHPS where two architectures are proposed corresponding to symmetric scheme and asymmetric scheme. The symmetric scheme, which linked by photon switches in a log-tree structure, is adopted to overcome the limitation of the current low efficiency of m-to-1 optical switches. The asymmetric scheme, which shows a chained structure, is used to cope with the scalability issue with increase in the number of crystals suffered in symmetric scheme. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key generation rate compared to the original MDI-QKD with weak coherent source and traditional heralded source with post-selection. Furthermore, the recent advances in integrated photonics suggest that if built into a single chip, the MHPS might be a practical alternative source in quantum key distribution tasks requiring single photons to work.

  7. Background-independent condensed matter models for quantum gravity

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Markopoulou, Fotini

    2011-09-01

    A number of recent proposals on a quantum theory of gravity are based on the idea that spacetime geometry and gravity are derivative concepts and only apply at an approximate level. There are two fundamental challenges to any such approach. At the conceptual level, there is a clash between the 'timelessness' of general relativity and emergence. Secondly, the lack of a fundamental spacetime renders difficult the straightforward application of well-known methods of statistical physics to the problem. We recently initiated a study of such problems using spin systems based on the evolution of quantum networks with no a priori geometric notions as models for emergent geometry and gravity. In this paper, we review two such models. The first model is a model of emergent (flat) space and matter, and we show how to use methods from quantum information theory to derive features such as the speed of light from a non-geometric quantum system. The second model exhibits interacting matter and geometry, with the geometry defined by the behavior of matter. This model has primitive notions of gravitational attraction that we illustrate with a toy black hole, and exhibits entanglement between matter and geometry and thermalization of the quantum geometry.

  8. Toward real-time quantum imaging with a single pixel camera

    DOE PAGES

    Lawrie, B. J.; Pooser, R. C.

    2013-03-19

    In this paper, we present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. Finally, in low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imagingmore » with sensitivity below the photon shot noise limit.« less

  9. Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.

    PubMed

    Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu

    2016-12-01

    Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.

  10. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  11. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van

    2009-04-15

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significantmore » biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.« less

  12. Time-independent quantum dynamics for diatom-surface scattering

    NASA Astrophysics Data System (ADS)

    Saalfrank, Peter; Miller, William H.

    1993-06-01

    Two time-independent quantum reactive scattering methods, namely, the S-matrix Kohn technique to compute the full S-matrix, and the absorbing boundary Green's function method to compute cumulative reaction probabilities, are applied here to the case of diatom-surface scattering. In both cases a discrete variable representation for the operators is used. We test the methods for two- and three-dimensional uncorrugated potential energy surfaces, which have been used earlier by Halstead et al. [J. Chem. Phys. 93, 2359 (1990)] and by Sheng et al. [J. Chem. Phys. 97, 684 (1992)] in studies of H2 dissociating on metal substrates with theoretical techniques different from those applied here. We find overall but not always perfect agreement with these earlier studies. Based on ab initio data and experiment, a new, six-dimensional potential energy surface for the dissociative chemisorption of H2 on Ni(100) is proposed. Two- and three-dimensional cuts through the new potential are performed to illustrate special dynamical aspects of this particular molecule-surface reaction: (i) the role of corrugation effects, (ii) the importance of the ``cartwheel'' rotation of H2, and (iii) the role of the ``helicopter'' degree of freedom for the adsorbing molecule.

  13. Quantum Bundle Description of Quantum Projective Spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2012-12-01

    We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.

  14. Continuous-variable measurement-device-independent quantum key distribution with photon subtraction

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Xin; Huang, Peng; Bai, Dong-Yun; Wang, Shi-Yu; Bao, Wan-Su; Zeng, Gui-Hua

    2018-04-01

    It has been found that non-Gaussian operations can be applied to increase and distill entanglement between Gaussian entangled states. We show the successful use of the non-Gaussian operation, in particular, photon subtraction operation, on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. The proposed method can be implemented based on existing technologies. Security analysis shows that the photon subtraction operation can remarkably increase the maximal transmission distance of the CV-MDI-QKD protocol, which precisely make up for the shortcoming of the original CV-MDI-QKD protocol, and one-photon subtraction operation has the best performance. Moreover, the proposed protocol provides a feasible method for the experimental implementation of the CV-MDI-QKD protocol.

  15. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  16. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution.

    PubMed

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-16

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  17. FPGA and USB based control board for quantum random number generator

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wan, Xu; Zhang, Hong-Fei; Gao, Yuan; Chen, Teng-Yun; Liang, Hao

    2009-09-01

    The design and implementation of FPGA-and-USB-based control board for quantum experiments are discussed. The usage of quantum true random number generator, control- logic in FPGA and communication with computer through USB protocol are proposed in this paper. Programmable controlled signal input and output ports are implemented. The error-detections of data frame header and frame length are designed. This board has been used in our decoy-state based quantum key distribution (QKD) system successfully.

  18. Self-referenced continuous-variable measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Yijun; Wang, Xudong; Li, Jiawei; Huang, Duan; Zhang, Ling; Guo, Ying

    2018-05-01

    We propose a scheme to remove the demand of transmitting a high-brightness local oscillator (LO) in continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, which we call as the self-referenced (SR) CV-MDI QKD. We show that our scheme is immune to the side-channel attacks, such as the calibration attacks, the wavelength attacks and the LO fluctuation attacks, which are all exploiting the security loopholes introduced by transmitting the LO. Besides, the proposed scheme waives the necessity of complex multiplexer and demultiplexer, which can greatly simplify the QKD processes and improve the transmission efficiency. The numerical simulations under collective attacks show that all the improvements brought about by our scheme are only at the expense of slight transmission distance shortening. This scheme shows an available method to mend the security loopholes incurred by transmitting LO in CV-MDI QKD.

  19. Getting something out of nothing in the measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tan, Yong-Gang; Cai, Qing-Yu; Yang, Hai-Feng; Hu, Yao-Hua

    2015-11-01

    Because of the monogamy of entanglement, the measurement-device-independent quantum key distribution is immune to the side-information leaking of the measurement devices. When the correlated measurement outcomes are generated from the dark counts, no entanglement is actually obtained. However, secure key bits can still be proven to be generated from these measurement outcomes. Especially, we will give numerical studies on the contributions of dark counts to the key generation rate in practical decoy state MDI-QKD where a signal source, a weaker decoy source and a vacuum decoy source are used by either legitimate key distributer.

  20. Proof-of-principle experiment of measurement-device-independent quantum key distribution with vector vortex beams

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Zhao, Shang-Hong; Li, Wei; Yang, Jian

    2018-03-01

    In this paper, by combining measurement-device-independent quantum key distribution (MDI-QKD) scheme with entangled photon sources, we present a modified MDI-QKD scheme with pairs of vector vortex(VV) beams, which shows a structure of hybrid entangled entanglement corresponding to intrasystem entanglement and intersystem entanglement. The former entanglement, which is entangled between polarization and orbit angular momentum within each VV beam, is adopted to overcome the polarization misalignment associated with random rotations in quantum key distribution. The latter entanglement, which is entangled between the two VV beams, is used to perform entangled-based MDI-QKD protocol with pair of VV beams to inherit the merit of long distance. The numerical simulations show that our modified scheme can tolerate 97dB with practical detectors. Furthermore, our modified protocol only needs to insert q-plates in practical experiment.

  1. Quantum gate-set tomography

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    2014-03-01

    Quantum information technology is built on (1) physical qubits and (2) precise, accurate quantum logic gates that transform their states. Developing quantum logic gates requires good characterization - both in the development phase, where we need to identify a device's flaws so as to fix them, and in the production phase, where we need to make sure that the device works within specs and predict residual error rates and types. This task falls to quantum state and process tomography. But until recently, protocols for tomography relied on a pre-existing and perfectly calibrated reference frame comprising the measurements (and, for process tomography, input states) used to characterize the device. In practice, these measurements are neither independent nor perfectly known - they are usually implemented via exactly the same gates that we are trying to characterize! In the past year, several partial solutions to this self-consistency problem have been proposed. I will present a framework (gate set tomography, or GST) that addresses and resolves this problem, by self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. In particular, it contains an explicit closed-form protocol for linear-inversion gate set tomography (LGST), which is immune to both calibration error and technical pathologies like local maxima of the likelihood (which plagued earlier methods). GST also demonstrates significant (multiple orders of magnitude) improvements in efficiency over standard tomography by using data derived from long sequences of gates (much like randomized benchmarking). GST has now been applied to qubit devices in multiple technologies. I will present and discuss results of GST experiments in technologies including a single trapped-ion qubit and a silicon quantum dot qubit. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  2. Long distance measurement-device-independent quantum key distribution with entangled photon sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Feihu; Qi, Bing; Liao, Zhongfa

    2013-08-05

    We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.

  3. Specialized CCDs for high-frame-rate visible imaging and UV imaging applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Taylor, Gordon C.; Shallcross, Frank V.; Tower, John R.; Lawler, William B.; Harrison, Lorna J.; Socker, Dennis G.; Marchywka, Mike

    1993-11-01

    This paper reports recent progress by the authors in two distinct charge coupled device (CCD) technology areas. The first technology area is high frame rate, multi-port, frame transfer imagers. A 16-port, 512 X 512, split frame transfer imager and a 32-port, 1024 X 1024, split frame transfer imager are described. The thinned, backside illuminated devices feature on-chip correlated double sampling, buried blooming drains, and a room temperature dark current of less than 50 pA/cm2, without surface accumulation. The second technology area is vacuum ultraviolet (UV) frame transfer imagers. A developmental 1024 X 640 frame transfer imager with 20% quantum efficiency at 140 nm is described. The device is fabricated in a p-channel CCD process, thinned for backside illumination, and utilizes special packaging to achieve stable UV response.

  4. Device-Independent Tests of Entropy

    NASA Astrophysics Data System (ADS)

    Chaves, Rafael; Brask, Jonatan Bohr; Brunner, Nicolas

    2015-09-01

    We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the communication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical communication, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing.

  5. Discrete and continuous variables for measurement-device-independent quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Feihu; Curty, Marcos; Qi, Bing

    In a recent Article in Nature Photonics, Pirandola et al.1 claim that the achievable secret key rates of discrete-variable (DV) measurementdevice- independent (MDI) quantum key distribution (QKD) (refs 2,3) are “typically very low, unsuitable for the demands of a metropolitan network” and introduce a continuous-variable (CV) MDI QKD protocol capable of providing key rates which, they claim, are “three orders of magnitude higher” than those of DV MDI QKD. We believe, however, that the claims regarding low key rates of DV MDI QKD made by Pirandola et al.1 are too pessimistic. Here in this paper, we show that the secretmore » key rate of DV MDI QKD with commercially available high-efficiency single-photon detectors (SPDs) (for example, see http://www.photonspot.com/detectors and http://www.singlequantum.com) and good system alignment is typically rather high and thus highly suitable for not only long-distance communication but also metropolitan networks.« less

  6. Discrete and continuous variables for measurement-device-independent quantum cryptography

    DOE PAGES

    Xu, Feihu; Curty, Marcos; Qi, Bing; ...

    2015-11-16

    In a recent Article in Nature Photonics, Pirandola et al.1 claim that the achievable secret key rates of discrete-variable (DV) measurementdevice- independent (MDI) quantum key distribution (QKD) (refs 2,3) are “typically very low, unsuitable for the demands of a metropolitan network” and introduce a continuous-variable (CV) MDI QKD protocol capable of providing key rates which, they claim, are “three orders of magnitude higher” than those of DV MDI QKD. We believe, however, that the claims regarding low key rates of DV MDI QKD made by Pirandola et al.1 are too pessimistic. Here in this paper, we show that the secretmore » key rate of DV MDI QKD with commercially available high-efficiency single-photon detectors (SPDs) (for example, see http://www.photonspot.com/detectors and http://www.singlequantum.com) and good system alignment is typically rather high and thus highly suitable for not only long-distance communication but also metropolitan networks.« less

  7. Investigating Learners' Epistemological Framings of Quantum Mechanics

    ERIC Educational Resources Information Center

    Dini, Vesal

    2017-01-01

    Classical mechanics challenges students to use their intuitions and experiences as a basis for understanding, in effect to approach learning as "a refinement of everyday thinking'' (Einstein, 1936). Moving on to quantum mechanics (QM), students, like physicists, need to adjust this approach, in particular with respect to the roles that…

  8. Device-Independent Certification of a Nonprojective Qubit Measurement

    NASA Astrophysics Data System (ADS)

    Gómez, Esteban S.; Gómez, Santiago; González, Pablo; Cañas, Gustavo; Barra, Johanna F.; Delgado, Aldo; Xavier, Guilherme B.; Cabello, Adán; Kleinmann, Matthias; Vértesi, Tamás; Lima, Gustavo

    2016-12-01

    Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

  9. Polarization-dependent enhanced photoluminescence and polarization-independent emission rate of quantum dots on gold elliptical nanodisc arrays.

    PubMed

    Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun

    2014-07-07

    We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.

  10. Unitary cocycle representations of the Galilean line group: Quantum mechanical principle of equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, B.R.; McCoy, A.E.; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2012-09-15

    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertialmore » reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics. - Highlights: Black-Right-Pointing-Pointer A formulation of Galilean quantum mechanics in non-inertial reference frames is given. Black-Right-Pointing-Pointer The key concept is the Galilean line group, an infinite dimensional group. Black-Right-Pointing-Pointer Unitary, cocycle representations of the Galilean line group are constructed. Black-Right-Pointing-Pointer A non-central extension of the group underlies these representations. Black-Right-Pointing-Pointer Quantum equivalence principle and gravity emerge from these representations.« less

  11. Quantum measurement of a rapidly rotating spin qubit in diamond.

    PubMed

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  12. Quantum measurement of a rapidly rotating spin qubit in diamond

    PubMed Central

    Fein, Yaakov Y.; Hollenberg, Lloyd C. L.; Scholten, Robert E.

    2018-01-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T2. We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors. PMID:29736417

  13. 93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF DOG EAR AND TRUSS (BRACKET) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  14. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  15. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  16. Relativistic (2,3)-threshold quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Wu, Ya-Dong; Sanders, Barry C.

    2017-09-01

    In quantum secret sharing protocols, the usual presumption is that the distribution of quantum shares and players' collaboration are both performed inertially. Here we develop a quantum secret sharing protocol that relaxes these assumptions wherein we consider the effects due to the accelerating motion of the shares. Specifically, we solve the (2,3)-threshold continuous-variable quantum secret sharing in noninertial frames. To this aim, we formulate the effect of relativistic motion on the quantum field inside a cavity as a bosonic quantum Gaussian channel. We investigate how the fidelity of quantum secret sharing is affected by nonuniform motion of the quantum shares. Furthermore, we fully characterize the canonical form of the Gaussian channel, which can be utilized in quantum-information-processing protocols to include relativistic effects.

  17. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.

    PubMed

    Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P

    2015-08-03

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

  18. Non-independent quantum bumps in Limulus ventral nerve photoreceptors--a new insight in the light transduction mechanism.

    PubMed

    Nagy, K

    1992-09-14

    Single photon-induced transient currents, called quantum bumps were stimulated by short flashes in dark-adapted ventral nerve photoreceptors of Limulus. Flash intensities were set to activate 3 or more bumps. In most cases, current bumps were activated with a constant rate. The frequency of bump occurrence was between 9 and 17 Hz. Results show that consecutive bumps are not independent and that some of them are not activated by a photon. The periodic bump activation indicates a molecular mechanism which quantifies the transmitter release not only by a light quantum, but also by a late phase of the transduction cascade. A model is proposed, in which Ca2+ ions released from intracellular stores transiently block the further Ca2+ release by inositol trisphosphate in an all-or-none manner.

  19. Toward quantum plasmonic networks

    DOE PAGES

    Holtfrerich, M. W.; Dowran, M.; Davidson, R.; ...

    2016-08-30

    Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less

  20. Conditions for quantum interference in cognitive sciences.

    PubMed

    Yukalov, Vyacheslav I; Sornette, Didier

    2014-01-01

    We present a general classification of the conditions under which cognitive science, concerned, e.g. with decision making, requires the use of quantum theoretical notions. The analysis is done in the frame of the mathematical approach based on the theory of quantum measurements. We stress that quantum effects in cognition can arise only when decisions are made under uncertainty. Conditions for the appearance of quantum interference in cognitive sciences and the conditions when interference cannot arise are formulated. Copyright © 2013 Cognitive Science Society, Inc.

  1. Quantum discord as a resource for quantum cryptography.

    PubMed

    Pirandola, Stefano

    2014-11-07

    Quantum discord is the minimal bipartite resource which is needed for a secure quantum key distribution, being a cryptographic primitive equivalent to non-orthogonality. Its role becomes crucial in device-dependent quantum cryptography, where the presence of preparation and detection noise (inaccessible to all parties) may be so strong to prevent the distribution and distillation of entanglement. The necessity of entanglement is re-affirmed in the stronger scenario of device-independent quantum cryptography, where all sources of noise are ascribed to the eavesdropper.

  2. Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors.

    PubMed

    Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K

    2007-11-26

    We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.

  3. Quantum Games under Decoherence

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen

    2016-02-01

    Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which

  4. Quantum social game theory

    NASA Astrophysics Data System (ADS)

    Arfi, Badredine

    2007-02-01

    Most game-theoretic studies of strategic interaction assume independent individual strategies as the basic unit of analysis. This paper explores the effects of non-independence on strategic interaction. Two types of non-independence effects are considered. First, the paper considers subjective non-independence at the level of the individual actor by looking at how choice ambivalence shapes the decision-making process. Specifically, how do alternative individual choices superpose with one another to “constructively/destructively” shape each other's role within an actor's decision-making process? This process is termed as quantum superposition of alternative choices. Second, the paper considers how inter-subjective non-independence across actors engenders collective strategies among two or more interacting actors. This is termed as quantum entanglement of strategies. Taking into account both types of non-independence effect makes possible the emergence of a new collective equilibrium, without assuming signaling, prior “contract” agreement or third-party moderation, or even “cheap talk”. I apply these ideas to analyze the equilibrium possibilities of a situation wherein N actors play a quantum social game of cooperation. I consider different configurations of large- N quantum entanglement using the approach of density operator. I specifically consider the following configurations: star-shaped, nearest-neighbors, and full entanglement.

  5. Noise and sensitivity of x-ray framing cameras at Nike (abstract)

    NASA Astrophysics Data System (ADS)

    Pawley, C. J.; Deniz, A. V.; Lehecka, T.

    1999-01-01

    X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.

  6. Loop Quantum Gravity.

    PubMed

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  7. Quantum discord as a resource for quantum cryptography

    PubMed Central

    Pirandola, Stefano

    2014-01-01

    Quantum discord is the minimal bipartite resource which is needed for a secure quantum key distribution, being a cryptographic primitive equivalent to non-orthogonality. Its role becomes crucial in device-dependent quantum cryptography, where the presence of preparation and detection noise (inaccessible to all parties) may be so strong to prevent the distribution and distillation of entanglement. The necessity of entanglement is re-affirmed in the stronger scenario of device-independent quantum cryptography, where all sources of noise are ascribed to the eavesdropper. PMID:25378231

  8. Research on Quantum Algorithms at the Institute for Quantum Information

    DTIC Science & Technology

    2009-10-17

    accuracy threshold theorem for the one-way quantum computer. Their proof is based on a novel scheme, in which a noisy cluster state in three spatial...detected. The proof applies to independent stochastic noise but (in contrast to proofs of the quantum accuracy threshold theorem based on concatenated...proved quantum threshold theorems for long-range correlated non-Markovian noise, for leakage faults, for the one-way quantum computer, for postselected

  9. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-12-15

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat framesmore » used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.« less

  10. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  11. Video Encryption and Decryption on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin

    2015-08-01

    A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.

  12. Back-illuminated large area frame transfer CCDs for space-based hyper-spectral imaging applications

    NASA Astrophysics Data System (ADS)

    Philbrick, Robert H.; Gilmore, Angelo S.; Schrein, Ronald J.

    2016-07-01

    Standard offerings of large area, back-illuminated full frame CCD sensors are available from multiple suppliers and they continue to be commonly deployed in ground- and space-based applications. By comparison the availability of large area frame transfers CCDs is sparse, with the accompanying 2x increase in die area no doubt being a contributing factor. Modern back-illuminated CCDs yield very high quantum efficiency in the 290 to 400 nm band, a wavelength region of great interest in space-based instruments studying atmospheric phenomenon. In fast framing (e.g. 10 - 20 Hz), space-based applications such as hyper-spectral imaging, the use of a mechanical shutter to block incident photons during readout can prove costly and lower instrument reliability. The emergence of large area, all-digital visible CMOS sensors, with integrate while read functionality, are an alternative solution to CCDs; but, even after factoring in reduced complexity and cost of support electronics, the present cost to implement such novel sensors is prohibitive to cost constrained missions. Hence, there continues to be a niche set of applications where large area, back-illuminated frame transfer CCDs with high UV quantum efficiency, high frame rate, high full well, and low noise provide an advantageous solution. To address this need a family of large area frame transfer CCDs has been developed that includes 2048 (columns) x 256 (rows) (FT4), 2048 x 512 (FT5), and 2048 x 1024 (FT6) full frame transfer CCDs; and a 2048 x 1024 (FT7) split-frame transfer CCD. Each wafer contains 4 FT4, 2 FT5, 2 FT6, and 2 FT7 die. The designs have undergone radiation and accelerated life qualification and the electro-optical performance of these CCDs over the wavelength range of 290 to 900 nm is discussed.

  13. The Quantum Steganography Protocol via Quantum Noisy Channels

    NASA Astrophysics Data System (ADS)

    Wei, Zhan-Hong; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2015-08-01

    As a promising branch of quantum information hiding, Quantum steganography aims to transmit secret messages covertly in public quantum channels. But due to environment noise and decoherence, quantum states easily decay and change. Therefore, it is very meaningful to make a quantum information hiding protocol apply to quantum noisy channels. In this paper, we make the further research on a quantum steganography protocol for quantum noisy channels. The paper proved that the protocol can apply to transmit secret message covertly in quantum noisy channels, and explicity showed quantum steganography protocol. In the protocol, without publishing the cover data, legal receivers can extract the secret message with a certain probability, which make the protocol have a good secrecy. Moreover, our protocol owns the independent security, and can be used in general quantum communications. The communication, which happen in our protocol, do not need entangled states, so our protocol can be used without the limitation of entanglement resource. More importantly, the protocol apply to quantum noisy channels, and can be used widely in the future quantum communication.

  14. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H₂O + He system.

    PubMed

    Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-09-21

    The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm(-1) the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm(-1) the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n(2), where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n(3). Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.

  15. Source-Device-Independent Ultrafast Quantum Random Number Generation.

    PubMed

    Marangon, Davide G; Vallone, Giuseppe; Villoresi, Paolo

    2017-02-10

    Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit/s.

  16. Framing Effect in the Trolley Problem and Footbridge Dilemma.

    PubMed

    Cao, Fei; Zhang, Jiaxi; Song, Lei; Wang, Shoupeng; Miao, Danmin; Peng, Jiaxi

    2017-02-01

    The present study investigated the effect of dilemma type, framing, and number of saved lives on moral decision making. A total of 591 undergraduates, with a mean age of 20.56 (SD = 1.37) were randomly assigned to 12 groups on the basis of a grid of two dilemma types (the trolley problem or the footbridge dilemma) by three frames (positive, neutral, or negative frame) by two different numbers of workers (5 or 15 people). The main effects of dilemma type, frame, and number of saved workers were all significant. The interaction of dilemma type and number of saved workers and the interaction of the three independent factors were significant. Results indicated that moral judgment is affected by framing. Specifically, people were more inclined to utilitarianism in the positive or neutral frame and more inclined to intuitionism in the negative frame. Furthermore, this effect can be moderated by dilemma type and number of saved lives. Implications of our results are discussed.

  17. Fundamental Structure of Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Han, Muxin; Ma, Yongge; Huang, Weiming

    In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar-Isham-Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to

  18. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    PubMed

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

  19. Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources.

    PubMed

    Zhang, Chun-Hui; Zhang, Chun-Mei; Guo, Guang-Can; Wang, Qin

    2018-02-19

    At present, most of the measurement-device-independent quantum key distributions (MDI-QKD) are based on weak coherent sources and limited in the transmission distance under realistic experimental conditions, e.g., considering the finite-size-key effects. Hence in this paper, we propose a new biased decoy-state scheme using heralded single-photon sources for the three-intensity MDI-QKD, where we prepare the decoy pulses only in X basis and adopt both the collective constraints and joint parameter estimation techniques. Compared with former schemes with WCS or HSPS, after implementing full parameter optimizations, our scheme gives distinct reduced quantum bit error rate in the X basis and thus show excellent performance, especially when the data size is relatively small.

  20. Inertial frames and breakthrough propulsion physics

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  1. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  2. Quantum tomography for collider physics: illustrations with lepton-pair production

    NASA Astrophysics Data System (ADS)

    Martens, John C.; Ralston, John P.; Takaki, J. D. Tapia

    2018-01-01

    Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data. We provide a practical, experimentally driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglement entropy of the production process. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complex positivity that guarantees in a least-squares type fit that a local minimum of a χ 2 statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention dependence that have been problematic in previous work on angular distributions.

  3. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen

    2015-12-01

    In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the

  4. In search of superluminal quantum communications: recent experiments and possible improvements

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2013-06-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt, Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities vt. Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities Vt for any possible direction of velocity vec V of the tachyons preferred frame.

  5. Base units of the SI, fundamental constants and modern quantum physics.

    PubMed

    Bordé, Christian J

    2005-09-15

    Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c. Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c, the Planck constant h, the Boltzmann constant k(B) or the electron mass m(e) can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant alpha or its gravitational analogue alpha(G). This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.

  6. Experimental demonstration of nonbilocal quantum correlations

    PubMed Central

    Saunders, Dylan J.; Bennet, Adam J.; Branciard, Cyril; Pryde, Geoff J.

    2017-01-01

    Quantum mechanics admits correlations that cannot be explained by local realistic models. The most studied models are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date, most works have focused on bipartite entangled systems. We consider correlations between three parties connected via two independent entangled states. We investigate the new type of so-called “bilocal” models, which correspondingly involve two independent hidden variables. These models describe scenarios that naturally arise in quantum networks, where several independent entanglement sources are used. Using photonic qubits, we build such a linear three-node quantum network and demonstrate nonbilocal correlations by violating a Bell-like inequality tailored for bilocal models. Furthermore, we show that the demonstration of nonbilocality is more noise-tolerant than that of standard Bell nonlocality in our three-party quantum network. PMID:28508045

  7. Experimental demonstration of nonbilocal quantum correlations.

    PubMed

    Saunders, Dylan J; Bennet, Adam J; Branciard, Cyril; Pryde, Geoff J

    2017-04-01

    Quantum mechanics admits correlations that cannot be explained by local realistic models. The most studied models are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date, most works have focused on bipartite entangled systems. We consider correlations between three parties connected via two independent entangled states. We investigate the new type of so-called "bilocal" models, which correspondingly involve two independent hidden variables. These models describe scenarios that naturally arise in quantum networks, where several independent entanglement sources are used. Using photonic qubits, we build such a linear three-node quantum network and demonstrate nonbilocal correlations by violating a Bell-like inequality tailored for bilocal models. Furthermore, we show that the demonstration of nonbilocality is more noise-tolerant than that of standard Bell nonlocality in our three-party quantum network.

  8. Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks

    NASA Astrophysics Data System (ADS)

    Halnon, Theodore; Bojowald, Martin

    2017-01-01

    In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply. Partial funding from the Ronald E. McNair Postbaccalaureate Achievement Program.

  9. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  10. Background Independence and Duality Invariance in String Theory.

    PubMed

    Hohm, Olaf

    2017-03-31

    Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.

  11. Determinism, independence, and objectivity are incompatible.

    PubMed

    Ionicioiu, Radu; Mann, Robert B; Terno, Daniel R

    2015-02-13

    Hidden-variable models aim to reproduce the results of quantum theory and to satisfy our classical intuition. Their refutation is usually based on deriving predictions that are different from those of quantum mechanics. Here instead we study the mutual compatibility of apparently reasonable classical assumptions. We analyze a version of the delayed-choice experiment which ostensibly combines determinism, independence of hidden variables on the conducted experiments, and wave-particle objectivity (the assertion that quantum systems are, at any moment, either particles or waves, but not both). These three ideas are incompatible with any theory, not only with quantum mechanics.

  12. Adding control to arbitrary unknown quantum operations

    PubMed Central

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  13. Classical-Quantum Correspondence by Means of Probability Densities

    NASA Technical Reports Server (NTRS)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  14. Quantum theory of electromagnetic fields in a cosmological quantum spacetime

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jerzy; Nouri-Zonoz, Mohammad; Parvizi, Ali; Tavakoli, Yaser

    2017-11-01

    The theory of quantum fields propagating on an isotropic cosmological quantum spacetime is reexamined by generalizing the scalar test field to an electromagnetic (EM) vector field. For any given polarization of the EM field on the classical background, the Hamiltonian can be written in the form of the Hamiltonian of a set of decoupled harmonic oscillators, each corresponding to a single mode of the field. In transition from the classical to quantum spacetime background, following the technical procedure given by Ashtekar et al. [Phys. Rev. D 79, 064030 (2009), 10.1103/PhysRevD.79.064030], a quantum theory of the test EM field on an effective (dressed) spacetime emerges. The nature of this emerging dressed geometry is independent of the chosen polarization, but it may depend on the energy of the corresponding field mode. Specifically, when the backreaction of the field on the quantum geometry is negligible (i.e., a test field approximation is assumed), all field modes probe the same effective background independent of the mode's energy. However, when the backreaction of the field modes on the quantum geometry is significant, by employing a Born-Oppenheimer approximation, it is shown that a rainbow (i.e., a mode-dependent) metric emerges. The emergence of this mode-dependent background in the Planck regime may have a significant effect on the creation of quantum particles. The production amount on the dressed background is computed and is compared with the familiar results on the classical geometry.

  15. Ordering relations for quantum states

    NASA Astrophysics Data System (ADS)

    Durham, Ian

    2015-03-01

    It is often desirable to model physical states in an order-theoretic manner, e.g. as a partially ordered set. Classical states are known to possess a unique ordering relation corresponding to a neo-realist interpretation of these states. No such unique relation exists for quantum states. This lack of a unique ordering relation for quantum states turns out to be a manifestation of quantum contextuality vis-à-vis the Kochen-Specker theorem. It also turns out that this provides a link to certain large-scale thermodynamic processes. The suggestion that the ordering of quantum states leads to macroscopic thermodynamic processes is at least five decades old. The suggestion that the mechanism that drives the ordering is contextuality, is unique to this work. The argument is framed in the language of the theories of domains, categories, and topoi. Financial support provided by FQXi.

  16. Semihierarchical quantum repeaters based on moderate lifetime quantum memories

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Zhou, Zong-Quan; Hua, Yi-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    The construction of large-scale quantum networks relies on the development of practical quantum repeaters. Many approaches have been proposed with the goal of outperforming the direct transmission of photons, but most of them are inefficient or difficult to implement with current technology. Here, we present a protocol that uses a semihierarchical structure to improve the entanglement distribution rate while reducing the requirement of memory time to a range of tens of milliseconds. This protocol can be implemented with a fixed distance of elementary links and fixed requirements on quantum memories, which are independent of the total distance. This configuration is especially suitable for scalable applications in large-scale quantum networks.

  17. Research on Quantum Algorithms at the Institute for Quantum Information and Matter

    DTIC Science & Technology

    2016-05-29

    local quantum computation with applications to position-based cryptography , New Journal of Physics, (09 2011): 0. doi: 10.1088/1367-2630/13/9/093036... cryptography , such as the ability to turn private-key encryption into public-key encryption. While ad hoc obfuscators exist, theoretical progress has mainly...to device-independent quantum cryptography , to quantifying entanglement, and to the classification of quantum phases of matter. Exact synthesis

  18. Resonance scattering in quantum wave guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsen'ev, A A

    2003-02-28

    The interaction of a quantum wave guide with a resonator is studied within the frame of the Birman-Kato scattering theory. The existence of poles of the scattering matrix is proved and the jump of the scattering amplitude near a resonance is calculated.

  19. Beable-guided quantum theories: Generalizing quantum probability laws

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    2013-02-01

    Beable-guided quantum theories (BGQT) are generalizations of quantum theory, inspired by Bell's concept of beables. They modify the quantum probabilities for some specified set of fundamental events, histories, or other elements of quasiclassical reality by probability laws that depend on the realized configuration of beables. For example, they may define an additional probability weight factor for a beable configuration, independent of the quantum dynamics. Beable-guided quantum theories can be fitted to observational data to provide foils against which to compare explanations based on standard quantum theory. For example, a BGQT could, in principle, characterize the effects attributed to dark energy or dark matter, or any other deviation from the predictions of standard quantum dynamics, without introducing extra fields or a cosmological constant. The complexity of the beable-guided theory would then parametrize how far we are from a standard quantum explanation. Less conservatively, we give reasons for taking suitably simple beable-guided quantum theories as serious phenomenological theories in their own right. Among these are the possibility that cosmological models defined by BGQT might in fact fit the empirical data better than any standard quantum explanation, and the fact that BGQT suggest potentially interesting nonstandard ways of coupling quantum matter to gravity.

  20. Compressed quantum computation using a remote five-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B.

    2017-05-01

    The notion of compressed quantum computation is employed to simulate the Ising interaction of a one-dimensional chain consisting of n qubits using the universal IBM cloud quantum computer running on log2(n ) qubits. The external field parameter that controls the quantum phase transition of this model translates into particular settings of the quantum gates that generate the circuit. We measure the magnetization, which displays the quantum phase transition, on a two-qubit system, which simulates a four-qubit Ising chain, and show its agreement with the theoretical prediction within a certain error. We also discuss the relevant point of how to assess errors when using a cloud quantum computer with a limited amount of runs. As a solution, we propose to use validating circuits, that is, to run independent controlled quantum circuits of similar complexity to the circuit of interest.

  1. Quantum Communication without Alignment using Multiple-Qubit Single-Photon States

    NASA Astrophysics Data System (ADS)

    Aolita, L.; Walborn, S. P.

    2007-03-01

    We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell’s inequalities, quantum dense coding, and quantum teleportation.

  2. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    NASA Astrophysics Data System (ADS)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I

  3. A minimalist approach to conceptualization of time in quantum theory

    NASA Astrophysics Data System (ADS)

    Kitada, Hitoshi; Jeknić-Dugić, Jasmina; Arsenijević, Momir; Dugić, Miroljub

    2016-12-01

    Ever since Schrödinger, Time in quantum theory is postulated Newtonian for every reference frame. With the help of certain known mathematical results, we show that the concept of the so-called Local Time allows avoiding the postulate. In effect, time appears as neither fundamental nor universal on the quantum-mechanical level while being consistently attributable to every, at least approximately, closed quantum system as well as to every of its (conservative or not) subsystems.

  4. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  5. Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities

    PubMed Central

    Luo, Ming-Xing; Wang, Xiaojun

    2014-01-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm. PMID:25030424

  6. Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities.

    PubMed

    Luo, Ming-Xing; Wang, Xiaojun

    2014-07-17

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm.

  7. Control aspects of quantum computing using pure and mixed states.

    PubMed

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J

    2012-10-13

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

  8. Control aspects of quantum computing using pure and mixed states

    PubMed Central

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.

    2012-01-01

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034

  9. Mixed quantum/classical theory of rotationally and vibrationally inelastic scattering in space-fixed and body-fixed reference frames

    NASA Astrophysics Data System (ADS)

    Semenov, Alexander; Babikov, Dmitri

    2013-11-01

    We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct.

  10. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  11. Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality.

    PubMed

    Zhang, Chao; Huang, Yun-Feng; Wang, Zhao; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2015-12-31

    Quantum nonlocality gives us deeper insight into quantum physics. In addition, quantum nonlocality has been further recognized as an essential resource for device-independent quantum information processing in recent years. Most experiments of nonlocality are performed using a photonic system. However, until now, photonic experiments of nonlocality have involved at most four photons. Here, for the first time, we experimentally demonstrate the six-photon quantum nonlocality in an all-versus-nothing manner based on a high-fidelity (88.4%) six-photon Greenberger-Horne-Zeilinger state. Our experiment pushes multiphoton nonlocality studies forward to the six-photon region and might provide a larger photonic system for device-independent quantum information protocols.

  12. Instantaneous progression reference frame for calculating pelvis rotations: Reliable and anatomically-meaningful results independent of the direction of movement.

    PubMed

    Kainz, Hans; Lloyd, David G; Walsh, Henry P J; Carty, Christopher P

    2016-05-01

    In motion analysis, pelvis angles are conventionally calculated as the rotations between the pelvis and laboratory reference frame. This approach assumes that the participant's motion is along the anterior-posterior laboratory reference frame axis. When this assumption is violated interpretation of pelvis angels become problematic. In this paper a new approach for calculating pelvis angles based on the rotations between the pelvis and an instantaneous progression reference frame was introduced. At every time-point, the tangent to the trajectory of the midpoint of the pelvis projected into the horizontal plane of the laboratory reference frame was used to define the anterior-posterior axis of the instantaneous progression reference frame. This new approach combined with the rotation-obliquity-tilt rotation sequence was compared to the conventional approach using the rotation-obliquity-tilt and tilt-obliquity-rotation sequences. Four different movement tasks performed by eight healthy adults were analysed. The instantaneous progression reference frame approach was the only approach that showed reliable and anatomically meaningful results for all analysed movement tasks (mean root-mean-square-differences below 5°, differences in pelvis angles at pre-defined gait events below 10°). Both rotation sequences combined with the conventional approach led to unreliable results as soon as the participant's motion was not along the anterior-posterior laboratory axis (mean root-mean-square-differences up to 30°, differences in pelvis angles at pre-defined gait events up to 45°). The instantaneous progression reference frame approach enables the gait analysis community to analysis pelvis angles for movements that do not follow the anterior-posterior axis of the laboratory reference frame. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Black String and Velocity Frame Dragging

    NASA Astrophysics Data System (ADS)

    Lee, Jungjai; Kim, Hyeong-Chan

    We investigate velocity frame dragging with the boosted Schwarzschild black string solution and the boosted Kaluza-Klein bubble solution, in which a translational symmetry along the boosted z-coordinate is implemented. The velocity frame dragging effect can be nullified by the motion of an observer using the boost symmetry along the z-coordinate if it is not compact. However, in spacetime with the compact z-coordinate, we show that the effect cannot be removed since the compactification breaks the global Lorentz boost symmetry. As a result, the comoving velocity depends on r and the momentum parameter along the z-coordinate becomes an observer independent characteristic quantity of the black string and bubble solutions. The dragging induces a spherical ergo-region around the black string.

  14. Quantum dynamics characteristic and the flow of information for an open quantum system under relativistic motion

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu

    2018-03-01

    In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.

  15. Attribute Framing and Goal Framing Effects in Health Decisions.

    PubMed

    Krishnamurthy, Parthasarathy; Carter, Patrick; Blair, Edward

    2001-07-01

    Levin, Schneider, and Gaeth (LSG, 1998) have distinguished among three types of framing-risky choice, attribute, and goal framing-to reconcile conflicting findings in the literature. In the research reported here, we focus on attribute and goal framing. LSG propose that positive frames should be more effective than negative frames in the context of attribute framing, and negative frames should be more effective than positive frames in the context of goal framing. We test this framework by manipulating frame valence (positive vs negative) and frame type (attribute vs goal) in a unified context with common procedures. We also argue that the nature of effects in a goal-framing context may depend on the extent to which the research topic has "intrinsic self-relevance" to the population. In the context of medical decision making, we operationalize low intrinsic self-relevance by using student subjects and high intrinsic self-relevance by using patients. As expected, we find complete support for the LSG framework under low intrinsic self-relevance and modified support for the LSG framework under high intrinsic self-relevance. Overall, our research appears to confirm and extend the LSG framework. Copyright 2001 Academic Press.

  16. Quantum chaos in nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu

    A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  17. Solid-state framing camera with multiple time frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  18. Temperature-Independent Nuclear Quantum Effects on the Structure of Water

    DOE PAGES

    Kim, Kyung Hwan; Pathak, Harshad; Spah, Alexander; ...

    2017-08-14

    Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence. Here, by performing wide-angle x-ray scattering of H 2O and D 2O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down tomore » the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D 2O is similar to H 2O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H 2O and D 2O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. In conclusion, this is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.« less

  19. Framing the decision: determinants of how women considering multifetal pregnancy reduction as a pregnancy-management strategy frame their moral dilemma.

    PubMed

    Britt, David W; Evans, Wendy J; Mehta, Shilpi S; Evans, Mark I

    2004-01-01

    How people make decisions regarding medical technologies and procedures are affected by how they 'frame' those decisions. Medical frames are characterized by a reliance on statistics regarding outcomes and risk to mother and surviving embryos, emphasize the influence of medical authorities, and are driven by a desire to minimize medical risks. Moral frames, on the other hand, are driven more by a desire to minimize the disruption to antiabortion and antireduction moral precepts, and weight heavily the advice of religious leaders. These frames contest with one another. Our objective is to examine the biographical determinants of frame dominance in this contest as it applies to multigestation pregnancies where selective reduction is being considered as a pregnancy-management strategy. For a sample of 55 multigestation women considering multifetal reduction as a pregnancy-management strategy, we develop a distinction between medical and moral frames. Semistructured interviews generated qualitative data that were independently coded by two researchers. These variables were then analyzed using dummy variable regression analysis. Conceptualizing these frames as anchoring opposite ends of a continuum, we show that 40% of the variance in frame dominance can be accounted for by three factors: how involved patients are in religious institutions that have antiabortion norms, whether they have medico-scientific careers, and how pro-reduction their advice has been from fertility specialists and obstetricians prior to coming to the clinic. The implication of these results for practice include recognizing the wide variation in patient's perceptions of their situations and how these perceptual frames alter how women confront risk-benefit statistics and being flexible in one's approach to counseling patients. This approach can further serve as a model for similar reproductive-health dilemmas. Copyright 2004 S. Karger AG, Basel

  20. Clauser-Horne-Shimony-Holt versus three-party pseudo-telepathy: on the optimal number of samples in device-independent quantum private query

    NASA Astrophysics Data System (ADS)

    Basak, Jyotirmoy; Maitra, Subhamoy

    2018-04-01

    In device-independent (DI) paradigm, the trustful assumptions over the devices are removed and CHSH test is performed to check the functionality of the devices toward certifying the security of the protocol. The existing DI protocols consider infinite number of samples from theoretical point of view, though this is not practically implementable. For finite sample analysis of the existing DI protocols, we may also consider strategies for checking device independence other than the CHSH test. In this direction, here we present a comparative analysis between CHSH and three-party Pseudo-telepathy game for the quantum private query protocol in DI paradigm that appeared in Maitra et al. (Phys Rev A 95:042344, 2017) very recently.

  1. Quantum teleportation via noisy bipartite and tripartite accelerating quantum states: beyond the single mode approximation

    NASA Astrophysics Data System (ADS)

    Zounia, M.; Shamirzaie, M.; Ashouri, A.

    2017-09-01

    In this paper quantum teleportation of an unknown quantum state via noisy maximally bipartite (Bell) and maximally tripartite (Greenberger-Horne-Zeilinger (GHZ)) entangled states are investigated. We suppose that one of the observers who would receive the sent state accelerates uniformly with respect to the sender. The interactions of the quantum system with its environment during the teleportation process impose noises. These (unital and nonunital) noises are: phase damping, phase flip, amplitude damping and bit flip. In expressing the modes of the Dirac field used as qubits, in the accelerating frame, the so-called single mode approximation is not imposed. We calculate the fidelities of teleportation, and discuss their behaviors using suitable plots. The effects of noise, acceleration and going beyond the single mode approximation are discussed. Although the Bell states bring higher fidelities than GHZ states, the global behaviors of the two quantum systems with respect to some noise types, and therefore their fidelities, are different.

  2. Case Study of a Successful Learner's Epistemological Framings of Quantum Mechanics

    ERIC Educational Resources Information Center

    Dini, Vesal; Hammer, David

    2017-01-01

    Research on student epistemologies in introductory courses has highlighted the importance of understanding physics as "a refinement of everyday thinking" [A. Einstein, J. Franklin Inst. 221, 349 (1936)]. That view is difficult to sustain in quantum mechanics, for students as for physicists. How might students manage the transition? In…

  3. Experimental Preparation and Measurement of Quantum States of Motion of a Trapped Atom

    DTIC Science & Technology

    1997-01-01

    trapped atom are quantum harmonic oscillators, their couplings to internal atomic levels (described by the Jaynes - Cummings model (JCM) [ l , 21) are... wave approximation in a frame rotating with WO, where hwo is the energy difference of the two internal levels, the interaction of the classical laser... Jaynes - Cummings model , the system is suited to realizing many proposals originally introduced in the realm of quantum optics and cavity quantum

  4. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    DOE PAGES

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; ...

    2016-05-11

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance,more » a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less

  5. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels

    NASA Astrophysics Data System (ADS)

    Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun

    2017-12-01

    As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.

  6. Contagious error sources would need time travel to prevent quantum computation

    NASA Astrophysics Data System (ADS)

    Kalai, Gil; Kuperberg, Greg

    2015-08-01

    We consider an error model for quantum computing that consists of "contagious quantum germs" that can infect every output qubit when at least one input qubit is infected. Once a germ actively causes error, it continues to cause error indefinitely for every qubit it infects, with arbitrary quantum entanglement and correlation. Although this error model looks much worse than quasi-independent error, we show that it reduces to quasi-independent error with the technique of quantum teleportation. The construction, which was previously described by Knill, is that every quantum circuit can be converted to a mixed circuit with bounded quantum depth. We also consider the restriction of bounded quantum depth from the point of view of quantum complexity classes.

  7. What a speaker's choice of frame reveals: reference points, frame selection, and framing effects.

    PubMed

    McKenzie, Craig R M; Nelson, Jonathan D

    2003-09-01

    Framing effects are well established: Listeners' preferences depend on how outcomes are described to them, or framed. Less well understood is what determines how speakers choose frames. Two experiments revealed that reference points systematically influenced speakers' choices between logically equivalent frames. For example, speakers tended to describe a 4-ounce cup filled to the 2-ounce line as half full if it was previously empty but described it as half empty if it was previously full. Similar results were found when speakers could describe the outcome of a medical treatment in terms of either mortality or survival (e.g., 25% die vs. 75% survive). Two additional experiments showed that listeners made accurate inferences about speakers' reference points on the basis of the selected frame (e.g., if a speaker described a cup as half empty, listeners inferred that the cup used to be full). Taken together, the data suggest that frames reliably convey implicit information in addition to their explicit content, which helps explain why framing effects are so robust.

  8. Benchmarking gate-based quantum computers

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  9. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  10. The hydrogen tunneling splitting in malonaldehyde: A full-dimensional time-independent quantum mechanical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Feng; Ren, Yinghui; Bian, Wensheng, E-mail: bian@iccas.ac.cn

    The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm{sup −1} is in excellent agreement with the benchmark value of 23.8 cm{sup −1}more » computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm{sup −1}. Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed.« less

  11. Device-independent point estimation from finite data and its application to device-independent property estimation

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Sheng; Rosset, Denis; Zhang, Yanbao; Bancal, Jean-Daniel; Liang, Yeong-Cherng

    2018-03-01

    The device-independent approach to physics is one where conclusions are drawn directly from the observed correlations between measurement outcomes. In quantum information, this approach allows one to make strong statements about the properties of the underlying systems or devices solely via the observation of Bell-inequality-violating correlations. However, since one can only perform a finite number of experimental trials, statistical fluctuations necessarily accompany any estimation of these correlations. Consequently, an important gap remains between the many theoretical tools developed for the asymptotic scenario and the experimentally obtained raw data. In particular, a physical and concurrently practical way to estimate the underlying quantum distribution has so far remained elusive. Here, we show that the natural analogs of the maximum-likelihood estimation technique and the least-square-error estimation technique in the device-independent context result in point estimates of the true distribution that are physical, unique, computationally tractable, and consistent. They thus serve as sound algorithmic tools allowing one to bridge the aforementioned gap. As an application, we demonstrate how such estimates of the underlying quantum distribution can be used to provide, in certain cases, trustworthy estimates of the amount of entanglement present in the measured system. In stark contrast to existing approaches to device-independent parameter estimations, our estimation does not require the prior knowledge of any Bell inequality tailored for the specific property and the specific distribution of interest.

  12. Quantum Information Theory of Measurement

    NASA Astrophysics Data System (ADS)

    Glick, Jennifer Ranae

    Quantum measurement lies at the heart of quantum information processing and is one of the criteria for quantum computation. Despite its central role, there remains a need for a robust quantum information-theoretical description of measurement. In this work, I will quantify how information is processed in a quantum measurement by framing it in quantum information-theoretic terms. I will consider a diverse set of measurement scenarios, including weak and strong measurements, and parallel and consecutive measurements. In each case, I will perform a comprehensive analysis of the role of entanglement and entropy in the measurement process and track the flow of information through all subsystems. In particular, I will discuss how weak and strong measurements are fundamentally of the same nature and show that weak values can be computed exactly for certain measurements with an arbitrary interaction strength. In the context of the Bell-state quantum eraser, I will derive a trade-off between the coherence and "which-path" information of an entangled pair of photons and show that a quantum information-theoretic approach yields additional insights into the origins of complementarity. I will consider two types of quantum measurements: those that are made within a closed system where every part of the measurement device, the ancilla, remains under control (what I will call unamplified measurements), and those performed within an open system where some degrees of freedom are traced over (amplified measurements). For sequences of measurements of the same quantum system, I will show that information about the quantum state is encoded in the measurement chain and that some of this information is "lost" when the measurements are amplified-the ancillae become equivalent to a quantum Markov chain. Finally, using the coherent structure of unamplified measurements, I will outline a protocol for generating remote entanglement, an essential resource for quantum teleportation and quantum

  13. Scrambling of quantum information in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Iyoda, Eiki; Sagawa, Takahiro

    2018-04-01

    We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of the integrability of Hamiltonians; TMI can be negative or positive for both integrable and nonintegrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by nonintegrability. Specifically, we argue that there are a few exceptional initial states that do not exhibit scrambling, and show that such exceptional initial states have small effective dimensions. Furthermore, we calculate TMI in the Sachdev-Ye-Kitaev (SYK) model, a fermionic toy model of quantum gravity. We find that disorder does not make scrambling slower but makes it smoother in the SYK model, in contrast to many-body localization in spin chains.

  14. Framing of health information messages.

    PubMed

    Akl, Elie A; Oxman, Andrew D; Herrin, Jeph; Vist, Gunn E; Terrenato, Irene; Sperati, Francesca; Costiniuk, Cecilia; Blank, Diana; Schünemann, Holger

    2011-12-07

    The same information about the evidence on health effects can be framed either in positive words or in negative words. Some research suggests that positive versus negative framing can lead to different decisions, a phenomenon described as the framing effect. Attribute framing is the positive versus negative description of a specific attribute of a single item or a state, for example, "the chance of survival with cancer is 2/3" versus "the chance of mortality with cancer is 1/3". Goal framing is the description of the consequences of performing or not performing an act as a gain versus a loss, for example, "if you undergo a screening test for cancer, your survival will be prolonged" versus "if you don't undergo screening test for cancer, your survival will be shortened". To evaluate the effects of attribute (positive versus negative) framing and of goal (gain versus loss) framing of the same health information, on understanding, perception of effectiveness, persuasiveness, and behavior of health professionals, policy makers, and consumers. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, issue 3 2007), MEDLINE (Ovid) (1966 to October 2007), EMBASE (Ovid) (1980 to October 2007), PsycINFO (Ovid) (1887 to October 2007). There were no language restrictions. We reviewed the reference lists of related systematic reviews, included studies and of excluded but closely related studies. We also contacted experts in the field. We included randomized controlled trials, quasi-randomised controlled trials, and cross-over studies with health professionals, policy makers, and consumers evaluating one of the two types of framing. Two review authors extracted data in duplicate and independently. We graded the quality of evidence for each outcome using the GRADE approach. We standardized the outcome effects using standardized mean difference (SMD). We stratified the analysis by the type of framing (attribute, goal) and conducted pre

  15. Quantum generalisation of feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.

    2017-09-01

    We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.

  16. Experimental Measurement-Device-Independent Entanglement Detection

    NASA Astrophysics Data System (ADS)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  17. Experimental Measurement-Device-Independent Entanglement Detection

    PubMed Central

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  18. Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions

    NASA Technical Reports Server (NTRS)

    Sun, Y.; Judson, R. S.; Kouri, D. J.

    1989-01-01

    The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.

  19. Determinism Beneath Composite Quantum Systems

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo; Vitiello, Giuseppe; Jizba, Petr; Scardigli, Fabio

    This paper aims at the development of 't Hooft's quantization proposal to describe composite quantum mechanical systems. In particular, we show how 't Hooft's method can be utilized to obtain from two classical Bateman oscillators a composite quantum system corresponding to a quantum isotonic oscillator. For a suitable range of parameters, the composite system can be also interpreted as a particle in an effective magnetic field interacting through a spin-orbital interaction term. In the limit of a large separation from the interaction region we can identify the irreducible subsystems with two independent quantum oscillators.

  20. Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.

  1. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    PubMed

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  2. Field Dependence-Independence and Physical Activity Engagement among Middle School Students

    ERIC Educational Resources Information Center

    Liu, Wenhao; Chepyator-Thomson, Jepkorir Rose

    2009-01-01

    Background: Field dependence-independence (FDI) is a tendency to rely on external frames (given situations and authoritative people) or internal frames (oneself, including one's own body) for one's information processing and behavior. Literature has constantly reported that field-dependent (FD) individuals, who are less autonomous in…

  3. Iron Framing Axonometric, Stringer, IBeam, Channel, Composite TieBeam, and Small ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Iron Framing Axonometric, Stringer, I-Beam, Channel, Composite Tie-Beam, and Small and Large Phoenix Columns - Washington Monument, High ground West of Fifteenth Street, Northwest, between Independence & Constitution Avenues, Washington, District of Columbia, DC

  4. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2018-02-01

    Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

  5. Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.

    PubMed

    Althorpe, Stuart C

    2004-07-15

    We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics

  6. A framed, 16-image Kirkpatrick–Baez x-ray microscope

    DOE PAGES

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; ...

    2017-09-08

    A 16-image Kirkpatrick–Baez (KB)–type x-ray microscope consisting of compact KB mirrors has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ~30 ps. Images are arranged four to a strip with ~60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ~15 ps is achieved. A framed resolution of ~6-um is achieved with this combination in a 400-um region of laser–plasma x-ray emission in the 2-more » to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester’s OMEGA Laser System. The unprecedented time and spatial resolution achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. In conclusion, these core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 GBar in OMEGA cryogenic target implosions.« less

  7. A framed, 16-image Kirkpatrick–Baez x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.

    A 16-image Kirkpatrick–Baez (KB)–type x-ray microscope consisting of compact KB mirrors has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ~30 ps. Images are arranged four to a strip with ~60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ~15 ps is achieved. A framed resolution of ~6-um is achieved with this combination in a 400-um region of laser–plasma x-ray emission in the 2-more » to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester’s OMEGA Laser System. The unprecedented time and spatial resolution achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. In conclusion, these core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 GBar in OMEGA cryogenic target implosions.« less

  8. Analog Landau-He-McKellar-Wilkens quantization due to noninertial effects of the Fermi-Walker reference frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, Knut

    2010-05-15

    We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.

  9. Dynamical quantum phase transitions in discrete time crystals

    NASA Astrophysics Data System (ADS)

    Kosior, Arkadiusz; Sacha, Krzysztof

    2018-05-01

    Discrete time crystals are related to nonequilibrium dynamics of periodically driven quantum many-body systems where the discrete time-translation symmetry of the Hamiltonian is spontaneously broken into another discrete symmetry. Recently, the concept of phase transitions has been extended to nonequilibrium dynamics of time-independent systems induced by a quantum quench, i.e., a sudden change of some parameter of the Hamiltonian. There, the return probability of a system to the ground state reveals singularities in time which are dubbed dynamical quantum phase transitions. We show that the quantum quench in a discrete time crystal leads to dynamical quantum phase transitions where the return probability of a periodically driven system to a Floquet eigenstate before the quench reveals singularities in time. It indicates that dynamical quantum phase transitions are not restricted to time-independent systems and can be also observed in systems that are periodically driven. We discuss how the phenomenon can be observed in ultracold atomic gases.

  10. Mixing Categories and Modal Logics in the Quantum Setting

    NASA Astrophysics Data System (ADS)

    Cinà, Giovanni

    The study of the foundations of Quantum Mechanics, especially after the advent of Quantum Computation and Information, has benefited from the application of category-theoretic tools and modal logics to the analysis of Quantum processes: we witness a wealth of theoretical frameworks casted in either of the two languages. This paper explores the interplay of the two formalisms in the peculiar context of Quantum Theory. After a review of some influential abstract frameworks, we show how different modal logic frames can be extracted from the category of finite dimensional Hilbert spaces, connecting the Categorical Quantum Mechanics approach to some modal logics that have been proposed for Quantum Computing. We then apply a general version of the same technique to two other categorical frameworks, the `topos approach' of Doering and Isham and the sheaf-theoretic work on contextuality by Abramsky and Brandenburger, suggesting how some key features can be expressed with modal languages.

  11. Limitation to Communication of Fermionic System in Accelerated Frame

    NASA Astrophysics Data System (ADS)

    Chang, Jinho; Kwon, Younghun

    2015-03-01

    In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.

  12. Automating Frame Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Franklin, Lyndsey; Tratz, Stephen C.

    2008-04-01

    Frame Analysis has come to play an increasingly stronger role in the study of social movements in Sociology and Political Science. While significant steps have been made in providing a theory of frames and framing, a systematic characterization of the frame concept is still largely lacking and there are no rec-ognized criteria and methods that can be used to identify and marshal frame evi-dence reliably and in a time and cost effective manner. Consequently, current Frame Analysis work is still too reliant on manual annotation and subjective inter-pretation. The goal of this paper is to present an approach to themore » representation, acquisition and analysis of frame evidence which leverages Content Analysis, In-formation Extraction and Semantic Search methods to provide a systematic treat-ment of a Frame Analysis and automate frame annotation.« less

  13. Quantum gravitational corrections from the Wheeler–DeWitt equation for scalar–tensor theories

    NASA Astrophysics Data System (ADS)

    Steinwachs, Christian F.; van der Wild, Matthijs L.

    2018-07-01

    We perform the canonical quantization of a general scalar–tensor theory and derive the first quantum gravitational corrections following from a semiclassical expansion of the Wheeler–DeWitt equation. The non-minimal coupling of the scalar field to gravity induces a derivative coupling between the scalar field and the gravitational degrees of freedom, which prevents a direct application of the expansion scheme. We address this technical difficulty by transforming the theory from the Jordan frame to the Einstein frame. We find that a large non-minimal coupling can have strong effects on the quantum gravitational correction terms. We briefly discuss these effects in the context of the specific model of Higgs inflation.

  14. Device-independent two-party cryptography secure against sequential attacks

    NASA Astrophysics Data System (ADS)

    Kaniewski, Jędrzej; Wehner, Stephanie

    2016-05-01

    The goal of two-party cryptography is to enable two parties, Alice and Bob, to solve common tasks without the need for mutual trust. Examples of such tasks are private access to a database, and secure identification. Quantum communication enables security for all of these problems in the noisy-storage model by sending more signals than the adversary can store in a certain time frame. Here, we initiate the study of device-independent (DI) protocols for two-party cryptography in the noisy-storage model. Specifically, we present a relatively easy to implement protocol for a cryptographic building block known as weak string erasure and prove its security even if the devices used in the protocol are prepared by the dishonest party. DI two-party cryptography is made challenging by the fact that Alice and Bob do not trust each other, which requires new techniques to establish security. We fully analyse the case of memoryless devices (for which sequential attacks are optimal) and the case of sequential attacks for arbitrary devices. The key ingredient of the proof, which might be of independent interest, is an explicit (and tight) relation between the violation of the Clauser-Horne-Shimony-Holt inequality observed by Alice and Bob and uncertainty generated by Alice against Bob who is forced to measure his system before finding out Alice’s setting (guessing with postmeasurement information). In particular, we show that security is possible for arbitrarily small violation.

  15. Process-independent strong running coupling

    DOE PAGES

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; ...

    2017-09-25

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  16. Process-independent strong running coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  17. Message Framing and Physical Activity Promotion in Colorectal Cancer Survivors.

    PubMed

    Hirschey, Rachel; Lipkus, Isaac; Jones, Lee; Mantyh, Christopher; Sloane, Richard; Demark-Wahnefried, Wendy

    2016-11-01

    To test effects of gain-framed versus loss-framed mailed brochures on increasing physical activity (PA) among colorectal cancer (CRC) survivors.
. Randomized trial with repeated measures at baseline, 1 month, and 12 months postintervention.
. Mail recruitment from tumor registries.
. 148 inactive CRC survivors who had completed primary therapy. 
. PA and constructs from the Theory of Planned Behavior (TPB) were assessed at baseline, 1 month, and 12 months. Participants were randomized to receive pamphlets describing PA benefits (gain framed) or disadvantages of not being physically active (loss framed). Baseline characteristics were compared using descriptive statistics. Repeated measures linear models were used to test PA changes.
. Minutes of PA and TPB constructs.
. Significant PA increases were observed in both study arms. Results did not differ by message frame. At one month, about 25% of previously inactive participants increased activity to national recommendations. Those who increased PA compared to those who did not had higher baseline scores on subjective norms, perceived behavioral control, and PA intentions. 
. Independent of message framing, mailed brochures are highly effective in producing within-subject short- and long-term increases in PA.
. CRC survivors may increase short- and long-term levels of PA by receiving inexpensive print brochures.

  18. Path integral measure and triangulation independence in discrete gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Steinhaus, Sebastian

    2012-02-01

    A path integral measure for gravity should also preserve the fundamental symmetry of general relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implementation of this symmetry into discrete quantum gravity models would imply discretization independence. We therefore consider the requirement of triangulation independence for the measure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in the semi-classical limit of spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.

  19. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldin, Gerald A.; Sharp, David H.

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  20. Respective contribution of orientation contrast and illusion of self-tilt to the rod-and-frame effect.

    PubMed

    Cian, C; Esquivié, D; Barraud, P A; Raphel, C

    1995-01-01

    The visual angle subtended by the frame seems to be an important determinant of the contribution of orientation contrast and illusion of self-tilt (ie vection) to the rod-and-frame effect. Indeed, the visuovestibular factor (which produces vection) seems to be predominant in large displays and the contrast effect in small displays. To determine how these two phenomena are combined to account for the rod-and-frame effect, independent estimates of the magnitude of each component in relation to the angular size subtended by the display were examined. Thirty-five observers were exposed to three sets of experimental situations: body-adjustment test (illusion of self-tilt only), the tilt illusion (contrast only) and the rod-and-frame test, each display subtending 7, 12, 28, and 45 deg of visual angle. Results showed that errors recorded in the three situations increased linearly with the angular size. Whatever the size of the frame, both mechanisms, contrast effect (tilt illusion) and illusory effect on self-orientation (body-adjustment test), are always present. However, rod-and-frame errors became greater at a faster rate than the other two effects as the size of teh stimuli became larger. Neither one nor the other independent phenomenen, nor the combined effect could fully account for the rod-and-frame effect whatever the angular size of the apparatus.

  1. Crypto-Unitary Forms of Quantum Evolution Operators

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2013-06-01

    The description of quantum evolution using unitary operator {u}(t)=exp(-i{h}t) requires that the underlying self-adjoint quantum Hamiltonian {h} remains time-independent. In a way extending the so called {PT}-symmetric quantum mechanics to the models with manifestly time-dependent "charge" {C}(t) we propose and describe an extension of such an exponential-operator approach to evolution to the manifestly time-dependent self-adjoint quantum Hamiltonians {h}(t).

  2. Reference Frames in Earth Rotation Theories

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Belda, Santiago; Heinkelmann, Robert; Getino, Juan; Schuh, Harald; Escapa, Alberto

    2015-04-01

    Nowadays the determination of the Earth Orientation Parameters (EOP) and the different Terrestrial Reference Frames (TRF) are not independent. The available theories of Earth rotation aims at providing the orientation of a certain reference system linked somehow to the Earth with respect to a given celestial system, considered as inertial. In the past years a considerable effort has been dedicated to the improvement of the TRF realizations, following the lines set up in the 1980's. However, the reference systems used in the derivation of the theories have been rather considered as something fully established, not deserving a special attention. In this contribution we review the definitions of the frames used in the main theoretical approaches, focusing on those used in the construction of IAU2000, and the extent to which their underlying hypotheses hold. The results are useful to determine the level of consistency of the predicted and determined EOP.

  3. Assessing the mental frame syncing in the elderly: a virtual reality protocol.

    PubMed

    Serino, Silvia; Cipresso, Pietro; Gaggioli, Andrea; Riva, Giuseppe

    2014-01-01

    Decline in spatial memory in the elderly is often underestimated, and it is crucial to fully investigate the cognitive underpinnings of early spatial impairment. A virtual reality-based procedure was developed to assess deficit in the "mental frame syncing", namely the cognitive ability that allows an effective orientation by synchronizing the allocentric view-point independent representation with the allocentric view-point dependent representation. A pilot study was carried out to evaluate abilities in the mental frame syncing in a sample of 16 elderly participants. Preliminary results indicated that the general cognitive functioning was associated with the ability in the synchronization between these two allocentric references frames.

  4. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    NASA Astrophysics Data System (ADS)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  5. Partially entangled states bridge in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen

    2014-10-01

    The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

  6. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  7. Frobenius-norm-based measures of quantum coherence and asymmetry

    PubMed Central

    Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.

    2016-01-01

    We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009

  8. Frame junction vibration transmission with a modified frame deformation model.

    PubMed

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  9. Frames and counter-frames giving meaning to dementia: a framing analysis of media content.

    PubMed

    Van Gorp, Baldwin; Vercruysse, Tom

    2012-04-01

    Media tend to reinforce the stigmatization of dementia as one of the most dreaded diseases in western society, which may have repercussions on the quality of life of those with the illness. The persons with dementia, but also those around them become imbued with the idea that life comes to an end as soon as the diagnosis is pronounced. The aim of this paper is to understand the dominant images related to dementia by means of an inductive framing analysis. The sample is composed of newspaper articles from six Belgian newspapers (2008-2010) and a convenience sample of popular images of the condition in movies, documentaries, literature and health care communications. The results demonstrate that the most dominant frame postulates that a human being is composed of two distinct parts: a material body and an immaterial mind. If this frame is used, the person with dementia ends up with no identity, which is in opposition to the Western ideals of personal self-fulfilment and individualism. For each dominant frame an alternative counter-frame is defined. It is concluded that the relative absence of counter-frames confirms the negative image of dementia. The inventory might be a help for caregivers and other professionals who want to evaluate their communication strategy. It is discussed that a more resolute use of counter-frames in communication about dementia might mitigate the stigma that surrounds dementia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. On the security of semi-device-independent QKD protocols

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anubhav; Ray, Maharshi; Veynar, Ryszard; Pawłowski, Marcin

    2018-06-01

    While fully device-independent security in (BB84-like) prepare-and-measure quantum key distribution (QKD) is impossible, it can be guaranteed against individual attacks in a semi-device-independent (SDI) scenario, wherein no assumptions are made on the characteristics of the hardware used except for an upper bound on the dimension of the communicated system. Studying security under such minimal assumptions is especially relevant in the context of the recent quantum hacking attacks wherein the eavesdroppers can not only construct the devices used by the communicating parties but are also able to remotely alter their behavior. In this work, we study the security of a SDIQKD protocol based on the prepare-and-measure quantum implementation of a well-known cryptographic primitive, the random access code (RAC). We consider imperfect detectors and establish the critical values of the security parameters (the observed success probability of the RAC and the detection efficiency) required for guaranteeing security against eavesdroppers with and without quantum memory. Furthermore, we suggest a minimal characterization of the preparation device in order to lower the requirements for establishing a secure key.

  11. Quantum-Like Representation of Non-Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  12. Increasing operational command and control security by the implementation of device independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bovino, Fabio Antonio; Messina, Angelo

    2016-10-01

    In a very simplistic way, the Command and Control functions can be summarized as the need to provide the decision makers with an exhaustive, real-time, situation picture and the capability to convey their decisions down to the operational forces. This two-ways data and information flow is vital to the execution of current operations and goes far beyond the border of military operations stretching to Police and disaster recovery as well. The availability of off-the shelf technology has enabled hostile elements to endanger the security of the communication networks by violating the traditional security protocols and devices and hacking sensitive databases. In this paper an innovative approach based to implementing Device Independent Quantum Key Distribution system is presented. The use of this technology would prevent security breaches due to a stolen crypto device placed in an end-to-end communication chain. The system, operating with attenuated laser, is practical and provides the increasing of the distance between the legitimate users.

  13. Quantum key distribution without the wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.

  14. Efficient quantum algorithm for computing n-time correlation functions.

    PubMed

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  15. Efficient Online Optimized Quantum Control for Adiabatic Quantum Computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Adiabatic quantum computation (AQC) relies on controlled adiabatic evolution to implement a quantum algorithm. While control evolution can take many forms, properly designed time-optimal control has been shown to be particularly advantageous for AQC. Grover's search algorithm is one such example where analytically-derived time-optimal control leads to improved scaling of the minimum energy gap between the ground state and first excited state and thus, the well-known quadratic quantum speedup. Analytical extensions beyond Grover's search algorithm present a daunting task that requires potentially intractable calculations of energy gaps and a significant degree of model certainty. Here, an in situ quantum control protocol is developed for AQC. The approach is shown to yield controls that approach the analytically-derived time-optimal controls for Grover's search algorithm. In addition, the protocol's convergence rate as a function of iteration number is shown to be essentially independent of system size. Thus, the approach is potentially scalable to many-qubit systems.

  16. Quantum potentiality revisited.

    PubMed

    Jaeger, Gregg

    2017-11-13

    Heisenberg offered an interpretation of the quantum state which made use of a quantitative version of an earlier notion, [Formula: see text], of Aristotle by both referring to it using its Latin name, potentia , and identifying its qualitative aspect with [Formula: see text] The relationship between this use and Aristotle's notion was not made by Heisenberg in full detail, beyond noting their common character: that of signifying the system's objective capacity to be found later to possess a property in actuality. For such actualization, Heisenberg required measurement to have taken place, an interaction with external systems that disrupts the otherwise independent, natural evolution of the quantum system. The notion of state actualization was later taken up by others, including Shimony, in the search for a law-like measurement process. Yet, the relation of quantum potentiality to Aristotle's original notion has been viewed as mainly terminological, even by those who used it thus. Here, I reconsider the relation of Heisenberg's notion to Aristotle's and show that it can be explicated in greater specificity than Heisenberg did. This is accomplished through the careful consideration of the role of potentia in physical causation and explanation, and done in order to provide a fuller understanding of this aspect of Heisenberg's approach to quantum mechanics. Most importantly, it is pointed out that Heisenberg's requirement of an external intervention during measurement that disrupts the otherwise independent, natural evolution of the quantum system is in accord with Aristotle's characterization of spontaneous causation. Thus, the need for a teleological understanding of the actualization of potentia, an often assumed requirement that has left this fundamental notion neglected, is seen to be spurious.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  17. Unconditional room-temperature quantum memory

    NASA Astrophysics Data System (ADS)

    Hosseini, M.; Campbell, G.; Sparkes, B. M.; Lam, P. K.; Buchler, B. C.

    2011-10-01

    Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionizing computation and communication is therefore driving significant research into developing optical quantum memory. A practical optical quantum memory must be able to store and recall quantum states on demand with high efficiency and low noise. Ideally, the platform for the memory would also be simple and inexpensive. Here, we present a complete tomographic reconstruction of quantum states that have been stored in the ground states of rubidium in a vapour cell operating at around 80°C. Without conditional measurements, we show recall fidelity up to 98% for coherent pulses containing around one photon. To unambiguously verify that our memory beats the quantum no-cloning limit we employ state-independent verification using conditional variance and signal-transfer coefficients.

  18. Universal freezing of quantum correlations within the geometric approach

    PubMed Central

    Cianciaruso, Marco; Bromley, Thomas R.; Roga, Wojciech; Lo Franco, Rosario; Adesso, Gerardo

    2015-01-01

    Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first principles that freezing of geometric quantum correlations is independent of the adopted distance and therefore universal. This finding paves the way to a deeper physical interpretation and future practical exploitation of the phenomenon for noisy quantum technologies. PMID:26053239

  19. Demonstration of measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Morimae, Tomoyuki; Walther, Philip

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

  20. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    NASA Astrophysics Data System (ADS)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  1. Quantum Entanglement Swapping between Two Multipartite Entangled States

    NASA Astrophysics Data System (ADS)

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-01

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  2. Quantum Entanglement Swapping between Two Multipartite Entangled States.

    PubMed

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-09

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  3. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.

  4. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  5. Moduli of quantum Riemannian geometries on <=4 points

    NASA Astrophysics Data System (ADS)

    Majid, S.; Raineri, E.

    2004-12-01

    We classify parallelizable noncommutative manifold structures on finite sets of small size in the general formalism of framed quantum manifolds and vielbeins introduced previously [S. Majid, Commun. Math. Phys. 225, 131 (2002)]. The full moduli space is found for ⩽3 points, and a restricted moduli space for 4 points. Generalized Levi-Cività connections and their curvatures are found for a variety of models including models of a discrete torus. The topological part of the moduli space is found for ⩽9 points based on the known atlas of regular graphs. We also remark on aspects of quantum gravity in this approach.

  6. Quantum cryptography with entangled photons

    PubMed

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger

    2000-05-15

    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  7. Classroom Discourse Frames.

    ERIC Educational Resources Information Center

    Pennington, Martha C.

    An analysis of classroom discourse proposes four frames, modeled as concentric circles. The inner most circle is the lesson frame, removed or sheltered from outside influences and most likely, in a language class, to maintain second-language usage. The next frame from the center is the lesson-support frame, an intermediate layer of classroom…

  8. The fourth age of quantum chemistry: molecules in motion.

    PubMed

    Császár, Attila G; Fábri, Csaba; Szidarovszky, Tamás; Mátyus, Edit; Furtenbacher, Tibor; Czakó, Gábor

    2012-01-21

    Developments during the last two decades in nuclear motion theory made it possible to obtain variational solutions to the time-independent, nuclear-motion Schrödinger equation of polyatomic systems as "exact" as the potential energy surface (PES) is. Nuclear motion theory thus reached a level whereby this branch of quantum chemistry started to catch up with the well developed and widely applied other branch, electronic structure theory. It seems to be fair to declare that we are now in the fourth age of quantum chemistry, where the first three ages are principally defined by developments in electronic structure techniques (G. Richards, Nature, 1979, 278, 507). In the fourth age we are able to incorporate into our quantum chemical treatment the motion of nuclei in an exact fashion and, for example, go beyond equilibrium molecular properties and compute accurate, temperature-dependent, effective properties, thus closing the gap between measurements and electronic structure computations. In this Perspective three fundamental algorithms for the variational solution of the time-independent nuclear-motion Schrödinger equation employing exact kinetic energy operators are presented: one based on tailor-made Hamiltonians, one on the Eckart-Watson Hamiltonian, and one on a general internal-coordinate Hamiltonian. It is argued that the most useful and most widely applicable procedure is the third one, based on a Hamiltonian containing a kinetic energy operator written in terms of internal coordinates and an arbitrary embedding of the body-fixed frame of the molecule. This Hamiltonian makes it feasible to treat the nuclear motions of arbitrary quantum systems, irrespective of whether they exhibit a single well-defined minimum or not, and of arbitrary reduced-dimensional models. As a result, molecular spectroscopy, an important field for the application of nuclear motion theory, has almost black-box-type tools at its disposal. Variational nuclear motion computations, based on

  9. Framing faces: Frame alignment impacts holistic face perception.

    PubMed

    Curby, Kim M; Entenman, Robert

    2016-11-01

    Traditional accounts of face perception emphasise the importance of the prototypical configuration of features within faces. However, here we probe influences of more general perceptual grouping mechanisms on holistic face perception. Participants made part-matching judgments about composite faces presented in intact external oval frames or frames made from misaligned oval parts. This manipulation served to disrupt basic perceptual grouping cues that facilitate the grouping of the two face halves together. This manipulation also produced an external face contour like that in the standard misaligned condition used within the classic composite face task. Notably, by introducing a discontinuity in the external contour, grouping of the face halves into a cohesive unit was discouraged, but face configuration was preserved. Conditions where both the face parts and the frames were misaligned together, as in the typical composite task paradigm, or where just the internal face parts where misaligned, were also included. Disrupting only the face frame similarly disrupted holistic face perception as disrupting both the frame and face configuration. However, misaligned face parts presented in aligned frames also incurred a cost to holistic perception. These findings provide support for the contribution of general-purpose perceptual grouping mechanisms to holistic face perception and are presented and discussed in the context of an enhanced object-based selection account of holistic perception.

  10. Controlled Photon Switch Assisted by Coupled Quantum Dots

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  11. Confidence in the safety of blood for transfusion: the effect of message framing.

    PubMed

    Farrell, K; Ferguson, E; James, V; Lowe, K C

    2001-11-01

    Blood transfusion is a universally used, life-saving medical intervention. However, there are increasing concerns among patients about blood safety. This study investigates the effect of message framing, a means of presenting information, on confidence in blood transfusion safety. The same factual information regarding the safety of blood for transfusion was presented to a sample of 254 adult students (donors and nondonors) as either a gain frame (lives saved), a loss frame (lives lost), or a combined frame (a loss frame expressed in a positive context). This provided a basic two-way, between-subjects design with 1) blood donation history (donors vs. nondonors) and 2) message frame (gain, loss, and combined) functioning as the between-groups factors. It was hypothesized that participants would consider blood safer if information was presented as a gain frame. The role of stress appraisals as potential mediators of the framing effect was also explored. As predicted, participants receiving the gain-frame information were significantly more confident of the safety of blood for transfusion than those receiving loss-frame information or both. This was unaffected by donation history or appraisals of stress associated with transfusion. The extent to which blood was considered safe was negatively associated, independently of framing effects, with perceptions that transfusion was threatening. Information about transfusion should be conveyed to patients in a form focusing on the positive, rather than the negative, known facts about the safety of blood.

  12. Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources.

    PubMed

    Liu, Li; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2017-09-12

    Measurement-device-independent quantum key distribution (MDI-QKD) with the active decoy state method can remove all detector loopholes, and resist the imperfections of sources. But it may lead to side channel attacks and break the security of QKD system. In this paper, we apply the passive decoy state method to the MDI-QKD based on polarization encoding mode. Not only all attacks on detectors can be removed, but also the side channel attacks on sources can be overcome. We get that the MDI-QKD with our passive decoy state method can have a performance comparable to the protocol with the active decoy state method. To fit for the demand of practical application, we discuss intensity fluctuation in the security analysis of MDI-QKD protocol using passive decoy state method, and derive the key generation rate for our protocol with intensity fluctuation. It shows that intensity fluctuation has an adverse effect on the key generation rate which is non-negligible, especially in the case of small data size of total transmitting signals and long distance transmission. We give specific simulations on the relationship between intensity fluctuation and the key generation rate. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account.

  13. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol

    PubMed Central

    Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2014-01-01

    The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431

  14. Determination of Stent Frame Displacement After Endovascular Aneurysm Sealing.

    PubMed

    van Veen, Ruben; van Noort, Kim; Schuurmann, Richte C L; Wille, Jan; Slump, Cornelis H; de Vries, Jean-Paul P M

    2018-02-01

    To describe and validate a new methodology for visualizing and quantifying 3-dimensional (3D) displacement of the stent frames of the Nellix endosystem after endovascular aneurysm sealing (EVAS). The 3D positions of the stent frames were registered to 5 fixed anatomical landmarks on the post-EVAS computed tomography (CT) scans, facilitating comparison of the position and shape of the stent frames between consecutive follow-up scans. Displacement of the proximal and distal ends of the stent frames, the entire stent frame trajectories, as well as changes in distance between the stent frames were determined for 6 patients with >5-mm displacement and 6 patients with <5-mm displacement at 1-year follow-up. The measurements were performed by 2 independent observers; the intraclass correlation coefficient (ICC) was used to determine interobserver variability. Three types of displacement were identified: displacement of the proximal and/or distal end of the stent frames, lateral displacement of one or both stent frames, and stent frame buckling. The ICC ranged from good (0.750) to excellent (0.958). No endoleak or migration was detected in the 12 patients on conventional CT angiography at 1 year. However, of the 6 patients with >5-mm displacement on the 1-year CT as determined by the new methodology, 2 went on to develop a type Ia endoleak in longer follow-up, and displacement progressed to >15 mm for 2 other patients. No endoleak or progressive displacement was appreciated for the patients with <5-mm displacement. The sac anchoring principle of the Nellix endosystem may result in several types of displacement that have not been observed during surveillance of regular endovascular aneurysm repairs. The presented methodology allows precise 3D determination of the Nellix endosystems and can detect subtle displacement better than standard CT angiography. Displacement >5 mm on the 1-year CT scans reconstructed with the new methodology may forecast impaired sealing and

  15. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  16. Experimental violation of local causality in a quantum network.

    PubMed

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-16

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  17. Experimental violation of local causality in a quantum network

    NASA Astrophysics Data System (ADS)

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  18. High-Density Quantum Sensing with Dissipative First Order Transitions.

    PubMed

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-13

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to sqrt[N]. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T_{2} coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  19. High-Density Quantum Sensing with Dissipative First Order Transitions

    NASA Astrophysics Data System (ADS)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-01

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to √{N }. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  20. Quantum Teleportation and Grover's Algorithm Without the Wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2017-02-01

    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover's search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

  1. An improved scheme on decoy-state method for measurement-device-independent quantum key distribution.

    PubMed

    Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin

    2015-10-14

    Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate.

  2. An improved scheme on decoy-state method for measurement-device-independent quantum key distribution

    PubMed Central

    Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin

    2015-01-01

    Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580

  3. Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method.

    PubMed

    Mao, Chen-Chen; Zhou, Xing-Yu; Zhu, Jian-Rong; Zhang, Chun-Hui; Zhang, Chun-Mei; Wang, Qin

    2018-05-14

    Recently Zhang et al [ Phys. Rev. A95, 012333 (2017)] developed a new approach to estimate the failure probability for the decoy-state BB84 QKD system when taking finite-size key effect into account, which offers security comparable to Chernoff bound, while results in an improved key rate and transmission distance. Based on Zhang et al's work, now we extend this approach to the case of the measurement-device-independent quantum key distribution (MDI-QKD), and for the first time implement it onto the four-intensity decoy-state MDI-QKD system. Moreover, through utilizing joint constraints and collective error-estimation techniques, we can obviously increase the performance of practical MDI-QKD systems compared with either three- or four-intensity decoy-state MDI-QKD using Chernoff bound analysis, and achieve much higher level security compared with those applying Gaussian approximation analysis.

  4. Device-independent randomness generation from several Bell estimators

    NASA Astrophysics Data System (ADS)

    Nieto-Silleras, Olmo; Bamps, Cédric; Silman, Jonathan; Pironio, Stefano

    2018-02-01

    Device-independent randomness generation and quantum key distribution protocols rely on a fundamental relation between the non-locality of quantum theory and its random character. This relation is usually expressed in terms of a trade-off between the probability of guessing correctly the outcomes of measurements performed on quantum systems and the amount of violation of a given Bell inequality. However, a more accurate assessment of the randomness produced in Bell experiments can be obtained if the value of several Bell expressions is simultaneously taken into account, or if the full set of probabilities characterizing the behavior of the device is considered. We introduce protocols for device-independent randomness generation secure against classical side information, that rely on the estimation of an arbitrary number of Bell expressions or even directly on the experimental frequencies of measurement outcomes. Asymptotically, this results in an optimal generation of randomness from experimental data (as measured by the min-entropy), without having to assume beforehand that the devices violate a specific Bell inequality.

  5. Towards Device-Independent Information Processing on General Quantum Networks

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Hoban, Matty J.

    2018-01-01

    The violation of certain Bell inequalities allows for device-independent information processing secure against nonsignaling eavesdroppers. However, this only holds for the Bell network, in which two or more agents perform local measurements on a single shared source of entanglement. To overcome the practical constraints that entangled systems can only be transmitted over relatively short distances, large-scale multisource networks have been employed. Do there exist analogs of Bell inequalities for such networks, whose violation is a resource for device independence? In this Letter, the violation of recently derived polynomial Bell inequalities will be shown to allow for device independence on multisource networks, secure against nonsignaling eavesdroppers.

  6. Towards Device-Independent Information Processing on General Quantum Networks.

    PubMed

    Lee, Ciarán M; Hoban, Matty J

    2018-01-12

    The violation of certain Bell inequalities allows for device-independent information processing secure against nonsignaling eavesdroppers. However, this only holds for the Bell network, in which two or more agents perform local measurements on a single shared source of entanglement. To overcome the practical constraints that entangled systems can only be transmitted over relatively short distances, large-scale multisource networks have been employed. Do there exist analogs of Bell inequalities for such networks, whose violation is a resource for device independence? In this Letter, the violation of recently derived polynomial Bell inequalities will be shown to allow for device independence on multisource networks, secure against nonsignaling eavesdroppers.

  7. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  8. Fundamental limits of repeaterless quantum communications

    PubMed Central

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-01-01

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters. PMID:28443624

  9. Fundamental limits of repeaterless quantum communications.

    PubMed

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-04-26

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed 'teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.

  10. The physics of quantum materials

    NASA Astrophysics Data System (ADS)

    Keimer, B.; Moore, J. E.

    2017-11-01

    The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.

  11. Anonymous quantum nonlocality.

    PubMed

    Liang, Yeong-Cherng; Curchod, Florian John; Bowles, Joseph; Gisin, Nicolas

    2014-09-26

    We investigate the phenomenon of anonymous quantum nonlocality, which refers to the existence of multipartite quantum correlations that are not local in the sense of being Bell-inequality-violating but where the nonlocality is--due to its biseparability with respect to all bipartitions--seemingly nowhere to be found. Such correlations can be produced by the nonlocal collaboration involving definite subset(s) of parties but to an outsider, the identity of these nonlocally correlated parties is completely anonymous. For all n≥3, we present an example of an n-partite quantum correlation exhibiting anonymous nonlocality derived from the n-partite Greenberger-Horne-Zeilinger state. An explicit biseparable decomposition of these correlations is provided for any partitioning of the n parties into two groups. Two applications of these anonymous Greenberger-Horne-Zeilinger correlations in the device-independent setting are discussed: multipartite secret sharing between any two groups of parties and bipartite quantum key distribution that is robust against nearly arbitrary leakage of information.

  12. Relativistic quantum optics: The relativistic invariance of the light-matter interaction models

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; Rodriguez-Lopez, Pablo

    2018-05-01

    In this article we discuss the invariance under general changes of reference frame of all the physical predictions of particle detector models in quantum field theory in general and, in particular, of those used in quantum optics to model atoms interacting with light. We find explicitly how the light-matter interaction Hamiltonians change under general coordinate transformations, and analyze the subtleties of the Hamiltonians commonly used to describe the light-matter interaction when relativistic motion is taken into account.

  13. Framed School--Frame Factors, Frames and the Dynamics of Social Interaction in School

    ERIC Educational Resources Information Center

    Persson, Anders

    2015-01-01

    This paper aims to show how the Goffman frame perspective can be used in an analysis of school and education and how it can be combined, in such analysis, with the frame factor perspective. The latter emphasizes factors that are determined outside the teaching process, while the former stresses how actors organize their experiences and define…

  14. Experimental violation of local causality in a quantum network

    PubMed Central

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-01-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols. PMID:28300068

  15. No-cloning of quantum steering

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Yi; Lambert, Neill; Liao, Teh-Lu; Nori, Franco; Li, Che-Ming

    2016-06-01

    Einstein-Podolsky-Rosen (EPR) steering allows two parties to verify their entanglement, even if one party’s measurements are untrusted. This concept has not only provided new insights into the nature of non-local spatial correlations in quantum mechanics, but also serves as a resource for one-sided device-independent quantum information tasks. Here, we investigate how EPR steering behaves when one-half of a maximally entangled pair of qudits (multidimensional quantum systems) is cloned by a universal cloning machine. We find that EPR steering, as verified by a criterion based on the mutual information between qudits, can only be found in one of the copy subsystems but not both. We prove that this is also true for the single-system analogue of EPR steering. We find that this restriction, which we term ‘no-cloning of quantum steering’, elucidates the physical reason why steering can be used to secure sources and channels against cloning-based attacks when implementing quantum communication and quantum computation protocols.

  16. Quantum potentiality revisited

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2017-10-01

    Heisenberg offered an interpretation of the quantum state which made use of a quantitative version of an earlier notion, , of Aristotle by both referring to it using its Latin name, potentia, and identifying its qualitative aspect with . The relationship between this use and Aristotle's notion was not made by Heisenberg in full detail, beyond noting their common character: that of signifying the system's objective capacity to be found later to possess a property in actuality. For such actualization, Heisenberg required measurement to have taken place, an interaction with external systems that disrupts the otherwise independent, natural evolution of the quantum system. The notion of state actualization was later taken up by others, including Shimony, in the search for a law-like measurement process. Yet, the relation of quantum potentiality to Aristotle's original notion has been viewed as mainly terminological, even by those who used it thus. Here, I reconsider the relation of Heisenberg's notion to Aristotle's and show that it can be explicated in greater specificity than Heisenberg did. This is accomplished through the careful consideration of the role of potentia in physical causation and explanation, and done in order to provide a fuller understanding of this aspect of Heisenberg's approach to quantum mechanics. Most importantly, it is pointed out that Heisenberg's requirement of an external intervention during measurement that disrupts the otherwise independent, natural evolution of the quantum system is in accord with Aristotle's characterization of spontaneous causation. Thus, the need for a teleological understanding of the actualization of potentia, an often assumed requirement that has left this fundamental notion neglected, is seen to be spurious. This article is part of the

  17. Network-based H.264/AVC whole frame loss visibility model and frame dropping methods.

    PubMed

    Chang, Yueh-Lun; Lin, Ting-Lan; Cosman, Pamela C

    2012-08-01

    We examine the visual effect of whole frame loss by different decoders. Whole frame losses are introduced in H.264/AVC compressed videos which are then decoded by two different decoders with different common concealment effects: frame copy and frame interpolation. The videos are seen by human observers who respond to each glitch they spot. We found that about 39% of whole frame losses of B frames are not observed by any of the subjects, and over 58% of the B frame losses are observed by 20% or fewer of the subjects. Using simple predictive features which can be calculated inside a network node with no access to the original video and no pixel level reconstruction of the frame, we developed models which can predict the visibility of whole B frame losses. The models are then used in a router to predict the visual impact of a frame loss and perform intelligent frame dropping to relieve network congestion. Dropping frames based on their visual scores proves superior to random dropping of B frames.

  18. Generalized Jaynes-Cummings model as a quantum search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanelli, A.

    2009-07-15

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  19. Reference Frames and Relativity.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)

  20. Quantum walks with an anisotropic coin II: scattering theory

    NASA Astrophysics Data System (ADS)

    Richard, S.; Suzuki, A.; de Aldecoa, R. Tiedra

    2018-05-01

    We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we consider include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary operators in a two-Hilbert spaces setting, which is of independent interest.

  1. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons

    PubMed Central

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-01-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276

  2. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  3. The language of uncertainty in genetic risk communication: framing and verbal versus numerical information.

    PubMed

    Welkenhuysen, M; Evers-Kiebooms, G; d'Ydewalle, G

    2001-05-01

    Within a group of 300 medical students, two characteristics of risk communication in the context of a decision regarding prenatal diagnosis for cystic fibrosis are manipulated: verbal versus numerical probabilities and the negative versus positive framing of the problem (having a child with versus without cystic fibrosis). Independently of the manipulations, most students were in favor of prenatal diagnosis. The effect of framing was only significant in the conditions with verbal information: negative framing produced a stronger choice in favor of prenatal diagnosis than positive framing. The framing effect in the verbal conditions and its absence in the numerical conditions are explained by the dominance of the problem-occurrence orientation in health matters as well as a recoding process which is more likely to occur in the numerical (the probability "1-P" switches to its counterpart "P") than in the verbal conditions. The implications for the practice of genetic counseling are discussed.

  4. Quantum indistinguishability in chemical reactions.

    PubMed

    Fisher, Matthew P A; Radzihovsky, Leo

    2018-05-15

    Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.

  5. Quantum rewinding via phase estimation

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    2015-03-01

    In cryptography, the notion of a zero-knowledge proof was introduced by Goldwasser, Micali, and Rackoff. An interactive proof system is said to be zero-knowledge if any verifier interacting with an honest prover learns nothing beyond the validity of the statement being proven. With recent advances in quantum information technologies, it has become interesting to ask if classical zero-knowledge proof systems remain secure against adversaries with quantum computers. The standard approach to show the zero-knowledge property involves constructing a simulator for a malicious verifier that can be rewinded to a previous step when the simulation fails. In the quantum setting, the simulator can be described by a quantum circuit that takes an arbitrary quantum state as auxiliary input but rewinding becomes a nontrivial issue. Watrous proposed a quantum rewinding technique in the case where the simulation's success probability is independent of the auxiliary input. Here I present a more general quantum rewinding scheme that employs the quantum phase estimation algorithm. This work was funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

  6. Inertial nonvacuum states viewed from the Rindler frame

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Padmanabhan, T.

    2015-02-01

    The appearance of the inertial vacuum state in Rindler frame has been extensively studied in the literature, both from the point of view of quantum field theory developed using Rindler foliation and using the response of an Unruh-Dewitt detector. In comparison, less attention has been devoted to the study of inertial nonvacuum states when viewed from the Rindler frame. We provide a comprehensive study of this issue in this paper. We first present a general formalism describing the characterization of arbitrary inertial state (i) when described using an arbitrary foliation and (ii) using the response of an Unruh-DeWitt detector moving along an arbitrary trajectory. This allows us to calculate the mean number of particles in an arbitrary inertial state, when the QFT is described using an arbitrary foliation of spacetime or when the state is probed by a detector moving along an arbitrary trajectory. We use this formalism to explicitly compute the results for the Rindler frame and uniformly accelerated detectors. Any arbitrary inertial state will always have a thermal component in the Rindler frame with additional contributions arising from the nonvacuum nature. We classify the nature of the additional contributions in terms of functions characterizing the inertial state. We establish that for all physically well-behaved normalizable inertial states, the correction terms decrease rapidly with the energy of the Rindler mode so that the high frequency limit is dominated by the thermal noise in any normalizable inertial state. However, inertial states which are not strictly normalizable like, for example, the one-particle state with definite momentum, lead to a constant contribution at all high frequencies in the Rindler frame. We show that a similar behavior arises in the response of the Unruh-DeWitt detector as well. In the case of the detector response, we provide a physical interpretation for the constant contribution at high frequencies in terms of total detection

  7. The transactional interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    2001-06-01

    The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."

  8. Superadiabatic Controlled Evolutions and Universal Quantum Computation.

    PubMed

    Santos, Alan C; Sarandy, Marcelo S

    2015-10-29

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.

  9. Superadiabatic Controlled Evolutions and Universal Quantum Computation

    PubMed Central

    Santos, Alan C.; Sarandy, Marcelo S.

    2015-01-01

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064

  10. 3-D ultrasound volume reconstruction using the direct frame interpolation method.

    PubMed

    Scheipers, Ulrich; Koptenko, Sergei; Remlinger, Rachel; Falco, Tony; Lachaine, Martin

    2010-11-01

    computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.

  11. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  12. Strategic Framing Study Circles: toward a gold standard of framing pedagogy.

    PubMed

    Feinberg, Jane

    2009-01-01

    This article explains how communities of practice have been developed as part of FrameWorks' field-building efforts. Strategic Framing Study Circles, as they are known, have been conducted with four statewide coalitions, one group of national organizations, and an emerging regional coalition. The goal of each community of practice is to build among participants a solid base of framing skills and competencies and to help them understand that despite varied organizational agendas, they can share a frame to tremendous collective advantage.

  13. Quantum sensing with arbitrary frequency resolution

    NASA Astrophysics Data System (ADS)

    Boss, J. M.; Cujia, K. S.; Zopes, J.; Degen, C. L.

    2017-05-01

    Quantum sensing takes advantage of well-controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen-vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 microhertz over a megahertz bandwidth. The continuous sampling further guarantees an enhanced sensitivity, reaching a signal-to-noise ratio in excess of 104 for a 170-nanotesla test signal measured during a 1-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.

  14. Quantum Steering Beyond Instrumental Causal Networks

    NASA Astrophysics Data System (ADS)

    Nery, R. V.; Taddei, M. M.; Chaves, R.; Aolita, L.

    2018-04-01

    We theoretically predict, and experimentally verify with entangled photons, that outcome communication is not enough for hidden-state models to reproduce quantum steering. Hidden-state models with outcome communication correspond, in turn, to the well-known instrumental processes of causal inference but in the one-sided device-independent scenario of one black-box measurement device and one well-characterized quantum apparatus. We introduce one-sided device-independent instrumental inequalities to test against these models, with the appealing feature of detecting entanglement even when communication of the black box's measurement outcome is allowed. We find that, remarkably, these inequalities can also be violated solely with steering, i.e., without outcome communication. In fact, an efficiently computable formal quantifier—the robustness of noninstrumentality—naturally arises, and we prove that steering alone is enough to maximize it. Our findings imply that quantum theory admits a stronger form of steering than known until now, with fundamental as well as practical potential implications.

  15. Classifying the Quantum Phases of Matter

    DTIC Science & Technology

    2015-01-01

    Kim related entanglement entropy to topological storage of quantum information [8]. Michalakis et al. showed that a particle-like excitation spectrum...Perturbative analysis of topological entanglement entropy from conditional independence, Phys. Rev. B 86, 254116 (2012), arXiv:1210.2360. [3] I. Kim...symmetries or long-range entanglement ), (2) elucidating the properties of three-dimensional quantum codes (in particular those which admit no string-like

  16. Message framing with respect to decisions about vaccination: the roles of frame valence, frame method and perceived risk.

    PubMed

    Ferguson, Eamonn; Gallagher, Laura

    2007-11-01

    People respond differently when information is framed either positively or negatively (frame valence). Two prominent models propose that the effects of valence are moderated by (1) the method of framing (attributes vs. goals: Levin, Schneider, & Gaeth, 1998) and (2) perceived risk (Rothman & Salovey, 1997). This experiment (N=200) explores the joint influence of both of these moderators with respect to decisions about a flu vaccination. The study extends previous work by integrating these two models and exploring the moderating effects of two different aspects of perceived risk (personal outcome effectiveness and procedural risk). The results show that personal outcome effectiveness indirectly links frames to intentions. Procedural risk moderates the relationship between valence and method in a manner consistent with predictions from Levin et al.. Partial support for the model proposed by Rothman and Salovey are observed for goal frames only.

  17. Quantum speed limit for arbitrary initial states

    PubMed Central

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Cao, Jun-Peng; Fan, Heng

    2014-01-01

    The minimal time a system needs to evolve from an initial state to its one orthogonal state is defined as the quantum speed limit time, which can be used to characterize the maximal speed of evolution of a quantum system. This is a fundamental question of quantum physics. We investigate the generic bound on the minimal evolution time of the open dynamical quantum system. This quantum speed limit time is applicable to both mixed and pure initial states. We then apply this result to the damped Jaynes-Cummings model and the Ohimc-like dephasing model starting from a general time-evolution state. The bound of this time-dependent state at any point in time can be found. For the damped Jaynes-Cummings model, when the system starts from the excited state, the corresponding bound first decreases and then increases in the Markovian dynamics. While in the non-Markovian regime, the speed limit time shows an interesting periodic oscillatory behavior. For the case of Ohimc-like dephasing model, this bound would be gradually trapped to a fixed value. In addition, the roles of the relativistic effects on the speed limit time for the observer in non-inertial frames are discussed. PMID:24809395

  18. Quantum hydrodynamics: capturing a reactive scattering resonance.

    PubMed

    Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K

    2005-08-01

    The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.

  19. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  20. Independent Discovery of a Probable Nova in M81

    NASA Astrophysics Data System (ADS)

    Kucakova, H.; Hornoch, K.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-03-01

    The M81 nova monitoring collaboration reports the independent discovery of a probable nova in M81 on a co-added 1350-s unfiltered CCD frame taken on 2018 Mar. 21.952 UT with the 0.65-m telescope at Ondrejov.

  1. Independent Discovery of a Probable Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-04-01

    The M81 nova monitoring collaboration reports the independent discovery of a probable nova in M81 on a co-added 2700-s unfiltered CCD frame taken on 2018 Apr. 2.815 UT with the 0.65-m telescope at Ondrejov.

  2. A dirty word or a dirty world?: Attribute framing, political affiliation, and query theory.

    PubMed

    Hardisty, David J; Johnson, Eric J; Weber, Elke U

    2010-01-01

    We explored the effect of attribute framing on choice, labeling charges for environmental costs as either an earmarked tax or an offset. Eight hundred ninety-eight Americans chose between otherwise identical products or services, where one option included a surcharge for emitted carbon dioxide. The cost framing changed preferences for self-identified Republicans and Independents, but did not affect Democrats' preferences. We explain this interaction by means of query theory and show that attribute framing can change the order in which internal queries supporting one or another option are posed. The effect of attribute labeling on query order is shown to depend on the representations of either taxes or offsets held by people with different political affiliations.

  3. Quantum teleportation over 143 kilometres using active feed-forward.

    PubMed

    Ma, Xiao-Song; Herbst, Thomas; Scheidl, Thomas; Wang, Daqing; Kropatschek, Sebastian; Naylor, William; Wittmann, Bernhard; Mech, Alexandra; Kofler, Johannes; Anisimova, Elena; Makarov, Vadim; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton

    2012-09-13

    The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

  4. Simulation of quantum dynamics with integrated photonics

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  5. Nonlocal character of quantum theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    1997-04-01

    According to a common conception of causality, the truth of a statement that refers only to phenomena confined to an earlier time cannot depend upon which measurement an experimenter will freely choose to perform at a later time. According to a common idea of the theory of relativity this causality condition should be valid in all Lorentz frames. It is shown here that this concept of relativistic causality is incompatible with some simple predictions of quantum theory. {copyright} {ital 1997 American Association of Physics Teachers.}

  6. Non-classical Correlations and Quantum Coherence in Mixed Environments

    NASA Astrophysics Data System (ADS)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  7. Towards a Quantum Memory assisted MDI-QKD node

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-04-01

    The creation of large quantum network that permits the communication of quantum states and the secure distribution of cryptographic keys requires multiple operational quantum memories. In this work we present our progress towards building a prototypical quantum network that performs the memory-assisted measurement device independent QKD protocol. Currently our network combines the quantum part of the BB84 protocol with room-temperature quantum memory operation, while still maintaining relevant quantum bit error rates for single-photon level operation. We will also discuss our efforts to use a network of two room temperature quantum memories, receiving, storing and transforming randomly polarized photons in order to realize Bell state measurements. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801, the National Science Foundation, Grant Number PHY-1404398 and the Simons Foundation, Grant Number SBF241180.

  8. Postselection technique for quantum channels with applications to quantum cryptography.

    PubMed

    Christandl, Matthias; König, Robert; Renner, Renato

    2009-01-16

    We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for an arbitrary input, it is sufficient to consider the case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained with help of the exponential de Finetti theorem.

  9. Framing of feedback impacts student's satisfaction, self-efficacy and performance.

    PubMed

    van de Ridder, J M Monica; Peters, Claudia M M; Stokking, Karel M; de Ru, J Alexander; Ten Cate, Olle Th J

    2015-08-01

    Feedback is considered important to acquire clinical skills. Research evidence shows that feedback does not always improve learning and its effects may be small. In many studies, a variety of variables involved in feedback provision may mask either one of their effects. E.g., there is reason to believe that the way oral feedback is framed may affect its effect if other variables are held constant. In a randomised controlled trial we investigated the effect of positively and negatively framed feedback messages on satisfaction, self-efficacy, and performance. A single blind randomised controlled between-subject design was used, with framing of the feedback message (positively-negatively) as independent variable and examination of hearing abilities as the task. First year medical students' (n = 59) satisfaction, self-efficacy, and performance were the dependent variables and were measured both directly after the intervention and after a 2 weeks delay. Students in the positively framed feedback condition were significantly more satisfied and showed significantly higher self-efficacy measured directly after the performance. Effect sizes found were large, i.e., partial η (2) = 0.43 and η (2) = 0.32 respectively. They showed a better performance throughout the whole study. Significant performance differences were found both at the initial performance and when measured 2 weeks after the intervention: effects were of medium size, respectively r = -.31 and r = -.32. Over time in both conditions performance and self-efficacy decreased. Framing the feedback message in either a positive or negative manner affects students' satisfaction and self-efficacy directly after the intervention be it that these effects seem to fade out over time. Performance may be enhanced by positive framing, but additional studies need to confirm this. We recommend using a positive frame when giving feedback on clinical skills.

  10. Quantum Graphical Models and Belief Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, M.S.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ont., N2L 2Y5; Poulin, D.

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markovmore » Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.« less

  11. Framing Options as Choice or Opportunity: Does the Frame Influence Decisions?

    PubMed

    Abhyankar, Purva; Summers, Barbara A; Velikova, Galina; Bekker, Hilary L

    2014-07-01

    Health professionals must enable patients to make informed decisions about health care choices through unbiased presentation of all options. This study examined whether presenting the decision as "opportunity" rather than "choice" biased individuals' preferences in the context of trial participation for cancer treatment. Self-selecting healthy women (N = 124) were randomly assigned to the following decision frames: opportunity to take part in the trial (opt-in), opportunity to be removed from the trial (opt-out), and choice to have standard treatment or take part in the trial (choice). The computer-based task required women to make a hypothetical choice about a real-world cancer treatment trial. The software presented the framed scenario, recorded initial preference, presented comprehensive and balanced information, traced participants' use of information during decision making, and recorded final decision. A posttask paper questionnaire assessed perceived risk, attitudes, subjective norm, perceived behavioral control, and satisfaction with decision. Framing influenced women's immediate preferences. Opportunity frames, whether opt-in or opt-out, introduced a bias as they discouraged women from choosing standard treatment. Using the choice frame avoided this bias. The opt-out opportunity frame also affected women's perceived social norm; women felt that others endorsed the trial option. The framing bias was not present once participants had had the opportunity to view detailed information on the options within a patient decision aid format. There were no group differences in information acquisition and final decisions. Sixteen percent changed their initial preference after receiving full information. A "choice" frame, where all treatment options are explicit, is less likely to bias preferences. Presentation of full information in parallel, option-by-attribute format is likely to "de-bias" the decision frame. Tailoring of information to initial preferences would be

  12. Further characterization and independent validation of a DNA aptamer-quantum dot-based magnetic sandwich assay for Campylobacter.

    PubMed

    Bruno, John G; Sivils, Jeffrey C

    2017-11-01

    Previously reported DNA aptamers developed against surface proteins extracted from Campylobacter jejuni were further characterized by aptamer-based Western blotting and shown to bind epitopes on proteins weighing ~16 and 60 kD from reduced C. jejuni and Campylobacter coli lysates. Proteins of these approximate weights have also been identified in traditional antibody-based Western blots of Campylobacter spp. Specificity of the capture and reporter aptamers from the previous report was further validated by aptamer-based ELISA-like (ELASA) colorimetric microplate assay. Finally, the limit of detection of the previously reported plastic-adherent aptamer-magnetic bead and aptamer-quantum dot sandwich assay (PASA) was validated by an independent food safety testing laboratory to lie between 5 and 10 C. jejuni cells per milliliter in phosphate buffered saline and repeatedly frozen and thawed chicken rinsate. Such ultrasensitive and rapid (30 min) aptamer-based assays could provide alternative or additional screening tools to enhance food safety testing for Campylobacter and other foodborne pathogens.

  13. Independent Discovery of an Apparent Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-02-01

    The M81 nova monitoring collaboration reports the independent discovery of an apparent nova in M81 on a co-added 2700-s unfiltered CCD frame taken on 2018 Feb. 19.039 UT with the 0.65-m telescope at Ondrejov (OND).

  14. Computing on quantum shared secrets

    NASA Astrophysics Data System (ADS)

    Ouyang, Yingkai; Tan, Si-Hui; Zhao, Liming; Fitzsimons, Joseph F.

    2017-11-01

    A (k ,n )-threshold secret-sharing scheme allows for a string to be split into n shares in such a way that any subset of at least k shares suffices to recover the secret string, but such that any subset of at most k -1 shares contains no information about the secret. Quantum secret-sharing schemes extend this idea to the sharing of quantum states. Here we propose a method of performing computation securely on quantum shared secrets. We introduce a (n ,n )-quantum secret sharing scheme together with a set of algorithms that allow quantum circuits to be evaluated securely on the shared secret without the need to decode the secret. We consider a multipartite setting, with each participant holding a share of the secret. We show that if there exists at least one honest participant, no group of dishonest participants can recover any information about the shared secret, independent of their deviations from the algorithm.

  15. Feynman propagator for spin foam quantum gravity.

    PubMed

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  16. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    ERIC Educational Resources Information Center

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  17. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  18. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  19. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  20. Trestle Reflected Framing Plan, Trestle Deck Plan, Trestle Framing Plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Trestle Reflected Framing Plan, Trestle Deck Plan, Trestle Framing Plan - Denver & Rio Grande Railroad, San Juan Extension, Wolf Creek Trestle, Crossing Wolf Creek at Milepost 339.78, Chama, Rio Arriba County, NM

  1. Symptomatic venous thromboembolism following circular frame treatment for tibial fractures.

    PubMed

    Vollans, S; Chaturvedi, A; Sivasankaran, K; Madhu, T; Hadland, Y; Allgar, V; Sharma, H K

    2015-01-01

    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality following tibial fractures. The risk is as high as 77% without prophylaxis and around 10% with prophylaxis. Within the current literature there are no figures reported specifically for those individuals treated with circular frames. Our aim was to evaluate the VTE incidence within a single surgeon series and to evaluate potential risk factors. We retrospectively reviewed our consecutive single surgeon series of 177 patients admitted to a major trauma unit with tibial fractures. All patients received standardised care, including chemical thromboprophylaxis within 24h of injury until independent mobility was achieved. We comprehensively reviewed our prospective database and medical records looking at demographics and potential risk factors. Seven patients (4.0% ± 2.87%) developed symptomatic VTE during the course of frame treatment; three deep vein thrombosis (DVTs) and four pulmonary embolisms (PEs). Those with a VTE event had significantly increased body mass index (BMI) (p = 0.01) when compared to those without symptomatic VTE. No differences (p > 0.05) were observed between the groups in age, gender, smoking status, fracture type (anatomical allocation or open/closed), delay to frame treatment, weight bearing status post-frame, inpatient stay or total duration of frame treatment. This study suggests that increased BMI is a statistically significant risk factor for VTE, as reported in current literature. In addition, we calculated the true risk of VTE following circular frame treatment for tibial fracture in our series is from 1.13% to 6.87%, which is at least comparable to other forms of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The effect of message framing on self-management of chronic pain: a new perspective on intervention?

    PubMed

    Janke, E Amy; Spring, Bonnie; Weaver, Frances

    2011-07-01

    This study examines framed messages as a novel approach to promote self-management of chronic pain. Primary care patients reporting chronic pain (pain rated ≥ 4 on 0-10 NRS-I for ≥3 months) were randomly assigned to receive a gain- or loss-framed message promoting self-management of pain. Impact of the framed message on behavioural self-management (including communicating with providers, relaxation, activity pacing, pleasant activities and healthy lifestyle) was assessed. Post-message, individuals in the loss-frame condition reported significantly greater interest in and more knowledge gained from the information presented in the message (p≤0.03). Loss-frame participants were significantly more likely to express confidence that they would practice relaxation (p≤0.03). Pain readiness to change, pain self-efficacy and message frame independently influenced motivation to engage in relaxation as a self-management strategy. Across all behaviours assessed, there were no observed interactions between message frame and either pain self-efficacy or pain readiness to change (p>0.05). Framing may be useful to promote pain self-management; larger trials are needed to fully evaluate its potential and to further assess the applicability of framed communication to impact a broader range of chronic conditions. © 2011 Taylor & Francis

  3. Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states

    PubMed Central

    Bonet-Luz, Esther

    2016-01-01

    The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest’s theorem is shown to be Lie–Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie–Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature. PMID:27279764

  4. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  5. Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results.

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2017-08-01

    As shown in the EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities vt have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.

  6. Quantum probabilistic logic programming

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  7. Probabilistic quantum cloning of a subset of linearly dependent states

    NASA Astrophysics Data System (ADS)

    Rui, Pinshu; Zhang, Wen; Liao, Yanlin; Zhang, Ziyun

    2018-02-01

    It is well known that a quantum state, secretly chosen from a certain set, can be probabilistically cloned with positive cloning efficiencies if and only if all the states in the set are linearly independent. In this paper, we focus on probabilistic quantum cloning of a subset of linearly dependent states. We show that a linearly-independent subset of linearly-dependent quantum states {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩} can be probabilistically cloned if and only if any state in the subset cannot be expressed as a linear superposition of the other states in the set {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩}. The optimal cloning efficiencies are also investigated.

  8. Phase space quantum mechanics - Direct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of themore » formalism are demonstrated throughout the text.« less

  9. When message-frame fits salient cultural-frame, messages feel more persuasive.

    PubMed

    Uskul, Ayse K; Oyserman, Daphna

    2010-03-01

    The present study examines the persuasive effects of tailored health messages comparing those tailored to match (versus not match) both chronic cultural frame and momentarily salient cultural frame. Evidence from two studies (Study 1: n = 72 European Americans; Study 2: n = 48 Asian Americans) supports the hypothesis that message persuasiveness increases when chronic cultural frame, health message tailoring and momentarily salient cultural frame all match. The hypothesis was tested using a message about health risks of caffeine consumption among individuals prescreened to be regular caffeine consumers. After being primed for individualism, European Americans who read a health message that focused on the personal self were more likely to accept the message-they found it more persuasive, believed they were more at risk and engaged in more message-congruent behaviour. These effects were also found among Asian Americans who were primed for collectivism and who read a health message that focused on relational obligations. The findings point to the importance of investigating the role of situational cues in persuasive effects of health messages and suggest that matching content to primed frame consistent with the chronic frame may be a way to know what to match messages to.

  10. Robust bidirectional links for photonic quantum networks

    PubMed Central

    Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state–independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069

  11. Towards Holography via Quantum Source-Channel Codes.

    PubMed

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-14

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  12. Towards Holography via Quantum Source-Channel Codes

    NASA Astrophysics Data System (ADS)

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-01

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  13. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    PubMed

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  14. Independence and totalness of subspaces in phase space methods

    NASA Astrophysics Data System (ADS)

    Vourdas, A.

    2018-04-01

    The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rota's formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analysed using these concepts.

  15. Window Frame Types | Efficient Windows Collaborative

    Science.gov Websites

    metal frames. Metal Frames Metal Frame with Thermal Break Non-metal Frames Non-metal There is a variety of non-metal framing materials for windows including, wood, wood with metal/vinyl cladding, vinyl disadvantages. Non-metal Frames Non-metal Frame, Thermally Improved Does frame material type matter? The

  16. A-frame model for metaphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilpatrick, W.

    1982-01-01

    While literal language is successfully being subjected to automatic analysis, metaphors remain intractable. Using Minsky's frame theory the metaphoric process is viewed as a copying of stereotypic terminal clusters from the frames of the 1 degrees and 2 degrees terms of the metaphor. Stereotypic values from the two original frames share equal status in this new frame, while non-stereotypic values from the two will be kept separate for possible use in metaphoric extension. The a-frame analysis is illustrated by application to non-literary novel metaphors. Frames provide the quantity of information needed for interpretation. Certain frame values are marked as stereotypic.more » Creativity is realized by the construction of a new a-frame, and the tension is realized by the presence in a single a-frame of both shared stereotypic and discrete non-stereotypic values. 10 references.« less

  17. Towards loop quantum gravity without the time gauge.

    PubMed

    Cianfrani, Francesco; Montani, Giovanni

    2009-03-06

    The Hamiltonian formulation of the Holst action is reviewed and it provides a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the loop quantum gravity quantization procedure can be applied when the time-gauge condition does not stand.

  18. Quantum network with trusted and untrusted relays

    NASA Astrophysics Data System (ADS)

    Ma, Xiongfeng; Annabestani, Razieh; Fung, Chi-Hang Fred; Lo, Hoi-Kwong; Lütkenhaus, Norbert; PitkäNen, David; Razavi, Mohsen

    2012-02-01

    Quantum key distribution offers two distant users to establish a random secure key by exploiting properties of quantum mechanics, whose security has proven in theory. In practice, many lab and field demonstrations have been performed in the last 20 years. Nowadays, quantum network with quantum key distribution systems are tested around the world, such as in China, Europe, Japan and US. In this talk, I will give a brief introduction of recent development for quantum network. For the untrusted relay part, I will introduce the measurement-device-independent quantum key distribution scheme and a quantum relay with linear optics. The security of such scheme is proven without assumptions on the detection devices, where most of quantum hacking strategies are launched. This scheme can be realized with current technology. For the trusted relay part, I will introduce so-called delayed privacy amplification, with which no error correction and privacy amplification is necessarily to be performed between users and the relay. In this way, classical communications and computational power requirement on the relay site will be reduced.

  19. Language switching-but not foreign language use per se-reduces the framing effect.

    PubMed

    Oganian, Y; Korn, C W; Heekeren, H R

    2016-01-01

    Recent studies reported reductions of well-established biases in decision making under risk, such as the framing effect, during foreign language (FL) use. These modulations were attributed to the use of FL itself, which putatively entails an increase in emotional distance. A reduced framing effect in this setting, however, might also result from enhanced cognitive control associated with language-switching in mixed-language contexts, an account that has not been tested yet. Here we assess predictions of the 2 accounts in 2 experiments with over 1,500 participants. In Experiment 1, we tested a central prediction of the emotional distance account, namely that the framing effect would be reduced at low, but not high, FL proficiency levels. We found a strong framing effect in the native language, and surprisingly also in the foreign language, independent of proficiency. In Experiment 2, we orthogonally manipulated foreign language use and language switching to concurrently test the validity of both accounts. As in Experiment 1, foreign language use per se had no effect on framing. Crucially, the framing effect was reduced following a language switch, both when switching into the foreign and the native language. Thus, our results suggest that reduced framing effects are not mediated by increased emotional distance in a foreign language, but by transient enhancement of cognitive control, putting the interplay of bilingualism and decision making in a new light. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  1. Nonequilibrium dynamics of the O( N ) model on dS3 and AdS crunches

    NASA Astrophysics Data System (ADS)

    Kumar, S. Prem; Vaganov, Vladislav

    2018-03-01

    We study the nonperturbative quantum evolution of the interacting O( N ) vector model at large- N , formulated on a spatial two-sphere, with time dependent couplings which diverge at finite time. This model - the so-called "E-frame" theory, is related via a conformal transformation to the interacting O( N ) model in three dimensional global de Sitter spacetime with time independent couplings. We show that with a purely quartic, relevant deformation the quantum evolution of the E-frame model is regular even when the classical theory is rendered singular at the end of time by the diverging coupling. Time evolution drives the E-frame theory to the large- N Wilson-Fisher fixed point when the classical coupling diverges. We study the quantum evolution numerically for a variety of initial conditions and demonstrate the finiteness of the energy at the classical "end of time". With an additional (time dependent) mass deformation, quantum backreaction lowers the mass, with a putative smooth time evolution only possible in the limit of infinite quartic coupling. We discuss the relevance of these results for the resolution of crunch singularities in AdS geometries dual to E-frame theories with a classical gravity dual.

  2. Quantum interactions with closed timelike curves and superluminal signaling

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey; Stairs, Allen

    2014-02-01

    There is now a significant body of results on quantum interactions with closed timelike curves (CTCs) in the quantum information literature, for both the Deutsch model of CTC interactions (D-CTCs) and the projective model (P-CTCs). As a consequence, there is a prima facie argument exploiting entanglement that CTC interactions would enable superluminal and, indeed, effectively instantaneous signaling. In cases of spacelike separation between the sender of a signal and the receiver, whether a receiver measures the local part of an entangled state or a disentangled state to access the signal can depend on the reference frame. We propose a consistency condition that gives priority to either an entangled perspective or a disentangled perspective in spacelike-separated scenarios. For D-CTC interactions, the consistency condition gives priority to frames of reference in which the state is disentangled, while for P-CTC interactions the condition selects the entangled state. Using the consistency condition, we show that there is a procedure that allows Alice to signal to Bob in the past via relayed superluminal communications between spacelike-separated Alice and Clio, and spacelike-separated Clio and Bob. This opens the door to time travel paradoxes in the classical domain. Ralph [T. C. Ralph, arXiv:1107.4675 [quant-ph].] first pointed this out for P-CTCs, but we show that Ralph's procedure for a "radio to the past" is flawed. Since both D-CTCs and P-CTCs allow classical information to be sent around a spacetime loop, it follows from a result by Aaronson and Watrous [S. Aaronson and J. Watrous, Proc. R. Soc. A 465, 631 (2009), 10.1098/rspa.2008.0350] for CTC-enhanced classical computation that a quantum computer with access to P-CTCs would have the power of PSPACE, equivalent to a D-CTC-enhanced quantum computer.

  3. Complementarity of quantum discord and classically accessible information

    DOE PAGES

    Zwolak, Michael P.; Zurek, Wojciech H.

    2013-05-20

    The sum of the Holevo quantity (that bounds the capacity of quantum channels to transmit classical information about an observable) and the quantum discord (a measure of the quantumness of correlations of that observable) yields an observable-independent total given by the quantum mutual information. This split naturally delineates information about quantum systems accessible to observers – information that is redundantly transmitted by the environment – while showing that it is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. In addition, we prove an anti-symmetry property relating accessible information and discord. Itmore » shows that information becomes objective – accessible to many observers – only as quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. Lastly, the resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality while flagrantly quantum superpositions are out of reach.« less

  4. Thermodynamic universality of quantum Carnot engines

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  5. Radiation Effects in Nanostructures: Comparison of Proton Irradiation Induced Changes on Quantum Dots and Quantum Wells

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.

    2000-01-01

    Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.

  6. Framing effects in medical situations: distinctions of attribute, goal and risky choice frames.

    PubMed

    Peng, Jiaxi; Jiang, Yuan; Miao, Danmin; Li, Rui; Xiao, Wei

    2013-06-01

    To verify whether three different framing effects (risky choice, attribute and goal) exist in simulated medical situations and to analyse any differences. Medical decision-making problems were established, relating to medical skill evaluation, patient compliance and a selection of treatment options. All problems were described in positive and negative frame conditions. Significantly more positive evaluations were made if the doctor's medical records were described as 'of 100 patients, 70 patients became better' compared with those described as 'of 100 patients, 30 patients didn't become better'. Doctor's advice described in a negative frame resulted in significantly more decisions to comply, compared with advice described in a positive frame. Treatment options described in terms of survival rates resulted in significantly more adventurous choices compared with options described in terms of mortality rates. Decision-making reversal appeared in the risky choice and attribute frames, but not the goal frame. Framing effects were shown to exist in simulated medical situations, but there were significant differences among the three kinds of such effects.

  7. Message framing and perinatal decisions.

    PubMed

    Haward, Marlyse F; Murphy, Ryan O; Lorenz, John M

    2008-07-01

    The purpose of this study was to explore the effect of information framing on parental decisions about resuscitation of extremely premature infants. Secondary outcomes focused on elucidating the impact of other variables on treatment choices and determining whether those effects would take precedence over any framing effects. This confidential survey study was administered to adult volunteers via the Internet. The surveys depicted a hypothetical vignette of a threatened delivery at gestational age of 23 weeks, with prognostic outcome information framed as either survival with lack of disability (positive frame) or chance of dying and likelihood of disability among survivors (negative frame). Participants were randomly assigned to receive either the positively or negatively framed vignette. They were then asked to choose whether they would prefer resuscitation or comfort care. After completing the survey vignette, participants were directed to a questionnaire designed to test the secondary hypothesis and to explore possible factors associated with treatment decisions. A total of 146 subjects received prognostic information framed as survival data and 146 subjects received prognostic information framed as mortality data. Overall, 24% of the sample population chose comfort care and 76% chose resuscitation. A strong trend was detected toward a framing effect on treatment preference; respondents for whom prognosis was framed as survival data were more likely to elect resuscitation. This framing effect was significant in a multivariate analysis controlling for religiousness, parental status, and beliefs regarding the sanctity of life. Of these covariates, only religiousness modified susceptibility to framing; participants who were not highly religious were significantly more likely to be influenced to opt for resuscitation by the positive frame than were participants who were highly religious. Framing bias may compromise efforts to approach prenatal counseling in a

  8. Contextuality as a Resource for Models of Quantum Computation with Qubits

    NASA Astrophysics Data System (ADS)

    Bermejo-Vega, Juan; Delfosse, Nicolas; Browne, Dan E.; Okay, Cihan; Raussendorf, Robert

    2017-09-01

    A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.

  9. Verification of quantum entanglement of two-mode squeezed light source towards quantum radar and imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2017-08-01

    Two-mode squeezed light is an effective resource for quantum entanglement and shows a non-classical correlation between each optical mode. We are developing a two-mode squeezed light source to explore the possibility of quantum radar based on the quantum illumination theory. It is expected that the error probability for discrimination of target presence or absence is improved even in a lossy and noisy environment. We are also expecting to apply two-mode squeezed light source to quantum imaging. In this work we generated two-mode squeezed light and verify its quantum entanglement property towards quantum radar and imaging. Firstly we generated two independent single-mode squeezed light beams utilizing two sub-threshold optical parametric oscillators which include periodically-polled potassium titanyl phosphate crystals for the second order nonlinear interaction. Two single-mode squeezed light beams are combined using a half mirror with the relative optical phase of 90° between each optical field. Then entangled two-mode squeezed light beams can be generated. We observes correlation variances between quadrature phase amplitudes in entangled two-mode fields by balanced homodyne measurement. Finally we verified quantum entanglement property of two-mode squeezed light source based on Duan's and Simon's inseparability criterion.

  10. Independent Discovery of a Probable Luminous Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Kucakova, H.; Williams, S. C.; Henze, M.; Sala, G.; Jose, J.; Meusinger, H.; Darnley, M. J.; Kaur, A.; Hartmann, D. H.; Shafter, A. W.

    2018-04-01

    The M81 nova monitoring collaboration reports the independent discovery of a probable luminous nova in M81 on a co-added 4410-s unfiltered CCD frame taken on 2018 Apr. 9.044 UT with the 0.65-m telescope at Ondrejov.

  11. Speedup of quantum evolution of multiqubit entanglement states

    PubMed Central

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng

    2016-01-01

    As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757

  12. Testing safety eyewear: how frame and lens design affect lens retention.

    PubMed

    McMahon, Janice M; Beckerman, Stephen

    2007-02-01

    The aim of this study was to determine the role that frame and lens design play in lens retention during high-impact testing of safety eyewear that advertises conformance to the performance-based ANSI Z87.1-2003 standard. A total of 75 Z87 safety eyeglass frames (3 each of 25 frame models) were used in this study, procured from 5 of the leading U.S. safety frame manufacturers. Frames were fitted by an independent laboratory with 2.0-mm plano polycarbonate lenses in compliance with ANSI Z87.1-2003. Finished spectacles were sent to a subsequent laboratory testing facility where each frame was subjected to both high-mass and oblique-incidence high-velocity impacts to determine frame characteristics that were most highly associated with testing failure. Among the frame and lens parameters that were considered in this analysis were the A and B dimensions, effective diameter, distance between lenses, bridge type, frame material, bevel type, and frame cost. Certain variables were controlled for by maintaining consistency among all spectacle pairs, e.g., lens prescription, center thickness, and edge thickness. Multiple logistic regression was used to control potential confounding variables and to develop the best combination of them for predictive value. Of 25 separate frame models assessed, 10 passed both high-mass and high-velocity impact testing, i.e., none of the 3 frame/lens samples failed. Of the models that failed, 13 failures were caused by high-velocity testing, 1 by high-mass testing, and 1 failed both high-mass and high-velocity testing. None of the 15 spectacles with the SprinGuardtrade mark (Hilco, Plainville, Massachusetts) bevel design failed, although these were proprietary to 1 manufacturer and included only 5 frame models. Two spectacle designs (6 individual frames) incorporated an inverted bevel design of which 3 of the frames failed impact testing. Controlling for drop ball velocity among the 54 remaining standard "V" bevel spectacle pairs, the odds of

  13. Conformal frame dependence of inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domènech, Guillem; Sasaki, Misao, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp

    2015-04-01

    Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled tomore » a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.« less

  14. Hardy's test as a device-independent dimension witness

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amit; Roy, Arup; Bhattacharya, Some Sankar; Das, Subhadipa; Gazi, Md. Rajjak; Banik, Manik

    2015-08-01

    Knowing the dimension of an unknown physical system has practical relevance, as dimensionality plays an important role in various information theoretic tasks. In this work we show that a modified version of Hardy's argument, which reveals the contradiction of quantum theory with local realism, turns out to be useful for inspecting the minimal subsystem dimension of an unknown correlated quantum system. The use of Hardy's test in this task has a novel advantage: the subsystem dimension can be determined without knowing the detailed functioning of the experimental devices; i.e., Hardy's test suffices to be a device-independent dimension witness.

  15. Entanglement swapping with independent sources over an optical-fiber network

    NASA Astrophysics Data System (ADS)

    Sun, Qi-Chao; Mao, Ya-Li; Jiang, Yang-Fan; Zhao, Qi; Chen, Si-Jing; Zhang, Wei; Zhang, Wei-Jun; Jiang, Xiao; Chen, Teng-Yun; You, Li-Xing; Li, Li; Huang, Yi-Dong; Chen, Xian-Feng; Wang, Zhen; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2017-03-01

    Establishing entanglement between two remote systems by the method of entanglement swapping is an essential step for a long-distance quantum network. Here we report a field-test entanglement swapping experiment with two independent telecommunication band entangled photon-pair sources over an optical fiber network in Hefei. The two sources are located at two nodes that are 12.5 km apart and the Bell-state measurement is performed at a third location which is connected to the two source nodes with 14.7-km and 10.6-km optical fibers, respectively. The observed average visibility is 79.9 ±4.8 % , which is sufficient for the violation of Bell inequalities. Furthermore, with the swapped entanglement, we demonstrate a source-independent quantum key distribution, which is also immune to any detection attacks at the measurement site.

  16. Experimental joint quantum measurements with minimum uncertainty.

    PubMed

    Ringbauer, Martin; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Branciard, Cyril; White, Andrew G

    2014-01-17

    Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we test tight measurement-uncertainty relations using single photons. We implement two independent, idealized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt them to realistic experimental conditions. Exceptional quantum state fidelities of up to 0.999 98(6) allow us to verge upon the fundamental limits of measurement uncertainty.

  17. Edge Modes and Teleportation in a Topologically Insulating Quantum Wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrear, Majd; Mackovic, Brie; Semenoff, Gordon W.

    We find a simple model of an insulating state of a quantum wire which has a single isolated edge mode. We argue that, when brought to proximity, the edge modes on independent wires naturally form Bell entangled states which could be used for elementary quantum processes such as teleportation. We give an example of an algorithm which teleports the spin state of an electron from one quantum wire to another.

  18. Electrically insulating and sealing frame

    DOEpatents

    Guthrie, Robin J.

    1983-11-08

    A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.

  19. Steinberg ``AUDIOMAPS'' Music Appreciation-Via-Understanding: Special-Relativity + Expectations ``Quantum-Theory'': a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    NASA Astrophysics Data System (ADS)

    Fender, Lee; Steinberg, Russell; Siegel, Edward Carl-Ludwig

    2011-03-01

    Steinberg wildly popular "AUDIOMAPS" music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power-spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity "+" (with its enjoyment-expectations) a manifestation of quantum-theory expectation-values, together a music quantum-ACOUSTO/MUSICO-dynamics(QA/MD). Analysis via Derrida deconstruction enabled Siegel-Baez "Category-Semantics" "FUZZYICS"="CATEGORYICS ('TRIZ") Aristotle SoO DEduction , irrespective of Boon-Klimontovich vs. Voss-Clark[PRL(77)] music power-spectrum analysis sampling-time/duration controversy: part versus whole, shows QA/MD reigns supreme as THE music appreciation-via-analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music, (06)] brain/mind-barrier brain/mind-music connection is subtle/compelling/immediate!!!

  20. Faithful Entanglement Sharing for Quantum Communication Against Collective Noise

    NASA Astrophysics Data System (ADS)

    Niu, Hui-Chong; Ren, Bao-Cang; Wang, Tie-Jun; Hua, Ming; Deng, Fu-Guo

    2012-08-01

    We present an economical setup for faithful entanglement sharing against collective noise. It is composed of polarizing beam splitters, half wave plates, polarization independent wavelength division multiplexers, and frequency shifters. An arbitrary qubit error on the polarization state of each photon in a multi-photon system caused by the noisy channel can be rejected, without resorting to additional qubits, fast polarization modulators, and nondestructive quantum nondemolition detectors. Its success probability is in principle 100%, which is independent of the noise parameters, and it can be applied directly in any one-way quantum communication protocol based on entanglement.

  1. Quantum information transmission in the quantum wireless multihop network based on Werner state

    NASA Astrophysics Data System (ADS)

    Shi, Li-Hui; Yu, Xu-Tao; Cai, Xiao-Fei; Gong, Yan-Xiao; Zhang, Zai-Chen

    2015-05-01

    Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation. Project supported by the Prospective Future Network Project of Jiangsu Province, China (Grant No. BY2013095-1-18) and the Independent Project of State Key Laboratory of Millimeter Waves (Grant No. Z201504).

  2. Estimating the time evolution of NMR systems via a quantum-speed-limit-like expression

    NASA Astrophysics Data System (ADS)

    Villamizar, D. V.; Duzzioni, E. I.; Leal, A. C. S.; Auccaise, R.

    2018-05-01

    Finding the solutions of the equations that describe the dynamics of a given physical system is crucial in order to obtain important information about its evolution. However, by using estimation theory, it is possible to obtain, under certain limitations, some information on its dynamics. The quantum-speed-limit (QSL) theory was originally used to estimate the shortest time in which a Hamiltonian drives an initial state to a final one for a given fidelity. Using the QSL theory in a slightly different way, we are able to estimate the running time of a given quantum process. For that purpose, we impose the saturation of the Anandan-Aharonov bound in a rotating frame of reference where the state of the system travels slower than in the original frame (laboratory frame). Through this procedure it is possible to estimate the actual evolution time in the laboratory frame of reference with good accuracy when compared to previous methods. Our method is tested successfully to predict the time spent in the evolution of nuclear spins 1/2 and 3/2 in NMR systems. We find that the estimated time according to our method is better than previous approaches by up to four orders of magnitude. One disadvantage of our method is that we need to solve a number of transcendental equations, which increases with the system dimension and parameter discretization used to solve such equations numerically.

  3. 49 CFR 393.201 - Frames.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Frames. 393.201 Section 393.201 Transportation... SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393.201 Frames. (a) The frame or chassis of each commercial motor vehicle shall not be cracked, loose, sagging or...

  4. Automatic detection of end-diastolic and end-systolic frames in 2D echocardiography.

    PubMed

    Zolgharni, Massoud; Negoita, Madalina; Dhutia, Niti M; Mielewczik, Michael; Manoharan, Karikaran; Sohaib, S M Afzal; Finegold, Judith A; Sacchi, Stefania; Cole, Graham D; Francis, Darrel P

    2017-07-01

    Correctly selecting the end-diastolic and end-systolic frames on a 2D echocardiogram is important and challenging, for both human experts and automated algorithms. Manual selection is time-consuming and subject to uncertainty, and may affect the results obtained, especially for advanced measurements such as myocardial strain. We developed and evaluated algorithms which can automatically extract global and regional cardiac velocity, and identify end-diastolic and end-systolic frames. We acquired apical four-chamber 2D echocardiographic video recordings, each at least 10 heartbeats long, acquired twice at frame rates of 52 and 79 frames/s from 19 patients, yielding 38 recordings. Five experienced echocardiographers independently marked end-systolic and end-diastolic frames for the first 10 heartbeats of each recording. The automated algorithm also did this. Using the average of time points identified by five human operators as the reference gold standard, the individual operators had a root mean square difference from that gold standard of 46.5 ms. The algorithm had a root mean square difference from the human gold standard of 40.5 ms (P<.0001). Put another way, the algorithm-identified time point was an outlier in 122/564 heartbeats (21.6%), whereas the average human operator was an outlier in 254/564 heartbeats (45%). An automated algorithm can identify the end-systolic and end-diastolic frames with performance indistinguishable from that of human experts. This saves staff time, which could therefore be invested in assessing more beats, and reduces uncertainty about the reliability of the choice of frame. © 2017, Wiley Periodicals, Inc.

  5. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  6. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  7. Quantum limit of heat flow across a single electronic channel.

    PubMed

    Jezouin, S; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Jin, Y; Pierre, F

    2013-11-01

    Quantum physics predicts that there is a fundamental maximum heat conductance across a single transport channel and that this thermal conductance quantum, G(Q), is universal, independent of the type of particles carrying the heat. Such universality, combined with the relationship between heat and information, signals a general limit on information transfer. We report on the quantitative measurement of the quantum-limited heat flow for Fermi particles across a single electronic channel, using noise thermometry. The demonstrated agreement with the predicted G(Q) establishes experimentally this basic building block of quantum thermal transport. The achieved accuracy of below 10% opens access to many experiments involving the quantum manipulation of heat.

  8. The Field Dependence-Independence Construct: Some, One, or None.

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Kyllonen, Patrick

    The field dependency/independency construct (FDI) was measured using tests of perception of the upright such as the Rod and Frame Test (RFT) and tests of cognitive restructuring such as the Hidden Figures Test (HFT); relationships between cognitive restructing and perception of the upright were investigated. High school seniors received 34 tests…

  9. Quantum gravity and renormalization

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2015-02-01

    The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of non-renormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which also can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions d>3. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.

  10. Automating quantum experiment control

    NASA Astrophysics Data System (ADS)

    Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.

    2017-03-01

    The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

  11. All Frames Are Not Created Equal: A Typology and Critical Analysis of Framing Effects.

    PubMed

    Levin; Schneider; Gaeth

    1998-11-01

    Accentuate the positive or accentuate the negative? The literature has been mixed as to how the alternative framing of information in positive or negative terms affects judgments and decisions. We argue that this is because different studies have employed different operational definitions of framing and thus have tapped different underlying processes. We develop a typology to distinguish between three different kinds of valence framing effects. First we discuss the standard risky choice framing effect introduced by Tversky and Kahneman (1981) to illustrate how valence affects willingness to take a risk. Then we discuss attribute framing, which affects the evaluation of object or event characteristics, and goal framing, which affects the persuasiveness of a communication. We describe the distinctions, provide a number of examples of each type, and discuss likely theoretical mechanisms underlying each type of framing effect. Our typology helps explain and resolve apparent confusions in the literature, ties together studies with common underlying mechanisms, and serves as a guide to future research and theory development. We conclude that a broader perspective, focused on the cognitive and motivational consequences of valence-based encoding, opens the door to a deeper understanding of the causes and consequences of framing effects. Copyright 1998 Academic Press.

  12. Astrophysics of Reference Frame Tie Objects

    NASA Technical Reports Server (NTRS)

    Johnston, Kenneth J.; Boboltz, David; Fey, Alan Lee; Gaume, Ralph A.; Zacharias, Norbert

    2004-01-01

    The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.

  13. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    PubMed

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  14. Multiparameter Estimation in Networked Quantum Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.

    We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less

  15. Multiparameter Estimation in Networked Quantum Sensors

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.

    2018-02-01

    We introduce a general model for a network of quantum sensors, and we use this model to consider the following question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.

  16. Multiparameter Estimation in Networked Quantum Sensors

    DOE PAGES

    Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.

    2018-02-21

    We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less

  17. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  18. Message framing in social networking sites.

    PubMed

    Kao, Danny Tengti; Chuang, Shih-Chieh; Wang, Sui-Min; Zhang, Lei

    2013-10-01

    Online social networking sites represent significant new opportunities for Internet advertisers. However, results based on the real world cannot be generalized to all virtual worlds. In this research, the moderating effects of need for cognition (NFC) and knowledge were applied to examine the impact of message framing on attitudes toward social networking sites. A total of 216 undergraduates participated in the study. Results reveal that for social networking sites, while high-NFC individuals form more favorable attitudes toward negatively framed messages than positively framed messages, low-NFC individuals form more favorable attitudes toward positively framed messages than negatively framed messages. In addition, low-knowledge individuals demonstrate more favorable attitudes toward negatively framed messages than positively framed messages; however, the framing effect does not differentially affect the attitudes of high-knowledge individuals. Furthermore, the framing effect does not differentially affect the attitudes of high-NFC individuals with high knowledge. In contrast, low-NFC individuals with low knowledge hold more favorable attitudes toward positively framed messages than negatively framed messages.

  19. Parametric representation of open quantum systems and cross-over from quantum to classical environment.

    PubMed

    Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola

    2013-04-23

    The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field.

  20. Ground-to-satellite quantum teleportation.

    PubMed

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  1. Ground-to-satellite quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-01

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  2. Quantum estimation of parameters of classical spacetimes

    NASA Astrophysics Data System (ADS)

    Downes, T. G.; van Meter, J. R.; Knill, E.; Milburn, G. J.; Caves, C. M.

    2017-11-01

    We describe a quantum limit to the measurement of classical spacetimes. Specifically, we formulate a quantum Cramér-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to the detection of gravitational waves with the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.

  3. The role of message framing in promoting MMR vaccination: evidence of a loss-frame advantage.

    PubMed

    Abhyankar, Purva; O'Connor, Daryl B; Lawton, Rebecca

    2008-01-01

    This study examined the effects of message framing on intentions to obtain the measles, mumps and rubella (MMR) vaccine for one's child and investigated whether Theory of Planned Behaviour (TPB) and perceived outcome efficacy variables mediate and/or moderate message framing effects. One hundred and forty women read either a loss-framed or gain-framed message and then completed measures assessing their intentions to obtain the MMR vaccine for their child, and TPB and outcome efficacy variables. Exposure to the loss frame increased intentions to obtain the MMR vaccine and influenced perceptions of outcome efficacy. This suggests that outcome efficacy, but not other TPB variables may mediate framing effects within the context of MMR vaccination. Message frame, in addition to TPB variables, significantly predicted unique variance in behavioural intentions. These findings are discussed within the context of Prospect Theory, perceived risk and prevention/detection behaviours.

  4. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    PubMed

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  5. Simultaneous effects of pressure and temperature on donor binding energy in Pöschl-Teller quantum well

    NASA Astrophysics Data System (ADS)

    Hakimyfard, Alireza; Barseghyan, M. G.; Duque, C. A.; Kirakosyan, A. A.

    2009-12-01

    In the frame of the variational method and the effective-mass approximation, the effects of hydrostatic pressure and temperature on the binding energy for donor impurities in the Pöschl-Teller quantum well are studied. The binding energy dependencies on the width of the quantum well, the hydrostatic pressure, the impurity position, the temperature, and the parameters of the confining potential are reported. The results show that the binding energy increases (decreases) with the increasing of the hydrostatic pressure (temperature). It is also found that, associated with the symmetry breaking in the Pöschl-Teller quantum well, and depending on the impurity position, the binding energy can increase or decrease.

  6. [The framing effect: medical implications].

    PubMed

    Mazzocco, Ketti; Cherubini, Paolo; Rumiati, Rino

    2005-01-01

    Over the last 20 years, many studies explored how the way information is presented modifies choices. This sort of effect, referred to as "framing effects", typically consists of the inversion of choices when presenting structurally identical decision problems in different ways. It is a common assumption that physicians are unaffected (or less affected) by the surface description of a decision problem, because they are formally trained in medical decision making. However, several studies showed that framing effects occur even in the medical field. The complexity and variability of these effects are remarkable, making it necessary to distinguish among different framing effects, depending on whether the effect is obtained by modifying adjectives (attribute framing), goals of a behavior (goal framing), or the probability of an outcome (risky choice framing). A further reason for the high variability of the framing effects seems to be the domain of the decision problem, with different effects occurring in prevention decisions, disease-detection decisions, and treatment decisions. The present work reviews the studies on framing effects, in order to summarize them and clarify their possible role in medical decision making.

  7. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    NASA Astrophysics Data System (ADS)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2018-04-01

    Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  8. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy.

    PubMed

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-10

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  9. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    NASA Astrophysics Data System (ADS)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  10. Who's been framed? Framing effects are reduced in financial gambles made for others.

    PubMed

    Ziegler, Fenja V; Tunney, Richard J

    2015-01-01

    Decisions made on behalf of other people are sometimes more rational than those made for oneself. In this study we used a monetary gambling task to ask if the framing effect in decision-making is reduced in surrogate decision-making. Participants made a series of choices between a predetermined sure option and a risky gambling option of winning a proportion of an initial stake. Trials were presented as either a gain or a loss relative to that initial stake. In half of the trials participants made choices to earn money for themselves and in the other half they earned money for another participant. Framing effects were measured as risk seeking in loss frames and risk aversion in gain frames. Significant framing effects were observed both in trials in which participants earned money for themselves and those in which they earned money for another person; however, these framing effects were significantly reduced when making decisions for another person. It appears that the reduced emotional involvement when the decision-maker is not affected by the outcome of the decision thus lessens the framing effect without eradicating it altogether. This suggests that the deviation from rational choices in decision-making can be significantly reduced when the emotional impact on the decision maker is lessened. These results are discussed in relation to Somatic Distortion Theory.

  11. Steady state quantum discord for circularly accelerated atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less

  12. Three waves for quantum gravity

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Latosh, Boris

    2018-03-01

    Using effective field theoretical methods, we show that besides the already observed gravitational waves, quantum gravity predicts two further massive classical fields leading to two new massive waves. We set a limit on the masses of these new modes using data from the Eöt-Wash experiment. We point out that the existence of these new states is a model independent prediction of quantum gravity. We then explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of neutron stars or black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.

  13. A quantum approach to homomorphic encryption

    PubMed Central

    Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.

    2016-01-01

    Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security. PMID:27658349

  14. Identifying Issue Frames in Text

    PubMed Central

    Sagi, Eyal; Diermeier, Daniel; Kaufmann, Stefan

    2013-01-01

    Framing, the effect of context on cognitive processes, is a prominent topic of research in psychology and public opinion research. Research on framing has traditionally relied on controlled experiments and manually annotated document collections. In this paper we present a method that allows for quantifying the relative strengths of competing linguistic frames based on corpus analysis. This method requires little human intervention and can therefore be efficiently applied to large bodies of text. We demonstrate its effectiveness by tracking changes in the framing of terror over time and comparing the framing of abortion by Democrats and Republicans in the U.S. PMID:23874909

  15. Reflections on the information paradigm in quantum and gravitational physics

    NASA Astrophysics Data System (ADS)

    Andres Höhn, Philipp

    2017-08-01

    We reflect on the information paradigm in quantum and gravitational physics and on how it may assist us in approaching quantum gravity. We begin by arguing, using a reconstruction of its formalism, that quantum theory can be regarded as a universal framework governing an observer’s acquisition of information from physical systems taken as information carriers. We continue by observing that the structure of spacetime is encoded in the communication relations among observers and more generally the information flow in spacetime. Combining these insights with an information-theoretic Machian view, we argue that the quantum architecture of spacetime can operationally be viewed as a locally finite network of degrees of freedom exchanging information. An advantage - and simultaneous limitation - of an informational perspective is its quasi-universality, i.e. quasi-independence of the precise physical incarnation of the underlying degrees of freedom. This suggests to exploit these informational insights to develop a largely microphysics independent top-down approach to quantum gravity to complement extant bottom-up approaches by closing the scale gap between the unknown Planck scale physics and the familiar physics of quantum (field) theory and general relativity systematically from two sides. While some ideas have been pronounced before in similar guise and others are speculative, the way they are strung together and justified is new and supports approaches attempting to derive emergent spacetime structures from correlations of quantum degrees of freedom.

  16. Car Transfer and Wheelchair Loading Techniques in Independent Drivers with Paraplegia

    PubMed Central

    Haubert, Lisa Lighthall; Mulroy, Sara J.; Hatchett, Patricia E.; Eberly, Valerie J.; Maneekobkunwong, Somboon; Gronley, Joanne K.; Requejo, Philip S.

    2015-01-01

    Car transfers and wheelchair (WC) loading are crucial for independent community participation in persons with complete paraplegia from spinal cord injury, but are complex, physically demanding, and known to provoke shoulder pain. This study aimed to describe techniques and factors influencing car transfer and WC loading for individuals with paraplegia driving their own vehicles and using their personal WCs. Sedans were the most common vehicle driven (59%). Just over half (52%) of drivers place their right leg only into the vehicle prior to transfer. Overall, the leading hand was most frequently placed on the driver’s seat (66%) prior to transfer and the trailing hand was most often place on the WC seat (48%). Vehicle height influenced leading hand placement but not leg placement such that drivers of higher profile vehicles were more likely to place their hand on the driver’s seat than those who drove sedans. Body lift time was negatively correlated with level of injury and age and positively correlated with vehicle height and shoulder abduction strength. Drivers who transferred with their leading hand on the steering wheel had significantly higher levels of shoulder pain than those who placed their hand on the driver’s seat or overhead. The majority of participants used both hands (62%) to load their WC frame, and overall, most loaded their frame into the back (62%) vs. the front seat. Sedan drivers were more likely to load their frame into the front seat than drivers of higher profile vehicles (53 vs. 17%). Average time to load the WC frame (10.7 s) was 20% of the total WC loading time and was not related to shoulder strength, frame weight, or demographic characteristics. Those who loaded their WC frame into the back seat had significantly weaker right shoulder internal rotators. Understanding car transfers and WC loading in independent drivers is crucial to prevent shoulder pain and injury and preserve community participation. PMID:26442253

  17. Fabric panel clean change-out frame

    DOEpatents

    Brown, Ronald M.

    1995-01-31

    A fabric panel clean change-out frame, for use on a containment structure having rigid walls, is formed of a compression frame and a closure panel. The frame is formed of elongated spacers, each carrying a plurality of closely spaced flat springs, and each having a hooked lip extending on the side of the spring facing the spacer. The closure panel is includes a perimeter frame formed of flexible, wedge-shaped frame members that are receivable under the springs to deflect the hooked lips. A groove on the flexible frame members engages the hooked lips and locks the frame members in place under the springs. A flexible fabric panel is connected to the flexible frame members and closes its center.

  18. Development of two-framing camera with large format and ultrahigh speed

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoguo; Wang, Yuan; Wang, Yi

    2012-10-01

    High-speed imaging facility is important and necessary for the formation of time-resolved measurement system with multi-framing capability. The framing camera which satisfies the demands of both high speed and large format needs to be specially developed in the ultrahigh speed research field. A two-framing camera system with high sensitivity and time-resolution has been developed and used for the diagnosis of electron beam parameters of Dragon-I linear induction accelerator (LIA). The camera system, which adopts the principle of light beam splitting in the image space behind the lens with long focus length, mainly consists of lens-coupled gated image intensifier, CCD camera and high-speed shutter trigger device based on the programmable integrated circuit. The fastest gating time is about 3 ns, and the interval time between the two frames can be adjusted discretely at the step of 0.5 ns. Both the gating time and the interval time can be tuned to the maximum value of about 1 s independently. Two images with the size of 1024×1024 for each can be captured simultaneously in our developed camera. Besides, this camera system possesses a good linearity, uniform spatial response and an equivalent background illumination as low as 5 electrons/pix/sec, which fully meets the measurement requirements of Dragon-I LIA.

  19. Steinberg ``AUDIOMAPS" Music Appreciation-Via-Understanding: Special-Relativity + Expectations "Quantum-Theory": a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    NASA Astrophysics Data System (ADS)

    Steinberg, R.; Siegel, E.

    2010-03-01

    ``AUDIOMAPS'' music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power- spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity ``+'' (with its enjoyment- expectations) a manifestation of quantum-theory expectation- values, together a music quantum-ACOUSTO/MUSICO-dynamics (QA/MD). Analysis via Derrida deconstruction enabled Siegel- Baez ``Category-Semantics'' ``FUZZYICS''=``CATEGORYICS (``SON of 'TRIZ") classic Aristotle ``Square-of-Opposition" (SoO) DEduction-logic, irrespective of Boon-Klimontovich versus Voss- Clark[PRL(77)] music power-spectrum analysis sampling- time/duration controversy: part versus whole, shows that ``AUDIOMAPS" QA/MD reigns supreme as THE music appreciation-via- analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music,(2006)] brain/mind-barrier brain/mind-music connection is both subtle and compelling and immediate!!!

  20. Post-processing of adaptive optics images based on frame selection and multi-frame blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Rao, Changhui; Wei, Kai

    2008-07-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.

  1. Beyond quantum probability: another formalism shared by quantum physics and psychology.

    PubMed

    Dzhafarov, Ehtibar N; Kujala, Janne V

    2013-06-01

    There is another meeting place for quantum physics and psychology, both within and outside of cognitive modeling. In physics it is known as the issue of classical (probabilistic) determinism, and in psychology it is known as the issue of selective influences. The formalisms independently developed in the two areas for dealing with these issues turn out to be identical, opening ways for mutually beneficial interactions.

  2. Expandable space frames

    NASA Technical Reports Server (NTRS)

    Schoen, A. H. (Inventor)

    1973-01-01

    Expandable space frames having essentially infinite periodicity limited only by practical considerations, are described. Each expandable space frame comprises a plurality of hinge joint assemblies having arms that extend outwardly in predetermined symmetrically related directions from a central or vertex point. The outer ends of the arms form one part of a hinge point. The outer expandable space frame also comprises a plurality of struts. The outer ends of the struts from the other part of the hinged joint. The struts interconnect the plurality of hinge point in sychronism, the spaceframes can be expanded or collapsed. Three-dimensional as well as two-dimensional spaceframes of this general nature are described.

  3. Metrology for industrial quantum communications: the MIQC project

    NASA Astrophysics Data System (ADS)

    Rastello, M. L.; Degiovanni, I. P.; Sinclair, A. G.; Kück, S.; Chunnilall, C. J.; Porrovecchio, G.; Smid, M.; Manoocheri, F.; Ikonen, E.; Kubarsepp, T.; Stucki, D.; Hong, K. S.; Kim, S. K.; Tosi, A.; Brida, G.; Meda, A.; Piacentini, F.; Traina, P.; Natsheh, A. Al; Cheung, J. Y.; Müller, I.; Klein, R.; Vaigu, A.

    2014-12-01

    The ‘Metrology for Industrial Quantum Communication Technologies’ project (MIQC) is a metrology framework that fosters development and market take-up of quantum communication technologies and is aimed at achieving maximum impact for the European industry in this area. MIQC is focused on quantum key distribution (QKD) technologies, the most advanced quantum-based technology towards practical application. QKD is a way of sending cryptographic keys with absolute security. It does this by exploiting the ability to encode in a photon's degree of freedom specific quantum states that are noticeably disturbed if an eavesdropper trying to decode it is present in the communication channel. The MIQC project has started the development of independent measurement standards and definitions for the optical components of QKD system, since one of the perceived barriers to QKD market success is the lack of standardization and quality assurance.

  4. Device independence for two-party cryptography and position verification with memoryless devices

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jérémy; Thinh, Le Phuc; Kaniewski, Jedrzej; Helsen, Jonas; Wehner, Stephanie

    2018-06-01

    Quantum communication has demonstrated its usefulness for quantum cryptography far beyond quantum key distribution. One domain is two-party cryptography, whose goal is to allow two parties who may not trust each other to solve joint tasks. Another interesting application is position-based cryptography whose goal is to use the geographical location of an entity as its only identifying credential. Unfortunately, security of these protocols is not possible against an all powerful adversary. However, if we impose some realistic physical constraints on the adversary, there exist protocols for which security can be proven, but these so far relied on the knowledge of the quantum operations performed during the protocols. In this work we improve the device-independent security proofs of Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004] for two-party cryptography (with memoryless devices) and we add a security proof for device-independent position verification (also memoryless devices) under different physical constraints on the adversary. We assess the quality of the devices by observing a Bell violation, and, as for Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004], security can be attained for any violation of the Clauser-Holt-Shimony-Horne inequality.

  5. The Frame Game

    ERIC Educational Resources Information Center

    Edwards, Michael Todd; Cox, Dana C.

    2011-01-01

    In this article, the authors explore framing, a non-multiplicative technique commonly employed by students as they construct similar shapes. When students frame, they add (or subtract) a "border" of fixed width about a geometric object. Although the approach does not yield similar shapes in general, the mathematical underpinnings of…

  6. Trapping photons on the line: controllable dynamics of a quantum walk

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao

    2014-04-01

    Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.

  7. No Quantum Realization of Extremal No-Signaling Boxes

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ravishankar; Tuziemski, Jan; Horodecki, Michał; Horodecki, Paweł

    2016-07-01

    The study of quantum correlations is important for fundamental reasons as well as for quantum communication and information processing tasks. On the one hand, it is of tremendous interest to derive the correlations produced by measurements on separated composite quantum systems from within the set of all correlations obeying the no-signaling principle of relativity, by means of information-theoretic principles. On the other hand, an important ongoing research program concerns the formulation of device-independent cryptographic protocols based on quantum nonlocal correlations for the generation of secure keys, and the amplification and expansion of random bits against general no-signaling adversaries. In both these research programs, a fundamental question arises: Can any measurements on quantum states realize the correlations present in pure extremal no-signaling boxes? Here, we answer this question in full generality showing that no nontrivial (not local realistic) extremal boxes of general no-signaling theories can be realized in quantum theory. We then explore some important consequences of this fact.

  8. Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chunmei; Zou, Jian

    2013-10-01

    Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer and entanglement distribution can be realized in the spin-(1)/(2) Heisenberg chain. We find that the ultrahigh fidelity and long distance of quantum state transfer with certain success probability can be obtained using proper WM and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size independent. We also find that the distance and quality of entanglement distribution for the Bell state and the general Werner mixed state can be obviously improved by the WM and QMR approach.

  9. Generating the Local Oscillator "Locally" in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko

    2015-10-01

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.

  10. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    NASA Astrophysics Data System (ADS)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  11. Subcycle quantum physics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leitenstorfer, Alfred

    2017-02-01

    A time-domain approach to quantum electrodynamics is presented, covering the entire mid-infrared and terahertz frequency ranges. Ultrabroadband electro-optic sampling with few-femtosecond laser pulses allows direct detection of the vacuum fluctuations of the electric field in free space [1,2]. Besides the Planck and electric field fundamental constants, the variance of the ground state is determined solely by the inverse of the four-dimensional space-time volume over which a measurement or physical process integrates. Therefore, we can vary the contribution of multi-terahertz vacuum fluctuations and discriminate against the trivial shot noise due to the constant flux of near-infrared probe photons. Subcycle temporal resolution based on a nonlinear phase shift provides signals from purely virtual photons for accessing the ground-state wave function without amplification to finite intensity. Recently, we have succeeded in generation and analysis of mid-infrared squeezed transients with quantum noise patterns that are time-locked to the intensity envelope of the probe pulses. We find subcycle temporal positions with a noise level distinctly below the bare vacuum which serves as a direct reference. Delay times with increased differential noise indicate generation of highly correlated quantum fields by spontaneous parametric fluorescence. Our time-domain approach offers a generalized understanding of spontaneous emission processes as a consequence of local anomalies in the co-propagating reference frame modulating the quantum vacuum, in combination with the boundary conditions set by Heisenberg's uncertainty principle. [1] C. Riek et al., Science 350, 420 (2015) [2] A. S. Moskalenko et al., Phys. Rev. Lett. 115, 263601 (2015)

  12. Graph-theoretic approach to quantum correlations.

    PubMed

    Cabello, Adán; Severini, Simone; Winter, Andreas

    2014-01-31

    Correlations in Bell and noncontextuality inequalities can be expressed as a positive linear combination of probabilities of events. Exclusive events can be represented as adjacent vertices of a graph, so correlations can be associated to a subgraph. We show that the maximum value of the correlations for classical, quantum, and more general theories is the independence number, the Lovász number, and the fractional packing number of this subgraph, respectively. We also show that, for any graph, there is always a correlation experiment such that the set of quantum probabilities is exactly the Grötschel-Lovász-Schrijver theta body. This identifies these combinatorial notions as fundamental physical objects and provides a method for singling out experiments with quantum correlations on demand.

  13. Quantum nature of the big bang.

    PubMed

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

  14. Path Entanglement of Continuous-Variable Quantum Microwaves

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2013-03-01

    Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.

  15. Ultrahigh-frame CCD imagers

    NASA Astrophysics Data System (ADS)

    Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.

    2004-02-01

    This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.

  16. Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking.

    PubMed

    Houel, Julien; Doan, Quang T; Cajgfinger, Thomas; Ledoux, Gilles; Amans, David; Aubret, Antoine; Dominjon, Agnès; Ferriol, Sylvain; Barbier, Rémi; Nasilowski, Michel; Lhuillier, Emmanuel; Dubertret, Benoît; Dujardin, Christophe; Kulzer, Florian

    2015-01-27

    We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nanoemitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the microsecond time scale.

  17. Symmetric quantum fully homomorphic encryption with perfect security

    NASA Astrophysics Data System (ADS)

    Liang, Min

    2013-12-01

    Suppose some data have been encrypted, can you compute with the data without decrypting them? This problem has been studied as homomorphic encryption and blind computing. We consider this problem in the context of quantum information processing, and present the definitions of quantum homomorphic encryption (QHE) and quantum fully homomorphic encryption (QFHE). Then, based on quantum one-time pad (QOTP), we construct a symmetric QFHE scheme, where the evaluate algorithm depends on the secret key. This scheme permits any unitary transformation on any -qubit state that has been encrypted. Compared with classical homomorphic encryption, the QFHE scheme has perfect security. Finally, we also construct a QOTP-based symmetric QHE scheme, where the evaluate algorithm is independent of the secret key.

  18. Multiple choices of time in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Małkiewicz, Przemysław

    2015-07-01

    It is often conjectured that a choice of time function merely sets up a frame for the quantum evolution of the gravitational field, meaning that all choices should be in some sense compatible. In order to explore this conjecture (and the meaning of compatibility), we develop suitable tools for determining the relation between quantum theories based on different time functions. First, we discuss how a time function fixes a canonical structure on the constraint surface. The presentation includes both the kinematical and the reduced perspective, and the relation between them. Second, we formulate twin theorems about the existence of two inequivalent maps between any two deparameterizations, a formal canonical and a coordinate one. They are used to separate the effects induced by choice of clock and other factors. We show, in an example, how the spectra of quantum observables are transformed under the change of clock and prove, via a general argument, the existence of choice-of-time-induced semiclassical effects. Finally, we study an example, in which we find that the semiclassical discrepancies can in fact be arbitrarily large for dynamical observables. We conclude that the values of critical energy density or critical volume in the bouncing scenarios of quantum cosmology cannot in general be at the Planck scale, and always need to be given with reference to a specific time function.

  19. Quantum Computation Based on Photons with Three Degrees of Freedom

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2016-01-01

    Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems. PMID:27174302

  20. Quantum Computation Based on Photons with Three Degrees of Freedom.

    PubMed

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2016-05-13

    Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems.

  1. Adding HDLC Framing to CCSDS Recommendations

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Criscuolo, Ed; Parise, Ron

    2004-01-01

    Current Space IP missions use High-Level Data Link Control (HDLC) framing to provide standard serial link interfaces over a space link. HDLC is the standard framing technique used by all routers over clock and data serial lines and is also the basic framing used in all Frame Relay services which are widely deployed in national and international communication networks. In late 2003 a presentation was made to CCSDS committees to initiate discussion on including HDLC in the CCSDS recommendations for space systems. This presentation will summarize the differences between variable length HDLC frames and fixed length CCSDS frames. It will also discuss where and how HDLC framing would fit into the overall CCSDS structures.

  2. Monolithic LTCC seal frame and lid

    DOEpatents

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  3. Special relativity in a discrete quantum universe

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-10-01

    The hypothesis of a discrete fabric of the universe, the "Planck scale," is always on stage since it solves mathematical and conceptual problems in the infinitely small. However, it clashes with special relativity, which is designed for the continuum. Here, we show how the clash can be overcome within a discrete quantum theory where the evolution of fields is described by a quantum cellular automaton. The reconciliation is achieved by defining the change of observer as a change of representation of the dynamics, without any reference to space-time. We use the relativity principle, i.e., the invariance of dynamics under change of inertial observer, to identify a change of inertial frame with a symmetry of the dynamics. We consider the full group of such symmetries, and recover the usual Lorentz group in the relativistic regime of low energies, while at the Planck scale the covariance is nonlinearly distorted.

  4. Framing Autism: A Content Analysis of Five Major News Frames in U.S.-Based Newspapers.

    PubMed

    Wendorf Muhamad, Jessica; Yang, Fan

    2017-03-01

    The portrayal of child autism-related news stories has become a serious issue in the United States, yet few studies address this from media framing perspective. To fill this gap in the literature, this study examined the applicability of a media framing scale (Semetko & Valkenburg, 2000) for the deductive examination of autism-related news stories in U.S.-based newspapers. Under the theoretical framework of framing theory, a content analysis of news stories (N = 413) was conducted to investigate the presence of the five news frames using an established questionnaire. Differentiating between local and national news outlets, the following five news frames were measured: (a) attribution of responsibility, (b) human interest, (c) conflict, (d) morality, and (e) economic consequences. Findings revealed that news stories about autism most frequently fell within the human interest frame. Furthermore, the study shed light on how local and national newspapers might differ in framing autism-related news pieces and in their placement of the autism-related story within the newspaper (e.g., front page section, community section).

  5. Framing Effects: Dynamics and Task Domains

    PubMed

    Wang

    1996-11-01

    The author examines the mechanisms and dynamics of framing effects in risky choices across three distinct task domains (i.e., life-death, public property, and personal money). The choice outcomes of the problems presented in each of the three task domains had a binary structure of a sure thing vs a gamble of equal expected value; the outcomes differed in their framing conditions and the expected values, raging from 6000, 600, 60, to 6, numerically. It was hypothesized that subjects would become more risk seeking, if the sure outcome was below their aspiration level (the minimum requirement). As predicted, more subjects preferred the gamble when facing the life-death choice problems than facing the counterpart problems presented in the other two task domains. Subjects' risk preference varied categorically along the group size dimension in the life-death domain but changed more linearly over the expected value dimension in the monetary domain. Framing effects were observed in 7 of 13 pairs of problems, showing a positive frame-risk aversion and negative frame-risk seeking relationship. In addition, two types of framing effects were theoretically defined and empirically identified. A bidirectional framing effect involves a reversal in risk preference, and occurs when a decision maker's risk preference is ambiguous or weak. Four bidirectional effects were observed; in each case a majority of subjects preferred the sure outcome under a positive frame but the gamble under a negative frame. In contrast, a unidirectional framing effect refers to a preference shift due to the framing of choice outcomes: A majority of subjects preferred one choice outcome (either the sure thing or the gamble) under both framing conditions, with positive frame augmented the preference for the sure thing and negative frame augmented the preference for the gamble. These findings revealed some dynamic regularities of framing effects and posed implications for developing predictive and testable

  6. Measurement-device-independent semiquantum key distribution

    NASA Astrophysics Data System (ADS)

    He, Jinjun; Li, Qin; Wu, Chunhui; Chan, Wai Hong; Zhang, Shengyu

    Semiquantum key distribution (SQKD) allows two parties to share a common string when one of them is quantum and the other has rather limited quantum capability. Almost all existing SQKD protocols have been proved to be robust in theory, namely that if an eavesdropper tries to gain information, he will inevitably induce some detectable errors. However, ideal devices do not exist in reality and their imperfection may result in side-channel attacks, which can be used by an adversary to get some information on the secret key string. In this paper, we design a measurement-device-independent SQKD protocol for the first time, which can remove the threat of all detector side-channel attacks and show that it is also robust. In addition, we discuss the possible use of the proposed protocol in real-world applications and in QKD networks.

  7. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  8. Entanglement of Electron Spins in Two Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhen; Webb, Richard

    2004-03-01

    We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).

  9. Framing and Claiming: How Information-Framing Affects Expected Social Security Claiming Behavior.

    PubMed

    Brown, Jeffrey R; Kapteyn, Arie; Mitchell, Olivia S

    2016-03-01

    This paper provides evidence that Social Security benefit claiming decisions are strongly affected by framing and are thus inconsistent with expected utility theory. Using a randomized experiment that controls for both observable and unobservable differences across individuals, we find that the use of a "breakeven analysis" encourages early claiming. Respondents are more likely to delay when later claiming is framed as a gain, and the claiming age is anchored at older ages. Additionally, the financially less literate, individuals with credit card debt, and those with lower earnings are more influenced by framing than others.

  10. Strategic Framing Study Circles: Toward a Gold Standard of Framing Pedagogy

    ERIC Educational Resources Information Center

    Feinberg, Jane

    2009-01-01

    This article explains how communities of practice have been developed as part of FrameWorks' field-building efforts. Strategic Framing Study Circles, as they are known, have been conducted with four statewide coalitions, one group of national organizations, and an emerging regional coalition. The goal of each community of practice is to build…

  11. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    PubMed Central

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  12. Quantum proofs can be verified using only single-qubit measurements

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Nagaj, Daniel; Schuch, Norbert

    2016-02-01

    Quantum Merlin Arthur (QMA) is the class of problems which, though potentially hard to solve, have a quantum solution that can be verified efficiently using a quantum computer. It thus forms a natural quantum version of the classical complexity class NP (and its probabilistic variant MA, Merlin-Arthur games), where the verifier has only classical computational resources. In this paper, we study what happens when we restrict the quantum resources of the verifier to the bare minimum: individual measurements on single qubits received as they come, one by one. We find that despite this grave restriction, it is still possible to soundly verify any problem in QMA for the verifier with the minimum quantum resources possible, without using any quantum memory or multiqubit operations. We provide two independent proofs of this fact, based on measurement-based quantum computation and the local Hamiltonian problem. The former construction also applies to QMA1, i.e., QMA with one-sided error.

  13. A Possible Operational Motivation for the Orthocomplementation in Quantum Structures

    NASA Astrophysics Data System (ADS)

    D'Hooghe, Bart

    2010-11-01

    In the foundations of quantum mechanics Gleason’s theorem dictates the uniqueness of the state transition probability via the inner product of the corresponding state vectors in Hilbert space, independent of which measurement context induces this transition. We argue that the state transition probability should not be regarded as a secondary concept which can be derived from the structure on the set of states and properties, but instead should be regarded as a primitive concept for which measurement context is crucial. Accordingly, we adopt an operational approach to quantum mechanics in which a physical entity is defined by the structure of its set of states, set of properties and the possible (measurement) contexts which can be applied to this entity. We put forward some elementary definitions to derive an operational theory from this State-COntext-Property (SCOP) formalism. We show that if the SCOP satisfies a Gleason-like condition, namely that the state transition probability is independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented, which is one of the ‘quantum axioms’ used in the Piron-Solèr representation theorem for quantum systems. In this sense we obtain a possible physical meaning for the orthocomplementation widely used in quantum structures.

  14. Conditional cooling limit for a quantum channel going through an incoherent environment.

    PubMed

    Straka, Ivo; Miková, Martina; Mičuda, Michal; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim

    2015-11-16

    We propose and experimentally verify a cooling limit for a quantum channel going through an incoherent environment. The environment consists of a large number of independent non-interacting and non-interfering elementary quantum systems--qubits. The qubits travelling through the channel can only be randomly replaced by environmental qubits. We investigate a conditional cooling limit that exploits an additional probing output. The limit specifies when the single-qubit channel is quantum, i.e. it preserves entanglement. It is a fundamental condition for entanglement-based quantum technology.

  15. Changes in Rod and Frame Test Scores Recorded in Schoolchildren during Development – A Longitudinal Study

    PubMed Central

    Bagust, Jeff; Docherty, Sharon; Haynes, Wayne; Telford, Richard; Isableu, Brice

    2013-01-01

    The Rod and Frame Test has been used to assess the degree to which subjects rely on the visual frame of reference to perceive vertical (visual field dependence- independence perceptual style). Early investigations found children exhibited a wide range of alignment errors, which reduced as they matured. These studies used a mechanical Rod and Frame system, and presented only mean values of grouped data. The current study also considered changes in individual performance. Changes in rod alignment accuracy in 419 school children were measured using a computer-based Rod and Frame test. Each child was tested at school Grade 2 and retested in Grades 4 and 6. The results confirmed that children displayed a wide range of alignment errors, which decreased with age but did not reach the expected adult values. Although most children showed a decrease in frame dependency over the 4 years of the study, almost 20% had increased alignment errors suggesting that they were becoming more frame-dependent. Plots of individual variation (SD) against mean error allowed the sample to be divided into 4 groups; the majority with small errors and SDs; a group with small SDs, but alignments clustering around the frame angle of 18°; a group showing large errors in the opposite direction to the frame tilt; and a small number with large SDs whose alignment appeared to be random. The errors in the last 3 groups could largely be explained by alignment of the rod to different aspects of the frame. At corresponding ages females exhibited larger alignment errors than males although this did not reach statistical significance. This study confirms that children rely more heavily on the visual frame of reference for processing spatial orientation cues. Most become less frame-dependent as they mature, but there are considerable individual differences. PMID:23724139

  16. Key Frame Extraction in the Summary Space.

    PubMed

    Li, Xuelong; Zhao, Bin; Lu, Xiaoqiang; Xuelong Li; Bin Zhao; Xiaoqiang Lu; Lu, Xiaoqiang; Li, Xuelong; Zhao, Bin

    2018-06-01

    Key frame extraction is an efficient way to create the video summary which helps users obtain a quick comprehension of the video content. Generally, the key frames should be representative of the video content, meanwhile, diverse to reduce the redundancy. Based on the assumption that the video data are near a subspace of a high-dimensional space, a new approach, named as key frame extraction in the summary space, is proposed for key frame extraction in this paper. The proposed approach aims to find the representative frames of the video and filter out similar frames from the representative frame set. First of all, the video data are mapped to a high-dimensional space, named as summary space. Then, a new representation is learned for each frame by analyzing the intrinsic structure of the summary space. Specifically, the learned representation can reflect the representativeness of the frame, and is utilized to select representative frames. Next, the perceptual hash algorithm is employed to measure the similarity of representative frames. As a result, the key frame set is obtained after filtering out similar frames from the representative frame set. Finally, the video summary is constructed by assigning the key frames in temporal order. Additionally, the ground truth, created by filtering out similar frames from human-created summaries, is utilized to evaluate the quality of the video summary. Compared with several traditional approaches, the experimental results on 80 videos from two datasets indicate the superior performance of our approach.

  17. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.

    PubMed

    Lucamarini, M; Yuan, Z L; Dynes, J F; Shields, A J

    2018-05-01

    Quantum key distribution (QKD) 1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre 3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration 4 . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters 5-7 , is overcoming the fundamental rate-distance limit of QKD 8 . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel 9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.

  18. Retrofit of hollow concrete masonry infilled steel frames using glass fiber reinforced plastic laminates

    NASA Astrophysics Data System (ADS)

    Hakam, Zeyad Hamed-Ramzy

    2000-11-01

    This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of

  19. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulsen, Per Rugaard, E-mail: per.poulsen@rm.dk; Jonassen, Johnny; Jensen, Carsten

    2015-11-15

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with amore » 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12

  20. Rotational quenching of H2O by He: mixed quantum/classical theory and comparison with quantum results.

    PubMed

    Ivanov, Mikhail; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-04-07

    The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used to compute quenching cross sections of several rotationally excited states of water molecule by impact of He atom in a broad range of collision energies, and is tested against the full-quantum calculations on the same potential energy surface. In current implementation of MQCT method, there are two major sources of errors: one affects results at energies below 10 cm(-1), while the other shows up at energies above 500 cm(-1). Namely, when the collision energy E is below the state-to-state transition energy ΔE the MQCT method becomes less accurate due to its intrinsic classical approximation, although employment of the average-velocity principle (scaling of collision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies, MQCT is expected to be accurate but in current implementation, in order to make calculations computationally affordable, we had to cut off the basis set size. This can be avoided by using a more efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20% of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision energies, except near resonances, where the errors are somewhat larger.