High-Speed Large-Alphabet Quantum Key Distribution Using Photonic Integrated Circuits
2014-01-28
polarizing beam splitter, TDC: time-to-digital converter. Extra&loss& photon/bin frame size QSER secure bpp ECC secure&key&rate& none& 0.0031 64 14...to-digital converter. photon/frame frame size QSER secure bpp ECC secure&key& rate& 1.3 16 9.5 % 2.9 layered LDPC 7.3&Mbps& Figure 24: Operating
He, Huaguang; Li, Taoshen; Feng, Luting; Ye, Jin
2017-07-15
Different from the traditional wired network, the fundamental cause of transmission congestion in wireless ad hoc networks is medium contention. How to utilize the congestion state from the MAC (Media Access Control) layer to adjust the transmission rate is core work for transport protocol design. However, recent works have shown that the existing cross-layer congestion detection solutions are too complex to be deployed or not able to characterize the congestion accurately. We first propose a new congestion metric called frame transmission efficiency (i.e., the ratio of successful transmission delay to the frame service delay), which describes the medium contention in a fast and accurate manner. We further present the design and implementation of RECN (ECN and the ratio of successful transmission delay to the frame service delay in the MAC layer, namely, the frame transmission efficiency), a general supporting scheme that adjusts the transport sending rate through a standard ECN (Explicit Congestion Notification) signaling method. Our method can be deployed on commodity switches with small firmware updates, while making no modification on end hosts. We integrate RECN transparently (i.e., without modification) with TCP on NS2 simulation. The experimental results show that RECN remarkably improves network goodput across multiple concurrent TCP flows.
A programmable display layer for virtual reality system architectures.
Smit, Ferdi Alexander; van Liere, Robert; Froehlich, Bernd
2010-01-01
Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to generate updated display frames. This replaces the default display behavior of repeating application frames until an update is available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the architecture, we compare image quality and latency to that of a classic level-of-detail approach.
Residual Highway Convolutional Neural Networks for in-loop Filtering in HEVC.
Zhang, Yongbing; Shen, Tao; Ji, Xiangyang; Zhang, Yun; Xiong, Ruiqin; Dai, Qionghai
2018-08-01
High efficiency video coding (HEVC) standard achieves half bit-rate reduction while keeping the same quality compared with AVC. However, it still cannot satisfy the demand of higher quality in real applications, especially at low bit rates. To further improve the quality of reconstructed frame while reducing the bitrates, a residual highway convolutional neural network (RHCNN) is proposed in this paper for in-loop filtering in HEVC. The RHCNN is composed of several residual highway units and convolutional layers. In the highway units, there are some paths that could allow unimpeded information across several layers. Moreover, there also exists one identity skip connection (shortcut) from the beginning to the end, which is followed by one small convolutional layer. Without conflicting with deblocking filter (DF) and sample adaptive offset (SAO) filter in HEVC, RHCNN is employed as a high-dimension filter following DF and SAO to enhance the quality of reconstructed frames. To facilitate the real application, we apply the proposed method to I frame, P frame, and B frame, respectively. For obtaining better performance, the entire quantization parameter (QP) range is divided into several QP bands, where a dedicated RHCNN is trained for each QP band. Furthermore, we adopt a progressive training scheme for the RHCNN where the QP band with lower value is used for early training and their weights are used as initial weights for QP band of higher values in a progressive manner. Experimental results demonstrate that the proposed method is able to not only raise the PSNR of reconstructed frame but also prominently reduce the bit-rate compared with HEVC reference software.
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
NASA Astrophysics Data System (ADS)
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
Real-time motion-based H.263+ frame rate control
NASA Astrophysics Data System (ADS)
Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay
1998-12-01
Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.
Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance
NASA Astrophysics Data System (ADS)
Perennes, Frederic; Crossland, William A.
1997-08-01
The switching mechanisms of ferroelectric liquid crystal optically addressed spatial light modulators (OASLMs) using a photosensitive structure made of an intrinsic amorphous silicon layer sandwiched in between an indium tin oxide coated glass sheet and a reflective metal layer are reviewed. Devices based on photoconductor and photodiode layers are briefly reviewed and attention is focused on pixelated metal mirror devices, which offer fast switching and good optical characteristics with the same sensitivity range as the photodiode OASLMs. They are particularly suitable for high frame rate SLMs with intense read beams. Optimum drive conditions for this type of device are considered. An equivalent electrical circuit is proposed for the photosensitive structure and the voltage drop across the liquid crystal layer is investigated and related to the optical response of the device. Experimental work is carried out to demonstrate the validity of our equivalent circuit. We show that the synchronization of a light source with the case pulse enables the OASLM to work at frame rates of a few kilohertz. We also demonstrate that the exact synchronization of the write light source with the write pulse enhances the potential memory of the device.
Spectral domain polarization-sensitive optical coherence tomography at 850 nm
NASA Astrophysics Data System (ADS)
Cense, Barry; Chen, Teresa C.; Mujat, Mircea; Joo, Chulmin; Akkin, Taner; Park, B. H.; Pierce, Mark C.; Yun, Andy; Bouma, Brett E.; Tearney, Guillermo J.; de Boer, Johannes F.
2005-04-01
Spectral-Domain Polarization-Sensitive Optical Coherence Tomography (SD-PS-OCT) is a technique developed to measure the thickness and birefringence of the nerve fiber layer in vivo as a tool for the early diagnosis of glaucoma. A clinical SD-PS-OCT system was developed and scans were made around the optic nerve head (ONH) using ten concentric circles of increasing diameter. One healthy volunteer was imaged. Retinal nerve fiber layer thickness and birefringence information was extracted from the data. Polarization-sensitive OCT images were acquired at video rate (29 frames per second (fps), 1000 A-lines / frame) and at 7 fps (1000 A-lines / frame). The last setting improved the signal to noise ratio by approximately 6 dB. Birefringence measurements on the healthy volunteer gave similar results as earlier reported values that were obtained with a time-domain setup. The measurement time was reduced from more than a minute to less than a second.
NASA Astrophysics Data System (ADS)
Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce
2015-09-01
The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.
High-Performance CCSDS AOS Protocol Implementation in FPGA
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.
Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode.
Yang, Jie; Ma, Zhihua; Gao, Weixue; Wei, Mingdeng
2017-01-12
Layered structural Co-MOF nanosheets were synthesized and then used as an electrode material for supercapacitors for the first time. This material exhibited a high specific capacitance, a good rate capability, and an excellent cycling stability. A maximum capacitance of 2564 F g -1 can be achieved at a current density of 1 Ag -1 . Moreover, the capacitance retention can be kept at 95.8 % respectively of its initial value after 3000 cycles. To the best of our knowledge, both the specific capacitance and the capacitance retention were the highest values reported for MOF materials as supercapacitor electrodes until now. Such a high supercapacitive performance might be attributed to the intrinsic characteristics of this kind of Co-MOF material, including its layered structure, conductive network frame, and thin nanosheet. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Roma, Maria Penafrancia C.; Kudtarkar, Santosh; Kierse, Oliver; Sengupta, Dipak; Cho, Junghyun
2018-02-01
Copper micropillars plated onto a silicon die and soldered with Sn-Ag solder to a copper lead frame in a flip chip on lead package have been subjected to high-temperature storage at 150°C and 175°C for 500 h, 1000 h, and 1500 h. Cu6Sn5 and Cu3Sn intermetallic compounds were found on both sides of the solder, but the growth rates were not the same as evidenced by different values of the growth exponent n. Cu and Sn diffusion controlled the Cu3Sn growth in the Cu pillar interface ( n ≈ 0.5), while interface reactions controlled the growth in the Cu lead frame interface ( n ≈ 0.8). Increasing the aging temperature increased the growth of Cu3Sn as well as the presence of microvoids in the Cu lead frame side. Adding Ni as a barrier layer on the Cu pillar prevented the growth of Cu3Sn in the Cu pillar interface and reduced its growth rate on the lead frame side, even at higher aging temperatures.
Feasibility study of silicon nitride protection of plastic encapsulated semiconductors
NASA Technical Reports Server (NTRS)
Peters, J. W.; Hall, T. C.; Erickson, J. J.; Gebhart, F. L.
1979-01-01
The application of low temperature silicon nitride protective layers on wire bonded integrated circuits mounted on lead frame assemblies is reported. An evaluation of the mechanical and electrical compatibility of both plasma nitride and photochemical silicon nitride (photonitride) passivations (parallel evaluations) of integrated circuits which were then encapsulated in plastic is described. Photonitride passivation is compatible with all wire bonded lead frame assemblies, with or without initial chip passivation. Plasma nitride passivation of lead frame assemblies is possible only if the chip is passivated before lead frame assembly. The survival rate after the environmental test sequence of devices with a coating of plasma nitride on the chip and a coating of either plasma nitride or photonitride over the assembled device is significantly greater than that of devices assembled with no nitride protective coating over either chip or lead frame.
NASA Astrophysics Data System (ADS)
Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli
2018-04-01
In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.
High-Performance CCSDS Encapsulation Service Implementation in FPGA
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) Encapsulation Service is a convergence layer between lower-layer space data link framing protocols, such as CCSDS Advanced Orbiting System (AOS), and higher-layer networking protocols, such as CFDP (CCSDS File Delivery Protocol) and Internet Protocol Extension (IPE). CCSDS Encapsulation Service is considered part of the data link layer. The CCSDS AOS implementation is described in the preceding article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS Encapsulation Service needs to be optimized to both reduce energy consumption and operate at a high rate. CCSDS Encapsulation Service has been implemented as an intellectual property core so that the aforementioned problems are solved by way of operating the CCSDS Encapsulation Service inside an FPGA. The CCSDS En capsula tion Service in FPGA implementation consists of both packetizing and de-packetizing features
Magnetohydrodynamic generator electrode
Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.
1979-01-01
An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.
Triple-glazed insulating unit with improved edge insulation
Goodwin, George B.; Buchanan, Michael J.
2016-06-07
An insulating unit includes a first spacer frame between first and second sheets, e.g. glass sheets, and a second spacer frame between the second sheet and a third sheet. A first surface of the first spacer frame is adhered to inner surface of the first sheet, and an opposite second surface of the first spacer frame is adhered to a first surface of the second sheet, by a moisture impervious adhesive layer. A first outer surface of the second spacer frame is adhered to a second surface of the second sheet, and an opposite second outer surface of the second spacer frame is adhered to an inner surface of the third sheet, by the adhesive layer. The first spacer frame and the second spacer frame have an offset of greater than zero.
Perceptually tuned low-bit-rate video codec for ATM networks
NASA Astrophysics Data System (ADS)
Chou, Chun-Hsien
1996-02-01
In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.
Pemp, Berthold; Kardon, Randy H; Kircher, Karl; Pernicka, Elisabeth; Schmidt-Erfurth, Ursula; Reitner, Andreas
2013-07-01
Automated detection of subtle changes in peripapillary retinal nerve fibre layer thickness (RNFLT) over time using optical coherence tomography (OCT) is limited by inherent image quality before layer segmentation, stabilization of the scan on the peripapillary retina and its precise placement on repeated scans. The present study evaluates image quality and reproducibility of spectral domain (SD)-OCT comparing different rates of automatic real-time tracking (ART). Peripapillary RNFLT was measured in 40 healthy eyes on six different days using SD-OCT with an eye-tracking system. Image brightness of OCT with unaveraged single frame B-scans was compared to images using ART of 16 B-scans and 100 averaged frames. Short-term and day-to-day reproducibility was evaluated by calculation of intraindividual coefficients of variation (CV) and intraclass correlation coefficients (ICC) for single measurements as well as for seven repeated measurements per study day. Image brightness, short-term reproducibility, and day-to-day reproducibility were significantly improved using ART of 100 frames compared to one and 16 frames. Short-term CV was reduced from 0.94 ± 0.31 % and 0.91 ± 0.54 % in scans of one and 16 frames to 0.56 ± 0.42 % in scans of 100 averaged frames (P ≤ 0.003 each). Day-to-day CV was reduced from 0.98 ± 0.86 % and 0.78 ± 0.56 % to 0.53 ± 0.43 % (P ≤ 0.022 each). The range of ICC was 0.94 to 0.99. Sample size calculations for detecting changes of RNFLT over time in the range of 2 to 5 μm were performed based on intraindividual variability. Image quality and reproducibility of mean peripapillary RNFLT measurements using SD-OCT is improved by averaging OCT images with eye-tracking compared to unaveraged single frame images. Further improvement is achieved by increasing the amount of frames per measurement, and by averaging values of repeated measurements per session. These strategies may allow a more accurate evaluation of RNFLT reduction in clinical trials observing optic nerve degeneration.
ERIC Educational Resources Information Center
Pennington, Martha C.
An analysis of classroom discourse proposes four frames, modeled as concentric circles. The inner most circle is the lesson frame, removed or sheltered from outside influences and most likely, in a language class, to maintain second-language usage. The next frame from the center is the lesson-support frame, an intermediate layer of classroom…
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks
Wang, Qiuhua
2017-01-01
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate. PMID:28165423
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.
Wang, Qiuhua
2017-02-04
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.
Steady evolution of hillslopes in layered landscapes: self-organization of a numerical hogback
NASA Astrophysics Data System (ADS)
Glade, R.; Anderson, R. S.
2017-12-01
Landscapes developed in layered sedimentary or igneous rocks are common across Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments and mesas exhibit resistant rock layers in tilted, vertical, or horizontal orientations adjoining more erodible rock. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Our previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock are fundamental to their formation; our numerical model incorporating these feedbacks explain the development of commonly observed concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach to describe the steady behavior of our model, in which hillslope form and erosion rates remain constant in the reference frame of the retreating feature. We first revisit a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations. Autogenic adjustment of soil depth, slope and erosion rates enables efficient transport of resistant blocks; this allows erosion of the resistant layer to keep up with base level fall rate, leading to steady evolution of the feature. Analytic solutions relate easily measurable field quantities such as ramp length, slope, block size and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes, and pinpoint the processes for which we require a more thorough understanding to predict the evolution of such signature landscapes over time.
Laser readable thermoluminescent radiation dosimeters and methods for producing thereof
Braunlich, Peter F.; Tetzlaff, Wolfgang
1989-01-01
Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phoshphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate.
Experimental analysis of dark frame growth mechanism in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Minagawa, Masahiro; Tanabe, Takuma; Kondo, Eiki; Kamimura, Kenji; Kimura, Munehiro
2018-02-01
Organic light-emitting diodes (OLEDs) were fabricated with heterojunction interfaces and layers that were prepared by cold isostatic pressing (CIP), and the growth characteristics of their non-emission areas, or dark frames (D/Fs), were investigated during storage. We fabricated an OLED with an indium-tin-oxide (ITO)/N,N‧-di(1-naphthyl)-N,N‧-diphenyl-(1,1‧-biphenyl)-4,4‧-diamine (α-NPD)/tris(8-hydroxylquinoline)aluminum (Alq3)/LiF/Al structure without CIP treatment (Device I), as well as OLEDs that were pressed after the deposition of α-NPD (Device II), Alq3 (Device III), and LiF/Al (Device IV) layers. Although Devices I, II, and III showed typical D/F growth characteristics, the D/F growth rate in Device IV was markedly mitigated, indicating that the Alq3/LiF/Al interfaces dominated the D/F growth. Moreover, we found that the electron injection characteristic was poorer in the electron-only device stored after the LiF layer deposition than in that stored before the LiF deposition. Therefore, the decreased electron injection due to storage at the interfaces was attributed to the D/F growth.
Constraints of nonresponding flows based on cross layers in the networks
NASA Astrophysics Data System (ADS)
Zhou, Zhi-Chao; Xiao, Yang; Wang, Dong
2016-02-01
In the active queue management (AQM) scheme, core routers cannot manage and constrain user datagram protocol (UDP) data flows by the sliding window control mechanism in the transport layer due to the nonresponsive nature of such traffic flows. However, the UDP traffics occupy a large part of the network service nowadays which brings a great challenge to the stability of the more and more complex networks. To solve the uncontrollable problem, this paper proposes a cross layers random early detection (CLRED) scheme, which can control the nonresponding UDP-like flows rate effectively when congestion occurs in the access point (AP). The CLRED makes use of the MAC frame acknowledgement (ACK) transmitting congestion information to the sources nodes and utilizes the back-off windows of the MAC layer throttling data rate. Consequently, the UDP-like flows data rate can be restrained timely by the sources nodes in order to alleviate congestion in the complex networks. The proposed CLRED can constrain the nonresponsive flows availably and make the communication expedite, so that the network can sustain stable. The simulation results of network simulator-2 (NS2) verify the proposed CLRED scheme.
Physical-layer network coding in coherent optical OFDM systems.
Guan, Xun; Chan, Chun-Kit
2015-04-20
We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.
Laser readable thermoluminescent radiation dosimeters and methods for producing thereof
Braunlich, P.F.; Tetzlaff, W.
1989-04-25
Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs.
NASA Technical Reports Server (NTRS)
Ghosh, Amrit Raj
1996-01-01
The viscous, Navier-Stokes solver for turbomachinery applications, MSUTC has been modified to include the rotating frame formulation. The three-dimensional thin-layer Navier-Stokes equations have been cast in a rotating Cartesian frame enabling the freezing of grid motion. This also allows the flow-field associated with an isolated rotor to be viewed as a steady-state problem. Consequently, local time stepping can be used to accelerate convergence. The formulation is validated by running NASA's Rotor 67 as the test case. results are compared between the rotating frame code and the absolute frame code. The use of the rotating frame approach greatly enhances the performance of the code with respect to savings in computing time, without degradation of the solution.
Photovoltaic module and laminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.
A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaicmore » solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.« less
Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald
1991-01-01
A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.
The CCSDS Next Generation Space Data Link Protocol (NGSLP)
NASA Technical Reports Server (NTRS)
Kazz, Greg J.; Greenberg, Edward
2014-01-01
The CCSDS space link protocols i.e., Telemetry (TM), Telecommand (TC), Advanced Orbiting Systems (AOS) were developed in the early growth period of the space program. They were designed to meet the needs of the early missions, be compatible with the available technology and focused on the specific link environments. Digital technology was in its infancy and spacecraft power and mass issues enforced severe constraints on flight implementations. Therefore the Telecommand protocol was designed around a simple Bose, Hocquenghem, Chaudhuri (BCH) code that provided little coding gain and limited error detection but was relatively simple to decode on board. The infusion of the concatenated Convolutional and Reed-Solomon codes5 for telemetry was a major milestone and transformed telemetry applications by providing them the ability to more efficiently utilize the telemetry link and its ability to deliver user data. The ability to significantly lower the error rates on the telemetry links enabled the use of packet telemetry and data compression. The infusion of the high performance codes for telemetry was enabled by the advent of digital processing, but it was limited to earth based systems supporting telemetry. The latest CCSDS space link protocol, Proximity-1 was developed in early 2000 to meet the needs of short-range, bi-directional, fixed or mobile radio links characterized by short time delays, moderate but not weak signals, and short independent sessions. Proximity-1 has been successfully deployed on both NASA and ESA missions at Mars and is planned to be utilized by all Mars missions in development. A new age has arisen, one that now provides the means to perform advanced digital processing in spacecraft systems enabling the use of improved transponders, digital correlators, and high performance forward error correcting codes for all communications links. Flight transponders utilizing digital technology have emerged and can efficiently provide the means to make the next leap in performance for space link communications. Field Programmable Gate Arrays (FPGAs) provide the capability to incorporate high performance forward error correcting codes implemented within software transponders providing improved performance in data transfer, ranging, link security, and time correlation. Given these synergistic technological breakthroughs, the time has come to take advantage of them in applying them to both on going (e.g., command, telemetry) and emerging (e.g., space link security, optical communication) space link applications. However one of the constraining factors within the Data Link Layer in realizing these performance gains is the lack of a generic transfer frame format and common supporting services amongst the existing CCSDS link layer protocols. Currently each of the four CCSDS link layer protocols (TM, TC, AOS, and Proximity-1) have unique formats and services which prohibits their reuse across the totality of all space link applications of CCSDS member space agencies. For example, Mars missions. These missions implement their proximity data link layer using the Proximity-1 frame format and the services it supports but is still required to support the direct from Earth (TC) protocols and the Direct To Earth (AOS/TM) protocols. The prime purpose of this paper, is to describe a new general purpose CCSDS Data Link layer protocol, the NGSLP that will provide the required services along with a common transfer frame format for all the CCSDS space links (ground to/from space and space to space links) targeted for emerging missions after a CCSDS agency-wide coordinated date. This paper will also describe related options that can be included for the Coding and Synchronization sub-layer of the Data Link layer to extend the capacities of the link and additionally provide an independence of the transfer frame sub-layer from the coding sublayer. This feature will provide missions the option of running either the currently performed synchronous coding and transfer frame data link or an asynchronous coding/frame data link, in which the transfer frame length is independent of the block size of the code. The benefits from the elimination of this constraint (frame synchronized to the code block) will simplify the interface between the transponder and the data handling equipment and reduce implementation costs and complexities. The benefits include: inclusion of encoders/decoders into transmitters and receivers without regard to data link protocols, providing the ability to insert latency sensitive messages into the link to support launch, landing/docking, telerobotics. and Variable Coded Modulation (VCM). In addition the ability to transfer different sized frames can provide a backup for delivering stored anomaly engineering data simultaneously with real time data, or relaying of frames from various sources onto a trunk line for delivery to Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Julian; Tate, Mark W.; Shanks, Katherine S.
Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame,more » in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.« less
Thin film absorber for a solar collector
Wilhelm, William G.
1985-01-01
This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
Die singulation method and package formed thereby
Anderson, Robert C [Tucson, AZ; Shul, Randy J [Albuquerque, NM; Clews, Peggy J [Tijeras, NM; Baker, Michael S [Albuquerque, NM; De Boer, Maarten P [Albuquerque, NM
2012-08-07
A method is disclosed for singulating die from a substrate having a sacrificial layer and one or more device layers, with a retainer being formed in the device layer(s) and anchored to the substrate. Deep Reactive Ion Etching (DRIE) etching of a trench through the substrate from the bottom side defines a shape for each die. A handle wafer is then attached to the bottom side of the substrate, and the sacrificial layer is etched to singulate the die and to form a frame from the retainer and the substrate. The frame and handle wafer, which retain the singulated die in place, can be attached together with a clamp or a clip and to form a package for the singulated die. One or more stops can be formed from the device layer(s) to limit a sliding motion of the singulated die.
NASA Astrophysics Data System (ADS)
Tovarek, Jaromir; Partila, Pavol
2017-05-01
This article discusses the speaker identification for the improvement of the security communication between law enforcement units. The main task of this research was to develop the text-independent speaker identification system which can be used for real-time recognition. This system is designed for identification in the open set. It means that the unknown speaker can be anyone. Communication itself is secured, but we have to check the authorization of the communication parties. We have to decide if the unknown speaker is the authorized for the given action. The calls are recorded by IP telephony server and then these recordings are evaluate using classification If the system evaluates that the speaker is not authorized, it sends a warning message to the administrator. This message can detect, for example a stolen phone or other unusual situation. The administrator then performs the appropriate actions. Our novel proposal system uses multilayer neural network for classification and it consists of three layers (input layer, hidden layer, and output layer). A number of neurons in input layer corresponds with the length of speech features. Output layer then represents classified speakers. Artificial Neural Network classifies speech signal frame by frame, but the final decision is done over the complete record. This rule substantially increases accuracy of the classification. Input data for the neural network are a thirteen Mel-frequency cepstral coefficients, which describe the behavior of the vocal tract. These parameters are the most used for speaker recognition. Parameters for training, testing and validation were extracted from recordings of authorized users. Recording conditions for training data correspond with the real traffic of the system (sampling frequency, bit rate). The main benefit of the research is the system developed for text-independent speaker identification which is applied to secure communication between law enforcement units.
Design of the forward straw tube tracker for the PANDA experiment
NASA Astrophysics Data System (ADS)
Smyrski, J.; Apostolou, A.; Biernat, J.; Czyżycki, W.; Filo, G.; Fioravanti, E.; Fiutowski, T.; Gianotti, P.; Idzik, M.; Korcyl, G.; Korcyl, K.; Lisowski, E.; Lisowski, F.; Płażek, J.; Przyborowski, D.; Przygoda, W.; Ritman, J.; Salabura, P.; Savrie, M.; Strzempek, P.; Swientek, K.; Wintz, P.; Wrońska, A.
2017-06-01
The design of the Forward Tracker for the Forward Spectrometer of the PANDA experiment is described. The tracker consists of 6 tracking stations, each comprising 4 planar double layers of straw tube detectors, and has a total material budget of only 2% X0. The straws are made self-supporting by a 1 bar over-pressure of the working gas mixture (Ar/CO2). This allows to use lightweight and compact rectangular support frames for the double layers and to split the frames into pairs of C-shaped half-frames for an easier installation on the beam line.
Santala, M. K.; Raoux, S.; Campbell, G. H.
2015-12-24
The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measuredmore » with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santala, M. K., E-mail: melissa.santala@oregonstate.edu; Campbell, G. H.; Raoux, S.
2015-12-21
The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ∼100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured withmore » time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less
Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs
NASA Astrophysics Data System (ADS)
Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen
2012-03-01
The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.
IR CMOS: near infrared enhanced digital imaging (Presentation Recording)
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani
2015-08-01
SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km
Topics in electrochemical degradation of photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.
1984-01-01
Electrochemical degradation of photovoltaic modules was examined. It is found that the extent of electrochemical damage is dependent on the integrated leakage current. The PV electrochemical degradation mechanisms in the two polarities are different: (1) degradation rates in the two polarities are of the same order of magnitude; (2) center tapped grounded arrays are a preferred system configuration to minimize electrochemical degradation. The use of thicker pottant layers and polymer substrate films to reduce equilibrium leakage current values is suggested. A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers, and EVA modules appear to be consistent with 30 year life allocation levels for electrochemical damage. Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research.
Negoita, Madalina; Zolgharni, Massoud; Dadkho, Elham; Pernigo, Matteo; Mielewczik, Michael; Cole, Graham D; Dhutia, Niti M; Francis, Darrel P
2016-09-01
To determine the optimal frame rate at which reliable heart walls velocities can be assessed by speckle tracking. Assessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained. 27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold. Tissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity. The higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Toward one Giga frames per second--evolution of in situ storage image sensors.
Etoh, Takeharu G; Son, Dao V T; Yamada, Tetsuo; Charbon, Edoardo
2013-04-08
The ISIS is an ultra-fast image sensor with in-pixel storage. The evolution of the ISIS in the past and in the near future is reviewed and forecasted. To cover the storage area with a light shield, the conventional frontside illuminated ISIS has a limited fill factor. To achieve higher sensitivity, a BSI ISIS was developed. To avoid direct intrusion of light and migration of signal electrons to the storage area on the frontside, a cross-sectional sensor structure with thick pnpn layers was developed, and named "Tetratified structure". By folding and looping in-pixel storage CCDs, an image signal accumulation sensor, ISAS, is proposed. The ISAS has a new function, the in-pixel signal accumulation, in addition to the ultra-high-speed imaging. To achieve much higher frame rate, a multi-collection-gate (MCG) BSI image sensor architecture is proposed. The photoreceptive area forms a honeycomb-like shape. Performance of a hexagonal CCD-type MCG BSI sensor is examined by simulations. The highest frame rate is theoretically more than 1Gfps. For the near future, a stacked hybrid CCD/CMOS MCG image sensor seems most promising. The associated problems are discussed. A fine TSV process is the key technology to realize the structure.
Large area x-ray detectors for cargo radiography
NASA Astrophysics Data System (ADS)
Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.
2007-04-01
Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.
Wilhelm, W.G.
The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
Qi, Shao-Hai; Liu, Po; Xie, Ju-Lin; Shu, Bin; Xu, Ying-Bin; Ke, Chang-Neng; Liu, Xu-Sheng; Li, Tian-Zeng
2008-05-01
To investigate the influence of hair follicle dermal papilla cells (DPCs) on biological features of composite skin. In the test group, xenogeneic acellular dermal matrix was employed as the frame, DPCs were seeded on the subcutaneous side, and epithelial stem cells onto the dermal papilla side of the dermal frame so as to construct a composite skin. In the control group, there was no DPC in the frame. The two kinds of composite skin were employed to cover skin defects on the back of the nude mice. Wound healing was observed 4 weeks after grafting and area was analyzed and contraction rate was calculated. The tissue samples in the grafted area were harvested for HE staining and the state of the composite skin was observed. The stress-strain curve of the sampled skin was measured, so as to calculate the maximal breaking power of the sample. The data were collected and statistically analyzed. HE staining indicated that the epithelial depth was increased (more than 10 layers of cells) in test group, with only 6-7 layers in control group. The skin contraction rate in test group on the 4th week after skin grafting (3.94+/-0.013)% was much lower than that in control group (29.07+/-0.018)% (P<0.05). It was indicated by biomechanical test that the stress-strain curve of the composite skin in the test group was closer to that of normal nude mice skin in comparison to that in control group. The maximal breaking force of the composite skin in test group was (1.835+/-0.035)N (Newton), while that in control group was (1.075+/-0.065)N (P<0.01). Reconstruction of epidermis in composite skin was promoted by dermal DPCs seeded in the dermal matrix frame. As a result, there was less skin contraction in the composite skin with DPCs, so that the biological characteristics of the skin were improved.
High-frame-rate infrared and visible cameras for test range instrumentation
NASA Astrophysics Data System (ADS)
Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.
1995-09-01
Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.
Multi-layer laminate structure and manufacturing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenihan, James R; Cleereman, Robert J; Eurich, Gerald
2012-04-24
The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.
Multi-layer laminate structure and manufacturing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald
2013-01-29
The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.
Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730
2016-10-01
laminated rigid frame to reduce thermal layers, increase flexibility and comfort while retaining ischial containment. In contrast, a Sub-I design has...design is comprised of a flexible interface and minimal laminated rigid frame to reduce thermal layers, increase flexibility and comfort while...AWARD NUMBER: W81XWH-15-1-0410 TITLE: The Effect of Prosthetic Socket Interface Design on Socket Comfort , Residual Limb Health, and Function
Layered motion segmentation and depth ordering by tracking edges.
Smith, Paul; Drummond, Tom; Cipolla, Roberto
2004-04-01
This paper presents a new Bayesian framework for motion segmentation--dividing a frame from an image sequence into layers representing different moving objects--by tracking edges between frames. Edges are found using the Canny edge detector, and the Expectation-Maximization algorithm is then used to fit motion models to these edges and also to calculate the probabilities of the edges obeying each motion model. The edges are also used to segment the image into regions of similar color. The most likely labeling for these regions is then calculated by using the edge probabilities, in association with a Markov Random Field-style prior. The identification of the relative depth ordering of the different motion layers is also determined, as an integral part of the process. An efficient implementation of this framework is presented for segmenting two motions (foreground and background) using two frames. It is then demonstrated how, by tracking the edges into further frames, the probabilities may be accumulated to provide an even more accurate and robust estimate, and segment an entire sequence. Further extensions are then presented to address the segmentation of more than two motions. Here, a hierarchical method of initializing the Expectation-Maximization algorithm is described, and it is demonstrated that the Minimum Description Length principle may be used to automatically select the best number of motion layers. The results from over 30 sequences (demonstrating both two and three motions) are presented and discussed.
Snyder, Keith W.
2002-01-01
A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.
Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.
Huang, Yan; Wang, Wei; Wang, Liang
2018-04-01
Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.
Adaptation of hidden Markov models for recognizing speech of reduced frame rate.
Lee, Lee-Min; Jean, Fu-Rong
2013-12-01
The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation.
Framing the ultimatum game: gender differences and autonomic responses.
Sarlo, Michela; Lotto, Lorella; Palomba, Daniela; Scozzari, Simona; Rumiati, Rino
2013-01-01
The present study aimed at investigating whether the way offers are framed in the Ultimatum Game (UG) affects behavioral and autonomic responses in men and women. The "I give you" and "I take" expressions were used as gain and loss frames, respectively. Skin conductance and heart rate were recorded as indices of autonomic activation in response to unfair, mid-value, and fair offers. Acceptance rates were higher in men than in women under the gain frame. Moreover, men showed higher acceptance rates under the gain than under the loss frame with mid-value offers, whereas women's choices were not affected by frame. On the physiological level, men produced differential autonomic response patterns during decision-making when offers were presented under gain and loss framing. The "I take" frame, by acting as a loss frame, elicited in men the characteristic defensive response pattern that is evoked by aversive stimulation, in which increases in skin conductance are coupled with increases in heart rate. On the other hand, the "I give you" frame, by acting as a gain frame, elicited in men increases in skin conductance associated with prevailing heart rate deceleratory responses, reflecting a state of enhanced attention and orienting. In contrast, women's autonomic reactivity was not affected by frame, consistent with behavioral results. Phasic changes in heart rate were crucial in revealing differential functional significance of skin conductance responses under different frames in men, thus questioning the assumption that this autonomic measure can be used as an index of negative emotional arousal in the UG.
O'Donoghue, Amie C; Sullivan, Helen W; Aikin, Kathryn J
2014-12-01
Research suggests that quantitative information in direct-to-consumer (DTC) prescription drug ads may be helpful for consumers. The objective was to examine the effect of adding placebo rates and framing to DTC ads. In study 1, 2,000 Internet panel members with chronic pain participated in a randomized controlled experiment of DTC ads varying in placebo rate and framing. In study 2, 596 physicians ranked DTC ads varying in placebo rate and framing by how well they conveyed scientific information and their usefulness for patients. In study 1, participants who viewed placebo rates were able to recall them and use them to form certain perceptions. A mixed frame led to lower placebo rate recall and perceived efficacy. In study 2, overall, physicians preferred a placebo/single frame ad. Adding placebo rates to DTC ads may be useful for consumers. The evidence does not support using a mixed frame.
Development of explosively bonded TZM wire reinforced Columbian sheet composites
NASA Technical Reports Server (NTRS)
Otto, H. E.; Carpenter, S. H.
1972-01-01
Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.
Integrated Multilayer Insulation
NASA Technical Reports Server (NTRS)
Dye, Scott
2009-01-01
Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.
On scalable lossless video coding based on sub-pixel accurate MCTF
NASA Astrophysics Data System (ADS)
Yea, Sehoon; Pearlman, William A.
2006-01-01
We propose two approaches to scalable lossless coding of motion video. They achieve SNR-scalable bitstream up to lossless reconstruction based upon the subpixel-accurate MCTF-based wavelet video coding. The first approach is based upon a two-stage encoding strategy where a lossy reconstruction layer is augmented by a following residual layer in order to obtain (nearly) lossless reconstruction. The key advantages of our approach include an 'on-the-fly' determination of bit budget distribution between the lossy and the residual layers, freedom to use almost any progressive lossy video coding scheme as the first layer and an added feature of near-lossless compression. The second approach capitalizes on the fact that we can maintain the invertibility of MCTF with an arbitrary sub-pixel accuracy even in the presence of an extra truncation step for lossless reconstruction thanks to the lifting implementation. Experimental results show that the proposed schemes achieve compression ratios not obtainable by intra-frame coders such as Motion JPEG-2000 thanks to their inter-frame coding nature. Also they are shown to outperform the state-of-the-art non-scalable inter-frame coder H.264 (JM) lossless mode, with the added benefit of bitstream embeddedness.
A study of video frame rate on the perception of moving imagery detail
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Chuang, Sherry L.
1993-01-01
The rate at which each frame of color moving video imagery is displayed was varied in small steps to determine what is the minimal acceptable frame rate for life scientists viewing white rats within a small enclosure. Two, twenty five second-long scenes (slow and fast animal motions) were evaluated by nine NASA principal investigators and animal care technicians. The mean minimum acceptable frame rate across these subjects was 3.9 fps both for the slow and fast moving animal scenes. The highest single trial frame rate averaged across all subjects for the slow and the fast scene was 6.2 and 4.8, respectively. Further research is called for in which frame rate, image size, and color/gray scale depth are covaried during the same observation period.
Birch, Ivan; Vernon, Wesley; Burrow, Gordon; Walker, Jeremy
2014-03-01
Forensic gait analysis is increasingly being used as part of criminal investigations. A major issue is the quality of the closed circuit television (CCTV) footage used, particularly the frame rate which can vary from 25 frames per second to one frame every 4s. To date, no study has investigated the effect of frame rate on forensic gait analysis. A single subject was fitted with an ankle foot orthosis and recorded walking at 25 frames per second. 3D motion data were also collected, providing an absolute assessment of the gait characteristics. The CCTV footage was then edited to produce a set of eight additional pieces of footage, at various frame rates. Practitioners with knowledge of forensic gait analysis were recruited and instructed to record their observations regarding the characteristics of the subject's gait from the footage. They were sequentially sent web links to the nine pieces of footage, lowest frame rate first, and a simple observation recording form, over a period of 8 months. A sample-based Pearson product-moment correlation analysis of the results demonstrated a significant positive relationship between frame rate and scores (r=0.868, p=0.002). The results of this study show that frame rate affects the ability of experienced practitioners to identify characteristics of gait captured on CCTV footage. Every effort should therefore be made to ensure that CCTV footage likely to be used in criminal proceedings is captured at as high a frame rate as possible. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.
Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbationsmore » in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.« less
Solid-state image sensor with focal-plane digital photon-counting pixel array
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)
1995-01-01
A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.
Kinetics of radiation-induced precipitation at the alloy surface
NASA Astrophysics Data System (ADS)
Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.
1988-05-01
Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.
Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.
Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao
2018-02-01
Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen
WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less
A monolithic 640 × 512 CMOS imager with high-NIR sensitivity
NASA Astrophysics Data System (ADS)
Lauxtermann, Stefan; Fisher, John; McDougal, Michael
2014-06-01
In this paper we present first results from a backside illuminated CMOS image sensor that we fabricated on high resistivity silicon. Compared to conventional CMOS imagers, a thicker photosensitive membrane can be depleted when using silicon with low background doping concentration while maintaining low dark current and good MTF performance. The benefits of such a fully depleted silicon sensor are high quantum efficiency over a wide spectral range and a fast photo detector response. Combining these characteristics with the circuit complexity and manufacturing maturity available from a modern, mixed signal CMOS technology leads to a new type of sensor, with an unprecedented performance spectrum in a monolithic device. Our fully depleted, backside illuminated CMOS sensor was designed to operate at integration times down to 100nsec and frame rates up to 1000Hz. Noise in Integrate While Read (IWR) snapshot shutter operation for these conditions was simulated to be below 10e- at room temperature. 2×2 binning with a 4× increase in sensitivity and a maximum frame rate of 4000 Hz is supported. For application in hyperspectral imaging systems the full well capacity in each row can individually be programmed between 10ke-, 60ke- and 500ke-. On test structures we measured a room temperature dark current of 360pA/cm2 at a reverse bias of 3.3V. A peak quantum efficiency of 80% was measured with a single layer AR coating on the backside. Test images captured with the 50μm thick VGA imager between 30Hz and 90Hz frame rate show a strong response at NIR wavelengths.
Wilhelm, William G.
1982-01-01
The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
Multiport backside-illuminated CCD imagers for high-frame-rate camera applications
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Sauer, Donald J.; Hseuh, Fu-Lung; Shallcross, Frank V.; Taylor, Gordon C.; Meray, Grazyna M.; Tower, John R.; Harrison, Lorna J.; Lawler, William B.
1994-05-01
Two multiport, second-generation CCD imager designs have been fabricated and successfully tested. They are a 16-port 512 X 512 array and a 32-port 1024 X 1024 array. Both designs are back illuminated, have on-chip CDS, lateral blooming control, and use a split vertical frame transfer architecture with full frame storage. The 512 X 512 device has been operated at rates over 800 frames per second. The 1024 X 1024 device has been operated at rates over 300 frames per second. The major changes incorporated in the second-generation design are, reduction in gate length in the output area to give improved high-clock-rate performance, modified on-chip CDS circuitry for reduced noise, and optimized implants to improve performance of blooming control at lower clock amplitude. This paper discusses the imager design improvements and presents measured performance results at high and moderate frame rates. The design and performance of three moderate frame rate cameras are discussed.
Stacy A. Drury; Jason M. Herynk
2011-01-01
The National Tree-List Layer (NTLL) project used LANDFIRE map products to produce the first national tree-list map layer that represents tree populations at stand and regional levels. The NTLL was produced in a short time frame to address the needs of Fire and Aviation Management for a map layer that could be used as input for simulating fire-caused tree mortality...
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Data collected by the ISEE dual-spacecraft mission (on November 7, 1977) on a slowly moving, supercritical, high-beta, quasi-perpendicular bow shock are presented, and the local geometry, spatial scales, and stationarity of this shock wave are assessed in a self-consistent Rankine-Hugoniot-constrained frame of reference. Included are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities, current densities, electron and proton number densities, temperatures, pressures, and partial densities of the reflected protons. The observed layer profile is shown to be nearly phase standing and one-dimensional in a Rankine-Hugoniot frame, empirically determined by the magnetofluid parameters outside the layer proper.
Groby, J-P; Duclos, A; Dazel, O; Boeckx, L; Lauriks, W
2011-05-01
The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.
Podkowinski, Dominika; Sharian Varnousfaderani, Ehsan; Simader, Christian; Bogunovic, Hrvoje; Philip, Ana-Maria; Gerendas, Bianca S.
2017-01-01
Background and Objective To determine optimal image averaging settings for Spectralis optical coherence tomography (OCT) in patients with and without cataract. Study Design/Material and Methods In a prospective study, the eyes were imaged before and after cataract surgery using seven different image averaging settings. Image quality was quantitatively evaluated using signal-to-noise ratio, distinction between retinal layer image intensity distributions, and retinal layer segmentation performance. Measures were compared pre- and postoperatively across different degrees of averaging. Results 13 eyes of 13 patients were included and 1092 layer boundaries analyzed. Preoperatively, increasing image averaging led to a logarithmic growth in all image quality measures up to 96 frames. Postoperatively, increasing averaging beyond 16 images resulted in a plateau without further benefits to image quality. Averaging 16 frames postoperatively provided comparable image quality to 96 frames preoperatively. Conclusion In patients with clear media, averaging 16 images provided optimal signal quality. A further increase in averaging was only beneficial in the eyes with senile cataract. However, prolonged acquisition time and possible loss of details have to be taken into account. PMID:28630764
Decoding the cortical transformations for visually guided reaching in 3D space.
Blohm, Gunnar; Keith, Gerald P; Crawford, J Douglas
2009-06-01
To explore the possible cortical mechanisms underlying the 3-dimensional (3D) visuomotor transformation for reaching, we trained a 4-layer feed-forward artificial neural network to compute a reach vector (output) from the visual positions of both the hand and target viewed from different eye and head orientations (inputs). The emergent properties of the intermediate layers reflected several known neurophysiological findings, for example, gain field-like modulations and position-dependent shifting of receptive fields (RFs). We performed a reference frame analysis for each individual network unit, simulating standard electrophysiological experiments, that is, RF mapping (unit input), motor field mapping, and microstimulation effects (unit outputs). At the level of individual units (in both intermediate layers), the 3 different electrophysiological approaches identified different reference frames, demonstrating that these techniques reveal different neuronal properties and suggesting that a comparison across these techniques is required to understand the neural code of physiological networks. This analysis showed fixed input-output relationships within each layer and, more importantly, within each unit. These local reference frame transformation modules provide the basic elements for the global transformation; their parallel contributions are combined in a gain field-like fashion at the population level to implement both the linear and nonlinear elements of the 3D visuomotor transformation.
The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross
2014-06-15
Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained bymore » continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID image acquisition at the frame rate of at least 4.29 Hz is recommended. Motion blurring in the images with frame rates below 4.29 Hz can significantly reduce the accuracy of autotracking.« less
Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging
Fahey, Brian J.; Palmeri, Mark L.; Trahey, Gregg E.
2008-01-01
With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques. PMID:17521042
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Makhoul, J.; Schwartz, R. M.; Huggins, A. W. F.
1982-04-01
The variable frame rate (VFR) transmission methodology developed, implemented, and tested in the years 1973-1978 for efficiently transmitting linear predictive coding (LPC) vocoder parameters extracted from the input speech at a fixed frame rate is reviewed. With the VFR method, parameters are transmitted only when their values have changed sufficiently over the interval since their preceding transmission. Two distinct approaches to automatic implementation of the VFR method are discussed. The first bases the transmission decisions on comparisons between the parameter values of the present frame and the last transmitted frame. The second, which is based on a functional perceptual model of speech, compares the parameter values of all the frames that lie in the interval between the present frame and the last transmitted frame against a linear model of parameter variation over that interval. Also considered is the application of VFR transmission to the design of narrow-band LPC speech coders with average bit rates of 2000-2400 bts/s.
Anti-aliasing algorithm development
NASA Astrophysics Data System (ADS)
Bodrucki, F.; Davis, J.; Becker, J.; Cordell, J.
2017-10-01
In this paper, we discuss the testing image processing algorithms for mitigation of aliasing artifacts under pulsed illumination. Previously sensors were tested, one with a fixed frame rate and one with an adjustable frame rate, which results showed different degrees of operability when subjected to a Quantum Cascade Laser (QCL) laser pulsed at the frame rate of the fixe-rate sensor. We implemented algorithms to allow the adjustable frame-rate sensor to detect the presence of aliasing artifacts, and in response, to alter the frame rate of the sensor. The result was that the sensor output showed a varying laser intensity (beat note) as opposed to a fixed signal level. A MIRAGE Infrared Scene Projector (IRSP) was used to explore the efficiency of the new algorithms, introduction secondary elements into the sensor's field of view.
Design and performance evaluation of a distributed OFDMA-based MAC protocol for MANETs.
Park, Jaesung; Chung, Jiyoung; Lee, Hyungyu; Lee, Jung-Ryun
2014-01-01
In this paper, we propose a distributed MAC protocol for OFDMA-based wireless mobile ad hoc multihop networks, in which the resource reservation and data transmission procedures are operated in a distributed manner. A frame format is designed considering the characteristics of OFDMA that each node can transmit or receive data to or from multiple nodes simultaneously. Under this frame structure, we propose a distributed resource management method including network state estimation and resource reservation processes. We categorize five types of logical errors according to their root causes and show that two of the logical errors are inevitable while three of them are avoided under the proposed distributed MAC protocol. In addition, we provide a systematic method to determine the advertisement period of each node by presenting a clear relation between the accuracy of estimated network states and the signaling overhead. We evaluate the performance of the proposed protocol in respect of the reservation success rate and the success rate of data transmission. Since our method focuses on avoiding logical errors, it could be easily placed on top of the other resource allocation methods focusing on the physical layer issues of the resource management problem and interworked with them.
Automatic Mexican sign language and digits recognition using normalized central moments
NASA Astrophysics Data System (ADS)
Solís, Francisco; Martínez, David; Espinosa, Oscar; Toxqui, Carina
2016-09-01
This work presents a framework for automatic Mexican sign language and digits recognition based on computer vision system using normalized central moments and artificial neural networks. Images are captured by digital IP camera, four LED reflectors and a green background in order to reduce computational costs and prevent the use of special gloves. 42 normalized central moments are computed per frame and used in a Multi-Layer Perceptron to recognize each database. Four versions per sign and digit were used in training phase. 93% and 95% of recognition rates were achieved for Mexican sign language and digits respectively.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. T.; Bayu Aji, L. B.; Heo, T. W.
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; ...
2016-06-03
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
Absolute/convective secondary instabilities and the role of confinement in free shear layers
NASA Astrophysics Data System (ADS)
Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François
2018-05-01
We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by-passing the smaller wavelengths of absolute secondary instability. This provides a wavelength selection mechanism, according to which the distance between consecutive vortices should be sufficiently large in comparison with the channel width in order for the row of vortices to persist. We argue that the proposed wavelength selection criteria can serve as a guideline for experimentally obtaining plane shear layers with counterflow, which has remained an experimental challenge.
CASA-Mot technology: how results are affected by the frame rate and counting chamber.
Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles
2018-04-04
For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.
Using Temporal Fill Factor to Reduce Frame Reconstruction Rates
NASA Technical Reports Server (NTRS)
Larimer, James; Balram, Nikhil; Gille, Jennifer; Luszcz, Jeffery
1997-01-01
The newer active matrix display technologies such as TFT-LCD, DMD, PDP maintain their pixel values through the entire frame time, presenting a 100% temporal fill factor, in contrast to the duty cycle produced by the phosphor impulse response of the CRT. This sample-and-hold characteristic can be exploited to lower the displayed frame rate without affecting visual quality. The lower frame rate results in significantly lower transmission bandwidth, power, and cost.
2015-07-01
IMAGE FRAME RATE (R-x\\ IFR -n) PRE-TRIGGER FRAMES (R-x\\PTG-n) TOTAL FRAMES (R-x\\TOTF-n) EXPOSURE TIME (R-x\\EXP-n) SENSOR ROTATION (R-x...0” (Single frame). “1” (Multi-frame). “2” (Continuous). Allowed when: When R\\CDT is “IMGIN” IMAGE FRAME RATE R-x\\ IFR -n R/R Ch 10 Status: RO...the settings that the user wishes to modify. Return Value The impact : A partial IHAL <configuration> element containing only the new settings for
New architecture for dynamic frame-skipping transcoder.
Fung, Kai-Tat; Chan, Yui-Lam; Siu, Wan-Chi
2002-01-01
Transcoding is a key technique for reducing the bit rate of a previously compressed video signal. A high transcoding ratio may result in an unacceptable picture quality when the full frame rate of the incoming video bitstream is used. Frame skipping is often used as an efficient scheme to allocate more bits to the representative frames, so that an acceptable quality for each frame can be maintained. However, the skipped frame must be decompressed completely, which might act as a reference frame to nonskipped frames for reconstruction. The newly quantized discrete cosine transform (DCT) coefficients of the prediction errors need to be re-computed for the nonskipped frame with reference to the previous nonskipped frame; this can create undesirable complexity as well as introduce re-encoding errors. In this paper, we propose new algorithms and a novel architecture for frame-rate reduction to improve picture quality and to reduce complexity. The proposed architecture is mainly performed on the DCT domain to achieve a transcoder with low complexity. With the direct addition of DCT coefficients and an error compensation feedback loop, re-encoding errors are reduced significantly. Furthermore, we propose a frame-rate control scheme which can dynamically adjust the number of skipped frames according to the incoming motion vectors and re-encoding errors due to transcoding such that the decoded sequence can have a smooth motion as well as better transcoded pictures. Experimental results show that, as compared to the conventional transcoder, the new architecture for frame-skipping transcoder is more robust, produces fewer requantization errors, and has reduced computational complexity.
1984-12-01
BLOCK DATA Default values for variables input by menus. LIBR Interface with frame I/O routines. SNSR Interface with sensor routines. ATMOS Interface with...Routines Included in Frame I/O Interface Routine Description LIBR Selects options for input or output to a data library. FRREAD Reads frame from file and/or...Layer", Journal of Applied Meteorology 20, pp. 242-249, March 1981. 15 L.J. Harding, Numerical Analysis and Applications Software Abstracts, Computing
Applying compressive sensing to TEM video: A substantial frame rate increase on any camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Andrew; Kovarik, Libor; Abellan, Patricia
One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integratedmore » into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.« less
Applying compressive sensing to TEM video: A substantial frame rate increase on any camera
Stevens, Andrew; Kovarik, Libor; Abellan, Patricia; ...
2015-08-13
One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integratedmore » into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.« less
Methods for measuring plating thicknesses on TAB lead frames
NASA Technical Reports Server (NTRS)
Hagen, M. P.
1977-01-01
Plating three layer tape lead frames, used for tape automated bonding, offers a challenge to the electroplater because of nonuniform topography. Each lead frame contains large (typically .05 x. .05 inch) flat test pads located around the perimeter of the frame. These test pads are electrically connected to the bondable lead frame fingers which extend into an area in the center of the frame called the feature hole. The feature hole exposes these fingers to plating on all sides, while the test pads are exposed on only one side. In addition, the fingers are small in cross section (typically .003 x .0015 inches). Recent thickness measurements indicate that plating around the lead frame fingers is nearly twice as thick as that on test pad areas. Procedures and equipment were developed for measuring the thickness of the deposited material. Discussion was centered on the data obtained using the various measurement techniques and equipment.
Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit
Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...
2016-01-06
We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.
Backwards compatible high dynamic range video compression
NASA Astrophysics Data System (ADS)
Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.
2014-02-01
This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
Artificial Neural Network applied to lightning flashes
NASA Astrophysics Data System (ADS)
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a success rate of 90%. The videos used in this experiment were acquired by seven video cameras installed in São Bernardo do Campo, Brazil, that continuously recorded lightning events during the summer. The cameras were disposed in a 360 loop, recording all data at a time resolution of 33ms. During this period, several convective storms were recorded.
Scattering characteristics of relativistically moving concentrically layered spheres
NASA Astrophysics Data System (ADS)
Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.
2018-02-01
The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.
SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, S; Rottmann, J; Berbeco, R
2014-06-01
Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantommore » moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the accuracy of auto-tracking. This work is supported in part by the Varian Medical Systems, Inc.« less
Real time diffuse reflectance polarisation spectroscopy imaging to evaluate skin microcirculation
NASA Astrophysics Data System (ADS)
O'Doherty, Jim; Henricson, Joakim; Nilsson, Gert E.; Anderson, Chris; Leahy, Martin J.
2007-07-01
This article describes the theoretical development and design of a real-time microcirculation imaging system, an extension from a previously technology developed by our group. The technology utilises polarisation spectroscopy, a technique used in order to selectively gate photons returning from various compartments of human skin tissue, namely from the superficial layers of the epidermis, and the deeper backscattered light from the dermal matrix. A consumer-end digital camcorder captures colour data with three individual CCDs, and a custom designed light source consisting of a 24 LED ring light provides broadband illumination over the 400 nm - 700 nm wavelength region. Theory developed leads to an image processing algorithm, the output of which scales linearly with increasing red blood cell (RBC) concentration. Processed images are displayed online in real-time at a rate of 25 frames s -1, at a frame size of 256 x 256 pixels, and is limited only by computer RAM memory and processing speed. General demonstrations of the technique in vivo display several advantages over similar technology.
Iodine filter imaging system for subtraction angiography using synchrotron radiation
NASA Astrophysics Data System (ADS)
Umetani, K.; Ueda, K.; Takeda, T.; Itai, Y.; Akisada, M.; Nakajima, T.
1993-11-01
A new type of real-time imaging system was developed for transvenous coronary angiography. A combination of an iodine filter and a single energy broad-bandwidth X-ray produces two-energy images for the iodine K-edge subtraction technique. X-ray images are sequentially converted to visible images by an X-ray image intensifier. By synchronizing the timing of the movement of the iodine filter into and out of the X-ray beam, two output images of the image intensifier are focused side by side on the photoconductive layer of a camera tube by an oscillating mirror. Both images are read out by electron beam scanning of a 1050-scanning-line video camera within a camera frame time of 66.7 ms. One hundred ninety two pairs of iodine-filtered and non-iodine-filtered images are stored in the frame memory at a rate of 15 pairs/s. In vivo subtracted images of coronary arteries in dogs were obtained in the form of motion pictures.
Rayleigh-Taylor instability of two-specie laser-accelerated foils
NASA Astrophysics Data System (ADS)
Ratliff, T. H.; Yi, S. A.; Khudik, V.; Yu, T. P.; Pukhov, A.; Chen, M.; Shvets, G.
2010-11-01
When an ultra intense circularly polarized laser pulse irradiates an ultra thin film, a monoenergetic ion beam is produced with characteristics well suited for applications in science and medicine. Upon laser incidence, the electrons in the foil are pushed via the ponderomotive force to the foil rear; the charge separation field then accelerates ions. In the accelerating frame the ions are trapped in a potential well formed by the electrostatic and inertial forces. However, their energy spectrum can be quickly degraded by the Rayleigh-Taylor (RT) instability. Stabilization in the case of a two-specie foil is the subject of this poster. First, we use a 1D particle-in-cell (PIC) simulation to establish an equilibrium state of the two-specie foil in the accelerating frame. Next we perturb this equilibrium and analytically investigate the 2D RT instability. Analytical results are compared with 2-D simulations. We also investigate parametrically various effects on the RT growth rate. The protons completely separate from the carbons, and although the vacuum-carbon interface remains unstable, the large spatial extent of the carbon layer prevents perturbations from feeding through to the proton layer. The monoenergetic proton beam is shown to persist beyond the conclusion of the laser pulse interaction. [1] T.P. Yu, A. Pukhov, G. Shvets, and M Chen, Phys. Rev. Lett. (in press)
Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Cense, Barry; Nassif, Nader A.; Chen, Teresa C.; Pierce, Mark C.; Yun, Seok-Hyun; Hyle Park, B.; Bouma, Brett E.; Tearney, Guillermo J.; de Boer, Johannes F.
2004-05-01
We present the first ultrahigh-resolution optical coherence tomography (OCT) structural intensity images and movies of the human retina in vivo at 29.3 frames per second with 500 A-lines per frame. Data was acquired at a continuous rate of 29,300 spectra per second with a 98% duty cycle. Two consecutive spectra were coherently summed to improve sensitivity, resulting in an effective rate of 14,600 A-lines per second at an effective integration time of 68 μs. The turn-key source was a combination of two super luminescent diodes with a combined spectral width of more than 150 nm providing 4.5 mW of power. The spectrometer of the spectraldomain OCT (SD-OCT) setup was centered around 885 nm with a bandwidth of 145 nm. The effective bandwidth in the eye was limited to approximately 100 nm due to increased absorption of wavelengths above 920 nm in the vitreous. Comparing the performance of our ultrahighresolution SD-OCT system with a conventional high-resolution time domain OCT system, the A-line rate of the spectral-domain OCT system was 59 times higher at a 5.4 dB lower sensitivity. With use of a software based dispersion compensation scheme, coherence length broadening due to dispersion mismatch between sample and reference arms was minimized. The coherence length measured from a mirror in air was equal to 4.0 μm (n= 1). The coherence length determined from the specular reflection of the foveal umbo in vivo in a healthy human eye was equal to 3.5 μm (n = 1.38). With this new system, two layers at the location of the retinal pigmented epithelium seem to be present, as well as small features in the inner and outer plexiform layers, which are believed to be small blood vessels.
A Drift Chamber to Measure Charged Particles at COMPASS-II
NASA Astrophysics Data System (ADS)
Heitz, Robert; Compass Collaboration
2013-10-01
A new drift chamber (DC05) will be constructed to replace two tracking detector stations based on straw tubes, ST02 and ST03 in the COMPASS spectrometer. DC05 uses the designs from DC04, a previous drift chamber designed at CEA-Saclay, France, but adds the addition of more wires for improved acceptance. In addition to more wires DC05 will also change its front end electronics using a new pre-amplifier-discriminator chip (CMAD). DC05 consists of 8 layers of anode planes and 21 layers of G-10 material frames carrying cathode planes and gas windows. The wires are orientated with two layers in the vertical x-direction, two layers in the horizontal y-direction, two layers offset +10 deg of the vertical x-direction, and two layers offset -10 deg of the vertical x-direction. The wires in parallel directions are offset half a pitch to resolve left-right ambiguities. The purpose for different wire orientations is to reconstruct the 3D space particle trajectory to fit a particle track. Each layer of wires is covered on the top and bottom by a cathode plane of carbon coated mylar. All these layers are sandwiched between two steel stiffening frames for support and noise reduction. A future drift chamber, DC06, is also being designed based off of DC05. Research funded by NSF-PHY-12-05-671 Medium Energy Nuclear Physics.
Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.
Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A
2018-02-01
We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.
Two-photon voltage imaging using a genetically encoded voltage indicator
Akemann, Walther; Sasaki, Mari; Mutoh, Hiroki; Imamura, Takeshi; Honkura, Naoki; Knöpfel, Thomas
2013-01-01
Voltage-sensitive fluorescent proteins (VSFPs) are a family of genetically-encoded voltage indicators (GEVIs) reporting membrane voltage fluctuation from genetically-targeted cells in cell cultures to whole brains in awake mice as demonstrated earlier using 1-photon (1P) fluorescence excitation imaging. However, in-vivo 1P imaging captures optical signals only from superficial layers and does not optically resolve single neurons. Two-photon excitation (2P) imaging, on the other hand, has not yet been convincingly applied to GEVI experiments. Here we show that 2P imaging of VSFP Butterfly 1.2 expresssing pyramidal neurons in layer 2/3 reports optical membrane voltage in brain slices consistent with 1P imaging but with a 2–3 larger ΔR/R value. 2P imaging of mouse cortex in-vivo achieved cellular resolution throughout layer 2/3. In somatosensory cortex we recorded sensory responses to single whisker deflections in anesthetized mice at full frame video rate. Our results demonstrate the feasibility of GEVI-based functional 2P imaging in mouse cortex. PMID:23868559
AER synthetic generation in hardware for bio-inspired spiking systems
NASA Astrophysics Data System (ADS)
Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton
2005-06-01
Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses a Spartan II 200 FPGA. This system for AER Synthetic Generation is capable of transforming frames of 64x64 pixels, received through a standard computer PCI bus, at a frame rate of 25 frames per second, producing spike events at a peak rate of 107 events per second.
Near field Rayleigh wave on soft porous layers.
Geebelen, N; Boeckx, L; Vermeir, G; Lauriks, W; Allard, J F; Dazel, O
2008-03-01
Simulations performed for a typical semi-infinite reticulated plastic foam saturated by air show that, at distances less than three Rayleigh wavelengths from the area of mechanical excitation by a circular source, the normal frame velocity is close to the Rayleigh pole contribution. Simulated measurements show that a good order of magnitude estimate of the phase speed and damping can be obtained at small distances from the source. Simulations are also performed for layers of finite thickness, where the phase velocity and damping depend on frequency. They indicate that the normal frame velocity at small distances from the source is always close to the Rayleigh pole contribution and that a good order of magnitude estimate of the phase speed of the Rayleigh wave can be obtained at small distances from the source. Furthermore, simulations show that precise measurements of the damping of the Rayleigh wave need larger distances. Measurements performed on a layer of finite thickness confirm these trends.
Micromachined force-balance feedback accelerometer with optical displacement detection
Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert
2014-07-22
An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.
Integration of image capture and processing: beyond single-chip digital camera
NASA Astrophysics Data System (ADS)
Lim, SukHwan; El Gamal, Abbas
2001-05-01
An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.
STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers
1991-05-06
STS039-610-037 (28 April-6 May 1991) --- Numerous atmospheric scattering layers over Earth are apparent in this frame. The layers consist of fine particles suspended in very stable layers of the atmosphere. This photo was taken with a 70mm Rolliflex camera during the Space Shuttle Discovery's eight day mission. Crew members onboard were astronauts Michael L. Coats, L. Blaine Hammond, Guion S. Bluford, Richard J. Hieb, Gregory J. Harbaugh, Donald R. McMonagle and Charles L. (Lacy) Veach.
Temporal enhancement of two-dimensional color doppler echocardiography
NASA Astrophysics Data System (ADS)
Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.
2016-03-01
Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.
Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M
2016-01-01
A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.
Aspects of turbulent-shear-layer dynamics and mixing
NASA Astrophysics Data System (ADS)
Slessor, Michael David
Experiments have been conducted in the GALCIT Supersonic Shear Layer Facility to investigate some aspects of high-Reynolds-number, turbulent, shear-layer flows in both incompressible- and compressible-flow regimes. Experiments designed to address several issues were performed; effects of inflow boundary conditions, freestream conditions (supersonic/subsonic flow), and compressibility, on both large-scale dynamics and small-scale mixing, are described. Chemically-reacting and non-reacting flows were investigated, the former relying on the (Hsb2 + NO)/Fsb2 chemical system, in the fast-kinetic regime, to infer the structure and amount of molecular-scale mixing through use of "flip" experiments. A variety of experimental techniques, including a color-schlieren visualization system developed as part of this work, were used to study the flows. Both inflow conditions and compressibility are found to have significant effects on the flow. In particular, inflow conditions are "remembered" for long distances downstream, a sensitivity similar to that observed in low-dimensionality, non-linear (chaotic) systems. The global flowfields (freestreams coupled by the shear layer) of transonic flows exhibit a sensitivity to imposed boundary conditions, a.e., local area ratios. A previously-proposed mode-selection rule for turbulent-structure convection speeds, based on the presence of a lab-frame subsonic freestream, was experimentally demonstrated to be incorrect. Compressibility, when decoupled from ail other parameters, e.g., Reynolds number, velocity and density ratios, etc., reduces large-scale entrainment and turbulent growth, but slightly enhances small-scale mixing, with an associated change in the structure of the molecularly-mixed fluid. This reduction in shear-layer growth rate is examined and a new parameter that interprets compressibility as an energy-exchange mechanism is proposed. The parameter reconciles and collapses experimentally-observed growth rates.
Laser-induced Microparticle Impact Experiments on Soft Materials
NASA Astrophysics Data System (ADS)
Kooi, Steven; Veysset, David; Maznev, Alexei; Yang, Yun Jung; Olsen, Bradley; Nelson, Keith
High-velocity impact testing is used to study fundamental aspects of materials behavior under high strain rates as well as in applications ranging from armor testing to the development of novel drug delivery platforms. In this work, we study high-velocity impact of micron-size projectiles on soft viscoelastic materials including synthetic hydrogels and gelatin samples. In an all optical laser-induced projectile impact test (LIPIT), a monolayer of microparticles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the microparticles which are ejected from the launching pad into free space, reaching controllable speeds up to 1.5 km/s depending on the laser pulse energy and particle characteristics. The particles are monitored while in free space and after impact on the target surface with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution of each frame as short as 3 ns. We present images and movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics in the case of high Reynolds and Weber numbers. The results can provide direct input for modeling of high-velocity impact responses and high strain rate deformation in gels and other soft materials..
Rate-Compatible LDPC Codes with Linear Minimum Distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel
2009-01-01
A recently developed method of constructing protograph-based low-density parity-check (LDPC) codes provides for low iterative decoding thresholds and minimum distances proportional to block sizes, and can be used for various code rates. A code constructed by this method can have either fixed input block size or fixed output block size and, in either case, provides rate compatibility. The method comprises two submethods: one for fixed input block size and one for fixed output block size. The first mentioned submethod is useful for applications in which there are requirements for rate-compatible codes that have fixed input block sizes. These are codes in which only the numbers of parity bits are allowed to vary. The fixed-output-blocksize submethod is useful for applications in which framing constraints are imposed on the physical layers of affected communication systems. An example of such a system is one that conforms to one of many new wireless-communication standards that involve the use of orthogonal frequency-division modulation
Telemetry Standards, RCC Standard 106-17, Chapter 27, RF Network Access Layer
2017-07-01
27-13 27.5.5 Frame Check Sequence Field........................................................................... 27-13 27.6 Power Transients...to the physical media (i.e., the wireless RF network). On the transmission side, it is responsible for framing IP packets for physical transmission...parameters of a radio shall be stored to maintain communications with RF link management after a power interruption or software-initiated reset
High frame-rate en face optical coherence tomography system using KTN optical beam deflector
NASA Astrophysics Data System (ADS)
Ohmi, Masato; Shinya, Yusuke; Imai, Tadayuki; Toyoda, Seiji; Kobayashi, Junya; Sakamoto, Tadashi
2017-02-01
We developed high frame-rate en face optical coherence tomography (OCT) system using KTa1-xNbxO3 (KTN) optical beam deflector. In the imaging system, the fast scanning was performed at 200 kHz by the KTN optical beam deflector, while the slow scanning was performed at 800 Hz by the galvanometer mirror. As a preliminary experiment, we succeeded in obtaining en face OCT images of human fingerprint with a frame rate of 800 fps. This is the highest frame-rate obtained using time-domain (TD) en face OCT imaging. The 3D-OCT image of sweat gland was also obtained by our imaging system.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
NASA Astrophysics Data System (ADS)
Lazarev, Grigory; Bonifer, Stefanie; Engel, Philip; Höhne, Daniel; Notni, Gunther
2017-06-01
We report about the implementation of the liquid crystal on silicon (LCOS) microdisplay with 1920 by 1080 resolution and 720 Hz frame rate. The driving solution is FPGA-based. The input signal is converted from the ultrahigh-resolution HDMI 2.0 signal into HD frames, which follow with the specified 720 Hz frame rate. Alternatively the signal is generated directly on the FPGA with built-in pattern generator. The display is showing switching times below 1.5 ms for the selected working temperature. The bit depth of the addressed image achieves 8 bit within each frame. The microdisplay is used in the fringe projection-based 3D sensing system, implemented by Fraunhofer IOF.
NASA Astrophysics Data System (ADS)
Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma
2017-08-01
Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.
Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.
Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert
2011-04-01
To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE
Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims
Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.
2016-01-01
A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743
NASA Astrophysics Data System (ADS)
Ciaramello, Frank M.; Hemami, Sheila S.
2009-02-01
Communication of American Sign Language (ASL) over mobile phones would be very beneficial to the Deaf community. ASL video encoded to achieve the rates provided by current cellular networks must be heavily compressed and appropriate assessment techniques are required to analyze the intelligibility of the compressed video. As an extension to a purely spatial measure of intelligibility, this paper quantifies the effect of temporal compression artifacts on sign language intelligibility. These artifacts can be the result of motion-compensation errors that distract the observer or frame rate reductions. They reduce the the perception of smooth motion and disrupt the temporal coherence of the video. Motion-compensation errors that affect temporal coherence are identified by measuring the block-level correlation between co-located macroblocks in adjacent frames. The impact of frame rate reductions was quantified through experimental testing. A subjective study was performed in which fluent ASL participants rated the intelligibility of sequences encoded at a range of 5 different frame rates and with 3 different levels of distortion. The subjective data is used to parameterize an objective intelligibility measure which is highly correlated with subjective ratings at multiple frame rates.
High-Speed Videography Overview
NASA Astrophysics Data System (ADS)
Miller, C. E.
1989-02-01
The field of high-speed videography (HSV) has continued to mature in recent years, due to the introduction of a mixture of new technology and extensions of existing technology. Recent low frame-rate innovations have the potential to dramatically expand the areas of information gathering and motion analysis at all frame-rates. Progress at the 0 - rate is bringing the battle of film versus video to the field of still photography. The pressure to push intermediate frame rates higher continues, although the maximum achievable frame rate has remained stable for several years. Higher maximum recording rates appear technologically practical, but economic factors impose severe limitations to development. The application of diverse photographic techniques to video-based systems is under-exploited. The basics of HSV apply to other fields, such as machine vision and robotics. Present motion analysis systems continue to function mainly as an instant replay replacement for high-speed movie film cameras. The interrelationship among lighting, shuttering and spatial resolution is examined.
Flexible supercapacitor electrodes based on real metal-like cellulose papers.
Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan
2017-09-14
The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm -2 and 267.3 μWh cm -2 , respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.
Quantitative rotating frame relaxometry methods in MRI.
Gilani, Irtiza Ali; Sepponen, Raimo
2016-06-01
Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Adonis, Leegale; Paramanund, Jithen; Basu, Debashis; Luiz, John
2017-09-01
The impact of health message framing on cervical cancer screening uptake is poorly understood. In a prospective randomized control study with 748 females, aged 21-65 years with no Pap smear in the previous 3 years, they randomly received a loss-framed, gain-framed, or neutral health message (control) regarding cervical cancer screening by email. Screening rate in the control group was 9.58 percent (CI: 9.29%-9.87%), 5.71 percent (CI: 5.48%-6.98%) in the gain-framed group, and 8.53 percent (CI: 8.24%-8.81%) in the loss-framed group. Statistically there was no difference between the three screening rates. Framing of health messages may not be a significant consideration when communicating through emails.
A Novel Piggyback Selection Scheme in IEEE 802.11e HCCA
NASA Astrophysics Data System (ADS)
Lee, Hyun-Jin; Kim, Jae-Hyun
A control frame can be piggybacked onto a data frame to increase channel efficiency in wireless communication. However, if the control frame including global control information is piggybacked, the delay of the data frame from a access point will be increased even though there is only one station with low physical transmission rate. It is similar to the anomaly phenomenon in a network which supports multi-rate transmission. In this letter, we define this phenomenon as “the piggyback problem at low physical transmission rate” and evaluate the effect of this problem with respect to physical transmission rate and normalized traffic load. Then, we propose a delay-based piggyback scheme. Simulations show that the proposed scheme reduces average frame transmission delay and improves channel utilization about 24% and 25%, respectively.
Effective or ineffective: attribute framing and the human papillomavirus (HPV) vaccine.
Bigman, Cabral A; Cappella, Joseph N; Hornik, Robert C
2010-12-01
To experimentally test whether presenting logically equivalent, but differently valenced effectiveness information (i.e. attribute framing) affects perceived effectiveness of the human papillomavirus (HPV) vaccine, vaccine-related intentions and policy opinions. A survey-based experiment (N=334) was fielded in August and September 2007 as part of a larger ongoing web-enabled monthly survey, the Annenberg National Health Communication Survey. Participants were randomly assigned to read a short passage about the HPV vaccine that framed vaccine effectiveness information in one of five ways. Afterward, they rated the vaccine and related opinion questions. Main statistical methods included ANOVA and t-tests. On average, respondents exposed to positive framing (70% effective) rated the HPV vaccine as more effective and were more supportive of vaccine mandate policy than those exposed to the negative frame (30% ineffective) or the control frame. Mixed valence frames showed some evidence for order effects; phrasing that ended by emphasizing vaccine ineffectiveness showed similar vaccine ratings to the negative frame. The experiment finds that logically equivalent information about vaccine effectiveness not only influences perceived effectiveness, but can in some cases influence support for policies mandating vaccine use. These framing effects should be considered when designing messages. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Effective or ineffective: Attribute framing and the human papillomavirus (HPV) vaccine
Bigman, Cabral A.; Cappella, Joseph N.; Hornik, Robert C.
2010-01-01
Objectives To experimentally test whether presenting logically equivalent, but differently valenced effectiveness information (i.e. attribute framing) affects perceived effectiveness of the human papillomavirus (HPV) vaccine, vaccine related intentions and policy opinions. Method A survey-based experiment (N= 334) was fielded in August and September 2007 as part of a larger ongoing web-enabled monthly survey, the Annenberg National Health Communication Survey. Participants were randomly assigned to read a short passage about the HPV vaccine that framed vaccine effectiveness information in one of five ways. Afterward, they rated the vaccine and related opinion questions. Main statistical methods included ANOVA and t-tests. Results On average, respondents exposed to positive framing (70% effective) rated the HPV vaccine as more effective and were more supportive of vaccine mandate policy than those exposed to the negative frame (30% ineffective) or the control frame. Mixed valence frames showed some evidence for order effects; phrasing that ended by emphasizing vaccine ineffectiveness showed similar vaccine ratings to the negative frame. Conclusions The experiment finds that logically equivalent information about vaccine effectiveness not only influences perceived effectiveness, but can in some cases influence support for policies mandating vaccine use. Practice implications These framing effects should be considered when designing messages. PMID:20851560
Tumbling in Turbulence: How much does particle shape effect particle motion?
NASA Astrophysics Data System (ADS)
Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.
2014-12-01
Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.
Report on recent results of the PERCIVAL soft X-ray imager
NASA Astrophysics Data System (ADS)
Khromova, A.; Cautero, G.; Giuressi, D.; Menk, R.; Pinaroli, G.; Stebel, L.; Correa, J.; Marras, A.; Wunderer, C. B.; Lange, S.; Tennert, M.; Niemann, M.; Hirsemann, H.; Smoljanin, S.; Reza, S.; Graafsma, H.; Göttlicher, P.; Shevyakov, I.; Supra, J.; Xia, Q.; Zimmer, M.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Nicholls, T.; Turchetta, R.; Pedersen, U.; Tartoni, N.; Hyun, H. J.; Kim, K. S.; Rah, S. Y.; Hoenk, M. E.; Jewell, A. D.; Jones, T. J.; Nikzad, S.
2016-11-01
The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125-1000 eV. Main application fields of PERCIVAL are foreseen in photon science with FELs and synchrotron radiation. This requires high dynamic range up to 105 ph @ 250 eV paired with single photon sensitivity with high confidence at moderate frame rates in the range of 10-120 Hz. These figures imply the availability of dynamic gain switching on a pixel-by-pixel basis and a highly parallel, low noise analog and digital readout, which has been realized in the PERCIVAL sensor layout. Different aspects of the detector performance have been assessed using prototype sensors with different pixel and ADC types. This work will report on the recent test results performed on the newest chip prototypes with the improved pixel and ADC architecture. For the target frame rates in the 10-120 Hz range an average noise floor of 14e- has been determined, indicating the ability of detecting single photons with energies above 250 eV. Owing to the successfully implemented adaptive 3-stage multiple-gain switching, the integrated charge level exceeds 4 · 106 e- or 57000 X-ray photons at 250 eV per frame at 120 Hz. For all gains the noise level remains below the Poisson limit also in high-flux conditions. Additionally, a short overview over the updates on an oncoming 2 Mpixel (P2M) detector system (expected at the end of 2016) will be reported.
A sunset Earth observation image taken during STS-100
2001-04-26
S100-E-5498 (26 April 2001) --- Earth's limb--the edge of the planet seen at twilight--was captured with a digital still camera by one of the STS-100 crew members aboard the Space Shuttle Endeavour. Near center frame the silhouette of cloud layers can be seen in the atmosphere, above which lies an airglow layer (left).
General Solution for Theoretical Packet Data Loss Rate
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin; Schlesinger, Adam
2006-01-01
Communications systems which transfer blocks ("frames") of data must use a marker ("frame synchronization pattern") for identifying where a block begins. A technique ("frame synchronization strategy") is used to locate the start of each frame and maintain synchronization as additional blocks are processed. A device which strips out the frame synchronization pattern [FSP] and provides an "end of frame" pulse is called a frame synchronizer. As clock and data errors are introduced into the system, the start-of-block marker becomes displaced and/or corrupted. The capability of the frame synchronizer to stay locked to the pattern under these conditions is a figure of merit for the frame synchronization strategy. It is important to select a strategy which will stay locked nearly all the time at bit error rates where the data is usable. ("Bit error rate" [BER] is the fraction of binary bits which are inverted by passage through a communication system.) The fraction of frames that are discarded because the frame synchronizer is not locked is called "Percent Data Loss" or "Packet Data Loss rate" [PDL]. A general approach for accurately predicting PDL given BER was developed in Theoretical Percent Data Loss Calculation and Measurement Accuracy, T. P. Kelly, LESC-30554, December 1992. Kelly gave a solution in terms of matrix equations, and only addressed "level" channel encoding. This paper goes on to give a closed-form polynomial solution for the most common class of frame synchronizer strategies, and will also address "mark" and "space" (differential) channel encoding, and burst error environments. The paper is divided into four sections and follows a logically ordered presentation, with results developed before they are evaluated. However, most readers will derive the greatest benefit from this paper by treating the results as reference material. The result developed for differential encoding can be extended to other applications (like block codes) where the probability is needed that a block contains only a certain number of errors.
Designing a VMEbus FDDI adapter card
NASA Astrophysics Data System (ADS)
Venkataraman, Raman
1992-03-01
This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S
2016-01-01
Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t -test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects.
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.
2016-01-01
Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. Results All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t-test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. Conclusion The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Translational Relevance Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects. PMID:26835180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.
Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adaptingmore » Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.« less
Simultaneous three wavelength imaging with a scanning laser ophthalmoscope.
Reinholz, F; Ashman, R A; Eikelboom, R H
1999-11-01
Various imaging properties of scanning laser ophthalmoscopes (SLO) such as contrast or depth discrimination, are superior to those of the traditional photographic fundus camera. However, most SLO are monochromatic whereas photographic systems produce colour images, which inherently contain information over a broad wavelength range. An SLO system has been modified to allow simultaneous three channel imaging. Laser light sources in the visible and infrared spectrum were concurrently launched into the system. Using different wavelength triads, digital fundus images were acquired at high frame rates. Favourable wavelengths combinations were established and high contrast, true (red, green, blue) or false (red, green, infrared) colour images of the retina were recorded. The monochromatic frames which form the colour image exhibit improved distinctness of different retinal structures such as the nerve fibre layer, the blood vessels, and the choroid. A multi-channel SLO combines the advantageous imaging properties of a tunable, monochrome SLO with the benefits and convenience of colour ophthalmoscopy. The options to modify parameters such as wavelength, intensity, gain, beam profile, aperture sizes, independently for every channel assign a high degree of versatility to the system. Copyright 1999 Wiley-Liss, Inc.
Framing effects in medical situations: distinctions of attribute, goal and risky choice frames.
Peng, Jiaxi; Jiang, Yuan; Miao, Danmin; Li, Rui; Xiao, Wei
2013-06-01
To verify whether three different framing effects (risky choice, attribute and goal) exist in simulated medical situations and to analyse any differences. Medical decision-making problems were established, relating to medical skill evaluation, patient compliance and a selection of treatment options. All problems were described in positive and negative frame conditions. Significantly more positive evaluations were made if the doctor's medical records were described as 'of 100 patients, 70 patients became better' compared with those described as 'of 100 patients, 30 patients didn't become better'. Doctor's advice described in a negative frame resulted in significantly more decisions to comply, compared with advice described in a positive frame. Treatment options described in terms of survival rates resulted in significantly more adventurous choices compared with options described in terms of mortality rates. Decision-making reversal appeared in the risky choice and attribute frames, but not the goal frame. Framing effects were shown to exist in simulated medical situations, but there were significant differences among the three kinds of such effects.
Interplay between dewetting and layer inversion in poly(4-vinylpyridine)/polystyrene bilayers.
Thickett, Stuart C; Harris, Andrew; Neto, Chiara
2010-10-19
We investigated the morphology and dynamics of the dewetting of metastable poly(4-vinylpyridine) (P4VP) thin films situated on top of polystyrene (PS) thin films as a function of the molecular weight and thickness of both films. We focused on the competition between the dewetting process, occurring as a result of unfavorable intermolecular interactions at the P4VP/PS interface, and layer inversion due to the lower surface energy of PS. By means of optical and atomic force microscopy (AFM), we observed how both the dynamics of the instability and the morphology of the emerging patterns depend on the ratio of the molecular weights of the polymer films. When the bottom PS layer was less viscous than the top P4VP layer (liquid-liquid dewetting), nucleated holes in the P4VP film typically stopped growing at long annealing times because of a combination of viscous dissipation in the bottom layer and partial layer inversion. Full layer inversion was achieved when the viscosity of the top P4VP layer was significantly greater (>10⁴) than the viscosity of the PS layer underneath, which is attributed to strongly different mobilities of the two layers. The density of holes produced by nucleation dewetting was observed for the first time to depend on the thickness of the top film as well as the polymer molecular weight. The final (completely dewetted) morphology of isolated droplets could be achieved only if the time frame of layer inversion was significantly slower than that of dewetting, which was characteristic of high-viscosity PS underlayers that allowed dewetting to fall into a liquid-solid regime. Assuming a simple reptation model for layer inversion occurring at the dewetting front, the observed surface morphologies could be predicted on the basis of the relative rates of dewetting and layer inversion.
Specialized CCDs for high-frame-rate visible imaging and UV imaging applications
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Taylor, Gordon C.; Shallcross, Frank V.; Tower, John R.; Lawler, William B.; Harrison, Lorna J.; Socker, Dennis G.; Marchywka, Mike
1993-11-01
This paper reports recent progress by the authors in two distinct charge coupled device (CCD) technology areas. The first technology area is high frame rate, multi-port, frame transfer imagers. A 16-port, 512 X 512, split frame transfer imager and a 32-port, 1024 X 1024, split frame transfer imager are described. The thinned, backside illuminated devices feature on-chip correlated double sampling, buried blooming drains, and a room temperature dark current of less than 50 pA/cm2, without surface accumulation. The second technology area is vacuum ultraviolet (UV) frame transfer imagers. A developmental 1024 X 640 frame transfer imager with 20% quantum efficiency at 140 nm is described. The device is fabricated in a p-channel CCD process, thinned for backside illumination, and utilizes special packaging to achieve stable UV response.
NASA Astrophysics Data System (ADS)
Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.
2004-02-01
This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.
Yoo, Sun K; Kim, D K; Jung, S M; Kim, E-K; Lim, J S; Kim, J H
2004-01-01
A Web-based, realtime, tele-ultrasound consultation system was designed. The system employed ActiveX control, MPEG-4 coding of full-resolution ultrasound video (640 x 480 pixels at 30 frames/s) and H.320 videoconferencing. It could be used via a Web browser. The system was evaluated over three types of commercial line: a cable connection, ADSL and VDSL. Three radiologists assessed the quality of compressed and uncompressed ultrasound video-sequences from 16 cases (10 abnormal livers, four abnormal kidneys and two abnormal gallbladders). The radiologists' scores showed that, at a given frame rate, increasing the bit rate was associated with increasing quality; however, at a certain threshold bit rate the quality did not increase significantly. The peak signal to noise ratio (PSNR) was also measured between the compressed and uncompressed images. In most cases, the PSNR increased as the bit rate increased, and increased as the number of dropped frames increased. There was a threshold bit rate, at a given frame rate, at which the PSNR did not improve significantly. Taking into account both sets of threshold values, a bit rate of more than 0.6 Mbit/s, at 30 frames/s, is suggested as the threshold for the maintenance of diagnostic image quality.
Evaporation-induced gas-phase flows at selective laser melting
NASA Astrophysics Data System (ADS)
Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.
2018-02-01
Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.
Slow Speed--Fast Motion: Time-Lapse Recordings in Physics Education
ERIC Educational Resources Information Center
Vollmer, Michael; Möllmann, Klaus-Peter
2018-01-01
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s[superscript -1], allowing us to study transient physics phenomena happening…
Rau, A W; Bakueva, L; Rowlands, J A
2005-10-01
Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously, (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/ microm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63 +/- 2 nC cm(-2) cGy(-1). It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25 +/- 0.1 x 10(22) ehp m(-3) s(-1) and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a strong dependence on the ghosting dose: hole transport decreased by 61%, electron transport by up to approximately 80%. Therefore, degradation of both hole and electron transport due to the recombination of mobile charge carriers with trapped carriers (of opposite polarity) were identified as the main cause of ghosting in this study.
Guede-Fernandez, F; Ferrer-Mileo, V; Ramos-Castro, J; Fernandez-Chimeno, M; Garcia-Gonzalez, M A
2015-01-01
The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time series. The relative error of mean heart rate is negligible. In addition, measurement posture and the employed smartphone model influences on the beat-to-beat error measurement of heart rate and HRV indices have been analyzed. Then, the standard deviation of the beat-to-beat error (SDE) was 7.81 ± 3.81 ms in the worst case. Furthermore, in supine measurement posture, significant device influence on the SDE has been found and the SDE is lower with Samsung S5 than Motorola X. This study can be applied to analyze the reliability of different smartphone models for HRV assessment from real-time Android camera frames processing.
High Contrast Ultrafast Imaging of the Human Heart
Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael
2014-01-01
Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135
Cerina, Luca; Iozzia, Luca; Mainardi, Luca
2017-11-14
In this paper, common time- and frequency-domain variability indexes obtained by pulse rate variability (PRV) series extracted from video-photoplethysmographic signal (vPPG) were compared with heart rate variability (HRV) parameters calculated from synchronized ECG signals. The dual focus of this study was to analyze the effect of different video acquisition frame-rates starting from 60 frames-per-second (fps) down to 7.5 fps and different video compression techniques using both lossless and lossy codecs on PRV parameters estimation. Video recordings were acquired through an off-the-shelf GigE Sony XCG-C30C camera on 60 young, healthy subjects (age 23±4 years) in the supine position. A fully automated, signal extraction method based on the Kanade-Lucas-Tomasi (KLT) algorithm for regions of interest (ROI) detection and tracking, in combination with a zero-phase principal component analysis (ZCA) signal separation technique was employed to convert the video frames sequence to a pulsatile signal. The frame-rate degradation was simulated on video recordings by directly sub-sampling the ROI tracking and signal extraction modules, to correctly mimic videos recorded at a lower speed. The compression of the videos was configured to avoid any frame rejection caused by codec quality leveling, FFV1 codec was used for lossless compression and H.264 with variable quality parameter as lossy codec. The results showed that a reduced frame-rate leads to inaccurate tracking of ROIs, increased time-jitter in the signals dynamics and local peak displacements, which degrades the performances in all the PRV parameters. The root mean square of successive differences (RMSSD) and the proportion of successive differences greater than 50 ms (PNN50) indexes in time-domain and the low frequency (LF) and high frequency (HF) power in frequency domain were the parameters which highly degraded with frame-rate reduction. Such a degradation can be partially mitigated by up-sampling the measured signal at a higher frequency (namely 60 Hz). Concerning the video compression, the results showed that compression techniques are suitable for the storage of vPPG recordings, although lossless or intra-frame compression are to be preferred over inter-frame compression methods. FFV1 performances are very close to the uncompressed (UNC) version with less than 45% disk size. H.264 showed a degradation of the PRV estimation directly correlated with the increase of the compression ratio.
Performance analysis of local area networks
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.; Hall, Mary Grace
1990-01-01
A simulation of the TCP/IP protocol running on a CSMA/CD data link layer was described. The simulation was implemented using the simula language, and object oriented discrete event language. It allows the user to set the number of stations at run time, as well as some station parameters. Those parameters are the interrupt time and the dma transfer rate for each station. In addition, the user may configure the network at run time with stations of differing characteristics. Two types are available, and the parameters of both types are read from input files at run time. The parameters include the dma transfer rate, interrupt time, data rate, average message size, maximum frame size and the average interarrival time of messages per station. The information collected for the network is the throughput and the mean delay per packet. For each station, the number of messages attempted as well as the number of messages successfully transmitted is collected in addition to the throughput and mean packet delay per station.
1991-03-08
acceleration and angular rates (produced by roll, pitch. and yaw motions) experienced by the LP. 12 ___________________________________ Synetics Table 3 2...at time tlP,INIT. The corresponding n-frame to b-frame D(’NI is: Cb(t) = L.q(Y’LP,INIT). (A.30) 41). (’onipute angular rates: The angular rates with...respect to inertial space (p, q, and r) are computed from the angular rates with respect to the n-frame (P, Q, and R), which in turn are computed from
Feasibility of pulse wave velocity estimation from low frame rate US sequences in vivo
NASA Astrophysics Data System (ADS)
Zontak, Maria; Bruce, Matthew; Hippke, Michelle; Schwartz, Alan; O'Donnell, Matthew
2017-03-01
The pulse wave velocity (PWV) is considered one of the most important clinical parameters to evaluate CV risk, vascular adaptation, etc. There has been substantial work attempting to measure the PWV in peripheral vessels using ultrasound (US). This paper presents a fully automatic algorithm for PWV estimation from the human carotid using US sequences acquired with a Logic E9 scanner (modified for RF data capture) and a 9L probe. Our algorithm samples the pressure wave in time by tracking wall displacements over the sequence, and estimates the PWV by calculating the temporal shift between two sampled waves at two distinct locations. Several recent studies have utilized similar ideas along with speckle tracking tools and high frame rate (above 1 KHz) sequences to estimate the PWV. To explore PWV estimation in a more typical clinical setting, we used focused-beam scanning, which yields relatively low frame rates and small fields of view (e.g., 200 Hz for 16.7 mm filed of view). For our application, a 200 Hz frame rate is low. In particular, the sub-frame temporal accuracy required for PWV estimation between locations 16.7 mm apart, ranges from 0.82 of a frame for 4m/s, to 0.33 for 10m/s. When the distance is further reduced (to 0.28 mm between two beams), the sub-frame precision is in parts per thousand (ppt) of the frame (5 ppt for 10m/s). As such, the contributions of our algorithm and this paper are: 1. Ability to work with low frame-rate ( 200Hz) and decreased lateral field of view. 2. Fully automatic segmentation of the wall intima (using raw RF images). 3. Collaborative Speckle Tracking of 2D axial and lateral carotid wall motion. 4. Outlier robust PWV calculation from multiple votes using RANSAC. 5. Algorithm evaluation on volunteers of different ages and health conditions.
Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien
2017-02-01
Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.
NASA Astrophysics Data System (ADS)
Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.
2010-12-01
Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.
High-frame-rate full-vocal-tract 3D dynamic speech imaging.
Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P
2017-04-01
To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Aspects of turbulent-shear-layer dynamics and mixing
NASA Astrophysics Data System (ADS)
Slessor, Michael David
Experiments have been conducted in the GALCIT Supersonic Shear Layer Facility to investigate some aspects of high-Reynolds-number, turbulent, shearlayer flows in both incompressible- and compressible-flow regimes. Experiments designed to address several issues were performed; effects of inflow boundary conditions, freestream conditions (supersonic/subsonic flow), and compressibility, on both large-scale dynamics and small-scale mixing, are described. Chemically-reacting and non-reacting flows were investigated, the former relying on the (H2 + NO/F2) chemical system, in the fast-kinetic regime, to infer the structure and amount of molecular-scale mixing through use of "flip" experiments. A variety of experimental techniques, including a color-schlieren visualization system developed as part of this work, were used to study the flows. Both inflow conditions and compressibility are found to have significant effects on the flow. In particular, inflow conditions are "remembered" for long distances downstream, a sensitivity similar to that observed in low-dimensionality, non-linear (chaotic) systems. The global flowfields (freestreams coupled by the shear layer) of transonic flows exhibit a sensitivity to imposed boundary conditions, i. e., local area ratios. A previously-proposed mode-selection rule for turbulent-structure convection speeds, based on the presence of a lab-frame subsonic freestream, was experimentally demonstrated to be incorrect. Compressibility, when decoupled from all other parameters, e.g., Reynolds number, velocity and density ratios, etc., reduces laxge-scale entrainment and turbulent growth, but slightly enhances smallscale mixing, with an associated change in the structure of the molecularly-mixed fluid. This reduction in shear-layer growth rate is examined and a new parameter that interprets compressibility as an energy-exchange mechanism is proposed. The parameter reconciles and collapses experimentally-observed growth rates.
Multiple Sensor Camera for Enhanced Video Capturing
NASA Astrophysics Data System (ADS)
Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko
A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.
An analysis of the low-earth-orbit communications environment
NASA Astrophysics Data System (ADS)
Diersing, Robert Joseph
Advances in microprocessor technology and availability of launch opportunities have caused interest in low-earth-orbit satellite based communications systems to increase dramatically during the past several years. In this research the capabilities of two low-cost, store-and-forward LEO communications satellites operating in the public domain are examined--PACSAT-1 (operated by the Radio Amateur Satellite Corporation) and UoSAT-3 (operated by the University of Surrey, England, Electrical Engineering Department). The file broadcasting and file transfer facilities are examined in detail and a simulation model of the downlink traffic pattern is developed. The simulator will aid the assessment of changes in design and implementation for other systems. The development of the downlink traffic simulator is based on three major parts. First, is a characterization of the low-earth-orbit operating environment along with preliminary measurements of the PACSAT-1 and UoSAT-3 systems including: satellite visibility constraints on communications, monitoring equipment configuration, link margin computations, determination of block and bit error rates, and establishing typical data capture rates for ground stations using computer-pointed directional antennas and fixed omni-directional antennas. Second, arrival rates for successful and unsuccessful file server connections are established along with transaction service times. Downlink traffic has been further characterized by measuring: frame and byte counts for all data-link layer traffic; 30-second interval average response time for all traffic and for file server traffic only; file server response time on a per-connection basis; and retry rates for information and supervisory frames. Finally, the model is verified by comparison with measurements of actual traffic not previously used in the model building process. The simulator is then used to predict operation of the PACSAT-1 satellite with modifications to the original design.
Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers
NASA Astrophysics Data System (ADS)
Watanabe, T.; Riley, J. J.; Nagata, K.
2017-10-01
The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.
Effects of the frame acquisition rate on the sensitivity of gastro-oesophageal reflux scintigraphy
Codreanu, I; Chamroonrat, W; Edwards, K
2013-01-01
Objective: To compare the sensitivity of gastro-oesophageal reflux (GOR) scintigraphy at 5-s and 60-s frame acquisition rates. Methods: GOR scintigraphy of 50 subjects (1 month–20 years old, mean 42 months) were analysed concurrently using 5-s and 60-s acquisition frames. Reflux episodes were graded as low if activity was detected in the distal half of the oesophagus and high if activity was detected in its upper half or in the oral cavity. For comparison purposes, detected GOR in any number of 5-s frames corresponding to one 60-s frame was counted as one episode. Results: A total of 679 episodes of GOR to the upper oesophagus were counted using a 5-s acquisition technique. Only 183 of such episodes were detected on 60-s acquisition images. To the lower oesophagus, a total of 1749 GOR episodes were detected using a 5-s acquisition technique and only 1045 episodes using 60-s acquisition frames (these also included the high-level GOR on 5-s frames counted as low level on 60-s acquisition frames). 10 patients had high-level GOR episodes that were detected only using a 5-s acquisition technique, leading to a different diagnosis in these patients. No correlation between the number of reflux episodes and the gastric emptying rates was noted. Conclusion: The 5-s frame acquisition technique is more sensitive than the 60-s frame acquisition technique for detecting both high- and low-level GOR. Advances in knowledge: Brief GOR episodes with a relatively low number of radioactive counts are frequently indistinguishable from intense background activity on 60-s acquisition frames. PMID:23520226
Wong, Yau; Chao, Jerry; Lin, Zhiping; Ober, Raimund J.
2014-01-01
In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. PMID:25321248
NASA Astrophysics Data System (ADS)
Blackford, Ethan B.; Estepp, Justin R.
2015-03-01
Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.
Forwarding techniques for IP fragmented packets in a real 6LoWPAN network.
Ludovici, Alessandro; Calveras, Anna; Casademont, Jordi
2011-01-01
Wireless Sensor Networks (WSNs) are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over) focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under.
Forwarding Techniques for IP Fragmented Packets in a Real 6LoWPAN Network
Ludovici, Alessandro; Calveras, Anna; Casademont, Jordi
2011-01-01
Wireless Sensor Networks (WSNs) are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over) focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under. PMID:22346615
Video Completion in Digital Stabilization Task Using Pseudo-Panoramic Technique
NASA Astrophysics Data System (ADS)
Favorskaya, M. N.; Buryachenko, V. V.; Zotin, A. G.; Pakhirka, A. I.
2017-05-01
Video completion is a necessary stage after stabilization of a non-stationary video sequence, if it is desirable to make the resolution of the stabilized frames equalled the resolution of the original frames. Usually the cropped stabilized frames lose 10-20% of area that means the worse visibility of the reconstructed scenes. The extension of a view of field may appear due to the pan-tilt-zoom unwanted camera movement. Our approach deals with a preparing of pseudo-panoramic key frame during a stabilization stage as a pre-processing step for the following inpainting. It is based on a multi-layered representation of each frame including the background and objects, moving differently. The proposed algorithm involves four steps, such as the background completion, local motion inpainting, local warping, and seamless blending. Our experiments show that a necessity of a seamless stitching occurs often than a local warping step. Therefore, a seamless blending was investigated in details including four main categories, such as feathering-based, pyramid-based, gradient-based, and optimal seam-based blending.
Motion-Compensated Compression of Dynamic Voxelized Point Clouds.
De Queiroz, Ricardo L; Chou, Philip A
2017-05-24
Dynamic point clouds are a potential new frontier in visual communication systems. A few articles have addressed the compression of point clouds, but very few references exist on exploring temporal redundancies. This paper presents a novel motion-compensated approach to encoding dynamic voxelized point clouds at low bit rates. A simple coder breaks the voxelized point cloud at each frame into blocks of voxels. Each block is either encoded in intra-frame mode or is replaced by a motion-compensated version of a block in the previous frame. The decision is optimized in a rate-distortion sense. In this way, both the geometry and the color are encoded with distortion, allowing for reduced bit-rates. In-loop filtering is employed to minimize compression artifacts caused by distortion in the geometry information. Simulations reveal that this simple motion compensated coder can efficiently extend the compression range of dynamic voxelized point clouds to rates below what intra-frame coding alone can accommodate, trading rate for geometry accuracy.
NASA Astrophysics Data System (ADS)
Leroy, Matthieu; Keppens, Rony
2016-04-01
The transfer of matter from the solar-wind to the Earth's magnetosphere during southward solar wind is mostly well understood but the processes governing the same phenomenon during northward solar wind remains to be fully apprehended. Numerous numerical studies have investigated the topic with many interesting results but most of these were considering two-dimensional situations with simplified magnetic configuration and often neglecting the inhomogeneities for the sake of clarity. Given the typical parameters at the magnetosphere-solar wind interface, the situation must be considered in the frame of Hall-MHD, due to the fact that the current layers widths and the gradient lengths can be in the order of the ion inertial length. As a consequence of Hall-MHD creating a third vector component from two planar ones, and also because magnetic perturbations can affect the field configuration at a distance in all directions and not only locally, three-dimensional treatment is necessary. In this spirit three-dimensional simulations of a configuration approaching the conditions leading to the development of Kelvin-Helmholtz instabilities at the flank of the magnetosphere during northward oriented solar-wind are performed as means to study the entry of solar-wind matter into Earth's magnetic field. In the scope of assessing the effect of the Hall-term in the physical processes, the simulations are also performed in the MHD frame. Furthermore the influence of the density and velocity jump through the shear layer on the rate of mass entering the magnetosphere is explored. Indeed, depending on the exact values of the physical quantities, the Kelvin-Helmholtz instability may have to compete with secondary instabilities and the non-linear phase may exhibit vortex merging and large-scale structures reorganisation, creating very different mixing layers, or generate different reconnection sites, locally and at a distance. These different configurations may have discernible signatures that can be identified by spacecraft diagnostics.
1989-06-19
Applications of Laser-Induced Exciplex Fluorescence to Fuel Spray and Single Droplet Vaporization, L A Melton...m 0000 a a Tm ol m 0 0 4. LL o WWN 64 0 4N N WXX 0 :1N 2 0 0ŕ r. ’ 4 00 4-4 -00 co "i 0 W o> ca 0. 0 C3 (V CLw 1 o ) W4 V)V tn A Ao6 - I 0014CJ...particular turbulent str zture OL , the outer edge (air side) of the shear layer can be followed from frame to frame. The 10 us time separation between frames
Electron diffusion region and thermal demagnetization
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Holdaway, R. D.; Glassberg, R.; Rodriguez, S. L.
2008-10-01
The demagnetized skin depth width electron diffusion region (EDR) distinguishes the innermost current layers of collisionless magnetic reconnection (CMR) from other current layers. Such narrow layers with virtually unknown properties are hard to identify in space observations. Soon, diagnosing it will be the central focus of NASA's Magnetospheric Multiscale Mission. Initial attempts have been made to frame necessary tests to ensure that the observer is in the EDR. Since none of the tests are sufficient to identify the EDR, it is important to vet as many necessary conditions as possible. In this way a winnowing process can lessen the likelihood of false positive detections of the EDR. Since the "necessary" criteria of the EDR are usually not amenable to direct experimental tests, a vetting process is desirable before accepting "necessary" proxy tests for the criteria of CMR. This paper proposes a further necessary test of an essential property of the EDR: the necessity that the thermal electrons be demagnetized in these regions. Without this attribute, the magnetic flux is essentially frozen to the electron fluid velocity and the topology breaking of CMR is thwarted. We have framed this test from kinetic theory, gathered the relevant observables, and used it with a published set of over 100 previously identified EDRs. Surprisingly, 99% of them are ≃100 times more magnetized than expected for the EDR of CMR theory. The outcome of this falsifiable test demonstrates the scientific dialogue is incomplete for framing adequate pragmatic tests for identifying EDRs.
Hardware accelerator design for tracking in smart camera
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil
2011-10-01
Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.
Stanley, Samantha J; Pitts, Margaret Jane
2018-02-22
While cigarette smoking is decreasing among young adults, rates of nicotine consumption through other devices, most notably electronic cigarettes, are on the rise. Framed by communication theory of identity, this study examines young adult smokers' experiences with relational others in regard to their smoking. Focus group discussions and individual interviews convened with 20 young adult cigarette and electronic cigarette smokers revealed identity gaps implicating the relational layer of identity, including personal-relational, enacted-relational, and personal-enacted-relational identity gaps. Participants used communicative and behavioral strategies to manage relational discrepancies. The documented identity gaps and management strategies present opportunities for targeted smoking cessation interventions that amplify dissonance created through identity gaps as a motivational tactic.
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2005-01-01
An electrostrictive polymer actuator comprises an electrostrictive polymer with a tailorable Poisson's ratio. The electrostrictive polymer is electroded on its upper and lower surfaces and bonded to an upper material layer. The assembly is rolled tightly and capped at its ends. In a membrane structure having a membrane, a supporting frame and a plurality of threads connecting the membrane to the frame, an actuator can be integrated into one or more of the plurality of threads. The electrostrictive polymer actuator displaces along its longitudinal axis, thereby affecting movement of the membrane surface.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Using the results of Scudder et al. (1986) on the bow shock wave observed by ISEE satellites, a quantitative description is presented of the electrodynamics of ion and electron fluids, and phase-standing wave interaction which manifests itself as a supercritical MHD shock. The cross-shock electrical profile was determined in both the normal incidence frame and in the deHoffman-Teller frame by two different methods, and the results were compared with dc electric field measurements.
The Effects of Framing Grades on Student Learning and Preferences
ERIC Educational Resources Information Center
Bies-Hernandez, Nicole J.
2012-01-01
Two experiments examined whether framing effects, in terms of losses and gains, can be extended to student learning and grading preferences. In Experiment 1, participants rated psychology course syllabi to investigate preferences for differently framed grading systems: a loss versus gain grading system. The results showed a clear framing effect…
Dispositional optimism, self-framing and medical decision-making.
Zhao, Xu; Huang, Chunlei; Li, Xuesong; Zhao, Xin; Peng, Jiaxi
2015-03-01
Self-framing is an important but underinvestigated area in risk communication and behavioural decision-making, especially in medical settings. The present study aimed to investigate the relationship among dispositional optimism, self-frame and decision-making. Participants (N = 500) responded to the Life Orientation Test-Revised and self-framing test of medical decision-making problem. The participants whose scores were higher than the middle value were regarded as highly optimistic individuals. The rest were regarded as low optimistic individuals. The results showed that compared to the high dispositional optimism group, participants from the low dispositional optimism group showed a greater tendency to use negative vocabulary to construct their self-frame, and tended to choose the radiation therapy with high treatment survival rate, but low 5-year survival rate. Based on the current findings, it can be concluded that self-framing effect still exists in medical situation and individual differences in dispositional optimism can influence the processing of information in a framed decision task, as well as risky decision-making. © 2014 International Union of Psychological Science.
High-Frame-Rate Doppler Ultrasound Using a Repeated Transmit Sequence
Podkowa, Anthony S.; Oelze, Michael L.; Ketterling, Jeffrey A.
2018-01-01
The maximum detectable velocity of high-frame-rate color flow Doppler ultrasound is limited by the imaging frame rate when using coherent compounding techniques. Traditionally, high quality ultrasonic images are produced at a high frame rate via coherent compounding of steered plane wave reconstructions. However, this compounding operation results in an effective downsampling of the slow-time signal, thereby artificially reducing the frame rate. To alleviate this effect, a new transmit sequence is introduced where each transmit angle is repeated in succession. This transmit sequence allows for direct comparison between low resolution, pre-compounded frames at a short time interval in ways that are resistent to sidelobe motion. Use of this transmit sequence increases the maximum detectable velocity by a scale factor of the transmit sequence length. The performance of this new transmit sequence was evaluated using a rotating cylindrical phantom and compared with traditional methods using a 15-MHz linear array transducer. Axial velocity estimates were recorded for a range of ±300 mm/s and compared to the known ground truth. Using these new techniques, the root mean square error was reduced from over 400 mm/s to below 50 mm/s in the high-velocity regime compared to traditional techniques. The standard deviation of the velocity estimate in the same velocity range was reduced from 250 mm/s to 30 mm/s. This result demonstrates the viability of the repeated transmit sequence methods in detecting and quantifying high-velocity flow. PMID:29910966
External Insulation of Masonry Walls and Wood Framed Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, P.
2013-01-01
The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and hasmore » been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.« less
External Insulation of Masonry Walls and Wood Framed Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, P.
2013-01-01
The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and hasmore » been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.« less
High-frame rate multiport CCD imager and camera
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.
1993-01-01
A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
1990-01-01
The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.
New test of general relativity - Measurement of de Sitter geodetic precession rate for lunar perigee
NASA Technical Reports Server (NTRS)
Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L.
1987-01-01
According to general relativity, the calculated rate of motion of lunar perigee should include a contribution of 19.2 msec/yr from geodetic precession. It is shown that existing analyses of lunar-laser-ranging data confirm the general-relativistic rate for geodetic precession with respect to the planetary dynamical frame. In addition, the comparison of earth-rotation results from lunar laser ranging and from VLBI shows that the relative drift of the planetary dynamical frame and the extragalactic VLBI reference frame is small. The estimated accuracy is about 10 percent.
NASA Astrophysics Data System (ADS)
Asimakoulas, L.; Karim, M. L.; Dostal, L.; Krcma, F.; Graham, W. G.; Field, T. A.
2016-09-01
Plasmas formed by 1 ms pulses of between 180 and 300 V applied to sharp pin-like electrodes immersed in saline solution have been imaged with a Photron SA-X2 fast framing camera and an Andor iStar 510 ICCD camera. Stainless steel, Tungsten and Gold electrodes were investigated with tip diameters of 30 μm, 1 μm and < 1 μ m respectively. As previously observed, a vapour layer forms around the electrode prior to plasma ignition. For gold and stainless steel lower voltages were required to minimize electrode damage. Preliminary anlaysis indicates at lower voltages for all tips the fast framing results show that light emission is normally centred on a single small volume, which appears to move about, but remains close to the tip. In the case of Tungsten with higher voltages or longer pulses the tip of the needle can heat up to incandescent temperatures. At higher voltages shock wave fronts appear to be observed as the vapour layer collapses at the end of the voltage pulse. Backlighting and no lighting to observe bubble/vapour layer formation and emission due to plasma formation were employed. Sometimes at higher voltages a thicker vapour layer engulfs the tip and no plasma emission/current is observed.
AISI/DOE Technology Roadmap Program: Development of Cost-effective, Energy-efficient Steel Framing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nader R. Elhajj
2003-01-06
Steel members in wall construction form a thermal bridge that interrupts the insulation layer of a wall. This causes higher rate of heat transfer by conduction through the wall framing than through other parts of the wall. One method to reduce the thermal bridging effect is to provide a break, such as insulating sheathing. A thermally efficient slit-web and stud was developed in this program to mitigate the conductivity of steel. The thermal performance of the slit-web stud was evaluated at Oak Ridge National Laboratory using hotbox testing. The thermal test results showed that the prototype slit-web stud performed 17%more » better than the solid-web stud, using R-13 fiber glass batts with exterior OSB sheathing and interior drywall. The structural behavior of this slit-web stud was evaluated in axial, bending, shear, shearwall, and stub-column tests. Test results indicated that the slitweb stud performed similarly or better than the solid-web stud in most structural performance characteristics investigated. Thus, the prototype slit-web stud has been shown to be thermally efficient, economiexecy viable, structurally sound, easily manufactured and usable in a range of residential installations.« less
FRAMING EFFECTS ON PHYSICIANS' JUDGMENT AND DECISION MAKING.
Bui, Thanh C; Krieger, Heather A; Blumenthal-Barby, Jennifer S
2015-10-01
This study aimed to assess physicians' susceptibility to framing effects in clinical judgment and decision making. A survey was administered online to 159 general internists in the United States. Participants were randomized into two groups, in which clinical scenarios varied in their framings: frequency vs percentage, with cost information vs without, female patient vs male patient, and mortality vs survival. Results showed that physicians' recommendations for patients in hypothetical scenarios were significantly different when the predicted probability of the outcomes was presented in frequency versus percentage form and when it was presented in mortality rate vs survival rate of the same magnitude. Physicians' recommendations were not different for other framing effects.
High stroke pixel for a deformable mirror
Miles, Robin R.; Papavasiliou, Alexandros P.
2005-09-20
A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.
Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments
NASA Astrophysics Data System (ADS)
Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete
2002-04-01
New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.
Degradation and biocompatibility of multi-stage nanovectors in physiological systems
Martinez, Jonathan O.; Evangelopoulos, Michael; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio
2014-01-01
The careful scrutiny of drug delivery systems is essential to evaluate and justify their potential for the clinic. Among the various studies necessary for pre-clinical testing, the impact of degradation is commonly overlooked. In this paper, we investigate the effect of fabrication (porosity and nucleation layer) and environment (buffer and pH) factors on the degradation kinetics of multi-stage nanovectors (MSV) composed of porous silicon. The degradation by-products of MSV were exposed to endothelial cells and analyzed for detrimental effects on cellular internalization, architecture, proliferation, and cell cycle. Increases in porosity resulted in accelerated degradation exhibiting smaller sized particles at comparable times. Removal of the nucleation layer (thin layer of small pores formed during the initial steps of etching) triggered a premature collapse of the entire central porous region of MSV. Variations in buffers prompted a faster degradation rate yielding smaller MSV within faster time frames while increases in pH stimulated erosion of MSV and thus faster degradation. In addition, exposure to these degradation by-products provoked negligible impact on the proliferation and cell cycle phases on primary endothelial cells. Here, we propose methods that lay the foundation for future investigations towards understanding the impact of the degradation of drug delivery platforms. PMID:25269799
Precession of a two-layer Earth: contributions of the core and elasticity
NASA Astrophysics Data System (ADS)
Baenas, Tomás; Ferrándiz, José M.; Escapa, Alberto; Getino, Juan; Navarro, Juan F.
2016-04-01
The Earth's internal structure contributes to the precession rate in a small but non-negligible amount, given the current accuracy goals demanded by IAG/GGOS to the reference frames, namely 30 μas and 3 μas/yr. These contributions come from a variety of sources. One of those not yet accounted for in current IAU models is associated to the crossed effects of certain nutation-rising terms of a two-layer Earth model; intuitively, it gathers an 'indirect' effect of the core via the NDFW, or FCN, resonance as well as a 'direct' effect arising from terms that account for energy variations depending on the elasticity of the core. Similar order of magnitude reaches the direct effect of the departure of the Earth's rheology from linear elasticity. To compute those effects we work out the problem in a unified way within the Hamiltonian framework developed by Getino and Ferrándiz (2001). It allows a consistent treatment of the problem since all the perturbations are derived from the same tide generating expansion and the crossing effects are rigorously obtained through Hori's canonical perturbation method. The problem admits an asymptotic analytical solution. The Hamiltonian is constructed by considering a two-layer Earth model made up of an anelastic mantle and a fluid core, perturbed by the gravitational action of the Moon and the Sun. The former effects reach some tens of μas/yr in the longitude rate, hence above the target accuracy level. We outline their influence in the estimation of the Earth's dynamical ellipticity, a main parameter factorizing both precession and nutation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.W.; Bakueva, L.; Rowlands, J.A.
2005-10-15
Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting inmore » a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/{mu}m, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S{sub 0}) of the a-Se layers was 63{+-}2 nC cm{sup -2} cGy{sup -1}. It was found that S decreases to 30% of S{sub 0} after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25{+-}0.1x10{sup 22} ehp m{sup -3} s{sup -1} and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a strong dependence on the ghosting dose: hole transport decreased by 61%, electron transport by up to {approx}80%. Therefore, degradation of both hole and electron transport due to the recombination of mobile charge carriers with trapped carriers (of opposite polarity) were identified as the main cause of ghosting in this study.« less
Loss tolerant speech decoder for telecommunications
NASA Technical Reports Server (NTRS)
Prieto, Jr., Jaime L. (Inventor)
1999-01-01
A method and device for extrapolating past signal-history data for insertion into missing data segments in order to conceal digital speech frame errors. The extrapolation method uses past-signal history that is stored in a buffer. The method is implemented with a device that utilizes a finite-impulse response (FIR) multi-layer feed-forward artificial neural network that is trained by back-propagation for one-step extrapolation of speech compression algorithm (SCA) parameters. Once a speech connection has been established, the speech compression algorithm device begins sending encoded speech frames. As the speech frames are received, they are decoded and converted back into speech signal voltages. During the normal decoding process, pre-processing of the required SCA parameters will occur and the results stored in the past-history buffer. If a speech frame is detected to be lost or in error, then extrapolation modules are executed and replacement SCA parameters are generated and sent as the parameters required by the SCA. In this way, the information transfer to the SCA is transparent, and the SCA processing continues as usual. The listener will not normally notice that a speech frame has been lost because of the smooth transition between the last-received, lost, and next-received speech frames.
'Algonquin' Outcrop on Spirit's Sol 680
NASA Technical Reports Server (NTRS)
2005-01-01
This view combines four frames from Spirit's panoramic camera, looking in the drive direction on the rover's 680th Martian day, or sol (Dec. 1, 2005). The outcrop of apparently layered bedrock has the informal name 'Algonquin.'Textures in south polar ice cap #1
NASA Technical Reports Server (NTRS)
1998-01-01
Textures of the south polar permanent residual ice cap and polar layered terrains. This 30 x 29 km area image (frame 7709) is centered near 87 degrees south, 77 degrees west.
Figure caption from Science MagazineTextures in south polar ice cap #2
NASA Technical Reports Server (NTRS)
1998-01-01
Textures of the south polar permanent residual ice cap and polar layered terrains. This 15 x 14 km area image (frame 7306) is centered near 87 degrees south, 341 degrees west.
Figure caption from Science MagazineA visual investigation of turbulence in stagnation flow about a circular cylinder
NASA Technical Reports Server (NTRS)
Sadeh, W. Z.; Brauer, H. J.
1978-01-01
A visual investigation of turbulence in stagnation flow around a circular cylinder was carried out in order to gain a physical insight into the model advocated by the corticity-amplification theory. Motion pictures were taken from three different viewpoints, and a frame by frame examination of selected movie strips was conducted. Qualitative and quantitative analyses of the flow events focused on tracing the temporal and spatial evolution of a cross-vortex tube outlined by the entrained smoke filaments. The visualization supplied evidence verifying: (1) the selective stretching of cross-vortex tubes which is responsible for the amplification of cross vorticity and, hence, of streamwise turbulence; (2) the streamwise tilting of stretched cross-vortex tubes; (3) the existence of a coherent array of vortices near the stagnation zone; (4) the interaction of the amplified vorticity with the body laminar boundary layer; and, (5) the growth of a turbulent boundary layer.
Cassettes for solid-oxide fuel cell stacks and methods of making the same
Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L
2012-10-23
Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.
Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison
NASA Astrophysics Data System (ADS)
van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder
2000-04-01
Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.
NASA Astrophysics Data System (ADS)
Hwang, T. Y.; Schoenberger, R. J.; Torgeson, D. R.; Barnes, R. G.
1983-01-01
We report the results of a proton-magnetic-resonance investigation of hydrogen location and motion in the hemihydrides ZrXH0.5 of the metallic layer-structured monohalides ZrX of zirconium (X=Br,Cl). Wide-line and pulsed NMR methods were employed to measure the temperature dependence of the linewidth and second moment and of the spin-lattice relaxation time in the laboratory and rotating frames. The results indicate that hydrogen forms an ordered structure on the tetrahedral (T) interstitial sublattice within the Zr metal bilayers, with some (small) random occupancy of octahedral (O) sites. Two stages of motional narrowing observed in the wide-line measurements and double minima found in the relaxation times are consistent with the occurrence of essentially independent hydrogen motional processes on the T and O interstitial sublattices. Hydrogen site occupancy probabilities, jump frequencies, activation energies for hydrogen diffusion, and conduction-electron contributions to the proton spin-lattice relaxation rate are deduced from the measurements.
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Giffin, Walter C.; Rockwell, Thomas H.; Thomas, Mark
1986-01-01
Twenty pilots with instrument flight ratings were asked to perform a fault-diagnosis task for which they had relevant domain knowledge. The pilots were asked to think out loud as they requested and interpreted information. Performances were then modeled as the activation and use of a frame system. Cognitive biases, memory distortions and losses, and failures to correctly diagnose the problem were studied in the context of this frame system model.
Fusion: ultra-high-speed and IR image sensors
NASA Astrophysics Data System (ADS)
Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.
2015-08-01
Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.
Five different types of framing effects in medical situation: a preliminary exploration.
Peng, Jiaxi; Li, Hongzheng; Miao, Danmin; Feng, Xi; Xiao, Wei
2013-02-01
Considerable reports concerned the framing effect in medical situations. But quite few of them noticed to explore the differences among the various kinds of framing effects. In the present study, five different types of framing effects were examined and the effect sizes of them were compared. Medical decision making problems concerning medicine effect evaluation, patient's compliance, treatment and doctor options selection were established. All the problems were described in both positive and negative frames. 500 undergraduates as participants were randomly divided into ten groups. Participants from each group were asked to finish one decision making task. ALL THE FRAMES THAT WERE EXAMINED LEADED TO SIGNIFICANT FRAMING EFFECTS: When the Asia Disease Problem was described in a positive frame, the participants preferred the conservative frame than the risky one, while if in a negative frame, the preference reversed (P < 0.01). If the drug effect was described as "of 100 patients taking this kind of medicine, 70 patients became better", people tended to make more positive evaluations, compared with described as "of 100 patients taking this kind of medicine, 30 patients didn't become better" (P < 0.01). Doctors' advices were respectively described in a baneful or beneficial frame and the former one resulted in a better compliance (P < 0.05). If treatment options were described with a survival rate, people tended to choose risky option, while if described with a mortality rate, people tended to choose conservative option (P < 0.05). The number sized framing effect was also tested to be significant (P < 0.01). The five types of framing effects were small to big in effect size. Medical decision making can be affected by frame descriptions. Attentions should be paid on the standardization of description in medical practice.
Career Compromises: Framings and Their Implications.
ERIC Educational Resources Information Center
Gati, Itamar; Houminer, Daphna; Aviram, Tamar
1998-01-01
Career compromise was investigated in three framings (alternatives, aspect importance, within-aspect preference). Young adults and school counselors rated hypothetical stories. Results of four studies with different designs (Average N=106) supported the hypothesis. The alternatives framing was associated with greater compromise and decision…
High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke
2017-04-01
We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.
Deliyski, Dimitar D; Powell, Maria EG; Zacharias, Stephanie RC; Gerlach, Terri Treman; de Alarcon, Alessandro
2015-01-01
This study investigated the impact of high-speed videoendoscopy (HSV) frame rates on the assessment of nine clinically-relevant vocal-fold vibratory features. Fourteen adult patients with voice disorder and 14 adult normal controls were recorded using monochromatic rigid HSV at a rate of 16000 frames per second (fps) and spatial resolution of 639×639 pixels. The 16000-fps data were downsampled to 16 other rate denominations. Using paired comparisons design, nine common clinical vibratory features were visually compared between the downsampled and the original images. Three raters reported the thresholds at which: (1) a detectable difference between the two videos was first noticed, and (2) differences between the two videos would result in a change of clinical rating. Results indicated that glottal edge, mucosal wave magnitude and extent, aperiodicity, contact and loss of contact of the vocal folds were the vibratory features most sensitive to frame rate. Of these vibratory features, the glottal edge was selected for further analysis, due to its higher rating reliability, universal prevalence and consistent definition. Rates of 8000 fps were found to be free from visually-perceivable feature degradation, and for rates of 5333 fps, degradation was minimal. For rates of 4000 fps and higher, clinical assessments of glottal edge were not affected. Rates of 2000 fps changed the clinical ratings in over 16% of the samples, which could lead to inaccurate functional assessment. PMID:28989342
An operational open-end file transfer protocol for mobile satellite communications
NASA Technical Reports Server (NTRS)
Wang, Charles; Cheng, Unjeng; Yan, Tsun-Yee
1988-01-01
This paper describes an operational open-end file transfer protocol which includes the connecting procedure, data transfer, and relinquishment procedure for mobile satellite communications. The protocol makes use of the frame level and packet level formats of the X.25 standard for the data link layer and network layer, respectively. The structure of a testbed for experimental simulation of this protocol over a mobile fading channel is also introduced.
Low-frequency dispersion and attenuation in anisotropic partially saturated rocks
NASA Astrophysics Data System (ADS)
Cavallini, Fabio; Carcione, José M.; Vidal de Ventós, Daniel; Engell-Sørensen, Lisbeth
2017-06-01
The mesoscopic-loss mechanism is believed to be the most important attenuation mechanism in porous media at seismic frequencies. It is caused by P-wave conversion to slow diffusion (Biot) modes at material inhomogeneity on length scales of the order of centimetres. It is very effective in partially saturated media, particularly in the presence of gas. We explicitly extend the theory of wave propagation at normal incidence to three periodic thin layers and using this result we obtain the five complex and frequency-dependent stiffness components of the corresponding periodic finely layered medium, where the equivalent medium is anisotropic, specifically transversely isotropic. The relaxation behaviour can be described by a single complex and frequency-dependent stiffness component, since the medium consists of plane homogeneous layers. The media can be dissimilar in any property, but a relevant example in hydrocarbon exploration is the case of partial saturation and the same frame skeleton, where the fluid can be brine, oil and gas. The numerical examples illustrate the implementation of the theory to compute the wave velocities (phase and energy) and quality factors. We consider two main cases, namely, the same frame (or skeleton) and different fluids, and the same fluid and different frame properties. Unlike the two-phase case (two fluids), the results show two relaxation peaks. This scenario is more realistic since usually reservoirs rocks contain oil, brine and gas. The theory is quite general since it is not only restricted to partial saturation, but also applies to important properties such as porosity and permeability heterogeneities.
Cai, Jing; Read, Paul W; Altes, Talissa A; Molloy, Janelle A; Brookeman, James R; Sheng, Ke
2007-01-21
Treatment planning based on probability distribution function (PDF) of patient geometries has been shown a potential off-line strategy to incorporate organ motion, but the application of such approach highly depends upon the reproducibility of the PDF. In this paper, we investigated the dependences of the PDF reproducibility on the imaging acquisition parameters, specifically the scan time and the frame rate. Three healthy subjects underwent a continuous 5 min magnetic resonance (MR) scan in the sagittal plane with a frame rate of approximately 10 f s-1, and the experiments were repeated with an interval of 2 to 3 weeks. A total of nine pulmonary vessels from different lung regions (upper, middle and lower) were tracked and the dependences of their displacement PDF reproducibility were evaluated as a function of scan time and frame rate. As results, the PDF reproducibility error decreased with prolonged scans and appeared to approach equilibrium state in subjects 2 and 3 within the 5 min scan. The PDF accuracy increased in the power function with the increase of frame rate; however, the PDF reproducibility showed less sensitivity to frame rate presumably due to the randomness of breathing which dominates the effects. As the key component of the PDF-based treatment planning, the reproducibility of the PDF affects the dosimetric accuracy substantially. This study provides a reference for acquiring MR-based PDF of structures in the lung.
Dielectric Elastomer Actuated Systems and Methods
NASA Technical Reports Server (NTRS)
Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)
2008-01-01
The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
Structure analysis of aqueous ferrofluids at interface with silicon: neutron reflectometry data
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Bulavin, L. A.; Balasoiu, M.; Kubovcikova, M.; Zavisova, V.; Koneracka, M.; Kopcansky, P.; Chiriac, H.; Avdeev, M. V.
2017-05-01
Adsorption of nanoparticles from aqueous ferrofluids (FFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR). Two kinds of FFs were considered. First kind was heavy water-based ferrofluids with magnetite nanoparticles coated by double layer of sodium oleate. Second one FF was cobalt ferrite nanoparticles stabilized by lauric acid/sodium n-dodecylsulphate layer and dispersed in water. It was obtained only a single adsorption layer for two types of ferrofluids. The impact of the magnetic nanoparticles concentration and geometry was considered in frame of the adsorption characteristic of FFs.
High speed infrared imaging system and method
Zehnder, Alan T.; Rosakis, Ares J.; Ravichandran, G.
2001-01-01
A system and method for radiation detection with an increased frame rate. A semi-parallel processing configuration is used to process a row or column of pixels in a focal-plane array in parallel to achieve a processing rate up to and greater than 1 million frames per second.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
2012-01-01
To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.
Sub-electron read noise and millisecond full-frame readout with the near infrared eAPD array SAPHIRA
NASA Astrophysics Data System (ADS)
Finger, Gert; Baker, Ian; Alvarez, Domingo; Dupuy, Christophe; Ives, Derek; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Jörg; Weller, Harald J.
2016-07-01
In 2007 ESO started a program at SELEX (now LEONARDO) to develop noiseless near infrared HgCdTe electron avalanche photodiode arrays (eAPD)[1][2][3]. This eAPD technology is only way to overcome the limiting CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking. After several development cycles of solid state engineering techniques which can be easily applied to the chosen growth technology of metal organic vapour phase epitaxy (MOVPE), the eAPD arrays have matured and resulted in the SAPHIRA arrays. They have a format of 320x256 pixels with a pitch of 24 μm. They now offer an unmatched combination of sub-electron read noise at millisecond frame readout rates. The first generation of SAPHIRA arrays were only sensitive in H and K-band. With the removal of a wide bandgap buffer layer the arrays are now sensitive from λ=0.8 μm to 2.5 μm with high quantum efficiency over the entire wavelength range. The high temperature anneal applied during the growth process produces material with superb cosmetic quality at an APD gain of over 600. The design of the SAPHIRA ROIC has also been revised and the new ME1000 ROIC has an optimized analogue chain and more flexible readout modes. The clock for the vertical shift register is now under external control. The advantage of this is that correlated-double-sampling and uncorrelated readout in the rolling shutter mode now have a duty cycle of 100% at the maximum frame rate. Furthermore, to reduce the readout noise rows can be read several times before and after row reset. Since the APD gain is sufficiently high that one photon produces many more electrons than the square root of kTC which is the charge uncertainty after reset, signals of one photon per exposure can be easily detected without the need for double correlated sampling. First results obtained with the fringe tracker in GRAVITY and the four SAPHIRA wavefront sensors installed in the CIAO adaptive optics systems of the four 8 meter telescopes of the VLTI have proven the unrivaled performance of the SAPHIRA eAPD technology. A future program is being assembled to develop eAPD arrays having a larger format of 1Kx1K capable of frame rates of 1.2 KHz. There are also good prospects to offer low dark current eAPD technology for large format science focal planes as well.
Optical data communication: fundamentals and future directions
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.
1998-12-01
An overview of optical data communications is provided, beginning with a brief history and discussion of the unique requirements that distinguish this subfield from related areas such as telecommunications. Each of the major datacom standards is then discussed, including the physical layer specification, distances and data rates, fiber and connector types, data frame structures, and network considerations. These standards can be categorized by their prevailing applications, either storage [Enterprise System Connection, Fiber Channel Connection, and Fiber Channel], coupling (Fiber Channel), or networking [Fiber Distributed Data Interface, Gigabit Ethernet, and asynchronous transfer mode/synchronous optical network]. We also present some emerging technologies and their applications, including parallel optical interconnects, plastic optical fiber, wavelength multiplexing, and free- space optical links. We conclude with some cost/performance trade-offs and predictions of future bandwidth trends.
Interactive distributed hardware-accelerated LOD-sprite terrain rendering with stable frame rates
NASA Astrophysics Data System (ADS)
Swan, J. E., II; Arango, Jesus; Nakshatrala, Bala K.
2002-03-01
A stable frame rate is important for interactive rendering systems. Image-based modeling and rendering (IBMR) techniques, which model parts of the scene with image sprites, are a promising technique for interactive systems because they allow the sprite to be manipulated instead of the underlying scene geometry. However, with IBMR techniques a frequent problem is an unstable frame rate, because generating an image sprite (with 3D rendering) is time-consuming relative to manipulating the sprite (with 2D image resampling). This paper describes one solution to this problem, by distributing an IBMR technique into a collection of cooperating threads and executable programs across two computers. The particular IBMR technique distributed here is the LOD-Sprite algorithm. This technique uses a multiple level-of-detail (LOD) scene representation. It first renders a keyframe from a high-LOD representation, and then caches the frame as an image sprite. It renders subsequent spriteframes by texture-mapping the cached image sprite into a lower-LOD representation. We describe a distributed architecture and implementation of LOD-Sprite, in the context of terrain rendering, which takes advantage of graphics hardware. We present timing results which indicate we have achieved a stable frame rate. In addition to LOD-Sprite, our distribution method holds promise for other IBMR techniques.
NASA Astrophysics Data System (ADS)
Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.
1998-07-01
Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.
NASA Astrophysics Data System (ADS)
Tsifouti, A.; Triantaphillidou, S.; Larabi, M. C.; Doré, G.; Bilissi, E.; Psarrou, A.
2015-01-01
In this investigation we study the effects of compression and frame rate reduction on the performance of four video analytics (VA) systems utilizing a low complexity scenario, such as the Sterile Zone (SZ). Additionally, we identify the most influential scene parameters affecting the performance of these systems. The SZ scenario is a scene consisting of a fence, not to be trespassed, and an area with grass. The VA system needs to alarm when there is an intruder (attack) entering the scene. The work includes testing of the systems with uncompressed and compressed (using H.264/MPEG-4 AVC at 25 and 5 frames per second) footage, consisting of quantified scene parameters. The scene parameters include descriptions of scene contrast, camera to subject distance, and attack portrayal. Additional footage, including only distractions (no attacks) is also investigated. Results have shown that every system has performed differently for each compression/frame rate level, whilst overall, compression has not adversely affected the performance of the systems. Frame rate reduction has decreased performance and scene parameters have influenced the behavior of the systems differently. Most false alarms were triggered with a distraction clip, including abrupt shadows through the fence. Findings could contribute to the improvement of VA systems.
MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.
Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M
2011-02-01
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.
Helicobacter pylori displays spiral trajectories while swimming like a cork-screw in solutions
NASA Astrophysics Data System (ADS)
Constantino, Maira A.; Hardcastle, Joseph M.; Bansil, Rama; Jabbarzadeh, Mehdi; Fu, Henry C.
Helicobacter pylori is a helical shaped bacterium that causes gastritis, ulcers and gastric cancer in humans and other animals. In order to colonize the harsh acidic environment of the stomach H. pylori has evolved a unique biochemical mechanism to go across the viscoelastic gel-like gastric mucus layer. Many studies have been conducted on the swimming of H. pylori in viscous media. However a yet unanswered question is if the helical cell shape influences bacterial swimming dynamics or confers any advantage when swimming in viscous solution. We will present measurements of H. pylori trajectories displaying corkscrew motion while swimming in solution obtained by tracking single cells using 2-dimensional phase contrast imaging at high magnification and fast frame rates and simultaneously imaging their shape. We observe a linear relationship between swimming speed and rotation rate. The experimental trajectories show good agreement with trajectories calculated using a regularized Stokeslet method to model the low Reynolds number swimming behavior. Supported by NSF PHY 1410798 (PI: RB).
Optimization, Alternative Materials and Improvements in Body Armor Shields
2007-05-10
performance structures such as protective clothing , bullet-proof vests and helmets due to their high-specific strength and stiffness. The ballistic...regard each layer of the woven composite as made of weft and warp yarns, and divide each yam into 3D solid elements. It is found that the frame...0.25 mm thick layers is modeled as an orthotropic material. Even though the woven composite armor is made of yams and each yarn is made of fibers
Temporal compressive imaging for video
NASA Astrophysics Data System (ADS)
Zhou, Qun; Zhang, Linxia; Ke, Jun
2018-01-01
In many situations, imagers are required to have higher imaging speed, such as gunpowder blasting analysis and observing high-speed biology phenomena. However, measuring high-speed video is a challenge to camera design, especially, in infrared spectrum. In this paper, we reconstruct a high-frame-rate video from compressive video measurements using temporal compressive imaging (TCI) with a temporal compression ratio T=8. This means that, 8 unique high-speed temporal frames will be obtained from a single compressive frame using a reconstruction algorithm. Equivalently, the video frame rates is increased by 8 times. Two methods, two-step iterative shrinkage/threshold (TwIST) algorithm and the Gaussian mixture model (GMM) method, are used for reconstruction. To reduce reconstruction time and memory usage, each frame of size 256×256 is divided into patches of size 8×8. The influence of different coded mask to reconstruction is discussed. The reconstruction qualities using TwIST and GMM are also compared.
Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.L. Rovey
A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strainmore » measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.« less
Data rate enhancement of optical camera communications by compensating inter-frame gaps
NASA Astrophysics Data System (ADS)
Nguyen, Duy Thong; Park, Youngil
2017-07-01
Optical camera communications (OCC) is a convenient way of transmitting data between LED lamps and image sensors that are included in most smart devices. Although many schemes have been suggested to increase the data rate of the OCC system, it is still much lower than that of the photodiode-based LiFi system. One major reason of this low data rate is attributed to the inter-frame gap (IFG) of image sensor system, that is, the time gap between consecutive image frames. In this paper, we propose a way to compensate for this IFG efficiently by an interleaved Hamming coding scheme. The proposed scheme is implemented and the performance is measured.
2011-12-16
This frame from an animation shows how the magnetic field lines emanating from our sun spiral out into the solar system as the sun rotates. NASA Voyager 1 is in an area scientists are calling the stagnation region, at the outer layer of the heliosphere.
STARS[R] Spring 2012 Quarterly Review: Framing Campus Sustainability
ERIC Educational Resources Information Center
Urbanski, Monika
2012-01-01
The Spring 2012 SQR: "Framing Campus Sustainability," features stories that frame the evolving concept of sustainability in higher education. Included in this issue are a snapshot of ratings-to-date, a focus on credits within the Operations (OP) category, and insights into how institutions are defining and interpreting the evolving…
High-speed cinematography of muscle contraction.
HAUPT, R E; WALL, D M
1962-07-13
Motion pictures of the "twitch" of an excised frog gastrocnemius muscle taken at rates of 6000 frames per second provide a means of very accurately timing the phases. The extreme "slow motion" reveals surface phenomena not observable by other techniques. Evidence of "active relaxation" is suggested by results of frame-by-frame analysis.
Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.
Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H
1999-01-01
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058
Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)
NASA Technical Reports Server (NTRS)
Reyes, Miguel A. De Jesus
2014-01-01
GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.
Classical and quantum communication without a shared reference frame.
Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W
2003-07-11
We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.
Temporal framing and the hidden-zero effect: rate-dependent outcomes on delay discounting.
Naudé, Gideon P; Kaplan, Brent A; Reed, Derek D; Henley, Amy J; DiGennaro Reed, Florence D
2018-05-01
Recent research suggests that presenting time intervals as units (e.g., days) or as specific dates, can modulate the degree to which humans discount delayed outcomes. Another framing effect involves explicitly stating that choosing a smaller-sooner reward is mutually exclusive to receiving a larger-later reward, thus presenting choices as an extended sequence. In Experiment 1, participants (N = 201) recruited from Amazon Mechanical Turk completed the Monetary Choice Questionnaire in a 2 (delay framing) by 2 (zero framing) design. Regression suggested a main effect of delay, but not zero, framing after accounting for other demographic variables and manipulations. We observed a rate-dependent effect for the date-framing group, such that those with initially steep discounting exhibited greater sensitivity to the manipulation than those with initially shallow discounting. Subsequent analyses suggest these effects cannot be explained by regression to the mean. Experiment 2 addressed the possibility that the null effect of zero framing was due to within-subject exposure to the hidden- and explicit-zero conditions. A new Amazon Mechanical Turk sample completed the Monetary Choice Questionnaire in either hidden- or explicit-zero formats. Analyses revealed a main effect of reward magnitude, but not zero framing, suggesting potential limitations to the generality of the hidden-zero effect. © 2018 Society for the Experimental Analysis of Behavior.
Injuries and illnesses from wood framing in residential construction, Washington State, 1993-1999.
Shah, Syed Mahboob Ali; Bonauto, David; Silverstein, Barbara; Foley, Michael; Kalat, John
2003-11-01
The construction industry is associated with high rates of work-related injury. We used workers compensation data to describe the injuries and illnesses, claim rates, and claim costs associated with wood framing activities in construction. From 1993 to 1999, there were 33,021 accepted state fund workers compensation claims with direct costs of over $197 million. The average annual claim rate was 45 per 100 full-time equivalent. Statistically significant downward trends were noted in claim rates for all injuries and illnesses, compensable time loss claims, eye and fall injuries. However, these trends were not statistically significantly different from those observed in all other construction risk classes combined. The information in this report can be used to guide prevention efforts and to evaluate the effectiveness of Washington state initiatives to reduce injury and illness rates in wood frame construction.
Corrected High-Frame Rate Anchored Ultrasound with Software Alignment
ERIC Educational Resources Information Center
Miller, Amanda L.; Finch, Kenneth B.
2011-01-01
Purpose: To improve lingual ultrasound imaging with the Corrected High Frame Rate Anchored Ultrasound with Software Alignment (CHAUSA; Miller, 2008) method. Method: A production study of the IsiXhosa alveolar click is presented. Articulatory-to-acoustic alignment is demonstrated using a Tri-Modal 3-ms pulse generator. Images from 2 simultaneous…
A High Frame Rate Test System for the HEPS-BPIX Based on NI-sbRIO Board
NASA Astrophysics Data System (ADS)
Gu, Jingzi; Zhang, Jie; Wei, Wei; Ning, Zhe; Li, Zhenjie; Jiang, Xiaoshan; Fan, Lei; Shen, Wei; Ren, Jiayi; Ji, Xiaolu; Lan, Allan K.; Lu, Yunpeng; Ouyang, Qun; Liu, Peng; Zhu, Kejun; Wang, Zheng
2017-06-01
HEPS-BPIX is a silicon pixel detector designed for the future large scientific facility, high-energy photon sources (HEPS) in Beijing, China. It is a high frame rate hybrid pixel detector which works in the single-photon-counting mode. High frame rate leads to much higher readout data bandwidth than former systems, which is also the difficulty of the design. Aiming to test and calibrate the pixel detector, a test system based on the National Instruments single-board RIO 9626 and LabVIEW program environment has been designed. A series of tests has been carried out with X-ray machine as well as on the Beijing Synchrotron Radiation Facility 1W2B beamline. The test results show that the threshold uniformity is better than 60 electrons and the equivalent noise charge is less than 120 electrons. Besides, the required highest frame rate of 1.2 kHz has been realized. This paper will elaborate the test system design and present the latest testing results of the HEPS-BPIX system.
Driving techniques for high frame rate CCD camera
NASA Astrophysics Data System (ADS)
Guo, Weiqiang; Jin, Longxu; Xiong, Jingwu
2008-03-01
This paper describes a high-frame rate CCD camera capable of operating at 100 frames/s. This camera utilizes Kodak KAI-0340, an interline transfer CCD with 640(vertical)×480(horizontal) pixels. Two output ports are used to read out CCD data and pixel rates approaching 30 MHz. Because of its reduced effective opacity of vertical charge transfer registers, interline transfer CCD can cause undesired image artifacts, such as random white spots and smear generated in the registers. To increase frame rate, a kind of speed-up structure has been incorporated inside KAI-0340, then it is vulnerable to a vertical stripe effect. The phenomena which mentioned above may severely impair the image quality. To solve these problems, some electronic methods of eliminating these artifacts are adopted. Special clocking mode can dump the unwanted charge quickly, then the fast readout of the images, cleared of smear, follows immediately. Amplifier is used to sense and correct delay mismatch between the dual phase vertical clock pulses, the transition edges become close to coincident, so vertical stripes disappear. Results obtained with the CCD camera are shown.
Tele-Assessment of the Berg Balance Scale: Effects of Transmission Characteristics.
Venkataraman, Kavita; Morgan, Michelle; Amis, Kristopher A; Landerman, Lawrence R; Koh, Gerald C; Caves, Kevin; Hoenig, Helen
2017-04-01
To compare Berg Balance Scale (BBS) rating using videos with differing transmission characteristics with direct in-person rating. Repeated-measures study for the assessment of the BBS in 8 configurations: in person, high-definition video with slow motion review, standard-definition videos with varying bandwidths and frame rates (768 kilobytes per second [kbps] videos at 8, 15, and 30 frames per second [fps], 30 fps videos at 128, 384, and 768 kbps). Medical center. Patients with limitations (N=45) in ≥1 of 3 specific aspects of motor function: fine motor coordination, gross motor coordination, and gait and balance. Not applicable. Ability to rate the BBS in person and using videos with differing bandwidths and frame rates in frontal and lateral views. Compared with in-person rating (7%), 18% (P=.29) of high-definition videos and 37% (P=.03) of standard-definition videos could not be rated. Interrater reliability for the high-definition videos was .96 (95% confidence interval, .94-.97). Rating failure proportions increased from 20% in videos with the highest bandwidth to 60% (P<.001) in videos with the lowest bandwidth, with no significant differences in proportions across frame rate categories. Both frontal and lateral views were critical for successful rating using videos, with 60% to 70% (P<.001) of videos unable to be rated on a single view. Although there is some loss of information when using videos to rate the BBS compared to in-person ratings, it is feasible to reliably rate the BBS remotely in standard clinical spaces. However, optimal video rating requires frontal and lateral views for each assessment, high-definition video with high bandwidth, and the ability to carry out slow motion review. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Wide-band (2.5 - 10.5 µm), high-frame rate IRFPAs based on high-operability MCT on silicon
NASA Astrophysics Data System (ADS)
Crosbie, Michael J.; Giess, Jean; Gordon, Neil T.; Hall, David J.; Hails, Janet E.; Lees, David J.; Little, Christopher J.; Phillips, Tim S.
2010-04-01
We have previously presented results from our mercury cadmium telluride (MCT, Hg1-xCdxTe) growth on silicon substrate technology for different applications, including negative luminescence, long waveband and mid/long dual waveband infrared imaging. In this paper, we review recent developments in QinetiQ's combined molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy (MOVPE) MCT growth on silicon; including MCT defect density, uniformity and reproducibility. We also present a new small-format (128 x 128) focal plane array (FPA) for high frame-rate applications. A custom high-speed readout integrated circuit (ROIC) was developed with a large pitch and large charge storage aimed at producing a very high performance FPA (NETD ~10mK) operating at frame rates up to 2kHz for the full array. The array design allows random addressing and this allows the maximum frame rate to be increased as the window size is reduced. A broadband (2.5-10.5 μm) MCT heterostructure was designed and grown by the MBE/MOVPE technique onto silicon substrates. FPAs were fabricated using our standard techniques; wet-etched mesa diodes passivated with epitaxial CdTe and flip-chip bonded to the ROIC. The resulting focal plane arrays were characterized at the maximum frame rate and shown to have the high operabilities and low NETD values characteristic of our LWIR MCT on silicon technology.
A Newly Reanalyzed Dataset of GPS-determined Antarctic Vertical Rates
NASA Astrophysics Data System (ADS)
Thomas, I.; King, M.; Clarke, P. J.; Penna, N. T.; Lavallee, D. A.; Whitehouse, P.
2010-12-01
Accurate and precise measurements of vertical crustal motion offer useful constraints on glacial isostatic adjustment (GIA) models. Here we present a newly reprocessed data set of GPS-determined vertical rates for Antarctica. We give details of the global reanalysis of 15-years of GPS data, the overarching aim of which is to achieve homogeneous station coordinate time series, and hence surface velocities, for GPS receivers that are in regions of GIA interest in Antarctica. The means by which the reference frame is realized is crucial to obtaining accurate rates. Considerable effort has been spent on achieving a good global distribution of GPS stations, using data from IGS and other permanently recording stations, as well as a number of episodic campaigns in Antarctica. Additionally, we have focused on minimizing the inevitable imbalance in the number of sites in the northern and southern hemispheres. We align our daily non-fiducial solutions to ITRF2005, i.e. a CM frame. We present the results of investigations into the reference frame realization, and also consider a GPS-derived realization of the frame, and its effect on the vertical velocities. Vertical velocities are obtained for approximately 40 Antarctic locations. We compare our GPS derived Antarctic vertical rates with those predicted by the Ivins and James and ICE-5G models, after converting to a CE frame. We also compare to previously published GPS rates. Our GPS velocities are being used to help tune, and bound errors of, a new GIA model also presented in this session.
NASA Astrophysics Data System (ADS)
Park, Minsuk; Kang, Jeeun; Lee, Gunho; Kim, Min; Song, Tai-Kyong
2016-04-01
Recently, a portable US imaging system using smart devices is highlighted for enhancing the portability of diagnosis. Especially, the system combination can enhance the user experience during whole US diagnostic procedures by employing the advanced wireless communication technology integrated in a smart device, e.g., WiFi, Bluetooth, etc. In this paper, an effective post-phase rotation-based dynamic receive beamforming (PRBF-POST) method is presented for wireless US imaging device integrating US probe system and commercial smart device. In conventional, the frame rate of conventional PRBF (PRBF-CON) method suffers from the large amount of calculations for the bifurcated processing paths of in-phase and quadrature signal components as the number of channel increase. Otherwise, the proposed PRBF-POST method can preserve the frame rate regardless of the number of channels by firstly aggregating the baseband IQ data along the channels whose phase quantization levels are identical ahead of phase rotation and summation procedures on a smart device. To evaluate the performance of the proposed PRBF-POST method, the pointspread functions of PRBF-CON and PRBF-POST methods were compared each other. Also, the frame rate of each PRBF method was measured 20-times to calculate the average frame rate and its standard deviation. As a result, the PRBFCON and PRBF-POST methods indicates identical beamforming performance in the Field-II simulation (correlation coefficient = 1). Also, the proposed PRBF-POST method indicates the consistent frame rate for varying number of channels (i.e., 44.25, 44.32, and 44.35 fps for 16, 64, and 128 channels, respectively), while the PRBF-CON method shows the decrease of frame rate as the number of channel increase (39.73, 13.19, and 3.8 fps). These results indicate that the proposed PRBF-POST method can be more advantageous for implementing the wireless US imaging system than the PRBF-CON method.
Five Different Types of Framing Effects in Medical Situation: A Preliminary Exploration
Peng, Jiaxi; Li, Hongzheng; Miao, Danmin; Feng, Xi; Xiao, Wei
2013-01-01
Background Considerable reports concerned the framing effect in medical situations. But quite few of them noticed to explore the differences among the various kinds of framing effects. Objectives In the present study, five different types of framing effects were examined and the effect sizes of them were compared. Materials and Methods Medical decision making problems concerning medicine effect evaluation, patient's compliance, treatment and doctor options selection were established. All the problems were described in both positive and negative frames. 500 undergraduates as participants were randomly divided into ten groups. Participants from each group were asked to finish one decision making task. Results All the frames that were examined leaded to significant framing effects: When the Asia Disease Problem was described in a positive frame, the participants preferred the conservative frame than the risky one, while if in a negative frame, the preference reversed (P < 0.01). If the drug effect was described as “of 100 patients taking this kind of medicine, 70 patients became better”, people tended to make more positive evaluations, compared with described as “of 100 patients taking this kind of medicine, 30 patients didn’t become better” (P < 0.01). Doctors’ advices were respectively described in a baneful or beneficial frame and the former one resulted in a better compliance (P < 0.05). If treatment options were described with a survival rate, people tended to choose risky option, while if described with a mortality rate, people tended to choose conservative option (P < 0.05). The number sized framing effect was also tested to be significant (P < 0.01). The five types of framing effects were small to big in effect size. Conclusions Medical decision making can be affected by frame descriptions. Attentions should be paid on the standardization of description in medical practice. PMID:23682330
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng
2014-09-01
This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.
Groby, J-P; Lauriks, W; Vigran, T E
2010-05-01
The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.
Frame of Reference Rater Training Issues: Recall, Time and Behavior Observation Training.
ERIC Educational Resources Information Center
Roch, Sylvia G.; O'Sullivan, Brian J.
2003-01-01
Graduate students were trained as raters either using frame of reference (FOR, n=220, behavior observation training (BOT, n=21), or performance appraisal (controls, n=21). They rated videotaped lecturers twice. FOR increased number of behaviors recalled; FOR and BOT improved recall quality. FOR improved rating accuracy even after 2 weeks.…
Cheetah: A high frame rate, high resolution SWIR image camera
NASA Astrophysics Data System (ADS)
Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob
2008-10-01
A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.
Video framerate, resolution and grayscale tradeoffs for undersea telemanipulator
NASA Technical Reports Server (NTRS)
Ranadive, V.; Sheridan, T. B.
1981-01-01
The product of Frame Rate (F) in frames per second, Resolution (R) in total pixels and grayscale in bits (G) equals the transmission band rate in bits per second. Thus for a fixed channel capacity there are tradeoffs between F, R and G in the actual sampling of the picture for a particular manual control task in the present case remote undersea manipulation. A manipulator was used in the MASTER/SLAVE mode to study these tradeoffs. Images were systematically degraded from 28 frames per second, 128 x 128 pixels and 16 levels (4 bits) grayscale, with various FRG combinations constructed from a real-time digitized (charge-injection) video camera. It was found that frame rate, resolution and grayscale could be independently reduced without preventing the operator from accomplishing his/her task. Threshold points were found beyond which degradation would prevent any successful performance. A general conclusion is that a well trained operator can perform familiar remote manipulator tasks with a considerably degrade picture, down to 50 K bits/ sec.
Suspected Offshore Chalcolithic/Early Bronze Age Tsunamigenic Sediments: Jisr al Zarka, Israel
NASA Astrophysics Data System (ADS)
Tiulienieva, N.; Braun, Y.; Katz, T.; Goodman-Tchernov, B. N.; Suchkov, I.
2017-12-01
Offshore tsunami deposits are a potentially important sedimentological archive for past tsunamis. They have been identified offshore of Israel using granulometric, geoarchaeological, and micropaleontological indicators. Recent advances in tsunami sedimentological research have put forth a series of new proxies that may be useful tools for tsunami deposit identification. The well-studied offshore deposits of Israel provide a unique opportunity to test some of these proxies because they present good distinction between tsunami and non-tsunami deposits and they can be associated with a rich historical record and archaeological artifacts. In this study, a 219 cm long sediment core, retrieved from a 15.3 m water depth, situated in about 5 km to the north from well studied shallow shelf, offshore Caesarea. Based on the previously used criteria three layers in the new core were identified as tsunami-generated. Two of these correlated to previously described tsunami events in Caesarea; 749 AD and 1500 BC. The third layer gave the time frame from 5.6 to 6 ka BP, making this event the oldest identified in the Eastern Mediterranean to date. Identified unusual layers were attributed to tsunami-generated sedimentary sequences, based on both visually recognizable indicators and the results of laboratory analyses. FT-IR, XRD, and XRF analysis were also applied. The results of this study allow to make following conclusions: (1) visual tsunami indicators in the studied core are similar to those in Caesarea, but lack archaeological debris; (2) while distinct deviation of granulometric coefficients (mean, median, standard deviation, skewness, kurtosis) correlated to tsunami layers, the additional proxies of deposition rate and mollusk assemblage excluded one deviated layer from tsunamigenic-designation; (3) the results of XRF, FT-IR, XRD showed that they are not useful as independent methods at this study site.
Nan, Xiaoli; Zhao, Xiaoquan; Yang, Bo; Iles, Irina
2015-01-01
This study examines the effectiveness of cigarette warning labels, with a specific focus on the impact of graphics, message framing (gain vs. loss), and temporal framing (present-oriented vs. future-oriented) among nonsmokers in the United States. A controlled experiment (N = 253) revealed that graphic warning labels were perceived as more effective, stronger in argument strength, and were generally liked more compared to text-only labels. In addition, loss-framed labels, compared to their gain-framed counterparts, were rated higher in perceived effectiveness, argument strength, and liking. No significant difference was observed between the present- and future-oriented frames on any of the dependent variables. Implications of the findings for antismoking communication efforts are discussed.
Real-time dynamics of high-velocity micro-particle impact
NASA Astrophysics Data System (ADS)
Veysset, David; Hsieh, Alex; Kooi, Steve; Maznev, Alex A.; Tang, Shengchang; Olsen, Bradley D.; Nelson, Keith A.
High-velocity micro-particle impact is important for many areas of science and technology, from space exploration to the development of novel drug delivery platforms. We present real-time observations of supersonic micro-particle impacts using multi-frame imaging. In an all optical laser-induced projectile impact test, a monolayer of micro-particles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the micro-particles into free space with speeds up to 1.0 km/s. The particles are monitored during the impact on the target with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution as short as 3 ns. In particular, we investigated the high-velocity impact deformation response of poly(urethane urea) (PUU) elastomers to further the fundamental understanding of the molecular influence on dynamical behaviors of PUUs. We show the dynamic-stiffening response of the PUUs and demonstrate the significance of segmental dynamics in the response. We also present movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics. The results will provide an impetus for modeling high-velocity microscale impact responses and high strain rate deformation in polymers, gels, and other materials.
Reactions to framing of cessation messages: insights from dual-smoker couples.
Lipkus, Isaac M; Ranby, Krista W; Lewis, Megan A; Toll, Benjamin
2013-12-01
Couples in which both members smoke (dual-smoker couples) have not been the explicit target of cessation interventions. Quit rates are lower and relapse rates are higher among individuals in dual-smoker couples. A potentially effective strategy to motivate dual-smoker couples to quit is to convey messages that highlight how the positive outcomes of quitting (gain frame) or the negative outcomes of continued smoking (loss frame) affect the couple rather than the individual smoker. We explored whether dual-smoker couples' smoking behaviors (e.g., amount smoked) and desire to quit would differ as a function of message frame (gain vs. loss) or outcome focus (individual vs. couple). Dual-smoker couples (N = 40) completed a baseline survey and were then randomized to review gain- or loss-framed messages that varied whether the outcomes influenced the individual or the couple. Main outcomes were desire to quit after reading messages and smoking behaviors at a 1-month follow-up. Couple-focused messages produced the strongest desire to quit and decreased amount of cigarettes smoked at follow-up. The latter effect was mediated by desire to quit. Loss-framed messages produced inconsistent effects on desire to quit. There were no significant interactions between outcome focus and message framing. Findings suggest that messages emphasizing how smoking affects both partners can motivate cessation among dual-smoker couples. Contrary to findings showing that gain-framed messages motivate cessation targeting individual smokers, results suggest that loss-framed messages may be more persuasive than gain-framed messages when the target of the outcome involves significant others.
A neuroimaging investigation of attribute framing and individual differences
Murch, Kevin B.
2014-01-01
Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. PMID:23988759
Physiotherapy managers' perceptions of their leadership effectiveness: a multi-frame analysis.
McGowan, Emer; Walsh, Cathal; Stokes, Emma
2017-09-01
The purpose of this study was to investigate the leadership frames of physiotherapy managers in Ireland. To be effective leaders in today's challenging healthcare environment physiotherapy managers must employ a comprehensive, adaptable and balanced leadership style. This was a purposive, cross-sectional study. Physiotherapy managers were surveyed using the Bolman and Deal Leadership Orientations Instrument. The survey was administered to members of the Chartered Physiotherapists in Management employment group (n=73) of the Irish Society of Chartered Physiotherapists via email. Forty-five physiotherapy managers responded to the survey to give a response rate of 62%. The human resource frame was the most frequently used (61%) and the political frame was the least (9%). The majority of respondents reported using only one or no frames at all (65%). When asked about their effectiveness as a manager 33% of respondents (n=14) gave themselves the top rating of 5, whereas 19% of respondents (n=8) gave themselves the top rating for their leadership effectiveness. There was a statistically significant trend between the number of leadership frames a physiotherapy manager used and their perceived effectiveness as a manager (T JT =380, z=1.975, p=0.048) and as a leader (T JT =431, z=3.245, p=0.001). The physiotherapy managers' use of the human resource frame demonstrates that they see the building of relationships as key to effective leadership. Development of physiotherapy managers' underused skills through appropriate leadership development training may enhance their leadership skill set and make them more confident as leaders. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Hardware accelerator design for change detection in smart camera
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil
2011-10-01
Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.
[Improvement of Digital Capsule Endoscopy System and Image Interpolation].
Zhao, Shaopeng; Yan, Guozheng; Liu, Gang; Kuang, Shuai
2016-01-01
Traditional capsule image collects and transmits analog image, with weak anti-interference ability, low frame rate, low resolution. This paper presents a new digital image capsule, which collects and transmits digital image, with frame rate up to 30 frames/sec and pixels resolution of 400 x 400. The image is compressed in the capsule, and is transmitted to the outside of the capsule for decompression and interpolation. A new type of interpolation algorithm is proposed, which is based on the relationship between the image planes, to obtain higher quality colour images. capsule endoscopy, digital image, SCCB protocol, image interpolation
Wave mode identification of electrostatic noise observed with ISEE 3 in the deep tail boundary layer
NASA Technical Reports Server (NTRS)
Tsutsui, M.; Matsumoto, H.; Strangeway, R. J.; Tsurutani, B. T.; Phillips, J. L.
1991-01-01
The characteristics of the VLF electrostatic noise observed with ISEE 3 in the low-latitude boundary layer of distant geomagnetic tail are examined using a display format for the wave dynamic spectra different from that used by Scarf et al. (1984). It is shown that the observed noise is composed of impulsive bursts. The results of the detailed analysis of the noise parameters are used to develop a model of plasma wave behavior in the plasma rest frame. A hypothesis is proposed that the wide frequency extent of the noise spectra is composed of Doppler effects of waves propagating nearly omnidirectionally within the plasma rest frame, which is moving with the electron bulk speed. On the basis of this hypothesis, the wavelength of the observed waves were determined from the width of the frequency extent and the measured electron bulk speed. It is shown that the wavelength ranges from 2 to 8 times the plasma Debye length.
Development of a low-cost x-ray mask for high-aspect-ratio MEM smart structures
NASA Astrophysics Data System (ADS)
Ajmera, Pratul K.; Stadler, Stefan; Abdollahi, Neda
1998-07-01
A cost-effective process with short fabrication time for making x-ray masks for research and development purposes is described here for fabricating high-aspect ratio microelectromechanical structures using synchrotron based x- ray lithography. Microscope cover glass slides as membrane material is described. Slides with an initial thickness of 175 micrometers are etched to a thickness in the range of 10 - 25 micrometers using a diluted HF and buffered hydrofluoric acid solutions. The thinned slides are glued on supportive mask frames and sputtered with a chromium/silver sandwich layer which acts as a plating base layer for the deposition of the gold absorber. The judicial choice of glue and mask frame material are significant parameters in a successful fabrication process. Gold absorber structures are electroplated on the membrane. Calculations are done for contrast and dose ratio obtained in the photoresist after synchrotron radiation as a function of the mask design parameters. Exposure experiments are performed to prove the applicability of the fabricated x-ray mask.
Miller, David H [Redondo Beach, CA; Korich, Mark D [Chino Hills, CA; Smith, Gregory S [Woodland Hills, CA
2011-11-15
Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.
Callaham, Michael; John, Leslie K
2018-01-05
We define a minimally important difference for the Likert-type scores frequently used in scientific peer review (similar to existing minimally important differences for scores in clinical medicine). The magnitude of score change required to change editorial decisions has not been studied, to our knowledge. Experienced editors at a journal in the top 6% by impact factor were asked how large a change of rating in "overall desirability for publication" was required to trigger a change in their initial decision on an article. Minimally important differences were assessed twice for each editor: once assessing the rating change required to shift the editor away from an initial decision to accept, and the other assessing the magnitude required to shift away from an initial rejection decision. Forty-one editors completed the survey (89% response rate). In the acceptance frame, the median minimally important difference was 0.4 points on a scale of 1 to 5. Editors required a greater rating change to shift from an initial rejection decision; in the rejection frame, the median minimally important difference was 1.2 points. Within each frame, there was considerable heterogeneity: in the acceptance frame, 38% of editors did not change their decision within the maximum available range; in the rejection frame, 51% did not. To our knowledge, this is the first study to determine the minimally important difference for Likert-type ratings of research article quality, or in fact any nonclinical scientific assessment variable. Our findings may be useful for future research assessing whether changes to the peer review process produce clinically meaningful differences in editorial decisionmaking. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Furnstenau, Norbert; Ellis, Stephen R.
2015-01-01
In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 < FRmin < 40 Hz. When comparing with published results [12] on shooter game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.
Distributed Fair Auto Rate Medium Access Control for IEEE 802.11 Based WLANs
NASA Astrophysics Data System (ADS)
Zhu, Yanfeng; Niu, Zhisheng
Much research has shown that a carefully designed auto rate medium access control can utilize the underlying physical multi-rate capability to exploit the time-variation of the channel. In this paper, we develop a simple analytical model to elucidate the rule that maximizes the throughput of RTS/CTS based multi-rate wireless local area networks. Based on the discovered rule, we propose two distributed fair auto rate medium access control schemes called FARM and FARM+ from the view-point of throughput fairness and time-share fairness, respectively. With the proposed schemes, after receiving a RTS frame, the receiver selectively returns the CTS frame to inform the transmitter the maximum feasible rate probed by the signal-to-noise ratio of the received RTS frame. The key feature of the proposed schemes is that they are capable of maintaining throughput/time-share fairness in asymmetric situation where the distribution of SNR varies with stations. Extensive simulation results show that the proposed schemes outperform the existing throughput/time-share fair auto rate schemes in time-varying channel conditions.
Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A
2017-04-01
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
Owen, Kevin; Fuller, Michael I.; Hossack, John A.
2015-01-01
Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can significantly improve frame rate and battery life for hand-held devices with 2-D arrays. PMID:22828829
Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa.
Contri, Alberto; Valorz, Claudio; Faustini, Massimo; Wegher, Laura; Carluccio, Augusto
2010-08-01
Computer-assisted sperm analyzers (CASA) have become the standard tool for evaluating sperm motility and kinetic patterns because they provide objective data for thousands of sperm tracks. However, these devices are not ready-to-use and standardization of analytical practices is a fundamental requirement. In this study, we evaluated the effects of some settings, such as frame rate and frames per field, chamber and time of analysis, and samples preparations, including thawing temperature, sperm sample concentration, and media used for dilution, on the kinetic results of bovine frozen-thawed semen using a CASA. In Experiment 1, the frame rate (30-60 frame/s) significantly affected motility parameters, whereas the number of frames per field (30 or 45) did not seem to affect sperm kinetics. In Experiment 2, the thawing protocol affects sperm motility and kinetic parameters. Sperm sample concentration significantly limited the opportunity to perform the analysis and the kinetic results. A concentration of 100 and 50 x 10(6) sperm/mL limited the device's ability to perform the analysis or gave wrong results, whereas 5, 10, 20, and 30 x 10(6) sperm/mL concentrations allowed the analysis to be performed, but with different results (Experiment 3). The medium used for the dilution of the sample, which is fundamental for a correct sperm head detection, affects sperm motility results (Experiment 4). In this study, Makler and Leja chambers were used to perform the semen analysis with CASA devices. The chamber used significantly affected motility results (Experiment 5). The time between chamber loading and analysis affected sperm velocities, regardless of chamber used. Based on results recorded in this study, we propose that the CASA evaluation of motility of bovine frozen-thawed semen using Hamilton-Thorne IVOS 12.3 should be performed using a frame rate of 60 frame/s and 30 frames per field. Semen should be diluted at least at 20 x 10(6) sperm/mL using PBS. Furthermore, it is necessary to consider the type of chamber used and perform the analysis within 1 or 2 min, regardless of the chamber used. Copyright 2010 Elsevier Inc. All rights reserved.
Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging
NASA Astrophysics Data System (ADS)
Graeve, Thorsten; Dereniak, Eustace L.
1993-01-01
The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.
Frame sequences analysis technique of linear objects movement
NASA Astrophysics Data System (ADS)
Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.
2017-12-01
Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.
Lundeberg, Pamela J; Graham, Dan J; Mohr, Gina S
2018-06-01
Front-of-package (FOP) nutrition labels are increasingly used to present nutritional information to consumers. A variety of FOP nutrition schemes exist for presenting condensed nutrition information. The present study directly compared two symbolic FOP labeling systems - traffic light and star-based schemes - with specific regard to healthfulness perception and purchase intention for a variety of products. Additionally, this study investigated which method of message framing (gain, loss, gain + loss) would best enable individuals to effectively utilize the FOP labels. College students (n = 306) viewed food packages featuring either star or traffic light FOP labels and rated the healthfulness of each product and their likelihood of purchasing the product. Within each label type, participants were presented with differently-framed instructions regarding how to use the labels. Participants who viewed the star labels rated products with the lowest healthfulness as significantly less healthful and rated products with the highest healthfulness as significantly more healthful compared to participants who viewed those same products with traffic light labels. Purchase intention did not differ by label type. Additionally, including any type of framing (gain, loss, or gain + loss) assisted consumers in differentiating between foods with mid-range vs. low nutritional value. Star-based labels led more healthful foods to be seen as even more healthful and less healthful foods to be seen as even less healthful compared to the same foods with traffic light labels. Additionally, results indicate a benefit of including framing information for FOP nutrition label instructions; however, no individual frame led to significantly different behavior compared to the other frames. While ratings of product healthfulness were influenced by the framing and the label type, purchase intention was not impacted by either of these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Predicting participation in ultrasound hip screening from message framing.
Witting, Marjon; Boere-Boonekamp, Magda M; Fleuren, Margot A H; Sakkers, Ralph J B; Ijzerman, Maarten J
2012-01-01
The use of ultrasound (US) screening for developmental dysplasia of the hip (DDH) is an innovation in preventive child health care in the Netherlands. What is not known is whether parents will accept this screening method and will actually participate in it. It is widely known that health behaviors can be influenced by the framing of information. The objective of this study was to examine the influence of a gain- versus loss-framed brochure on parental participation in US screening for DDH. In total, 4150 parents of infants born between August 2007 and December 2008 received either a gain-framed or a loss-framed brochure. Parents could participate in the screening when their infant was 3 months old. The participation rate in the US screening was 74.3%. In contrast to the predictions of prospect theory, the results indicated that parents who had received the gain-framed message were more likely to participate in the screening compared to parents who had received the loss-framed message. This effect may be explained by the low risk perception of parents and by the possibility that the screening was perceived as a health-affirming behavior rather than an illness-detecting behavior. To increase participation rates, it is recommended that parents be informed about the positive aspects of partaking in screening for DDH.
Mani, Chinnasamy; Selvakumari, Jeyaperumal; Han, YeonSoo; Jo, YongHun; Thirugnanasambantham, Krishnaraj; Sundarapandian, Somaiah; Poopathi, Subbiah
2018-04-01
A marine Bacillus cereus (VCRC B540) with mosquitocidal effect was recently reported from red snapper fish (Lutjanus sanguineous) gut and surface layer protein (S-layer protein, SLP) was reported to be mosquito larvicidal factor. In this present study, the gene encoding the surface layer protein was amplified from the genomic DNA and functionally characterized. Amplification of SLP-encoding gene revealed 1,518 bp PCR product, and analysis of the sequence revealed the presence of 1482 bp open reading frame with coding capacity for a polypeptide of 493 amino acids. Phylogenetic analysis revealed with homology among closely related Bacillus cereus groups of organisms as well as Bacillus strains. Removal of nucleotides encoding signaling peptide revealed the functional cloning fragment of length 1398 bp. Theoretical molecular weight (51.7 kDa) and isoelectric point (5.99) of the deduced functional SLP protein were predicted using ProtParam. The amplified PCR product was cloned into a plasmid vector (pGEM-T), and the open reading frame free off signaling peptide was subsequently cloned inpET-28a(+) and expressed in Escherichia coli BL21 (DE3). The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant SLP was confirmed using western blotting, and functional SLP revealed mosquito larvicidal property. Therefore, the major findings revealed that SLP is a factor responsible for mosquitocidal activity, and the molecular characterization of this toxin was extensively studied.
Tsukamoto, Yoshinari; Akagi, Takami; Shima, Fumiaki; Akashi, Mitsuru
2017-06-01
Herein, we report the fabrication of orientation-controlled tissues similar to heart and nerve tissues using a cell accumulation and three-dimensional (3D) printing technique. We first evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. HBC polymer could be laminated to a height of 1124 ± 14 μm. Based on this result, we fabricated 3D gel frames of various shapes, such as square, triangular, rectangular, and circular, for shape control of 3D tissue and then normal human cardiac fibroblasts (NHCFs) coated with extracellular matrix nanofilms were seeded in the frames. Observation of shape-controlled tissues after 1 day of cultivation showed that the orientation of fibroblasts was in one direction when a short-sided, thin, rectangular-shaped frame was used. Next, we tried to fabricate orientation-controlled tissue with a vascular network by coculturing NHCF and normal human cardiac microvascular endothelial cells. As a consequence of cultivation for 4 days, observation of cocultured tissue confirmed aligned cells and blood capillaries in orientation-controlled tissue. Our results clearly demonstrated that it would be possible to control the cell orientation by controlling the shape of the tissues by combining a cell accumulation technique and a 3D printing system. The results of this study suggest promising strategies for the fabrication of oriented 3D tissues in vitro. These tissues, mimicking native organ structures, such as muscle and nerve tissue with a cell alignment structure, would be useful for tissue engineering, regenerative medicine, and pharmaceutical applications.
31. DETAIL OF SOUTH FACADE FROM SOUTHWEST, SHOWING TYPICAL BUTTRESSES, ...
31. DETAIL OF SOUTH FACADE FROM SOUTHWEST, SHOWING TYPICAL BUTTRESSES, FENESTRATION, AND GUTTERS; FRAMED AREA ON WALL IS EXHIBIT OF UNDERLYING LAYERS OF CREPE WALL COATINGS AND RAMMED EARTH CORE OF WALL - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC
Subjective quality evaluation of low-bit-rate video
NASA Astrophysics Data System (ADS)
Masry, Mark; Hemami, Sheila S.; Osberger, Wilfried M.; Rohaly, Ann M.
2001-06-01
A subjective quality evaluation was performed to qualify vie4wre responses to visual defects that appear in low bit rate video at full and reduced frame rates. The stimuli were eight sequences compressed by three motion compensated encoders - Sorenson Video, H.263+ and a Wavelet based coder - operating at five bit/frame rate combinations. The stimulus sequences exhibited obvious coding artifacts whose nature differed across the three coders. The subjective evaluation was performed using the Single Stimulus Continuos Quality Evaluation method of UTI-R Rec. BT.500-8. Viewers watched concatenated coded test sequences and continuously registered the perceived quality using a slider device. Data form 19 viewers was colleted. An analysis of their responses to the presence of various artifacts across the range of possible coding conditions and content is presented. The effects of blockiness and blurriness on perceived quality are examined. The effects of changes in frame rate on perceived quality are found to be related to the nature of the motion in the sequence.
NASA Technical Reports Server (NTRS)
Selle, Laurent C.; Bellan, Josette
2006-01-01
A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop organization depend on the initial gas temperature, this being due to the drop/turbulence coupling. The vapor-composition mean molar mass and standard deviation distributions strongly correlate with the initial liquid-composition PDF; such a correlation only exists for the magnitude of the mean but not for that of the standard deviation. Unlike in pre-transitional situations, regions of large composition standard deviation no longer necessarily coincide with regions of large mean molar mass. The kinetic energy, rotational and composition characteristics, and dissipation are liquid specific and the variation among liquids is amplified with increasing free-stream gas temperature. Eulerian and Lagrangian statistics of gas-phase quantities show that the different. Observation framework may affect the perception of the flow characteristics. The gas composition, of which the first four moments are calculated, is shown to be close to, but distinct from a SGPDF. The PDF of the scalar dissipation rate is calculated for drop-laden layers and is shown to depart more significantly from the typically assumed Gaussian in gaseous flows than experimentally measured gaseous scalar dissipation rates, this being attributed to the increased heterogeneity due to drop/flow interactions.
Liu, Chunbo; Chen, Jingqiu; Liu, Jiaxin; Han, Xiang'e
2018-04-16
To obtain a high imaging frame rate, a computational ghost imaging system scheme is proposed based on optical fiber phased array (OFPA). Through high-speed electro-optic modulators, the randomly modulated OFPA can provide much faster speckle projection, which can be precomputed according to the geometry of the fiber array and the known phases for modulation. Receiving the signal light with a low-pixel APD array can effectively decrease the requirement on sampling quantity and computation complexity owing to the reduced data dimensionality while avoiding the image aliasing due to the spatial periodicity of the speckles. The results of analysis and simulation show that the frame rate of the proposed imaging system can be significantly improved compared with traditional systems.
NASA Astrophysics Data System (ADS)
Jiang, Xieqiang; Wan, Jie; Han, Haoxu; Wang, Yiping; Li, Kang; Wang, Qingjun
2018-09-01
Ordered nanoball matrix fluorocarbon polymer layers were produced with two different fluorocarbon polymers on an anodized aluminum oxide (AAO) surface. These treated surfaces each exhibited hydrophobicity or superhydrophobicity. The dynamic behavior of a droplet sliding down these surfaces was captured by high-speed photography under simulated weather conditions including at room temperature (25 °C) and low temperature (5 °C) with various relative humidities (30%-80%). By analyzing the trajectory of a marker in the captured video frame-by-frame, we distinguished the slipping and rolling behaviors and analyzed the internal fluidity by calculating the ratio of these two motions. Both the pore diameters of the substrate matrix and the environmental conditions play a dominant role in the resultant sliding acceleration of a water droplet. At room temperature (25 °C) and 30% relative humidity, the sliding acceleration of the droplet on the fluoropolymer layer decreased by 0.5 m·s-2 -0.6 m·s-2 as the pore diameters of the underlying AAO substrates increased. The sliding acceleration underwent a 25%-50% decrease under extreme environmental conditions (5 °C and 80% RH). These phenomena proved that a wetting transition from the Cassie-Baxter model to the Wenzel model can partially occur under various weather conditions.
Ambient-Light-Canceling Camera Using Subtraction of Frames
NASA Technical Reports Server (NTRS)
Morookian, John Michael
2004-01-01
The ambient-light-canceling camera (ALCC) is a proposed near-infrared electronic camera that would utilize a combination of (1) synchronized illumination during alternate frame periods and (2) subtraction of readouts from consecutive frames to obtain images without a background component of ambient light. The ALCC is intended especially for use in tracking the motion of an eye by the pupil center corneal reflection (PCCR) method. Eye tracking by the PCCR method has shown potential for application in human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological deficiencies. In the PCCR method, an eye is illuminated by near-infrared light from a lightemitting diode (LED). Some of the infrared light is reflected from the surface of the cornea. Some of the infrared light enters the eye through the pupil and is reflected from back of the eye out through the pupil a phenomenon commonly observed as the red-eye effect in flash photography. An electronic camera is oriented to image the user's eye. The output of the camera is digitized and processed by algorithms that locate the two reflections. Then from the locations of the centers of the two reflections, the direction of gaze is computed. As described thus far, the PCCR method is susceptible to errors caused by reflections of ambient light. Although a near-infrared band-pass optical filter can be used to discriminate against ambient light, some sources of ambient light have enough in-band power to compete with the LED signal. The mode of operation of the ALCC would complement or supplant spectral filtering by providing more nearly complete cancellation of the effect of ambient light. In the operation of the ALCC, a near-infrared LED would be pulsed on during one camera frame period and off during the next frame period. Thus, the scene would be illuminated by both the LED (signal) light and the ambient (background) light during one frame period, and would be illuminated with only ambient (background) light during the next frame period. The camera output would be digitized and sent to a computer, wherein the pixel values of the background-only frame would be subtracted from the pixel values of the signal-plus-background frame to obtain signal-only pixel values (see figure). To prevent artifacts of motion from entering the images, it would be necessary to acquire image data at a rate greater than the standard video rate of 30 frames per second. For this purpose, the ALCC would exploit a novel control technique developed at NASA s Jet Propulsion Laboratory for advanced charge-coupled-device (CCD) cameras. This technique provides for readout from a subwindow [region of interest (ROI)] within the image frame. Because the desired reflections from the eye would typically occupy a small fraction of the area within the image frame, the ROI capability would make it possible to acquire and subtract pixel values at rates of several hundred frames per second considerably greater than the standard video rate and sufficient to both (1) suppress motion artifacts and (2) track the motion of the eye between consecutive subtractive frame pairs.
NASA Technical Reports Server (NTRS)
Bosomworth, D. R.; Moles, W. H.
1969-01-01
A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours.
High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.
Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong
2018-08-01
This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.
A geometric rationale for invariance, covariance and constitutive relations
NASA Astrophysics Data System (ADS)
Romano, Giovanni; Barretta, Raffaele; Diaco, Marina
2018-01-01
There are, in each branch of science, statements which, expressed in ambiguous or even incorrect but seemingly friendly manner, were repeated for a long time and eventually became diffusely accepted. Objectivity of physical fields and of their time rates and frame indifference of constitutive relations are among such notions. A geometric reflection on the description of frame changes as spacetime automorphisms, on induced push-pull transformations and on proper physico-mathematical definitions of material, spatial and spacetime tensor fields and of their time-derivatives along the motion, is here carried out with the aim of pointing out essential notions and of unveiling false claims. Theoretical and computational aspects of nonlinear continuum mechanics, and especially those pertaining to constitutive relations, involving material fields and their time rates, gain decisive conceptual and operative improvement from a proper geometric treatment. Outcomes of the geometric analysis are frame covariance of spacetime velocity, material stretching and material spin. A univocal and frame-covariant tool for evaluation of time rates of material fields is provided by the Lie derivative along the motion. The postulate of frame covariance of material fields is assessed to be a natural physical requirement which cannot interfere with the formulation of constitutive laws, with claims of the contrary stemming from an improper imposition of equality in place of equivalence.
A neuroimaging investigation of attribute framing and individual differences.
Murch, Kevin B; Krawczyk, Daniel C
2014-10-01
Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Pérez, Alberto J; González-Peña, Rolando J; Braga, Roberto; Perles, Ángel; Pérez-Marín, Eva; García-Diego, Fernando J
2018-01-11
Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation.
Brain potentials associated with the outcome processing in framing effects.
Ma, Qingguo; Feng, Yandong; Xu, Qing; Bian, Jun; Tang, Huixian
2012-10-24
Framing effect is a cognitive bias referring to the phenomenon that people respond differently to different but objectively equivalent descriptions of the same problem. By measuring event-related potentials, the present study aimed to investigate the neural mechanisms underlying the framing effect, especially how the negative and positive frames influence the outcome processing in our brain. Participants were presented directly with outcomes framed either positively in terms of lives saved or negatively in terms of lives lost in large and small group conditions, and were asked to rate the favorableness of each of them. The behavioral results showed that the framing effect occurred in both group size conditions, with more favorable evaluations associated with positive framing. Compared with outcomes in positive framing condition, a significant feedback-related negativity (FRN) effect was elicited by outcomes in negative framing condition, even though the outcomes in different conditions were objectively equivalent. The results are explained in terms of the associative model of attribute framing effect which states that attribute framing effect occurs as a result of a valence-based associative processing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.
Gao, Wei; Kwong, Sam; Jia, Yuheng
2017-08-25
In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS)
Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon
2016-01-01
A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm. PMID:27077861
Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...
2016-04-19
Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel
Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.
Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec
2016-05-01
Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.
Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.
2016-10-09
We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.
Probing the nanoscale with high-speed interferometry of an impacting drop
NASA Astrophysics Data System (ADS)
Thoroddsen, S. T.; Li, E. Q.; Vakarelski, I. U.; Langley, K.
2017-02-01
The simple phenomenon of a water drop falling onto a glass plate may seem like a trivial fluid mechanics problem. However, detailed imaging has shown that this process is highly complex and a small air-bubble is always entrapped under the drop when it makes contact with the solid. This bubble can interfere with the uniformity of spray coatings and degrade inkjet fabrication of displays etc. We will describe how we use high-speed interferometry at 5 million frames per second to understand the details of this process. As the impacting drop approaches the solid, the dynamics are characterized by a balance between the lubrication pressure in the thin air layer and the inertia of the bot-tom of the drop. This deforms the drop, forming a dimple at its bottom and making the drop touch the surface along a ring, thereby entrapping the air-layer, which is typically 1-3 μm thick. This air-layer can be highly compressed and the deceleration of the bottom of the drop can be as large as 300,000 g. We describe how the thickness evolution of the lubricating air-layer is extracted from following the interference fringes between frames. Two-color interferometry is also used to extract absolute layer thicknesses. Finally, we identify the effects of nanometric surface roughness on the first contact of the drop with the substrate. Here we need to resolve the 100 nm thickness changes occurring during 200 ns intervals, requiring these state of the art high-speed cameras. Surprisingly, we see a ring of micro-bubbles marking the first contact of the drop with the glass, only for microscope slides, which have a typical roughness of 20 nm, while such rings are absent for drop impacts onto molecularly smooth mica surfaces.
Return to sport following tibial plateau fractures: A systematic review
Robertson, Greg A J; Wong, Seng J; Wood, Alexander M
2017-01-01
AIM To systemically review all studies reporting return to sport following tibial plateau fracture, in order to provide information on return rates and times to sport, and to assess variations in sporting outcome for different treatment methods. METHODS A systematic search of CINAHAL, Cochrane, EMBASE, Google Scholar, MEDLINE, PEDro, Scopus, SPORTDiscus and Web of Science was performed in January 2017 using the keywords “tibial”, “plateau”, “fractures”, “knee”, “athletes”, “sports”, “non-operative”, “conservative”, “operative”, “return to sport”. All studies which recorded return rates and times to sport following tibial plateau fractures were included. RESULTS Twenty-seven studies were included: 1 was a randomised controlled trial, 7 were prospective cohort studies, 16 were retrospective cohort studies, 3 were case series. One study reported on the outcome of conservative management (n = 3); 27 reported on the outcome of surgical management (n = 917). Nine studies reported on Open Reduction Internal Fixation (ORIF) (n = 193), 11 on Arthroscopic-Assisted Reduction Internal Fixation (ARIF) (n = 253) and 7 on Frame-Assisted Fixation (FRAME) (n = 262). All studies recorded “return to sport” rates. Only one study recorded a “return to sport” time. The return rate to sport for the total cohort was 70%. For the conservatively-managed fractures, the return rate was 100%. For the surgically-managed fractures, the return rate was 70%. For fractures managed with ORIF, the return rate was 60%. For fractures managed with ARIF, the return rate was 83%. For fractures managed with FRAME was 52%. The return rate for ARIF was found to be significantly greater than that for ORIF (OR 3.22, 95%CI: 2.09-4.97, P < 0.001) and for FRAME (OR 4.33, 95%CI: 2.89-6.50, P < 0.001). No difference was found between the return rates for ORIF and FRAME (OR 1.35, 95%CI: 0.92-1.96, P = 0.122). The recorded return time was 6.9 mo (median), from a study reporting on ORIF. CONCLUSION Return rates to sport for tibial plateau fractures remain limited compared to other fractures. ARIF provides the best return rates. There is limited data regarding return times to sport. Further research is required to determine return times to sport, and to improve return rates to sport, through treatment and rehabilitation optimisation. PMID:28808629
The research of multi-frame target recognition based on laser active imaging
NASA Astrophysics Data System (ADS)
Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan
2013-09-01
Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.
A Sexuality Education Discourses Framework: Conservative, Liberal, Critical, and Postmodern
ERIC Educational Resources Information Center
Jones, Tiffany
2011-01-01
Sexuality education debates are layered with discourses based on markedly different constructions of sexuality. Rather than seeing these discourses as purely oppositional, this article frames them as complex and varied. It provides a new framework for understanding sexuality education which differentiates 28 discourses by orientation to education,…
NASA Technical Reports Server (NTRS)
Ponseggi, B. G. (Editor); Johnson, H. C. (Editor)
1985-01-01
Papers are presented on the picosecond electronic framing camera, photogrammetric techniques using high-speed cineradiography, picosecond semiconductor lasers for characterizing high-speed image shutters, the measurement of dynamic strain by high-speed moire photography, the fast framing camera with independent frame adjustments, design considerations for a data recording system, and nanosecond optical shutters. Consideration is given to boundary-layer transition detectors, holographic imaging, laser holographic interferometry in wind tunnels, heterodyne holographic interferometry, a multispectral video imaging and analysis system, a gated intensified camera, a charge-injection-device profile camera, a gated silicon-intensified-target streak tube and nanosecond-gated photoemissive shutter tubes. Topics discussed include high time-space resolved photography of lasers, time-resolved X-ray spectrographic instrumentation for laser studies, a time-resolving X-ray spectrometer, a femtosecond streak camera, streak tubes and cameras, and a short pulse X-ray diagnostic development facility.
Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems.
Vítek, Stanislav; Nasyrova, Maria
2017-12-29
The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper.
Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems
2017-01-01
The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper. PMID:29286294
NASA Astrophysics Data System (ADS)
Ferrón, S.; Ho, D. T.; Hales, B. R.
2010-12-01
A Fluorescein/SF6 deliberate tracer release experiment was conducted in benthic boundary layer (BBL) waters of the outer shelf of Oregon, as part of a multi-disciplinary research project that aims to study cross-shelf carbon transport and biogeochemical reaction rates within the BBL. The purpose of the tracers release was to examine physical transport processes, the rate of turbulent mixing and to provide a Lagrangian frame of reference for tracking other chemical species (pCO2, O2, CH4, DIC, DOC, POC, NO3-, NH4+, Fe). The tracers were injected on May 2009 during moderate upwelling favorable conditions with weak near-bottom currents, along a 4-km N-S line near the shelf streak at the 150 m isobath. Tracers distribution in the patch were tracked for over 5 days by tow-yo surveys using a winch-controlled pumping profiling vehicle that incorporated several in situ instruments such as CTD sensors, a 1200 kHz ADCP and a dye fluorometer for Fluorescein. Dissolved SF6 concentrations were analyzed on board from the underway water stream pumped from the towed vehicle by using an automated high-resolution chromatographic system equipped with an electron capture detector (ECD). The work presented here focuses on the estimation of the effective vertical diffusivity (Kz) in the BBL of the Oregon Shelf from the change in moment of the tracers’ vertical distribution, calculated using a 1D advection-diffusion model.
Abel, Taylor J; Varela Osorio, René; Amorim-Leite, Ricardo; Mathieu, Francois; Kahane, Philippe; Minotti, Lorella; Hoffmann, Dominique; Chabardes, Stephan
2018-04-20
OBJECTIVE Robot-assisted stereoelectroencephalography (SEEG) is gaining popularity as a technique for localization of the epileptogenic zone (EZ) in children with pharmacoresistant epilepsy. Here, the authors describe their frameless robot-assisted SEEG technique and report preliminary outcomes and relative complications in children as compared to results with the Talairach frame-based SEEG technique. METHODS The authors retrospectively analyzed the results of 19 robot-assisted SEEG electrode implantations in 17 consecutive children (age < 17 years) with pharmacoresistant epilepsy, and compared these results to 19 preceding SEEG electrode implantations in 18 children who underwent the traditional Talairach frame-based SEEG electrode implantation. The primary end points were seizure-freedom rates, operating time, and complication rates. RESULTS Seventeen children (age < 17 years) underwent a total of 19 robot-assisted SEEG electrode implantations. In total, 265 electrodes were implanted. Twelve children went on to have EZ resection: 4 demonstrated Engel class I outcomes, whereas 2 had Engel class II outcomes, and 6 had Engel class III-IV outcomes. Of the 5 patients who did not have resection, 2 underwent thermocoagulation. One child reported transient paresthesia associated with 2 small subdural hematomas, and 3 other children had minor asymptomatic intracranial hemorrhages. There were no differences in complication rates, rates of resective epilepsy surgery, or seizure freedom rates between this cohort and the preceding 18 children who underwent Talairach frame-based SEEG. The frameless robot-assisted technique was associated with shorter operating time (p < 0.05). CONCLUSIONS Frameless robot-assisted SEEG is a safe and effective means of identifying the EZ in children with pharmacoresistant partial epilepsy. Robot-assisted SEEG is faster than the Talairach frame-based method, and has equivalent safety and efficacy. The former, furthermore, facilitates more electrode trajectory possibilities, which may improve the localization of epileptic networks.
Kerr microscopy study of exchange-coupled FePt/Fe exchange spring magnets
NASA Astrophysics Data System (ADS)
Hussain, Zaineb; Kumar, Dileep; Reddy, V. Raghavendra; Gupta, Ajay
2017-05-01
Magnetization reversal and magnetic microstructure of top soft magnetic layer (Fe) in exchange spring coupled L10 FePt/Fe is studied using high resolution Kerr microscopy. With remnant state of the hard magnetic layer (L10 FePt) as initial condition, magnetization loops along with magnetic domains are recorded for the top soft magnetic layer (Fe) using Kerr microscopy. Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. It is also observed that one can tune the magnitude of hysteresis shift by reaching the remanent state from different saturating fields (HSAT) and also by varying the angle between measuring field and HSAT. The hysteresis loops and magnetic domains of top soft Fe layer demonstrate unambiguously that soft magnetic layer at remanent state in such exchange coupled system is having unidirectional anisotropy. An analogy is drawn and the observations are explained in terms of established model of exchange bias phenomena framed for field-cooled ferromagnetic - antiferromagnetic bilayer systems.
Schad, N; Wagner, R K; Hallermeier, J; Daus, H J; Vattimo, A; Bertelli, P
1990-01-01
In 50 patients, 1 mCi 123I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates.
Backside-illuminated 6.6-μm pixel video-rate CCDs for scientific imaging applications
NASA Astrophysics Data System (ADS)
Tower, John R.; Levine, Peter A.; Hsueh, Fu-Lung; Patel, Vipulkumar; Swain, Pradyumna K.; Meray, Grazyna M.; Andrews, James T.; Dawson, Robin M.; Sudol, Thomas M.; Andreas, Robert
2000-05-01
A family of backside illuminated CCD imagers with 6.6 micrometers pixels has been developed. The imagers feature full 12 bit (> 4,000:1) dynamic range with measured noise floor of < 10 e RMS at 5 MHz clock rates, and measured full well capacity of > 50,000 e. The modulation transfer function performance is excellent, with measured MTF at Nyquist of 46% for 500 nm illumination. Three device types have been developed. The first device is a 1 K X 1 K full frame device with a single output port, which can be run as a 1 K X 512 frame transfer device. The second device is a 512 X 512 frame transfer device with a single output port. The third device is a 512 X 512 split frame transfer device with four output ports. All feature the high quantum efficiency afforded by backside illumination.
An approach enabling adaptive FEC for OFDM in fiber-VLLC system
NASA Astrophysics Data System (ADS)
Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin
2017-12-01
In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.
Method and apparatus for improving the performance of light emitting diodes
Lowery, Christopher H.; McElfresh, David K.; Burchet, Steve; Adolf, Douglas B.; Martin, James
1996-01-01
A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.
Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando
2010-06-15
Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Stevenson, T. J.
1992-01-01
The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.
MHz-Rate NO PLIF Imaging in a Mach 10 Hypersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Jiang, N.; Webster, M.; Lempert, Walter R.; Miller, J. D.; Meyer, T. R.; Danehy, Paul M.
2010-01-01
NO PLIF imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 inch Mach 10 hypersonic wind tunnel. Approximately two hundred time correlated image sequences, of between ten and twenty individual frames, were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The majority of the image sequences were obtained from the boundary layer of a 20 flat plate model, in which transition was induced using a variety of cylindrical and triangular shaped protuberances. The high speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. A series of image sequences were also obtained from a 20 compression ramp at a 10 angle of attack in which the temporal dynamics of the characteristic separated flow was captured in a time correlated manner.
The Effective Fracture Toughness of Aluminum at Rapid Heating Rates.
1987-12-01
Stress Versus Time Relation During Test Under HWdraulic (Tinius-Olsen) Loading Device 32 11. Creep Rupture Tester ( SATEC ) Drawing ...... 33 12. SEN...1B7 Machine Corp Creep Frame SATEC C C-3053-P 12,000 Load Cell MTS 661.20A 271 5500 lb .02% Load Cell Interface 1220BF 34279B 25000 lb 1.6% Extenso- MIS... SATEC creep frame. A drawing of the creep frame can be seen in Figure 11. The samples were placed in the frame and the dead weight load was applied
Alignment of cryo-EM movies of individual particles by optimization of image translations.
Rubinstein, John L; Brubaker, Marcus A
2015-11-01
Direct detector device (DDD) cameras have revolutionized single particle electron cryomicroscopy (cryo-EM). In addition to an improved camera detective quantum efficiency, acquisition of DDD movies allows for correction of movement of the specimen, due to both instabilities in the microscope specimen stage and electron beam-induced movement. Unlike specimen stage drift, beam-induced movement is not always homogeneous within an image. Local correlation in the trajectories of nearby particles suggests that beam-induced motion is due to deformation of the ice layer. Algorithms have already been described that can correct movement for large regions of frames and for >1 MDa protein particles. Another algorithm allows individual <1 MDa protein particle trajectories to be estimated, but requires rolling averages to be calculated from frames and fits linear trajectories for particles. Here we describe an algorithm that allows for individual <1 MDa particle images to be aligned without frame averaging or linear trajectories. The algorithm maximizes the overall correlation of the shifted frames with the sum of the shifted frames. The optimum in this single objective function is found efficiently by making use of analytically calculated derivatives of the function. To smooth estimates of particle trajectories, rapid changes in particle positions between frames are penalized in the objective function and weighted averaging of nearby trajectories ensures local correlation in trajectories. This individual particle motion correction, in combination with weighting of Fourier components to account for increasing radiation damage in later frames, can be used to improve 3-D maps from single particle cryo-EM. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less
Frequency selection rule for high definition and high frame rate Lissajous scanning.
Hwang, Kyungmin; Seo, Yeong-Hyeon; Ahn, Jinhyo; Kim, Pilhan; Jeong, Ki-Hun
2017-10-26
Lissajous microscanners are very attractive in compact laser scanning applications such as endomicroscopy or pro-projection display owing to high mechanical stability and low operating voltages. The scanning frequency serves as a critical factor for determining the scanning imaging quality. Here we report the selection rule of scanning frequencies that can realize high definition and high frame-rate (HDHF) full-repeated Lissajous scanning imaging. The fill factor (FF) monotonically increases with the total lobe number of a Lissajous curve, i.e., the sum of scanning frequencies divided by the great common divisor (GCD) of bi-axial scanning frequencies. The frames per second (FPS), called the pattern repeated rate or the frame rate, linearly increases with GCD. HDHF Lissajous scanning is achieved at the bi-axial scanning frequencies, where the GCD has the maximum value among various sets of the scanning frequencies satisfying the total lobe number for a target FF. Based on this selection rule, the experimental results clearly demonstrate that conventional Lissajous scanners substantially increase both FF and FPS by slightly modulating the scanning frequencies at near the resonance within the resonance bandwidth of a Lissajous scanner. This selection rule provides a new guideline for HDHF Lissajous scanning in compact laser scanning systems.
Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays
NASA Astrophysics Data System (ADS)
Roth, Matthias; Heber, Jörg; Janschek, Klaus
2017-02-01
The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.
Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives
NASA Technical Reports Server (NTRS)
Park, Michael A.; Green, Lawrence L.
2000-01-01
Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.
An Acoustic Charge Transport Imager for High Definition Television
NASA Technical Reports Server (NTRS)
Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard
1999-01-01
This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode with an output data rate of 5MHz, which gives a maximum frame rate of 4 frames per second. The MIT/Polaroid group developed two cameras under this program. The cameras have effectively four times the current video spatial resolution and at 60 frames per second are double the normal video frame rate.
Formulation of blade-flutter spectral analyses in stationary reference frame
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1984-01-01
Analytic representations are developed for the discrete blade deflection and the continuous tip static pressure fields in a stationary reference frame. Considered are the sampling rates equal to the rotational frequency, equal to blade passing frequency, and for the pressure, equal to a multiple of the blade passing frequency. For the last two rates the expressions for determining the nodal diameters from the spectra are included. A procedure is presented for transforming the complete unsteady pressure field into a rotating frame of reference. The determination of the true flutter frequency by using two sensors is described. To illustrate their use, the developed procedures are used to interpret selected experimental results.
High frame-rate resolution of cell division during Candida albicans filamentation
Thomson, Darren D.; Berman, Judith; Brand, Alexandra C.
2016-01-01
The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed that nuclear division did not occur across the septal plane. We detected the presence of nucleolar fragments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionally maintained multiple nucleoli, suggesting either polyploidy, multiple nuclei and/or aneuploidy of ChrR., while the migration pattern of sister nuclei differed between unbranched and branched hyphae. The presented movie challenges and extends previous concepts of C. albicans cell division. PMID:26854071
Meteor wake in high frame-rate images--implications for the chemistry of ablated organic compounds
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Stenbaek-Nielsen, Hans C.
2004-01-01
Extraterrestrial organic matter may have been chemically altered into forms more ameanable for prebiotic chemistry in the wake of a meteor after ablation. We measured the rate of cooling of the plasma in the meteor wake from the intensity decay just behind a meteoroid by freezing its motion in high frame-rate 1000 frames/s video images, with an intensified camera that has a short phosphor decay time. Though the resulting cooling rate was found to be lower than theoretically predicted, our calculations indicated that there would have been insufficient collisions to break apart large organic compounds before most reactive radicals and electrons were lost from the air plasma. Organic molecules delivered from space to the early Earth via meteors might therefore have survived in a chemically altered form. In addition, we discovered that relatively small meteoroids generated far-ultraviolet emission that is absorbed in the immediate environment of the meteoroid, which may chemically alter the atmosphere over a much larger region than previously recognized.
Transmission over UWB channels with OFDM system using LDPC coding
NASA Astrophysics Data System (ADS)
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
NASA Astrophysics Data System (ADS)
Osada, Masakazu; Tsukui, Hideki
2002-09-01
ABSTRACT Picture Archiving and Communication System (PACS) is a system which connects imaging modalities, image archives, and image workstations to reduce film handling cost and improve hospital workflow. Handling diagnostic ultrasound and endoscopy images is challenging, because it produces large amount of data such as motion (cine) images of 30 frames per second, 640 x 480 in resolution, with 24-bit color. Also, it requires enough image quality for clinical review. We have developed PACS which is able to manage ultrasound and endoscopy cine images with above resolution and frame rate, and investigate suitable compression method and compression rate for clinical image review. Results show that clinicians require capability for frame-by-frame forward and backward review of cine images because they carefully look through motion images to find certain color patterns which may appear in one frame. In order to satisfy this quality, we have chosen motion JPEG, installed and confirmed that we could capture this specific pattern. As for acceptable image compression rate, we have performed subjective evaluation. No subjects could tell the difference between original non-compressed images and 1:10 lossy compressed JPEG images. One subject could tell the difference between original and 1:20 lossy compressed JPEG images although it is acceptable. Thus, ratios of 1:10 to 1:20 are acceptable to reduce data amount and cost while maintaining quality for clinical review.
JPEG2000 vs. full frame wavelet packet compression for smart card medical records.
Leehan, Joaquín Azpirox; Lerallut, Jean-Francois
2006-01-01
This paper describes a comparison among different compression methods to be used in the context of electronic health records in the newer version of "smart cards". The JPEG2000 standard is compared to a full-frame wavelet packet compression method at high (33:1 and 50:1) compression rates. Results show that the full-frame method outperforms the JPEG2K standard qualitatively and quantitatively.
Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates
NASA Astrophysics Data System (ADS)
Constantin, A.; Johnson, R. S.
2017-04-01
Starting from the Euler equation expressed in a rotating frame in spherical coordinates, coupled with the equation of mass conservation and the appropriate boundary conditions, a thin-layer (i.e. shallow water) asymptotic approximation is developed. The analysis is driven by a single, overarching assumption based on the smallness of one parameter: the ratio of the average depth of the oceans to the radius of the Earth. Consistent with this, the magnitude of the vertical velocity component through the layer is necessarily much smaller than the horizontal components along the layer. A choice of the size of this speed ratio is made, which corresponds, roughly, to the observational data for gyres; thus the problem is characterized by, and reduced to an analysis based on, a single small parameter. The nonlinear leading-order problem retains all the rotational contributions of the moving frame, describing motion in a thin spherical shell. There are many solutions of this system, corresponding to different vorticities, all described by a novel vorticity equation: this couples the vorticity generated by the spin of the Earth with the underlying vorticity due to the movement of the oceans. Some explicit solutions are obtained, which exhibit gyre-like flows of any size; indeed, the technique developed here allows for many different choices of the flow field and of any suitable free-surface profile. We comment briefly on the next order problem, which provides the structure through the layer. Some observations about the new vorticity equation are given, and a brief indication of how these results can be extended is offered.
Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.
Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang
2017-04-10
In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.
Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaise Collin
2013-09-01
The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated dependingmore » on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.« less
FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
Kok, H Petra; De Greef, Martijn; Correia, Davi; Vörding, Paul J Zum Vörde Sive; Van Stam, Gerard; Gelvich, Edward A; Bel, Arjan; Crezee, Johannes
2009-01-01
Contact flexible microstrip applicators (CFMA), operating at 434 MHz, are applied at the Academic Medical Center (AMC) for superficial hyperthermia (e.g. chest wall recurrences and melanoma). This paper investigates the performance of CFMA, evaluating the stability of the specific absorption rate (SAR) distribution, effective heating depth (EHD) and effective field size (EFS) under different conditions. Simulations were performed using finite differences and were compared to existing measurement data, performed using a rectangular phantom with a superficial fat-equivalent layer of 1 cm and filled with saline solution. The electrode plates of the applicators measure approximately 7 x 20, 29 x 21 and 20 x 29 cm(2). Bolus thickness varied between 1 and 2 cm. The impact of the presence of possible air layers between the rubber frame and the electrodes on the SAR distribution was investigated. The EHD was approximately 1.4 cm and the EFS ranged between approximately 60 and approximately 300 cm(2), depending on the applicator type. Both measurements and simulations showed a split-up of the SAR focus with a 2 cm water bolus. The extent and location of air layers has a strong influence on the shape and size of the iso-SAR contours with a value higher than 50%, but the impact on EFS and EHD is limited. Simulations, confirmed by measurements, showed that the presence of air between the rubber and the electrodes changes the iso-SAR contours, but the impact on the EFS and EHD is limited.
Transitional Experiences of Post-16 Sports Education: Jack's Story
ERIC Educational Resources Information Center
Aldous, David C. R.; Sparkes, Andrew C.; Brown, David H. K.
2014-01-01
This paper explores the layered transitional experiences of a semi-professional athlete named Jack (a pseudonym) between the fields of professional sport and further and higher education. Our analysis is framed by the quadripartite framework of structuration and focuses on Jack's "in-situ" practices at his college and university in order…
NASA Astrophysics Data System (ADS)
Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha
2015-10-01
Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.
Detection of inter-frame forgeries in digital videos.
K, Sitara; Mehtre, B M
2018-05-26
Videos are acceptable as evidence in the court of law, provided its authenticity and integrity are scientifically validated. Videos recorded by surveillance systems are susceptible to malicious alterations of visual content by perpetrators locally or remotely. Such malicious alterations of video contents (called video forgeries) are categorized into inter-frame and intra-frame forgeries. In this paper, we propose inter-frame forgery detection techniques using tamper traces from spatio-temporal and compressed domains. Pristine videos containing frames that are recorded during sudden camera zooming event, may get wrongly classified as tampered videos leading to an increase in false positives. To address this issue, we propose a method for zooming detection and it is incorporated in video tampering detection. Frame shuffling detection, which was not explored so far is also addressed in our work. Our method is capable of differentiating various inter-frame tamper events and its localization in the temporal domain. The proposed system is tested on 23,586 videos of which 2346 are pristine and rest of them are candidates of inter-frame forged videos. Experimental results show that we have successfully detected frame shuffling with encouraging accuracy rates. We have achieved improved accuracy on forgery detection in frame insertion, frame deletion and frame duplication. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun
2018-07-01
In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.
Smooth affine shear tight frames: digitization and applications
NASA Astrophysics Data System (ADS)
Zhuang, Xiaosheng
2015-08-01
In this paper, we mainly discuss one of the recent developed directional multiscale representation systems: smooth affine shear tight frames. A directional wavelet tight frame is generated by isotropic dilations and translations of directional wavelet generators, while an affine shear tight frame is generated by anisotropic dilations, shears, and translations of shearlet generators. These two tight frames are actually connected in the sense that the affine shear tight frame can be obtained from a directional wavelet tight frame through subsampling. Consequently, an affine shear tight frame indeed has an underlying filter bank from the MRA structure of its associated directional wavelet tight frame. We call such filter banks affine shear filter banks, which can be designed completely in the frequency domain. We discuss the digitization of affine shear filter banks and their implementations: the forward and backward digital affine shear transforms. Redundancy rate and computational complexity of digital affine shear transforms are also investigated in this paper. Numerical experiments and comparisons in image/video processing show the advantages of digital affine shear transforms over many other state-of-art directional multiscale representation systems.
The application of a shift theorem analysis technique to multipoint measurements
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Chapman, S. C.
1999-03-01
A Fourier domain technique has been proposed previously which, in principle, quantifies the extent to which multipoint in-situ measurements can identify whether or not an observed structure is time stationary in its rest frame. Once a structure, sampled for example by four spacecraft, is shown to be quasi-stationary in its rest frame, the structure's velocity vector can be determined with respect to the sampling spacecraft. We investigate the properties of this technique, which we will refer to as a stationarity test, by applying it to two point measurements of a simulated boundary layer. The boundary layer was evolved using a PIC (particle in cell) electromagnetic code. Initial and boundary conditions were chosen such, that two cases could be considered, i.e. a spacecraft pair moving through (1) a time stationary boundary structure and (2) a boundary structure which is evolving (expanding) in time. The code also introduces noise in the simulated data time series which is uncorrelated between the two spacecraft. We demonstrate that, provided that the time series is Hanning windowed, the test is effective in determining the relative velocity between the boundary layer and spacecraft and in determining the range of frequencies over which the data can be treated as time stationary or time evolving. This work presents a first step towards understanding the effectiveness of this technique, as required in order for it to be applied to multispacecraft data.
Initial Conceptualization and Application of the Alaska Thermokarst Model
NASA Astrophysics Data System (ADS)
Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.
2015-12-01
Thermokarst topography forms whenever ice-rich permafrost thaws and the ground subsides due to the volume loss when ground ice transitions to water. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM uses a frame-based methodology to track transitions and proportion of cohorts within a 1-km2 grid cell. In the arctic tundra environment, the ATM tracks thermokarst-related transitions among wetland tundra, graminoid tundra, shrub tundra, and thermokarst lakes. In the boreal forest environment, the ATM tracks transitions among forested permafrost plateau, thermokarst lakes, collapse scar fens and bogs. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance (i.e. large precipitation event or fires), or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The rate of terrain transition in our model is determined by a set of rules that are based upon the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic (the Barrow Peninsula) and boreal (the Tanana Flats) regions of Alaska.
Optimization of myocardial deformation imaging in term and preterm infants.
Poon, Chuen Y; Edwards, Julie M; Joshi, Suchita; Kotecha, Sailesh; Fraser, Alan G
2011-03-01
Myocardial deformation imaging is now used to assess regional ventricular function in infants but their small size presents particular technical challenges. We therefore investigated the determinants of reproducibility of myocardial longitudinal strain (ε) in term and preterm infants, in order to determine optimal technical settings. Repeated longitudinal ε measurements of the mid-segments of the septum, and the left and right ventricular free walls, were performed using five different computation distances (CDs; also called strain length) in 20 infants. The coefficients of variation (CV) were calculated for each CD. Overall, ε measurements were most reproducible with a CD of 6 mm (CV 11.7%). In preterm infants (<34 weeks gestation; mean ± SD diastolic LV length, 20.3 ± 3.5 mm), ε measurements were most reproducible with CD of 6 mm (CV 7.2%); in term infants (>37 weeks gestation; mean ± SD diastolic LV length, 29.6 ± 3.0 mm), ε measurements were most reproducible with CD of 10 mm (CV 13.2%). The reproducibility of measuring ε increased with higher frame rates, from CV of 17.3% at frame rates <180 per s to 11.7% for frame rates >180 per s and 9.6% for rates >248 per s. In newborn infants, tissue Doppler loops should be acquired at frame rates above 180 per s. Myocardial deformation analysis of preterm infants should be performed using a CD of 6 mm, whereas a CD of 10 mm is more reproducible in term infants.
A device for synchronizing biomechanical data with cine film.
Rome, L C
1995-03-01
Biomechanists are faced with two problems in synchronizing continuous physiological data to discrete, frame-based kinematic data from films. First, the accuracy of most synchronization techniques is good only to one frame and hence depends on framing rate. Second, even if perfectly correlated at the beginning of a 'take', the film and physiological data may become progressively desynchronized as the 'take' proceeds. A system is described, which provides synchronization between cine film and continuous physiological data with an accuracy of +/- 0.2 ms, independent of framing rate and the duration of the film 'take'. Shutter pulses from the camera were output to a computer recording system where they were recorded and counted, and to a digital device which counted the pulses and illuminated the count on the bank of LEDs which was filmed with the subject. Synchronization was performed by using the rising edge of the shutter pulse and by comparing the frame number imprinted on the film to the frame number recorded by the computer system. In addition to providing highly accurate synchronization over long film 'takes', this system provides several other advantages. First, having frame numbers imprinted both on the film and computer record greatly facilitates analysis. Second, the LEDs were designed to show the 'take number' while the camera is coming up to speed, thereby avoiding the use of cue cards which disturb the animal. Finally, use of this device results in considerable savings in film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
2017-06-01
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
Robust graphene membranes in a silicon carbide frame.
Waldmann, Daniel; Butz, Benjamin; Bauer, Sebastian; Englert, Jan M; Jobst, Johannes; Ullmann, Konrad; Fromm, Felix; Ammon, Maximilian; Enzelberger, Michael; Hirsch, Andreas; Maier, Sabine; Schmuki, Patrik; Seyller, Thomas; Spiecker, Erdmann; Weber, Heiko B
2013-05-28
We present a fabrication process for freely suspended membranes consisting of bi- and trilayer graphene grown on silicon carbide. The procedure, involving photoelectrochemical etching, enables the simultaneous fabrication of hundreds of arbitrarily shaped membranes with an area up to 500 μm(2) and a yield of around 90%. Micro-Raman and atomic force microscopy measurements confirm that the graphene layer withstands the electrochemical etching and show that the membranes are virtually unstrained. The process delivers membranes with a cleanliness suited for high-resolution transmission electron microscopy (HRTEM) at atomic scale. The membrane, and its frame, is very robust with respect to thermal cycling above 1000 °C as well as harsh acidic or alkaline treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, D.; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Miranda, F.
2016-06-08
Tailoring battery geometries is essential for many applications, as geometry influences the delivered capacity value. Two geometries, frame and conventional, have been studied and, for a given scan rate of 330C, the square frame shows a capacity value of 305,52 Ahm{sup −2}, which is 527 times higher than the one for the conventional geometry for a constant the area of all components.
Slow speed—fast motion: time-lapse recordings in physics education
NASA Astrophysics Data System (ADS)
Vollmer, Michael; Möllmann, Klaus-Peter
2018-05-01
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s-1, allowing us to study transient physics phenomena happening too fast for the naked eye. Here we want to extend the range of phenomena which may be studied by video analysis in the opposite direction by focusing on much longer time scales ranging from minutes, hours to many days or even months. We discuss this time-lapse method, needed equipment and give a few hints of how to produce respective recordings for two specific experiments.
High-frame-rate digital radiographic videography
NASA Astrophysics Data System (ADS)
King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott
1994-10-01
High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.
Formation of Soil Water Repellency by Laboratory Burning and Its Effect on Soil Evaporation
NASA Astrophysics Data System (ADS)
Ahn, Sujung; Im, Sangjun
2010-05-01
Fire-induced soil water repellency can vary with burning conditions, and may lead to significant changes in soil hydraulic properties. However, isolation of the effects of soil water repellency from other factors is difficult, particularly under field conditions. This study was conducted to (i) investigate the effects of burning using different plant leaf materials and (ii) of different burning conditions on the formation of soil water repellency, and (iii) isolate the effects of the resulting soil water repellency on soil evaporation from other factors. Burning treatments were performed on the surface of homogeneous fully wettable sand soil contained in a steel frame (60 x 60 cm; 40 cm depth). As controls a sample without a heat treatment, and a heated sample without fuel, were also used. Ignition and heat treatments were carried out with a gas torch. For comparing the effects of different burning conditions, fuel types included oven-dried pine needles (fresh needles of Pinus densiflora), pine needle litter (litter on a coniferous forest floor, P. densiflora + P. rigida), and broad-leaf litter (Quercus mongolica + Q. aliena + Prunus serrulata var. spontanea + other species); fuel loads were 200 g, 300 g, and 500 g; and heating duration was 40 s, 90 s and 180 s. The heating duration was adjusted to control the temperature, based on previous experiments. The temperature was measured continuously at 3-second intervals and logged with two thermometers. After burning, undisturbed soil columns were sampled for subsequent experiments. Water Drop Penetration Time (WDPT) test was performed at every 1 mm depth of the soil columns to measure the severity of soil water repellency and its vertical extent. Soil water repellency was detected following all treatments. As the duration of heating increased, the thickness of the water repellent layer increased, whilst the severity of soil water repellency decreased. As regards fuel amount, the most severe soil water repellency was formed at a fuel load of 300 g. Pine needle litter formed the most severe soil water repellency and fresh pine needle formed the thickest water repellent layer, whilst broad-leaf litter did only cause water repellency on the surface of the sand. The soil evaporation rate was measured by a gravitational method at an isothermal condition. Undisturbed soil columns were sealed after adding 50 ml of tap water through the bottom. After twelve hours of stabilization, the columns were opened and covered with filter paper. The rate of soil evaporation through the soil surface was measured by the hourly weight change at 45° C. The initial 65 hours' evaporation rate was analyzed, while the slope of cumulative evaporation over time maintained its linearity. It was found that as the thickness of the water repellent layer increased, the evaporation rate tended to decrease. These two variables showed a good correlation (Pearson's correlation coefficient =-0.8916, p=0.0170) and a large coefficient of determination (R2=0.795) in the linear regression. This suggests that a layer of water repellent soil can affect water evaporation rate and that the rate is negatively correlated with the thickness of the repellent layer.
A novel body frame based approach to aerospacecraft attitude tracking.
Ma, Carlos; Chen, Michael Z Q; Lam, James; Cheung, Kie Chung
2017-09-01
In the common practice of designing an attitude tracker for an aerospacecraft, one transforms the Newton-Euler rotation equations to obtain the dynamic equations of some chosen inertial frame based attitude metrics, such as Euler angles and unit quaternions. A Lyapunov approach is then used to design a controller which ensures asymptotic convergence of the attitude to the desired orientation. Although this design methodology is pretty standard, it usually involves singularity-prone coordinate transformations which complicates the analysis process and controller design. A new, singularity free error feedback method is proposed in the paper to provide simple and intuitive stability analysis and controller synthesis. This new body frame based method utilizes the concept of Euleraxis and angles to generate the smallest error angles from a body frame perspective, without coordinate transformations. Global tracking convergence is illustrated with the use of a feedback linearizing PD tracker, a sliding mode controller, and a model reference adaptive controller. Experimental results are also obtained on a quadrotor platform with unknown system parameters and disturbances, using a boundary layer approximated sliding mode controller, a PIDD controller, and a unit sliding mode controller. Significant tracking quality is attained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Prediction of strain values in reinforcements and concrete of a RC frame using neural networks
NASA Astrophysics Data System (ADS)
Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul
2018-03-01
The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.
Numerical model describing optimization of fibres winding process on open and closed frame
NASA Astrophysics Data System (ADS)
Petrů, M.; Mlýnek, J.; Martinec, T.
2016-08-01
This article discusses a numerical model describing optimization of fibres winding process on open and closed frame. The quality production of said type of composite frame depends primarily on the correct winding of fibers on a polyurethane core. It is especially needed to ensure the correct angles of the fibers winding on the polyurethane core and the homogeneity of individual winding layers. The article describes mathematical model for use an industrial robot in filament winding and how to calculate the trajectory of the robot. When winding fibers on the polyurethane core which is fastened to the robot-end-effector so that during the winding process goes through a fibre-processing head on the basis of the suitably determined robot-end-effector trajectory. We use the described numerical model and matrix calculus to enumerate the trajectory of the robot-end-effector to determine the desired passage of the frame through the fibre-processing head. The calculation of the trajectory was programmed in the Delphi development environment. Relations of the numerical model are important for use a real solving of the passage of a polyurethane core through fibre-processing head.
High-speed three-dimensional shape measurement using GOBO projection
NASA Astrophysics Data System (ADS)
Heist, Stefan; Lutzke, Peter; Schmidt, Ingo; Dietrich, Patrick; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther
2016-12-01
A projector which uses a rotating slide structure to project aperiodic sinusoidal fringe patterns at high frame rates and with high radiant flux is introduced. It is used in an optical three-dimensional (3D) sensor based on coded-light projection, thus allowing the analysis of fast processes. Measurements of an inflating airbag, a rope skipper, and a soccer ball kick at a 3D frame rate of more than 1300 independent point clouds per second are presented.
Sayseng, Vincent; Grondin, Julien; Konofagou, Elisa E
2018-05-01
Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate-in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in cross-sectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe %) = 3.56, and steered compounding E(SNRe %) = 4.26).
Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X
2012-08-01
The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.
High-speed X-ray imaging pixel array detector for synchrotron bunch isolation
Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...
2016-01-28
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less
High-speed X-ray imaging pixel array detector for synchrotron bunch isolation
Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.
2016-01-01
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125
High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.
Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M
2016-03-01
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.
A wave model for rigid-frame porous materials using lumped parameter concepts
NASA Astrophysics Data System (ADS)
Rossetti, S.; Gardonio, P.; Brennan, M. J.
2005-08-01
The work presented in this paper concerns the behaviour of porous media when exposed to a normal incidence sound field. A propagating wave model based on lumped parameter concepts of acoustic mass, stiffness and damping is used to investigate the absorption phenomena due to the wave propagation in the layer(s) and interference effects due to the wave reflection-transmission at the interfaces of the layer(s). Results from the theoretical model have been validated by measurements on samples of consolidated rubber granulate material. Two typical installations where a layer of porous material is placed next to a rigid wall, and where it is placed at a distance from a rigid wall are used as reference cases. The geometrical and physical properties of porous materials can be described by such parameters as the non-dimensional shape factor and the porosity. The propagating model introduced is used to investigate the effect of these two parameters on acoustic absorption and thus relate the physical properties to the acoustic behaviour.
High-Frame-Rate Speckle-Tracking Echocardiography.
Joos, Philippe; Poree, Jonathan; Liebgott, Herve; Vray, Didier; Baudet, Mathilde; Faurie, Julia; Tournoux, Francois; Cloutier, Guy; Nicolas, Barbara; Garcia, Damien; Baudet, Mathilde; Tournoux, Francois; Joos, Philippe; Poree, Jonathan; Cloutier, Guy; Liebgott, Herve; Faurie, Julia; Vray, Didier; Nicolas, Barbara; Garcia, Damien
2018-05-01
Conventional echocardiography is the leading modality for noninvasive cardiac imaging. It has been recently illustrated that high-frame-rate echocardiography using diverging waves could improve cardiac assessment. The spatial resolution and contrast associated with this method are commonly improved by coherent compounding of steered beams. However, owing to fast tissue velocities in the myocardium, the summation process of successive diverging waves can lead to destructive interferences if motion compensation (MoCo) is not considered. Coherent compounding methods based on MoCo have demonstrated their potential to provide high-contrast B-mode cardiac images. Ultrafast speckle-tracking echocardiography (STE) based on common speckle-tracking algorithms could substantially benefit from this original approach. In this paper, we applied STE on high-frame-rate B-mode images obtained with a specific MoCo technique to quantify the 2-D motion and tissue velocities of the left ventricle. The method was first validated in vitro and then evaluated in vivo in the four-chamber view of 10 volunteers. High-contrast high-resolution B-mode images were constructed at 500 frames/s. The sequences were generated with a Verasonics scanner and a 2.5-MHz phased array. The 2-D motion was estimated with standard cross correlation combined with three different subpixel adjustment techniques. The estimated in vitro velocity vectors derived from STE were consistent with the expected values, with normalized errors ranging from 4% to 12% in the radial direction and from 10% to 20% in the cross-range direction. Global longitudinal strain of the left ventricle was also obtained from STE in 10 subjects and compared to the results provided by a clinical scanner: group means were not statistically different ( value = 0.33). The in vitro and in vivo results showed that MoCo enables preservation of the myocardial speckles and in turn allows high-frame-rate STE.
Hassett, Leanne; Simpson, Grahame; Cotter, Rachel; Whiting, Diane; Hodgkinson, Adeline; Martin, Diane
2015-04-01
To investigate whether the introduction of an electronic goals system followed by staff training improved the quality, rating, framing and structure of goals written by a community-based brain injury rehabilitation team. Interrupted time series design. Two interventions were introduced six months apart. The first intervention comprised the introduction of an electronic goals system. The second intervention comprised a staff goal training workshop. An audit protocol was devised to evaluate the goals. A random selection of goal statements from the 12 months prior to the interventions (Time 1 baseline) were compared with all goal statements written after the introduction of the electronic goals system (Time 2) and staff training (Time 3). All goals were de-identified for client and time-period, and randomly ordered. A total of 745 goals (Time 1 n = 242; Time 2 n = 283; Time 3 n = 220) were evaluated. Compared with baseline, the introduction of the electronic goals system alone significantly increased goal rating, framing and structure (χ(2) tests 144.7, 18.9, 48.1, respectively, p < 0.001). The addition of staff training meant that the improvement in goal quality, which was only a trend at Time 2, was statistically significant at Time 3 (χ(2) 15.0, p ≤ 001). The training also led to a further significant increase in the framing and structuring of goals over the electronic goals system (χ(2) 11.5, 12.5, respectively, p ≤ 0.001). An electronic goals system combined with staff training improved the quality, rating, framing and structure of goal statements. © The Author(s) 2014.
Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
Mansour, Omar; Poepping, Tamie L; Lacefield, James C
2016-07-21
Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI
Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.
2017-01-01
Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574
Modeling the dissipation rate in rotating turbulent flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Raj, Rishi; Gatski, Thomas B.
1990-01-01
A variety of modifications to the modeled dissipation rate transport equation that have been proposed during the past two decades to account for rotational strains are examined. The models are subjected to two crucial test cases: the decay of isotropic turbulence in a rotating frame and homogeneous shear flow in a rotating frame. It is demonstrated that these modifications do not yield substantially improved predictions for these two test cases and in many instances give rise to unphysical behavior. An alternative proposal, based on the use of the tensor dissipation rate, is made for the development of improved models.
Using Google Earth to Explore Strain Rate Models of Southern California
NASA Astrophysics Data System (ADS)
Richard, G. A.; Bell, E. A.; Holt, W. E.
2007-12-01
A series of strain rate models for the Transverse Ranges of southern California were developed based on Quaternary fault slip data and geodetic data from high precision GPS stations in southern California. Pacific-North America velocity boundary conditions are applied for all models. Topography changes are calculated using the model dilatation rates, which predict crustal thickness changes under the assumption of Airy isostasy and a specified rate of crustal volume loss through erosion. The models were designed to produce graphical and numerical output representing the configuration of the region from 3 million years ago to 3 million years into the future at intervals of 50 thousand years. Using a North American reference frame, graphical output for the topography and faults and numerical output for locations of faults and points on the crust marked by the locations on cities were used to create data in KML format that can be used in Google Earth to represent time intervals of 50 thousand years. As markers familiar to students, the cities provide a geographic context that can be used to quantify crustal movement, using the Google Earth ruler tool. By comparing distances that markers for selected cities have moved in various parts of the region, students discover that the greatest amount of crustal deformation has occurred in the vicinity of the boundary between the North American and Pacific plates. Students can also identify areas of compression or extension by finding pairs of city markers that have converged or diverged, respectively, over time. The Google Earth layers also reveal that faults that are not parallel to the plate boundary have tended to rotate clockwise due to the right lateral motion along the plate boundary zone. KML TimeSpan markup was added to two versions of the model, enabling the layers to be displayed in an automatic sequenced loop for a movie effect. The data is also available as QuickTime (.mov) and Graphics Interchange Format (.gif) animations and in ESRI Shapefile format.
Cultural background shapes spatial reference frame proclivity
Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter
2015-01-01
Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656
Liu, Jenny J W; Vickers, Kristin; Reed, Maureen; Hadad, Marilyn
2017-01-01
The consequences of stress are typically regarded from a deficit-oriented approach, conceptualizing stress to be entirely negative in its outcomes. This approach is unbalanced, and may further hinder individuals from engaging in adaptive coping. In the current study, we explored whether negative views and beliefs regarding stress interacted with a stress framing manipulation (positive, neutral and negative) on measures of stress reactivity for both psychosocial and physiological stressors. Ninety participants were randomized into one of three framing conditions that conceptualized the experience of stress in balanced, unbalanced-negative or unbalanced-positive ways. After watching a video on stress, participants underwent a psychosocial (Trier Social Stress Test), or a physiological (CO2 challenge) method of stress-induction. Subjective and objective markers of stress were assessed. Most of the sampled population regarded stress as negative prior to framing. Further, subjective and objective reactivity were greater to the TSST compared to the CO2 challenge. Additionally, significant cubic trends were observed in the interactions of stress framing and stress-induction methodologies on heart rate and blood pressure. Balanced framing conditions in the TSST group had a significantly larger decrease in heart rate and diastolic blood pressure following stress compared to the positive and negative framing conditions. Findings confirmed a deficit-orientation of stress within the sampled population. In addition, results highlighted the relative efficacy of the TSST compared to CO2 as a method of stress provocation. Finally, individuals in framing conditions that posited stress outcomes in unbalanced manners responded to stressors less efficiently. This suggests that unbalanced framing of stress may have set forth unrealistic expectations regarding stress that later hindered individuals from adaptive responses to stress. Potential benefits of alternative conceptualizations of stress on stress reactivity are discussed, and suggestions for future research are made.
Information transfer rate with serial and simultaneous visual display formats
NASA Astrophysics Data System (ADS)
Matin, Ethel; Boff, Kenneth R.
1988-04-01
Information communication rate for a conventional display with three spatially separated windows was compared with rate for a serial display in which data frames were presented sequentially in one window. For both methods, each frame contained a randomly selected digit with various amounts of additional display 'clutter.' Subjects recalled the digits in a prescribed order. Large rate differences were found, with faster serial communication for all levels of the clutter factors. However, the rate difference was most pronounced for highly cluttered displays. An explanation for the latter effect in terms of visual masking in the retinal periphery was supported by the results of a second experiment. The working hypothesis that serial displays can speed information transfer for automatic but not for controlled processing is discussed.
Feature Tracking for High Speed AFM Imaging of Biopolymers.
Hartman, Brett; Andersson, Sean B
2018-03-31
The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.
1.56 Terahertz 2-frames per second standoff imaging
NASA Astrophysics Data System (ADS)
Goyette, Thomas M.; Dickinson, Jason C.; Linden, Kurt J.; Neal, William R.; Joseph, Cecil S.; Gorveatt, William J.; Waldman, Jerry; Giles, Robert; Nixon, William E.
2008-02-01
A Terahertz imaging system intended to demonstrate identification of objects concealed under clothing was designed, assembled, and tested. The system design was based on a 2.5 m standoff distance, with a capability of visualizing a 0.5 m by 0.5 m scene at an image rate of 2 frames per second. The system optical design consisted of a 1.56 THz laser beam, which was raster swept by a dual torsion mirror scanner. The beam was focused onto the scan subject by a stationary 50 cm-diameter focusing mirror. A heterodyne detection technique was used to down convert the backscattered signal. The system demonstrated a 1.5 cm spot resolution. Human subjects were scanned at a frame rate of 2 frames per second. Hidden metal objects were detected under a jacket worn by the human subject. A movie including data and video images was produced in 1.5 minutes scanning a human through 180° of azimuth angle at 0.7° increment.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646
Ritualizing Expertise: Non-Montessorian View of the Montessori Method
ERIC Educational Resources Information Center
Cossentino, Jacqueline
2005-01-01
This article examines the practice of Montessori education through the lens of ritual. Anchored by description and analysis of a lesson in an elementary classroom, the lesson is viewed as a series of ritualized interactions in which both teacher and student act out multiple layers of expertise within the cultural frame of the Montessori method.…
Apollo Portable Life Support System
1968-06-11
S68-34580 (1968) --- With its exterior removed, the Apollo portable life support system (PLSS) can be easily studied. The PLSS is worn as a backpack over the Extravehicular Mobility Unit (EMU), a multi-layered spacesuit used for outside-the-spacecraft activity. JSC photographic frame no. S68-34582 is a close-up view of the working parts of the PLSS.
NASA Technical Reports Server (NTRS)
Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)
1998-01-01
X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.
Using deviance regulation theory to target marijuana use intentions among college students.
Dvorak, Robert D; Raeder, Cody A; Kramer, Matthew P; Sargent, Emily; Stevenson, Brittany L; Helmy, Mai
2018-02-01
Several large epidemiological studies have shown increasing trends on a number of indices of marijuana use among college age samples. This may be due to changing attitudes about marijuana use linked to legalization efforts. Interventions that can target problematic use on a broad scale are lacking. Recent research has shown that deviance regulation theory (DRT) can be used to design effective web-based substance use interventions. DRT relies on the interplay between perceived norms and an appropriately framed message about the given behavior. The current study examines the use of DRT to change marijuana use intentions. Participants (n = 694 college students) completed measures of marijuana use and marijuana use norms. They were then assigned to receive a positively framed message about marijuana abstainers or a negatively framed message about marijuana users. Following the manipulation, participants rated intentions to use marijuana over the next three months. Consistent with DRT, there was an interaction between message frame and marijuana use norms. The positive frame attenuated the association between marijuana use norms and use intentions. A negative frame resulted in the lowest levels of use intentions among those with low use norms. Results suggest that DRT may be used to modify use intentions in college students, a population that has shown increasing rates of use. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Macapagal, Kathryn; Janssen, Erick; Matson, Margaret; Finn, Peter R.; Heiman, Julia R.
2015-01-01
Messages that frame a target behavior in terms of its benefits (gain frame) or costs (loss frame) have been widely and successfully used for health promotion and risk reduction. However, the impact of framed messages on decisions to have sex and sexual risk, as well as moderators of these effects, has remained largely unexplored. We used a computerized laboratory task to test the effects of framed messages about condom use on young adults’ sexual decision making. Participants (N = 127) listened to both gain- and loss-framed messages and rated their intentions to have sex with partners who posed a high and low risk for sexually transmitted infections (STIs). The effects of message frame, partner risk, participant gender, ability to adopt the messages, and message presentation order on intentions to have sex were examined. Intentions to have sex with high-risk partners significantly decreased after the loss-framed message, but not after the gain-framed message, and intentions to have sex increased for participants who received the gain-framed message first. Yet, participants found it easier to adopt the gain-framed message. Results suggest that loss-framed messages may be particularly effective in reducing intentions to have sex with partners who might pose a higher risk for STIs, and that message presentation order may alter the relative effectiveness of gain- and loss-framed messages on sexual decision making. Future studies should examine the precise conditions under which gain- and loss-framed messages can promote healthy sexual behaviors and reduce sexual risk behaviors. PMID:26696408
Macapagal, Kathryn; Janssen, Erick; Matson, Margaret; Finn, Peter R; Heiman, Julia R
2017-02-01
Messages that frame a target behavior in terms of its benefits (gain frame) or costs (loss frame) have been widely and successfully used for health promotion and risk reduction. However, the impact of framed messages on decisions to have sex and sexual risk, as well as moderators of these effects, has remained largely unexplored. We used a computerized laboratory task to test the effects of framed messages about condom use on young adults' sexual decision making. Participants (N = 127) listened to both gain- and loss-framed messages and rated their intentions to have sex with partners who posed a high and low risk for sexually transmitted infections (STIs). The effects of message frame, partner risk, participant gender, ability to adopt the messages, and message presentation order on intentions to have sex were examined. Intentions to have sex with high-risk partners significantly decreased after the loss-framed message, but not after the gain-framed message, and intentions to have sex increased for participants who received the gain-framed message first. Yet, participants found it easier to adopt the gain-framed message. Results suggest that loss-framed messages may be particularly effective in reducing intentions to have sex with partners who might pose a higher risk for STIs, and that message presentation order may alter the relative effectiveness of gain- and loss-framed messages on sexual decision making. Future studies should examine the precise conditions under which gain- and loss-framed messages can promote healthy sexual behaviors and reduce sexual risk behaviors.
Event-Driven Random-Access-Windowing CCD Imaging System
NASA Technical Reports Server (NTRS)
Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William
2004-01-01
A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).
2013-01-01
Kinect-based exergames allow players to undertake physical exercise in an interactive manner with visual stimulation. Previous studies focused on investigating physical fitness based on calories or heart rate to ascertain the effectiveness of exergames. However, designing an exergame for specific training purposes, with intensity levels suited to the needs and skills of the players, requires the investigation of motion performance to study player experience. This study investigates how parameters of a Kinect-based exergame, combined with balance training exercises, influence the balance control ability and intensity level the player can tolerate, by analyzing both objective and gameplay-based player experience, and taking enjoyment and difficulty levels into account. The exergame tested required participants to maintain their balance standing on one leg within a posture frame (PF) while a force plate evaluated the player's balance control ability in both static and dynamic gaming modes. The number of collisions with the PF depended on the frame's travel time for static PFs, and the leg-raising rate and angle for dynamic PFs. In terms of center of pressure (COP) metrics, significant impacts were caused by the frame's travel time on MDIST-AP for static PFs, and the leg-raising rate on MDIST-ML and TOTEX for dynamic PFs. The best static PF balance control performance was observed with a larger frame offset by a travel time of 2 seconds, and the worst performance with a smaller frame and a travel time of 1 second. The best dynamic PF performance was with a leg-raising rate of 1 second at a 45-degree angle, while the worst performance was with a rate of 2 seconds at a 90-degree angle. The results demonstrated that different evaluation methods for player experience could result in different findings, making it harder to study the design of those exergames with training purposes based on player experience. PMID:23922716
Pérez, Alberto J.; Braga, Roberto; Perles, Ángel; Pérez–Marín, Eva; García-Diego, Fernando J.
2018-01-01
Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation. PMID:29324692
Achieving Fair Throughput among TCP Flows in Multi-Hop Wireless Mesh Networks
NASA Astrophysics Data System (ADS)
Hou, Ting-Chao; Hsu, Chih-Wei
Previous research shows that the IEEE 802.11 DCF channel contention mechanism is not capable of providing throughput fairness among nodes in different locations of the wireless mesh network. The node nearest the gateway will always strive for the chance to transmit data, causing fewer transmission opportunities for the nodes farther from the gateway, resulting in starvation. Prior studies modify the DCF mechanism to address the fairness problem. This paper focuses on the fairness study when TCP flows are carried over wireless mesh networks. By not modifying lower layer protocols, the current work identifies TCP parameters that impact throughput fairness and proposes adjusting those parameters to reduce frame collisions and improve throughput fairness. With the aid of mathematical formulation and ns2 simulations, this study finds that frame transmission from each node can be effectively controlled by properly controlling the delayed ACK timer and using a suitable advertised window. The proposed method reduces frame collisions and greatly improves TCP throughput fairness.
Good things don't come easy (to mind): explaining framing effects in judgments of truth.
Hilbig, Benjamin E
2012-01-01
Recently, the general phenomenon of a positive-negative-asymmetry was extended to judgments of truth. That is, negatively framed statements were shown to receive substantially higher truth ratings than formally equivalent statements framed positively. However, the cognitive mechanisms underlying this effect are unknown, so far. In the current work, two potential accounts are introduced and tested against each other in three experiments: On the one hand, negative framing may induce increased elaboration and thereby persuasion. Alternatively, negative framing could yield faster retrieval or generation of evidence and thus influence subjective veracity via experiential fluency. Two experiments drawing on response latencies and one manipulating the delay between information acquisition and judgment provide support for the fluency-based account. Overall, results replicate and extend the negatively-biased framing effect in truth judgments and show that processing fluency may account for it. © 2011 Hogrefe Publishing
Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J S; Kraus, Martin F; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E; Fujimoto, James G
2013-07-01
We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.
Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J. S.; Kraus, Martin F.; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.
2013-01-01
We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated. PMID:23847737
Vishwanath, Arun
2009-07-01
The American College of Medical Informatics rated the lack of willingness to pay for the patient health record (PHR) as the biggest obstacles to its rapid diffusion. Extending research propositions from the decision sciences and political communication, this study tests the influence of different types of emphasis frames on increasing consumer willingness to pay for the PHR. Using a randomized experiment embedded within a probability survey, the effects of 3 different types of emphasis frames (individual-focused, collective-focused, and joint), along with a no-frames control, are tested on a sample of early and later technology adopters. The results indicate a significant relationship between the type of frame and the type of adopter. Early adopters were more susceptible to individual-focused frames that made causal attributions at the individual level, whereas later adopters were significantly influenced by collective-focused frames that made causal attributions at the societal level. Interestingly, the framing effect continued and significantly influenced both early and later adopters' willingness to pay for the PHR. The findings demonstrate the need to carefully communicate the value of a technology to adopters and suggest the possibility of using frames to spur the diffusion of PHRs.
DHMI: dynamic holographic microscopy interface
NASA Astrophysics Data System (ADS)
He, Xuefei; Zheng, Yujie; Lee, Woei Ming
2016-12-01
Digital holographic microscopy (DHM) is a powerful in-vitro biological imaging tool. In this paper, we report a fully automated off-axis digital holographic microscopy system completed with a graphical user interface in the Matlab environment. The interface primarily includes Fourier domain processing, phase reconstruction, aberration compensation and autofocusing. A variety of imaging operations such as region of interest selection, de-noising mode (filtering and averaging), low frame rate imaging for immediate reconstruction and high frame rate imaging routine ( 27 fps) are implemented to facilitate ease of use.
Large Area Field of View for Fast Temporal Resolution Astronomy
NASA Astrophysics Data System (ADS)
Covarrubias, Ricardo A.
2018-01-01
Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.
Fast-response LCDs for virtual reality applications
NASA Astrophysics Data System (ADS)
Chen, Haiwei; Peng, Fenglin; Gou, Fangwang; Wand, Michael; Wu, Shin-Tson
2017-02-01
We demonstrate a fast-response liquid crystal display (LCD) with an ultra-low-viscosity nematic LC mixture. The measured average motion picture response time is only 6.88 ms, which is comparable to 6.66 ms for an OLED at a 120 Hz frame rate. If we slightly increase the TFT frame rate and/or reduce the backlight duty ratio, image blurs can be further suppressed to unnoticeable level. Potential applications of such an image-blur-free LCD for virtual reality, gaming monitors, and TVs are foreseeable.
SEO, MYEONG-GU; GOLDFARB, BRENT; BARRETT, LISA FELDMAN
2011-01-01
We examined the role of affect (pleasant or unpleasant feelings) and decision frames (gains or losses) in risk taking in a 20-day stock investment simulation in which 101 participants rated their current feelings while making investment decisions. As predicted, affect attenuated the relationships between decision frames and risk taking. After experiencing losses, individuals made more risky choices, in keeping with the framing effect. However, this tendency decreased and/or disappeared when loss was simultaneously experienced with either pleasant or unpleasant feelings. Similarly, individuals’ tendency to avoid risk after experiencing gains disappeared or even reversed when they simultaneously experienced pleasant feelings. PMID:26412860
Seo, Myeong-Gu; Goldfarb, Brent; Barrett, Lisa Feldman
2010-04-01
We examined the role of affect (pleasant or unpleasant feelings) and decision frames (gains or losses) in risk taking in a 20-day stock investment simulation in which 101 participants rated their current feelings while making investment decisions. As predicted, affect attenuated the relationships between decision frames and risk taking. After experiencing losses, individuals made more risky choices, in keeping with the framing effect. However, this tendency decreased and/or disappeared when loss was simultaneously experienced with either pleasant or unpleasant feelings. Similarly, individuals' tendency to avoid risk after experiencing gains disappeared or even reversed when they simultaneously experienced pleasant feelings.
Huang, Chenyu; Ogawa, Rei; Hyakusoku, Hiko
2014-08-01
The current skin graft fixation methods for digits, including the Kirschner wire insertion technique, can be limited by inadequate or excessive fixation and complications such as infection or secondary injuries. Therefore, the external wire-frame fixation method was invented and used for skin grafting of digits. This study aimed to investigate external wire-frame fixation of digital skin grafts as a non-invasive alternative to the K-wire insertion method. In 2005-2012, 15 patients with burn scar contractures on the hand digits received a skin graft that was then fixed with an external wire frame. The intra-operative time needed to make the wire frame, the postoperative time to frame and suture removal, the graft survival rate, the effect of contracture release and the complications were recorded. In all cases, the contracture release was 100%. The complete graft survival rate was 98.6%. Four patients had epithelial necrosis in <5% of the total area. There were no other complications such as pressure ulcer or hypoxia of fingers. External wire-frame fixation is simple, minimally invasive and a custom-made technique for skin grafting of the fingers. It was designed for its potential benefits and the decreased risk it poses to patients with scar contractures on their fingers. It can be implemented in three phases of grafting, does not affect the epiphyseal line or subsequent finger growth and is suitable for children with multi-digit involvement. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Barr, Margo L; van Ritten, Jason J; Steel, David G; Thackway, Sarah V
2012-11-22
In Australia telephone surveys have been the method of choice for ongoing jurisdictional population health surveys. Although it was estimated in 2011 that nearly 20% of the Australian population were mobile-only phone users, the inclusion of mobile phone numbers into these existing landline population health surveys has not occurred. This paper describes the methods used for the inclusion of mobile phone numbers into an existing ongoing landline random digit dialling (RDD) health survey in an Australian state, the New South Wales Population Health Survey (NSWPHS). This paper also compares the call outcomes, costs and the representativeness of the resultant sample to that of the previous landline sample. After examining several mobile phone pilot studies conducted in Australia and possible sample designs (screening dual-frame and overlapping dual-frame), mobile phone numbers were included into the NSWPHS using an overlapping dual-frame design. Data collection was consistent, where possible, with the previous years' landline RDD phone surveys and between frames. Survey operational data for the frames were compared and combined. Demographic information from the interview data for mobile-only phone users, both, and total were compared to the landline frame using χ2 tests. Demographic information for each frame, landline and the mobile-only (equivalent to a screening dual frame design), and the frames combined (with appropriate overlap adjustment) were compared to the NSW demographic profile from the 2011 census using χ2 tests. In the first quarter of 2012, 3395 interviews were completed with 2171 respondents (63.9%) from the landline frame (17.6% landline only) and 1224 (36.1%) from the mobile frame (25.8% mobile only). Overall combined response, contact and cooperation rates were 33.1%, 65.1% and 72.2% respectively. As expected from previous research, the demographic profile of the mobile-only phone respondents differed most (more that were young, males, Aboriginal and Torres Strait Islanders, overseas born and single) compared to the landline frame responders. The profile of respondents from the two frames combined, with overlap adjustment, was most similar to the latest New South Wales (NSW) population profile. The inclusion of the mobile phone numbers, through an overlapping dual-frame design, did not impact negatively on response rates or data collection, and although costing more the design was still cost-effective because of the additional interviews that were conducted with young people, Aboriginal and Torres Strait Islanders and people who were born overseas resulting in a more representative overall sample.
Notthoff, Nanna; Klomp, Peter; Doerwald, Friederike; Scheibe, Susanne
2016-09-01
Although physical activity is an effective way to cope with ageing-related impairments, few older people are motivated to turn their sedentary lifestyle into an active one. Recent evidence suggests that walking can be more effectively promoted in older adults with positive messages about the benefits of walking than with negative messages about the risks of inactivity. This study examined motivation and memory as the supposed mechanisms underlying the greater effectiveness of positively framed compared to negatively framed messages for promoting activity. Older adults ( N = 53, age 60-87 years) were introduced to six physical activity programmes that were randomly paired with either positively framed or negatively framed messages. Participants indicated how motivated they were to participate in each programme by providing ratings on attractiveness, suitability, capability and intention. They also completed surprise free recall and recognition tests. Respondents felt more motivated to participate in physical activity programmes paired with positively framed messages than in those with negatively framed ones. They also had better recognition memory for positively framed than negatively framed messages, and misremembered negatively framed messages to be positively framed. Findings support the notion that socioemotional selectivity theory-a theory of age-related changes in motivation-is a useful basis for health intervention design.
The effect of message framing on self-management of chronic pain: a new perspective on intervention?
Janke, E Amy; Spring, Bonnie; Weaver, Frances
2011-07-01
This study examines framed messages as a novel approach to promote self-management of chronic pain. Primary care patients reporting chronic pain (pain rated ≥ 4 on 0-10 NRS-I for ≥3 months) were randomly assigned to receive a gain- or loss-framed message promoting self-management of pain. Impact of the framed message on behavioural self-management (including communicating with providers, relaxation, activity pacing, pleasant activities and healthy lifestyle) was assessed. Post-message, individuals in the loss-frame condition reported significantly greater interest in and more knowledge gained from the information presented in the message (p≤0.03). Loss-frame participants were significantly more likely to express confidence that they would practice relaxation (p≤0.03). Pain readiness to change, pain self-efficacy and message frame independently influenced motivation to engage in relaxation as a self-management strategy. Across all behaviours assessed, there were no observed interactions between message frame and either pain self-efficacy or pain readiness to change (p>0.05). Framing may be useful to promote pain self-management; larger trials are needed to fully evaluate its potential and to further assess the applicability of framed communication to impact a broader range of chronic conditions. © 2011 Taylor & Francis
How many pixels does it take to make a good 4"×6" print? Pixel count wars revisited
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2011-01-01
In the early 1980's the future of conventional silver-halide photographic systems was of great concern due to the potential introduction of electronic imaging systems then typified by the Sony Mavica analog electronic camera. The focus was on the quality of film-based systems as expressed in the number of equivalent number pixels and bits-per-pixel, and how many pixels would be required to create an equivalent quality image from a digital camera. It was found that 35-mm frames, for ISO 100 color negative film, contained equivalent pixels of 12 microns for a total of 18 million pixels per frame (6 million pixels per layer) with about 6 bits of information per pixel; the introduction of new emulsion technology, tabular AgX grains, increased the value to 8 bit per pixel. Higher ISO speed films had larger equivalent pixels, fewer pixels per frame, but retained the 8 bits per pixel. Further work found that a high quality 3.5" x 5.25" print could be obtained from a three layer system containing 1300 x 1950 pixels per layer or about 7.6 million pixels in all. In short, it became clear that when a digital camera contained about 6 million pixels (in a single layer using a color filter array and appropriate image processing) that digital systems would challenge and replace conventional film-based system for the consumer market. By 2005 this became the reality. Since 2005 there has been a "pixel war" raging amongst digital camera makers. The question arises about just how many pixels are required and are all pixels equal? This paper will provide a practical look at how many pixels are needed for a good print based on the form factor of the sensor (sensor size) and the effective optical modulation transfer function (optical spread function) of the camera lens. Is it better to have 16 million, 5.7-micron pixels or 6 million 7.8-micron pixels? How does intrinsic (no electronic boost) ISO speed and exposure latitude vary with pixel size? A systematic review of these issues will be provided within the context of image quality and ISO speed models developed over the last 15 years.
Spatial resampling of IDR frames for low bitrate video coding with HEVC
NASA Astrophysics Data System (ADS)
Hosking, Brett; Agrafiotis, Dimitris; Bull, David; Easton, Nick
2015-03-01
As the demand for higher quality and higher resolution video increases, many applications fail to meet this demand due to low bandwidth restrictions. One factor contributing to this problem is the high bitrate requirement of the intra-coded Instantaneous Decoding Refresh (IDR) frames featuring in all video coding standards. Frequent coding of IDR frames is essential for error resilience in order to prevent the occurrence of error propagation. However, as each one consumes a huge portion of the available bitrate, the quality of future coded frames is hindered by high levels of compression. This work presents a new technique, known as Spatial Resampling of IDR Frames (SRIF), and shows how it can increase the rate distortion performance by providing a higher and more consistent level of video quality at low bitrates.
Realizing a terrestrial reference frame using the Global Positioning System
NASA Astrophysics Data System (ADS)
Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.
2015-08-01
We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.
Schlieren Cinematography of Current Driven Plasma Jet Dynamics
NASA Astrophysics Data System (ADS)
Loebner, Keith; Underwood, Thomas; Cappelli, Mark
2016-10-01
Schlieren cinematography of a pulsed plasma deflagration jet is presented and analyzed. An ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse (20 μs). The Schlieren signal is radiometrically calibrated to obtain a two dimensional mapping of the refraction angle of the axisymmetric pinch plasma, and this mapping is then Abel inverted to derive the plasma density distribution as a function radius, axial coordinate, and time. Analyses of previously unknown discharge characteristics and comparisons with prior work are discussed.
Meshless Modeling of Deformable Shapes and their Motion
Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.
2010-01-01
We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614
ACR/NEMA Digital Image Interface Standard (An Illustrated Protocol Overview)
NASA Astrophysics Data System (ADS)
Lawrence, G. Robert
1985-09-01
The American College of Radiologists (ACR) and the National Electrical Manufacturers Association (NEMA) have sponsored a joint standards committee mandated to develop a universal interface standard for the transfer of radiology images among a variety of PACS imaging devicesl. The resulting standard interface conforms to the ISO/OSI standard reference model for network protocol layering. The standard interface specifies the lower layers of the reference model (Physical, Data Link, Transport and Session) and implies a requirement of the Network Layer should a requirement for a network exist. The message content has been considered and a flexible message and image format specified. The following Imaging Equipment modalities are supported by the standard interface... CT Computed Tomograpy DS Digital Subtraction NM Nuclear Medicine US Ultrasound MR Magnetic Resonance DR Digital Radiology The following data types are standardized over the transmission interface media.... IMAGE DATA DIGITIZED VOICE HEADER DATA RAW DATA TEXT REPORTS GRAPHICS OTHERS This paper consists of text supporting the illustrated protocol data flow. Each layer will be individually treated. Particular emphasis will be given to the Data Link layer (Frames) and the Transport layer (Packets). The discussion utilizes a finite state sequential machine model for the protocol layers.
Use of models to map potential capture of surface water
Leake, Stanley A.
2006-01-01
The effects of ground-water withdrawals on surface-water resources and riparian vegetation have become important considerations in water-availability studies. Ground water withdrawn by a well initially comes from storage around the well, but with time can eventually increase inflow to the aquifer and (or) decrease natural outflow from the aquifer. This increased inflow and decreased outflow is referred to as “capture.” For a given time, capture can be expressed as a fraction of withdrawal rate that is accounted for as increased rates of inflow and decreased rates of outflow. The time frames over which capture might occur at different locations commonly are not well understood by resource managers. A ground-water model, however, can be used to map potential capture for areas and times of interest. The maps can help managers visualize the possible timing of capture over large regions. The first step in the procedure to map potential capture is to run a ground-water model in steady-state mode without withdrawals to establish baseline total flow rates at all sources and sinks. The next step is to select a time frame and appropriate withdrawal rate for computing capture. For regional aquifers, time frames of decades to centuries may be appropriate. The model is then run repeatedly in transient mode, each run with one well in a different model cell in an area of interest. Differences in inflow and outflow rates from the baseline conditions for each model run are computed and saved. The differences in individual components are summed and divided by the withdrawal rate to obtain a single capture fraction for each cell. Values are contoured to depict capture fractions for the time of interest. Considerations in carrying out the analysis include use of realistic physical boundaries in the model, understanding the degree of linearity of the model, selection of an appropriate time frame and withdrawal rate, and minimizing error in the global mass balance of the model.
Word and frame synchronization with verification for PPM optical communications
NASA Technical Reports Server (NTRS)
Marshall, William K.
1986-01-01
A method for obtaining word and frame synchronization in pulse position modulated optical communication systems is described. The method uses a short sync sequence inserted at the beginning of each data frame and a verification procedure to distinguish between inserted and randomly occurring sequences at the receiver. This results in an easy to implement sync system which provides reliable synchronization even at high symbol error rates. Results are given for the application of this approach to a highly energy efficient 256-ary PPM test system.
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
Construction of high frame rate images with Fourier transform
NASA Astrophysics Data System (ADS)
Peng, Hu; Lu, Jian-Yu
2002-05-01
Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.
GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array
Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.
2014-01-01
Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080
Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment.
Tabata, Makoto; Yano, Hajime; Kawai, Hideyuki; Imai, Eiichi; Kawaguchi, Yuko; Hashimoto, Hirofumi; Yamagishi, Akihiko
2015-06-01
In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles, comprising two layers with densities of 0.01 and 0.03 g/cm(3) developed using our production technique, were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.
Manually Operated Welding Wire Feeder
NASA Technical Reports Server (NTRS)
Rybicki, Daniel J. (Inventor)
2001-01-01
A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.
Park, Daesung; Herpers, Anja; Menke, Tobias; Heidelmann, Markus; Houben, Lothar; Dittmann, Regina; Mayer, Joachim
2014-06-01
Ultrathin ferroelectric heterostructures (SrTiO3/BaTiO3/BaRuO3/SrRuO3) were studied by scanning transmission electron microscopy (STEM) in terms of structural distortions and atomic displacements. The TiO2-termination at the top interface of the BaTiO3 layer was changed into a BaO-termination by adding an additional BaRuO3 layer. High-angle annular dark-field (HAADF) imaging by aberration-corrected STEM revealed that an artificially introduced BaO-termination can be achieved by this interface engineering. By using fast sequential imaging and frame-by-frame drift correction, the effect of the specimen drift was significantly reduced and the signal-to-noise ratio of the HAADF images was improved. Thus, a quantitative analysis of the HAADF images was feasible, and an in-plane and out-of-plane lattice spacing of the BaTiO3 layer of 3.90 and 4.22 Å were determined. A 25 pm shift of the Ti columns from the center of the unit cell of BaTiO3 along the c-axis was observed. By spatially resolved electron energy-loss spectroscopy studies, a reduction of the crystal field splitting (CFS, ΔL3=1.93 eV) and an asymmetric broadening of the eg peak were observed in the BaTiO3 film. These results verify the presence of a ferroelectric polarization in the ultrathin BaTiO3 film.
3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.
Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li
2017-03-23
We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.
Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei
2009-03-01
Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.
NASA Astrophysics Data System (ADS)
Brost, Alexander; Bourier, Felix; Wimmer, Andreas; Koch, Martin; Kiraly, Atilla; Liao, Rui; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert
2012-02-01
Atrial fibrillation (AFib) has been identified as a major cause of stroke. Radiofrequency catheter ablation has become an increasingly important treatment option, especially when drug therapy fails. Navigation under X-ray can be enhanced by using augmented fluoroscopy. It renders overlay images from pre-operative 3-D data sets which are then fused with X-ray images to provide more details about the underlying soft-tissue anatomy. Unfortunately, these fluoroscopic overlay images are compromised by respiratory and cardiac motion. Various methods to deal with motion have been proposed. To meet clinical demands, they have to be fast. Methods providing a processing frame rate of 3 frames-per-second (fps) are considered suitable for interventional electrophysiology catheter procedures if an acquisition frame rate of 2 fps is used. Unfortunately, when working at a processing rate of 3 fps, the delay until the actual motion compensated image can be displayed is about 300 ms. More recent algorithms can achieve frame rates of up to 20 fps, which reduces the lag to 50 ms. By using a novel approach involving a 3-D catheter model, catheter segmentation and a distance transform, we can speed up motion compensation to 25 fps which results in a display delay of only 40 ms on a standard workstation for medical applications. Our method uses a constrained 2-D/3-D registration to perform catheter tracking, and it obtained a 2-D tracking error of 0.61 mm.
Apollo Portable Life Support System
1968-06-11
S68-34582 (1968) --- With its exterior removed, the Apollo portable life support system (PLSS) can be easily studied. The PLSS is worn as a backpack over the Extravehicular Mobility Unit (EMU) a multi-layered spacesuit used for outside-the-spacecraft activity. JSC photographic frame no. S68-34582 is a wider view of the exposed interior working parts of the PLSS and its removed cover.
Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.
Clare, Richard M; Le Louarn, Miska; Béchet, Clementine
2011-02-01
We propose ground-layer adaptive optics (GLAO) to improve the seeing on the 42 m European Extremely Large Telescope. Shack-Hartmann wavefront sensors (WFSs) with laser guide stars (LGSs) will experience significant spot elongation due to off-axis observation. This spot elongation influences the design of the laser launch location, laser power, WFS detector, and centroiding algorithm for LGS GLAO on an extremely large telescope. We show, using end-to-end numerical simulations, that with a noise-weighted matrix-vector-multiply reconstructor, the performance in terms of 50% ensquared energy (EE) of the side and central launch of the lasers is equivalent, the matched filter and weighted center of gravity centroiding algorithms are the most promising, and approximately 10×10 undersampled pixels are optimal. Significant improvement in the 50% EE can be observed with a few tens of photons/subaperture/frame, and no significant gain is seen by adding more than 200 photons/subaperture/frame. The LGS GLAO is not particularly sensitive to the sodium profile present in the mesosphere nor to a short-timescale (less than 100 s) evolution of the sodium profile. The performance of LGS GLAO is, however, sensitive to the atmospheric turbulence profile.
Acoustic and vibrational damping in porous solids.
Göransson, Peter
2006-01-15
A porous solid may be characterized as an elastic-viscoelastic and acoustic-viscoacoustic medium. For a flexible, open cell porous foam, the transport of energy is carried both through the sound pressure waves propagating through the fluid in the pores, and through the elastic stress waves carried through the solid frame of the material. For a given situation, the balance between energy dissipated through vibration of the solid frame, changes in the acoustic pressure and the coupling between the waves varies with the topological arrangement, choice of material properties, interfacial conditions, etc. Engineering of foams, i.e. designs built on systematic and continuous relationships between polymer chemistry, processing, micro-structure, is still a vision for the future. However, using state-of-the-art simulation techniques, multiple layer arrangements of foams may be tuned to provide acoustic and vibrational damping at a low-weight penalty. In this paper, Biot's modelling of porous foams is briefly reviewed from an acoustics and vibrations perspective with a focus on the energy dissipation mechanisms. Engineered foams will be discussed in terms of results from simulations performed using finite element solutions. A layered vehicle-type structure is used as an example.
Crum, C P; Nuovo, G; Friedman, D; Silverstein, S J
1988-01-01
The accumulation of human papillomavirus type 16 (HPV-16)-specific RNAs in tissue sections from biopsies of patients with genital precancers was studied by in situ hybridization with single-stranded 35S-labeled RNA. These analyses revealed that the most abundant early-region RNAs were derived from the E4 and E5 open reading frames (ORFs). RNAs homologous to the E6/E7 ORFs were also detected, whereas RNAs homologous to the intervening E1 ORF were not. This suggests that the E4 and E5 mRNAs are derived by splicing to the upstream E6/E7 ORFs, consistent with studies of HPV-11 in condylomata (L. T. Chow et al., Cancer Cells (Cold Spring Harbor) 5:55-72, 1987). Abundant RNAs homologous to the 5' portion of L1 were also detected. These RNAs were localized to the apical strata of the epithelium. HPV-16 RNAs accumulated in discrete regions of these lesions, and when present were most abundant in the upper cell layers of the precancerous epithelium. RNAs homologous to early ORFs were also detected in some germinal cells within the basal layer of the epithelium. Images PMID:2824859
Crum, C P; Nuovo, G; Friedman, D; Silverstein, S J
1988-01-01
The accumulation of human papillomavirus type 16 (HPV-16)-specific RNAs in tissue sections from biopsies of patients with genital precancers was studied by in situ hybridization with single-stranded 35S-labeled RNA. These analyses revealed that the most abundant early-region RNAs were derived from the E4 and E5 open reading frames (ORFs). RNAs homologous to the E6/E7 ORFs were also detected, whereas RNAs homologous to the intervening E1 ORF were not. This suggests that the E4 and E5 mRNAs are derived by splicing to the upstream E6/E7 ORFs, consistent with studies of HPV-11 in condylomata (L. T. Chow et al., Cancer Cells (Cold Spring Harbor) 5:55-72, 1987). Abundant RNAs homologous to the 5' portion of L1 were also detected. These RNAs were localized to the apical strata of the epithelium. HPV-16 RNAs accumulated in discrete regions of these lesions, and when present were most abundant in the upper cell layers of the precancerous epithelium. RNAs homologous to early ORFs were also detected in some germinal cells within the basal layer of the epithelium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, C.P.; Nuovo, G.; Friedman, D.
1988-01-01
The accumulation of human papillomavirus type 16 (HPV-16)-specific RNAs in tissue sections from biopsies of patients with genital precancers was studied by in situ hybridization with single-stranded /sup 35/S-labeled RNA. These analyses revealed that the most abundant early-region RNAs were derived from the E4 and E5 open reading frames (ORFs). RNAs homologous to the E6/E7 ORFs were also detected, whereas RNAs homologous to the intervening E1 ORF were not. This suggest that the E4 and E5 mRNAs are derived by splicing to the upstream E6/E7 ORFs, consistent with studies of HPV-11 in condylomata. Abundant RNAs homologous to the 5' portionmore » of L1 were also detected. These RNAs were localized to the apical strata of the epithelium. HPV-16 RNAs accumulated in discrete regions of these lesions, and when present were most abundant in the upper cell layers of the precancerous epithelium. RNAs homologous to early ORFs were also detected in some germinal cells within the basal layer of the epithelium.« less
Probing the prodigious strain fringes from Lourdes
NASA Astrophysics Data System (ADS)
Aerden, Domingo G. A. M.; Sayab, Mohammad
2017-12-01
We investigate the kinematics of classic sigmoidal strain fringes from Lourdes (France) and review previous genetic models, strain methods and strain rates for these microstructures. Displacement controlled quartz and calcite fibers within the fringes yield an average strain of 195% with the technique of Ramsay and Huber (1983). This agrees well with strains measured from boudinaged pyrite layers and calcite veins in the same rocks, but conflicts with ca. ∼675% strain in previous analogue models for the studied strain fringes produced by progressive simple shear. We show that the detailed geometry and orientation of fiber patterns are insufficiently explained by simple shear but imply two successive, differently oriented strain fields. Although all strain fringes have the same overall asymmetry, considerable morphological variation resulted from different amounts of rotation of pyrite grains and fringes. Minor rotation led to sharply kinked fibers that record a ca. 70° rotation of the kinematic frame. Larger (up to 145°) rotations, accommodated by antithetic sliding on pyrite-fringe contacts, produced more strongly and smoothly curved fibers. Combined with published Rb-Sr ages for the studied microstructures, our new strain data indicate an average strain rate of 1.41 10-15 s-1 during ca. 37 Myr. continuous growth.
The threshold of vapor channel formation in water induced by pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen
2012-12-01
Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.
High frame rate imaging systems developed in Northwest Institute of Nuclear Technology
NASA Astrophysics Data System (ADS)
Li, Binkang; Wang, Kuilu; Guo, Mingan; Ruan, Linbo; Zhang, Haibing; Yang, Shaohua; Feng, Bing; Sun, Fengrong; Chen, Yanli
2007-01-01
This paper presents high frame rate imaging systems developed in Northwest Institute of Nuclear Technology in recent years. Three types of imaging systems are included. The first type of system utilizes EG&G RETICON Photodiode Array (PDA) RA100A as the image sensor, which can work at up to 1000 frame per second (fps). Besides working continuously, the PDA system is also designed to switch to capture flash light event working mode. A specific time sequence is designed to satisfy this request. The camera image data can be transmitted to remote area by coaxial or optic fiber cable and then be stored. The second type of imaging system utilizes PHOTOBIT Complementary Metal Oxygen Semiconductor (CMOS) PB-MV13 as the image sensor, which has a high resolution of 1280 (H) ×1024 (V) pixels per frame. The CMOS system can operate at up to 500fps in full frame and 4000fps partially. The prototype scheme of the system is presented. The third type of imaging systems adopts charge coupled device (CCD) as the imagers. MINTRON MTV-1881EX, DALSA CA-D1 and CA-D6 camera head are used in the systems development. The features comparison of the RA100A, PB-MV13, and CA-D6 based systems are given in the end.
UWGSP4: an imaging and graphics superworkstation and its medical applications
NASA Astrophysics Data System (ADS)
Jong, Jing-Ming; Park, Hyun Wook; Eo, Kilsu; Kim, Min-Hwan; Zhang, Peng; Kim, Yongmin
1992-05-01
UWGSP4 is configured with a parallel architecture for image processing and a pipelined architecture for computer graphics. The system's peak performance is 1,280 MFLOPS for image processing and over 200,000 Gouraud shaded 3-D polygons per second for graphics. The simulated sustained performance is about 50% of the peak performance in general image processing. Most of the 2-D image processing functions are efficiently vectorized and parallelized in UWGSP4. A performance of 770 MFLOPS in convolution and 440 MFLOPS in FFT is achieved. The real-time cine display, up to 32 frames of 1280 X 1024 pixels per second, is supported. In 3-D imaging, the update rate for the surface rendering is 10 frames of 20,000 polygons per second; the update rate for the volume rendering is 6 frames of 128 X 128 X 128 voxels per second. The system provides 1280 X 1024 X 32-bit double frame buffers and one 1280 X 1024 X 8-bit overlay buffer for supporting realistic animation, 24-bit true color, and text annotation. A 1280 X 1024- pixel, 66-Hz noninterlaced display screen with 1:1 aspect ratio can be windowed into the frame buffer for the display of any portion of the processed image or graphics.
NASA Astrophysics Data System (ADS)
Raju, Kota Solomon; Merugu, Naresh Babu; Neetu, Babu, E. Ram
2016-03-01
ZigBee is well-accepted industrial standard for wireless sensor networks based on IEEE 802.15.4 standard. Wireless Sensor Networks is the major concern of communication these days. These Wireless Sensor Networks investigate the properties of networks of small battery-powered sensors with wireless communication. The communication between any two wireless nodes of wireless sensor networks is carried out through a protocol stack. This protocol stack has been designed by different vendors in various ways. Every custom vendor possesses his own protocol stack and algorithms especially at the MAC layer. But, many applications require modifications in their algorithms at various layers as per their requirements, especially energy efficient protocols at MAC layer that are simulated in Wireless sensor Network Simulators which are not being tested in real time systems because vendors do not allow the programmability of each layer in their protocol stack. This problem can be quoted as Vendor-Interoperability. The solution is to develop the programmable protocol stack where we can design our own application as required. As a part of the task first we tried implementing physical layer and transmission of data using physical layer. This paper describes about the transmission of the total number of bytes of Frame according to the IEEE 802.15.4 standard using Physical Layer.
Framing Effects on End-of-Life Preferences Among Latino Elders.
Vélez Ortiz, Daniel; Martinez, Rubén O; Espino, David V
2015-01-01
This study compared how the presentation of end-of-life (EOL) choices influences responses by Latino and White older adults relative to resuscitation preferences. The authors apply prospect theory, which deals with decision making based on how choices are framed. Participants were presented with differently ordered questions framing a resuscitation scenario and asked to rate their preferences. Results show that Latino participants were significantly influenced by the framing order of treatment options with regard to resuscitation while Whites were not. Health professionals need to be aware that the ways they present EOL options are likely to affect the choices of Latino older adults. Further research is needed with Latino subgroups.
Fuel cell manifold sealing system
Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.
1980-01-01
A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.
Method for producing a fuel cell manifold seal
Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.
1982-01-01
A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Lock and Dam No. 5; (2) a 109-foot- wide, 40-foot-high lock frame module placed east of the movable... the grid. Each lock frame module would consist of ten 7-foot-diameter hydropower turbines each rated... the powerhouse on the east section of the dam in the existing levee of the east abutment; (2) a...
Patient Perceptions of Illness Identity in Cancer Clinical Trial Decision-Making.
Palmer-Wackerly, Angela L; Dailey, Phokeng M; Krok-Schoen, Jessica L; Rhodes, Nancy D; Krieger, Janice L
2018-08-01
When patients are diagnosed with cancer, they begin to negotiate their illness identity in relation to their past and future selves, their relationships, and their group memberships. Thus, how patients view their cancer in relation to their other identities may affect how and why they make particular decisions about treatment options. Using the Communication Theory of Identity (CTI), the current study explores: (1) how and why illness identity is framed across identity layers in relation to one particular cancer treatment: participation in a cancer clinical trial (CT); and (2) how and why patients experience identity conflicts while making their treatment decisions. Semi-structured, in-depth interviews were analyzed for 46 cancer patients who were offered a CT. Results of a grounded theory analysis indicated that patients expressed separate identity frames (e.g., personal, relational, and communal), aligned identity frames (e.g., personal and communal), and identity conflicts (e.g., personal-personal). This study theoretically shows how and why patient illness identity relates to cancer treatment decision-making as well as how and why patients relate (and conflict) with the cancer communal identity frame. Practical implications include how healthcare providers and family members can support patient decision-making through awareness of and accommodating to identity shifts.
Jupiter Data Analysis Program: Analysis of Voyager wideband plasma wave observations
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1983-01-01
Voyager plasma wave wideband frames from the Jovian encounters are analyzed. The 511 frames which were analyzed were chosen on the basis of low-rate spectrum analyzer data from the plasma wave receiver. These frames were obtained in regions and during times of various types of plasma or radio wave activity as determined by the low-rate, low-resolution data and were processed in order to provide high resolution measurements of the plasma wave spectrum for use in the study of a number of outstanding problems. Chorus emissions at Jupiter were analyzed. The detailed temporal and spectral form of the very complex chorus emissions near L = 8 on the Voyager 1 inbound passage was compared to both terrestrial chorus emissions as well as to the theory which was developed to explain the terrestrial waves.
The tip/tilt tracking sensor based on multi-anode photo-multiplier tube
NASA Astrophysics Data System (ADS)
Ma, Xiao-yu; Rao, Chang-hui; Tian, Yu; Wei, Kai
2013-09-01
Based on the demands of high sensitivity, precision and frame rate of tip/tilt tracking sensors in acquisition, tracking and pointing (ATP) systems for satellite-ground optical communications, this paper proposes to employ the multiple-anode photo-multiplier tubes (MAPMTs) in tip/tilt tracking sensors. Meanwhile, an array-type photon-counting system was designed to meet the requirements of the tip/tilt tracking sensors. The experiment results show that the tip/tilt tracking sensors based on MAPMTs can achieve photon sensitivity and high frame rate as well as low noise.
Wei, Chen-Wei; Nguyen, Thu-Mai; Xia, Jinjun; Arnal, Bastien; Wong, Emily Y; Pelivanov, Ivan M; O'Donnell, Matthew
2015-02-01
Because of depth-dependent light attenuation, bulky, low-repetition-rate lasers are usually used in most photoacoustic (PA) systems to provide sufficient pulse energies to image at depth within the body. However, integrating these lasers with real-time clinical ultrasound (US) scanners has been problematic because of their size and cost. In this paper, an integrated PA/US (PAUS) imaging system is presented operating at frame rates >30 Hz. By employing a portable, low-cost, low-pulse-energy (~2 mJ/pulse), high-repetition-rate (~1 kHz), 1053-nm laser, and a rotating galvo-mirror system enabling rapid laser beam scanning over the imaging area, the approach is demonstrated for potential applications requiring a few centimeters of penetration. In particular, we demonstrate here real-time (30 Hz frame rate) imaging (by combining multiple single-shot sub-images covering the scan region) of an 18-gauge needle inserted into a piece of chicken breast with subsequent delivery of an absorptive agent at more than 1-cm depth to mimic PAUS guidance of an interventional procedure. A signal-to-noise ratio of more than 35 dB is obtained for the needle in an imaging area 2.8 × 2.8 cm (depth × lateral). Higher frame rate operation is envisioned with an optimized scanning scheme.
Research on spatial distribution of photosynthetic characteristics of Winter Wheat
NASA Astrophysics Data System (ADS)
Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.
2018-03-01
In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.
Coincidence ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen
2014-12-01
A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.
Physics of Non-Inertial Reference Frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamalov, Timur F.
2010-12-22
Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate ofmore » its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.« less
Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror
Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji
2017-01-01
This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385
Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.
Zhang, Xianyu; Arcidiacono, Carmelo; Conrad, Albert R; Herbst, Thomas M; Gaessler, Wolfgang; Bertram, Thomas; Ragazzoni, Roberto; Schreiber, Laura; Diolaiti, Emiliano; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan
2012-03-26
LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194
The Global Health Policies of the EU and its Member States: A Common Vision?
Steurs, Lies; Van de Pas, Remco; Delputte, Sarah; Orbie, Jan
2018-01-01
Background: This article assesses the global health policies of the European Union (EU) and those of its individual member states. So far EU and public health scholars have paid little heed to this, despite the large budgets involved in this area. While the European Commission has attempted to define the ‘EU role in Global Health’ in 2010, member states are active in the domain of global health as well. Therefore, this article raises the question to what extent a common ‘EU’ vision on global health exists. Methods: This is examined through a comparative framing analysis of the global health policy documents of the European Commission and five EU member states (France, Germany, the United Kingdom, Belgium, and Denmark). The analysis is informed by a two-layered typology, distinguishing global health from international health and four ‘global health frames,’ namely social justice, security, investment and charity. Results: The findings show that the concept of ‘global health’ has not gained ground the same way within European policy documents. Consequently, there are also differences in how health is being framed. While the European Commission, Belgium, and Denmark clearly support a social justice frame, the global health strategies of the United Kingdom, Germany, and France put an additional focus on the security and investment frames. Conclusion: There are different understandings of global/international health as well as different framings within relevant documents of the EU and its member states. Therefore, the existence of an ‘EU’ vision on global health is questionable. Further research is needed on how this impacts on policy implementation. PMID:29764107
A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality
NASA Astrophysics Data System (ADS)
Liu, Li; Zhuang, Xinhua
2009-01-01
It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.
Remote driving with reduced bandwidth communication
NASA Technical Reports Server (NTRS)
Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.
1993-01-01
Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.
Individual differences in drivers' cognitive processing of road safety messages.
Kaye, Sherrie-Anne; White, Melanie J; Lewis, Ioni M
2013-01-01
Using Gray and McNaughton's (2000) revised reinforcement sensitivity theory (r-RST), we examined the influence of personality on processing of words presented in gain-framed and loss-framed anti-speeding messages and how the processing biases associated with personality influenced message acceptance. The r-RST predicts that the nervous system regulates personality and that behaviour is dependent upon the activation of the behavioural activation system (BAS), activated by reward cues and the fight-flight-freeze system (FFFS), activated by punishment cues. According to r-RST, individuals differ in the sensitivities of their BAS and FFFS (i.e., weak to strong), which in turn leads to stable patterns of behaviour in the presence of rewards and punishments, respectively. It was hypothesised that individual differences in personality (i.e., strength of the BAS and the FFFS) would influence the degree of both message processing (as measured by reaction time to previously viewed message words) and message acceptance (measured three ways by perceived message effectiveness, behavioural intentions, and attitudes). Specifically, it was anticipated that, individuals with a stronger BAS would process the words presented in the gain-frame messages faster than those with a weaker BAS and individuals with a stronger FFFS would process the words presented in the loss-frame messages faster than those with a weaker FFFS. Further, it was expected that greater processing (faster reaction times) would be associated with greater acceptance for that message. Driver licence holding students (N=108) were recruited to view one of four anti-speeding messages (i.e., social gain-frame, social loss-frame, physical gain-frame, and physical loss-frame). A computerised lexical decision task assessed participants' subsequent reaction times to message words, as an indicator of the extent of processing of the previously viewed message. Self-report measures assessed personality and the three message acceptance measures. As predicted, the degree of initial processing of the content of the social gain-framed message mediated the relationship between the reward sensitive trait and message effectiveness. Initial processing of the physical loss-framed message partially mediated the relationship between the punishment sensitive trait and both message effectiveness and behavioural intention ratings. These results show that reward sensitivity and punishment sensitivity traits influence cognitive processing of gain-framed and loss-framed message content, respectively, and subsequently, message effectiveness and behavioural intention ratings. Specifically, a range of road safety messages (i.e., gain-frame and loss-frame messages) could be designed which align with the processing biases associated with personality and which would target those individuals who are sensitive to rewards and those who are sensitive to punishments. Copyright © 2012 Elsevier Ltd. All rights reserved.
Layer contributions to the nonlinear acoustic radiation from stratified media.
Vander Meulen, François; Haumesser, Lionel
2016-12-01
This study presents the thorough investigation of the second harmonic generation scenario in a three fluid layer system. An emphasis is on the evaluation of the nonlinear parameter B/A in each layer from remote measurements. A theoretical approach of the propagation of a finite amplitude acoustic wave in a multilayered medium is developed. In the frame of the KZK equation, the weak nonlinearity of the media, attenuation and diffraction effects are computed for the fundamental and second harmonic waves propagating back and forth in each of the layers of the system. The model uses a gaussian expansion to describe the beam propagation in order to quantitatively evaluate the contribution of each part of the system (layers and interfaces) to its nonlinearity. The model is validated through measurements on a water/aluminum/water system. Transmission as well as reflection configurations are studied. Good agreement is found between the theoretical results and the experimental data. The analysis of the second harmonic field sources measured by the transducers from outside the stratified medium highlights the factors that favor the cumulative effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Jenny J. W.
2017-01-01
Background The consequences of stress are typically regarded from a deficit-oriented approach, conceptualizing stress to be entirely negative in its outcomes. This approach is unbalanced, and may further hinder individuals from engaging in adaptive coping. In the current study, we explored whether negative views and beliefs regarding stress interacted with a stress framing manipulation (positive, neutral and negative) on measures of stress reactivity for both psychosocial and physiological stressors. Method Ninety participants were randomized into one of three framing conditions that conceptualized the experience of stress in balanced, unbalanced-negative or unbalanced-positive ways. After watching a video on stress, participants underwent a psychosocial (Trier Social Stress Test), or a physiological (CO2 challenge) method of stress-induction. Subjective and objective markers of stress were assessed. Results Most of the sampled population regarded stress as negative prior to framing. Further, subjective and objective reactivity were greater to the TSST compared to the CO2 challenge. Additionally, significant cubic trends were observed in the interactions of stress framing and stress-induction methodologies on heart rate and blood pressure. Balanced framing conditions in the TSST group had a significantly larger decrease in heart rate and diastolic blood pressure following stress compared to the positive and negative framing conditions. Conclusion Findings confirmed a deficit-orientation of stress within the sampled population. In addition, results highlighted the relative efficacy of the TSST compared to CO2 as a method of stress provocation. Finally, individuals in framing conditions that posited stress outcomes in unbalanced manners responded to stressors less efficiently. This suggests that unbalanced framing of stress may have set forth unrealistic expectations regarding stress that later hindered individuals from adaptive responses to stress. Potential benefits of alternative conceptualizations of stress on stress reactivity are discussed, and suggestions for future research are made. PMID:28273132
Node synchronization schemes for the Big Viterbi Decoder
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Swanson, L.; Arnold, S.
1992-01-01
The Big Viterbi Decoder (BVD), currently under development for the DSN, includes three separate algorithms to acquire and maintain node and frame synchronization. The first measures the number of decoded bits between two consecutive renormalization operations (renorm rate), the second detects the presence of the frame marker in the decoded bit stream (bit correlation), while the third searches for an encoded version of the frame marker in the encoded input stream (symbol correlation). A detailed account of the operation is given, as well as performance comparison, of the three methods.
NASA Astrophysics Data System (ADS)
Buford, James A., Jr.; Cosby, David; Bunfield, Dennis H.; Mayhall, Anthony J.; Trimble, Darian E.
2007-04-01
AMRDEC has successfully tested hardware and software for Real-Time Scene Generation for IR and SAL Sensors on COTS PC based hardware and video cards. AMRDEC personnel worked with nVidia and Concurrent Computer Corporation to develop a Scene Generation system capable of frame rates of at least 120Hz while frame locked to an external source (such as a missile seeker) with no dropped frames. Latency measurements and image validation were performed using COTS and in-house developed hardware and software. Software for the Scene Generation system was developed using OpenSceneGraph.
NASA Astrophysics Data System (ADS)
Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta
2016-04-01
Vent conditions are key parameters controlling volcanic plume dynamics and the ensuing different hazards, such as human health issues, infrastructure damages, and air traffic disruption. Indeed, for a given magma and vent geometry, plume development and stability over time mainly depend on the mass eruption rate, function of the velocity and density of the eruptive mixture at the vent, where direct measurements are impossible. High-speed imaging of eruptive plumes and numerical jet simulations were here non-dimensionally coupled to retrieve eruptive vent conditions starting from measurable plume parameters. High-speed videos of unsteady, momentum-driven volcanic plumes (jets) from Strombolian to Vulcanian activity from three different volcanoes (Sakurajima, Japan, Stromboli, Italy, and Fuego, Guatemala) were recorded in the visible and the thermal spectral ranges by using an Optronis CR600x2 (1280x1024 pixels definition, 500 Hz frame rate) and a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) cameras. Atmospheric effects correction and pre-processing of the thermal videos were performed to increase measurement accuracy. Pre-processing consists of the extraction of the plume temperature gradient over time, combined with a temperature threshold in order to remove the image background. The velocity and the apparent surface temperature fields of the plumes, and their changes over timescales of tenths of seconds, were then measured by particle image velocimetry and thermal image analysis, respectively, of the pre-processed videos. The parameters thus obtained are representative of the outer plume surface, corresponding to its boundary shear layer at the interface with the atmosphere, and may significantly differ from conditions in the plume interior. To retrieve information on the interior of the plume, and possibly extrapolate it even at the eruptive vent level, video-derived plume parameters were non-dimensionally compared to the results of numerical simulations of momentum-driven gas jets impulsively released from a vent in a pressurized container. These simulations solve flow conditions globally, thus allowing one to set empirical relations between flow conditions in different parts of the jet, most notably the shear layer, the flow centerline, and at the vent. Applying these relations to the volcanic cases gives access to the evolution of velocity and temperature at the vent. From these, the speed of sound and flow Mach number can be obtained, which in turn can be used to estimate the pressure ratio between atmosphere and vent and finally, assuming some conduit geometry and mixture density, the total amount of erupted gas. Preliminary results suggest subsonic exit velocities of the eruptive mixture at the vent, and a plume centerline velocity that can be twice as fast as the one measured at the plume boundary.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and background.
Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao
2017-01-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and background. PMID:27076352
Predicting The Intrusion Layer From Deep Ocean Oil Spills
NASA Astrophysics Data System (ADS)
Wang, Dayang; Chow, Aaron; Adams, E. Eric
2015-11-01
Oil spills from deep ocean blowout events motivate our study of multiphase plumes in a water column. Key to understanding the long-term fate of these plumes is the ability to predict the depth and persistence of intrusion layers. While intrusion layers from multiphase plumes have been studied under stagnant conditions, their behavior in the presence of crossflow, especially in mild crossflow, remains poorly understood. The classical classification of plume behavior identifies two regimes: crossflow-dominant and stratification-dominant--but it does not account for the interplay between the two effects, leaving the transition region unexplored. We conduct laboratory tank experiments to investigate the behavior of intrusion layers under the simultaneous action of crossflow and stratification. Our experiments use an inverted frame of reference, using glass beads with a range of sizes to simulate oil droplets. We find that crossflow creates enhanced mixing, which in turn leads to a shallower intrusion layer of the released fluid (correspondingly, a deeper layer in the case of a deep ocean blowout). We develop a mathematical formulation that extends previous models to account for crossflow effects, and use field observations to validate the analytical and experimental findings.
Marangoni-Benard Convection in a Evaporating Liquid Thin Layer
NASA Technical Reports Server (NTRS)
Chai, An-Ti; Zhang, Nengli
1996-01-01
Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.
Evangeli, Michael; Kafaar, Zuhayr; Kagee, Ashraf; Swartz, Leslie; Bullemor-Day, Philippa
2013-01-01
It is vital that enough participants are willing to participate in clinical trials to test HIV vaccines adequately. It is, therefore, necessary to explore what affects peoples' willingness to participate (WTP) in such trials. Studies have only examined individual factors associated with WTP and not the effect of messages about trial participation on potential participants (e.g., whether losses or gains are emphasized, or whether the outcome is certain or uncertain). This study explores whether the effects of message framing on WTP in a hypothetical HIV vaccine trial are consistent with Prospect Theory. This theory suggests that people are fundamentally risk averse and that (1) under conditions of low risk and high certainty, gain-framed messages will be influential (2) under conditions of high risk and low certainty, loss-framed messages will be influential. This cross-sectional study recruited 283 HIV-negative students from a South African university who were given a questionnaire that contained matched certain gain-framed, certain loss-framed, uncertain gain-framed, and uncertain loss-framed statements based on common barriers and facilitators of WTP. Participants were asked to rate how likely each statement was to result in their participation in a hypothetical preventative HIV vaccine trial. Consistent with Prospect Theory predictions, for certain outcomes, gain-framed messages were more likely to result in WTP than loss-framed messages. Inconsistent with predictions, loss-framed message were not more likely to be related to WTP for uncertain outcomes than gain-framed messages. Older students were less likely to express their WTP across the different message frames. Recruitment for HIV vaccine trials should pay attention to how messages about the trial are presented to potential participants.
Graf, Iulia M; Kim, Seungsoo; Wang, Bo; Smalling, Richard; Emelianov, Stanislav
2012-03-01
The structure, composition and mechanics of carotid artery are good indicators of early progressive atherosclerotic lesions. The combination of three imaging modalities (ultrasound, strain rate and photoacoustic imaging) which could provide corroborative information about the named arterial properties could enhance the characterization of intimal xanthoma. The experiments were performed using a New Zealand white rabbit model of atherosclerosis. The aorta excised from an atherosclerotic rabbit was scanned ex vivo using the three imaging techniques: (1) ultrasound imaging of the longitudinal section: standard ultrasound B-mode (74Hz frame rate); (2) strain rate imaging: the artery was flushed with blood and a 1.5Hz physiologic pulsation was induced, while the ultrasound data were recorded at higher frame rate (296Hz); (3) photoacoustic imaging: the artery was irradiated with nanosecond pulsed laser light of low fluence in the 1210-1230nm wavelength range and the photoacoustic data was recorded at 10Hz frame rate. Post processing algorithms based on cross-correlation and optical absorption variation were implemented to derive strain rate and spectroscopic photoacoustic images, respectively. Based on the spatio-temporal variation in displacement of different regions within the arterial wall, strain rate imaging reveals differences in tissue mechanical properties. Additionally, spectroscopic photoacoustic imaging can spatially resolve the optical absorption properties of arterial tissue and identify the location of lipid pools. The study demonstrates that ultrasound, strain rate and photoacoustic imaging can be used to simultaneously evaluate the structure, the mechanics and the composition of atherosclerotic lesions to improve the assessment of plaque vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.
Fast camera imaging of dust in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.
2009-06-01
Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.
Hot-Spot Ignition Mechanisms for Explosives and Propellants
NASA Astrophysics Data System (ADS)
Field, J. E.; Bourne, N. K.; Palmer, S. J. P.; Walley, S. M.
1992-05-01
This paper describes the response of explosives to stress and impact and in particular the mechanisms of `hot-spot' production. Samples in the form of single crystals, powder layers, pressed pellets, gels, polymer bonded explosives (PBXs) and propellants have been studied. Techniques used include a drop-weight facility with transparent anvils which allows photography at microsecond framing intervals, an instrumented drop-weight machine, a miniaturized Hopkinson bar system for high strain rate property measurement, laser speckle for studying the deformation and fracture of PBXs, an automated system for analysing speckle patterns and heat sensitive film for recording the positions and temperatures of hot spots. Polishing and staining methods have been developed to observe the microstructure of PBXs and failure during quasi-static loading. Ignition, when it occurred, took place at local hot-spot sites. Evidence is discussed for a variety of ignition mechanisms including adiabatic shear of the explosive, adiabatic heating of trapped gases during cavity collapse, viscous flow, friction, fracture and shear of added particles and triboluminescent discharge.
Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens
Grewe, Benjamin F.; Voigt, Fabian F.; van ’t Hoff, Marcel; Helmchen, Fritjof
2011-01-01
Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning. PMID:21750778
NASA Astrophysics Data System (ADS)
Shakhova, Natalia M.; Kachalina, Tatiana S.; Kuznetzova, Irina N.; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Gladkova, Natalia D.; Kamensky, Vladislav A.; Kuranov, Roman V.; Sergeev, Alexander M.
1999-01-01
We report on the results of using the optical coherence tomography (OCT) as one of the diagnostic methods at the Department of Gynecology of the Nizhny Novgorod Regional Hospital. An endoscopic OCT device adjusted for gynecological examinations with colposcopy, hysteroscopy and laparoscopy has been developed at the Institute of Applied Physics. It provides clinicians with sharp (up to 15 - 20 micron resolution) images of 1.5 mm thick superficial mucosa layers in the female genital tract, that are recorded at the 0.83 micron wavelength with approximately 1 frame/second rate for a 200 X 200 pixel image. Data obtained during examination of more than 100 patients demonstrate the capability of OCT in estimation of structural alterations in organs, connected with different types of pathologies and functional states of the female genital system. We present first results of OCT application to assess the adequacy of cervical pathologies treatment (electro-, laser surgery and cryotherapy) and to control the healing process.
Real-time correction of beamforming time delay errors in abdominal ultrasound imaging
NASA Astrophysics Data System (ADS)
Rigby, K. W.
2000-04-01
The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.
Single-Camera Stereoscopy Setup to Visualize 3D Dusty Plasma Flows
NASA Astrophysics Data System (ADS)
Romero-Talamas, C. A.; Lemma, T.; Bates, E. M.; Birmingham, W. J.; Rivera, W. F.
2016-10-01
A setup to visualize and track individual particles in multi-layered dusty plasma flows is presented. The setup consists of a single camera with variable frame rate, and a pair of adjustable mirrors that project the same field of view from two different angles to the camera, allowing for three-dimensional tracking of particles. Flows are generated by inclining the plane in which the dust is levitated using a specially designed setup that allows for external motion control without compromising vacuum. Dust illumination is achieved with an optics arrangement that includes a Powell lens that creates a laser fan with adjustable thickness and with approximately constant intensity everywhere. Both the illumination and the stereoscopy setup allow for the camera to be placed at right angles with respect to the levitation plane, in preparation for magnetized dusty plasma experiments in which there will be no direct optical access to the levitation plane. Image data and analysis of unmagnetized dusty plasma flows acquired with this setup are presented.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
JPRS Report, Science & Technology, Europe
1992-02-18
could penetrate the ceramic layer. At the time, the Essen researchers were unable to present any proof of the obvious assumption that microfine pores...carbon fiber tubes and titanium frame joints that are very light and strong. The manufacturing system and experiments are installed as modules on...study also view the manufacturing technol- ogies and jointing techniques for active cooling with an integrated cooling tube system as unavailable—pure
Feng, Yongqiang; Max, Ludo
2014-01-01
Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484
A review of the success and failure characteristics of resin-bonded bridges.
Miettinen, M; Millar, B J
2013-07-01
This literature review was designed to assess and compare the success rates and modes of failure of metal-framed, fibre-reinforced composite and all-ceramic resin-bonded bridges. A Medline search (Ovid), supplemented by hand searching, was conducted to identify prospective and retrospective cohort studies on different resin-bonded bridges within the last 16 years. A total of 49 studies met the pre-set inclusion criteria. Success rates of 25 studies on metal-framed, 17 studies on fibre-reinforced composite and 7 studies on all-ceramic resin-bonded bridges were analysed and characteristics of failures were identified. The analysis of the studies indicated an estimation of annual failure rates per year to be 4.6% (±1.3%, 95% CI) for metal-framed, 4.1% (±2.1%, 95% CI) for fibre-reinforced and 11.7% (±1.8%, 95% CI) for all-ceramic resin-bonded bridges. The most frequent complications were: debonding for metal-framed, resin-bonded bridges (93% of all failures); delamination of the composite veneering material for the fibre-reinforced bridges (41%) and fracture of the framework for the all-ceramic bridges (57%). All types of resin-bonded bridges provide an effective short- to medium-term option, with all-ceramic performing least well and having the least favourable mode of failure. The methods of failures were different for different bridges with metal frameworks performing the best over time.
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
NASA Astrophysics Data System (ADS)
Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian
2018-03-01
Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Chao; Tao, Tianyang; Feng, Shijie
We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
Zuo, Chao; Tao, Tianyang; Feng, Shijie; ...
2017-11-06
We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less
A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment
NASA Astrophysics Data System (ADS)
Pan, Guobing; Xin, Wenhui; Yan, Guozheng; Chen, Jiaoliao
2011-06-01
Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic.
Epp, V; Gün, O; Deiseroth, H-J; Wilkening, M
2013-05-21
Lithium-rich argyrodites belong to a relatively new group of fast ion conducting solids. They might serve as powerful electrolytes in all-solid-state lithium-ion batteries being, from a medium-term point of view, the key technology when safe energy storage systems have to be developed. Spin-lattice relaxation (SLR) nuclear magnetic resonance (NMR) measurements carried out in the rotating frame of reference turned out to be the method of choice to study Li dynamics in argyrodites. When plotted as a function of the inverse temperature, the SLR rates log10(R1ρ) reveal an asymmetric diffusion-induced rate peak. The rate peak contains information on the Li jump rate, the activation energy of the hopping process as well as correlation effects. In particular, considering the high-temperature flank of the SLR NMR rate peak recorded in the rotating frame of reference, an activation energy of approximately 0.49 eV is found. This value represents long-range lithium jump diffusion in crystalline Li7PSe6. As an example, at 325 K the Li jump rate determined from SLR NMR is in the order of 1.4 × 10(5) s(-1). The pronounced asymmetry of the rate peak R1ρ(1/T) points to correlated Li motion. It is comparable to that which is typically found for structurally disordered materials showing a broad range of correlation times.
Kiene, Susan M; Barta, William D; Zelenski, John M; Cothran, Dee Lisa
2005-05-01
According to prospect theory (A. Tversky & D. Kahneman, 1981), messages advocating a low-risk (i.e., easy, low-cost) behavior are most effective if they stress the benefits of adherence (gain framed), whereas messages advocating a risky behavior are most effective if they stress the costs of nonadherence (loss framed). Although condom use is viewed as a low-risk behavior, it may entail risky interpersonal negotiations. Study 1 (N = 167) compared ratings of condom use messages advocating relational behaviors (e.g., discussing condoms) or health behaviors (e.g., carrying condoms). As predicted, loss-framed relational messages and gain-framed health messages received higher evaluations. Study 2 (N = 225) offers a replication and evidence of issue involvement and gender as moderators. Results are discussed with reference to the design of condom use messages. ((c) 2005 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zwan, Benjamin J., E-mail: benjamin.zwan@uon.edu.au; O’Connor, Daryl J.; King, Brian W.
2014-08-15
Purpose: To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. Methods: Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager tomore » MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. Results: It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independentt-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. Conclusions: The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step in any pretreatment portal dosimetry calculation and has been shown to be beneficial for highly modulated IMRT fields.« less
Qin, Youxiang; Zhang, Junjie
2017-07-10
A novel low complexity and energy-efficient scheme by controlling the toggle-rate of ONU with time-domain amplitude identification is proposed for a heavy load downlink in an intensity-modulation and direct-detection orthogonal frequency division multiplexing passive optical network (IM-DD OFDM-PON). In a conventional OFDM-PON downlink, all ONUs have to perform demodulation for all the OFDM frames in a broadcast way no matter whether the frames are targeted to or not, which causes a huge energy waste. However, in our scheme, the optical network unit (ONU) logical link identifications (LLIDs) are inserted into each downlink OFDM frame in time-domain at the optical line terminal (OLT) side. At the ONU side, the LLID is obtained with a low complexity and high precision amplitude identification method. The ONU sets the toggle-rate of demodulation module to zero when the frames are not targeted to, which avoids unnecessary digital signal processing (DSP) energy consumption. Compared with the sleep-mode methods consisting of clock recovery and synchronization, toggle-rate shows its advantage in fast changing, which is more suitable for the heavy load scenarios. Moreover, for the first time to our knowledge, the characteristics of the proposed scheme are investigated in a real-time IM-DD OFDM system, which performs well at the received optical power as low as -21dBm. The experimental results show that 25.1% energy consumption can be saved in the receiver compared to the conventional configurations.
A Probability Model for Belady's Anomaly
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel E.; Anderson, Nicole
2010-01-01
In demand paging virtual memory systems, the page fault rate of a process varies with the number of memory frames allocated to the process. When an increase in the number of allocated frames leads to an increase in the number of page faults, Belady's anomaly is said to occur. In this paper, we present a probability model for Belady's anomaly. We…
Mission Specialist Hawley works with the SWUIS experiment
2013-11-18
STS093-350-022 (22-27 July 1999) --- Astronaut Steven A. Hawley, mission specialist, works with the Southwest Ultraviolet Imaging System (SWUIS) experiment onboard the Earth-orbiting Space Shuttle Columbia. The SWUIS is based around a Maksutov-design Ultraviolet (UV) telescope and a UV-sensitive, image-intensified Charge-Coupled Device (CCD) camera that frames at video frame rates.
Tropical cyclogenesis in a tropical wave critical layer: easterly waves
NASA Astrophysics Data System (ADS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2009-08-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing gyre and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. The entire sequence is likened to the development of a marsupial infant in its mother's pouch. These ideas are formulated in three new hypotheses describing the flow kinematics and dynamics, moist thermodynamics and wave/vortex interactions comprising the "marsupial paradigm". A survey of 55 named tropical storms in 1998-2001 reveals that actual critical layers sometimes resemble the ideal east-west train of cat's eyes, but are usually less regular, with one or more recirculation regions in the co-moving frame. It is shown that the kinematics of isolated proto-vortices carried by the wave also can be visualized in a frame of reference translating at or near the phase speed of the parent wave. The proper translation speeds for wave and vortex may vary with height owing to vertical shear and wave-vortex interaction. Some implications for entrainment/containment of vorticity and moisture in the cat's eye are discussed from this perspective, based on the observational survey.
Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen
2016-02-01
In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.
Message framing and color combination in the perception of medical information.
Chien, Yu-Hung
2011-04-01
A 2 x 2 between-subjects design was used to examine the effects of message framing (gain vs loss) and color combination (red background with white characters vs white background with black characters) on 120 university students' perception of materials promoting the H1N1 flu vaccine and their willingness to receive the vaccine after they had read the materials. Each participant completed a 6-item questionnaire, and the results of an analysis of variance showed that participants rated vaccine information presented through loss-framed messages as having greater interest and leading to greater understanding. Loss-framed messages presented on a white background with black characters significantly increased the willingness of the participants to receive the vaccine.
Geiger-mode APD camera system for single-photon 3D LADAR imaging
NASA Astrophysics Data System (ADS)
Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir
2012-06-01
The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.
A Reconfigurable Real-Time Compressive-Sampling Camera for Biological Applications
Fu, Bo; Pitter, Mark C.; Russell, Noah A.
2011-01-01
Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory. Further restrictions are often imposed by the limited bandwidth of the data link to the host computer. Even if the system bandwidth is not a limiting factor, continuous high-speed acquisition results in very large volumes of data that are difficult to handle, particularly when real-time analysis is required. In response to this issue many cameras allow a predetermined, rectangular region of interest (ROI) to be sampled, however this approach lacks flexibility and is blind to the image region outside of the ROI. We have addressed this problem by building a camera system using a randomly-addressable CMOS sensor. The camera has a low bandwidth, but is able to capture continuous high-speed images of an arbitrarily defined ROI, using most of the available bandwidth, while simultaneously acquiring low-speed, full frame images using the remaining bandwidth. In addition, the camera is able to use the full-frame information to recalculate the positions of targets and update the high-speed ROIs without interrupting acquisition. In this way the camera is capable of imaging moving targets at high-speed while simultaneously imaging the whole frame at a lower speed. We have used this camera system to monitor the heartbeat and blood cell flow of a water flea (Daphnia) at frame rates in excess of 1500 fps. PMID:22028852
CCD sensors in synchrotron X-ray detectors
NASA Astrophysics Data System (ADS)
Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.
1988-04-01
The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.
A Low-Cost Method of Ciliary Beat Frequency Measurement Using iPhone and MATLAB: Rabbit Study.
Chen, Jason J; Lemieux, Bryan T; Wong, Brian J F
2016-08-01
(1) To determine ciliary beat frequency (CBF) using a consumer-grade cellphone camera and MATLAB and (2) to evaluate the effectiveness and accuracy of the proposed method. Prospective animal study. Academic otolaryngology department research laboratory. Five ex vivo tracheal samples were extracted from 3 freshly euthanized (<3 hours postmortem) New Zealand white rabbits and incubated for 30 minutes in buffer at 23°C, buffer at 37°C, or 10% formalin at 23°C. Samples were sectioned transversely and observed under a phase-contrast microscope. Cilia movement was recorded through the eyepiece using an iPhone 6 at 240 frames per second (fps). Through MATLAB programming, the video of the 23°C sample was downsampled to 120, 60, and 30 fps, and Fourier analysis was performed on videos of all frame rates and conditions to determine CBF. CBF of the 23°C sample was also calculated manually frame by frame for verification. Recorded at 240 fps, the CBF at 23°C was 5.03 ± 0.4 Hz, and the CBF at 37°C was 9.08 ± 0.49 Hz (P < .001). The sample with 10% formalin did not display any data beyond DC noise. Compared with 240 fps, the means of other frame rates/methods (120, 60, 30 fps; manual counting) at 23°C all showed no statistical difference (P > .05). There is no significant difference between CBF measured via visual inspection and that analyzed by the developed program. Furthermore, all tested acquisition rates are shown to be effective, providing a fast and inexpensive alternative to current CBF measurement protocols. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Farnbacher, Michael J; Krause, Horst H; Hagel, Alexander F; Raithel, Martin; Neurath, Markus F; Schneider, Thomas
2014-03-01
OBJECTIVE. Colon capsule endoscopy (CCE) proved to be highly sensitive in detection of colorectal polyps (CP). Major limitation is the time-consuming video reading. The aim of this prospective, double-center study was to assess the theoretical time-saving potential and its possible impact on the reliability of "QuickView" (QV), in the presentation of CP as compared to normal mode (NM). METHODS. During NM reading of 65 CCE videos (mean patient´s age 56 years), all frames showing CPs were collected and compared to the number of frames presented by QV at increasing QV settings (10, 20, ... 80%). Reliability of QV in presenting polyps <6 mm and ≥6 mm (significant polyp), and identifying patients for subsequent therapeutic colonoscopy, capsule egestion rate, cleansing level, and estimated time-saving potential were assessed. RESULTS. At a 30% QV setting, the QV video presented 89% of the significant polyps and 86% of any polyps with ≥1 frame (per-polyp analysis) identified in NM before. At a 10% QV setting, 98% of the 52 patients with significant polyps could be identified (per-patient analysis) by QV video analysis. Capsule excretion rate was 74% and colon cleanliness was adequate in 85%. QV´s presentation rate correlates to the QV setting, the polyp size, and the number of frames per finding. CONCLUSIONS. Depending on its setting, the reliability of QV in presenting CP as compared to NM reading is notable. However, if no significant polyp is presented by QV, NM reading must be performed afterwards. The reduction of frames to be analyzed in QV might speed up identification of candidates for therapeutic colonoscopy.
RANS Simulation (Rotating Reference Frame Model [RRF]) of Single Full Scale DOE RM1 MHK Turbine
Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto
2013-04-10
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study taking advantage of the symmetry of the DOE RM1 geometry, only half of the geometry is modeled using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in both the near and far wake of the device at the desired operating conditions. The results of these simulations showed good agreement to the only publicly available numerical simulation of the device done in the NREL. Please see the attached paper.
The CCSDS return all frames Space Link Extension service
NASA Technical Reports Server (NTRS)
Uhrig, Hans; Pietras, John; Stoloff, Michael
1994-01-01
Existing Consultative Committee for Space Data Systems (CCSDS) Recommendations for Telemetry Channel Coding, Packet Telemetry, Advanced Orbiting Systems, and Telecommand have facilitated cross-support between Agencies by standardizing the link between spacecraft and ground terminal. CCSDS is currently defining a set of Space Link Extension (SLE) services that will enable remote science and mission operations facilities to access the ground termination of the Space Link services in a standard manner. The first SLE service to be defined is the Return All Frames (RAF) service. The RAF service delivers all CCSDS link-layer frames received on a single space link physical channel. The service provides both on-line and off-line data transfer modes to accommodate the variety of access methods typical of space mission operations. This paper describes the RAF service as of the Summer of 1994. It characterizes the behavior of the service as seen across the interface between the user and the service and gives an overview of the interactions involved in setting up and operating the service in a cross-support environment.
Measuring zebrafish turning rate.
Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio
2015-06-01
Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.
Applications for evaluation of physical properties - An example of siliceous rock permeability -
NASA Astrophysics Data System (ADS)
Ojima, T.
2015-12-01
ODP Leg. 186, two sites (Site 1150 and Site 1151) were drilled on the continental slope of the deep-sea forearc basin of northern Japan. Diatomaceous sediments were recovered Site 1150 and Site 1151, and the depth of each site is 1181.60 mbsf and 1113.60 mbsf, respectively. This area is under the influence of the Oyashio current and is one of the highly bio-productive regions of the North Pacific Ocean (Motoyama et al., 2004). The combination of high productivity and active tectonic deformation that often caused high rate accumulating of fossil and organic rich sediments. Likewise, IODP Exp. 341 was implemented on off South Alaska. Pelagic and MTD 's layer were recognized with IRD(Ice Rafted Debris). In Tohoku, The onboard results of porosity measurements show high value (50-70 %) down to 1000 mbsf, and obviously higher than nearby subduction trench, Nankai Trough (Taylor and Fisher, 1993). There is a possibility that diatomaceous shell keep a frame structure from effective stress and load pressure. On another drilling site result, DSDP Leg. 19 located 60 km to the north of ODP sites, was reported high value of porosity, but recognized only shallow range (>500 mbsf) (Shephard and Bryant, 1980). Also, South Alaska sediments show high sedimentation rate and cyclic MTD's Layer. Permeability was lower than Tohoku sediments in spite of upper depth. We focused on the relationships between physical property, microstructure, and logging data at deep range(-1000 mbsf). Logging data were collected using wireline logging (Sacks and Suyehiro, 2003; IODP Prel. Rept., 341., 2014). Based on these results, it is expected that microstructure and logging can be integrated into a general model of core-log correlation. In this presentation, We show results of microstructure using SEM, measured physical properties, and wireline logging data, respectively.
Photovoltaic cell electrical heating system for removing snow on panel including verification.
Weiss, Agnes; Weiss, Helmut
2017-11-16
Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.
MPCM: a hardware coder for super slow motion video sequences
NASA Astrophysics Data System (ADS)
Alcocer, Estefanía; López-Granado, Otoniel; Gutierrez, Roberto; Malumbres, Manuel P.
2013-12-01
In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests, combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability, communication bandwidth, processing time, and power consumption are critical parameters that should be carefully considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a continuous manner through a 40-Gbit Ethernet point-to-point access.
NASA Astrophysics Data System (ADS)
Porto, C. D. N.; Costa Filho, C. F. F.; Macedo, M. M. G.; Gutierrez, M. A.; Costa, M. G. F.
2017-03-01
Studies in intravascular optical coherence tomography (IV-OCT) have demonstrated the importance of coronary bifurcation regions in intravascular medical imaging analysis, as plaques are more likely to accumulate in this region leading to coronary disease. A typical IV-OCT pullback acquires hundreds of frames, thus developing an automated tool to classify the OCT frames as bifurcation or non-bifurcation can be an important step to speed up OCT pullbacks analysis and assist automated methods for atherosclerotic plaque quantification. In this work, we evaluate the performance of two state-of-the-art classifiers, SVM and Neural Networks in the bifurcation classification task. The study included IV-OCT frames from 9 patients. In order to improve classification performance, we trained and tested the SVM with different parameters by means of a grid search and different stop criteria were applied to the Neural Network classifier: mean square error, early stop and regularization. Different sets of features were tested, using feature selection techniques: PCA, LDA and scalar feature selection with correlation. Training and test were performed in sets with a maximum of 1460 OCT frames. We quantified our results in terms of false positive rate, true positive rate, accuracy, specificity, precision, false alarm, f-measure and area under ROC curve. Neural networks obtained the best classification accuracy, 98.83%, overcoming the results found in literature. Our methods appear to offer a robust and reliable automated classification of OCT frames that might assist physicians indicating potential frames to analyze. Methods for improving neural networks generalization have increased the classification performance.
Altered risk-aversion and risk-taking behaviour in patients with Alzheimer's disease.
Ha, Juwon; Kim, Eun-Jin; Lim, Sewon; Shin, Dong-Won; Kang, Yeo-Jin; Bae, Seung-Min; Yoon, Hyung-Kun; Oh, Kang-Seob
2012-09-01
Normal individuals are risk averse for decisions framed as gains but risk taking for decisions framed as losses. This framing effect is supposed to be attenuated in Alzheimer's disease (AD) patients. We investigated the effects of highlighting rewards versus highlighting punishments on the risky decision-making of AD patients. Fourteen mild to moderate AD patients (Mini-Mental Status Examination score, 11-23; Clinical Dementia Rating, 1-2) and 16 healthy volunteers were recruited for the study. Subjects completed a computerized task on risky decision-making in which mathematically equivalent dilemmas were presented in terms of opportunities to gain monetary rewards ('positive frame') or avoid suffering losses ('negative frame'). As expected, AD patients chose more risky options under the positive frame than the negative frame, contrary to the control group (Z =-2.671, P= 0.007). The normal difference in the distribution of risky choices between positively and negatively framed dilemmas was significantly reduced in the AD group after we adjusted for years of education, mean age and depression (F= 5.321, P= 0.030). Deliberation time did not differ significantly between the two groups. These results suggest that AD patients making high-risk choices is associated with attenuated sensitivity to the emotional frames that highlight rewards or punishments, possibly reflecting altered evaluations of prospective gains and losses. © 2012 The Authors. Psychogeriatrics © 2012 Japanese Psychogeriatric Society.
Role of "the frame cycle time" in portal dose imaging using an aS500-II EPID.
Al Kattar Elbalaa, Zeina; Foulquier, Jean Noel; Orthuon, Alexandre; Elbalaa, Hanna; Touboul, Emmanuel
2009-09-01
This paper evaluates the role of an acquisition parameter, the frame cycle time "FCT", in the performance of an aS500-II EPID. The work presented rests on the study of the Varian EPID aS500-II and the image acquisition system 3 (IAS3). We are interested in integrated acquisition using asynchronous mode. For better understanding the image acquisition operation, we investigated the influence of the "frame cycle time" on the speed of acquisition, the pixel value of the averaged gray-scale frame and the noise, using 6 and 15MV X-ray beams and dose rates of 1-6Gy/min on 2100 C/D Linacs. In the integrated mode not synchronized to beam pulses, only one parameter the frame cycle time "FCT" influences the pixel value. The pixel value of the averaged gray-scale frame is proportional to this parameter. When the FCT <55ms (speed of acquisition V(f/s)>18 frames/s), the speed of acquisition becomes unstable and leads to a fluctuation of the portal dose response. A timing instability and saturation are detected when the dose per frame exceeds 1.53MU/frame. Rules were deduced to avoid saturation and to optimize this dosimetric mode. The choice of the acquisition parameter is essential for the accurate portal dose imaging.
Wirtz, John G; Kulpavaropas, Supathida
2014-01-01
To test the effect of narrative messages and gain- and loss-framed messages on persuasive outcomes with a sample of Hispanic adults. A 2 (message type: narrative, non-narrative) × 2 (message frame: gain-framed, loss-framed) between subjects posttest only. Data were collected at 2 outdoor festivals in West Texas. Participants were a convenience sample of 72 Hispanic adults (mean age, 40.6 years). Main outcome measures were message engagement, message relevance, attitude toward message, healthy eating intention, and physical activity intention. Data analysis included analysis of variance and multivariate analysis of variance. There was no significant difference between narrative and non-narrative messages. Gain-framed messages were rated more positively, whereas loss-framed messages were considered more engaging and also produced higher intentions to eat healthy and to become physically active. The interaction between message type and message framing was not significant. Loss-framed messages produced the unanticipated effect of higher message engagement and higher intention. This finding suggests that messages emphasizing losses associated with unhealthy eating and lack of physical activity may be more effective when targeting Hispanic adults than messages emphasizing potential gains. The lack of difference between narrative and non-narrative messages suggests there is no disadvantage to using narratives, but also no advantage. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Feasibility study of a real-time operating system for a multichannel MPEG-4 encoder
NASA Astrophysics Data System (ADS)
Lehtoranta, Olli; Hamalainen, Timo D.
2005-03-01
Feasibility of DSP/BIOS real-time operating system for a multi-channel MPEG-4 encoder is studied. Performances of two MPEG-4 encoder implementations with and without the operating system are compared in terms of encoding frame rate and memory requirements. The effects of task switching frequency and number of parallel video channels to the encoding frame rate are measured. The research is carried out on a 200 MHz TMS320C6201 fixed point DSP using QCIF (176x144 pixels) video format. Compared to a traditional DSP implementation without an operating system, inclusion of DSP/BIOS reduces total system throughput only by 1 QCIF frames/s. The operating system has 6 KB data memory overhead and program memory requirement of 15.7 KB. Hence, the overhead is considered low enough for resource critical mobile video applications.
High-Speed Video Analysis in a Conceptual Physics Class
NASA Astrophysics Data System (ADS)
Desbien, Dwain M.
2011-09-01
The use of probe ware and computers has become quite common in introductory physics classrooms. Video analysis is also becoming more popular and is available to a wide range of students through commercially available and/or free software.2,3 Video analysis allows for the study of motions that cannot be easily measured in the traditional lab setting and also allows real-world situations to be analyzed. Many motions are too fast to easily be captured at the standard video frame rate of 30 frames per second (fps) employed by most video cameras. This paper will discuss using a consumer camera that can record high-frame-rate video in a college-level conceptual physics class. In particular this will involve the use of model rockets to determine the acceleration during the boost period right at launch and compare it to a simple model of the expected acceleration.
Multi-frame knowledge based text enhancement for mobile phone captured videos
NASA Astrophysics Data System (ADS)
Ozarslan, Suleyman; Eren, P. Erhan
2014-02-01
In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.
The Last Meter: Blind Visual Guidance to a Target.
Manduchi, Roberto; Coughlan, James M
2014-01-01
Smartphone apps can use object recognition software to provide information to blind or low vision users about objects in the visual environment. A crucial challenge for these users is aiming the camera properly to take a well-framed picture of the desired target object. We investigate the effects of two fundamental constraints of object recognition - frame rate and camera field of view - on a blind person's ability to use an object recognition smartphone app. The app was used by 18 blind participants to find visual targets beyond arm's reach and approach them to within 30 cm. While we expected that a faster frame rate or wider camera field of view should always improve search performance, our experimental results show that in many cases increasing the field of view does not help, and may even hurt, performance. These results have important implications for the design of object recognition systems for blind users.
Li, Ming; Gao, Wenbo; Cvijetic, Milorad
2017-01-10
As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.
Controlling the Display of Capsule Endoscopy Video for Diagnostic Assistance
NASA Astrophysics Data System (ADS)
Vu, Hai; Echigo, Tomio; Sagawa, Ryusuke; Yagi, Keiko; Shiba, Masatsugu; Higuchi, Kazuhide; Arakawa, Tetsuo; Yagi, Yasushi
Interpretations by physicians of capsule endoscopy image sequences captured over periods of 7-8 hours usually require 45 to 120 minutes of extreme concentration. This paper describes a novel method to reduce diagnostic time by automatically controlling the display frame rate. Unlike existing techniques, this method displays original images with no skipping of frames. The sequence can be played at a high frame rate in stable regions to save time. Then, in regions with rough changes, the speed is decreased to more conveniently ascertain suspicious findings. To realize such a system, cue information about the disparity of consecutive frames, including color similarity and motion displacements is extracted. A decision tree utilizes these features to classify the states of the image acquisitions. For each classified state, the delay time between frames is calculated by parametric functions. A scheme selecting the optimal parameters set determined from assessments by physicians is deployed. Experiments involved clinical evaluations to investigate the effectiveness of this method compared to a standard-view using an existing system. Results from logged action based analysis show that compared with an existing system the proposed method reduced diagnostic time to around 32.5 ± minutes per full sequence while the number of abnormalities found was similar. As well, physicians needed less effort because of the systems efficient operability. The results of the evaluations should convince physicians that they can safely use this method and obtain reduced diagnostic times.
Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities
NASA Astrophysics Data System (ADS)
Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles
2017-06-01
Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.
Selective etching of silicon carbide films
Gao, Di; Howe, Roger T.; Maboudian, Roya
2006-12-19
A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian
2010-06-17
While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulationsmore » according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.« less
Modeling of wave-coherent pressures in the turbulent boundary layer above water waves
NASA Technical Reports Server (NTRS)
Papadimitrakis, Yiannis ALEX.
1988-01-01
The behavior of air pressure fluctuations induced by progressive water waves generated mechanically in a laboratory tank was simulated by solving a modified Orr-Sommerfeld equation in a transformed Eulerian wave-following frame of reference. Solution is obtained by modeling the mean and wave-coherent turbulent Reynolds stresses, the behavior of which in the turbulent boundary layer above the waves was simulated using a turbulent kinetic energy-dissipation model, properly modified to account for free-surface proximity and favorable pressure gradient effects. The distribution of both the wave-coherent turbulent Reynolds stress and pressure amplitudes and their corresponding phase lags was found to agree reasonably well with available laboratory data.
NASA Astrophysics Data System (ADS)
He, Di; Lim, Boon Pang; Yang, Xuesong; Hasegawa-Johnson, Mark; Chen, Deming
2018-06-01
Most mainstream Automatic Speech Recognition (ASR) systems consider all feature frames equally important. However, acoustic landmark theory is based on a contradictory idea, that some frames are more important than others. Acoustic landmark theory exploits quantal non-linearities in the articulatory-acoustic and acoustic-perceptual relations to define landmark times at which the speech spectrum abruptly changes or reaches an extremum; frames overlapping landmarks have been demonstrated to be sufficient for speech perception. In this work, we conduct experiments on the TIMIT corpus, with both GMM and DNN based ASR systems and find that frames containing landmarks are more informative for ASR than others. We find that altering the level of emphasis on landmarks by re-weighting acoustic likelihood tends to reduce the phone error rate (PER). Furthermore, by leveraging the landmark as a heuristic, one of our hybrid DNN frame dropping strategies maintained a PER within 0.44% of optimal when scoring less than half (45.8% to be precise) of the frames. This hybrid strategy out-performs other non-heuristic-based methods and demonstrate the potential of landmarks for reducing computation.
Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit; Zikry, M. A.
2014-01-01
A dislocation density-based crystalline plasticity formulation, specialized finite-element techniques, and rational crystallographic orientation relations were used to predict and characterize the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary distributions. Different layer arrangements were investigated for high strain rate applications and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-bonded interface and the potential delamination of the layers. Shear strain localization, dynamic cracking, and delamination are the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be used to optimize behavior for high strain rate applications.
Optimization of fixture layouts of glass laser optics using multiple kernel regression.
Su, Jianhua; Cao, Enhua; Qiao, Hong
2014-05-10
We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.
A layered modulation method for pixel matching in online phase measuring profilometry
NASA Astrophysics Data System (ADS)
Li, Hongru; Feng, Guoying; Bourgade, Thomas; Yang, Peng; Zhou, Shouhuan; Asundi, Anand
2016-10-01
An online phase measuring profilometry with new layered modulation method for pixel matching is presented. In this method and in contrast with previous modulation matching methods, the captured images are enhanced by Retinex theory for better modulation distribution, and all different layer modulation masks are fully used to determine the displacement of a rectilinear moving object. High, medium and low modulation masks are obtained by performing binary segmentation with iterative Otsu method. The final shifting pixels are calculated based on centroid concept, and after that the aligned fringe patterns can be extracted from each frame. After performing Stoilov algorithm and a series of subsequent operations, the object profile on a translation stage is reconstructed. All procedures are carried out automatically, without setting specific parameters in advance. Numerical simulations are detailed and experimental results verify the validity and feasibility of the proposed approach.
Real-time speech-driven animation of expressive talking faces
NASA Astrophysics Data System (ADS)
Liu, Jia; You, Mingyu; Chen, Chun; Song, Mingli
2011-05-01
In this paper, we present a real-time facial animation system in which speech drives mouth movements and facial expressions synchronously. Considering five basic emotions, a hierarchical structure with an upper layer of emotion classification is established. Based on the recognized emotion label, the under-layer classification at sub-phonemic level has been modelled on the relationship between acoustic features of frames and audio labels in phonemes. Using certain constraint, the predicted emotion labels of speech are adjusted to gain the facial expression labels which are combined with sub-phonemic labels. The combinations are mapped into facial action units (FAUs), and audio-visual synchronized animation with mouth movements and facial expressions is generated by morphing between FAUs. The experimental results demonstrate that the two-layer structure succeeds in both emotion and sub-phonemic classifications, and the synthesized facial sequences reach a comparative convincing quality.
Harn, Horng-Jyh; Huang, Mao-Hsuan; Huang, Chi-Ting; Lin, Po-Cheng; Yen, Ssu-Yin; Chou, Yi-Wen; Ho, Tsung-Jung; Chu, Hen-Yi; Chiou, Tzyy-Wen; Lin, Shinn-Zong
2013-01-01
Following a stroke, the administration of stem cells that have been treated with granulocyte colony-stimulating factor (GCSF) can ameliorate functional deficits in both rats and humans. It is not known, however, whether the application of GCSF-mobilized peripheral blood stem cells (PBSCs) to human skin can function as an antiaging treatment. We used a Lanyu pig (Sus scrofa) model, since compared with rodents, the structure of a pig's skin is very similar to human skin, to provide preliminary data on whether these cells can exert antiaging effects over a short time frame. GCSF-mobilized PBSCs from a young male Lanyu pig (5 months) were injected intradermally into the cheek skin of aged female Lanyu pigs, and tissues before and after the cell injections were compared to determine whether this treatment caused skin rejuvenation. Increased levels of collagen, elastin, hyaluronic acid, and the hyaluronic acid receptor CD44 were observed in both dermal and subcutaneous layers following the injection of PBSCs. In addition, the treated skin tissue was tighter and more elastic than adjacent control regions of aged skin tissue. In the epidermal layer, PBSC injection altered the levels of both involucrin and integrin, indicating an increased rate of epidermal cell renewal as evidenced by reductions in both cornified cells and cells of the spinous layers and increases in the number of dividing cells within the basal layer. We found that the exogenous PBSCs, visualized using fluorescence in situ hybridization, were located primarily in hair follicles and adjacent tissues. In summary, PBSC injection restored young skin properties in the skin of aged (90 months) pigs. On the basis of our preliminary data, we conclude that intradermal injection of GCSF-mobilized PBSCs from a young pig can rejuvenate the skin in aged pigs.
Analysis of Strong Wintertime Ozone Events in an Area of Extensive Oil and Gas Extraction
NASA Astrophysics Data System (ADS)
Rappenglück, Bernhard; Ackermann, Luis; Alvarez, Sergio; Golovko, Julia; Buhr, Martin; Field, Robert; Soltis, Jeff; Montague, Derek C.; Hauze, Bill; Scott, Adamson; Risch, Dan; Wilkerson, George; Bush, David; Stoeckenius, Till; Keslar, Cara
2015-04-01
During recent years, elevated ozone (O3) values have been observed repeatedly in the Upper Green River Basin (UGRB), Wyoming during wintertime. This paper presents an analysis of high ozone days in late winter 2011 (1-hour average up to 166 ppbv). Intensive Observational Periods (IOPs) were performed which included comprehensive surface and boundary layer measurements. Low windspeeds in combination with low mixing layer heights (~50 m agl) are essential for accumulation of pollutants. Air masses contain substantial amounts of reactive nitrogen (NOx) and non-methane hydrocarbons (NMHC) emitted from fossil fuel exploration activities in the Pinedale Anticline. On IOP days in the morning hours reactive nitrogen (up to 69%), then aromatics and alkanes (each ~10-15%; mostly ethane and propane) are major contributors to the hydroxyl (OH) reactivity. This time frame largely coincides with lowest NMHC/NOx ratios (~50), reflecting a relatively low NMHC mixture, and a change from a NOx-limited regime towards a NMHC limited regime. OH production on IOP days is mainly due to nitrous acid (HONO). On a 24-hr basis and as determined for a measurement height of 1.80 m above the surface HONO photolysis on IOP days can contribute ~83% to OH production on average, followed by alkene ozonolysis (~9%). Photolysis by ozone and HCHO photolysis contributes about 4% each to hydroxyl formation. High HONO levels (maximum hourly median on IOP days: 1,096 pptv) are favored by a combination of shallow boundary layer conditions and enhanced photolysis rates due to the high albedo of the snow surface. HONO is most likely formed through (i) abundant nitric acid (HNO3) produced in atmospheric oxidation of NOx, deposited onto the snow surface and undergoing photo-enhanced heterogeneous conversion to HONO and (ii) combustion related emission of HONO. HONO production is confined to the lowermost 10 m of the boundary layer. HONO, serves as the most important precursor for OH, strongly enhanced due to the high albedo of the snow cover.
26 CFR 48.4061(a)-1 - Imposition of tax; exclusion for light-duty trucks, etc.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chassis frame, the axle capacity and placement, and the spring, brake, rim, and tire capacities. The... weight. If the capacity of any of the readily attachable components (springs, brakes, rims, or tires... solely on the basis of the chassis frame or the total of the axle ratings is 12,000 pounds or less. (vi...